
Tracking the distribution of bugs
across software release versions

A thesis submitted to the University of Dublin, Trinity College

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Statistics, Trinity College Dublin

November 2015
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Abstract

Real software systems always contain bugs and the question on every release manager’s

mind coming up to a release centres around how many undiscovered bugs there still

remain. This work looks at one model, (Goel and Okumoto, 1979), which tries to

answer this question and extends previous work to try to borrow strength from previous

release versions to help answer this question in a more rational manner.
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Glossary

Confusion Matrix is a square contingency table which allows the clear visualization

of the performance of a classification prediction algorithm. Typically the class

predicted is labelled on the left of the matrix and the actual class is labelled

across the top of the matrix and the labels are typically given in the same order

from the top and from the left. If an algorithm is perfect for a given class

then the predicted count in a given row will be in the corresponding column.

Associated terminology include True Positive (TP), True Negative (TN), False

Positive (FP), False Negative (FN), accuracy, Kappa. According to Kuhn and

Johnson (2013, p.254), a confusion matrix is ‘. . . a simple cross-tabulation of the

observed and predicted classes for the data.’. 48

Ergodicity An ergodic Markov chain will be memory-less for a sufficiently long timescales

MacKay (2003). A discrete space Markov chain ‘is ergodic if all its states are

ergodic’ and ‘a state is ergodic if it is aperiodic, recurrent and non-null’(Murphy,

2012) and Murphy then goes on to state his theorem 17.2.2 ‘Every irreducible

(singly connected), ergodic Markov chain has a limiting distribution, which is

equal to π, its unique stationary distibution’. . 40

Gelman’s R̂ (Gelman et al., 2013; Gelman and Rubin, 1992) is used as an indicator

of the convergence of MCMC chains and works by calculating the variance within

and between chains. A value of R̂ which is close to 1.0 indicates likely conver-

gence. It is closely related to Gelman’s method for calculating the effective chain

length. neffective. Note that Gelman has changed the exact definition of how R̂

is calculated over recent years, and this description is taken from Gelman et al.

(2013, Section 11.4, page 284). Given a set of m Markov chains each of length n,

which we denote θij for i = 1, . . . , n and j = 1, . . . ,m, we estimate the between

xxi



sequence variance B and the within sequence variance, W :

B = n

m− 1

m∑
j=1

(θ̄.j − θ̄..)2 where

θ̄.j = 1
n

n∑
i=1

θij

θ̄.. = 1
m

m∑
j=1

θ̄.j

W = 1
m

m∑
j=1

s2
j where

s2
j = 1

n− 1

n∑
i=1

(θij − θ̄.j)2

Then we can estimate the weighted marginal posterior variance of the estimand,

and then finally we calculate R̂:

v̂ar+(θ|Data) = n− 1
n

W + 1
n
B

R̂ =
√

v̂ar+(θ|Data)
W

. 62

Gini Coefficient The Gini Coefficient (Gini, 1912; Ceriani and Verme, 2012) is widely

used to describe income inequality, and in a society where everybody earns exactly

the same amount, then the Gini coefficient will be zero and where all income is

earned by a single person, then it will have a value of one. The particular version

we use1 is calculated as follows: Given a pre-sorted vector X of the values of

interest with length N , and Xi denotes the ith element of the sorted vector X,

then we calculate as: 1
N

[
2
∑N

i=1 ixi∑N

i=1 xi
− (N + 1)

]
. 26

IEEE double a computer number format which is widely used to hold real valued

numerical quantities and is defined by an IEEE standard IEEE Task P754 (2008)

and is held in 8 bytes. The R language R Core Team (2015)‘numeric’ type is

defined to be an IEEE double 2 . 99

Kappa attempts to highlight the real gain in the performance of the classifier com-

pared to a classifier which was completely random, range is zero to one. If O
1R package ‘ineq’ function ‘Gini()’, (Zeileis, 2014)
2https://en.wikipedia.org/wiki/Double-precision_floating-point_format
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is the observed accuracy and E is the expected accuracy based on the marginal

totals of the confusion matrix, then Kappa = O−E
1−E , (Kuhn and Johnson, 2013).

Kappa can take on values between −1 and +1 and zero means that there is no

match while −1 means perfect disagreement and +1 means perfect agreement

between the observed and the predicted classes. . 49, 88

MAR Missing At Random, frequently used in reference to the imputation of missing

data. This refers to the case where data is missing at random in a way which

is independent of the covariates that we are interested in, which contrasts with

MNAR and MCAR 3. xxiii, 40

MCAR Missing Completely At Random, frequently used in reference to the imputa-

tion of missing data and sometimes called ‘uniform non-response’. In this case

there is no pattern to the missingness at all. Contrast with MAR and MNAR 4.

xxiii, 40

MNAR Missing Not At Random, frequently used in reference to the imputation of

missing data. In this case the data that is missing is correlated with the covariates

of interest and often occurs in political surveys where people at the top and

bottom of the income scale do not respond. Contrast with MAR and MCAR 5.

xxiii, 40

UAT is when the customer tests software before formal acceptance that it is to spec-

ification. 8

3www.missingdata.org.uk comprehensively describes the difference between these mechanisms in
the article ‘Missingness Mechanisms’

4www.missingdata.org.uk comprehensively describes the difference between these mechanisms in
the article ‘Missingness Mechanisms’

5www.missingdata.org.uk comprehensively describes the difference between these mechanisms in
the article ‘Missingness Mechanisms’

xxiii
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Chapter 1

Introduction

This chapter outlines the rest of the thesis and summarises the main contributions.

