Monads and Theories
or
What the Hell is Algebra?

Finn Lawler

January 20th, 2009
Outline

Introduction

Algebraic Theories

Monads
Outline

Introduction

Algebraic Theories

Monads
What?

Monads
In antichronological order:

- Functional programming (e.g. Haskell)
- Denotational semantics (Moggi)
- Category theory (algebraic theories)

Universal algebra
Models of algebraic theories in

- **Set** (Birkhoff)
- Categories with finite products (Lawvere)
- Enriched categories with finite cotensors (Kelly & Power)
Why?

Programming
The connection between monads and algebra is not often explained.

Semantics
Some have advocated using algebraic (Lawvere) theories in semantics instead of monads — there are tensors and sums of theories (Power, Plotkin, Hyland).

Usefulness
I may want to talk about logics as 2-categories with ‘algebraic’ structure — the enriched version of the theory could be useful. Also, it’s pretty nifty.
How?

- We will show in detail how a standard algebraic theory gives rise to a finitary monad on \textbf{Set}.
- Everything generalizes neatly to enriched categories and infinite arities.
Outline

Introduction

Algebraic Theories

Monads
The Classical Approach

An algebraic theory T is given by

- a set S of *operations* together with an *arity* function $\text{ar} : S \to \mathbb{N}$
- a set E of *equations* between terms formed from variables and operations of S.

A model of T or a T-algebra is given by

- a set A together with functions $[f]_A : \text{Ar}(f) \to A$ for each $f \in S$ (i.e. an S-algebra), such that
- the interpretations of the terms equated by E are equal.
What Does That Mean?

- Terms are elements of a free S-algebra (also called a term algebra, Herbrand universe, etc.).
- Think of a set A as a set of variables $\{x_1^A, x_2^A, \ldots\}$.
- Then the free S-algebra S^*A on A is defined by induction:

\[
S^0A = A \\
S^{n+1}A = A \cup \bigcup_{f \in S} \{f\} \times (S^nA)^{\text{ar}(f)}
\]

The superscript in S^n is the maximum depth of a term.
- The set S^*A is then $\bigcup_{n \in \mathbb{N}} S^nA$.
A free S-algebra is indeed an S-algebra:

\[[f] : \langle t_1, \ldots, t_{\text{ar}(f)} \rangle \mapsto f(t_1, \ldots, t_{\text{ar}(f)}) \]

For example, given $S = \{ \bar{0}, \text{succ} \}$, with $\text{ar}(\bar{0}) = 0$ and $\text{ar}(\text{succ}) = 1$, S^*A looks like:

\[
\bar{0}, x_1^A, x_2^A, \ldots \\
\text{succ}(x_2^A), \text{succ}(\bar{0}), \ldots \\
\text{succ}(\text{succ}(x_1^A)), \text{succ}(\text{succ}(\bar{0})), \ldots \\
\vdots
\]
Equations

$[-]_A$ lifts uniquely to S^*A:

$$[f(t_1, \ldots, \text{tar}(f))] S^*A = [f]_A \circ \langle [[t_1] S^*A, \ldots, [\text{tar}(f)] S^*A] \rangle$$

- Equations have two sides, left and right, so an equation is a pair $\langle l, r \rangle$ of terms.
- Given $T = \langle S, E \rangle$, an S-algebra A is a T-algebra if $[[l]] S^*A = [[r]] S^*A$ for each equation $\langle l, r \rangle \in E$.
- The free T-algebra on A is S^*A/\sim, where $t \sim u$ if there is some $\langle l, r \rangle \in E$ such that $[[l]] = t$ and $[[r]] = u$.
Outline

Introduction

Algebraic Theories

Monads
What Are Monads Good For?

CS
Computer scientists often encounter the following setup:
- A category \(C \) of ‘pure’ programs (the semantics of a language).
- A monad \(T \) on \(C \), where \(TA \) is the type of (effectful) computations returning an \(A \).

Then the semantics of the language plus effects is the Kleisli category \(C_T \).

Maths
Mathematicians think of monads as follows:
- \(C \) is a universe of objects.
- A monad \(T \) on \(C \) yields free \(T \)-structures \(TA \).

The interesting thing then is the category \(C^T \) of \(T \)-algebras.
Where Do Monads Come From?

In the wild, monads typically arise from pairs of adjoint functors. This is where we have two functors like so:

\[
\begin{array}{c}
C \\ F \\
\downarrow \\
\downarrow \\
U \\ D
\end{array}
\]

and a natural isomorphism

\[\text{hom}_D(FA, B) \cong \text{hom}_C(A, UB)\]

Example: take \(C = \text{Set}\) and \(D = \text{Grp}\). \(U\) is ‘underlying set’ and \(F\) is ‘free group’. The isomorphism says that any homomorphism out of a free group is uniquely determined by its values at the generators.

This is what *free* means!
The composite UF takes a set A to the underlying set of the free group on A — that is, the set of all formal terms of group theory over A.

