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Abstract

Most unmanned space missions end up with a destructive atmospheric re-entry. From

ten to forty percent of a re-entering satellite’s mass may survive re-entry and hit the

Earth’s surface. This has the potential to be a hazard to people, fauna, flora and

produce economic damage.

The severe consequences of inaccurate predictions of the area where the debris can

re-enter and land result in the need to consider all the possible causes of fragmentation.

This thesis proposes and discusses the application of two Bayesian statistical models,

designed to be the principles that underlie a new risk assessment tool for the modelling

of the fragmentation of a spacecraft, caused by highly energetic break-up events during

the atmospheric re-entry. This new tool is required to evaluate with a certain degree

of uncertainty if such events can occur and, in an affirmative case, to provide the

characteristics of the fragments.

Risk assessment for re-entering spacecraft is made difficult because there is very

little historical information. As a consequence both the models incorporate a strategy

to make the most by the judgement of atmospheric re-entry experts.

This dissertation summarises the work executed within the European Space Agency

Network Partnering Initiative (reference No. 4000106747/13/NL/GLC/al).
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Chapter 1

Introduction

1.1 Background

Most of the unmanned space missions end up with a destructive atmospheric re-entry.

During the decay, from space to Earth, the vehicle enters into denser regions of

the atmosphere at a very high velocity, exceeding speeds twenty times faster than a

speeding bullet (at orbital speed, around 7.6 km/second)(www.aerospace.org, n.d.).

This causes the object to be decelerated abruptly, the structure to be exposed to

aerodynamic loads that can exceed ten times the acceleration of gravity and to a friction

that heats up the object so that some of its components can reach their melting point

or ablate. Eventually the combinations of these events cause the spacecraft to break

apart by the failure of critical structural components and/or by an explosion. The

former case can be defined as a low energetic break-up event, while the latter highly

energetic break-up event. Unfortunately it is not easy to establish which one of these

two types of events has occurred, considering how difficult is to observe and ascertain

this kind of phenomena.

The resulting fragments will further travel the atmosphere and each of them can

experience further fragmentation, completely demise, by melting or ablation, as long

as sufficient heating and loads exist. The same happens for all the fragments generated

afterwards. During the descent the surviving debris lose speed and begin to cool until

they free-fall and impact the ground.

Even if they hit the Earth's surface at relatively low speed, they can still represent

a hazard to people, fauna, flora and cause economic damages.
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1.2 Research aims

This thesis describes a Bayesian statistical approach for the modelling of the frag-

mentation of a spacecraft, caused by an highly energetic break-up event during the

atmospheric re-entry. It consists of two statistical models developed in order to meet

the following objectives:

• Assessment of the probability for an highly energetic break-up event to occur

during the atmospheric re-entry;

• Prediction of the statistical distribution of the masses of the generated fragments.

The proposed statistical models have been designed in order to be the principles

that underlie a new probabilistic analysis tool for the re-entry risk assessment in case

of highly energetic break-up events. Their application do not constitute a complete

risk analysis, but only a component of it, as there is no work on the consequence side

of risk.

The new probabilistic analysis tool is required to provide all the information that

the re-entry analysis tool ASTOS (Aerospace Trajectory Optimization Software) needs

to predict the propagation of the fragments generated by an highly energetic break-up

event. ASTOS is currently used in the Guidance navigation and control section of

the European Space Agency (ESA TEC-ECN), who proposed and supported the work

behind this thesis. The implementation and integration of the proposed models into

ASTOS can lead to the development of a complete risk assessment solution for highly

energetic break-up event.

Specifically, the new probabilistic analysis tool must evaluate with a certain degree

of uncertainty if, where, and how many times a highly energetic break-up event can

occur during the atmospheric re-entry of a space vehicle and, in an affirmative case, to

provide the characteristics of the generated cloud of debris. A cloud of debris is defined

by all those physical features that allow to predict its propagation, its re-entering tra-

jectory and particularly which fragments will hit the Earth and where. These physical

features are: number of fragments and, for each fragment, mass, material composition,

shape, area-to-mass ratio, ejection velocity, position (longitude, latitude and altitude)

of the fragmentation event. The reader is referred to the book (Klinkrad, 2010) for
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further information about debris propagation, re-entry prediction and on-ground risk

estimation.

We propose to name this new tool ABBRA (Atmospheric Break-up Bayesian Risk

Analysis). The models described in this thesis must function in a coordinated way to

accomplish ABBRA’s objectives:

1. Compute the probability for an highly energetic break-up event to occur, given

informations about the spacecraft structure at the end-of-life (at the beginning

of the de-orbiting phase) and its re-entering trajectory;

2. In case this probability is large enough, compute the number of fragments and

characterize the generated fragments in terms of probability distributions;

3. Evaluate if there are fragments containing elements capable of provoking an other

highly energetic break-up event and, in an affirmative case, repeat 1 and 2.

1.3 Research motivation

Many tools have been designed in order to predict how the fragmentation process occurs

and much effort is still being made to improve their accuracy. It is not surprising if we

think that even a small fragment coming from space could pose a threat to people and

assets if it impacts the Earth’s surface where it is not supposed to land.

The severe consequence of such an event results in the need to analyse all the

possible re-entry cases, particularly considering that the number of re-entries, controlled

and uncontrolled, will probably increase over the next few years.

A weak point of most existing re-entry analysis tools is the lack of a proper modelling

of the fragmentation caused by an explosion, that can occur during the atmospheric

re-entry. We faced the challenge to develop a model aimed to fill this gap.

This explains the need of a dedicated re-entry highly energetic break-up events

model, able to characterize the generated fragmentation cloud in terms of statistical

distributions.

The choice of a statistical approach was driven by the idea of exploiting the stochas-

tic nature of the fragmentation process, while the Bayesian approach has been consid-

ered suitable because it allows to integrate expertise and data collection. This is a
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problem where real data are scarce but physical knowledge is extensive, even if many

uncertainties are involved.

1.4 Thesis contribution

This dissertation contributes to the area of Bayesian statistics applications for complex

models with missing data. Specifically, it introduces:

• A model for the exploitation of the expert opinion in risk assessment;

• A model for the prediction of a fragmentation process.

The novel contribution is mainly in the application domain, or better in the use of

existing stochastic models to a new situation.

Furthermore the proposed models contribute in the area of risk assessment for

spacecraft re-entry:

• Introducing a new strategy never considered so far: the Bayesian approach;

• Exploiting data from real cases of fragmentation and explosions and combining

them with the background knowledge.

1.5 Outline of Thesis chapters

We conclude our introduction with an outline of the content of the various chapters of

this thesis.

• In Chapter 2 the reader is introduced to the problems associated with a de-

structive spacecraft atmospheric re-entry and to the deterministic tools currently

used to model this kind of phenomena. By underlining the limitations of these

methods, we motivate the necessity of studying the development of a Bayesian

statistical approach;

• Chapter 3 summarizes the research methodology that was followed during the

course of our research;

• Chapter 4 presents the relevant literature review;
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• Chapter 5 provides an overview of the available and exploitable data and about

what could be retrieved in the future. Furthermore it explains the issues related

to the problem of missing data and details the expert opinion elicitation pro-

cess, conducted in the European Space Research and Technology Centre (ESA-

ESTEC).

• Chapter 6 illustrates the proposed risk assessment model and an idea for the

application to the evaluation of an highly energetic break-up to occur during the

atmospheric re-entry. This model is defined as a Belief-network model for failure

prediction and it combines the fault tree analysis and an elicitation process that is

inspired by the multi criteria decision making method, called Analytic Hierarchy

Process. It is a model calibrated by an integration of expert opinion with sparse

data.

• Chapter 7 describes the proposed Bayesian fragmentation model with missing

data. It is a procedure for the construction and the inference of a distribution over

the partitions of the unit interval, generated by a partially random fragmentation

process.

• Chapter 8 concludes the thesis with several remarks of future work.

• The Appendices A,B,C,D provide an overview of the applied statistical topics:

– The Bayesian approach and the sampling methods exploited for the infer-

ence;

– The Fault tree analysis used as framework of the proposed risk assessment

model;

– The Expert opinion with particular attention to the Analytic Hierarchy

Process applied for the expert opinion elicitation in the risk assessment

model;

– The stick breaking process which inspired the fragmentation model.

• Example of expert surveys and a timeline of the whole project are reported Ap-

pendix E and Appendix F .
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Chapter 2

Research description and objectives

2.1 Introduction

In this chapter, the reader is introduced to the problems associated with a destructive

spacecraft atmospheric re-entry. After a description of what is a destructive re-entry

and what are the connected issues, we provide an overview of the deterministic tools

currently used to model this kind of phenomena. Then we underline the limitations

of these methods in order to motivate the necessity of studying the development of a

statistical approach, that is the research question of this thesis. Finally, we explain

why the Bayesian approach is relevant for this problem.

2.2 The destructive spacecraft re-entry

Whenever possible, spacecraft 1 should perform a safe re-entry, or where appropriate

manoeuvred into a graveyard orbit (above 2000Km), at the end of their operational

phases.

This is recommended by the Inter-Agency Space Debris Coordination Committee

(IADC) Mitigation Guidelines (IADC Coordination Committee, 2007) and it is nec-

essary to limit the interferences with objects in operation. Similarly, Space agencies

and the United Nations developed regulations to reduce lifetime of space vehicles and

then to mitigate collision risk (e.g. Klinkrad (2003), UNCOPUOS (2007), UN (2002)).

For instance, In Europe, on a cooperative basis amongst the interested national space
1A vehicle designed for travel or operation in space beyond the Earth’s atmosphere or in orbit

around the Earth. We call it spaceship or space vehicle too.
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agencies, the European Code of Conduct for Space Debris Mitigation (ASI, BNSC,

CNES, DLR, ESA, 2004) has been compiled and formally adopted. ESA defined spe-

cific requirements on space debris mitigation (ESA, 2008b) applicable to all ESA space

systems orbiting the Earth or re-entering the Earth’s atmosphere.

First, we are going to provide an overview of the re-entry disposal mechanisms, the

spacecraft fragmentation process and the associated risk, explaining what can differ in

the outcome between a low energetic and a highly energetic break-up event.

Furthermore we present an example of vehicle which performed safe re-entries and

whose re-entries has been the subject of many risk assessment studies concerning the

probability of explosion: the Automated Transfer Vehicle.

2.2.1 Re-entry disposal mechanisms

The atmospheric re-entry can be uncontrolled (natural decay) or controlled.

The artificial satellites 2, orbiting around the Earth, would continue to orbit forever

if gravity were the only force acting on it, but it is not. There exist other forces acting

on the satellite to perturb it away from the nominal orbit: the luni-solar attraction,

the perturbation due to the non-spherical geopotential 3, the solar radiation pressure

and obviously the atmospheric drag.

The atmospheric drag acts in the opposite direction of motion and it is a non-

conservative, energy dissipating perturbation. This is the major cause of a natural

decay. The atmospheric drag is due to the frequent collisions between the spaceship

and the surrounding air molecules, for this reason it increases with the density and the

atmospheric density increases as the altitude decreases. Hence the dissipating action is

greater at lower altitudes. For this reason, objects orbiting in the Low Earth Orbit 4, or

simply LEO (hundreds of kilometres in altitude), may decay naturally by atmospheric

drag within weeks, months, or years depending on the object and its altitude, while

objects at higher altitudes may remain in orbit for hundreds or thousands of years. The

consequent energy reduction of the satellite causes the orbit to get smaller, leading to

further increases in drag. Eventually, the altitude of the orbit becomes so small that
2A man-made object put into orbit around a celestial body
3The Earth has not a spherically symmetric mass distribution. Indeed, the Earth has a bulge at

the equator, a slight pear shape, and flattening at the poles.
4LEO orbits are usually the place of earth science, observation, monitoring and communications

missions.
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the satellite re-enters the atmosphere. This disposal method leads to a random fashion

re-entry and then to a large uncertainty about where on Earth the object will actually

land. A 10-minute error in the prediction of the re-entry time is enough to obtain 3000

miles of uncertainty in the impact point Patera and Ailor (1998).

On the other hand, we talk about controlled re-entry when a propulsive capability

is used to steer the spacecraft towards the re-entry more quickly and to target it to

a specific safe landing area, under supervision. This disposal method requires more

attention in the planning, execution and follow through, in particular if we consider

that a spacecraft due to re-entry is normally near to its end-of-life.

The reader is referred to Gallais (2007) and Tewari (2007) for a more detailed

comprehension of the atmospheric re-entry of spacecraft.

Fig. 2.1: The stages of the spacecraft break-up during the atmospheric re-entry. Cred-

its: Space Safety magazine IAASS

2.2.2 Spacecraft re-entry fragmentation and risk

As already mentioned in 1.1, during the decay, the space vehicle experiences severe

heating and loads that cause its fragmentation.

During the descent, the first components that get detached from the main body and

break into fragments are usually the solar panels, the antennas and other protruding

9



Fig. 2.2: On the left: tank recovered in Texas in 2003. This object fell from the

disintegrating Space Shuttle Columbia. Photograph: Steve Liss/Corbis. Source: The

Guardian UK. On the right: debris of decaying satellite found about 150 kilometres

outside of Cape Town in April 2000. Photograph: Enver Essop/EPA. Source: The

Guardian UK.

elements. This is followed by one or more major break-up events, that generally involves

all the structure and that occurs at an altitude between seventy and ninety kilometres.

The level of energy released by these major break-up events depends on the causes:

there are circumstances where explosions can be triggered and in this case an higher

level of energy will be released. In this thesis we use the expressions highly energetic

break-up event and low energetic break-up events to distinguish respectively the break-

up due to an explosion from the failure of the supporting structure due to the effects

of the aerodynamic loads.

The resulting fragments will follow trajectories based on the state vector at the

separation and their own ballistic coefficients 5. They can suffer further fragmentation

and generate smaller debris or completely demise, by melting or ablation. The same

happens for the new debris as long as sufficient heating and loads exist Patera and Ailor

(1998). Some of them can survive, lose speed and begin to cool until they free-fall and

impact the ground.

Fortunately no casualties or injuries have been reported from components of re-

entering spacecraft until now: based on the available reports, it seems that only one

person has been struck-but not injured-by a lightweight fragment of a re-entering satel-

lite in Oklahoma in 1997. If a spacecraft is to be disposed of by re-entry into the atmo-

sphere, debris that survives to reach the surface of the Earth should not pose an undue

5The ballistic coefficient is defined as the ratio M
CdA where M is the mass of the object, Cd is the

drag coefficient and A the cross-sectional area.
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risk to people or property. Limiting the amount of surviving debris and confining the

debris to uninhabited regions, such as broad ocean areas, may accomplish this. The

reader can get a clear idea of the hazards associated with the spacecraft re-entry from

the examples of recovered debris showed in Figures 2.2, 2.3.

Sophisticated simulations (Anselmo and Pardini (2005), Rochelle et al. (1999),

Fritsche et al. (2000)) and the analysis of retrieved spacecraft debris (Sgobba et al.,

2013) suggest that about 10-40 per cent of a spacecraft mass may survive the re-entry

(Klinkrad (2010), Ailor et al. (2005)).

First of all, the actual percentage changes with the re-entering vehicle features

(materials, mass, size, shape). Moreover it depends on the steepness of the re-entry

trajectory and the energy released during the break-up. For this reason it is fundamen-

tal to predict which kind of break-up event occurs, if low energetic or highly energetic.

The probability of survival for a specific component is mainly determined by the

materials used in its construction, the size and its position. For example, magnesium

and aluminium structures tend to fail at an altitude of approximately 78 km (Sgobba

et al., 2013), while components made of materials with high melting temperatures, such

as stainless steel, titanium, and glass, often survive and reach the ground. The larger

debris with moderate melting temperatures have higher chances of survival, because

they can radiate a greater amount of heat, taking advantage of their large surface areas.

When a component is shielded by other resistant components or contained within the

body of the vehicle and then protected by surrounding structure, it may survive even

if it is made of a low melting temperature material (Sgobba et al., 2013).

The surviving debris ground footprint is typically 1000-2000 km long. Generally,

the cross track dispersion of the potentially hazardous fragments is less than a few tens

of kilometers, but smaller debris may be found farther because of the wind (Anselmo

and Pardini, 2013).

In order to minimize the safety risk of the space flight projects, it is fundamental

to identify the hazardous conditions and accident scenarios as well as the probabilistic

assessment of their consequences (Opiela and Matney, 2004). In order to assess the

damage caused by these surviving objects, with steadily increasing numbers of space

objects and increase of possible candidates for ground impact, it is crucial to have

a tool able to predict the mass of impacting fragments, their features, their re-entry
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Fig. 2.3: Space debris, belonging to a Russian Zenit-3 rocket, recovered In March

2011, in Colorado. Source: Aircraft-Info.net

trajectory and finally the area where they will hit the Earth.

2.2.3 The Automated Transfer Vehicle reentry: study case

The Automated Transfer vehicles are good examples of spacecraft which performed

safe re-entries subject to the risk of explosion.

ATV overview

The Automated Transfer Vehicle (ATV) was an indispensable ISS (International Space

Station) supply spaceship, developed by the European Space Agency and European

Industry. By delivering experimental equipment, propellants and goods for the per-

manent crew, it provided for years the European contribution to the Space Station

operating costs (ESA, 2008a).

From 2008 to 2015, the ATV delivered up to 7.7 tonnes of cargo to the ISS, which

is located 400 km above the Earth. Furthermore it had the task to lift the ISS to a

higher orbital altitude in order to compensate the altitude loss of the station due to

atmospheric drag. Each ATV remained attached as a pressurised and integral part of

the Station for about half a year, before performing a controlled destructive re-entry

into the Earth’s atmosphere, with on board up to 6.4 tonnes of material and general

waste no longer necessary on the Station.
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Fig. 2.4: Artist’s impression showing ATV-5 docking with ISS. Credits: ESA Space

in images

Five ATVs, ATV-1 Jules Verne, ATV-2 Johannes Kepler, ATV-3 Edoardo Amaldi,

ATV-4 Albert Einstein, and ATV-5 Georges Lemaitre were launched, with the first

launched in March 2008 and the last one in 2014 and all of them performed a successful

controlled re-entry.

The main body of ATV was a cylinder, 10.3 metres long and up to 4.5 metres in

diameter (ESA, 2008a). As the reader can see in the figure 2.7, X-shaped metallic blue

solar arrays extended outward from the main body.

Inside, it was constituted of two elements. The first one was the spacecraft sub-

assembly (SCS) equipped with propulsion (propulsion tanks and thrusters) and avionics

bays (batteries, gyroscopes, and harness). The second part was the integrated cargo

carrier, containing the equipped external bay (water and gas tanks, web structure) and

the equipped pressurized module (containers, cargo, and the attitude control thrusters).

The material list of which the subsystem of ATV 1 Jules Verne was made contains about

100 different collection types: from Titanium to Aluminum, from Beryllium, to carbon

fiber, etc.
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Fig. 2.5: Artist’s impression of the ATV Cargo Carrier attached to the ISS. Credits:

ESA Space in images

ATV re-entry

ATV was intentionally designed for controlled re-entry (as the Japanese ISS cargo

HTV). The manoeuvre plan is detailed in (Labourdette et al., 2008). After the un-

docking from the ISS, thrusters were planned to use their remaining fuel to de-orbit the

spacecraft and then to initiate a safe controlled destructive re-entry into the SPOUA

(South Pacific Uninhabited Area), a predefined uninhabited South Pacific area.

The planning of a safe controlled re-entry mission, compliant with the current

requirements established to reduce orbital lifetime for satellites, requires a significant

amount of work in terms of predictive studies. Many analysis have been conducted

for ATVs, in order to forecast the impact area of the surviving fragments, taking into

account all the possible perturbations: altitude of fragmentation, de-orbit manoeuvre

accuracy, atmospheric drag, debris behaviour, meteorological effect and, as already
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Fig. 2.6: ATV-5 mission scenario. Credits: ESA Space in images

Fig. 2.7: ATV seen from the station. Credits: ESA Space in images
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mentioned, explosion potentials.

Scientists considered various circumstances, which could create an explosion envi-

ronment, e.g. the ignition of residual hypergolic propellants upon exposure to the hot

and reactive flow environment or tank bursting (Schmehl et al. (2005), Fritsche et al.

(2005a)). A detailed analysis of the re-entry is reported in (Koppenwallner, Fritsche,

Lips, Martin, Francillout and De Pasquale (2005), Fritsche et al. (2001)).

Some ATV cargo vehicles hosted a device called Reentry Breakup Recorder (Weaver

and Ailor, 2012) (REBR), designed to gather data about temperature, acceleration,

rotation rate, internal pressure and to transmit them to Earth during the break-up

(Tosney and Cheng, 2015). REBR was not designed to survive re-entry, but the com-

munications transmitter was encased in a spherical ceramic heat shield to withstand

the high temperature, then send images before impacting the ocean. Unfortunately in

most cases data could not be retrieved:

• In ATV-2 REBR failed;

• In ATV-3 REBR functioned nominally and data was probably transmitted during

the break-up;

• In ATV-5 REBR failed. It is interesting to note that the also the Japanese i-Ball

camera (JAXA, 2007) was planned to fly with ATV-5, but unfortunately it was

lost in the Antares rocket explosion in October 2014.

In 2008, ATV-1 was observed via a dedicated airborne re-entry observation cam-

paign (see for more details Chapter 5). ATV-4 was only observed from the International

Space Station. Scientists worked for more than a year to organize a new airborne obser-

vation campaign for ATV-5, the final one. In order to record the break-up under better

conditions, a modified re-entry profile was planned, at a shallower angle than usual.

Unfortunately a battery failure in one of the freighter’s four power chains cropped up

few weeks before the planned re-entry date: this event led the ESA officials to decide

to go for a standard steep profile and the observation campaign to be cancelled.
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Fig. 2.8: Artist’s impression of the ATV burning up in Earth’s atmosphere at the end

its mission. Credits: ESA/D.Ducros

2.3 Re-entry analysis tools overview

The models developed in order to predict how a spacecraft shatters into pieces into the

atmosphere during its re-entry to Earth, usually called re-entry analysis tools, simulate

the physics of re-entry, taking into account the trajectory, atmosphere, aerodynamics,

aero-thermodynamics, and thermal/ablation aspects. They are deterministic models

and they forecast and analyse the fragmentation triggered by events like the excess of

a critical temperature or a certain percentage of melted material.

These models vary considerably in their modelling approach and the accuracy level

they can provide. They can be classified under two main categories (Wu et al., 2011):

• Object oriented codes;

• Spacecraft oriented codes.
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2.3.1 Object-oriented code and Spacecraft-oriented code

Object-oriented methods assume that at a certain altitude (usually in the range 75-85

Km) the spacecraft is decomposed into its individual elements. The entry body is

treated as a set of elementary geometric shape objects covered by one or more contain-

ers: upon melting of one of these the internal objects are released. The parent body

trajectory is run until the assumed break-up altitude, then for each critical element of

the decomposed spacecraft a destructive re-entry analysis is performed.

This approach simplifies significantly the geometric spacecraft definition and all

the re-entry analysis, taking into consideration only the critical parts and neglecting

the complete spacecraft assembly. Thus the computational time of the entire analysis

and the difficulties of the preparatory work are strongly reduced, but clearly some

incompleteness may occur, e.g. the effect of the protection of internal spacecraft parts

by the outer shells is totally ignored.

Examples of object oriented codes are:

• NASA Object Re-entry Survival Analysis Tool (ORSAT (Dobarco-Otero et al.,

2005));

• SESAM and SERAM (Spacecraft Entry Survival Analysis Module and Space-

craft Entry Risk Analysis Module), included in ESA Debris Risk Assessment and

Mitigation Analysis (DRAMA (Martin, 2005));

• DARS (Debris Analysis for Re-entering Spacecraft) and RAM (Risk Analysis

Module), included in ESA ASTOS (The Aerospace Trajectory Optimization Soft-

ware (Weikert et al., 2013), (Ortega et al., 2008));

• DEBRISK Omaly and Spel (2012).

Spacecraft-oriented codes model the entire spacecraft as a single entity. Geometries

are not simplified approximations, but are complex representations based on the ac-

tual spacecraft design. Flow-fields around the spacecraft are calculated to determine

accurate aerodynamic and thermal characteristics. Fragmentation events are based on

simulated melting and mechanical demise rather than a single event at a pre-determined

altitude. They analyse the re-entry of a complete spacecraft with its complete dynam-

ics and the objects are continuously separated from the parent body. In contrast to the
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object-oriented tools each modelled part has a certain position, instead of just assuming

that it is placed somewhere inside the container. SCARAB (Spacecraft Atmospheric

Re-entry Aero-thermal Break-up) is currently the only known spacecraft oriented code.

SCARAB development started in 1995 with a European Space Operation Center

(ESOC) contract awarded to HTG (Hyperschall Technologie Göttingen) with Insti-

tute of Theoretical and Applied Mechanics (ITAM, Russia), Grupo de Mecanica del

Vuelo (GMV, Spain) and Fluid Gravity Engineering (FGE, United Kingdom)( Kop-

penwallner, Fritsche, Lips and Klinkrad (2005)). SCARAB is capable of modelling

tank explosions.

Finally SAM (Spacecraft Aerothermal Module) is recently developed tool that lies

between both the categories, object-oriented and spacecraft-oriented, as described in

(Merrifield et al. (2014), Beck J. (2014)).

These re-entry analysis tools provide very good results, with different level of ac-

curacy, in the case of lowly energetic break-up events,due to aerodynamic forces, but

all of them lack a proper modelling for the cases of highly energetic break-up (e.g.

high-speed atmospheric explosion). A good comparison of the commonly used re-entry

analysis tools is detailed in Lips and Fritsche (2005).

2.3.2 Strategies and assumptions

Break-up altitude

In the object-oriented method the altitudes of the break-up events are fixed and user

defined, while in SCARAB they are computed by analysing the actual acting mechan-

ical and thermal loads. Modelling the spacecraft with secondary containers, multiple

break-up events can also be considered, as in ORSAT and in DARS models. DARS

allows the user to define additional break-up altitudes.

It is fundamental to note that at the moment SCARAB is the only tool including

a method for the assessment of the break-up altitude.

The upper margin for the ground risk will strongly depend on the assumed break-

up altitude. The ground risk will increase with decreasing break-up altitude. When

the assumption that the individual destructive re-entry of the spacecraft parts only

starts at a fixed break-up altitude (which is usually unknown a priori), implies that

the heating at a higher altitude of initial parent object is ignored and consequently
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each child object is exposed with the same starting temperature.

Material properties

All material properties in DARS and in SESAM are assumed to be temperature in-

dependent. SCARAB and ORSAT take into account the emissivity as temperature

dependent property. ORSAT considers also the oxidation heating. The oxidation pro-

cess produces heat which is absorbed by the surface wall of the object. The amount

of the transferred heat is based on the chemical heating efficiency factor, which is a

property included in ORSAT database. In addition to the most common materials

used for spacecraft, the newest versions of SCARAB database includes also liquid or

gaseous tank contents, non metallic ceramics, glasses or plastics, and orthotropic, multi

layered composites. Liquid and gaseous tank contents have been modelled as virtual

solids. Various assumptions have been made (Lips et al., 2004):

• Tank contents are assumed as fixed and do not slosh around in the tank;

• The melting temperature is set to very high values in order to ensure that no

melting occurs;

• The density results from the volume of the tank and the mass of the content and

it is assumed as constant until a possible tank bursting event;

• Strength and elasticity are both zero, because a virtual solid cannot take any

forces;

• Thermal properties like heat capacity and thermal conductivity must be deter-

mined for the mean operating pressure of the tank.

Plastics (also in composite form like carbon fiber reinforced plastic, CFRP) are very

problematic materials: they do not melt at high temperature, but they are destroyed

in a combination of sublimation, oxidation, and other types of chemical reactions or

decompositions at molecular level.

Thermal and aero-thermal analysis

For thermal analysis object oriented tools use the lumped mass method for all object

types, therefore an object is assumed to demise once the total cumulative heat load
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reaches the material heat of ablation. These models are not able to predict partial

melting of objects. If an object does not totally melt away, it will survive to the

ground in its entirety. Consequently the computed casualty area for a surviving object

could be larger than if layers were enabled to melt away during re-entry as in the heat

conduction model. It’s right to point out that the lumped mass method can be a valid

approach for objects too thin to be modelled accurately with many layers. SCARAB

uses a 2-dimension heat conduction model.

2.3.3 Discussion

Computational time

Given the lowest number of simplifications SCARAB is the slowest tool among those

described. A simple run could take even many days. In other re-entry tools there are

no appreciable differences with regard to the computational time: it depends on the

number of fragments and for each fragment a run could take seconds or minutes.

Uncertainties

In all the re-entry analysis there are always some variables that are not exactly known.

The following can be considered causes of errors:

• Atmosphere model deficiency: questionable assumptions are required in the char-

acterization of the applied pressure load in space and time (Field Jr and Grigoriu,

2006);

• Uncertainties in solar and geomagnetic activity forecast;

• Unknown spacecraft attitude and attitude evolution;

• Poor data on the mass and geometry of the spacecraft;

• Errors in the initial orbit state.

Sensitivity analysis

A careful analysis of likely parametric variations in the initial conditions at re-entry

is needful for a scrupulous risk evaluation of impacting debris. Studies showed that it
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could be stated that the risk probability of an impact increases by as much 100%, even

if there is only a 10% variation in the orbital parameters (Tewari, 2009). Particularly

with regard to the unknown initial conditions for uncontrolled re-entering spacecraft,

this could make questionable the use of deterministic approaches.

2.3.4 Modelling of spacecraft explosion during the re-entry

Due to the lack of alternatives, a model developed for explosions happening in orbit

is embedded in some re-entry analysis tools (SCARAB (Fritsche et al., 2005b) and

ASTOS), in order to predict the risk generated by high-speed atmospheric explosions.

This model is called NASA Standard Break-up model (also known with the name

EVOLVE Johnson et al. (2001)). Developed in the late 1990s and continuously up-

graded over the years, NASA Standard Break-up model is a statistical model based

on the observations of in-orbit explosions event. It is an empirical model derived by

fitting distribution functions to observed fragments characteristics (area-to-mass ratio,

size and ejection velocity). Although it provides accurate results for on-orbit explosions

(Fritsche et al., 2005b), its application to spacecraft re-entry showed some limitations.