This research is about the modelling of the number of bugs in software systems. The

terms ‘bug’, ‘fault’ and ‘error’ will be used interchangeably, though in some literature

they have very specific and distinct meanings.

The dataset used in this research is from Open Source Software (OSS) and was

extracted from open sources of data and have been made available to other researchers

as part of this research.

1.1 Statistical motivation

Software is becoming increasingly complex and managing software projects is getting

more and more difficult. Bugs in software are now considered a given and rather than

trying to eliminate them, the goal is around their management. We extend previous

work by looking at how information across multiple versions can be used for inference

on future versions which we do using a hierarchical Non-Homogeneous Poisson model

combined with a data imputation model for labelling bugs which have no version.

1.2 Outline of the thesis and contributions

This thesis is divided into following chapters:

Chapter 2: Background Information

This chapter gives some background into software development practices and open

1



source software in particular. Software bug databases are discussed and the dataset

used as the motivation for this work is described. In particular a new dataset, Firefox-

2013, is introduced.

Chapter 3: Statistical Theory

This chapter reviews statistical inference and the Bayesian approach. Secondly, we

briefly outline the theory of Monte Carlo methods and Markov chain Monte Carlo

(MCMC). Thirdly, we review classification, and the distinction between generative

and declarative models. Finally we discuss models of software reliability.

Chapter 4: Goel-Okumoto

This chapter reviews the Goel-Okumoto model and looks to extend this work to soft-

ware projects where there are multiple related versions of the same software released

one after the other.

Chapter 5: Semi-Supervised Classification

Chapter 5 introduces the version model in a standalone form and shows that it is

surprisingly useful. This model imputes missing version labels in the bug database.

Chapter 6: Combined model

Chapter 6 presents the combined model and the results. The combined model takes

the version model which imputes labels and uses the Goel-Okumoto model on top of

this.

Chapter 7: Case Study

Chapter 6 presents a case study based on the Firefox dataset and looks at the optimal

release period by maximizing the expected utility.

Chapter 8: Discussion

Chapter 8 discusses the results and discusses future work.

Chapter 9: Conclusions

2



The last chapter briefly concludes the thesis.

1.3 Research Contributions

The following are the main contributions described in this thesis:

1. A new dataset, Firefox-2013, has been published for the community researching

software reliability.

2. Combining the information from successive versions can lead to better estimates

of parameters.

3. Using the information in the unlabelled bugs to augment the labelled bugs to

improve modelling.

4. A fast implementation of the above.

3
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Chapter 2

Background Information

2.1 Introduction

This chapter informally outlines some background information for this thesis and is

intended as a very short overview of software development, bugs and some of the issues

involved. Those already familiar with the domain can skip forward in this chapter to

Section 2.4 where there is a description of the dataset used later.

2.2 Background Information on Software Develop-

ment and Open Source

2.2.1 Software Development

Software development concerns the production of software whether in a commercial

or non-commercial setting, and the processes and procedures surrounding it. Software

engineering is famously defined by Boehm (1976) in his seminal paper at which time

software was already worth some $20 billion in the USA.

‘Software engineering is the means by which we attempt to produce all of

this software in a way that is both cost-effective and reliable enough to

deserve our trust.’

While some have taken to referring to ‘software engineering’, Lutz et al. (2014)

describe the first undergraduate degree in software engineering (as distinct from Com-

puter Science) in the United States which started in 1996 in the Rochester Institute of
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Technology (RIT). As a discipline software development is still very young compared

to other professional engineering disciplines such as civil engineering which can demon-

strate large scale projects requiring the coordination of huge numbers of people - think

of the Roman aqueducts about 2,000 years ago, the Egyptian pyramids about 4,000

years ago or Newgrange in the valley of the Boyne about 5,000 years ago.

Professional software development was in quite some turmoil in the early 1970s

when Knuth (1974) wrote his paper summarizing the arguments for structured pro-

gramming, which at the time was quite controversial. In that paper Knuth claimed

that ‘premature optimization is the root of all evil’, and by that he meant that pro-

grammers regularly try to write the ‘best’ code (using their definition of best) instead

of trying to write code that is reliable and maintainable. Software engineering as a

discipline still has considerable difficulties coordinating more than a handful of people

at a time. Bugs can easily be introduced when there are communications problems in

a team or between teams on a project. Many countries now have mandatory certifi-

cation of professional engineers, but not for software development. In safety critical

areas such as nuclear safety, air traffic control systems, motor vehicle braking systems

and medical devices, there has been considerable progress made in moving towards a

strict and refined development process, but in many small IT companies and in Open

Source, the process is considerably more ad hoc. There is currently work going on at

the International Organization for Standardization (ISO) relating to software for med-

ical devices, led by Dr. Fergal Mc Caffery of Dundalk Institute of Technology (DKIT),

and International Electrotechnical Commission (2014) was published in May 2014 and

a number of other documents are in train.

Historically the development of software traditionally went through a number of

separate and distinct phases: requirements gathering, design, coding, testing, release

and maintenance. Crucially, the duration of each phase of the project was dependent on

the functionality that was promised. Software was produced in a so called ‘Waterfall’

methodology, i.e. that everything was specified in advance, the customer signed off

on massive requirements documents and then a year or two later they would receive a

delivery of the final product. Since the majority of these huge projects failed1, there

has since been a movement to reduce the size of each ‘deliverable’. In many cases
1Depending on which reference you look at, some say more than 90% of these large projects fail to

meet the initial expectations.
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the requirements had gone out of date by the time the software was delivered. Quite

simply, it is easier and less risky to deliver a few small projects on time and on budget

than a single big project.