Feeding the identities into the isomorphism we get:

$\text{hom}_D(FA, FA) \cong \text{hom}_C(A, UFA)$

$1_{FA} \mapsto \eta_A$

and

$\text{hom}_C(UB, UB) \cong \text{hom}_D(FUB, B)$

$1_{UB} \mapsto \epsilon_B$
If UFA is the free group on A, then

- η_A simply ‘includes the generators’ — it sends the elements of A to themselves in UFA.
- $UFUFA$ is the ‘free group on the free group’ — it consists of formal terms whose ‘variables’ are formal terms in A.
- $\mu_A = (U\epsilon F)_A : UFUFA \to UFA$ takes these terms in terms and ‘multiplies them out’ to get terms in A.
Examples

Free Monoids (Lists)

- F is ‘free monoid’, U is ‘underlying set’. UFA is A^*, the set of lists of elements of A.
- $\eta_A : A \rightarrow A^*$

 \[
 a \mapsto [a]
 \]

 (singleton list)
- $\mu_A : A^{**} \rightarrow A^*$

 \[
 [[a_1, \ldots, a_n], \ldots, [z_1, \ldots, z_m]] \mapsto [a_1, \ldots, a_n, \ldots, z_1, \ldots, z_m]
 \]

 (concatenate)
Examples

Free Modules (Polynomials)

Let R be a ring.

- Functors

 \[
 \begin{array}{ccc}
 \text{Set} & \overset{\mathcal{F}_G}{\longrightarrow} & \text{Ab} \\
 \mathcal{U}_G & \overset{\mathcal{F}_M}{\longleftarrow} & R\text{-Mod}
 \end{array}
 \]

 \[UFA = U_G U_M F^M F^G.\]

 A is $R[A]$ — polynomials in A with coefficients in R.

- $\eta_A : A \to R[A]$

 \[x \mapsto x\]

- $\mu_A : R[R[A]] \to R[A]$

 [Multiplies out polynomials in polynomials]
So What’s A Monad?

A *monad* on a category \mathbf{C} is a functor $T : \mathbf{C} \to \mathbf{C}$ together with natural transformations $\eta : 1 \to T$ and $\mu : T^2 \to T$, satisfying:

\[
\begin{array}{ccc}
T & \xrightarrow{T \eta} & T^2 \\
\downarrow \eta T & \cong & \downarrow \mu \\
T^2 & \xrightarrow{\mu} & T
\end{array}
\quad \quad \quad \quad \quad
\begin{array}{ccc}
T^3 & \xrightarrow{T \mu} & T^2 \\
\downarrow \mu T & \cong & \downarrow \mu \\
T^2 & \xrightarrow{\mu} & T
\end{array}
\]

If $F \dashv U$, then $\langle UF, \eta, U\epsilon F \rangle$ is always a monad.

Monads on \mathbf{C} are exactly monoid objects in the monoidal category $\langle [\mathbf{C}, \mathbf{C}], \circ, 1_\mathbf{C} \rangle$.
Monads From Theories

Given a signature S, its *structure functor* F_S is defined as:

$$F_S X = \sum_{f \in S} X^\text{ar}(f)$$

An F_S-algebra is a map (or action) $a : F_S A \to A$.

S-algebras are F_S-algebras:
Example

Let $P = \{ \overline{0}, \text{succ} \}$ as before. Then we have

$$F_P X = \sum_{f \in P} X^{\text{ar}(f)} = X^0 + X^1 \cong 1 + X$$

A P-algebra is thus given by an action $p : 1 + X \rightarrow X$.

The initial P-algebra is \mathbb{N}. (Remember Arthur’s talk?)
Equivalently, we can group operations by arity. For a signature \(\langle S, \text{ar} \rangle \), write \(S \) again for \(\text{ar}^{-1} : \mathbb{N} \to \text{Set} \). So

\[
Sn = \{ f \in S \mid \text{ar}(f) = n \}
\]

Now \(F_S \) involves a sum over arities:

\[
F_S X = \sum_{n \in \mathbb{N}} Sn \times X^n
\]

An \(F_S \)-algebra is the same as before.
Monads From Theories III

We want to take free S-algebras. These are defined as before:

\[
S^0 X = X \\
S^{n+1} X = X + F_S(S^n X) \\
S^* X = \text{colim}_n S^n X
\]

This makes $S^* A$ the initial algebra for the functor $X \mapsto F_S X + A$, the colimit of

\[
0 \overset{!}{\longrightarrow} F_S 0 + A \overset{F_S! + A}{\longrightarrow} F_S(F_S 0 + A) + A \longrightarrow \cdots
\]

If F_S is nice (preserves countable coproducts), we have

\[
S^* \cong 1 + F_S + F_S^2 + \cdots = \bigsqcup_n F_S^n
\]
This makes \(S^* \) the \textit{free monad} on \(F_S \):

\begin{itemize}
 \item \(\eta : 1 \rightarrow S^* \) is simply the injection into the first summand (inclusion of the generators).
 \item \(\mu : S^*S^* \rightarrow S^* \) is

\[
\bigsqcup_n F^n_S \circ \bigsqcup_m F^m_S \xrightarrow{\sim} \bigsqcup_{m,n}(F^n_S \circ F^m_S) \xrightarrow{\sim} \bigsqcup_k F^k_S
\]

an isomorphism!
\end{itemize}

\textbf{Why?}

Informally, \(S^*S^*A \) consists of formal terms whose leaves are again formal terms in \(A \). Given such a term, suppose the two layers have depth \(n \) and \(m \) — then the term is a term in \(A \) of depth \(n + m \).
Simple Example

