<table>
<thead>
<tr>
<th>Module Code</th>
<th>CS2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module Title</td>
<td>Computer Architecture II</td>
</tr>
<tr>
<td>Pre-requisites</td>
<td>None</td>
</tr>
<tr>
<td>ECTS</td>
<td>5</td>
</tr>
<tr>
<td>Chief Examiner</td>
<td>Dr Michael Manzke</td>
</tr>
<tr>
<td>Teaching Staff</td>
<td>Dr Michael Manzke</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contact Hours</th>
<th>Lecture hours</th>
<th>Lab hours</th>
<th>Tutorial hours</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>22</td>
<td>33(11 each)</td>
<td></td>
<td>33</td>
</tr>
</tbody>
</table>

Comments: Attendance at all lectures, labs and tutorials is compulsory.

Aims

The lectures and tutorials treat the detailed design and organisation of microprocessor.

Course Work: Two projects using VHDL and ModelSim to simulate and test their design.

1. A processor unit (ALU + shifter + fast registers) design and simulation,
2. An instruction processor design and simulation.

Contents: Digital Logic, Register transfer definition, micro-operations, bus transfers, ALU design, shifter design, hardwired control design, microprogrammed processor control, design of an instruction processor.

The aims of the course are to learn register-transfer specification and design and learn the fundamentals of an instruction processor.

Learning Outcomes

Students will be able to

- design substantial logic circuits using register transfer descriptions;
- test and verify their design using an industry standard hardware description language (VHDL);
- understand the organisation and execution behaviour of general-
Syllabus
Specific topics addressed in this module include:
- Digital Logic
- Register transfer language
- ALU and shifter design
- Multiplexer and tristate busses.
- Datapath design
- Instruction fetch-decode-execute cycle

Assessment
Assessment is by examination (80%) and continuous assessment (20%).
Continuous assessment is composed of a number of marked laboratory exercises and two substantial assignments.
Assessment in supplemental examinations is by 100% exam.

Bibliography
Recommended text:
- Introductory VHDL: From Simulation to Synthesis
- Logic and Computer Design Fundamentals” 2nd Edition updated, Mano

Additional recommended texts:

Website