An extension of the waterfall model was the ‘V-model’ where the left hand side of

the ‘V’ comprised of the traditional development process, the software was ‘released’

at the base of the ‘V’ and the right hand side of the ‘V’ was the rest of the lifetime of

the software.

A further extension to the ‘V-model’ is the ‘W-model’ where the development life

cycle is in the left hand side of the ‘W’ and the testing life cycle is in the right most

half of the ‘W’, but there is still a clear separation between development and testing.

Agile programming was first expounded by Schwaber (1997) who described the

‘Scrum’ (Sutherland, 2012) methodology, which uses fixed short duration ‘sprints’ of

usually one month between releases. This is in marked contrast to the waterfall model

where the phase duration was variable. The Scrum methodology is used widely and in

particular by groups working on web time, including Google, Yahoo! and Microsoft.

At around the same time Beck (1999) was developing the ‘eXtreme Programming’

methodology (XP) and he said that deliverables should involve very small change sets

and Beck advocated having only one feature per release, hence eXtreme Programming.

This is particularly well suited to cloud delivered services as the provider can rollout

new features as and when they see fit. Facebook are proud that their software engineers

are pushed to rollout new features to the public in their first week at work which would

be completely unheard of in older software companies2.

In agile methodologies, the two halves of the ‘W’ are super-imposed so that there

is a test phase closely associated with each stage of development. As the software

requirements are written they are immediately passed to the test team who write the

testing documents against them, so they are written simultaneously and collaboratively

instead. There is an agile methodology called Test Driven Development (TDD), which

is gaining ground, where the tests are written by the developer before the code. TDD

encourages the developer to mentally better explore the edge cases where bugs are

more likely to occur.

2https://www.facebook.com/video/video.php?v=10150411360573109
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Traditionally, the code was created and finished by the development team and

bundled up and passed over to a test team. Often known as ‘throwing the code over

the wall’. The test team looked for bugs and documented these bugs. The development

team then fixed these bugs and created a new build for the test team. There is often a

lot of antagonism between the development and test teams, where the former say the

latter are slowing down the development process by finding bugs and the later retort

that it would all be much quicker if development did not put bugs in their code. This

process was iterated until the production manager decided to release a build to the

customer. At this point, the customer’s User Acceptance Testing (UAT) team started

doing their testing and they sent their bugs back to the company whose test team

verified the bugs and documented them, and the development team fixed the bugs

and so the cycle went. Note also that a non-trivial proportion of fixes to bugs will

themselves also introduce bugs, some very significant indeed like the famous ‘heart-

bleed’ bug in OpenSSL which was introduced during a bug fix and caused significant

disruption to secure websites in the spring of 20143. The ‘traditional’ process for

software development is still widely taught and used.

van Vliet (2000) discusses the general principles of software engineering. O’Regan

(2002) discusses specifics of software quality.

2.2.2 Open Source Software

Open Source is a movement which promotes the free distribution of products, most

notably software. Many well known software systems are Open Source, including the

Linux Kernel4, Mozilla Firefox5, Mozilla Thunderbird6 and the Apache webserver7.

Fitzgerald (2006); Raymond (1999); Feller and Fitzgerald (2002) go into some con-

siderable detail about Open Source8 software which is developed in a non-traditional

fashion, though these books are a bit dated now and Open Source development method-

ologies move quite quickly compared to those in many large commercial organizations

which do not understand the threat that their businesses are under. The source code
3https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
4http://kernel.org
5http://www.mozilla.org/en-US/firefox/fx/
6https://www.mozilla.org/en-US/thunderbird/
7http://httpd.apache.org/
8http://opensource.org/
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is available for anybody on the Internet to download at any time, and anybody can

write useful code which can be incorporated into the main trunk of code. Many coders

will cooperate with others to build bigger useful components, but sometimes complete

outsiders will submit code which is incorporated. Big projects like Firefox will have

dedicated testers, but most of the bugs will be logged by people who are not associated

directly with the project.

The development process methodology in Open Source projects can vary greatly

from extremely structured to extremely unstructured. As a general rule the larger

and older the project the more structured the development process. Linux has been

in development in public since Linus Torvalds made an announcement in the autumn

of 1991 on the comp.os.minix newsgroup. Initially anybody who wanted to make a

change or an addition to the project sent a ‘patch’ to Linus Torvalds and he merged

it into his code. Today there is a hierarchical structure and Torvalds has a number of

lieutenants who manage subsystems, and below there is another layer of people who

manage smaller subsystems (Corbet et al., 2015). However, Torvalds is still the overall

lead on the project.9

2.2.3 Mozilla Firefox Development

Mozilla Firefox is a well known Internet browser which was first released more than ten

years ago in November 2004 and published by the Mozilla Corporation (2013a), itself

a wholly owned subsidiary of the Mozilla Foundation (Mozilla Foundation, 2013). The

Mozilla Foundation is a non-profit organization “dedicated to keeping the power of the

Web in people’s hands.”, 10 The Mozilla Corporation earns revenue primarily through

deals with search providers (Mozilla Corporation, 2013b) and employs many of the

developers and testers who work on Firefox. Recent studies (International Telecom-

munications Union, 2013; w3counter, 2013; Stats, 2013; Wikimedia, 2013; Clicky, 2013)

suggest that there were of the order of 450 million users of Firefox across a number

of versions in 2012 and it has likely exceeded 500 million in 2013, as the ITU has es-

timated the number of Internet users at 2,749 million and Firefox usage is estimated

at approximately 20%. Mozilla themselves claim that in May 2015 that ‘Half a billion