For in-orbit explosions, the objectives pursued with a predictive analysis of the frag-

mentation are different from the atmospheric re-entry break-up, because the threaten-

ing scenario to consider is different. For ground risk the fragments that can survive

the re-entry are the major concern, usually the bigger ones, while in the orbital debris

environment even the smaller fragments can cause accidents. Besides the conditions

and the events that can trigger an explosion change between the orbital and sub-orbital

altitudes and with the travelling speed.

The NASA Standard Break-up model does not provide any information about the

shape and material of the fragments, information useful for the prediction of the re-

entering trajectory. The explosion is considered as a complete and unique disintegration

of the spacecraft and it neglects the possibility that more than one explosion can occur

or that a large section of the vehicle may keep its integrity.

In 2008, Fritsche B, Koppenwallner G., Lips T., from HTG (Hyperschall Tech-

nologie Göttingen), proposed and discussed in (Fritsche et al., 2005b) an idea for the

combination of the deterministic re-entry analysis tool SCARAB with the probabilistic

fragmentation model NASA Standard Break-up model and a method for the evaluation
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of the probability for an explosion to occur during the re-entry, based on deterministic

simulations. Furthermore they provided a list of events that can create an environment

favourable for explosions and criteria to consider for the occurrence of these critical

events.

In 2009, the fractal fragmentation method was presented during the Australian

Space Science Conference (Bryce et al., 2009) as a new model for both explosion and

aerodynamic break-up during the re-entry. The new concept that underlies this method

is the visualization of the spacecraft break-up as an iterative fragmentation that ex-

hibits a repeating pattern, similarly to the fractals. This model distinguishes different

kinds of break-up depending on a energy level scale.

2.4 Research question and motivation for a statis-

tical approach

The research described in this dissertation is aimed to answer the following question:

which statistical models can be proposed for the prediction of the occurrence of an

highly energetic break-up event during the atmospheric re-entry and the related frag-

mentation process? How can be this problem solved with a statistical approach?

The chance that some components of a spacecraft, after a destructive re-entry,

survive and hit the ground is not negligible. Accurate simulations and predictions of

the impact point and its associated uncertainty range are essential during the planning

of a re-entry mission. As mentioned in the previous section, the deterministic re-entry

analysis tools currently used for this purpose show some limitations and need further

developments.

In deterministic models, the output of the model is fully determined by the pa-

rameter values and the initial conditions. The behaviour of a spacecraft during the

break-up, especially when an highly energetic break-up occurs, is organized but very

difficult to predict, given the large number of involved parameters and uncertainties.

Note that a spacecraft during the re-entry is usually outside its standard operating con-

ditions. We are considering a phenomenon entirely deterministic, but whose regulating

functions are not completely known and they cannot be recovered by observations. The

uncertainty that arises because of the necessity to resolve the system inside a model is
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given by two different factors: first of all the model uncertainty, due to the unknown

error between what actually happens and what the model is able to describe, next

the parameter uncertainty, given by the difficulties in specify a priori the values of the

parameters that most closely match the real process. Uncertainty is exactly the key

property of the proposed problem that makes a statistical approach more suitable.

Statistical models possess some inherent randomness: the outcome are random

variables that can take value on a set of possible different values, each with an associated

probability. The notion of unknown is reduced to the notion of random. Given the

evident complexity of the considered system and the limitations in specifying all the

values of the parameters, it would seem appropriate to find a strategy able to learn

from historical observations.

Statistical modelling provides an interpretation of the past realizations of a random

phenomenon, based on its outcomes, and the means to predict the future realizations

of a similar nature. The values of the parameters that define the outcome distributions

are inferred by data. Historical observations are the input of statistical models, while

deterministic approaches exploit historical observations only to validate the model pre-

dictions.

Lastly a statistical approach, including uncertainties in its outcomes, can be more

efficient than the deterministic one, in terms of computational time.

2.5 Motivation for the Bayesian choice

The Bayesian paradigm is essentially a probabilistic view of the world which says that all

uncertainty should only be described by probability and its calculus, and that probability

is personal or subjective. (Singpurwalla, 2006).

Observations are meaningless when they do not come as a support of a referential

model. Philosophers agreed that knowledge is built merging experiments with a priori

representation of the world (Robert, 2007). For instance Kant said although knowledge

starts with experimenting, it does not follow that knowledge is entirely derived from

experimenting, meaning that experiments create knowledge only after a confrontation

with a pre-defined model. The Bayesian approach stems exactly from this principle:

the inference of the parameters is given by a combination of a priori (background in-
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formation) and post priori (observations) knowledge (the reader is reminded to the

Appendix A for further details about the Bayesian approach). The background infor-

mation is exploited in order to formulate a subjective choice of a prior distribution

of the parameters, as the result of an interaction between individual perceptions and

exterior reality. In this way, Bayesians introduced a subjective idea of probability that

nullifies the sentence we know nothing before observing and admits the possibility of

considering the probability of not repeatable events.

The choice of proposing a Bayesian approach to tackle the problem of the spacecraft

break-up during the atmospheric re-entry is motivated by the lack of observations and

not reproducibility that characterize this kind of events. The attainable knowledge

regarding the behaviour of a spacecraft during its atmospheric re-entry is incomplete

and limited. Very few sparse historical data are available. Indeed, the current used

deterministic re-entry analysis tools lack of information for model validation, given the

limited ability to simulate re-entry conditions in ground-based tests, limited recovered

debris and in-situ observations. Furthermore atmospheric re-entries are not repeatable

events. Spacecraft are usually quite different, because designed for different missions,

and even a slight variation in the trajectory can change significantly the encountered

conditions. Very rare situations, as the multi-satellite missions, could be source of

historical data describing similar realizations of the same system.

Expert opinion plays an important role in Bayesian strategies and we planned to rely

on it since from the beginning of this project. Expert opinion is information provided

by people who have a good knowledge and experience of the field under study, therefore

it is a good source of prior knowledge (more details about expert opinion elicitation

and analysis are available in Appendix 7.6). Lack of real data can be filled by expert

opinion, even if finding the best elicitation strategy can be a great challenge. For this

reason, this research included a study on what the sources of such information are and

how to quantify that information in an appropriate manner.

Another important aspect that makes the Bayesian approach suitable in this context

is its flexibility in being updated in light of new data and new information. Hopefully

a more detailed background knowledge of the phenomenon will arise in the future, as

well as new observations.
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Chapter 3

Research methodology and results

3.1 Introduction

We now progress to summarize the research methodology that was followed during the

course of our research and then to illustrate the main concept of the proposed methods.

Furthermore we provide an introduction to the Bayesian approach for the reader who

is not familiar with it.

3.2 Research methodology

We divided the project in two stages: exploratory data analysis, statistical modelling

and implementation. In the first stage, our foremost aim was to become familiar with

the data that is available, as that guided, in the next stage, the development of the

models.

First of all, we delved into the available background knowledge in order to under-

stand the phenomenon subject of our studies. This analysis included the strategies cur-

rently used in the re-entry analysis tools, a general comprehension of the atmospheric

re-entry, orbital dynamics and the physics of the break-up process and a survey of the

availability of real data and what is difficult to predict during the break-up.

In Section 2.3 we thoroughly examine the most notable re-entry analysis tools,

highlighting the limitations of the deterministic approach and the lack of a proper

modelling of highly energetic break-up events.

During this stage we had the preliminary meetings with the experts, in order to get
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familiar with the problem and the elicitation process. The procedure of expert opinion

elicitation is detailed in Section 5.3. It is quite common to rely on expert opinion when

other kinds of data are scarce, too costly or difficult to be collected or even unavailable.

In order to be able to understand the issues associate with the elicitation process, a

reading of the seminal texts was required. These are presented in the literature review

in Section 4.4.

The fundamental result of this stage was the severe scarcity of exploitable data

that we could use to calibrate the models. After the accomplishment of this phase,

regrettably it became clear that data from ground-based tests of elements capable of

provoking an explosion and flight-data were not accessible and it was agreed to not

rely on results of deterministic simulations. The only approachable source of real data,

which is not complete, was the in-situ observation of the destructive re-entry of ATV

1 Jules Verne, described in Section 5.2. This outcome was pivotal in the final choices

we made during the statistical modelling stage, as well as the idea that, regarding

the future, hopefully more and more observations will be available over time, with an

increasingly interest in this context.

As indicated in the Introduction (Section 1.2), the risk assessment for highly en-

ergetic break-up events during the atmospheric re-entry can be decomposed in two

problems: the assessment of the probability for them to occur and then the prediction

of the statistical distribution of the masses of the generated fragments. The first one

was framed as a reliability (or risk assessment) problem with missing data, while the

second one as a problem of statistical inference of a partially random fragmentation

process (a fragmentation process partly dependent on stochastic factors and partly de-

pendent on deterministic factors) with missing data, both in a Bayesian perspective.

The contribution of this phase is in the statistical application domain: our major goal

was to select the most suitable existing statistical models and apply them to a new

situation of complex modelling. In order to be able to devise novel approaches, the

reading of the literature reported in Section 4.3 and Section 4.5 was crucial.

For both the problems, we addressed the issues concerning the data fusion and

update, that is how to combine expert opinion and data in a coherent manner, how to

maximize its value and how to improve the model in light of new data.

Particularly in the solution of the first problem (detailed in Chapter 6), we pursued
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three main objectives: figuring out how to assess prior probabilities from experts opin-

ion, how to adjust the elicitation to reflect a new set of re-entry conditions without

re-doing the elicitation and finally how to update these probabilities in light of new

information. The literature review of Section 4.4.1 provides the interested reader an

adequate motivation for the techniques we decided to integrate.

For the second problem, we aimed to devise a strategy that could take into ac-

count the different behaviour of the different materials during the break-up events, the

data that could be retrieved in the future by analysing in-situ observations and the

awareness that only a portion of the fragments survives the re-entry and can be found

in circumstances such that it can be observed. Furthermore the development of the

second model was driven by the idea of implementing something that can be easily

tailored for each re-entering spacecraft event, easily adjusted to changing datasets and,

again, improved as the comprehension of the re-entry improves. For this reason we

contrived some constraints that the interested reader will understand better reading

the Chapter 7. The chance of having matters surrounding the implementation of the

statistical inference in a practical amount of time (e.g. convergence and robustness) is

typical with models adhering to the Bayesian paradigm and our approach, particularly

for the second problem, did not make exception. The used computational methods are

detailed in the Appendix A.

3.3 Introduction to the Bayesian approach

The Bayesian inference consists in the computation of the distribution of the parameter

θ after taking into account the observed dataX, or conditional onX. This distribution

p(θ|X) is called the posterior distribution and it represents the post-belief.

Given the Bayes’ theorem, which is the foundation of the Bayesian inference, as the

name suggests, the posterior distribution is determined by

p(θ|X) = P (X|θ)p(θ)∫
P (X|θ)p(θ)dθ (3.1)

from which follows that the posterior distribution is proportional to the likelihood

function multiplied by the prior distribution:

p(θ|X) ∝ P (X|θ)p(θ) (3.2)
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The probability of the evidence given the parameter P (X|θ), rewritten in proper order:

L(θ|X) = P (X|θ) (3.3)

is called likelihood function L(θ|X). The likelihood of θ, given evidence X, is equal to

the probability of the evidence (or observed outcomes) given θ. This function synthesizes

formally the inverting concept of Statistics. Indeed it is a function of the parameter θ,

which is unknown and depends on the evidence X. Probability characterizes possible

future outcomes given a fixed value of the parameter before data, while the likelihood

is a function of the parameter for a given outcome (or evidence), that is after data are

available. Note that we are using capital P to highlight that the likelihood function is

equal to a probability and it is not a density probability function as the posterior and

the prior distribution: the evidence X is given and it is not a random variable.

The prior distribution p(θ) is defined as the distribution of the parameters before

data are observed and it represents the initial subjective belief. The selection of the prior

distribution depends on the background knowledge and it is a very delicate problem. It

is the key to Bayesian inference. The more information is available the more effective

will be its choice and the more reliable is the inference. The prior distribution allows

the incorporation of an expert’s experience into a statistical model.

The revolutionary introduction of Bayesian statistics consists in assigning a proba-

bility distribution to both causes (evidence) and effects (parameters) or, in other words,

in assigning to the parameters the role of random variables. The posterior distribution

incorporates the information on the parameter θ contained in the observation X and

the initial subjective belief.

3.4 Overview of the proposed models

We present in this section the statistical model we proposed, starting from the reasons

that drove our choices. The first model is for the assessment of the probability for a

highly energetic break-up event to occur, while the second one is for the prediction of

the probability distribution of the masses of the generated fragments.
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3.4.1 The Belief-network model for failure prediction

After the accomplishment of the first stage of this project, finalized to the comprehen-

sion of the problem and the exploration of the available knowledge, we summed up

that the required statistical approach would have had to take into consideration the

following:

1. The spacecraft break-up during the re-entry can be described as a complex system

subject to a failure or an undesired event, whose realization can be observed more

times over time, under similar external conditions;

2. The scenario of a highly energetic break-up event can be considered as the result

of the occurrence and combination of the failure of specific components;

3. An accurate analysis of an in-situ observation can provide information about

the events that triggered a highly energetic break-up event: spectroscopic sys-

tems with high bandwidth in wavelength resolution and coverage ( Loehle S,

Marynowsky T, Zander F, 2014). For instance fuel release can be analysed

through spectroscopy. Unfortunately due the inherent difficulties in observing

this kind of events, this information can be missed;

4. Experts can provide subjective judgements about the occurrence of a specific

failure event, based on a priori analysis, simulations of the re-entry and ground-

tests when available;

5. The differences of the vehicle characteristics and of re-entry conditions can affect

the result;

6. Regarding the future, more observations can be available over time.

Given this frame of the problem, we proceeded with the formulation of a reliability

model combining a fault tree analysis and an elicitation process inspired by a multi cri-

teria decision making, called Analytic Hierarchy Process. These methods are described

in the Appendices B and C, while Chapter 6 is entirely dedicated to show the details

of the novel model, called Belief-network model for failure prediction.

This model, that adheres to the Bayesian paradigm, can be summarized in the

following steps:
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1. Resolution of the highly energetic break-up event into its causes (as showed in

Section 6.13) through the construction of a Fault tree: identification of the basic

(or elementary) and intermediate events that can lead to the highly energetic

break-up event and their logic inter-relationship.

The fault tree analysis is a technique for the reconstruction of all the possible

ways that can lead to the occurrence of a given and undesired event. The fault

tree itself is a qualitative representation of the problem, that can be evaluated

qualitatively. We chose to use this technique as model framework, because ap-

propriate to describe the complex scenario of a highly energetic break-up event.

Under assumption of independence, the probability for a highly energetic break-

up event to occur can be assessed by the qualitative evaluation of the probabilities

for the basic events to occur. The model is then parameterised by the elementary

event probabilities only and, following the Bayesian approach, these parameters

take the role of random variables.

2. Prior elicitation, by expert opinion, of basic events probabilities in a nominal

case.

Given the lack of data, it is crucial to rely on the expert opinion for prior elic-

itation. The meetings with the experts and the large relevant literature shoved

us to propose an elicitation method, based on pairwise comparisons, inspired by

the Analytic Hierarchy Process and suitably tailored to this problem. In the

awareness that each re-entry is different from the other and that, currently, there

is only one accessible observation, we decided to discuss everything with respect

to a nominal re-entry and spacecraft type.

3. Likelihood computation in a nominal case. We decided to exploit the logic of the

fault tree to derive the likelihood of not-observed events, when feasible, in order

to integrate the incompleteness of data.

4. For each upcoming re-entry:

• Expert opinion elicitation of the relative risk of occurrence for all the basic

events;

• Evaluation of the likelihoods of observed and not-observed events;
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• Weighting of the likelihood accordingly with the results of the expert opinion

elicitation phase;

• Evaluation and weighting of the probabilities for the basic events to oc-

cur, through the Bayesian approach and accordingly with the results of the

expert opinion elicitation phase;

• Assessment of the probability for a highly energetic break-up, following the

fault tree logic.

The goal of the weighting strategy is the incorporation of the opinion of the

experts, who are invited to take into account the differences of the boundary

conditions with respect to the nominal profile (e.g. characteristics of the vehicle

and re-entry conditions).

3.4.2 The Fragmentation model

The first stage of the project led us to the conclusions that the statistical approach to

propose would have had to comply the following:

1. The raw data sources are recordings of the break-up process. In order to make this

data exploitable, an accurate, time-consuming and expensive analysis is required.

2. The physical features required to predict the entry trajectory of a fragment gener-

ated after a break-up event are: mass, material composition, shape, area-to-mass

ratio, ejection velocity, position of its generation. The ballistic coefficient pro-

vides a relationship between area-to-mass ratio, shape and material composition.

Ideally all these features could be derived by an analysis of the observations and

then predicted for future re-entries through a Bayesian approach, even if the

observations are not complete.

3. Due to many complications in observing such a kind of event and in analysing the

results of the observation, the idea of collecting complete data is not conceivable;

4. Observations are not missing completely at random. Experts can justify the

missing observation, considering the technical details of the instrumentations

used to record the event (e.g. pixel resolution, field of view, wavelength coverage,
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frame rate, eventual saturation of images), observations conditions (e.g. relative

position of the aircraft) and entry characteristics;

5. Spectroscopy could identify the material of the fragments and from which com-

ponent of the spacecraft it comes from, but the way how to make this possible

is still under investigation. Due to the overlapping of fragments in the field of

view, it would be very complicated to identify the material of a single fragment.

Unfortunately spectroscopic data coming from ATV-1 re-entry does not provide

any exploitable information about the materials and origin of fragments, due to

this issue.

Observation campaigns could be planned such that spectroscopic instruments

are dedicated to species of interest. For instance spectroscopy UV-NIR has been

proposed for the identification of metallic structures ( Loehle S, Marynowsky T,

Zander F, 2014). Furthermore, painting of components of the space vehicle could

be useful for the debris identification ( Loehle S, Marynowsky T, Zander F, 2014).

6. It is feasible to follow the evolution of the fragments over time, assumed that

they remain in the same field of view. Anyway our focus is in the fragments that

survive the highly energetic break-up event;

7. The unique exploitable set of data for this thesis is a list of masses of sixteen

fragments, that is a result of the data analysis carried out after the ATV-1 ob-

servation campaign.

8. Experts can provide subjective judgements, based on a priori analysis and simu-

lations.

9. The probability of survival for a specific component is mainly determined by the

materials used in its construction, the area-to-mass ratio, shape and its position

in the vehicle;

10. We can assume exhaustive the following list of materials to be considered:

• Ti6A14V;

• stainless steel 316L;

• alluminum alloy 7075;
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• silicon carbide;

• carbon fiber/epoxy Cfrp;

11. The total mass of the spacecraft before the break-up event can be assumed known;

12. We can assume negligible the effects of low energetic break-up events on the

fragments generated after a highly energetic break-up event;

13. The fragmentation of a spacecraft can be modelled as a partition of the unit

interval. The preliminary partition that we need to consider is between demised

masses, not observed masses and survived masses;

Looking at the problem from a Bayesian statistical point of view and given this

setting of the problem, we started the model devising process from the only tangible

set of data, a list of masses, and then we decided to focus on the prediction of the masses

of the fragments, rather than on other features. We proceeded with the development of

a method for the construction of a distribution over the partitions of the unit interval,

inspired by the stick breaking process, and a combination of sampling methods for the

Bayesian inference of its parameters, given sparse observations. The stick breaking

process and the used sampling methods are described in the Appendices D and A,

while Chapter 7 is entirely dedicated to show the details of the novel model, called

Fragmentation model.

The decision of providing a method for the construction of a tailored distribution,

following the idea of the stick breaking process, derives from the necessity to leave

the model a large flexibility in the application and future updates. The form of the

resulting distribution depends on specific constraints that can reflect the background

knowledge of what we aim to predict.

The spacecraft could be considered as the set of different elements and for each

of them a different distribution could be built. In order to make the inference of the

parameters of the various distributions, these different elements must depend on the

available data. It may be an abstract subdivision (e.g. by material) or a concrete

subdivision (by location). As the reader will understand better reading the details

and the examples of the model in Chapter 7, the distribution is constructed in a step

by step fashion: this could reproduce concretely the evolution of the fragmentation or
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represent an abstract process leading to the final outcomes. In the awareness that it

will be more likely to have data of the generated fragments rather than data about

how they are generated, we think that the abstract lead is more suitable.
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Chapter 4

Literature review

4.1 Introduction

The project presented in this dissertation combined the application of various statistical

topics:

• The Fault tree analysis used as framework of the proposed risk assessment model;

• The Expert opinion elicitation with particular attention to the paired compar-

isons elicitation approach, applied in the risk assessment model;

• The stick breaking process which inspired the fragmentation model.

The interested reader can find an overview of these subjects in the Appendices B, C,

D. In order to be able to write knowledgeably and to work with them, a reading of the

relevant literature was required. This is presented and discussed in this Chapter.

4.2 Statistical inference and Bayesian approach

The reader interested in statistical inference can refer to the excellent book of Casella

and Berger (2002) or the rigorous reference of Cox (2006). For a concise course we can

recommend Wasserman (2003). An interesting book about the history of statistics is

Stigler (1986). Finally a valuable text for a good introduction of theory of probability,

random processes is Grimmett and Stirzaker (2001).
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4.2.1 Statistical inference with missing data

We recommend the book Little and Rubin (2014) and the publication Chen et al.

(2008) for a complete overview of the methodologies applied for handling missing data

problems and a survey of the literature.

4.2.2 The Bayesian approach

For a comprehensive study of the Bayesian approach, including the theory about the

selection of the prior distribution, we can suggest the reading of Robert (2007), which

inspired this introduction to the Bayesian approach, or Howson and Urbach (2006).

Furthermore we recommend the reading of Lindley (1961) for an accurate justification

of the use of the prior distribution or the book De Finetti (1990) whose author is one

of the pioneers of the Bayesian school.

4.3 Risk assessment and Fault tree analysis

Risk assessment is performed on phenomena whose complete knowledge is missing: this

makes the treatment of uncertainties of the main issues in this context. The paper Paté-

Cornell (1996) analyses extensively the theme of uncertainty in risk analysis, defining

and illustrating six different levels of treatment. After a clarification of the differences

between epistemic and aleatory uncertainties, a categorization already highlighted by

many authors (e.g. Hacking (2006), Chernoff and Moses (2012)), this paper underlines

and motivates the need for expert opinion in measuring the epistemic uncertainty. The

mutability in observable populations creates aleatory uncertainties, while epistemic

uncertainties derive from the incompleteness of the achievable knowledge. Frequentist

methods provide the tool to tackle the first ones, while the latter requires the support of

the experts experience that can be incorporated in the statistical analysis only through

the Bayesian approach. Furthermore three classical approaches for gathering expert

opinion for risk assessment are discussed by Paté-Cornell (1996) and an application to

seismic hazard analysis, that can be transferred to other domains, is described. We

will come back to talk about this subject in the Section 4.4, that is fully dedicated to

introduce what the expert opinion is.

Fault tree analysis is a widely used method in reliability and safety analysis since
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1960, as reported in Lee et al. (1985). The reading of this paper is highly recommended

to the reader interested in a literature survey of all the fault tree analysis methods.

4.3.1 Further reading

In addition to the paper already cited above, we provide in this Section some recom-

mendations for further reading.

For a complete overview of reliability and risk in a Bayesian perspective the book

Singpurwalla (2006) is highly recommended. Barlow et al. (1975) is a seminal paper

about reliability and fault tree analysis: this paper is a collection of the main con-

tributions of the Professor Z. W. Birnbaum, who is one of the founder of Reliability

theory.

Finally the reader is referred to Vesely et al. (1981) for a tutorial about the fault

tree analysis.

4.3.2 Space applications

An appropriate reference for Fault tree methodology with aerospace applications is

presented in Vesely et al. (2002), which is readily available on line.

In 2009 NASA released the handbook Kelly et al. (2009) to provide engineers and

scientists the Bayesian foundation of reliability methods in space activities.

An example of probabilistic risk assessment in the space field is published in the

paper Vesely (2004), where the analysis performed for the NASA Space Shuttle is

described.

4.4 Expert opinion elicitation

Missing data is a common problem in risk analyses (see also Bedford and Cooke

(2001a)), so it should not be surprising if Bayesian risk analysts have largely and

successfully relied on subjective experts opinion for years.

A complete overview of the different available elicitation methods is provided by

Cooke (1991). Garthwaite et al. (2005) is a fundamental paper about statistical meth-

ods for eliciting probability distributions: it is mainly a review of the state of art of
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what makes an elicitation successful and the related obstacles (heuristics and biases),

with particular remarks on the elicitation of group opinions.

Finally it is worth mentioning the paper (Lindley and Singpurwalla, 1986), that

illustrates a procedure for the use of expert opinion in fault tree analysis.

The model for risk assessment described in this thesis, in Chapter 6, proposes the

use of a paired comparisons elicitation method. The next section is dedicated to a

literature review of this class of expert opinion elicitation methods.

4.4.1 Paired comparisons elicitation approaches

The extensive application of paired comparison elicitation approaches in the reliability

engineering and system safety domain is justified by the observation that experts feel

more comfortable making paired comparisons rather than providing a direct estimate

of a quantity of interest. We decided to rely on this approach mainly for its simplicity,

given that pairwise comparisons do not require the experts have a knowledge of the

probability theory.

The law of comparative judgement was introduced by the pioneer Thurstone (1927)

with applications in the measurement of psychophysical stimuli. Popular pairwise

comparisons elicitation method are the Bradley-Terry method (see Bradley and Terry

(1952) and Cooke (1991) for a excellent examination of the method) and the Ana-

lytical Hierarchy Process, developed by Saaty ((Saaty, 1980)). Both these techniques

involve the definition of contributing factors (or covariates), representing the criteria

with respect to which the experts is asked to compare the alternatives. The Analytic

Hierarchy Process is described in the Appendix C.

The first formulation of the pairwise comparisons method as a Bayesian statistical

problem was developed by Pulkkinen in 1994 in Pulkkinen (1994). This paper contains

a theoretical exposition of an aggregation method of the expert elicitation paired com-

parisons, adhering to the Bayesian paradigm. Basically, the expert opinion is exploited

for the updating of the prior distribution of a random vector of variables through a

Bayesian framework. The experts are asked to compare all pairs of variables and to

define for each pairs which variable they believe has a bigger value. Their belief is

described by a binary indicator variable and the collection of the indicator variables

form the evidence building the likelihood.
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An interesting conjugate Bayesian analysis, using paired comparison to elicit expert

judgements is illustrated in Szwed et al. (2006). It proposes a novel methodology for

the quantification of accident probability, in case of rare events, and particularly an

application to a risk analysis of the Washington State ferry system, that is the largest

passenger ferry system in the U.S. This is a risk assessment model where less than three

relevant accidents had been recorded. This study is aimed to assess the distribution

of an accident probability defined by a vector of contributing factors describing the

system state. Experts are asked to compare each time two different system states and

it is assumed that the expert responses are not based on overlapping information. This

research is further developed in Merrick and Van Dorp (2006), where full distributional

information about the risk of collision between a ferry and another vessel is calculated

with a method combining Bayesian estimation techniques and a pairwise comparison

approach for the evaluation of the uncertainty of expert judgements.

With regard to the elicitation of subjective probabilities through pairwise compar-

isons, we recommend the reading of the paper Budescu et al. (2016) where the authors

show with two experiments that the results obtained by collecting ratio estimates are

more precise than by asking direct estimates. They conclude stating that this method,

developed for decision making problems, can result appropriate, with minor adapta-

tions, to the prior elicitation problems, very common in the Bayesian statistics methods

for risk analysis. Finally, this paper provides an accurate and interesting literature re-

view about the discussions raised by the introduction of this new elicitation approach

versus the more traditional methods.

An example of application of pairwise comparison as method for expert opinion

elicitation in risk assessment is presented in Mazzuchi et al. (2008). The goal of this

research is to develop a risk assessment model, based on expert opinion, for the assess-

ment of the risk of wire failure. This work deals with a problem similar to that for

which we propose the risk assessment model in Chapter 6: there is a system where the

failure probability depends on an overwhelming number of variables and the available

historical data are sparse. The authors propose an idea for the inference, based on the

integration of data with background knowledge. The support of this model is a time

to failure probability density function derived by the Proportional Hazard model (a

method largely applied in reliability engineering and proposed by Cox (1972)). The
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failure rate estimates necessary for the inference of the parameters of the failure prob-

ability density are inferred by the results of pairwise comparisons elicited on a selected

set of failure environments. It is worth mentioning that the application of the pro-

cedure demands that a reasonable amount of historical data at least for one of these

environments: this is a requirement that would not make this model applicable to the

assessment of the probability to occur during the atmospheric re-entry. As the reader

will understand better reading Chapter 6, there are two other analogies with our prob-

lem: the first is that the use of expert opinion is completely new for the arena of the

involved experts and it may take time to be accepted and tailored, while the latter is

that a background knowledge in different fields of expertise is required.

The use of the Analytic Hierarchy Process is proposed in Cagno et al. (2000b) as

elicitation method of the expert opinion for a risk assessment model aimed to eval-

uate the propensity of different sections of low-pressure cast-iron pipelines used in

metropolitan gas distributions networks, in order to manage their replacement policy.

This is another example of application where expert opinion is needed to redeem the

lack of historical data on failures. Furthermore this is another situation where the con-

sidered failure depends on the combination of many factors. When the consequences

under analysis are those generated by the combination of factors and not by single

factors, the differentiation of the effects generated by each single factor turns out to

be anti-productive. Authors reported that, during the interviews, experts confirmed

the validity of the choice of a pairwise comparison method for this kind of problem,

because, in this way, they could formulate the required evaluations considering the

interactions between the factors. The procedure for the collection of the expert opin-

ion is accurately detailed in the paper, from the definition of the sample to interview,

the division in groups depending on different expertises, to the encountered problems

and the consistency check. A prior density function for the failure rate of each class

o pipeline is estimated by a combination of the weights, results of the application of

the AHP with the eigenvalue method, and a scale factor, depending on historical data.