Consider the simplest non-trivial signature: let $S_0 = \{ f \}$, and $S_n = \emptyset$ for $n > 0$. Now

$$F_S : X \mapsto \sum_{n \in \mathbb{N}} S_n \times X^n$$

$$\implies 1 \times X^0$$

$$\implies 1$$

So F_S is the constant functor at the one-element set. The free monad on it is

$$S^* A = 1 + A$$

In Haskell this is called the Maybe monad. The operation f plays the role of the Nothing constructor.
Some facts:

- The arities of a signature are natural numbers.
- Naturals are isomorphism classes of finite sets (addition is coproduct, product is product).
- Any set is the union of its finite subsets.
- All of the functors we have constructed are finitary — they preserve directed unions of finite sets.

This means that we need only consider the images of the functors F_S and S^* at finite sets, since the above shows

$$S^* A \cong S^* (\bigcup P_f(A)) \cong \bigcup S^*(P_f(A))$$

Now $S^* n$ is the free S-algebra on n generators (unique up to isomorphism) — or the set of S-terms of arity n.
Equations

Let $T = \langle S, E \rangle$ be a theory.

- Define the arity of an equation to be the least n such that neither side contains more than n distinct variables.
- Now define a set of equations to be a function $E : \mathbb{N} \to \textbf{Set}$ sending n to a set of (abstract) operations of arity n.
- Interpreting an equation’s left and right sides as S-terms yields two functions for each n:

$$En \xrightarrow{l_n} S^* n \xleftarrow{r_n}$$

For example, the theory of groups will involve $E3 = \{\text{assoc}\}$, where

$$l_3(\text{assoc}) = x_1 \cdot (x_2 \cdot x_3)$$
$$r_3(\text{assoc}) = (x_1 \cdot x_2) \cdot x_3$$
Equations II

- Just as with a signature, there is a free monad on E.
- The maps $l_n, r_n : E^n \rightarrow S^* n$ lift uniquely (because of freeness) to monad maps

$$E^* \xrightarrow{l^*} S^*$$

$$E^* \xrightarrow{r^*} S^*$$

- The monad T^* corresponding to T is the coequalizer of these, so for each n we have

$$E^* n \xrightarrow{l_n^*} S^* n \xrightarrow{r_n^*} T^* n$$
Algebras

T-algebras for a monad T should interact properly with the extra structure on T. A T-algebra is an arrow $a : TA \to A$ as before, such that

\begin{align*}
T^2 A &\xrightarrow{T a} TA \\
\mu_A &\downarrow \\
TA &\xrightarrow{a} A
\end{align*}

\begin{align*}
A &\xrightarrow{\eta_A} TA \\
1 &\downarrow \\
A &\xrightarrow{a} A
\end{align*}

A homomorphism of T-algebras is a morphism of the underlying objects that respects the algebra structure:

\begin{align*}
TB &\xrightarrow{T f} TA \\
b &\downarrow \\
B &\xrightarrow{f} A
\end{align*}

T-algebras form a category called \mathbf{C}^T or T-\mathbf{Alg}.
The Kleisli Category

If T is thought of as representing a particular kind of side-effect, then the relevant arrows are *Kleisli arrows* — an effectful program from A to B is modelled as an arrow $f : A \to TB$.

The Kleisli category C_T (or $\text{Kl}(T)$) of T is defined to have

- **Objects**: those of C.
- **Arrows** $f : A \rightsquigarrow B$ in C_T are arrows $f : A \to TB$ in C.
- **Composition**: given $A \rightsquigarrow B \rightsquigarrow C$, their composite is

$$A \xrightarrow{f} TB \xrightarrow{Tg} T^2C \xrightarrow{\mu_C} TC$$

$\mu_C \circ Tg$ is the ‘unique lifting’ of g to the free T-algebra on its domain.
The Kleisli category \mathbf{C}_T is equivalent to the subcategory of T-\mathbf{Alg} consisting of the free algebras $\mu_A : T^2A \to TA$.

- Objects A of \mathbf{C}_T (i.e. objects of \mathbf{C}) uniquely determine free algebras TA and actions μ_A.
- Kleisli arrows $f : A \sim B$ lift uniquely to arrows $\mu_B \circ Tf$.
- These are morphisms of free algebras by virtue of

$$
\begin{array}{cccc}
T^2 A & \xrightarrow{T^2f} & T^3 B & \xrightarrow{T\mu_B} & T^2 B \\
\mu_A & & \mu_{TB} & & \mu_B \\
TA & \xrightarrow{Tf} & T^2 B & \xrightarrow{\mu_B} & TB
\end{array}
$$