9http://en.wikipedia.org/wiki/History_of_Linux
10https://www.mozilla.org/en-US/mission/
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people around the world use Firefox’. 11

Firefox is an open source (Feller and Fitzgerald, 2002) project which derived from

the Netscape browser in 1998 when it was open sourced12. Since 2011 Firefox has been

developed using an Agile (Schwaber, 1997) methodology. Bug reports are public13 and

the source code is in a publicly accessible repository,14. Mozilla Firefox is relatively

unusual in being released on a very short (42 day) fixed release cycle. Version 5 of

Firefox, released on the 21st of June 2011, was the first of the ‘Rapid-Releases’ and

there was a 56 day gap before version 6 was released. Subsequent versions have been

released every 42 days or almost. Firefox version 18 was released on the 8th of January

2013, and version 19 was scheduled for release in the week of the 18th of February

2013, and was actually released on the 19th of February 2013. At the end of May 2015,

the current release is 38 which was released on the 12th of May 2015, and according

to https://wiki.mozilla.org/RapidRelease/Calendar, version 39 will be released

on the 30th of June 2015. Note that https://wiki.mozilla.org/RapidRelease/

Calendar appears to be the authoritative source of information on software releases

by the Mozilla organization despite being a Wiki.

As an open source project, the Firefox project is managed in a transparent way

across the Internet through https://wiki.mozilla.org/Firefox, and bugs can be

reported by anybody to https://bugzilla.mozilla.org, which is a database for

recording and managing bugs relating to the Mozilla project. These bugs often go into

a triage process where duplicates are marked as such and some reports are marked as

INVALID or sometimes that the report is actually an ‘enhancement’.

The Blackduck (2014) project tracks the activity of Open Source projects. As of

the 1st of March 2013, Firefox was made up of 8.8 million lines of code and 1.6 million

comment lines. As of May 2015, Firefox was made up of 13.0 million lines of code

and 2.1 million comment lines. Until early 2007, there were less than 20 contributors

of code in a given month, and then in the spring of 2007 the numbers jumped so

that by June 2007 there were 121 individual contributors. Since then the number of

contributors has grown to more than 300 and appears to be growing still, and there

11https://blog.mozilla.org/press/ataglance/
12http://en.wikipedia.org/wiki/History_of_Firefox
13Some bugs deemed to be security or HR related are not visible to the public.
14https://developer.mozilla.org/en-US/docs/Developer_Guide/Source_Code/

Downloading_Source_Archives
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were 383 unique contributors to the Firefox project in April 2015. As of May 2015, in

total there have been more than 253,000 commits made by 3,499 contributors which

took an estimated 4,064 years of effort using the COCOMO model (Boehm, 1984).

The number of commits in the 12 months to 2015-05-28 is 60,226 and the number of

unique contributors as 1,217. A total of 28,612,890 lines were added and 20,154,184

lines were removed - or possibly just changed.

2.3 Bugs!

Bugs in software are a big problem that can cost money and lives - there are many well

known examples, including the death of patients that were given overdoses of radiation

therapy and banks overcharging15. Knight Capital was caused to loose $465 million

due to a number of software bugs and a poor testing environment16.

Software is unusual in this world in that it does not wear out like physical products,

though it can still fail. Physical products can have design flaws in exactly the same

way that software does, i.e. it does not do what it was supposed to do, but physical

products also have the added failure mode of physical failure when they break. Since

software is digital, it cannot wear out in the same way and it can be copied perfectly.

However, over time large software projects can end up being configured in ways that

were not originally intended and can drift into a less than perfect state. After the

last official release of a product when it is in maintenance, software which is not in

active development can become more awkward to maintain as often the maintainers are

often less experienced developers who did not participate in the original development

of the system and are not that familiar with the code base. Yin et al. (2011) estimated

that between 14 and 24% of bug fixes introduce new bugs into the system. In an

Irish example, the Garda Pulse system was written and maintained by staff from a

large consulting multinational. An acquaintance was asked to review the work and

large sections of it consisted of very poorly written code where hundreds of lines of

code were copy/pasted dozens of times with only a tiny modification each time. Best

practice which would be to re-factor the code and parameterize it - should a change

have been required in this code, then all of cases of the copied code would have needed
15http://en.wikipedia.org/wiki/List_of_software_bugs
16http://pythonsweetness.tumblr.com/post/64740079543/how-to-lose-172-222-a-second-for-45-minutes
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to be changed - making it highly likely to insert a new bug while fixing an old one.

In software engineering, Fowler has described ‘obvious’ patterns like this as having a

‘smell’17, (Fowler, 1999).

When there is a problem with software we generally call it a ‘bug’. For the purposes

of this thesis, a ‘bug’ is a mismatch between what the user expects and what the

software actually does, although others have used much stricter definitions. This turns

out to be quite difficult to work with, since many users will have different expectations.

A user might report a bug, but the software might have been deliberately designed

with a feature built in this particular way; the software developers will mark such a

bug report as ‘WONTFIX’ and they will close the report, i.e. they have no intention

of fixing this bug. This is seen on a regular basis by those subscribed to the R-HELP

and R-DEVEL mailing lists relating to R (R Core Team, 2015), as users claim to have

found a bug in R and in most cases, the R-Core team reply that they have not found a

bug in R and that the user has misunderstood. There may be no documents saying that

the software is designed in this particular way, but it is the developers who effectively

own the bug database, and have the final word. Requirements and specifications can

exist as a collective understanding amongst a group of developers, built through time

in chats over the Internet or in the pub, and they will be adamant that this piece

of software was always meant to be created in a particular way despite there being

no written document to say this. Some large Open Source organizations, such as

Mozilla, now employ full-time product managers whose job it is to define the expected

behaviour of the product. Note that the definition of a bug that is commonly used

in proprietary software development is a mismatch between the original specification

and what software actually does, e.g. Musa et al. (1987), on page 8, defines a software

failure as:

‘. . . the departure of the external results of program operation from require-

ments.’