The paper also details how to change the approach to improve the robustness of the

method and the reliability of the results. The experts are allowed to answer with in-

tervals rather than a single-point value, introducing confidence intervals in the weights

assessment. Then a class of prior distributions is elicited, that is a common situation
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in the robust Bayesian inference (Berger (1990), (Cagno et al., 2000a)). Finally, a

comparison of the results with a frequentist analysis showed that the use of Bayesian

approach is more convenient and reliable in these situations. The success of this work

is claimed by the decision of the gas company management to use it.

An example of combined use of the AHP with Fault tree analysis is the work

proposed in Vrijling (2009) for the risk assessment of petroleum pipelines. In this

case, the Analytic Hierarchy process is exploited with its original purpose, that is as

ranking methodology and not as a prior elicitation method. The overall objective of

this work is a risk based pipeline selection, that is the selection of the most reliable

pipeline between the three considered (oil and gas pipelines respectively located in

Escravos, Warri and Benin in Nigeria) as case study. Authors used the software Web-

Hipre software (Mustajoki and Hamalainen, 2000) for the hierarchical decomposition

of the problem: the hierarchical tree is given by the goal (risk based pipeline selection),

criteria (failure factors) and subcriteria(sub division of failure factors). The AHP is

used to rank the failure criteria (or in other words the events that can lead to a pipeline

failure), in order to establish which ones are more likely to cause the failure, and the

reliability of the considered pipelines. The fault tree analysis is applied to assess the

failure probability of a petroleum pipeline. This is given by the sum of the failure

probabilities due to the considered criteria. Given the probability of failure of one of

the failure criteria, the failure probability of the pipeline can be computed using the

AHP weights. For each criterion, the fault tree provides a qualitative reconstruction

of all the possible events that can cause its failure and then allows the assessment of

its probability of failure. The geometric mean approach is applied for the weights.

A very interesting overview of AHP applications is reported in Forman and Gass

(2001). They are divided by the following fields of application: choice, prioritiza-

tion/evaluation, resource allocation, benchmarking, quality management, public policy,

health care, strategic planning. Other examples of applications for decision making, in

different fields, e.g. agriculture, oil and gas and public sector are: Qureshi and Harrison

(2003), Dey et al. (2004), Partovi et al. (1990).
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4.4.2 Further reading

In addition to the paper already cited above, we provide in this Section some recom-

mendations for further reading.

For a practical guide to the expert opinion elicitation and analysis, consult the book

Meyer and Booker (2001).

The reader is referred to Teknomo (2014) for a tutorial that explains AHP in a very

simple way and to the book Saaty and Vargas (2012) for a comprehensive study.

4.4.3 Space applications

It is worth mentioning in this thesis two applications related to space activities (Forman

and Gass, 2001) :

• The AHP has been applied to select a propulsion system for the Lunar Lander

Moreland and Sanders (1993) by NASA’s Lyndon B. Johnson Space Center;

• The computer-aided systems engineering tool set (CASETS) environment, devel-

oped by the Rockwell International’s space systems division, relies on AHP for

criteria weighting, utility functions and sensitivity analysis. This tool has been

applied to the development of new space launch vehicles, surveillance satellites,

and SDI architectural studies.

4.5 Statistical modelling of fragmentation

The fragmentation is a phenomenon investigated in many fields, because concerning

various natural and man-made systems. This explains why numerous , e.g. empirical,

deterministic, statistical etc. (Elek and Jaramaz, 2008), have been studied in order

to describe and characterize the outcome of a fragmentation process: number, size,

shape, mass, ejection velocity and spatial distribution of fragments. Particularly and

for obvious reasons, military applications gave a significant boost to this field.

The second chapter of the book Grady (2007) as well as the paper Elek and Jaramaz

(2008) provide a good summary of the state of art of geometric fragmentation statistics

for shells and bombs (e.g. Mott’s and Grady-Kipp’s approaches (Grady and Kipp,
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1985) (Mott and Linfoot, 1943), the models based on Voronoi diagrams, the Lineau

distribution of random fractures (Lineau, 1936)).

A large literature is also available for the statistical modelling of fragmentation of

solids (Sil’vestrov, 2004).

For a complete reading about Dirichlet and related distribution, that we used in

the proposed fragmentation model, we recommend the book Ng et al. (2011).

Finally it is worth mentioning Kiselev (1997) where a numerical model for the frag-

mentation of exploding tanks is proposed and an inherent literature review is reported.
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Chapter 5

Data

5.1 Introduction

”Statistics is the science of learning from data” (Davidian and Louis, 2012) and lack

of data is the biggest issue in the development of a statistical model for spacecraft

break-up. Indeed, the design of the two statistical models described in Chapter 6 and

Chapter 7 was driven by the scarce availability of data.

In the 70s NASA launched a series of spacecraft just for the purpose of investi-

gating the consequences of the spacecraft break-up during the atmospheric re-entry.

After that, the research on destructive re-entry was quiet for almost forty years until

2008, when an airborne observation campaign was arranged for the re-entry of the

first Automated Transfer Vehicle (ATV 1). This observation campaign was organized

and funded by ESA and NASA, under the coordination of the SETI institute. All the

details about this observation campaign are reported in the website atv.seti.org (2009)

and many papers have been published about it (e.g. Blasco et al. (2011), Snively et al.

(2011a), Jenniskens and Hatton (2008), Esa et al. (2009)). Afterwards, a second air-

borne observation campaign was organized for the re-entry of the Hayabusa Sample

Return Capsule in 2010 (hayabusa.seti.org (2010)).

The work behind this thesis can be divided in two main phases: the first and

preliminary one was dedicated to the collection of information and the latter to the

statistical modelling. This chapter is dedicated to summarize the process followed

during the first phase and its results. An exploratory data analysis has been carried

out in order to identify what could be managed as a resource, what could be learnt
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and the feasible assumptions.

Before starting to devise which kind of statistical methodologies could be applied

in order to solve the problem proposed by the European Space Agency, we focussed on

the investigation and selection of:

• What is available;

• What can be required;

• What is exploitable;

• What is helpful;

• What can be useful in the future;

• What we expect to be retrieved in the future.

It was agreed with the European Space Agency to rely only on real data and

especially on what is currently available and reliable, in terms of typology and quantity.

Simulated data coming from deterministic tools could be used in the future only for

comparisons or testing purposes. Devising a statistical model capable of employing

real data was an important requirement. In order to accomplish it, we had access to

all the reports of the data analysis carried out after the ATV 1 airborne observation

campaign, but unfortunately very few data resulted to be exploitable.

After an overview of the outcome of the ATV 1 observation campaign, which is the

unique source of real data, the process followed to query the experts is reported.

5.2 ATV 1 Observation campaign

The unique source of real data in this context are the observation campaigns, ranging

from airborne, ship- and ground-based. These kinds of missions are aimed at gaining

a better understanding of the destructive process of the spacecraft, to validate the

existing modelling scenarios and re-entry analysis tools and, as consequence, to im-

prove decision making process for the design of safer space missions. This section is

dedicated to introducing the outcome of the Automated Transfer Vehicle Jules Verne

observation campaign. For the sake of completeness we start with a brief description

of the Automated Transfer Vehicle.
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5.2.1 Overview of objectives and results

The ATV-1 observation campaign was a multi-instrument aircraft campaign performed

using two aircraft equipped with a suite of optical instruments, capable of covering a

wide dynamic, temporal and spatial resolution range: advanced video systems and

spectroscopic instruments covering various wavelengths (near-UV, visible and nearIR).

The aircraft were the NASA DC-8 and a commercially available Gulfstream V.

Data gathering and data analysis were driven by the following objectives (Lips

et al., 2011):

• Characterization of the fragmentation and break-up events, including the altitude

when they occurred, the typology of breaking-up (lowly or highly energetic) and

identification of the causes;

• Reconstruction of the fragments trajectories;

• Characterization of the fragments, consisting in material and source identifica-

tion;

• Estimation of number and size distribution of the fragments.

The fulfilment of these tasks requires a cross analysis of raw visual and spectroscopic

data. For example the trajectories can be reconstructed through frame by frame track-

ing from the video recordings and 3D triangulation, while the material composition

of the fragments can be identified analysing the raw spectroscopic data. Tracking

the fragments can help in locating the location of the break-up event. On the other

hand, spectra immediately after a fragmentation event can individuate which space-

craft components are immediately exposed to the entry heating and therefore help in

understanding the break-up nature and location. It is easy to imagine that, after an

explosion, the nearby parts of the spacecraft vaporize producing spikes of emission in

the spectra: if analysed, these spike of emission can suggest the location of the explo-

sion source. Finally, another example of information that can be inferred by imaging

data, is the releasing of fuel: this event can be highlighted by specific signatures in the

spectra.
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Fig. 5.1: Antoine Bavandi, ESA/ESTEC, obtained these still frames with a Sony

3CCD camcorder, owned by Mike Taylor of Utah State University. This picture is

a good example of raw data. Composite: Peter Jenniskens (Snively et al., 2011b).

Source: atv.seti.org

Data analysis proved that many fragmentation events occurred, in particular two

explosions with a gap of 35 seconds and the first one was triggered by the MMH

propellant (an hypergolic propellant).

Potentially many data could be collected by this multi-instruments airborne ob-

servation campaign, but unfortunately there were also several difficulties and hurdles

involved, which lead to not complete observations. Issues occurred in both data col-

lection and data analysis. This should not surprise the reader, since this was a pioneer

observation campaign.

The encountered problems are associated with:

• Calibration issues;

• Field of view issues;

• Tracking issues;

• Timing issues;

• Saturation issues;

• Reflections issues and then detection of fake particles;

• Data archiving issues;

• Limited funding for data analysis.
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Unfortunately, for the purposes of this thesis, only the masses of sixteen fragments

were exploitable, the rest lacked for reliable data. These masses are definitely the most

important data available for this project and, as the reader will see in Chapter 7, we

used them to test the fitting of the Fragmentation model.

5.3 Experts knowledge

Expert opinion provided a significant contribution to the work carried out for this

thesis. First of all, we interviewed experts, familiar with the spacecraft system and

the atmospheric re-entry, with the aim of understanding the proposed problem. The

devising process of the proposed models and the proposed ideas for their application

was based on this preliminary collected information. Then we relied again on the expert

opinion for the construction of the framework in the Belief-network model for failure

prediction (Chapter 6) and obviously for the prior elicitation.

The preliminary phase consisted in interviewing experts, in order to get a general

comprehension of the atmospheric re-entry and to state:

• The availability of exploitable information and data (including laboratory exper-

iments);

• The most suitable strategy to elicit information and how to formulate the surveys;

• The feasible assumptions;

• The constraints to keep in consideration, e.g. the feasible ranges of the fragments

characteristics;

• The right choice of the models parameters and the involved uncertainties;

and, subsequently, to identify:

• The items capable of provoking an explosion;

• The events that can lead to an explosion;

• The relevant external conditions affecting the fragmentation process.

Several meetings have been arranged in different areas of expertise:
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• Guidance, navigation and control;

• Propulsion;

• Materials;

• Structure;

• Heating;

• Energy storage and power;

• Observation campaigns;

• Deterministic re-entry analysis tools;

• Experimental studies about spacecraft design for demise.

As the reader will read in the description of the belief-network model (Chapter

6), we proposed to rely on the expert opinion for the elicitation of the tendency-to-

occur weight and quotient, with the objective of eliciting a prior distribution for the

nominal case and to integrate the experts point of view in the predictions for the

upcoming realizations of the system. We proposed to ask experts to compare pairwise

the tendency to occur of the fault tree events, divided by groups. The procedure of

the expert opinion elicitation experiment is described in Section 6.15. Some examples

of interviews, which we addressed to experts in ESA, are reported in the Appendix E.

We have also asked them to provide critical insights for the enhancement of the

surveys itself, since we are aware that the list of considered events cannot be considered

exhaustive. The most remarkable feedback was that there are dependency relationship

between the events that create difficulties in providing a pairwise judgement and that it

is unusual to provide a subjective guess in such extreme conditions. This response was

not completely unexpected considering that, in this field, the choice of relying on expert

opinion for statistical modelling is an innovative way of dealing with uncertainties and,

consequently, a new way of thinking.

The collected expert opinion was also integrated with information coming from

various reports and papers made available by ESA (e.g. ESA Space Debris Mitigation

Working group (2015), Rex et al. (1999), Walker et al. (2001), Klinkrad et al. (2004),

Kiselev (1997), Lloyd (1998)).
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Chapter 6

Belief-network model for failure

prediction

6.1 Introduction

In this chapter we introduce a belief-network model for failure prediction, calibrated

by a combination of expert opinion and sparse data. This involves a new approach

for the integration of expert opinion in the dependability analysis of a complex critical

system.

This methodology combines the fault tree analysis (see Section B.3) and an elici-

tation process that is inspired by the multi criteria decision making, called Analytic

Hierarchy Process (described in Section C.3). A joint application of these two meth-

ods has already been proposed in Vrijling (2009) for the risk assessment of petroleum

pipelines (see Section 4.4.1), but in a completely different way.

6.2 The research question

The development of this risk assessment model was driven by the need to answer the

following research question: What is the probability that a given spacecraft explodes

during its return journey from space to Earth?

This problem can be viewed as a failure model where the failure is an highly ener-

getic break-up of the spacecraft.

A common spacecraft during the atmospheric re-entry is beyond design-basis, which
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means that we are considering the failure of a system under conditions not considered

during its design.

We recognize this system as a complex system. The spacecraft itself, under standard

operating conditions, is a complex system, since it is composed of many subsystems

interacting with each other. The explosion of a spacecraft is the result of the com-

bination and overlapping of many factors concerning the spacecraft subsystems, the

re-entering trajectory and the surrounding conditions.

Generally speaking, the attainable knowledge is incomplete: unfortunately the un-

derstanding of re-entry of space vehicle is still limited. Very few sparse historical data

are available and probably this constraint will not change significantly in the future.

This is a context where collecting data, even sparse, is very complicated and expensive.

For all the above mentioned reasons, this problem requires the development of a

risk assessment model relying on a combination of expert opinion and sparse data and

that can be easily updated as knowledge increases.

Atmospheric re-entries are not repeatable events. Spacecraft are usually quite dif-

ferent, because they are designed for different missions, and even a slight variation in

the trajectory can change significantly the encountered conditions. Very rare situa-

tions, such as the multi-satellite missions (e.g. ATV, Sentinel, Galileo), could be a

source of historical data describing similar realizations of the same system.

This model is required to take into account that there may be large variations

in conditions surrounding the system and in the system itself. For this reason, as

the reader will understand better later, we propose to perform the expert opinion

elicitation process before each realization and discussing everything with respect to a

nominal case.

6.3 Summary of results and contribution

This is a Bayesian model for the exploitation of the expert opinion in risk assessment,

specially developed for the highly energetic break-up events of spacecraft during the

atmospheric re-entry.

We performed simulations of the model with synthetic data, in order to assess the

model, and the obtained results are consistent with the expectations. We believe that
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the illustrated procedure can be potentially useful for the assessment of the probability

for a spacecraft to explode, even if we recognize that it still needs to be properly tested

and refined, to assess whether the results make sense from a physical point of view. It

is important to highlight that this is a new way of thinking about for the arena of the

involved experts.

.

6.4 De Finetti justification

The prior elicitation method proposed in this chapter is inspired by the De Finetti’s

operational subjective conception of probability. The personalistic or subjective theory,

as explained in Booker and Singpurwalla (2001), states that “probability is a degree of

belief of a given person at a given time”. This idea claims that an objective probability

does not exist and nullifies the sentence we know nothing before observing. Indeed

the subjective idea of probability admits the possibility of considering the probability

of not repeatable events. Prior elicitation methods through expert opinion provide a

method for the quantification of the intensity of this degree of belief.

This concept was developed and exposed by the statistician Bruno De Finetti, one

of the pioneer of Bayesian statistics (de Finetti (1930), De Finetti et al. (1974), Nau

(2001), Walter (2001) )

6.5 Notation and definitions

This section is to introduce the notation to the reader and explain its usage.

Let τ be a fault tree diagram, built by a set of gates, events and edges (see Section

B.3).

Let τ be divided by layers (or levels) i = 0, 1, . . . , L, depending on the distance from

the base layer. Layer 0 or base layer is the furthest layer from the top event layer, 1 is

the next furthest, etc. Layer i corresponds to the layer that is i layers away from the

furthest layer from the top event (briefly TE). The last layer L is the layer connected

to the top event trough one gate.

We denote every single event of the fault tree with the notation Eij, where the
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index i is the layer, while j = 1, . . . indicates the position of the event in the i-th layer,

as shown in Figure 6.1.

TE

E21

E11 E12

E01 E02 E03

E22 E23 E24

E13 E14 E15 E16 E17 E18

Fig. 6.1: Example of fault tree with layers i = 0, 1, 2. Following the proposed notation

the events of the base layer are indicated with E0j with j = 1, . . . , 3, the events of the

next layer with E1j with j = 1, . . . , 8 and finally the events of the layer connected to

the TE with E2j with j = 1, . . . , 4. In this case, following the logic of the fault tree,

P (TE = 1) = 1−
4∏
j=1

(1− θ2j).

Let θij be the probability for the Eij event to occur.

P (Eij occurs) = P (Eij = 1) = θij θij ∈ [0, 1] (6.1)

E(i−1)j is a parent of Eij and Eij is a child of E(i−1)j if the occurrence of Eij depends

on E(i−1)j through a gate. E(i−1)j and E(i−1)z are conjugates if they have the same child

Eij. The events that do not have parents are called parentless, or basic, or elementary,

or primary events. All the remaining events, but the top event, are called intermediate

events.

Let Φ be the set of the events that build up the fault tree :

Φ = {Eij : Eij is an event of the fault tree τ} (6.2)

Let Ψ be the set of the basic events of the fault tree :

Ψ = {Eij : Eij is a basic event} (6.3)
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Let εi−1 be the set of the events to consider for the likelihood up to level i− 1

εi−1 = {Ekj|k ≤ i− 1} (6.4)

We introduce an indicator variable Iij ∈ {0, 1} such that:

Iij =


1 If the event Eij is observed

0 Otherwise
(6.5)

An observation is defined by the following set:

Eij ∈ {0, 1}

Iij ∈ {0, 1}

∀i, j : Eij ∈ Φ = {Eij : Eij is an event of the fault tree τ}

(6.6)

Note that the expression that the event Eij is observed does not mean that the

Eij is observed to occur, as common in risk analysis. The event Eij is observed when

Iij = 1 and it is observed to occur when Iij = 1 and Eij = 1.

We denote the nominal case as observation k = 0, while the non-nominal cases

with k = 1, . . . , K.

Finally we recall two well known probability distributions, that we are going to use

in the model:

Definition 6.5.1 Beta distribution

A random variable θ ∈ (0, 1) is said to have a Beta distribution if its probability

density function is given by

p(θ|α, β) = θα−1(1− θ)β−1

B(α, β) , 0 ≤ θ ≤ 1 (6.7)

where α, β > 0 are the shape parameters. The normalizing constant B(·) is the Beta

function, which can be expressed in terms of the Gamma function

B(α, β) = Γ(α)Γ(β)
Γ(α + β) α, β > 0 (6.8)

Definition 6.5.2 Bernoulli distribution

A random variable γ which takes value 1 with success probability θ and value 0 with

failure probability 1 − θ is said to have a Bernoulli distribution if its probability mass

function is given by:

f(γ; θ) = θγ(1− θ)1−γ for γ ∈ {0, 1} (6.9)
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The Bernoulli distribution is a special case of the Binomial distribution with n = 1.

6.6 The statistical model

Let us assume that we have a complex system subject to a failure or an undesired

event, whose realization can be observed more times over time, under similar external

conditions. We propose a procedure for the assessment of the probability for this

undesired event to occur during an upcoming realization, relying on expert knowledge

and sparse past observations.

The proposed procedure can be divided in the following stages:

1. Stage 1. Construction of the model framework;

2. Stage 2. Elicitation;

3. Stage 3. Prediction;

4. Stage 4. Updating with data.

6.7 The construction of the model framework

The first phase is the modelling phase. The model needs to be tailored to the considered

system and the undesired event through the following steps:

• Thorough comprehension of the system: establishment of the system boundary

conditions and the external factors affecting the system;

• Resolution of the undesired event into its causes through the construction of a

Fault tree (as explained in Section B.3): identification of the basic and intermedi-

ate events that can lead to the undesired event and their logic inter-relationships

(Vesely et al., 1981). The top event of the fault tree is the undesired event;

• Selection of a nominal profile for the realization of the system under study (ob-

servation k = 0). The more information is available about the nominal profile

the more accurate is the analysis.
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6.8 Expert opinion elicitation

We propose to rely on expert opinion for two objectives:

• To assess the prior on the probabilities θij for each elementary event to occur;

• To complement the available sparse observations.

With these purposes in mind, we suggest to elicit two target estimates by expert

opinion for each elementary events Eij ∈ Ψ:

• The tendency-to-occur weight wij.

Definition 6.8.1 Tendency-to-occur weight

We define the tendency-to-occur weight wij, with 0 < wij ≤ 1 ∀i, j : Eij ∈ Ψ as a

subjective measure of the tendency-to-occur of the basic event Eij.

This is similar to what is proposed in Cagno et al. (2000b).

• The tendency-to-occur quotient q(k)
ij for each observation k ≥ 1.

Definition 6.8.2 Tendency-to-occur quotient

We define the tendency-to-occur quotient q(k)
ij , with 0 < q

(k)
ij ≤ 9 ∀i, j : Eij ∈

Ψ, ∀k = 1, . . . , K, as a subjective measure of how much the basic event Eij is

more or less likely to occur in the k-th realization of the system with respect to

the (k − 1)-th.

6.8.1 Elicitation of the tendency-to-occur weight

We propose to elicit the tendency-to-occur weight without explicitly asking for es-

timates, but applying a pairwise comparison methodology inspired by the Analytic

Hierarchy Process described in Section C.3.3. We decided to use this method mainly

for its simplicity, given that pairwise comparisons do not require the experts have a

knowledge of the probability theory.

We consider the basic events Eij and we group in such that every event belonging

to the same group leads to the same intermediate or top event. Rather than asking

experts to quantify the probability for a single event to occur, which may be very
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difficult to assess, we suggest to ask them to compare pairwise every single event with

the others belonging to the same group. In other words, we invite experts to specify,

based on their knowledge and experience, if the occurrence of an event is

• equally or

• moderately more or

• strongly more or

• very strongly more

• absolutely more

probable than the occurrence of each of the other events of the same set.

Finally their opinion about the occurrence of the basic event Eij can be mapped to

the weight wij, following the AHP methodology detailed by the items 2, 3, 4 in Section

C.3.3 and the Saaty’s table (see Table C.1).

6.8.2 Elicitation of the tendency-to-occur quotient

Again we propose to elicit the tendency-to-occur quotient following the pairwise com-

parison methodology, but comparing the occurrence of the same event with respect to

different realizations of the system.

Precisely, experts are asked to compare the probability of occurrence of the event

Eij during the k-th realization and the probability of occurrence of the same event Eij
during the k − 1 realization, for each basic event Eij ∈ Ψ. They should analyse the

upcoming k + 1 realization of the system and specify if the occurrence of an event is

• equally or

• moderately more or

• strongly more or

• very strongly more

• absolutely more
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probable than the occurrence of the same event in the previous k-th realization. Then

the number of judgements is equal to the number of the basic events. Their linguistic

opinion can be translated into a correction coefficient q following again Saaty’s table

(see Table C.1).

If q(k)
ij > 1 the event Eij is more likely to occur in the k-th realization than in the

(k − 1)-th.

6.9 Risk probability prediction

The probability for the top event to occur P (TE = 1|θij∀i, j : Eij ∈ Ψ) is assessed by a

quantitative evaluation of the fault tree, assuming that all the events are independent.

Following the propagation of the probabilities layer by layer and taking into account

the Boolean logic of the gates, it is parameterized in terms of the probabilities θij of

the primary events in Ψ.

First of all, given the events of layer L connected to the top event through a gate,

we can distinguish two cases:

• If they are connected to the top event through an AND gate:

P (TE = 1|θLj∀j) =
∏
j

θLj (6.10)

• If they are connected to the top event through an OR gate:

P (TE = 1|θLj∀j) = 1−
∏
j

(1− θLj) (6.11)

where the complement rule of probability is applied.

The probabilities θLj can be defined in terms of the probabilities θ(L−1)j when ELj

is not an elementary event, following the Boolean logic of the gates. Similarly the

probabilities θ(L−1)j can be defined in terms of the probabilities θ(L−2)j, if E(L−1)j has

parents, until we get P (TE = 1|θij∀i, j : Eij ∈ Ψ), where Ψ is the set of the elementary

events. Given Ωij, the set of the parents of Eij,

• If Eij is at the output of an OR gate

θij =
∏

∀j:E(i−1)j∈Ωij
θ(i−1)j (6.12)
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• If Eij is at the output of an AND gate

θij = 1−
∏

∀j:E(i−1)j∈Ωij
(1− θ(i−1)j) (6.13)

6.10 The nominal case

6.10.1 Risk probability prediction based on prior beliefs

Prior elicitation

We propose to elicit Beta prior distributions for the probabilities for the elementary

events to occur p(θij|αij, βij) ∀i, j : Eij ∈ Ψ in the nominal-case. We show in this

paragraph how to derive these distributions from the tendency-to-occur weights wij
collected from the expert opinion as explained in 6.8. Given the Beta density

p(θij|αij, βij) =
θ
αij−1
ij (1− θij)βij−1

B(αij, βij)
, (6.14)

then elicitation is to arrive to values of αij and βij of the Beta distribution for θij.

For each primary event we have a weight wij coming from the experts’ pairwise

comparisons. The primary events are grouped in such a way as every event belonging

to the same group leads to the same intermediate or top event.

For each group z, we assume that the probability θij for the event Eij to occur

is proportional to the weight θij = wij

/
Wz for some common normalising factor Wz,

with Wz ≥ maxwij so that 0 ≤ θij ≤ 1,∀i, j : Eij ∈ Ψ.

We can ask the expert if there is one of the events that he or she is most confident

about knowing the probability of, say event E∗ij. Then we ask for a range of values of

θ∗ij, say θL ≤ θ∗ij ≤ θU . Finally we fit a beta distribution to this range, by matching the

range to mean ±2 standard deviations.

Since θ∗ij = w∗ij

/
Wz, the range θL ≤ θ∗ij ≤ θU gives us a range

θL ≤
w∗ij
Wz

≤ θU (6.15)

and then
θL
w∗ij
≤ 1
Wz

≤ θU
w∗ij

(6.16)
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Thus for any other θij = wij/Wz, we have a range

wij
w∗ij

θL ≤ θij ≤ min

{
1, wij
w∗ij

θU

}
(6.17)

For each θij we can map this range to a beta prior distribution p(θij|αij, βij) for θij
(by matching the range to mean ±2 standard deviations) with parameters αij and βij.

Note that mapping the ranges to beta distributions, there is no need to determine the

normalizing factor Wz. It was introduced in order to derive and show the relationship

between the range expressed for θ∗ij and the range of a generic θij, given the respective

weights, which are evaluated by the geometric mean approach (as explained in C.3.4).

Sampling θij from the prior distribution p(θij|αij, βij) for all the elementary events

Eij ∈ Ψ, we can compute the prior distributions for higher events up the tree, using

the gate algebra, and then sample a value from the prior distribution of the probability

of the top event P (TE = 1|θij∀i, j : Eij ∈ Ψ), based on prior beliefs, following the

explanation in Section 6.9.

6.10.2 The likelihood

From a particular realization of the system we can collect the following sparse data:

• If the top event occurred, did not occur or was unobserved;

• Similarly for any intermediate event;

• Similarly for any elementary event.

We explain in this section how to derive the total likelihood function for the infer-

ence of the probabilities θij for the basic events to occur, given the observation of the

nominal case.

We have a two stage procedure for determining the likelihood:

1. Logical deduction step. Work up the fault tree from bottom to the top event

and logically deduce from the tree structure if any unobserved events must have

occurred or not;

2. Likelihood evaluation step. Work up the fault tree from bottom to the top event

and evaluate the likelihood term for each observed node in the tree.
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First we discuss some examples and then we provide a general formulation of the

likelihood function.

Example 1 Let us consider a critical system with the fault tree illustrated in Figure

6.2.

TE

E21

E11 E12

E01 E02 E03

E22 E23 E24

E13 E14 E15 E16 E17 E18

Fig. 6.2: Fault tree representation of the system to analyse in the Example 1. Note

that the basic events are indicated with green circles.

Assume we have the following nominal-case observation:



I21, I22, I24, I11 = 1

E21, E24, E11 = 1

E22 = 0

(6.18)

This can be visualized in Figure 6.3.

Working up the fault tree to the top event we can logically deduce what follows,

for some of the unobserved events:

• The events E13, E14, E15, E16, E17, E18 must have occurred, since their child E24

is observed to have occurred and it is at the output of an AND gate;

• The event E12 must have occurred, since its child E21 is observed to have occurred

and it is at the output of an AND gate;
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• The top event must have occurred , because two of its parents E21 and E24 are

observed to have occurred and the top event is at the output of an OR gate.

The total likelihood is given by the contribution of

1. The observed basic events :

Ξ = {E22, E11}

Each of them contribute to the total likelihood with a factor
θij if Eij = 1

1− θij if Eij = 0
(6.19)

since we are assuming that the events are Bernoulli distributed.

2. The unobserved basic events whose occurrence affects the occurrence of the ob-

served intermediate event through AND/OR gates:

• E01, E02, E03 whose child E12 is observed;

• E13, E14, E15, E16, E17, E18 whose child E24 is observed.