However, in Open Source development there is frequently no set of written require-

ments or a specification as the software is not created as a “product”, but by groups

of developers who want to do things better or differently. It is possible that some of

these developers might have sketched out some requirements but they are laying at
17http://martinfowler.com/bliki/CodeSmell.html
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home or have been thrown in the bin. Equally, some Open Source projects, like Perl,

create detailed and long lasting specification documents which go through long review

processes18.

People think of failures as being catastrophic failures, but they come in all shapes

and sizes from a complete crash to a bank miscalculating the interest you must repay

on your loan to the trivial misspelt label in some hidden backwater of the software

which nobody normally ever sees. These differences are normally labelled in a bug

tracking system using the Severity variable and for Bugzilla it has the following levels:

blocker, critical, major, normal, minor, trivial and enhancement. This study excludes

bugs marked as enhancement.

Software can fail because of hardware faults, or in rare cases the software executable

can be modified by a cosmic ray and not repaired by error correcting mechanisms

inherent in many components of modern computer hardware and thus cause a failure.

However, in most cases failures are due to a flaw being introduced at some stage of

the production process and exists silently from before the software is ever used. Here

we will concentrate on pure software failures and we will ignore failures caused by

hardware or otherwise. Some literature in the domain, such as Pham (2010), describes

failures in software as if they were hardware failures, i.e. that something was physically

broken, which can be confusing as this is just not the case with software.

The typical life-cycle of a bug is that there is a mistake made in the design or in

the coding stage, and then it can be repaired (possibly imperfectly) at any stage after

that.19 Studies have shown that the cost of a bug increases by an order of magnitude

for each phase later that it is detected; the earliest of these studies are highlighted in

the seminal paper on Software Engineering by Boehm (1976). For example if the cost

of a defect is x when it is detected in the (first) design stage, then it is 10x if detected

in the development stage, 100x if detected in the testing phase and 1, 000x if detected

after release.20 Figure 3 in Boehm (1976) shows a plot of some data from IBM, TRW

and GTE which implies a factor of about 2.5 per phase but this is clearly quite old

18http://perl6.org/specification/
19Bugs can also be due to mistakes in a configuration file and nothing to do with the software code.

From the users’ perspective they cannot tell that this is due to a configuration file problem and to
them it is just a bug.

20Depending on the study the factor 10 varies from 7 upwards but the principle that the later the
bug is detected is what is really important.
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data and the systems developed back then were obviously much smaller in scale. One

explanation of why this occurs is that when a defect occurs in a later cycle, the work in

previous cycles has to be re-done, e.g. if there is a defect in the original requirements,

then this will cause work in all of the following stages, i.e. design, coding and testing
21. More recently, Kan (1995, Section 6.4) describes a number of studies which give

cost ratios of between 1 and 92 and points out that the effort to track down and fix a

bug that is found in the field is much higher.

While Musa et al. (1987) states that documentation defects are not bugs, we argue

that documentation is part of the product as a whole and a documentation defect

will cause the user to have incorrect expectations as to the way the software works,

and thus in our opinion it is a bug. A thorough glossary of testing terminology has

been produced by the International Software Testing Qualifications Board (ISTQB) an

industry body22. The ISTQB defines an ‘anomaly’ as:

‘Any condition that deviates from expectation based on requirements speci-

fications, design documents, user documents, standards, etc., or from some-

one’s perception or experience. Anomalies may be found during, but not

limited to, reviewing, testing, analysis, compilation, or use of software prod-

ucts or applicable documentation. See Also: defect, error, fault, failure,

incident, problem’

Curiously the ISTQB do not define a ‘bug’, but they define a defect as:

‘A flaw in a component or system that can cause the component or system

to fail to perform its required function, e.g., an incorrect statement or data

definition. A defect, if encountered during execution, may cause a failure

of the component or system. Synonyms: bug, fault, problem’

Our definition is supported by the seminal work of Boehm (1976) where the definition

of ‘software engineering’ specifically includes . . . not only computer programs, but also

the associated documentation required to develop, operate, and maintain the programs

and he further goes on to emphasise this point and writes the following definition:

21http://istqbexamcertification.com/what-is-the-cost-of-defects-in-software-testing/
22http://www.istqb.org/downloads/glossary.html
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Fig. 2.1: The life cycle of a bug in the Bugzilla bug tracking system. Copyright The

Mozilla Foundation, licensed under the MPL.

‘Software Engineering: The practical application of scientific knowledge

in the design and construction of computer programs and the associated

documentation required to develop, operate, and maintain them.’

The Bugzilla project defines the life cycle of a bug in the Bugzilla bug tracking

system in their documentation (The Bugzilla Team, 2014, Section 5.4), refer also to

their diagram copied here as Figure 2.1 23.

2.3.1 Bug Databases

In many cases we do not know of the existence of a bug until somebody actually spots

it and records this. Most users do not record bugs but try to ignore them and the first

record is not necessarily the first sight of the bug. Further, a user might not recognize
23https://bugzilla.readthedocs.org/en/latest/_images/bzLifecycle.png
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something as a bug. The exception here are so called regression bugs which can be

automatically detected and logged because of an automated test and a framework to

manage it.

It is important to note that the time and date of the failures are actually the time

and date they were first recorded in a bug database, since these bugs have been around

since the software was first created and there is no ‘wear and tear’ in digital software.

For the purposes of this work we are looking at the bugs that are recorded in the bug

database https://bugzilla.mozilla.org/. On the 23rd of April 2014 the millionth

bug was filed in the Mozilla bug database which includes a variety of projects, only

one of which is Firefox. As of 9am on the 9th of October 2014, there were 1,080,387

bugs filed, by noon on the 28th of May 2015 there were 1,169,220 bugs in Bugzilla.

Some bugs are duplicates of previously reported bugs and eventually they will be

linked to the first such bug that was actively examined and commented on by the

triage or development teams and marked as a duplicate. Other bugs will be marked

as ‘WONTFIX’, i.e. somebody on the project with authority has decided, that for

some reason, nothing will be done about this bug and they just close it. Bugs can be

perfectly valid, but if the developers are not able to reproduce it, then they cannot

fix it so it might just be closed, e.g. the infamous user plea “it doesn’t work”. Other

bug reports might not have enough information and will be closed. For the purposes

of this work we will only be looking at bugs which have a resolution of either open,

i.e. ‘—’ or ‘FIXED’. Bugs with a status of ‘UNCONFIRMED’ will be ignored as many

will go on to be marked as duplicates or invalid in some way or else the person doing

triage will tidy up the report to clean it up. Bugs can also occur in configuration files

and example files that are provided with a software release. A consistent approach was

taken to the queries used in this research to reduce bias.

Many developers do not record bugs in bug databases, but instead they either just

ignore them24 or they will just fix the bug without recording it.25
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2.3.2 Bug Data

Figure 2.2 shows the cumulative number of bugs assigned to version 10 of Firefox as

extracted from Bugzilla in early February 2013. The red vertical dashed line shows the

release date and the blue vertical dotted lines show the release dates of other versions

of Firefox26. Version 10 Extended Support Release (ESR) was released to the public

on the 31st of January 2012 and version 11 was released 42 days later on the 13th

of March 2012. An Extended Support Release (Mozillians, 2011) is given support by

the Mozilla organisation for nine release cycles (54 weeks) helping organisations which

cannot roll-out new versions of Firefox every six weeks. This means that releases with

security patches and other important bug fixes will continue for much longer than the

normal 42 day release cycle. For our purposes, it means that reliable bug data will

continue to be logged for more than a year after the original release date.

2.3.3 Open Data

Open data is an old concept, but has been recently been formalized in a number of ways

including at http://opendefinition.org/okd/ and http://okfn.org/opendata/.

‘Open data is data that can be freely used, reused and redistributed by any-

one - subject only, at most, to the requirement to attribute and sharealike.’

- OpenDefinition.org

The advantage of open data for statistics research is that researchers from around

the world can use the same set of data to test their models, thus allowing more direct

comparison between models from different researchers. Until now researchers in the

domain have used either proprietary data which has not been made public, or they

have used the Naval Tactical Data System (NTDS) data which dates back to a paper

(Jelinski and Moranda, 1972) from the early 1970s and which implies to the author

that the data are from the 1960s. It includes no covariate information, and the details

of its origins are classified as defence related. Discussions the authors have had with

others in the domain have failed to shed any light on the issue.
24Thus avoiding creating work for themselves!
25Speaking with Prof. Brian Ripley in July 2012 regarding the R-Project, he recommended looking

at the subversion check-in notes for records of bugs fixed and comparing it with the Bugzilla records.
26Minor security and patch releases are ignored in this document.
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Curiously, while many authors cite Jelinski and Moranda (1972) as being the source

of the NTDS dataset, the original and difficult to obtain paper does not actually contain

the data for the NTDS dataset, and the first publication of the dataset, to the authors’

knowledge, is in Goel and Okumoto (1979).

Since Jelinski and Moranda (1972)’s seminal work, many papers in the area of

software reliability have used the NTDS dataset. A strength, but also a weakness of

the NTDS dataset is its simplicity.

A number of datasets including NTDS are described in Pham (2010), however all

of these datasets are quite simple, having only dozens of bugs at most and all of these

datasets except one are restricted to only one version, the exception having two versions

with 26 bugs recorded in the first and 43 bugs recorded in the second.

Papers such as Ravishanker et al. (2008) have used data sets other than NTDS

or they have simulated datasets for analysis in their paper, but unfortunately these

datasets are not made available publicly to other software reliability researchers.

Other bug datasets have been published, e.g. (Lamkanfi et al., 2013)27 and (D’Ambros

et al., 2010)28, but these datasets are quite complex and intended for those who are

data mining for information within bugs, e.g. looking for swear words within the text

of a bug report29.

2.4 The Firefox-2013 Dataset

Here we describe a dataset on bug discovery for the Internet browser Mozilla Fire-

fox. This dataset has been made publicly available at https://github.com/seanpor/

Firefox-2013. We have worked hard to make it easily accessible to researchers in soft-

ware reliability and believe that it provides excellent opportunities to allow researchers

to propose and evaluate a variety of software reliability models.

Figure 2.3 shows the cumulative number of bugs for each of the rapid releases of

Firefox. The dashed vertical lines in the figure correspond to release dates. Table 2.1

shows the count of each bug which is labelled with a version in the dataset. We have

taken all versions prior to release 5 and labelled them as ‘PreRapid’, and all bugs

27https://github.com/ansymo/msr2013-bug_dataset
28http://bug.inf.usi.ch/
29https://github.com/ansymo/msr2013-bug_dataset/tree/master/examples/swearing
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marked as ‘UNSPECIFIED’ or ‘TRUNK’ have been relabelled as ‘Unknown’. As can

be seen in Figure 2.3, the paths of each of the known releases are largely parallel to

each other and there are often an inflection points on the release date. This inflection

point is at the point where the number of users (or testers) jumps within a few days

from thousands to tens or hundreds of millions and this could be interpreted in a

Goel-Okumoto model (Goel and Okumoto, 1979) as having a different b, which we will

discuss further in Chapter 4. Once the next version has been released, the number of

users drops suddenly giving another inflection.