Since

TE

1

1

0 1

Fig. 6.3: Example of a nominal-case observation of the system represented in Figure

6.2, before the logical reduction step. The white rectangles represent the unobserved

events, while the coloured ones represent the observed events. The observed events

with 1 are the events observed to occur, while the 0 indicates that the event did not

occur.
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• E01, E02, E03 are connected to the intermediate event through an OR gate

and

• we observed that E12 = 1;

• E13, E14, E15, E16, E17, E18 are connected to the intermediate event through

an AND gate and

• we observed that E24 = 1.

we can conclude that at least one of the events E01, E02, E03 (the parents of E12))

occurred and that all the events E13, E14, E15, E16, E17, E18 occurred. It follows

that:

P (E12 = 1|θ01, θ02, θ03) = [1−
3∏
j=1

(1− θ0j)] (6.20)

P (E24 = 1|θ13, θ14, θ15, θ16, θ17, θ18) =
8∏
j=3

θ1j (6.21)

Let Ψ be the set of the basic events in τ

Ψ = {Eij : Eij is a basic event in τ} (6.22)

Finally we can evaluate the total likelihood for this nominal-case observation:

P (obs.|θij∀i, j : Eij ∈ Ψ) =
∏

∀i,j:Eij∈Ξ
θ
Eij
ij (1− θij)1−Eij × (6.23)

×

1−
3∏
j=1

(1− θ0j)
 8∏
j=3

θ1j (6.24)

or using the indicator variable Iij ∈ {0, 1}:

P (obs.|θij∀i, j : Eij ∈ Ψ) =
∏

∀i,j:Eij∈Ψ

[
θ
Eij
ij (1− θij)1−Eij

]Iij × (6.25)

×

1−
3∏
j=1

(1− θ0j)
 8∏
j=3

θ1j (6.26)

Example 2 We consider now a different nominal-case observation of the critical sys-

tem illustrated by the fault tree in Figure 6.2.
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As shown in Figure 6.4, let us assume we have the following observation:

I21, I22, I24, I11, I12, I13, I14, I15, I16, I17, I18, I03 = 1

TE,E21, E24, E11, E12, E13, E14, E15, E16, E17, E18 = 1

E22, E03 = 0

(6.27)

In this case we observed E03 = 0.

1

1

1 1

0

0 1

1 1 1 1 1 1

Fig. 6.4: Example of a nominal-case observation of the system represented in Figure

6.2. The white rectangles represent the unobserved events, while the coloured ones

represent the observed events. The observed events with 1 are the events observed to

occur, while the 0 indicates that the event did not occur.

We want to calculate again the total likelihood of the basic events.

It is given by the contribution of

1. The observed basic events :

Ξ = {E22, E11, E13, E14, E15, E16, E17, E18, E03}

Each of them contribute to the total likelihood with a factor
θij if Eij = 1

1− θij if Eij = 0
(6.28)

2. The unobserved basic events whose occurrence affects the occurrence of the ob-

served intermediate event through AND/OR gates:

E01, E02 whose child E12 is observed
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Since

• E01, E02, E03 are connected to the intermediate event through an OR gate

and

• we observed that E12 = 1,

• we observed that E03 = 0

we can conclude that at least one of the events E01, E02 occurred. It follows that:

P (E12 = 1, E03 = 0|θ01, θ02, θ03) =
1−

2∏
j=1

(1− θ0j)
 (1− θ03) (6.29)

Note that θ03 is already contributing to the total likelihood as an observed basic event.

Then the total likelihood is given by

P (obs.|θij∀i, j : Eij ∈ Ψ) =
∏

∀i,j:Eij∈Ξ
θ
Eij
ij (1− θij)1−Eij × (6.30)

× P (E12 = 1|θ01, θ02, θ03)
(1− θ03) (6.31)

=
∏

∀i,j:Eij∈Ξ
θ
Eij
ij (1− θij)1−Eij × (6.32)

×

1−
2∏
j=1

(1− θ0j)
× 1 (6.33)

(6.34)

In this case, note that the intermediate event E24 contributes with a factor 1 to the

likelihood because:

• we observed E24 to occur;

• we observed all its parents to occur;

• the parents are connected to the intermediate event E24 through and AND gate.

Example 3 Lastly we examine the following observation of the critical system, repre-

sented by the fault tree in Figure 6.2.

I21, I22, I24, I11, I12, I13, I14, I15, I16, I17, I18, I03, E03 = 1

TE,E21, E24, E11, E12, E13, E14, E15, E16, E17, E18 = 1

E22 = 0

(6.35)
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Similarly to the Example 2 we observed E03, but this time as an occurring event

E03 = 1.

1

1

1 1

1

0 1

1 1 1 1 1 1

Fig. 6.5: Example of a nominal-case observation of the system represented in Figure

6.2. The white rectangles represent the unobserved events, while the coloured ones

represent the observed events. The observed events with 1 are the events observed to

occur, while the 0 indicates that the event did not occur.

In this case the total likelihood is given just by the contribution of

1. The observed basic events :

Ξ = {E22, E11, E13, E14, E15, E16, E17, E18, E03}

Each of them contribute to the total likelihood with a factor
θij if Eij = 1

1− θij if Eij = 0
(6.36)

Since

• E01, E02, E03 are connected to the intermediate event through an OR gate and

• we observed that E12 = 1,

• we observed that E03 = 1
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we cannot say anything about the occurrence of E01, E02. Indeed, if we consider all

the possible cases, we have that:

P (E12 = 1|θ01, θ02, θ03) = θ03 (6.37)

where θ03 appears already at point 1.

Then the total likelihood is reduced to:

P (obs.|θij∀i, j : Eij ∈ Ψ) =
∏

∀i,j:Eij∈Ξ
θ
Eij
ij (1− θij)1−Eij (6.38)

Likelihood evaluation step - General nominal-case

We can now formulate the total likelihood of the primary (or basic or parentless)

events P (obs. 0|θij ∀i, j : Eij ∈ Ψ) for a general nominal-case observation. The

total likelihood is expressed in terms of the probabilities for the basic events to occur

θij : Eijis a basic event, either observed or unobserved, but its computation depends

on all the observed events, either intermediate or basic.

We call Lij the contribution term to the total likelihood of the event Eij. It depends

on the lower layers i = 0, . . . , j − 1 of the fault tree τ .

Given: 

Eij ∈ {0, 1}

Iij ∈ {0, 1}

∀i, j : Eij ∈ Φ = {Eij : Eij is an event of the fault tree τ}

(6.39)

Defining

εi−1 = {Ekj|k ≤ i− 1} (6.40)

as the set of the events (observed or not) to consider for the likelihood up to level i−1,

the total likelihood function can be expressed with the product:

P (obs. 0|θij ∀i, j : Eij ∈ Ψ) =
∏

∀i,j: Eij∈Φ
Lij (6.41)

=
∏

∀i,j: Eij∈Φ

[
P (Eij = 1|εi−1)EijP (Eij = 0|εi−1)1−Eij

]Iij
where Lij is given by a Bernoulli likelihood if the event Eij is observed (Iij = 1).

We distinguish two scenarios:
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1. If Eij is a parentless event, the probability for Eij to occur is not conditioned on

any other event:

P (Eij = 1|εi−1) = P (Eij = 1) or similarly P (Eij = 0|εi−1) = P (Eij = 0) (6.42)

Then the contribution term to the total likelihood (or in this case simply the

likelihood) is given by the Bernoulli likelihood:

Lij =
[
θ
Eij
ij (1− θij)1−Eij

]Iij ∀i, j : Eij is a basic event (6.43)

2. If Eij is an observed intermediate event, P (Eij = 1|εi−1) or P (Eij = 0|εi−1), and

then its contribution to the total likelihood, can be computed applying recursively

the algorithms explained in the next section.

Likelihood contribution of an observed intermediate event

Let Eij be an observed intermediate event and let Ωij be the set of the parents of Eij.

The flow diagrams in Figures 6.7 and 6.7, in the next two pages, show how to calculate

the term Lij for Eij.

We distinguish two cases with respect to the relationship to the parent events:

1. If Eij is at the output of an AND gate;

2. If Eij is at the output of an OR gate.
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P (Eij = 1|εi−1) =?

∏
∀j:E(i−1)j∈Ωij

[
P (E(i−1)j = 1|εi−2)

] At least one par-

ent observed?

0

At least one parent

observed not to

have occurred?

1 All parents observed?

∏
∀j:E(i−1)j∈Ωij

[
P (E(i−1)j = 1|εi−2)

]1−I(i−1)j

N

Y

Y

Y

N

N

Fig. 6.6: Relationship to parent events: AND gate. This algorithm shows the evalu-

ation of Lij for the intermediate event Eij at the output of an AND gate.
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P (Eij = 1|εi−1) =?

At least one

parent observed?
1−

∏
∀j:E(i−1)j∈Ωij

[
P (E(i−1)j = 0|εi−2)

]

At least one

parent observed

to have occurred?

1

All parents

observed?
0

1 −
∏

∀j:E(i−1)j∈Ωij

[
P (E(i−1)j = 0|εi−2)

]1−I(i−1)j

N

Y

Y

N

N

Y

Fig. 6.7: Relationship to parent events: OR gate. This algorithm shows the evaluation

of Lij for the intermediate event Eij at the output of an OR gate.
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Finally from these flow diagrams we can derive the expressions:

• for an AND gate:

P (Eij = 1|εi−1) =
∏

∀j:E(i−1)j 6=0∈Ω

[
P (E(i−1)j = 1|εi−2)

]1−I(i−1)j

·
∏

∀j:E(i−1)j=0∈Ω

[
P (E(i−1)j = 1|εi−2)

]
(6.44)

P (Eij = 0|εi−1) = 1− P (Eij = 1|εi−1) =

= 1−
∏

∀j:E(i−1)j 6=0∈Ω

[
P (E(i−1)j = 1|εi−2)

]1−I(i−1)j

·
∏

∀j:E(i−1)j=0∈Ω

[
P (E(i−1)j = 1|εi−2)

]
(6.45)

• and for an OR gate:

P (Eij = 1|εi−1) = 1−
∏

∀j:E(i−1)j 6=1∈Ω

[
P (E(i−1)j = 0|εi−2)

]1−I(i−1)j

·
∏

∀j:E(i−1)j=1∈Ω

[
P (E(i−1)j = 0|εi−2)

]
(6.46)

P (Eij = 0|εi−1) = 1− P (Eij = 1|εi−1) =

=
∏

∀j:E(i−1)j 6=1∈Ω

[
P (E(i−1)j = 0|εi−2)

]1−I(i−1)j

·
∏

∀j:E(i−1)j=1∈Ω

[
P (E(i−1)j = 0|εi−2)

]
. (6.47)
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Example 4 We consider the critical system represented in Figure 6.8.

TE

E21

E11 E12

E01 E02 E03

E22 E23 E24

E13 E14 E15 E16 E17 E18

Fig. 6.8: Fault tree representation of a critical system.

Assume we have the following nominal-case observation:


I21, I24, I13, I14, I15, I16, I17, I18 = 1

TE,E21, E24, E13, E14, E15, E16, E17, E18 = 1
(6.48)

We can visualize it in Figure 6.9.

1

1 1

1 1 1 1 1 1

Fig. 6.9: Example of a nominal-case observation of the system represented in Figure

6.8. The white rectangles represent the unobserved events, while the coloured ones

represent the observed events. The observed events with 1 are the events observed to

occur.
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1. Each of the observed basic events

Ξ = {E13, E14, E15, E16, E17, E18}

contributes to the total likelihood with the factor expressed in 6.43:

Lij =
[
θ
Eij
ij (1− θij)1−Eij

]Iij ∀(i, j) ∈ {(1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8)}

(6.49)

2. The likelihood contribution term of the observed intermediate event E21 can be

computed applying, first of all, the formula 6.46, since E21 is at the output of an

OR gate:

L21 = P (E21 = 1|ε1) = 1−
[
P (E(11 = 0|ε0)

] [
P (E(12 = 0|ε0)

]
= 1−

[
P (E(11 = 0)

] [
P (E(12 = 0|ε0)

]
(6.50)

Then since E11 is a parentless event:

L21 = 1− [1− θ11]
[
P (E(12 = 0|ε0)

]
(6.51)

Finally applying the formula 6.45, since E12 is at the output of an AND gate:

L21 = 1− [1− θ11] [1− θ01θ02θ03] (6.52)

In conclusion, the total likelihood of the basic events is given by:

P (obs.0|θij∀i, j : Eij ∈ Ψ) = L21

8∏
j=3

L1j (6.53)

= [1− (1− θ11)(1− θ01θ02θ03)]
8∏
j=3

θ1j.

6.10.3 Risk probability prediction based on posterior distri-

butions

Given the prior distributions in 6.14 and the total likelihood in 6.41 for the primary

events in the nominal case, the formulation of the joint posterior probability follows

straightforwardly from Bayes rule:

p(θij∀i, j : Eij ∈ Ψ|obs.0) ∝ P (obs. 0|θij ∀i, j : Eij ∈ Ψ)
∏

∀i,j:Eij∈Ψ
p(θij|αij, βij) (6.54)
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Samples of θij can be generated from 6.54 to assess the probability for the top event

to occur based on the joint posterior distribution, in the nominal-case. Except for the

lucky cases when the likelihood is binomial and then the posterior beta-binomial 1, the

samples can be generated by importance sampling (or MCMC for high dimensional

situations).

Importance sampling

Posterior samples can be generated by importance sampling.

1. Consider for each θij the Beta prior distribution p(θij|αij, βij) as proposal distri-

bution;

2. Draw from the prior distributions p(θij|αij, βij) ∀i, j : Eij ∈ Ψ N samples:

θ̂(1) = {θ(1)
ij ∀i, j : Eij ∈ Ψ} (6.55)

... (6.56)

... (6.57)

θ̂(N) = {θ(N)
ij ∀i, j : Eij ∈ Ψ} (6.58)

(6.59)

3. For each sample θ̂(η), calculate the importance weight rη from the likelihood

rη = P (obs.0|θ̂(η)) (6.60)

4. Finally draw M samples

θ̄1 = {θ(1)
ij ∀i, j : Eij ∈ Ψ} (6.61)

... (6.62)

... (6.63)

θ̄M = {θ(M)
ij ∀i, j : Eij ∈ Ψ} (6.64)

(6.65)

with probability
rη∑N
j=1 rj

(6.66)

1Since the beta prior is the coniugate prior of the binomial distribution.
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For further details about this sampling method the reader is addressed to Section

A.2.2.

6.11 The non-nominal cases

Assume we can observe K + 1 realizations of the system under study, including the

nominal profile. Note that each realization can be observed only once, because they

are not repeatable. We use k to refer a variable to the k-th realization or observation.

6.11.1 Risk probability prediction based on prior beliefs

The probability for the top event to occur during the upcoming k-th realization of the

system (before observing it) is expressed in terms of the samples {θ(k−1)
ij ∀i, j : Eij ∈ Ψ}

sampled by the joint posterior distribution of the k−1-th observation p(θij ∀i, j : Eij ∈

Ψ|obs. 0, . . . , k − 1).

In order to integrate the outcome of the expert opinion into the failure probabil-

ity assessment, these samples are raised to the power of (q(k)
ij )−1, where (q(k)

ij ) is the

tendency-to-occur quotient, defined in 6.8.2. If q(k)
ij > 1 the expert opinion suggests

that the event Eij is more likely to occur in the k-th realization than in the (k− 1)-th.

The proposed weighting strategy reproduces this opinion considering that

θ
1
q

ij > θij if q > 1 (6.67)

since θij is a probability and hence 0 ≤ θij ≤ 1.

Then, the probability for the top event to occur for the k-th realization, based on

prior beliefs, is given by the expressions 6.10 and 6.11 (see Section 6.9), in terms of the

basic events θij, but with θij replaced by (θ(k−1)
ij )

1
q

(k)
ij .

• If the events of the last layer L are connected to the top event through an AND

gate:

P (TE = 1) =
∏
j

(θij|(θ(k−1)
ij )

1
q

(k)
ij ∀i, j : Eij ∈ Ψ) (6.68)

• If the events of the last layer L are connected to the top event through an OR

gate:

P (TE = 1) = 1−
∏
j

(1− θij|(θ(k−1)
ij )

1
q

(k)
ij ∀i, j : Eij ∈ Ψ) (6.69)
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6.11.2 The likelihood

For each observation k we define a total weighted likelihood given by:

P (obs. 0, . . . , k|θij ∀i, j : Eij ∈ Ψ) =
k∏
z=0

P (obs. z|θ(q(z)
ij )−1

ij ∀i, j : Eij ∈ Ψ) (6.70)

where

• q
(z)
ij is again the tendency-to-occur quotient, defined in 6.8.2;

• P (obs. z|θ(q(z)
ij )−1

ij ∀i, j : Eij ∈ Ψ) is the likelihood of the z-th observation com-

puted as explained for the nominal case in Section 6.10.2, but in terms of the

probabilities θij weighted by the tendency-to-occur quotient.

The intuition behind the idea of weighting the probability θij for the basic event

Eij to occur in the k observation with the tendency-to-occur quotient q(k)
ij is that seeing

Eij happen is like it happening qij times under the conditions of the k observation. It

can be considered a reinforcement to the likelihood based on expert opinion.

6.11.3 Risk probability prediction based on posterior distri-

butions

After observing the k-th realization of the system, the joint posterior probability dis-

tribution can be updated from p(θij ∀i, j : Eij ∈ Φ|obs. 0, . . . , k − 1) to p(θij ∀i, j :

Eij ∈ Φ|obs. 0, . . . , k), given the prior distributions elicited for the nominal profile and

the total weighted likelihood:

p(θij ∀i, j|obs. 0, . . . , k) ∝ P (obs. 0, . . . , k|θij ∀i, j : Eij ∈ Ψ)
∏

(∀i,j: Eij∈Ψ)
p(θij|αij, βij)

(6.71)

Then the probability for the top event to occur during the k-th realization, based

on posterior distribution, can be evaluated sampling from 6.71 and applying 6.68 or

6.69.

6.12 The entire procedure

The proposed model can be summarized in the following steps:
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1. Construct fault tree;

2. Prior elicitation of elementary event probabilities in nominal case k = 0;

3. For each realization k = 1, . . . , K:

(a) Elicit by expert opinion the tendency-to-occur quotient

q
(k)
ij ∀i, j : Eij ∈ Ψ

;

(b) By Importance sampling, generate the vector of samples of

{θ(k)
ij ∀i, j : Eij ∈ Ψ}

from the current joint posterior

p(θij ∀i, j : Eij ∈ Ψ|obs. 0, . . . , k − 1)

.

These samples and the quotients q(k)
ij can be used to assess the probability

of occurrence of the top event for the k-th realization;

(c) Observe data for k-th realization;

(d) Update the joint posterior probability distribution from

p(θij ∀i, j : Eij ∈ Φ|obs. 0, . . . , k − 1)

to

p(θij ∀i, j : Eij ∈ Φ|obs. 0, . . . , k)

, given:

• The product of the prior distributions elicited for the nominal profile:

p(θij ∀i, j : Eij ∈ Ψ) =
∏

(∀i,j: Eij∈Ψ)
p(θij|αij, βij), (6.72)

since they are assumed to be independent.

• The entire weighted likelihood:

P (obs. 0, . . . , k|θij ∀i, j : Eij ∈ Ψ) = (6.73)

=
k∏
z=1

P (obs. z|θ(q(z)
ij )−1

ij ∀i, j : Eij ∈ Ψ) (6.74)
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Construct fault tree

Prior elicitation

of elementary

event probabilities

in nominal case

Next event

under nominal

conditions?

Elicit relative risk of

elementary events

Prediction for

P (TE = 1)

Observe data

Update posterior

distribution of

elementary event

probabilities

yes

no

INITIALISE MODEL

FOR EACH OCCURRENCE

Fig. 6.10: The entire procedure.
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6.13 Application proposal

TE

E21

E11 E12

E01 E02 E03

E22 E23 E24

E13 E14 E15 E16 E17 E18 E19 E1,10

Fig. 6.11

The model proposed and detailed in this chapter has been developed for the assessment

of the probability for an explosion to occur during the atmospheric re-entry of a space-

craft. Through discussion with experts working in the European Space Research and

Technology Centre and the reading of the ESA Space Debris Mitigation Compliance

Verification Guidelines (ESA Space Debris Mitigation Working group, 2015), the ATV1

re-entry analysis reported in (Boutamine et al., 2007),(G. Koppenwallner, B. Fritsche,

T. Lips, T. Martin, L.Francillout, 2005) and (Schmehl, 2004) and a review of the state

of art (see Fritsche et al. (2005b), Mirzaei (2008), Chrostowski et al. (2010), Breu et al.

(2008)), we constructed the fault tree in Figure 6.11, whose events are divided in the

following groups:

• Outcome: Explosion of the spacecraft (TE)

– E21 Chemical reaction propellant+air;

– E22 Burst of a pressure vessel;

– E23 Chemical reaction between hypergolic propellants;

– E24 Burst of a battery cell.

• Outcome: E21 Chemical reaction propellant+air
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– E11 Sudden release of propellant (due to Burst of a pressure vessel E22);

– E12 Slow release of propellant.

• Outcome: E12 Slow release of propellant

– E01 Valve leakage;

– E02 Tank destruction;

– E03 Pipe rupture.

• Outcome: E24 Burst of a battery

– E13 Chemical reactions;

– E14 Overpressure;

– E15 Short circuit;

– E16 Corrosion;

– E17 Overcharge;

– E18 Overdischarge;

– E19 Overtemperature;

– E1,10 Cell degradation.

Since the event E11 is equivalent to the event E22 and there are only OR gates, the

fault tree could be simplified as follows:

TE

E01 E02 E03 E22 E23 E13 E14 E15 E16 E17 E18 E19 E1,10

Fig. 6.12

6.13.1 Some useful definitions

For the understanding of the events that build the fault tree we report some useful

definitions:
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• Explosion is an extremely fast and high pressure increase, which may either

occur inside a vessel or in the free atmosphere without enclosure. It has a large

destructive action.

• Burst of a pressure vessel: caused by overpressure P > Pburst and weakening

of the structure (material degradation due to high temperatures). During the

bursting process the vessel usually tears along lines of weakness. Therefore only

few fragments are generated.

• Leakage Leakage may be caused during re-entry by heated valves or fuel line

joints. We may assume that at elevated temperatures the fuel lines and valves

will loose their sealing capacity and thus after a certain heating phase of the

vehicle a leak flow of propellant will exist.

• Hypergolic propellants: these propellants spontaneously ignite when they

come into contact with each other.

6.14 Worked example

In this section we present the results of a simulation of the model with the fault tree

proposed in 6.11.

Basic events: Ψ = {E22, E23, E11 = E22, E13, E14, E15, E16, E17, E18, E19, E1,10,

E01, E02, E03}. Intermediate events: E21, E24, E12.

All the events are grouped as follows for the prior elicitation:

• Group A: E21 E22, E23, E24.

• Group B: E01, E02, E03.

• Group C: E13, E14, E15, E16, E17, E18, E19, E1,10.

6.14.1 Prior elicitation for the nominal case

Let us assume we collected the following AHP matrices (see the Section C.3.3) by

expert opinion:
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A =



1 5 7 7
1
5 1 5 1
1
7

1
5 1 1

1
7 1 1 1


(6.75)

B =


1 3 1
1
3 1 1

3

1 3 1

 C =



1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1


(6.76)

The consistency ratios (see equations C.5 and C.4 in Section C.3.3) show that the

consistency property holds for all the groups (since they are less than 0.1):

CRA = 0.1 CRB � 0.1 CRC = 0

We assume the expert is more confident about the event E02 and that he provided a

range of values for θ02. Following the procedure in 6.10.1 we can fit the expert opinion

to beta prior distributions with the shape parameters reported in Table 6.1.

6.14.2 Observations

The occurrence of the events could be derived by analysing the outcome of an obser-

vation campaign. For instance fuel release could be analysed through spectroscopy.

We assume to have the following synthetic data:

• Nominal case 

E03 = 1

I03 = 1

Iij = 0 ∀(ij) 6= (03)

(6.77)
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Event Weight Range Nominal Beta shapes (α, β)

E01 w01 = 0.09 (0.01, 0.04) (10.81, 421.52)

E02 w02 = 0.09 (0.01, 0.04) (10.81, 421.52)

E03 w03 = 0.82 (0.09, 0.36) (8.39, 28.88)

E22 w22 = 0.05 (0.005, 0.021) (10.95, 826.01)

E23 w23 = 0.46 (0.05, 0.201) (9.59, 66.54)

E13 w13 = 0.125 (0.014, 0.055) (10.69, 300.43)

E14 w14 = 0.125 (0.014, 0.055) (10.69, 300.43)

E15 w15 = 0.125 (0.014, 0.055) (10.69, 300.43)

E16 w16 = 0.125 (0.014, 0.055) (10.69, 300.43)

E17 w17 = 0.125 (0.014, 0.055) (10.69, 300.43)

E18 w18 = 0.125 (0.014, 0.055) (10.69, 300.43)

E19 w19 = 0.125 (0.014, 0.055) (10.69, 300.43)

E1,10 w1,10 = 0.125 (0.014, 0.055) (10.69, 300.43)

Table 6.1: This table summarizes the results of the nominal prior elicitation step.

The AHP weights are computed by the geometric mean method explained in C.3.4.

From the weights and the range of values of θ02 we derived a range of values for the

probabilities of all the other basic events and then mapped the elicited weights to the

beta prior distributions.
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1

1

1

1

Fig. 6.13: Graphical representation of the nominal observation, including the logical

reduction step.

• First observation



E12 = 1

I12 = 1

Iij = 0 ∀(ij) 6= (12)

q
(1)
01 = q

(1)
02 = q

(1)
03 = 3

q
(1)
ij = 1 ∀(ij)∀(ij) : i 6= 0

(6.78)

• Second observation



E12 = 1

I12 = 1

Iij = 0 ∀(ij) 6= (12)

q
(2)
01 = q

(2)
02 = q

(2)
03 = 1/5

q
(2)
ij = 1 ∀(ij) : i 6= 0

(6.79)
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1

1

1

Fig. 6.14: Graphical representation of the first and the second observations, including

the logical reduction step.

• Third observation 

E12 = 0

I12 = 1

Iij = 0 ∀(ij) 6= (12)

q
(3)
16 = q

(3)
18 = 7

q
(3)
ij = 1 ∀(ij) 6∈ {(18)(16)}

(6.80)

TE

0

0 0 0

Fig. 6.15: Graphical representation of the third observation, including the logical

reduction step.
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Event

E01 q
(1)
01 = 3 q

(2)
01 = 1/5 q

(3)
01 = 1

E02 q
(1)
02 = 3 q

(2)
02 = 1/5 q

(3)
02 = 1

E03 q
(1)
03 = 3 q

(2)
03 = 1/5 q

(3)
03 = 1

E22 q
(1)
22 = 1 q

(2)
22 = 1 q

(3)
22 = 1

E23 q
(1)
23 = 1 q

(2)
23 = 1 q

(3)
23 = 1

E13 q
(1)
13 = 1 q

(2)
13 = 1 q

(3)
13 = 1

E14 q
(1)
14 = 1 q

(2)
14 = 1 q

(3)
14 = 1

E15 q
(1)
15 = 1 q

(2)
15 = 1 q

(3)
15 = 1

E16 q
(1)
16 = 1 q

(2)
16 = 1 q

(3)
16 = 7

E17 q
(1)
17 = 1 q

(2)
17 = 1 q

(3)
17 = 1

E18 q
(1)
18 = 1 q

(2)
18 = 1 q

(3)
18 = 7

E19 q
(1)
19 = 1 q

(2)
19 = 1 q

(3)
19 = 1

E1,10 q
(1)
1,10 = 1 q

(2)
1,10 = 1 q

(3)
1,10 = 1

Table 6.2: This table summarizes the tendency to occur quotients elicited by expert

opinion for all the basic events.

6.14.3 Risk assessment

Risk probability prediction based on the nominal case posterior

P (TE = 1) =
∏

∀i,j:Eij∈Ψ
(1− θij) (6.81)

where θij can be sampled by the posterior

p(θij ∀i, j : Eij ∈ Ψ|obs.0) = θ03
∏

∀i,j: Eij∈Ψ
p(θij|αij, βij) (6.82)

Risk probability prediction based on the posterior of the 1st observation

P (TE = 1) =
∏

∀i,j:Eij∈Ψ i 6=0
(1− θij)

3∏
j=1

(1− θ
1
3
0j) (6.83)

where θij can be sampled by the posterior

p(θij ∀i, j : Eij ∈ Ψ|obs.0, 1) =
1−

3∏
j=1

(1− θ
1
3
0j)
 θ03

∏
∀Eij∈Ψ

p(θij|αij, βij) (6.84)
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Risk probability prediction based on the posterior of the 2nd observation

P (TE = 1) =
∏

∀i,j:Eij∈Ψ i 6=0
(1− θij)

3∏
j=1

(1− θ5
0j) (6.85)

where θij can be sampled by the posterior

p(θij∀i, j : Eij ∈ Ψ|obs.0, 1, 2) = (6.86)

=
1−

3∏
j=1

(1− θ5
0j)
1−

3∏
j=1

(1− θ
1
3
0j)
 θ03

∏
∀Eij∈Ψ

p(θij|αijβij)

Risk probability prediction based on the posterior of the 3rd observation

P (TE = 1) =
∏

∀i,j:Eij∈Ψ
(1− θij) (6.87)

where θij can be sampled by the posterior

p(θij∀i, j : Eij ∈ Ψ|obs.0, 1, 2, 3) = (6.88)

=
3∏
j=1

(1− θ0j)
1−

3∏
j=1

(1− θ5
0j)
1−

3∏
j=1

(1− θ
1
3
0j)
 θ03

∏
∀Eij∈Ψ

p(θij|αijβij)

6.14.4 Results

We report in this section four plots showing the results of the worked example, based

on simulated data.

The first plot shows a comparison of the pdfs of the probability for the top event

(explosion) to occur for the nominal case, after the first, the second and the third

observation. The goal of this plot is to show how the elicited tendency-to-occur quo-

tients affect the results of the risk probability predictions. For example we can see

how the probability for an explosion to occur increase when the experts say that two

basic events are very strongly more probable to occur (q(3)
16 = q

(3)
18 = 7) in the third

observation than during the second one. This exactly what we can expect, considering

that in this worked example, all the basic events can lead to an explosion.

The next plots have a similar goal, but for the probability of occurrence of the

single events.