As can be seen in Table 2.1, most defects are recorded against TRUNK or UN-

SPECIFIED, which we have combined and relabelled as ‘Unknown’. Note that we do

not include the many defects which have been marked as an ‘enhancement’, or re-

jected as one of (DUPLICATE, EXPIRED, INCOMPLETE, INVALID, WONTFIX,

WORKSFORME) or it is still in the state UNCONFIRMED.

As previously mentioned, for the purposes of this work we will only be looking at

bugs which have a resolution of either open, i.e. ‘—’ or ‘FIXED’. Bugs with a status

of ‘UNCONFIRMED’ will be ignored as many will go on to be marked as duplicates

or invalid in some way or else the person doing triage will tidy up the report to clean

it up.

2.4.1 Fields in the dataset

The data are based on an ‘academic snapshot’, of the full Bugzilla database made on

the 18th of July 2013. In constructing the ‘academic snapshot’, the Mozilla team have

removed any bugs which might be security or HR related. Our data has been further

filtered to refer to only Firefox bugs on or after 2011-01-01 which are marked as neither

enhancements nor UNCONFIRMED.

The data are taken from a snapshot of https://bugzilla.mozilla.org/ taken on

the 18th of July 2013.

There is one record per bug. Note that bug reports are not perfect and may have

mistakes, but they are a record of what was in the Bugzilla database on the 18th of

July 2013. Note too that fields such as bug_severity and priority may be changed

after the bug is originally reported - typically by those in triage or a developer who sees

a trivial bug marked as high severity and high priority. Each record has the following
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Release BugCount

PreRapid 102

5 42

6 41

7 41

8 65

9 65

10 99

11 78

12 119

13 125

14 118

15 127

16 85

17 135

18 124

19 126

20 121

21 108

22 91

23 76

24 48

25 23

Unknown 8,461

10,420

Table 2.1: The number of bugs logged to Bugzilla for each individual Rapid-Release

version of Firefox.

fields

Version : The version number of Firefox associated with this bug, e.g. 14, or ‘Pre-

Rapid’ to describe any version prior to 5, or ‘Unknown’ for any bug which did

not have a version number associated with it.
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bug id : The original bug number in the Bugzilla database. Further details on this

bug can be queried at https://bugzilla.mozilla.org/.

bug severity : One of: blocker, critical, major, normal, minor, trivial. Note that

these labels have an order.

bug status : One of: ASSIGNED, NEW, REOPENED, RESOLVED, VERIFIED.

priority : One of: ‘–’, P1, P2, P3, P4, P5. Where P1 has the highest priority and ‘–’

means that no priority has been assigned.

creation ts : A character string POSIX time stamp of when the bug was first inserted

into the Bugzilla database, e.g. "2011-04-13 17:19:05".

reporter : The ID number of the person reporting the bug from the underlying

Bugzilla database - for privacy reasons instead of needlessly using email addresses.

component id : The ID number of the component from the Bugzilla database. There

are 45 components used in Firefox, some of which are shared with other Mozilla

Corporation products like Thunderbird.

2.4.2 Version Covariates

This subsection describes the covariates and how they were created and extracted.

There is one covariate for each version of the software as specified by the Version

field. There are many bugs recorded for each version.

Referring to Section 2.4.2, for each version of Firefox from 5 to 25 we have the

following information:

Version : The release version number, e.g. 5.

Release The release version as text, e.g. ‘release-15.0’.

FChanged : The number of files changed since the previous version.

LInserts : The number of lines added since the previous version.

LDeletions : The number of lines deleted since the previous version.

releasedate : The release date for this version.
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The items: FChanged, LInserts and LDeletions were obtained by extracting the

tarballs for the source files for all the versions of Firefox and running a command such

as:

diff -r moz-18.0/ moz-19.0/ | diffstat -s

Where moz-18.0 and moz-19.0 are the directory trees for Mozilla Firefox Release

18.0 and 19.0 respectively.

Note that the release dates for versions 23, 24 and 25 are after the cut-off date,

18th of July 2013, for bugs in this database.

Note too that where there is a minor change to a line, e.g. a single character is

changed, then that will be recorded here as one line deleted and one line added.
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Version Release FChanged LInserts LDeletions releasedate

5 release-5.0 3618 72367 62832 2011-06-21

6 release-6.0 4276 90398 83114 2011-08-16

7 release-7.0 4493 92537 78987 2011-09-27

8 release-8.0 7341 74473 70222 2011-11-08

9 release-9.0 4377 109381 73509 2011-12-20

10 release-10.0 6073 148795 122633 2012-01-31

11 release-11.0 4805 108274 76724 2012-03-13

12 release-12.0 4457 123432 84129 2012-04-24

13 release-13.0 4688 150233 106764 2012-06-05

14 release-14.0.1 16835 355941 560277 2012-07-17

15 release-15.0 15728 257432 501298 2012-08-28

16 release-16.0 6349 132879 84268 2012-10-09

17 release-17.0 1051 28867 22179 2012-11-20

18 release-18.0 1315 29593 22844 2013-01-08

19 release-19.0 6133 129714 149368 2013-02-19

20 release-20.0 6393 250433 180606 2013-04-02

21 release-21.0 6840 146689 108744 2013-05-14

22 release-22.0 9569 220244 171637 2013-06-25

23 release-23.0 11149 166918 121491 2013-08-06

24 release-24.0 6924 153191 115052 2013-09-17

25 release-25.0 10933 248838 201130 2013-10-29

Table 2.2: Covariate Information on Firefox Releases 5 to 25

2.5 Inequality of effort

An analysis of the raw Bugzilla database for Firefox shows that 29,515 unique email