It is fundamental to note that the obtained results do not match the physical

process, as well as the simulated tendency-to-occur quotients. In fact we are aware

that the probabilities should be relatively small in a risk analysis situation.
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P(TE=1)

P(TE=1)

P
D

F

0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

Nominal
1st observation
2nd observation
3rd observation

Fig. 6.16: Comparison of the pdfs of the probability for an explosion to occur assessed

relying on data and expert opinion respectively for the nominal case, after the first,

second and third observation. The shifting of the pdfs seems to reflect the collected

values of the tendency-to-occur quotients: q(1)
01 = q

(1)
02 = q

(1)
03 = 3, q(2)

01 = q
(2)
02 = q

(2)
03 =

1/5, q(3)
16 = q

(3)
18 = 7. Relying on the available observations, it can be deduced that

the explosion occurred during the nominal case, the first and the second observations.

Nothing can be stated about the third one.
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0.00 0.01 0.02 0.03 0.04

0
50

10
0

15
0

Event E22

θ22

P
D

F

Prior

Nominal

1st obs.

2nd obs.

3rd obs.

Fig. 6.17: Comparison between the probability density functions of the probability

θ22 for the event E22 to occur: the blue curve is the prior elicited by expert opinion for

the nominal case, the black one is the posterior of the nominal case, the red one, the

green one and the violet one are respectively posterior of the first, the second and the

third observation. The event E22 is the burst of a pressure vessel. According to the

synthetic data it has never been observed to occur and the tendency-to-occur quotient

q
(k)
22 = 1 ∀k = 1, 2, 3.
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0.0 0.2 0.4 0.6 0.8

0
2

4
6
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Event E03

θ3

P
D

F

Prior

Nominal

1st obs.

2nd obs.

3rd obs.

Fig. 6.18: Comparison between the probability density functions of θ03: the blue

curve is the prior elicited by expert opinion for the nominal case, the black one is

the posterior of the nominal case, the red one, the green one and the violet one are

respectively the posterior of the first, the second and the third observation. The event

E03 is the Pipe rupture. According to the synthetic data it was observed to occur in

the nominal case, his father E12 was observed to occur during the first and the second

observation and observed not to occur during the third observation. The relationship

with its father is an OR gate. We assumed the experts provided the following values

for the tendency-to-occur quotient: q(1)
03 = 3, q(2)

03 = 1/5, q(3)
03 = 1. We can observe from

the plot a shifting towards right of the global maximum point with respect to the prior

belief and this is consistent with the observed data. As consequence of the fact that

the event was observed not to occur. The abscissa of the maximum of the posterior

evaluated after the third observation is slightly lower than the abscissa of the maximum

of the posterior evaluated after the second observation.
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Fig. 6.19: Comparison between the probability density functions of θ13: the blue

curve is the prior elicited by expert opinion for the nominal case, the black one is

the posterior of the nominal case, the red one, the green one and the violet one are

respectively posterior of the first, the second and the third observation. The event E13

is the Chemical reaction (inside batteries). According to the synthetic data it has been

observed to occur only in the nominal case and the tendency-to-occur quotient q(k)
13 = 1

∀k = 1, 2, 3. Indeed we can observe that the posterior of the nominal case is different

from the prior, but there is no any significant difference between the nominal posterior

and the posterior of the next observations.
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Fig. 6.20: Comparison between the probability density functions of θ18: the blue

curve is the prior elicited by expert opinion for the nominal case, the black one is

the posterior of the nominal case, the red one, the green one and the violet one are

respectively posterior of the first, the second and the third observation. The event

E18 is Over-discharge (for batteries). According to the synthetic data it has never

been observed to occur and the tendency-to-occur quotient q(k)
18 = 1 k = 1, 2 and

q
(3)
18 = 7 k = 1, 2. As result of the evidence, we cannot observe any significant change

in the pdf of θ18.

6.15 Expert opinion collection experiment

We illustrate in this section the steps of the proposed expert judgement gathering

experiment.

As the reader can see from Section 6.13, the basic events that build the fault tree

are divided in three different groups:

1. In the first group we placed the events that can lead to the burst of a battery;
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2. In the second group we placed the events that can lead to the slow release of

propellant;

3. In the third group we placed the events that can lead to to a chemical reaction

between propellant and air.

Then we propose to formulate three different surveys, one for each group, and to

administer each of them to a different group of experts, selected by the relevance of

expertise.

Each survey contains two sections: one with the goal of gathering the expert judge-

ment for the elicitation of and one for the elicitation of tendency-to-occur weights for

a nominal re-entry and one for the elicitation of the tendency-to-occur quotients for

future re-entries.

We propose to consider as nominal re-entry the re-entry of ATV 1 because at the

moment this is the re-entry on which we have more information.

We can now list the steps to follow:

1. Select the experts for each group:

• Experts from the ESA division of Energy storage and power for the first

group;

• Experts from the ESA division of Propulsion, Propellants, Structure for the

second and the third group.

2. Formulate the questionnaires.

(a) Create the setting under which we aim the survey to be answered:

• Collect the available relevant information about the spacecraft and the

re-entries. This set of information is different for each survey. Examples

are:

– Re-entering trajectories;

– Predictions about the altitude of the explosion;

– Results of the observation campaign for the nominal re-entry.

• Collect the available information about the conditions of the batteries,

for the first group, and of the propulsion system, for the second and the

third group, at the EOL (end-of-life). Examples are:
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– Batteries: type of batteries, age of the spacecraft, protection mech-

anism, predictions about temperature and pressure of the batteries

at the EOL (end-of-life)

– Propulsion system: filling percentage, thickness of wall tanks after

material degradation,

The setting under which the questionnaire needs to be answered is specified

because the analysis is intended to be limited to specific re-entries.

(b) Invite the expert to consider one event for each group he is more confident

about and to provide a minimum and a maximum number of times in which

that event can occur out of 10 re-entries similar to the nominal one.

(c) Formulate the pairwise comparison questions and invite the experts to follow

the Saaty’s scale.

(d) Add an explanation of the linguistic Saaty’s scale.

(e) Add invitations to provide critical insights for the enhancement of the sur-

veys and the procedure.

3. Perform a consistency test as explained in Section C.3.3.

The experts were interviewed by email and individually. It could be more ad-

vantageous to interview them face by face and in groups, in order to allow them to

communicate with each other about the answers. Some examples of interviews, which

we addressed to experts in ESA, are reported in the Appendix E.
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Chapter 7

Fragmentation model

7.1 Introduction

In this chapter we introduce a model for the construction of a distribution over the

partitions of the unit interval, generated by a partially random fragmentation process.

A partially random fragmentation process is a fragmentation process partly dependent

on stochastic factors and partly dependent on deterministic factors. Inference for the

parameters of this model, given incomplete observations, is developed.

7.2 The research question

Re-entering from space to Earth, spacecraft shatter into pieces that can either burn as

they encounter friction with the atmosphere along their descent, or fall to the ground.

The development of this fragmentation model was driven by the need to answer the

following research question: What is the probability distribution of the masses of the

fragments generated when a given spacecraft explodes during its return journey from

space to Earth? How can we infer its parameters given the few exploitable real data?

Which percentage demises? How can we exploit what we know about the spacecraft

structure and its materials?

Again we are tackling the challenge to model a unrepeatable event, with missing

data and where the background knowledge is incomplete, but needs to be exploited as

prior belief.

The only way to gather observations to populate this model (with real data) is
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via airborne observation campaigns and unfortunately not many of them have been

arranged so far. As we will explain in more detail in Chapter 5, we could consult

the outcome of only one observation campaign: the campaign organized in 2008 to

observe the re-entry of the Automated Transfer Vehicle 1 (ATV1). In future years,

optimistically, there will be more opportunities to gather data for the fine-tuning of

the model.

Due to many complications in observing such a kind of event and in analysing the

results of the observations, the idea of collecting complete data is not conceivable (see

Chapter 5 for further details). It follows that incomplete observations is an inherent

issue of this research question.

Finally the resolution of this problem requires a flexible model:

• That can be easily updated as the understanding of the re-entry improves;

• That can be easily tailored for each re-entering spacecraft event;

• That can be easily adjusted to changing datasets.

7.3 Summary of results and contribution

This is a Bayesian model for the fragmentation specially developed for the modelling of

the distribution of the masses of the fragments generated after a highly energetic break-

up event. We decided to developed a model with a flexible structure in order to make

it applicable in different ways to the physical problem, depending on the attainable

knowledge.

Due to the lack of a reasonable amount of observations we performed simulations of

the model with synthetic data, to validate the inference process. We created a sample

distribution applying the model itself, then we generated data from this distribution

and we made them randomly incomplete. Finally we used this set of data to verify if

the model produces an accurate inference of the parameters of the sample distribution.

These simulations showed problems in the convergence that could be solved in future

work.
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7.4 The statistical model

The first sub-section describes a method for the construction of a distribution over

the partitions of the unit interval, while the second one is dedicated to the inference

strategy.

7.4.1 Construction of the distribution

The distribution is constructed with the aim of building a model that is both reasonable

for the fragmentation process and tractable enough for inference.

Alternative stick breaking process

We propose an extension of the stick breaking process, (introduced in Section D.3), as

an alternative method for the construction of a distribution over infinite partitions of

the unit interval.

Borrowing notation from Ghahramani et al. (2010), let ε = (ε1, . . . , εK), denote a

length-K sequence of positive integers, i.e., εk ∈ N+. ε = ∅ indicates the zero-length

string and |ε| the length of ε’s sequence. We denote with εεi the sequence that results

from appending εi = i, i ∈ N+ onto the end of the sequence ε. These strings index

the pieces in which the string is divided. We define a variation of the stick breaking

process as follows:

1. We take the stick a∅ with length π∅ = 1. We randomly break it into n∅ pieces,

with proportions

ν1, ν2, . . . , νn∅−1, (1−
n∅−1∑
i=1

νi)

We call these pieces a1, a2, . . . , an∅ with lengths (π1 = ν1, π2 = ν2 . . . ).

2. We select some of the n∅ pieces and we keep the remaining ones. We randomly

break each selected piece aj with proportions

νj1, νj2 . . . νj(nj−1), (1−
nj−1∑
i=1

νji)

Then each selected aj is broken into nj parts of lengths (πj1 = νj1νj, πj2 =

νj2νj, . . . ).
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3. Again we apply the same process for some of the ajl pieces with j = 1 . . . n∅
and l = 1 . . . nj. Then each selected ajl is partitioned into njl parts of lengths

(πεε1 = νεε1νε, πεε2 = νεε2νε, . . . ) with ε = (j, l).

4. We can continue this process to randomly partition the stick.

We can see the proportions νε as Dirichlet distributed random variables. The

Dirichlet distribution, defined in Section D.2, is the multivariate generalization of the

Beta distribution.

If the proportions {νε} are Dirichlet distributed, the lengths {πε} are also Dirichlet

distributed. This is due to the decimation property, defined in Section D.2.

It is proved that this property can be generalized with

(τ1, . . . , τm) ∼ Dir(α1β1, . . . , α1βm)

and ∑m
i=1 βi = 1 and even to the more general case where many xis are split into

different fractions.

We can define the parameter vector α as the product Aγ of a scalar concentration

parameter A and a vector base measure γ = (γ1, . . . , γn) where ∑n
i=1 γi = 1.

Example 5 For example we consider n∅ = 3, n1 = 2 and n2 = 4, as depicted below in

Figure 7.1.

Fig. 7.1: Representation of the proposed alternative stick breaking process.
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The stick a∅ is divided into three pieces a1, a2, a3, whose lengths are Dirichlet dis-

tributed

(π1 = ν1, π2 = ν2, π3 = ν3) ∼ Dir(A(γ1, γ2, γ3))

Next a1 is split into two pieces a11, a12 and a2 into four pieces a21, a22, a23, a24.

The unit interval is so partitioned into seven parts. It follows from the decimation

property that the lengths (π11, π12, π21, π22, π23, π24, π31) are again Dirichlet distributed

Dir(A(γ1γ11, γ1γ12, γ2γ21, γ2γ22, γ2γ23, γ2γ24, γ3)). If

π11 = ν1ν11, π12 = ν1ν12,

then

(ν11, ν12) ∼ Dir(Aγ1(γ11, γ12)),

and

π2i = ν2ν2i i = 1, . . . , 4

(ν21, ν22, ν23, ν24) ∼ Dir(Aγ2(γ21, γ22, γ23, γ24))

where γ11 + γ12 = 1 and γ21 + γ22 + γ23 + γ24 = 1.

The corresponding tree-structure

Let τ be a rooted oriented tree, that is a directed acyclic graph where all the edges

are directed away from a particular vertex, called the root. Let τw be a weighted tree,

whose underlying graph is τ and whose edges labels, called weights, are assigned. We

call τ the tree-structure of τw.

The weighted rooted oriented tree τw provides a representation of the breaking

process, when it complies with the following characteristics:

• The root stands for the length π∅ of the stick.

• Every node (or vertex) represents the length πε of a chunk of the stick and the

string ε identifies the node. The length of the sequence |ε| is the depth of the

node ε, being the depth of a node the length of the path to the root. The root

has depth zero.
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• The node ε has children εεi : εi ∈ {1, 2, . . . , dε}. The number of children of the

node ε is the out-degree dε. The children of ε represent the lengths πεεi : εi ∈

{1, 2, . . . , dε} .

• The leaves, i.e. the nodes with out-degree zero, represent the lengths of the

surviving pieces.

• Every edge connecting ε to εεi is weighted with the splitting proportion νεεi .

Therefore the length πε is given by the product between the weights of the edges

that belong to the shortest path from ε to the root.

π∅

π1 π2

π3

π12π11

π23

π22π21

π24

ν2ν1

ν3

ν12ν11

ν22

ν23

ν21

ν24

Fig. 7.2: Tree structure of the example described in Example 5 and depicted in Figure

7.1.

The same tree structure τ can represent the associated vector base measure γ. The

number of elements of the vector base measure is equal to the number of leaves.

In this case, the edge connecting ε to εεi is weighted with γεεi .

Therefore the corresponding element of the parameter vector α to the leaf ε is given

by the product between A and the weights of the edges that belong to the shortest

path from ε to the root.
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γ1

γ3

γ12
γ11

γ22

γ23

γ21

γ24

Fig. 7.3: Tree structure of the vector base measure of the Dirichlet distribution of the

example described in 5 and illustrated in Figure 7.1.

The splitting proportions vector

Given the weighted oriented tree τw with out-degree dmax, being the out-degree (or

branching factor) of an oriented tree the maximum out-degree of any of its nodes and

the out-degree of a node the number of its children, we introduce a vector called the

splitting proportions vector µ = (µ1, . . . , µdmax) such that ∑dmax
i=1 µi = 1.

The edges of the tree τw = f(τ,µ) directed away from node ε are weighted with

the elements of the partition of this vector (µ, . . . , µdε−1, 1 −
∑dε
i=1 µi) where dε is the

out-degree of the node ε, as shown in the next Figure 7.4.

µ1

µ3
µ2

µ4

1− (µ1 + µ2)
µ2

µ1

Fig. 7.4: Example of a tree weighted by the elements of the splitting proportions

vector µ.

The vector base measure γ can be defined in terms of the structure of the tree τ and

the splitting proportions vector µ. For instance, the vector base measure represented

by the weighted tree in Figure 7.4 is γ = (µ1, µ2µ1, µ
2
2, µ2(1− (µ1 + µ2)), µ3, µ4).
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The function α = f(Aµ, τ)

Given the above definition of the splitting proportions vector and the tree-structure

analogy the constructed distribution is a Dirichlet distribution with parameterα, where

α is a function of the scalar concentration parameter A, the splitting proportions vector

µ, the tree structure τ and the tree structure is a graphical representation of the

fragmentation process. Note that the scalar concentration parameter A is introduced

in the model in order to scale the parameter of the Dirichlet distribution to avoid

possible computational issues with small values.

The function f(A,µ, τ) summarizes the proposed method for the construction of

the distribution and it will be largely used in the rest of the chapter, for the explanation

of the inference method.

This function relates each element αi of the vector α to a leaf ε of the weighted

oriented tree τw and therefore to the linear combination of the elements of the vector

µ that weigh the edges belonging to the shortest past from ε to the root. Using this

representation of α, we do not need to explicitly state the vector base measure γ, whose

cardinality is n as the cardinality of α. Note that the cardinality of µ is fixed and it

does not vary with n, therefore this representation can result advantageous when n is

large.

We can consider again the example showed in Figure 7.4. Given the illustrated

weighted oriented tree τw, we have:

α = f(Aµ, τ) = A(µ1, µ2µ1, µ
2
2, µ2(1− (µ1 + µ2)), µ3, µ4) (7.1)

7.4.2 Inference for the Fragmentation model

Introduction

We propose a method for the Bayesian inference of the parameters of the proposed

Dirichlet distribution: Dir(α = f(A,µ, τ)) which is function of A, µ and the tree

structure τ .

We consider k realizations of a random variable

x ∈ ∆n :=
{
x ∈ Rn :

∑
i

xi = 1, xi ≥ 0
}
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:

x1 = {x11, . . . , xn11}

x2 = {x12, . . . , xn22}
...

xk = {x1k, . . . , xnkk}

and its partitions into

• Observable data yj = {y1j, . . . , ysjj};

• Not observable (or missing) data zj = {z1j, . . . , z(nj−sj)j}, with j = 1, . . . , k.

The random variable x is Dirichlet distributed x ∼ Dir(α = {α1, . . . , αk}) with

parameter α = f(Aµ, τ) function of

• The splitting proportions vector µ (see Section 7.4.1);

• The tree structure τ (see Section 7.4.1).

We propose an algorithm for the inference of the parameter α, given the observable

data y1, . . . ,yk.

The complete data posterior density, from which we wish to sample α, is:

p(α|x1, . . . ,xk) ∝
k∏
j=1

{(
1

B(α)

n∏
i=1

xαi−1
ij

)}
p(α) (7.2)

Unfortunately we are not able to evaluate the complete likelihood due to the miss-

ing data and so we do not know the form of the observed data posterior density

p(α|y1, . . . ,yk). The solution is to find the way to complete our observations.

For ease of notation, we consider nj = n constant and known ∀j = 1, . . . , k, being

nj the length of the j-th realization.

For each observation j = 1, . . . , k the length of observed data sj can be considered

as the number of successes in a sequence of n trials, each of which yields success with

probability pobs. We consider each element xij observed with a certain probability pobs.

The vector s includes all the elements sj ∀j = 1, . . . , k.
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The indicator variable

We need to introduce an auxiliary variable that we are going to call indicator variable

rj for each observation j.

In order to explain what it is and the reason why we need it, we come back to the

analogy with the tree structure.

The random variable x takes the outcomes of the alternative stick breaking process

7.4.1 and its realization can be represented by the leaves of a tree, as illustrated in

Figure 7.5.

n∑
i

xi = 1 xn

x2x1

x5

x4x3

x6

Fig. 7.5: Realization of the random variable x.

The observable data yj are the observable fractions of this outcomes. Each yj is a

subset of a partition of the unit interval.

1 z5

z1y1

z3

z2y2

z4

Fig. 7.6: The realization xj of the random variable x is partitioned into observable

data yj = {y1j, y2j} and missing data zj = {z1j, . . . , z5j}.

As we observe only some leaves, we do not know anything about the tree structure
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of the realization xj, except the total number of leaves n. We do not know which

position in the tree is occupied by the observable leaves either.

The observable data set yj = {y1j, y2j}, illustrated by the next figure:

1

y1 y2

Fig. 7.7: Representation of the observable data set yj = {y1j, y2j}.

can be the observable fraction of different trees. Given the same observable data

set, we can have different tree-structures, as represented in the following figures:

1 z5

z3y1

z2

y2 z4

z1 1

z5

z3y1

z2

y2 z4

z1

Fig. 7.8: These examples show how an observable data set can be placed into a tree-

structure.

Furthermore, even if the tree structure is fixed, the observable leaves can occupy

different positions, as illustrated in the next figures:
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1 z5

z3y1

z2

y2 z4

z1 1 z5

z3z2

y1

z4 y2

z1

Fig. 7.9: These examples show how an observable data set can be placed into a tree-

structure.

When we consider the random variable x Dirichlet distributed with parameter

α = f(Aµ, τ), we state a correspondence between the position occupied in the tree τ

by the element xi and its value, as already explained in the previous section. Therefore

the available observations cannot be completed without defining the position of the

missing data.

For this reason, we introduce an indicator variable rij ∈ {0, 1} such that yj =

{xij|rij = 1} and that zj = {xij|rij = 0}. rij indicates if the element xij ∈ xj belongs

to yj or zj or in other words if it is an observable variable or not. The indicator variable

is illustrated in Figure 7.10.

1 r7 = 0

r2 = 0r1 = 1

r5 = 0

r4 = 0r3 = 1

r6 = 0

Fig. 7.10: Representation of the indicator variable.

Full model

We are now ready to define the main goal. We aim to sample the missing data z

and the Dirichlet parameter α = f(Aµ, τ), given the observed data, from the joint

110



posterior distribution:

p(z = (z1, . . . ,zk), r = (r1, . . . , rk), Aµ, τ |y = (y1, . . . ,yk), s, n) (7.3)

where:

•
∑
i

rij = sj is given ∀j = 1, . . . , k;

• The scalar concentration parameter A is known;

• The length of µ is a priori defined.

We propose the following Gibbs sampler (see Section A.3.2) to sample from this

posterior distribution:

1. Initialization. Start with some initial state for the Markov chain, defining a

starting value for the splitting proportions vector µ(0), the tree structure τ (0),

the indicator variable r(0).

• Generate the splitting proportions vector µ(0) from a Dirichlet distribution,

giving known the scalar concentration parameter A;

• Generate the tree structure τ (0), simulating it uniformly from all the possible

tree with n leaves and maximum out-degree dmax. Note that dmax is equal

to the length of the splitting proportions vector;

• Given τ (0) and µ(0), derive the correspondent weighted tree and extract the

related Dirichlet parameter vector α(0);

• The indicator variable r(0) can be simulated uniformly from all the possible(
n
sj

)
configurations. Note that there are

(
n
sj

)
ways to choose the sj observed

items, disregarding their order, from n elements.

2. For each iteration, given the current state (µ(η), τ (η), r(η)):

(a) For each observation j = 1, . . . , k sample the missing values zj from the

distribution of zj conditioned on the values of the remaining variables:

zj ∼ p(zj|rj, Aµ, τ,yj, s, n) (7.4)

∝ Dir(xj|α(Aµ, τ)) = 1
B(α)

 ∏
i:rij=1

yαi−1
ij

∏
i:rij=0

zαi−1
ij

 (7.5)
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Each zj can be sampled independently.

This is equivalent to draw a vector zj of n − sj elements Dirichlet dis-

tributed with parameter α = {αi = f(Aµ, τ)|rij = 0} on (0, 1−
∑
i

yij). By

adding the sampled vector zj to the observed data yj, we get the Dirichlet

distributed augmented data xj = (yj, zj) that sum to 1.

This step replaces the application of a data augmentation algorithm (see

Section A.3.3 ).

(b) For each observation j = 1, . . . , k sample the indicator variable rj from the

distribution of rj conditioned on the values of the remaining variables:

rj ∼ p(rj|xj = (yj, zj), Aµ, τ, s, n, pobs) = p(rj|s, n) (7.6)

We propose a Metropolis-Hastings algorithm (A.3.1) to obtain it.

Metropolis-Hastings algorithm for the inference of the indicator

variable

• Generate a candidate r(∗)
j , simulating it uniformly. The proposal dis-

tribution is simply q(r(∗)
j |r

(η)
j ) = 1

( nsj)
and the same in the opposite

direction q(r(η)
j |r

(∗)
j ) = 1

( nsj)
;

• Reassign the position of the observed items (between the leaves), based

on r(∗)
j ;

• Calculate the acceptance probability:

a(r(∗)
j |r

(η)
j ) =

Dir(xj = (yj, zj)|r(∗)
j ,α)

Dir(xj = (yj, zj)|r(η)
j ,α)

×
q(r(η)

j |r
(∗)
j )

q(r(∗)
j |r

(η)
j )

(7.7)

=

 ∏
i:r(∗)
ij =1

yαi−1
ij

∏
i:r(∗)
ij =0

zαi−1
ij


 ∏
i:r(η)
ij =1

yαi−1
ij

∏
i:r(η)
ij =0

zαi−1
ij


(7.8)

As explained in Section A.3.1, the acceptance probability is given by

the product of the probability ratio between the proposed state and

the current state and the ratio of the proposal distributions in two
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directions. The ratio of the proposal distributions is obviously 1 in this

case;

• Accept the new sample assigning

r
(η+1)
j = r∗j

with probability

a(r(∗)
j |r

(η)
j ).

When the indicator variable rj∀j is uniformly sampled, we are assuming

that all the elements xij ∈ xj∀j have the same probability of being observed.

This assumption is not suitable for all the applications.

(c) Sample the splitting proportions vector µ from the distribution of µ condi-

tioned on the values of the remaining variables:

Aµ ∼ p(Aµ|xj, rj, τ, s, n) (7.9)

We propose again a Metropolis-Hastings algorithm (see Section A.3.1).

Metropolis-Hastings algorithm for the inference of the splitting

proportions vector

• Generate a candidate µ(∗) from the proposal distribution q(µ(∗)|µ(η))

µ(∗) ∼ Dir(µ(η)); (7.10)

• Update the weights of the tree τ (η) based on µ(∗);

• Extract the related candidate α(∗);

• Calculate the acceptance probability:

a
(
µ(∗),µ(η)

)
=

k∏
j=1

(
1

B(α(∗))

n∏
i=1

x
α

(∗)
i −1
ij

)(
1

B(µ(η))

d∏
i=1

(µ(∗)
i )µ

(η)
i −1

)
k∏
j=1

(
1

B(α(η))

n∏
i=1

x
α

(η)
i −1
ij

)(
1

B(µ(∗))

d∏
i=1

(µ(η)
i )µ

(∗)
i −1

) ;

(7.11)

• Accept the new candidate

µ(η+1) = µ(∗)
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with probability

p
(
µ(∗),µ(η)

)
or keep the previous one

µ(η+1) = µ(η)

with probability

1− p
(
µ(∗),µ(η)

)
;

• Update the weighted tree given µ(η+1);

• Extract the related candidate α(η+1)∗.

(d) Sample the tree structure τ from the distribution of τ conditioned on the

values of the remaining variables:

τ ∼ p(τ | Aµ,xj, rj, s, n) (7.12)

We propose again a Metropolis-Hastings algorithm (see Section A.3.1).

Metropolis-Hastings algorithm for the inference of the tree struc-

ture

• Given the proposal distribution q(τ(n)(∗)|τ(n)(η)), generate a candidate

for the tree structure τ(n)(∗), moving one leaf from a father node to

another:

q(τ(n)(∗)|τ(n)(η)) = 1
n× nfathers

(7.13)

where nfathers is the number of available nodes where the leaf can be

appended:

nfathers = n. feasible fathers in τ(n)(∗);

– Build a tree τ(n)(∗) = τ(n)(η) with the same structure of τ(n)(η);

– Select one leaf in τ(n)(η) and delete the correspondent leaf in τ(n)(∗);

– Select a feasible new father node in τ(n)(η) where the selected leaf

can be appended;

– Append a new leaf to the selected father in τ(n)(∗).

• Update the weights of the proposed tree τ(n)(∗) based on µ(η+1);
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• Extract the related candidate α(∗);

• Calculate the acceptance probability p
(
τ(n)(∗), τ(n)(η)

)

=

k∏
j=1

(
1

B(α(∗))

n∏
i=1

x
α

(∗)
i −1
ij

)(
1

n× nfathers

)
k∏
j=1

(
1

B(α(η))

n∏
i=1

x
α

(η)
i −1
ij

)(
1

n× nfathers

) (7.14)

=

k∏
j=1

(
1

B(α(∗))

n∏
i=1

x
α

(∗)
i −1
ij

)
(n× nfathers)

k∏
j=1

(
1

B(α(η))

n∏
i=1

x
α

(η)
i −1
ij

)
(n× nfathers)

(7.15)

where nfathers = n. feasible fathers in τ(n)(∗);

• Accept the new candidate

τ(n)(η+1) = τ(n)(∗)

with probability

p
(
τ(n)(∗), τ(n)(η)

)
or keep the previous one

τ(n)(η+1) = τ(n)(η)

with probability

1− p
(
τ(n)(∗), τ(n)(η)

)
;

• Update the weights of the new tree structure t(n)τ+1) based on µ(η+1);

• Extract the related sample α(η+1);

On the necessity of the assumption over the number of leaves n

We stated at the beginning of this section that n is considered constant and known.

Accordingly we believe that all the complete observations have the same length and

that we know it a priori. If we relax this assumption, the inference algorithm needs

to be changed and it gets definitely more complicated, since n defines the length of all

the following vectors:

• the Dirichlet parameter α;

115



• the indicator variable rj∀j;

• the missing variables zj∀j.

Furthermore the tree structure τ is dependent on n, since n is the number of leaves.

It could be interesting to try to solve this issue applying the Reversible-jump Markov

chain Monte Carlo (Green, 1995).

7.5 How to control the model

As stated at the beginning of this chapter, this model aims to model a fragmentation

process that also depends on known deterministic factors. When we have some back-

ground information about how the fragmentation happens and we want our model to

reflect this knowledge, we can control the model setting up constraint on the splitting

proportions vector µ and in particular on the tree-structure τ .

7.5.1 How to constrain the tree-structure

As we have already shown, the tree-structure is simply a representation of the proposed

alternative stick breaking process. Precisely, the tree-structure displays, step by step,

in how many pieces the stick is broken.

The advantage of the tree-structure as a graphical tool is that it can be easily

simulated and modified through the adjacency matrix. The adjacency matrix is a

square matrix Σ such that its element σij is one if the node i is connected by an edge

to the node j and zero where there is no edge. In case of a weighted tree, the weight of

the edge connection i to j replaces the number one. The tree-structure τ is a variable

inferred by data, but setting up some constraint on its samples ensures a control on

the model. This is a way of merging coherently the different sources of data that

are available: the observed data and the background knowledge coming from expert

opinion.

First of all, assuming that the number of fragments n is known, as in our model,

we are considering only the trees with n leaves. There may be situations where it

can be convenient to define a priori even the height 1 of the tree, its maximum out-
1The height of a node is the number of edges on the longest path between that node and a leaf.

The height of a tree is the height of its root node.
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degree or other properties. Note that the height of the tree is the number of steps in

the alternative stick breaking process and the maximum out-degree is the maximum

number in which a fragment can be divided.

The tree-structure, together with the associated alternative stick breaking process,

can be used as a reproduction of the fragmentation history or simply a nuisance variable

if what counts is the final outcome of the fragmentation process.

Let us proceed with some clarifying examples.

Note that all the depicted solutions are aimed to keep small the number of elements

of µ and then to limit the number of parameters to be inferred. Bear in mind that the

cardinality of µ is equal to the maximum out-degree of the oriented tree.

Example 6 Let us consider, for example, a fragmentation process where we expect as

outcome two larger pieces and many small pieces, as showed below.

This example can be modelled as the outcome of the following alternative stick

breaking process and its related tree-structure (Figure 7.11).

π0

π1 π2 π3

π11 π21 π31 π32 π33

π111 π211 π311 π312 π313 π321 π322 π323 π331 π332 π333
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π0

π2π1 π3

π32π31 π33π311

π312

π313

π322π321 π323

π332

π333

π331

Fig. 7.11: Tree-structure.

Example 7 The tree structure can also be taken as a track of the fragmentation

history. Each level of the tree can be considered a fragmentation event. Let us consider,

again for example, a fragmentation process that consists in the detachment of pieces

from the main body step by step.

This case can be modelled with the alternative stick breaking process depicted in

Figure 7.12. The red nodes represent the main body. This kind of tree are known in

literature as caterpillar tree, that is a tree in which all vertices are within distance 2 1

of a central path subgraph.

π0

π1 π2 π3

π11 π21 π22 π23 π31

π111 π211 π221 π222 π223 π231 π311

2in terms of number of edges.
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π0

π2

π22

π222

π1

π21

π221

π3

π23

π223

Fig. 7.12: Tree-structure.

Example 8 Another interesting example is a small variant of the previous one. Let us

assume that we expect a fragmentation process that consists mainly in the detachment

of pieces from the main body step by step and that one of the generated pieces will

fragment again (this can be called a secondary fragmentation event).

The red nodes represent the main body, while the piece that is going to break

up again is depicted in green. Note that the height of the tree is 3 and there are 3

breaking steps in the stick breaking process. Likewise the main body is subject to 3

fragmentation events (primary fragmentation events). This variety of tree is known in

literature as lobster tree, that is a tree in which all the vertices are within distance 2

of a central path.

π0

π1 π2 π3

π11 π21 π22 π23 π31 π32

π111 π211 π221 π222 π223 π231 π311 π321
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π0

π2

π22

π222

π1

π21

π221

π3

π23

π223

π31

π32

Fig. 7.13: Tree-structure.

Example 9 Lastly let us consider a case where our expectations about the outcome

of the breaking process are very limited and we can guess simply that we can get many

bits of completely different size. One modelling proposal is showed in Figure 7.14.

π0

π1 π2 π3

π11 π12 π21 π31 π32 π33

π0

π2

π21

π3π1

π12π11 π31

π33

π32

Fig. 7.14: Tree-structure.

The tree-structure for simulating purposes

We simulated lobster and caterpillar tree structures. As already defined in Examples

7 and 8:
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• The caterpillar tree is a tree in which all vertices are within distance 1 of a central

path;

• The lobster tree is a tree in which all vertices are within distance 2 of a central

path.

The nodes or leaves with distance 1 of the central path stands for the outcome of

a primary fragmentation, while the leaves with distance 2 stand for the result of a

secondary fragmentation.

We present here the algorithm we developed for simulating purposes.

The tree has the following user input:

• nl number of leaves;

• h height of the tree, that is the number of edges of the central path (h > 2);

• deg1 = maximum out-degree of the nodes of the central path;

• deg2 = maximum out-degree of the nodes within distance 1 of the central path.

1. Generate the central path. Create a path graph as illustrated in Figure 7.15 of a

number of nodes equal to the height of the tree (4 in this case).

1 2 3 4

Fig. 7.15: Central path.

2. Append the leaves to the central path to create a caterpillar tree-structure.

• If nl < (h(deg1 − 1) + 1) stop. The tree has number of nodes = nl + h;

• Otherwise create a lobster tree structure with nl leaves and the maximum

number of nodes with the maximum out-degree (deg1 in case of nodes be-

longing to the central path and deg2 for the nodes with distance 1 from the

central path), following the next steps:

– Evaluate n2 the number of nodes with distance 1 from the central path

with the maximum out-degree deg2:

b(nl − h(deg1 − 1)− 1)/(deg2 − 1)c ;
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– Evaluate n∗2 the number of nodes with distance 1 from the central path

with a number of children lower than the maximum out-degree deg2:

mod [(nl − h(deg1 − 1)− 1)/(deg2 − 1)]

If n∗2 = 1 then n∗2 = n∗2 + 1;

– Append new leaves such that the number of nodes is equal to:

(h(deg1 − 1) + 1) + h+ n2deg2 + n∗2.

Note that deg1 and deg2 must be taken into account in the evaluation of nfathers when

applying the Metropolis-Hastings algorithm for the inference of the tree-structure.

Fig. 7.16: Example of caterpillar tree-structure generated in R, using the package

igraph, h = 3, deg1 = 4, deg − 2 = 4, nl = 8. This case is limited to primary

fragmentations.
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Fig. 7.17: Example of lobster tree-structure generated in R, using the package igraph,

with h = 3, deg1 = 4, deg− 2 = 4, nl = 16. This is a case with primary and secondary

fragmentations.

7.5.2 Notes about the splitting proportions vector

The splitting proportions vector µ defines in which proportions each node is divided.

When there is no prior knowledge favouring one component over another, the sym-

metric Dirichlet distribution is a good candidate distribution for its sampling. The

symmetric Dirichlet distribution is a Dirichlet distribution where all of the elements

making up the parameter vector α = {α1, α2, . . . } have the same value αi = αj∀i, j.

When αi = 1 ∀i, the symmetric Dirichlet distribution is equivalent to a uniform distri-

bution over all points in its support and it takes the name of flat Dirichlet distribution.

On the necessity of the scalar concentration parameter A

We introduce a scalar concentration parameter in order to control the variance of the

outcome and to avoid computational issues with too small values.

7.6 Model selection

As we have already highlighted at the end of Section 7.4.2, we decided to assume

known and constant the size n of the complete observation xj ∀j. This assumption
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can affect the quality of the inference results, especially in those applications where this

hypothesis is very far from reality (e.g. the fragmentation of a spacecraft). In order to

offset this limitation, we propose to perform a model selection varying the value of n,

with the Bayesian information criterion.

The Bayesian information criterion or Schwarz criterion (briefly BIC), published

for the first time in Schwarz et al. (1978), is computed as follows:

−2 · lnL̂ + k · ln(n) (7.16)

where

• L̂ is the maximized value of the likelihood function of the model: for our model

it is equal to the maximum value of P (x|α, z);

• k is the number of the elements to be estimated: in this case k is given by the

sum of the number of missing data and the length of the parameter α

k = n+ |z|;

• n is the sample size: in this case it is the length of the parameter α, the parameter

that we aim to estimate. Note that n is also the size of a complete observation.

The best model is the model with the lowest value of the BIC.

Fig. 7.18: Bayesian information criterion for different values of the sample size n

(n = 20, n = 25, n = 30, n = 35, n = 40, n = 45, n = 50, n = 55, n = 70, n = 90),

evaluated with the available real observation (see Chapter 5).
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7.7 Model fitting

7.7.1 How to model the spacecraft break-up

In this section we want to describe an idea for the application of the proposed model to

the fragmentation process of a spacecraft caused by a highly energetic break-up event,

during the atmospheric re-entry.

As detailed in Section 2.2, the spacecraft undergoes a series of break-up events,

during the decay, such as shedding of solar arrays, external sensors and other low

energetic break-up events, well before an explosive event is likely to happen. The

reader will remember that at the beginning of this thesis, in Section 1.1, we introduced

the definition highly energetic break-up event to denote the explosion events and to

distinguish them from the low energetic break up events that always happen, during

the decay, because of the action of the aero forces.

We want to make clear that the application here proposed has been thought for the

modelling of the distribution of the fragments generated by the destructive action of

an highly energetic break-up event, given the assumption that it could be possible to

isolate data concerning this type of event.

We consider the masses of the generated fragments as random variables and we

assume they are Dirichlet distributed, exactly as we did for the lengths of the pieces

of the stick. We want to fit the model to data coming from the observations of the re-

entries where an explosion occurred. The objective is the inference of the parameters of

their distribution by merging coherently the different sources of data that are available:

the observed data and the background knowledge coming from expert opinion.

This is an approach for learning from past observations in order to create a tool

for the prediction of how a vehicle will break-up in upcoming re-entries, under specific

hypothesis and conditions. Unfortunately real data are very scarce in this context

and physical knowledge involves many uncertainties, but optimistically more and more

observations will be available over time.

The model is structured in a flexible manner on purpose, such that it can be easily

updated as more information is collected. The strategy that can be followed to adjust

the proposed method to this problem is strictly depending on the availability of data.

It follows the description of an idea for this application.
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7.7.2 The idea

We divide the total mass of the vehicle before starting the fragmentation process by ma-

terial and we consider known an estimate of the total mass M for each material. Then

we assume that the masses of the fragments are distributed with a different Dirichlet

distribution depending on the material they are made of. Although the assumption

that every fragment is made of a unique material is clearly unrealistic, this hypothesis

is reasonable and convenient since the probability of survival for a specific component

is mainly determined by the material used in its construction. For example, it is well

known that components made of materials with high melting temperatures, such as

stainless steel, titanium, and glass, often survive, while pieces made of aluminium,

which has a low melting temperature, do not survive re-entry. A nice challenge in

this project would be the investigation of a method allowing the prediction of the non-

uniform material composition of the fragments, but the available data does not make

this feasible at the moment.

It is more reasonable to suppose that we have k observations of the masses of

the fragments made of a specific material, available from the spectroscopic analysis

of highly energetic break-up events that have occurred during past re-entries. These

observations include only the masses of the visible and surviving fragments, or simply

the observed masses. It does not include:

• The masses of the surviving fragments that cannot be observed. We denote them

as not-observed or missing masses;

• The masses of the fragments that melt in the atmosphere before being observed.

We call their sum the demised mass.

Let sj be the number of observed masses for the j = 1, . . . , k observation. A set of

complete data X is a set that include for each observation j the observed masses, the

missing masses and the demised mass (m1, . . . ,mnj). The sum of the masses included

in a complete observation is equal to the mass M . For consistency with the proposed

stick breaking method, we take the normalized masses(
m1

M
, . . . ,

mnj

M

)
such that

nj∑
i=1

mi

M
= 1.

Let Y be the set which includes the observed masses and the demised mass, with

Y ⊆X, while X \ Y is the set of missing masses.
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We set up some constraints to the tree-structure τ and to the splitting proportions

vector µ as follows:

1. The maximum out-degree dmax and the height of the tree, which is the number

of edges on the longest downward path between the root and a leaf, are a priori

defined. Their choice depends on the expert opinion regarding the expected

variance of the masses.

2. The element µdmax of the splitting proportions vector µ is equal to the ratio

between the demised mass and the total mass M . It appears only in the element

of the vector base measure γ corresponding to one child of the root. Thus this

node is a leaf and it represents the parameter corresponding to the demised mass.

As a consequence the prior distribution for µdmax is different depending on the

material, since different materials have a different probability of surviving the

re-entry. Eventually the root is the only node with the maximum out-degree.

7.8 Model assessment

We performed simulations of the model with synthetic data, to validate the inference

process. We created a sample distribution applying the model itself, then we generated

data from this distribution and we made them not complete. Finally we used this set

of data to verify if the model produces an accurate inference of the parameters of the

sample distribution.

7.8.1 MCMC convergence with synthetic data

In this simulation we used the same user input (see Section 7.5.1) for the building of the

tree-structure to generate the synthetic data and to make the inference. We generated

complete data and then we made them not complete with pobs = 0.5
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Fig. 7.19: Traceplot of µ =
{
µ1, µ2, µ3, µ4, 1−

4∑
i=1

µi

}
. Simulation data: number of

leaves n = 15, height of the tree h = 4, caterpillar tree with maximum out-degree of the

nodes of the central path deg1 = 5, number of observations k = 2, scalar concentration

parameter A = 1000, lengths of the observations s = {8, 5}. The initial value of µ is

generated by a flat Dirichlet distribution. True values are indicated in red.
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Fig. 7.20: Traceplot of α = {α1, . . . , α15}. Simulation data: number of leaves n = 15,

height of the tree h = 4, caterpillar tree with maximum out-degree of the nodes of the

central path deg1 = 5, number of observations k = 2, scalar concentration parameter

A = 1000, lengths of the observations s = {8, 5}. True values are indicated in red.
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Fig. 7.21: Comparison of traceplots of µ =
{
µ1, µ2, µ3, µ4, 1−

4∑
i=1

µi

}
with different

initial values. Simulation data: number of leaves n = 15, height of the tree h = 4,

maximum out-degree of the nodes of the central path deg1 = 5, number of observations

k = 2, scalar concentration parameter A = 1000. The initial value of the black traceplot

is generated by a flat Dirichlet distribution, while the red one by a Dirichlet distribution

with parameter α = A{1, 1, 5, 1, 1}. True values are indicated in blue.
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Fig. 7.22: Traceplot of α = {α1, . . . , α15}. Simulation data: number of leaves n = 15,

height of the tree h = 4, maximum out-degree of the nodes of the central path deg1 = 5,

number of observations k = 2, scalar concentration parameter A = 1000, lengths of the

observations s = {10, 3}. We can see in black the traceplot of α = f(µ, τ) where the

initial value of µ is generated by a flat Dirichlet distribution and in red the traceplot

of α = f(µ, τ) where the initial value of µ is generated by a a Dirichlet distribution

with parameter α = A{1, 2, 5, 2, 1}. True values are indicated in blue.
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Fig. 7.23: Traceplot of µ =
{
µ1, µ2, µ3, µ4, 1−

4∑
i=1

µi

}
. Simulation data: number of

leaves n = 15, height of the tree h = 4, caterpillar tree with maximum out-degree of the

nodes of the central path deg1 = 5, number of observations k = 8, scalar concentration

parameter A = 1000, lengths of the observations s = {5, 7, 6, 5, 7, 7, 8, 7}. The initial

value of µ is generated by a flat Dirichlet distribution. True values are indicated in

red.
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Fig. 7.24: Traceplot of α = {α1, . . . , α15}. Simulation data: number of leaves n = 15,

height of the tree h = 4, caterpillar tree with maximum out-degree of the nodes of the

central path deg1 = 5, number of observations k = 8, scalar concentration parameter

A = 1000, lengths of the observations s = {5, 7, 6, 5, 7, 7, 8, 7}. The true values are

indicated in red.
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Fig. 7.25: Traceplot of µ =
{
µ1, µ2, 1−

2∑
i=1

µi

}
. Simulation data: number of leaves

n = 15, height of the tree h = 7, caterpillar tree with maximum out-degree of the

nodes of the central path deg1 = 4, number of observations k = 2, scalar concentration

parameter A = 1000. The initial value of µ is generated by a flat Dirichlet distribution.

True values are indicated in red.
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Fig. 7.26: Traceplot of µ =
{
µ1, µ2, 1−

2∑
i=1

µi

}
. Simulation data: number of leaves

n = 15, height of the tree h = 7, caterpillar tree with maximum out-degree of the

nodes of the central path deg1 = 4, number of observations k = 8, scalar concentration

parameter A = 1000. The initial value of µ is generated by a flat Dirichlet distribution.

True values are indicated in red.

7.8.2 Prediction of future realizations with synthetic data

The posterior predictive distribution is defined as the distribution of unobserved ob-

servations (prediction) given the observed data. Let be x̃ the prediction of the random

variable x ∼ Dir(α(Aµ, τ)). The posterior predictive distribution p(x̃|data, τ) is com-

puted marginalising over the splitting proportions vector µ

p(x̃|data, τ) =
∫
∀µ
p(x|α(Aµ, τ))p(µ|data)dµ (7.17)

= E(p(x|α(Aµ, τ))) wrt p(µ|data) (7.18)

≈ 1
M

M∑
m=1

p(x|α(Aµ(m), τ)) (7.19)
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where µ(1), . . . ,µ(M) are the M MCMC samples of µ
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Fig. 7.27: Prediction of masses. Comparison between the expected values and

data. We can see in black the expected values of the elements of the partition of the

unit interval with a 90% confidence interval. The groups 1 and 2 in pink and light

blue represent the complete data. The complete data include the observed data drawn

with a triangle and the inferred missing data drawn with a circle. Simulation data:

number of leaves n = 15, height of the tree h = 4, caterpillar tree with maximum

out-degree of the nodes of the central path deg1 = 5, number of observations k = 2,

scalar concentration parameter A = 1000.

7.8.3 MCMC convergence with real data

We show in this section the results of simulations carried out with the only available

set of real observation, coming from the data analysis of the ATV1 re-entry observation

campaign (see Chapter 5 for further details).
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Prediction of future realizations with real data

Fig. 7.28: Comparison between the expected values and data. We can see in black

the expected values of the elements of the partition of the unit interval with a 90%

confidence interval. The triangles represent the observed data and their position is

given by the outcome value of the indicator variable. Simulation data: number of

leaves n = 50, height of the tree h = 10, lobster tree with maximum out-degree of the

nodes of the central path deg1 = 4, maximum out-degree of the nodes within distance

1 of the central path deg2 = 4, number of observations k = 1, scalar concentration

parameter A = 1000.
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Fig. 7.29: Comparison between the expected values and data. We can see in black

the expected values of the elements of the partition of the unit interval with a 90%

confidence interval. The triangles represent the observed data and their position is

given by the outcome value of the indicator variable. Simulation data: number of

leaves n = 50, height of the tree h = 4, lobster tree with maximum out-degree of the

nodes of the central path deg1 = 10, maximum out-degree of the nodes within distance

1 of the central path deg2 = 5, number of observations k = 1, scalar concentration

parameter A = 1000.

138



Fig. 7.30: Comparison between the expected values and data. We can see in black

the expected values of the elements of the partition of the unit interval with a 90%

confidence interval. The triangles represent the observed data and their position is

given by the outcome value of the indicator variable. Simulation data: number of

leaves n = 50, height of the tree h = 3, caterpillar tree with maximum out-degree

of the nodes of the central path deg1 = 20, number of observations k = 1, scalar

concentration parameter A = 1000.

7.8.4 Discussion

The reliability of the results (expected values) is connected with the choice of the

constraints of the tree structure, as explained in Section 7.5. These parameters define

the variance of the outcomes of the proposed alternative stick breaking process.

The simulations that we carried out using real data, whose results are showed in

Figures 7.28, 7.29 and 7.30, demonstrate that the model did not behave well in the

inference of the Dirichlet parameter α. We need to make clear that these simulations

are not supported by a suitable choice of the tree-structure, due to the lack of knowl-

edge. We could not rely on any prior information about the materials of the observed

masses and how they could be grouped in a tree structure representation. As we can
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see from the plots, the expected values do not match with the real data.

The obtained results confirm the relationship between the predictions and the se-

lected tree-structure, which plays the role of model framework. Regarding this issue,

it would be interesting to investigate a strategy for devising the most appropriate tree

structure from expert judgements, as well as the prior of the splitting proportions

vector.
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Chapter 8

Discussion, recommendations and

conclusions

8.1 Summary

In this thesis, we have proposed two Bayesian statistical models:

• A belief-network model for failure prediction and especially a new approach for

the integration of expert opinion elicitation, based on pairwise comparisons, in

the dependability analysis of a complex critical system;

• A fragmentation model, that is a model for the construction of a distribution

over the partitions of the unit interval, generated by a partially random fragmen-

tation process, and especially a strategy for the inference of its parameters, given

incomplete observations.

This study serves as the technology concept formulation phase in the development

of a new risk assessment tool for highly energetic break-up events of a spacecraft during

the atmospheric re-entry.

The proposed belief-network model can be applied for the assessment of the prob-

ability for an highly energetic break-up to occur, while the proposed fragmentation

model provides a strategy for the evaluation of the distribution of the masses of the

generated fragments. The application of both the models requires a tailored expert

opinion and sparse observations.
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8.2 Discussion and Limitations

8.2.1 Belief-network model for failure prediction

The most significant drawback we met in the devising of this model was the lack of

historical data coming from in-situ observations or on-ground experiments and the

incompleteness of the background knowledge. Much effort has been devoted in the re-

search of exploitable data, but with very poor results. For this reason, we have decided

to develop a model based on expert elicitation and we focussed in the investigation of

a strategy that would make this process as simple as possible for experts. We believe

that the illustrated procedure can be potentially useful for the assessment of the prob-

ability for a spacecraft to explode, even if we recognize that it still needs to be properly

tested and refined. It is important to highlight that this is a new way of thinking for

the involved experts.

Let us point out that expert opinion can provide accurate results when integrated

with real data, but it cannot be considered adequate by itself.

8.2.2 Fragmentation model

The simulations performed with synthetic data (some of them are reported at the end

of the Chapter 7) showed problems in the convergence of the full model, especially

with the increasing of the number of observations. This is a very common issue in

Markov chain Monte Carlo (MCMC) applications, due to the fact that the likelihood

gets narrower.

Furthermore we noticed that the mixing behaviour of the MCMC samples of the

tree-structure is very poor. This limitation affects the result of the inference of the

tree-structure representing the distribution of the masses of the fragments. Again this

is a common issue, occurring when the local alteration proposed at each iteration is

not efficient. In our case it consists in the shift of a leaf from a father node to another.

We recommend to the interested reader the paper Pratola (2016), where the mixing

problem of the Bayesian regression trees is well explained and a novel mechanism for

efficient sampling is proposed.
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8.3 Looking forward

To date both the models have been simulated relying on synthetic data and on the

outcomes processed after the Automated Transfer Vehicle Jules Verne re-entry obser-

vation campaign. Optimistically there will be more opportunities to gather data for

the fine-tuning of the model. The extra data that will be available the better the model

will match the real physical process. As already mentioned, the proposed models have

frameworks that can be adjusted to suit changing data sets and new information. Real

data would allow also for the validation of the models.

It would be also interesting to assess the trade off between the cost/effort to collect

data versus the amount of information that is provided to the model.

Finally the following list summarize the concrete points for the next steps of the

research, concerning both the models:

• Perform simulations with synthetic data in order to assess the minimum amount

of data needed in an observation campaign to be able to create a database for

the model such that it can produce results with minimum confidence: verify how

the posterior is sensitive to the number of observations;

• Run simulations with synthetic data in order to assess the convergence of the

models to the right answer and its reliability, varying the initial conditions, and

verify in which circumstances the uncertainty is reduced;

• Keep collecting expert opinion following the proposed approach, in order to cal-

ibrate the models for the physical problem researched;

• Create a front-end interface to run the model and to make it user-friendly. After

the development of an user interface, the models could be embedded in the re-

entry analysis tool ASTOS (Aerospace Trajectory Optimization Software).

We focus on the single models in the next paragraphs.

8.3.1 Belief-network model for failure prediction

We aim to embed both the models in a new risk assessment tool for highly energetic

break-up events of a spacecraft during the atmospheric re-entry, whose target users are
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experts of the different spacecraft subsystems. The next step is to convert the proposed

methodologies to a proof-of-concept tool and evaluate it.

As already noted, an extensive investigation of the sensitivity of the results to the

initial conditions is crucial. For instance, for the accomplishment of this goal, we

propose to perform the following simulation:

• Specify values for the probabilities of the elementary events to occur and call

them true values;

• Sample sparse observations of the occurrence of the elementary events from these

probabilities for a bunch of realizations of the system (or re-entry events);

• Run the model, assuming known the outcome of the pairwise comparisons, and

verify if the posterior distribution of the elementary events converges to the true

values and how this result changes, varying the number of considered realizations

of the system and the sparseness of the observations.

The fault tree analysis deserves some comments. We considered only a very basic

fault tree, limited to and and or gates, but we believe this analysis could be easily

extended to more general and complicated situations, with a larger variety of gates.

With the increasing of the complexity of the fault tree it will be necessary to consider

a minimal cut sets rearrangement (Vesely et al., 1981) of the tree in order to perform

an efficient quantitative evaluation. The minimal cut sets representation avoids the

double counting of any basic event that appears in different parts of the fault tree,

keeping unchanged the logic interrelationships of the events .

Furthermore, broadening the analysis, It would be interesting to consider the con-

version of the tree to a binary decision diagram as illustrated in Reay and Andrews

(2002), again for the enhancement of the computation of the top event probability.

Lastly, in its application to the re-entry problem, since we are aware that the

proposed set of events is a simplified version of the reality, we propose to investigate

which other events should be considered and how their dependence relationship can be

handled.

Regarding the elicitation method, it is missing a strategy to calibrate properly the

answers coming from the different group of experts. The effects of the subjectivity

of expert opinion have been neglected so far. It could easily happen that one group
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provides very optimistic answers and another one very pessimistic ones: this would

easily cause biased results.

As we explained in Chapter 6, experts responses to paired comparisons are aggre-

gated by taking geometric mean of their response and mapped to beta prior distribu-

tions. We defined this method as a method inspired by the Analytic Hierarchy Process

(AHP). It would be interesting to investigate the possibility of identifying contribut-

ing factors or covariates, defining various states of the system. This would allow the

application of the Bradley-Terry approach or a full AHP method (see Section 4.4.1 for

further details).

Furthermore, future work concerning the belief-network model for failure predic-

tion, involves the development of a web based tool to enable expert elicitation of the

probabilities associated with the Bayesian inference. This tool would allow automating

the enhancement of the model reliability as the background knowledge improves.

Finally, we propose to explore the use of the software for structured expert judge-

ments, developed by TU Delft Risk Analysis department (Cooke (2008), Goulet et al.

(2009)) and to exploit the available literature on pairwise comparisons better.

8.3.2 Fragmentation model

Future work, concerning the fragmentation model, could be aimed to relax the unreal-

istic assumptions.

We assumed that every fragment has the same probability of being observed and

then we sampled uniformly the indicator variable. This assumption, which does not

reflect the reality, could be relaxed using the Poisson binomial distribution, that is the

discrete probability distribution of a sum of independent Bernoulli trials that are not

necessarily identically distributed. To facilitate the analysis, we assumed missing ob-

servations completely at random (for further details about the classification of missing

data, the reader is invited to read the Section A.1.1), considering the probability of

observing an item independent of the value of the item itself. We propose to investigate

further the attributes of the missing data and then to adapt the analysis. Certainly

the outcome of an observation campaign includes censored observations, that could be

treated in a different way from the missing data completely at random. Examples of

censored observations might be fragments that are not observable because of their size
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or simply because they are outside the field of view.

As already noted in Section 7.4.2, the number of leaves of the tree (and then the

number of generated fragments) is assumed constant and known. It would be in-

teresting to add this parameter to the parameters to be inferred, by integrating the

reversible-jump Markov chain Monte Carlo in the full model. The points where the

spacecraft break-up and hence a prior prediction of the amount of actual fractures

could be identifiable and connected with the released energy.

The reliability of the results is associated with the choice of the constraints of the

tree structure. These parameters define the variance of the outcomes of the proposed

alternative stick breaking process. It would be interesting to investigate a strategy

for devising the best kind of tree structure from the background knowledge and for

updating this strategy as new observations become available. For example, if we observe

some characteristics of a fragment, how can we use this information to improve the

predictions on the tree-structure?

We remind the reader that the tree structure can represent the tracking of the

fragmentation history and that setting-up constraints on the tree-structure allows the

user to control the model. The application of this model could be extended also to

the fragmentation events preceding the highly energetic break-up. Indeed the same

strategy could be applied also to the whole fragmentation of the spacecraft, including

the low energetic break-up events, if fitted with the appropriate data.

A sensitivity analysis could be performed in order to find the best proposal distri-

butions.

Finally attention should be paid to the convergence issues of the MCMC algorithms.

8.3.3 How ESA can benefit from this research

We recognize that both the models are at second level of technology readiness, according

to the ISO standard 16290:2013, used by ESA to define the Technology Readiness

Levels (TRLs): basic principles are observed, practical applications can be invented.

Applications are speculative, simulations and examples are limited to analytic studies.

The simulations that we performed are confined at an abstract level and they do

not relate explicitly to the physical problem. They showed results consistent with the

expectations in the sense that their reliability is connected with the choices made by
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the user to control the model (or the expert opinion). This thesis is accompanied by a

commented code that allows to run simulations of the proposed models.

The next technology readiness level to pursue is: analytical and experimental crit-

ical function and/or characteristic proof-of-concept. This includes laboratory studies

to physically validate the analytical predictions. Due to the lack of data in the pro-

posed problem, this objective could be pursued better applying the models to a similar

problem but with a larger availability of data.

8.4 Conclusions and potential application fields

The main goal of this thesis was to face the challenge to make statistical predictions in

a context where real data are very scarce and the events under study are not repeat-

able under the same conditions. The planning of future in-situ airborne observation

campaigns is critical for gathering data for this kind of problem. The required accu-

racy of data could be reached only maximizing the spatial resolution and spectroscopic

possibilities.

Missing data is a recurrent problem in space activities. When designing a space

mission, decision makers are often asked to make inference relying on sparse observed

data. Most of the space missions are made of unique and not repeatable events or

events not easy to observe. The drive towards exploration, cost constraints and the

need to constantly test new technologies, which are typical factors in this field, do not

allow to wait for a good amount of historical data to rely on. For this reason, we expect

that the Bayesian models here proposed, and especially the expert opinion elicitation

method, can be applied, with minor modifications, also to other reliability and risk

assessment problems in the same field, where a treatment and quantification of the

uncertainty is crucial.

The closest alternative application could be the launch vehicles upper stage re-entry

survivability analysis, in the cases when a controlled re-entry is performed after the

spacecraft delivery. Unlike in the past, this could become soon a trend in the launcher

business Heinrich et al. (2015). Examples are the launcher Arianespace, which recently

performed a controlled re-entry on SOYUZ-ST after delivering Sentinel-1, the Euro-

pean launch vehicle VEGA (Vettore Europeo di Generazione Avanzata), developed
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within a European Programme promoted by ESA Heinrich et al. (2015) and H-IIB

launch vehicle, designed by the Japan Aerospace Exploration Agency (JAXA) in col-

laboration with Mitsubishi Heavy Industries. The design of missions, for which this

new generation of launchers provides launch services, needs to take into account the

estimation of the upper stage fragmentation after orbital injections, in order to comply

with the requirements on space debris mitigation, likewise re-entering spacecraft. A

good relevant reference is Battie et al. (2012), where the reader can find the re-entry

survivability analysis performed for the VEGA liquid propellant upper module, called

AVUM (Attitude Vernier Upper Module).
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Appendix A

Statistical inference and sampling

methods

A.1 Statistical inference and the Bayesian approach

A.1.1 Statistical inference

Let us assume we have a random phenomenon generating data. Given this data, what

can we say about this random phenomenon? This is the basic question that statistical

inference aims to answer (Wasserman, 2003). Inference is the process of deducing

properties or parameters of an underlying distribution by data analysis.

Statistical modelling provides an interpretation of the past realizations of a random

phenomenon, based on its outcomes, and the means to predict the future realizations

of a similar nature (Robert, 2007). It exploits the probabilistic modelling as support,

but the purpose of the statistical modelling is fundamentally an inversion purpose

with respect to the probabilistic modelling. When observing a random phenomenon

described by a probability distribution depending on a parameter θ, statistical methods

indicate the strategy to infer the parameter θ, while the probabilistic modelling aims

to forecast the future outcomes conditioned on the parameter θ. This is the reason

why, at the end of the eighteenth century, Statistics was often called Inverse Probability

(Stigler, 1986).

Statistics is divided into two different school of thoughts: the frequentist (or the

classical) and the Bayesian. Frequentists interpret the probability as the relative fre-
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quency of the event happening in an infinite population of repeatable trials. Hence the

probability only exists for repeatable events. The parameter θ is considered an unknown

with a fixed value and the inference result depends exclusively on data. Conversely,

as we will explain in more detail in the next section, for Bayesians the probability is a

degree of belief. In real world we are often faced with events that are not repeatable,

Notwithstanding the event cannot be repeated, Bayesians can still compute its proba-

bility of occurring, combining experience and observations and applying a probability

distribution for that event.

Missing and censored data

One of the most common issues in statistical inference is the occurrence of missing

data. Missing data can seriously affect the reliability of the results, leading to biased

estimates of parameters or loss of information. A datapoint is missing when no value is

recorded for a variable in an observation. Differently, when the observed value of some

variable is partially known we have a censored data point. We consider for example a

bathroom scale measuring up 100 kg and an individual whose weight is 120 kg. The

information that we can get weighting the considered individual with this scale is a

censored information: we could only know that his weight is lower than 100 kg.

According to Rubin’s classification (Rubin, 1976), missing data can be distinguished

in

• MCAR (completely at random) when the probability of missing data on a vari-

able X is unrelated to other measured variables and to the values of X itself.

Missingness is completely unsystematic and the observed data can be thought of

as a random subsample of the hypothetically complete data;

• MAR (at random) when the missingness is systematic, that is the propensity

for missing data is correlated with other study-related variables in the analysis,

but not with the hypothetical values that would have resulted had the data been

complete;

• MNAR (not at random) when the probability of missing data is systematically

related to the hypothetical values that are missing.
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A realistic scenario of the re-entry break-up events needs to take account of the

occurrence of missing and, even more frequently, censored observations (Stern, 2003).

For instance, there might be fragments that are not observable because of their size

or simply because they are outside the field of view: these could be one example

where data could be considered missing completely at random data and one example

of censored data. Another censored information can be due to the fact that observations

are usually taken overnight: it is easier to observe burning fragments but cold fragments

can be missed.

To facilitate the analysis, in the development of the Fragmentation model (Chapter

7), we assume missing observation completely at random, considering the probability

of observing an item independent of the value of the item itself. This is a common

assumption in real world problems, which could be relaxed in future work (Marlin

et al. (2005), Stubbendick and Ibrahim (2006)), after having carried out a proper

classification of data with missing and/or censored attributes. Different data attributes

should be handled in a different way.

A.1.2 The Bayesian approach

Bayesian inference consists in the computation of the distribution of the parameter θ

after taking into account the observed data X, or conditional on X. This distribution

p(θ|X) is called the posterior distribution and it represents the post-belief.

Given Bayes’ theorem, which is the foundation of the Bayesian inference, as the

name suggests, the posterior distribution is determined by

p(θ|X) = P (X|θ)p(θ)∫
P (X|θ)p(θ)dθ (A.1)

from which it follows that the posterior distribution is proportional to the likelihood

function multiplied by the prior distribution:

p(θ|X) ∝ P (X|θ)p(θ). (A.2)

The probability of the evidence given the parameter P (X|θ), rewritten in proper order:

L(θ|X) = P (X|θ) (A.3)

is called likelihood function L(θ|X). The likelihood of θ, given evidence X, is equal to

the probability of the evidence (or observed outcomes) given θ. This function synthesizes
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formally the inverting concept of Statistics. Indeed it is a function of the parameter θ,

which is unknown and depends on the evidence X. Probability characterizes possible

future outcomes given a fixed value of the parameter before data, while the likelihood

is a function of the parameter for a given outcome (or evidence), that is after data are

available. Note that we are using capital P to highlight that the likelihood function is

equal to a probability and it is not a density probability function as the posterior and

the prior distribution: the evidence X is given and it is not a random variable.

The prior distribution p(θ) is defined as the distribution of the parameters before

data are observed and it represents the initial subjective belief. The selection of the prior

distribution depends on the background knowledge and it is a very delicate problem. It

is the key to Bayesian inference. The more information is available the more effective

will be its choice and the more reliable is the inference. The prior distribution allows

the incorporation of an expert’s experience into a statistical model.

The revolutionary introduction of Bayesian statistics consists in assigning a proba-

bility distribution to both causes (evidence) and effects (parameters) or, in other words,

in assigning to the parameters the role of random variables. The posterior distribution

incorporates the information on the parameter θ contained in the observation X and

the initial subjective belief.

Despite the fact that the Bayesian approach was introduced in the 18th century,

its real world application was limited and conditioned by computational difficulties,

especially by the necessity to integrate over the whole of parameter space.

The advancement of sampling methods, along with the strengthening of computers

capacity, in terms of speed and memory, boosted the practical use of Bayesian statistics,

particularly from the last decade of 20th century. Details about these sampling methods

are provided in the next sections.

A.2 Monte Carlo methods

The project described in this thesis required an extensive use of the approximate in-

ference methods based on numerical sampling, also known as Monte Carlo techniques.

For this reason the reader can find here a section devoted to explain how they work.

The Monte Carlo method is one of the most dominant inference methods in Bayesian
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statistics. Their use is justified by two theorems: the strong law of large numbers and

the central limit theorem (Grimmett and Stirzaker, 2001).

The driving question is: given a probability distribution π, how do we simulate a

random object with distribution π?

A.2.1 Rejection sampling

This method is also commonly called the acceptance-rejection method or accept-reject

algorithm.

The driving question in this section is: given a relatively complex univariate distri-

bution π, how do we simulate a random object with distribution π?

We wish to sample from a distribution π(z), but we know that sampling directly

from it is difficult.

Then we consider a distribution π̃(z) that we can easily evaluate for any given value

of z, such that ∀z ∈ z

π(z) = 1
K
π̃(z) (A.4)

where K is a normalizing constant.

We take a proposal distribution q(z), from which we can readily draw samples, and

a constant k such that ∀z

kq(z) ≥ π̃(z). (A.5)

Algorithm A.1 shows the step to follow for the application of the rejection method.

Note that scaling the function π by a constant π̃ = Kπ has no effect on the sampled

x-position, than the accepted sample valued z0 can be considered a realization of π,

which is the normalized version of π̃.

This is a useful method for one or two dimensions problems, but it suffers from the

“curse of dimensionality”, because the accept probability decreases exponentially as a

function of the number of dimensions. It becomes increasingly difficult to identify a

proposal distribution that yields a reasonable proportion of accepted parts. For this

reason we are going to introduce other methods for sampling in higher dimensional

space.
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Algorithm A.1 Rejection method
1. Generate a number z0 (an x-position) from the proposal distribution q(z);

2. Generate a number u0 from the uniform distribution over [0, kq(z0)], that is equiv-

alent to sample uniformly along the vertical line from the selected x-position up

to the curve of the proposal distribution scaled by k;

3. Check if that the last generated value is greater than the value of the desired

distribution π̃ along this line

u0 > π̃(z0)

• if this holds, reject the sampled values and return to step (1);

• if not, accept the sampled value z0 as a realization of π̃.

A.2.2 Importance sampling

Let us consider the problem of approximating the expectation of some function f(z)

with respect to a probability distribution π(z) of the form:

E|f | =
∫
f(z)π(z)dz (A.6)

where the integral is replaced by a infinite summation in the case of discrete variables.

This could be solved applying the general idea behind the sampling methods, that is

by drawing independently a set of samples z(i) with i = 1, . . . ,M from the distribution

π(z) and compute the finite sum:

f̂ = 1
M

M∑
i=1

f(z(i)) (A.7)

as long as we are able to generate the samples z(i).

The importance sampling method (Geweke, 1989) provides a strategy to compute

the expectation directly, without drawing samples from the distribution π(z) itself.

Then the driving question in this section is: how can we approximate the expec-

tation in A.6 when it is analytically intractable and when we cannot draw samples

directly from the probability distribution π(z), but we can evaluate π(z) for any given

value of z?

Given a proposal distribution q(z), from which we can readily draw samples z(i)
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with i = 1, . . . ,M , the expectation can be written as follows1:

E[f ] =
∫
f(z)π(z)dz (A.8)

=
∫
f(z)π(z)

q(z) q(z)dz (A.9)

' 1
M

M∑
i=1

π(z(i))
q(z(i)) f(z(i)). (A.10)

where the ratio ri = π(z(i))
/
q(z(i)) is defined importance weight and it is aimed to

remove the bias introduced by sampling from the wrong distribution.

Let us assume that the distribution π(z) can only be evaluated up to a normalization

constant, so that π(z) = ˜π(z)
/
Zπ where π̃(z) is easy to compute and the constant Zπ

is unknown. In a similar manner q(z) = ˜q(z)
/
Zq. As a result we have:

E[f ] =
∫
f(z)π(z)dz (A.11)

= Zq
Zπ

∫
f(z) π̃(z)

q̃(z) q(z)dz (A.12)

' Zq
Zπ

1
M

M∑
i=1

r̃if(z(i)). (A.13)

where r̃i = π̃(z(i))
/
q̃(z(i)). Since

∫
π(z)dz = 1, the ratio Zπ

/
Zq is equal to:

Zπ
Zq

= 1
Zq

∫
π̃(z)dz =

∫ π̃(z)
q̃(z) q(z)dz (A.14)

' 1
M

M∑
i=1

r̃i. (A.15)

It follows forthwith:

E[f ] '
M∑
i=1

wif(z(i)) (A.16)

where wi is the normalized importance weight:

wi = r̃i∑
m

r̃m
=

π̃(z(i))
/
q(z(i))∑

m

π̃(z(m))
/
q(z(i))

. (A.17)

Algorithm A.2 summarizes the step of the importance sampling.
1the sign ' stands for asymptotically equal to
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Algorithm A.2 Importance sampling

1. Generate n iid samples z(i) from the proposal distribution q(z)

2. Define the importance weight and normalize it.

3. Approximate the target expectation by A.16

A.3 Markov chain Monte Carlo methods

The rejection sampling and importance sampling methods, above detailed, have a

limited application in high dimensionality spaces. We introduce in this section the

Markov chain Monte Carlo methods, that, on the contrary, suit them well.

The Markov chain Monte Carlo (MCMC) methods, originally published by physi-

cists in the 1950’s, provided a large contribution in 1990’s to the development of the

Bayesian statistics area. These methods provided a computational tool to tackle the

hard computational issues concerning the application of the Bayesian approach. The

reader is referred to the excellent book Häggström (2002) for the theoretical basis of

these methods and the explanation of why they are powerful approximation tools.

A.3.1 Metropolis-Hastings

The driving question of this section is: given a relatively complex multivariate distri-

bution π, how do we simulate a random object with distribution π?

In 1953 Metropolis developed a MCMC scheme (Metropolis et al., 1953) to solve this

issue and later, in 1970, Hastings (Hastings, 1970) added flexibility to it, introducing

the well known Metropolis-Hastings algorithm. The aim of the Metropolis-Hastings

algorithm is the generation of a Markov process that asymptotically reaches a unique

stationary distribution p(z) such that p(z) = π(z).

We choose again a proposal distribution q(z) from which we can easily draw a

sequence of random samples z(1), z(2), z(3), . . . in order to create a Markov chain. The

proposal distribution is indicated in the form q(z(τ)|z(τ−1)) to show that we want to

simulate from it a sample z(τ) given the previous sample value z(τ−1).

In the basic Metropolis algorithm, the proposal distribution needs to be symmetric,
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that is

q(zA|zB) = q(zB|zA) ∀zA, zB (A.18)

but this constraint is relaxed in the Metropolis-Hastings version. This the point where

Hastings added flexibility to the scheme.

As with the rejection sampling method, we consider a distribution π̃(z) that we

can easily evaluate for any given value of z, such that ∀z ∈ z

π(z) = 1
K
π̃(z) (A.19)

where K is a normalizing constant.

We are now ready to follow the next step by step instructions to apply the Metropolis-

Hastings algorithm, that is the most generalized version:

Algorithm A.3 Metropolis-Hastings

1. Initialization. Choose an arbitrary point z(0) as initial candidate;

2. For each iteration τ , given the current state z(τ):

• Generate a candidate z∗ from the proposal distribution q(z∗|z(τ));

• Calculate the acceptance probability. α(z∗, z(τ)) = min
(
1, π̃(z∗)q(z(τ)|z∗)

π̃(z(τ))q(z∗|z(τ))

)
where

– π̃(z∗)q(z(τ)|z∗)
π̃(z(τ))q(z∗|z(τ)) is called acceptance ratio;

– π̃(z∗)
π̃(z(τ))

is the probability (e.g. Bayesian posterior) ratio between the proposed

state and the current state;

– q(z(τ)|z∗)
q(z∗|z(τ)) is the ratio of the proposal distribution in two directions (from

the current state to the proposed state and vice versa);2

Note that the evaluation of the acceptance ratio doesn’t require the knowl-

edge of the normalizing constant K in A.19 and that π(z∗)
π(z(τ)) = π̃(z∗)

π̃(z(τ)) .

• Accept the new sample assigning z(τ+1) = z∗ with probability α(z∗, z(τ)).

The accepted samples represent a sample form the desired distribution π. This

model gets better results if the proposal density matches the shape of the target dis-

tribution.
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A.3.2 Gibbs sampler

Gibbs sampling (so named by Geman and Geman (1984), but published some years

earlier by Ripley (1979)), is another simple Markov chain Monte Carlo algorithm that

applies to a multivariate distribution. Suppose we want to sample z = {z1, . . . , zn}

from the distribution π(z1, . . . , zn). Gibbs sampler proceeds as follows:

Algorithm A.4 Gibbs sampler

1. Initialization. Start with some inital state for the Markov chain z(0);

2. For each iteration τ = 1, . . . , K, given the current state z(τ):

• Sample z(τ+1)
1 from the distribution of z1 conditioned on the values of the

remaining variables at the state τ

z
(τ+1)
1 ∼ π(z1|z(τ)

2 , . . . , z(τ)
n )

• Sample z(τ+1)
2 from the distribution of z2 conditioned on the values of the

remaining variables

z
(τ+1)
2 ∼ π(z2|z(τ+1)

1 , z
(τ)
3 . . . , z(τ)

n )

...

• Sample z(τ+1)
j from the distribution of zj conditioned on the values of the

remaining variables

z
(τ+1)
j ∼ π(zj|z(τ+1)

1 , . . . , z
(τ+1)
j−1 , z

(τ)
j+1, . . . , z

(τ)
n )

...

• Sample z(τ+1)
n from the distribution of zn conditioned on the values of the

remaining variables at the state τ + 1

z(τ+1)
n ∼ π(zn|z(τ+1)

1 , . . . , z
(τ+1)
n−1 )

.

174



Clearly this algorithm is applicable when the conditional distribution of each vari-

able is known and easy to sample from, or at least easier than the joint distribution

π(z).

A.3.3 Data augmentation algorithm

The driving question of this section is: how can we deal with missing data problems?

How can we sample from a posterior distribution when we know that the available data

set are not complete? If the available data are not complete we are not able to write

the complete likelihood.

We consider a parametric model p(Y ,Z|θ) and we suppose we want to sample from

the observed posterior density p(θ|Y ) given the observed data Y . We call complete

(or augmented) data set the set of data given by:

• The observed data Y and

• The unobserved data Z (also called latent or missing).

The data augmentation algorithm provides a strategy to improve the inference

based on the entire posterior distribution p(θ|Y ,Z), even if only the observed data are

available. The idea behind this method consists in the augmentation of the observed

data Y by adding the latent data Z, then it suits the cases where the augmented data

can be easily generated.

The observed posterior density p(θ|Y ), given the observed data Y , is related to the

predictive density in the Posterior Identity:

p(θ|Y ) =
∫
H
p(θ|Z,Y )p(Z|Y )dZ (A.20)

where

• H denotes the sample space for the unobserved data Z;

• p(θ|Z,Y ) denotes the conditional density of θ given the augmented data X =

(Z,Y ) or simply the complete-data parameter posterior;

• p(Z|Y ) denotes the predictive density of the unobserved data Z given Y , that

can be expressed in terms on the desired posterior density in the Predictive
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Identity:

p(Z|Y ) =
∫

Θ
p(Z|θ,Y )p(θ|Y )dθ (A.21)

where Θ denotes the parameter space.

Hence, replacing the Predictive Identity into the Posterior Identity and interchang-

ing the order of integration, p(θ|Y ) satisfies the integral equation:

p(θ|Y ) = g(θ) =
∫
K(θ, φ)g(φ)dφ (A.22)

where

K(θ, φ) =
∫
p(θ|,Z,Y )p(Z|φ,Y )dZ (A.23)

and g(φ) = p(φ|Y ).

Note that

p(θ|Y ) =
∫
H
p(θ|Z,Y )p(Z|Y )dZ (A.24)

=
∫
H
p(θ|Z,Y )

(∫
Θ
p(Z|φ,Y )p(φ|Y )dφ

)
dZ (A.25)

=
∫
H

∫
Θ
p(θ|Z,Y )p(Z|φ,Y )p(φ|Y )dφdZ (A.26)

where we applied A.21 denoting with φ the parameter (rather than θ), in order to keep

the term p(θ|Z,Y ) out from the integration over the parameter space and show the

identity in A.22.

This suggests that A.22 can be solved by successive substitutions, starting with

any initial candidate g0(θ), but integrating out the unobserved variables Z. In other

words, it can be solved iteratively calculating

gi+1(θ) = (Tgi)(θ) (A.27)

where

Tf(θ) =
∫
K(θ, φ)f(φ)dφ. (A.28)

Tanner and Wong proposed this Monte Carlo method called data augmentation, to

perform the integration. This method consists in the iteration of two steps, motivated

by the Posterior Identity.

The steps are respectively defined as

• I-step (imputation step), where one generates multiple values (indeed imputa-

tions) of Z from the predictive distribution p(Z|Y );
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• and P-step (posterior step), where the average of p(θ|Y ,Z) is computed over the

imputations.

In the next page, Algorithm A.5 summarizes the step of the data augmentation method.

Algorithm A.5 Data augmentation
Given the current approximation gi to p(θ|Y ):

1. I-step. Generate a sample z1, . . . , zm of size m from the current approximation to

the predictive density p(Z|Y ). This can be accomplished applying the Method

of Composition to the Predictive Identity;

(a) Sample θ∗i from the current approximation gi(θ);

(b) Generate the sample z1, . . . , zm from p(Z|φ,Y ) where φ = θ∗i is the value

obtained in (a);

2. P-step. Use this sample to update the approximation to p(θ|Y ) as the average

of p(θ|z(i),Y )

gi+1(θ) = m−1
m∑
i=1

p(θ|z(i),y). (A.29)
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Appendix B

Fault tree analysis

B.1 Introduction

In this appendix, after a brief introduction to the concept of risk assessment, we describe

the fault tree analysis. This explanation will be useful for the understanding of the

Belief-network model for failure prediction proposed in Chapter 6.

B.2 Risk assessment

Risk assessment or analysis consists in answering the following three questions:

• What can go wrong?

• How can it happen?

• What are the consequences?

This risk triplet was introduced and discussed by Kaplan and Garrick (1981).

Risk management and policy decisions rely on risk assessment, before the con-

sequences of the threatening phenomenon are fully understood, in order to select

the proper risk reduction measures within cost-effectiveness constraints (Paté-Cornell,

1996).
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B.3 The Fault tree analysis

Fault tree analysis is a technique for the reconstruction of all the possible ways that

can lead to the occurrence of a given and undesired event. The undesired event is

resolved into its causes through the structure of a logic diagram, called a fault tree and

represented in Figure B.1. For these reasons it can be defined as a deductive failure

analysis and a backward looking analysis method.

The fault tree itself is a qualitative representation of the problem, that can be

evaluated qualitatively. It graphically portrays all the various combinations of faults

that can cause the undesired event.

TE

E1

E4 E5 E6

E2 E3

E7 E8

Fig. B.1: Fault tree.

The undesired event, that is usually a failure of the system, is called the top event

(briefly TE), because it constitutes the top event in the diagram (see Figure B.1).

A fault tree is tailored to its top event. As described in the handbook Vesely et al.

(1981), the fault tree is made of different symbols that represent gates and events.

The most commonly used are represented in Tables B.1 and B.2. We can distinguish

the primary events, or basic events and the intermediate events. The primary events

are the events that are not further developed on the fault tree, while the intermediate

events are found at the output of a gate. Each gate is connected to an output event

and more input events. The gates represent the relationship between the events and

define the occurrence of the output event, or in other words it establishes if the output

event occurs, given the occurrence of the input events.
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OR gate.

AND gate.

Table B.1: Gate symbols. OR gate = the output occurs if at least one of the inputs

occur. AND gate = the output occurs if all of the inputs occur.

E

Basic or primary event.

E

Intermediate event.

Table B.2: Event symbols. Basic or primary event = an event not further developed.

Intermediate event = An event that occurs because of the events acting through a logic

gate.

The fault tree analysis consists of two main steps:

1. Identification and classification of the events causing the undesired event and the

connections that they hold between them, or logic interrelationships;

2. Construction of the fault tree.
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Appendix C

Expert opinion

C.1 Introduction

Expert opinion plays an important role in the risk assessment model proposed in this

thesis. In this appendix, the reader can find an introduction of this technique and the

structure of the elicitation process. Then a multi criteria decision making tool, called

Analytic Hierarchy process, is presented in its theoretical and applicative perspectives.

The elicitation method developed for the assessment of the probability for a spacecraft

to occur during the atmospheric re-entry, explained in Chapter 6, is inspired by this

multi criteria decision making tool.

C.2 Expert opinion elicitation and analysis

C.2.1 Expert opinion

Expert opinion or expert judgement is data that is provided by people who have a good

knowledge and experience of the field under study.

It is quite common to rely on expert opinion when other kinds of data (e.g. obser-

vations, measurements, simulations) are scarce, too costly or difficult to be collected or

even unavailable. For instance experts can give estimates, based on their experience,

on poorly understood phenomena, to integrate or interpret available data, to determine

what is currently known, what is not known and what is worth investigating (Ouchi

et al. (2004), Cooke and Goossens (2000), Bedford and Cooke (2001b)). One easy
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example is when the expert is asked to express their opinion on the distribution of a

random variable by the median and a symmetric interval around it.

Experts are a data source largely exploited in technical fields such as risk analysis,

reliability engineering and science.

C.2.2 Elicitation and analysis

Elicitation is the process of data-gathering when the experts are the data-source.

The expression expert opinion elicitation refers to a set of specially designed meth-

ods of verbal or written communication. There is a vast theory about this subject, but

we do not mean to explain it here. However, for a better understanding of the work

behind this thesis, it is important to introduce the main steps to follow to structure

the elicitation process:

• Identifying the needed information;

• Formulating the questions, taking into account that their phrasing can affect the

expert and his answers;

• Selecting the experts;

• Designing and tailoring the elicitation to fit the experts and the way they think,

considering the human tendency toward bias (well documented in literature, e.g.

Schwarz and Vaughn (2002), Tversky and Kahneman (1974), Einhorn (1972),

Morgan and Keith (1995));

• Eliciting and documenting expert opinion (answers and/or ancillary information);

• Analysing the results and assessing if they are valid data;

• Exploit them to refine the whole elicitation process when necessary;

• Combining expert judgements coming from various sources.

The person conducting the study can easily meet the following obstacles:

• The experts refrain from expressing a judgement under uncertainty;

• There is no agreement between the experts;
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• The questions do not appear clear to the experts.

Experts knowledge improves as new information becomes available and conse-

quently the expert opinion can and should legitimately change over time.

Data gathered by the expert opinion needs to be translated in quantitative terms,

in order to make them exploitable. Expert opinion data have a multivariate nature

and unfortunately there are no standard rules to analyse all of them. There exist a

large literature of methods whose applications vary depending upon the design of the

elicitation and upon the objective of the analysis. For the purposes of this study, we

propose to rely on pairwise comparison methods to elicit expert opinion (Yager (1979),

Torgerson (1958), Gulliksen (1959), Saaty (1977)).

In the next section C.3 we present the Analytic Hierarchy Process, a decision ana-

lytical tool also known as Saaty’s method (Saaty, 1980), which inspired the elicitation

technique applied in the risk assessment model proposed in Chapter 6.

C.3 Analytic Hierarchy Process

The Analytic Hierarchy Process, well known with the acronym AHP, is a multi criteria

decision making method based on pairwise comparisons. It was developed by Thomas

Saaty (Saaty, 1980), while he was directing research projects in the US Arms Control

and Disarmament Agency. It is a method designed for the resolution of choice problems

in a multi-criteria environment (Forman and Gass, 2001), but it has been widely

applied in other fields too, as forecasting or resource allocations, over the years.

The AHP first structures the problem as a hierarchy. Next the decision maker pro-

vides paired comparisons of the alternatives. Finally the AHP converts these estimates

to numerical values (weights or priorities or merits) and uses them to assign a score

to each alternative. Some small inconsistency is taken into account because expert

opinions are not always consistent.

The advantages that make this method appealing for use in expert opinion problems

are:

• It is easy to use;

• It easily monitors the consistency of experts answers;
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• It easily quantifies qualitative evaluations.

The idea supporting this method is that most individuals find it psychologically eas-

ier to formulate pairwise relative judgements than ranking directly n events (Budescu

et al., 2016).

As in many other decision making approaches, the rank reversal can occur when

applying the Analytic Hierarchy process. This means that the relative rankings of

two alternatives could be reversed when an alternative is added or deleted, impairing

the reliability of the results. The interested reader can find a comprehensive literature

review about this topic in Wang and Luo (2009). The issue of rank reversal raised many

discussions in the world of multi criteria decision making and especially concerning the

Analytic Hierarchy process. The pioneer of this debate is Belton and Gear (1983).

Another important disadvantage in the application of the Analytic Hierarchy pro-

cess is that the number of comparisons increases obviously with the number of events.

For this reason, an accurate selection of a reasonable set of events to be compared

(Budescu et al. (2016)) is strictly necessary.

C.3.1 Multi criteria decision making

When we select the best alternative from a set of available alternatives (or choices),

and our selection is based on multiple criteria (or factors, objectives), we are solving a

multi criteria decision making problem.

Suppose we fancy a pizza: pizza is our goal. Then we probably go to a pizza place

and we read the menu. In order to satisfy our wish we need to make a choice among

the available alternatives, which might be: margherita, capricciosa, pepperoni, veggie

and four cheese. The best choice for us is dependent on our personal criteria (i.e.

toppings, price, a strong or weak appetite, personal tastes, allergies). This means that,

before starting to eat, we need to face an easy multi criteria decision making problem

or briefly a MCDM problem.

The Analytic Hierarchy Process is one of the numerous MCDM methods.

C.3.2 Theoretical foundation - Principles and axioms

The AHP is based on three basic principles:
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• Decomposition;

• Comparative judgements;

• Hierarchic composition or synthesis of priorities.

A human’s way of thinking resolves complex problems partitioning it in smaller

problems. The AHP emulates this behaviour through the decomposition principle: the

complexity is structured into a hierarchy of clusters, subclusters, subsubclusters and

so on.

The principle of comparative judgement is the key for the measurement. It is

applied to formulate pairwise comparisons of all combinations of elements in a cluster

with respect to the parent of the cluster. The pairwise comparisons provide the local

priorities of the single elements forming the cluster with respect to their parent.

Finally the hierarchic composition or synthesis of priorities principle allows the

AHP to produce global priorities throughout the hierarchy, for representing the overall

outcome.

Furthermore, the AHP is based on the following four axioms (Saaty (1986)).

Definition C.3.1 Reciprocal axiom. The reciprocal axiom states that if PC(A,B) is

a paired comparison of elements A and B with respect to their parent element C, rep-

resenting how many times more the element A possesses a property than does element

B, then PC(A,B) = 1/PC(B,A). For example, if A is 5 times larger than B, then B

is one-fifth as large as A.

Definition C.3.2 Homogeneity axiom. The homogeneity axiom states that the ele-

ments being compared should not differ by too much in the property being compared.

Definition C.3.3 Synthesis axiom. The synthesis axiom states that judgements about

or the priorities of the elements in a hierarchy do not depend on lower level elements.

Definition C.3.4 Expectation axiom. The expectation axiom states that individuals

who have reasons for their beliefs should make sure that their ideas are adequately

represented for the outcome to match these expectations.

The last axiom, also known as the fourth axiom, was introduced later than the others

by Saaty, in response to some academic debates (see Section 4.4.1).
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C.3.3 The AHP - Step by step

The analytical process of the AHP can be explained in the following steps:

1. Hierarchical decomposition of the decision. The decision problem is structured

as a hierarchy of clusters: goal, criteria, sub-criteria and alternatives. Breaking

the problem down into its component is the most creative and important part of

the decision-making process. Figure C.1 shows a generic hierarchic structure. In

order to fulfill the homogeneity axiom, the elements need to be grouped in such

a way as to make comparisons feasible.

Goal

Criterion B Criterion CCriterion A

Alternative YAlternative X Alternative Z Alternative W

Fig. C.1: This figure shows an example of the AHP hierarchical structure. There

are 3 levels: the root or level 0 represents the goal, the level 1 the criteria and the

level 2 the alternative choices. Other levels of sub criteria and sub sub criteria could

be added. The lines show the relationships between the criteria, the alternatives and

the goal. The comparison matrix of level 1 has size 3 by 3, because it contains the

pairwise comparisons of the 3 criteria with respect to the goal. Since each alternative

is connected to each criterion and there are 3 criteria for 4 alternatives, the comparison

matrices at level 2 are 3 and their size is 4 by 4. Hence the alternatives are pair-wise

compared with respect to each criterion.

2. Data collection through pairwise comparisons. Let us explain with an easy ex-

ample what a paired comparison is. When we have two pizzas, a pepperoni and

a four cheese, and we wonder which one we like better than the other, and how
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much we like it, we are carrying out a paired comparison. We can express our

preference using a relative scale to measure how much we prefer one compared

to the other: equal, marginally favours, strongly favours, very strong favours,

extremely favours.

Data are collected from experts (or decision makers) following the hierarchic

structure. Experts are asked to compare pairwise every single element with the

elements belonging to the same cluster and rate their comparisons. It seems more

appropriate to ask experts to provide their judgements in a linguistic shape rather

than asking directly a quantitative evaluation. Next the linguistic judgement can

be translated in a numerical grade. The fundamental scale originally proposed

by Saaty is reported in Table C.1.

As stated by the reciprocal axiom if the alternative X is extremely more important

than Y, with respect to the criterion A, and is rated at 9, then the alternative Y

must be extremely less important than X and is valued at 1
9.

Decision makers carry out two types of pairwise comparisons in the AHP: the

first one is between pairs of factors, while the second one is between pairs of

choices. It is important to note that the comparisons are made with respect to

the contribution of the lower-level items to the upper-level one, according to the

synthesis axiom.

Table C.1: Saaty’s scale.

Option Numerical value(s)

Equal 1

Marginally strong 3

Strong 5

Very strong 7

Extremely strong 9

Intermediate values 2,4,6,8

3. Pairwise matrix. The pairwise comparisons of a cluster of n elements are arranged

in a square matrix Q of size n by n. The comparison of the item i with the item

j results in a grade in the (i, j) position of the matrix and its reciprocal in the
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position (j, i). It clearly follows that the matrix has ones on the main diagonal

as the i − th element is compared with itself. Then the number of the required

pairwise judgements is n(n−1)/2. For example the factor in the ith row is better

than the factor in the jth column if the value of element (i, j) is greater than

1; otherwise the factor in the jth column is better than in the ith row. It is

suggested to compare no more than nine elements at a time, within the same

matrix (Saaty, 1980).

4. Weights assessment - Eigenvector method. There are various methods for deriving

the weights of the n elements w1, . . . , wn from the matrix of pairwise comparisons

(Q = [qij]). The eigenvector method, here illustrated, was initially proposed by

Gulliksen (1959) and they refined by Saaty and colleagues (Saaty and Vargas

(1980), Saaty (1980)).

The pairwise comparison matrix can be expressed in terms of the weights w =

{w1, . . . , wn} . We assume that
n∑
i=1

wi = 1.

Q =



q11 q12 . . . . . . q1n

q21 q22 . . . . . . q2n
... ... ... ... ...

qn1 qn2 . . . . . . qnn


=



1 w1
w2

w1
w3

. . . w1
wn

w2
w1

1 w2
w3

. . . w2
wn

... ... . . . ... ...

wn
w1

wn
w2

wn
w3

. . . 1


(C.1)

Note that

qij = wi
wj

= wi
wk

wk
wj

= wikwkj (C.2)

When this condition C.2 holds, the matrix Q is termed consistent. Given the

ratios qij = wi
wj

, we can compute the weights w = {w1, . . . , wn} by solving for w

the equivalence Qw = nw :


1 w1
w2

w1
w3

. . . w1
wn

w2
w1

1 w2
w3

. . . w2
wn

... ... . . . ... ...

wn
w1

wn
w2

wn
w3

. . . 1





w1

w2

...

wn


=



nw1

nw2

...

nwn


. (C.3)
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It is easy to recognize that this is an eigenvalue problem. It can be proved

that w is the normalized right eigenvector of Q corresponding to the maximum

eigenvalue λmax1. The maximal eigenvalue is λmax = n, if C.2 holds.

5. Consistency check. AHP tolerates and monitor human judgements inconsistency.

In most cases, in the matrix Q of the pairwise comparisons the consistency prop-

erty does not hold and this can be checked by computing the consistency index

CI

CI = λmax − n
n− 1 . (C.4)

This index provides a measure of consistency of experts evaluations. The closer

λmax is to n, the more consistent the expert opinion.

Saaty proposed to use this index by comparing it with a random consistency index

RI. He randomly generated 500 reciprocal matrices (Teknomo, 2014) using the

Saaty’s scale and computed the average random consistency index RI for different

values of n, as showed in Table C.2.

Table C.2: Random consistency index

n 1 2 3 4 5 6 7 8 9 10

RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49

Then he defined the consistency ratio CR and he suggested it should be less than

0.1

CR = CI

RI
. (C.5)

6. Synthesis. After carrying out the pairwise comparisons in each cluster, the results

must be aggregated to get a global rating for each alternative.

C.3.4 Weights assessment - Geometric mean approach

The eigenvector method was criticised by Crawford and Williams (1985) because it is

not invariant under transposition (the left eigenvector is not the reciprocal of the right

eigenvector). Crawford and Williams (1985) proposed an alternative method, even
1Perron-Frobenius theorem asserts that a real square matrix with positive entries has a unique

largest real eigenvalue.
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easier to apply, called the geometric mean approach. The weights are computed by the

normalized geometric means of the rows of the pairwise comparisons matrix Q:

wi = mi
n∑
i=1

mi

∀i = 1, . . . , n (C.6)

where the geometric mean mi is equal to:

mi =
 n∏
j=1

qij

 1
n

. (C.7)

Budescu et al. (1986) compared the geometric mean approach with the eigenvalue

method and drew the conclusion that the results are very similar. In some circum-

stances, the rank order is better preserved relying on the geometric mean. This ap-

proach is used in the expert elicitation method proposed in Chapter 6.
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Appendix D

The stick breaking process

D.1 Introduction

The stick breaking process inspired the way we proposed to construct the distribution

for the modelling of the fragmentation process, detailed in Chapter 7.

The stick breaking process is one of the views of the Dirichlet process. For this

reason, we start this appendix defining the Dirichlet distribution and the Dirichlet

process, then we explain what the stick breaking process is, for a better understanding

of the proposed Fragmentation model.

D.2 Dirichlet process

The Dirichlet distribution of order n is defined over the space of an n-dimensional

simplex

∆n :=
{
x ∈ Rn :

∑
i

xi = 1, xi ≥ 0
}

The distribution is parametrised by n positive parameters {αi}ni=1(αi > 0). These

parameters control the variance of the random variables xi.

Definition D.2.1 Dirichlet distribution (Zhang, 2008)

A random variable x ∈ ∆n is said to have a Dirichlet distribution if its probability

density function is given by:

p(x1, . . . , xn) = 1
B(α)

n∏
i=1

xαi−1
i
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and it is denoted as x ∼ Dir(α1, . . . , αn) or simply x ∼ Dir(α). The normalizing

constant is the multinomial Beta function, which can be expressed in terms of the

Gamma function

B(α) =
∏n
i=1 Γ(αi)

Γ(∑n
i=1)αi

α = (α1, . . . , αn) (D.1)

If (x1, . . . , xn) ∼ Dir(α1, . . . , αn) , then the expected value is defined

E|(x1, . . . , xn)| =
(
α1

s
, . . . ,

αn
s

)
. s :=

∑
i

αi

The Dirichlet distribution can be seen as a distribution over distributions, because the

vector of values that it generates are a probability vector e.g. all values non negative

and sum to 1.

An important, and crucial for us, property of this distribution is the decimation

property.

Proposition D.2.1 Decimation property If (x1, . . . , xn) ∼ Dir(α1, . . . , αn) and (τ1, τ2) ∼

Dir(α1β1, α1β2) where β1 + β2 = 1, then

(x1τ1, x1τ2, . . . , xn) ∼ Dir(α1β1, α1β2, . . . , αn)

The Beta distribution is a special case of the Dirichlet distribution in two dimen-

sions.

Definition D.2.2 Beta distribution

A random variable θ ∈ (0, 1) is said to have a Beta distribution if its probability

density function is given by

p(θ|α, β) = θα−1(1− θ)β−1

B(α, β) , 0 ≤ θ ≤ 1 (D.2)

where α, β > 0 are the shape parameters. The normalizing constant B(·) is the Beta

function, which can be expressed in terms of the Gamma function

B(α, β) = Γ(α)Γ(β)
Γ(α + β) α, β > 0 (D.3)

The Dirichlet process can be considered as the infinite-dimensional generalization of

the Dirichlet distribution. Similarly to the Dirichlet distribution, it is also a distribution

over distributions or, in other words, its domain is a set of probability distributions.

The Dirichlet process DP (α,G0) is parameterized by the concentration parameter α
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and the base distribution G0. The random probability measure G with the same

support of G0 is the Dirichlet process distributed G ∼ DP (α,G0).

The Dirichlet process provided a significant contribution to the development of

the Bayesian nonparametric methods, when introduced by Ferguson (1973). Then

Sethuraman (1994) proposed a method for its construction and showed formally the

relationship with the Dirichlet process. This method, called stick breaking method, is

detailed in the next section.

D.3 The stick breaking construction

Suppose we have a stick of length 1. The so-called stick breaking process, introduced

by Sethuraman (1994), is defined as follows:

1. We randomly break the stick into two parts, one left and one right, with propor-

tions ν1 and 1− ν1. We keep the left part of length π1 = ν1.

2. We then take the right part of length 1 − ν1. We randomly break it into two

parts, one left and one right, with proportions ν2 and 1− ν2. Again we keep the

left part of length π2 = (1− ν1)ν2.

3. We then take the right part of length (1−ν1)(1−ν2). We apply the same process

with proportions ν3 and 1−ν3. Then we have three left pieces of lengths π1 = ν1,

π2 = (1− ν1)ν2, π3 = (1− ν1)(1− ν2)ν3.

4. We can continue this process to randomly partition the stick in pieces of lengths

(π1, π2, . . . )

By the decimation property, we can see that the proportions (π1, . . . , πn) are random

variables with a Dirichlet distribution for any finite number of breaks, if the distribution

of each νi is beta.
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Fig. D.1: Representation of the first four steps of the Sethuraman stick breaking

process.

Then this process, shown in figure D.1, can be formalized in the definition of the

Griffiths-Engen-McCloskey (GEM) distribution (Pitman, 2002):

Definition D.3.1 For 0 ≤ a < 1 and b > −a, suppose that independent random

variables νk are such that νk has Beta(1− a, b+ ka) distribution.

Let

πi = νi
i−1∏
i′=1

(1− νi′)

define the GEM distribution with parameters a,b, to be the resultant distribution of

(π1, π2, . . . ).

The stick breaking process is the construction of a distribution over infinite partitions

of the unit interval.

196



Appendix E

Expert Surveys based on pairwise

comparisons

E.1 Burst of a battery

Assume you are analysing the causes of the fragmentation/explosion of a spacecraft

during the atmospheric re-entry and in particular if the explosion of a battery can be

considered the triggering event.

Information you have about the spacecraft:

• There are Nichel-Cadmium batteries

• Age of the spacecraft

• Protection mechanism

Information you have about the re-entry:

• Trajectory

• Altitude of the explosion

• Results from an observation campaign

Information (or forecasts) you have about the conditions of the battery before the

re-entry:

• Temperature
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• Pressure

We consider the events in E.1 that can lead to the explosion of a battery during

the atmospheric re-entry. Assume there are 10 re-entries exactly like that one you are

analysing:

• What is the minimum number of times do you think each of the 1-8 events could

occur?

• What is the maximum number of times do you think each of the 1-8 events could

occur?

• Could you please answer this question at least for one of them?

/10 /10

1 Cell degradation

2 Exothermal chemical reactions

3 Short-circuit

4 Overcharge

5 Over discharge

6 Over pressure

7 Corrosion

8 Over temperature

Table E.1

Please compare each of the pairs of events listed below by answering the following

question:

Was event A more likely to occur than event B?

Please mark them with an index from 1 to 9 following Table E.2.
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Index Meaning

1 A and B were equally probable

3 A was moderately more probable than B

5 A was strongly more probable than B

7 A was very strong more probable than B

9 A was absolutely more probable than B

2,4,6,8 Intermediate values

Table E.2

Event A Event B Index

Cell degradation Exothermal chemical reactions

Exothermal chemical reactions X

short-circuit Exothermal chemical reactions

overcharge Exothermal chemical reactions

overdischarge Exothermal chemical reactions

overpressure Exothermal chemical reactions

corrosion Exothermal chemical reactions

over temperature Exothermal chemical reactions

Table E.3

Event A Event B Index

Cell degradation Short-circuit

Exothermal chemical reactions Short-circuit

short-circuit X

overcharge Short-circuit

overdischarge Short-circuit

overpressure Short-circuit

corrosion Short-circuit

over temperature Short-circuit

Table E.4
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Event A Event B Index

Cell degradation Short-circuit

Exothermal chemical reactions Short-circuit

short-circuit X

overcharge Short-circuit

overdischarge Short-circuit

overpressure Short-circuit

corrosion Short-circuit

over temperature Short-circuit

Table E.5

Event A Event B Index

Cell degradation Overcharge

Exothermal chemical reactions Overcharge

Short-circuit Overcharge

Overcharge X

Overdischarge Overcharge

Overpressure Overcharge

Corrosion Overcharge

Over temperature Overcharge

Table E.6
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Event A Event B Index

Cell degradation Overdischarge

Exothermal chemical reactions Overdischarge

Short-circuit Overdischarge

Overcharge Overdischarge

Overdischarge X

Overpressure Overdischarge

Corrosion Overdischarge

Over temperature Overdischarge

Table E.7

Event A Event B Index

Cell degradation Overpressure

Exothermal chemical reactions Overpressure

Short-circuit Overpressure

Overcharge Overpressure

Overdischarge Overpressure

Overpressure X

Corrosion Overpressure

Over temperature Overpressure

Table E.8
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Event A Event B Index

Cell degradation Corrosion

Exothermal chemical reactions Corrosion

Short-circuit Corrosion

Overcharge Corrosion

Overdischarge Corrosion

Overpressure Corrosion

Corrosion X

Over temperature Corrosion

Table E.9

Event A Event B Index

Cell degradation Over temperature

Exothermal chemical reactions Over temperature

Short-circuit Over temperature

Overcharge Over temperature

Overdischarge Over temperature

Overpressure Over temperature

Corrosion Over temperature

Over temperature X

Table E.10

Please consider now the hypothetical upcoming re-entry of a spacecraft with similar

characteristics.

Please suppose I ask you to answer the following question for each event listed in

Table E.12, by expressing an index from 1 to 9 as described in Table E.11:

Is this event more likely to occur in the re-entry B than in the re-entry A?
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Index Meaning

1 This event is equally probable to occur in both the re-entries A and B

3 This event is moderately more probable to occur in re-entry B

5 This event is strongly more probable to occur in re-entry B

7 This event is very strong more probable to occur in re-entry B

9 This event is absolutely more probable to occur in re-entry B

2,4,6,8 Intermediate values

Table E.11

Re-entry A Re-entry B Index

Cell degradation Cell degradation

Exothermal chemical reactions Exothermal chemical reaction

Short-circuit Short-circuit

Overcharge Overcharge

Overdischarge Overdischarge

Overpressure Overpressure

Corrosion Corrosion

Over temperature Over temperature

Table E.12

• Which characteristics do you need to know about the upcoming re-entry?

• Could you please answer these questions comparing the re-entry of ATV1 with

the re-entry of ATV5?

• Would you add other triggering events to the list?

• Would you need other informations about the environment conditions? If yes,

which ones?

• And about the spacecraft?

• Is there something you want to propose to improve this survey?
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E.2 Chemical reaction propellant + air

Assume you are analysing the causes of the fragmentation/explosion of a spacecraft

during the atmospheric re-entry and in particular if the Chemical reaction propellant

+ air can be considered the triggering event.

Information you have about the spacecraft:

• Architecture of chemical propulsion system

• Reliability tests of the valves (if available)

• Location of the valves

• Material of the membrane which separates oxidizer and fuel tanks

• Thermal conductivity from spacecraft structure to the tanks

• Material of the wall tanks (titanium, carbon fiber wrapped, steel)

• Shape of the tanks (spherical or cylindrical with domes)

• Location and mounting direction of the tanks

• Maximum Expected Operating Pressure of tanks

• Age of spacecraft

Information you have about the re-entry:

• Trajectory

• Predictions about the altitude of the explosion with uncertainty range

• Predictions about temperature and external pressure at that altitude

• Deterministic simulations of the spacecraft fragmentation before the altitude

where the explosion is expected to occur

• Results from an observation campaign

Information (or forecasts) you have about the conditions of the propulsion system

at EOL (End of Life):
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• Filling percentage

• Thickness of wall tanks (after material degradation)

We consider the events in Table E.13 that can lead to the Chemical reaction pro-

pellant + air during the atmospheric re-entry:

Assume there are 10 re-entries exactly like that one you are analysing:

• What is the minimum number of times do you think each of the 1-2 events could

occur?

• What is the maximum number of times do you think each of the 1-2 events could

occur?

• Could you please answer this question at least for one of them?

/10 /10

1 Sudden release of propellant

(caused by: burst of a pressure vessel)

2 Slow release of propellant

(caused by: valve leakage or tank destruction or pipe rupture)

Table E.13

Please compare each of the pairs of events listed below by answering the following

question:

Was event A more likely to occur than event B?

Please mark them with an index from 1 to 9 following Table E.14.

Index Meaning

1 A and B were equally probable

3 A was moderately more probable than B

5 A was strongly more probable than B

7 A was very strong more probable than B

9 A was absolutely more probable than B

2,4,6,8 Intermediate values

Table E.14
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Event A Event B Index

Sudden release of propellant Slow release of propellant

Table E.15

Please consider now the hypothetical upcoming re-entry of a spacecraft with similar

characteristics.

Please suppose I ask you to answer the following question for each event listed in

Table E.17, by expressing an index from 1 to 9 as described in Table E.16:

Is this event more likely to occur in the re-entry B than in the re-entry A?

Index Meaning

1 This event is equally probable to occur in both the re-entries A and B

3 This event is moderately more probable to occur in re-entry B

5 This event is strongly more probable to occur in re-entry B

7 This event is very strong more probable to occur in re-entry B

9 This event is absolutely more probable to occur in re-entry B

2,4,6,8 Intermediate values

Table E.16

Re-entry A Re-entry B Index

Sudden release of propellant Sudden release of propellant

Slow release of propellant Slow release of propellant

Table E.17

• Which characteristics do you need to know about the upcoming re-entry?

• Could you please answer these questions comparing the re-entry of ATV1 with

the re-entry of ATV5? If not, could you please answer these questions comparing

the re-entries of two spacecraft you worked for?

• Do you know if there are deterministic simulations that could help you in pro-

viding these (subjective) judgements?
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• Would you add other triggering events to the list?

• Would you need other informations about the environment conditions? If yes,

which ones?

• And about the spacecraft?

• Is there something you want to propose to improve this survey?

E.3 List of Interviewed experts divided by topics

• Guidance, Navigation and Control: Irene Huertas;

• Propulsion: Christopher Hunter, Luca Ferracina;

• Propellants: Nick Goody;

• Materials: Tommaso Ghidini;

• Structure: Gerben Sinnema, Tiziana Cardone, Roger Walker;

• Thermal: Silvio Dolce, Giovanni Chirulli, Heiko Ritter;

• Energy storage and power: Evelyne Simon, Francois Bausier;

• ATV-1 Re-entry campaign: Stephan Loehle, Maite Trujillo ,Neil Murray, Claudio

Damasio, Mark Beks;

• Deterministic re-entry analysis tools: Sergio Ventura;

• Experimental studies about spacecraft design for demise: Francois Bausier.
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Appendix F

PhD and NPI Timeline

F.1 Summary of the coursework and preparatory

phase

F.1.1 First year

The study plan of the first year consisted in the following modules:

• A Research Methods course for 5 ECTS (European credit transfer system)

• 4 full-time 1-week courses in Statistics through the APTS 2012 (Academy for

PhD Training in Statistics) programme in the UK

• 2 2-semesters modules in Statistical Inference and Applied Linear Statistical Mod-

els for 20 ECTS

• A parallel computing course

• Summer school Alpbach 2012 - Exploration of the Giant planets and their systems

The research methods and APTS courses included assignments and exams.

The research method course was aimed to develop an awareness of the nature

of scientific research and the methodologies applicable to PhD research in Computer

Science and Statistics, plus written and oral communication skills.

The Academy for PhD Training in Statistics is a collaboration between major UK

and Irish statistics research groups to organise courses for first-year PhD students in

statistics and applied probability nationally.
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It follows a description of the content of the APTS 2012 modules:

• Week 1 - From January 9th to January 13th 2012 - Cambridge

Statistical Computing

Topics:

– Finite-precision arithmetic; related types of error and stability.

– Numerical linear algebra (with statistical applications): basic computational

efficiency, Choleski, QR, stability (e.g. Normal/Choleski vs QR for LS),

eigen and singular value decompositions. Standard libraries.

– Optimization: Newton-type methods; other deterministic methods; stochas-

tic methods; using methods effectively in practice; what to use when.

– Differentiation and integration by computer: finite differencing; automatic

differentiation; quadrature methods; stochastic integration.

– Basics of stochastic simulation.

– Other types of problem (e.g. sorting and matching); the pervasiveness of

efficiency and stability issues.

Statistical Inference

Topics:

– Role of formal inference, nature of probability, frequentist and Bayesian

approaches.

– Role of sufficiency; role of Neyman-Pearson theory; relation between signif-

icance tests and confidence limits.

– Maximum likelihood and associated issues; properties in ’standard’ situa-

tions, and in some more difficult cases.

– Exponential-family models.

– Other approaches (e.g., estimating equations, pseudo-likelihoods).

• Week 2 - From April 16th to April 20th 2012 - Nottingham

Statistical Modelling

Topics:
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– Missing data and latent variables.

– Principles and practice of model selection.

– Random-effects/hierarchical/mixed models.

– Semi parametric models and smoothing.

– The role of conditional independence in modelling. Introduction to graphical

models.

Statistical Asymptotics

Topics:

– Multivariate central limit theorem, (a gentle introduction to) the continuous

mapping theorem, the delta method.

– Stochastic asymptotic expansion.

– Likelihood asymptotics (including asymptotic properties of MLEs).

– Asymptotic normality of posterior distributions (parametric case).

– Laplace’s approximation (univariate and multivariate).

– Introduction to Edgeworth expansions and saddlepoint density approxima-

tions (via tilting).

– Saddlepoint approximations to tail probabilities.

• Week 3 - From July 2nd to July 6th 2012 - Warwick

Applied Stochastic Processes

Topics:

– Reversibility of Markov chains in both discrete and continuous time, compu-

tation of equilibrium distributions for such chains, application to important

examples.

– Discrete time martingales, examples, application, super- martingales, sub-

martingales.

– Stopping times, statements and applications of optional stopping theorem,

martingale convergence theorem.
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– Recurrence and rates of convergence for Markov chains, application to im-

portant examples.

– Statements and applications of Foster-Lyapunov criteria, viewed using the

language of martingales.

– Statistical applications and relevance.

Computer Intensive Statistics

Topics:

– Overview of simulation-based inference; Monte Carlo testing.

– Basic theory of bootstrap methods; practical considerations; limitations.

– Basic theory of MCMC; types of MCMC samplers; assessment of conver-

gence/mixing; other practical considerations; case studies.

– Strategies for dealing with large datasets: use of database management

systems, multipass algorithms, subsampling, distributed computing. A case

study, e.g. generalized linear models.

• Week 4 - From September 3rd to September 7th - Glasgow

Spatial and Longitudinal Data Analysis

Topics:

– Introduction: motivating examples; the fundamental problem- analysing

dependent data.

– Longitudinal data: linear Gaussian models; conditional and marginal mod-

els; why longitudinal and time series data are not the same thing.

– Continuous spatial variation: stationary Gaussian processes; variogram es-

timation; likelihood-based estimation; spatial prediction.

– Discrete spatial variation: Markov random field models.

– Spatial point patterns: exploratory analysis; Cox processes and the link to

continuous spatial variation; pairwise interaction processes and the link to

discrete spatial variation.

212



– Spatio-temporal modelling: spatial time series; spatio-temporal point pro-

cesses.

– Conclusion: review of available software (as preparation for mini- project);

connections-spatial and longitudinal data analysis as two sides of the same

coin.

Nonparametric Smoothing

Topics:

– Kernel and spline approaches to smoothing.

– Determination of degree of smoothing (bandwidth, penalty, effective degrees

of freedom).

– Density estimation.

– Nonparametric regression.

– Applications, e.g., covariate measurement error, generalized additive models.

F.1.2 Second year

During the second year the candidate attended the EPSRC/RSS (Engineering and

Physical Science Research Council/Royal Statistical Society) Graduate Training Pro-

gramme 201314 from the 22nd July to 26th July 2013 in the School of Mathematics and

Statistics, Newcastle University. This training programme is aimed at PhD students

in their second year and consists in two intensive course modules concerning Highly

Structured Stochastic Systems:

• Bayesian Computation with INLA (Integrated nested Laplace approximation).

INLA is a new approach to statistical inference for latent Gaussian Markov ran-

dom field (GMRF), a good alternative to MCMC methods. The Gaussian Markov

random fields are multivariate Gaussian random variables having a Markov prop-

erty described by an undirected graph. A Markov random field is similar to a

Bayesian network in its representation of dependencies; the differences being that

Bayesian networks are directed and acyclic, whereas Markov networks are undi-

rected and may be cyclic. For instance it can be applied to image processing.
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• Graphical Models for High Dimensional Data (undirected graphs and directed

acyclic graphs)

F.2 Important dates

• Confirmation exam: 27th June 2013

• The NPI contract was signed on 18th July 2013

• Kick off collaborative activities: 6th August 2013

• ESTEC internship: 15th October 2013 - 30th April 2014

• ESTEC internship: 1st September 2014 - 28 February 2015

• VIVA exam: 10th October 2016

F.3 Conferences

• Participation at CASI (Conference on Applied Statistics in Ireland) 2012

• Participation at GDRR (Symposium on Games and Decisions in Reliability and

Risk) 2013

• Participation at ATV 5 Instrumentation and Requirements for Re-entry Obser-

vation Campaign Workshop

• Participation at 7th IAASS (International Association for the Advancement of

Space Safety) Conference Space Safety is No Accident

• Presentation at International Astronautical Congress 2015

• Presentation at International Astronautical Congress 2016

F.4 Other Summer Schools

• International Space University Space Studies Program 2015 (June-August 2015)

• Data assimilation from Earth observation Summer School 2016
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Sep 2011 - Aug 2012 Sep 2012 - Aug 2013 Sep 2013 - Aug 2014 Sep 2014 - Aug 2015 Sep 2015 - Aug 2016

Coursework and preparatory phase
Confirmation exam
Poster GDRR 2013

Kick off collaborative activities
Development of a Proportional hazard model that (not suitable)

ESTEC internship
ESTEC internship

Development of the Belief-network model for failure prediction
Development of the Belief-network model for failure prediction

Development of Fragmentation model
Development of Fragmentation model
Development of Fragmentation model

Submission of patent application
Presentation IAC 2015

Thesis writing
Thesis draft submission
Presentation IAC 2016

VIVA exam
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Appendix G

Code Manual

G.1 Introduction

This appendix provides the instructions to run the code developed in order to get the

results reported in this thesis.

G.2 Getting Started

• Download and install R from https://www.r-project.org. R is a free software

environment for statistical computing and graphics. It compiles and runs on a

wide variety of UNIX platforms, Windows and MacOS.

• Set the working directory to (”...path to.../NPI activity Stochastic Modelling

of Atmospheric Re-entry Highly Energetic Break-up Events - Code”): Misc →

Change working directory....

• Install the following packages and their dependencies:

– igraph;

– MASS;

– MCMCpack;

– Rlab;

– psych.
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Package and Data → Package installer Tick the option Install dependencies.

Fig. G.1: Package installer

G.3 Fragmentation model

Files:

• Fragmentation model main.R;

• Tree-structure generator.R;
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• Generate synthetic data.R;

• Gibbs sampler for the inference.R;

• Masses prediction.R;

• Test of fragmentation model with real data.R.

Instructions:

• Run Fragmentation model main.R selecting it from File → Source file....

Output:

• Expected values of the masses of fragments and related confidence interval, given

synthetic data.

Remarks:

• User inputs can be modified at the beginning of the routine Fragmentation model

main.R;

• The average execution time of this routine is 4 minutes;

• The routine Test of fragmentation model with real data.R provides the expected

values of the masses of fragments and related confidence interval, given the set

of real data coming from the ATV 1 re-entry observation campaign.

G.4 Belief-network model for failure prediction

File:

• AHP model main.R

Instructions:

• Run AHP model main.R selecting it from File → Source file....

Output:

• Generate the plot Failureprobabilities.pdf, depicting the probabilities for the fail-

ure to occur in a sequence of events, given pairwise comparisons from experts

and observations.
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Remarks:

• Experts judgements can be modified at the beginning of the routine.

G.5 Next steps

The concrete points for the improvement of these routines are:

• Improve the usability of the code;

• Make the code usable for a more generic case, solving the computational issues.

• Improve the code efficiency.
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