addresses recorded 60,801 defects between 2008-Nov-20 when the first of the rapid

release bugs was recorded and the 2013-July-18 when the snapshot of the database

was taken. Note that of the 29,515 unique email addresses who recorded bugs, an

astonishing 24,392 or 83% recorded only one bug. At the other extreme, one particular

email address has recorded 551 unique defects.
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Clearly with hundreds of million users and only 29,515 unique email addresses

recording bugs, there must be bugs that have been seen many times and other bugs

that have been seen and not recorded.

Putting it another way, has the reader experienced an issue with Firefox? If so,

have they reported this to the Mozilla project?

As a simple illustration of the sorts of analyses that can be done with the Firefox-

2013 dataset, we look at the number of people who just report one bug and compare

it with the number of people who report more than one bug we can see that across all

versions of the dataset, that as time progresses that fewer people are doing more of the

work. Refer to Figures 2.4 to 2.8. A loess smoother30 has been added to these plots.

The extent of this can be measured using the Gini coefficient (Gini, 1912; Ceriani

and Verme, 2012), which is normally used for measuring income inequality. In it’s

common usage, a Gini Coefficient of 1.0 means that all of the wealth of a country is

concentrated in one person and a coefficient of 0.0 means that the wealth is perfectly

evenly distributed. So in the normal context of the Gini coefficient, a time increasing

Gini coefficient increasing means that that the wealth of that country is becoming

concentrated in fewer people.

In this case, the higher the Gini coefficient, the more that a small number of people

are reporting more bugs, and also that a large number of people are reporting only one

bug.

In the Firefox-2013 dataset there are a total of 1,761 separate email addresses31 who

recorded 10,420 bugs. However, the top ten testers recorded 2,397 bugs, or 23% of the

total, and 1,103 testers only recorded one bug. This corresponds to a Gini coefficient of

0.758, Figure 2.4. If the Gini coefficient was zero, then there would be a single vertical

bar in this graph, i.e. everybody would be reporting the same number of bugs.

Curiously, the Gini coefficient for bug reporting email addresses seems to be in-

creasing over time, see Figure 2.8. The implication of an increasing Gini coefficient is

that there is a smaller and smaller group of testers who are doing more and more of the

work and that the majority of the testers recording bugs only record a small number

of bugs.

30R function ‘stats::loess()’
31Here we assume email addresses are a proxy for people
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Chapter 3

Statistical Theory

3.1 Introduction

This chapter is intended as a compendium of the methods used in later chapters in

order to allow the latter to be more readable. The interested reader might consider

referring back from those later chapters when they are looking for more detail. This

chapter reviews statistical inference and the Bayesian approach, it outlines Monte Carlo

theory and the Markov Chain Monte Carlo (MCMC) methodology. The theory of

classification is briefly reviewed and the distinction between generative and declarative

models reviewed. Finally some background on the modelling of software reliability

models is covered.

3.2 Decision Making

When there is no uncertainty, decision making is easy. However, in real life there is

always uncertainty about the future. All decisions must be made under some uncer-

tainty since we cannot predict the future. Even if were to know the lottery numbers in

advance of the draw, the world is an unpredictable place and the lottery may be can-

celled! French (1986); Lindley (1985) are two good and very readable texts on decision

making.

Following Gelman et al. (2013) very closely, in order to make a decision in a Bayesian

context we must follow four steps:

1. Enumerate the entire decision space, i.e. all possible decisions, d and all possible
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outcomes, x.

2. Determine the probability distribution of x for each possible decision occurring,

i.e. p(x|d), the conditional posterior distribution.

3. Define a utility function, U(x) which maps the outcomes to some real life value,

e.g. a monetary value. For example, if we make decision d1, then the net value

is 800, but if we make decision d2, then the net value is 700.

4. Compute the expected utility, E(U(x)|d) = ∑
x U(x)p(x|d)) and chose the deci-

sion which maximises the expected utility. Where the decisions are discrete, e.g.

d1 we will buy a red car, or d2 we will buy a black motorcycle, then we can create

a decision tree and we calculate the expected utility of each of the end nodes of

the tree and pick the node with the highest utility. In a continuous setting, e.g.

on what future date should we release this software given our current knowledge,

then we might have a utility function of time and we optimize for the maximum

value of utility to find the time when the software should be released. Note that

decision trees can be of arbitrary depth and complexity.

While in this work we only consider one-step-ahead decisions, more complicated

processes for software release decisions also exist, refer McDaid (1998); McDaid and

Wilson (2001); Singpurwalla and Wilson (1999).

3.3 Bayesian Inference

Bayes’ theorem dates back to somewhere between 1746 and 1749 years and was pub-

lished posthumously by his friend Richard Price who recognized its importance, (McGrayne,

2011). In short it says that:

Posterior probability ∝ Likelihood× Prior belief (3.1)

Laplace independently re-discovered it some fifty years later and used it extensively

in a variety of settings. McGrayne (2011) goes on to describe the fascinating story of

how Bayes’ theorem has been used and suppressed through the centuries. For instance,

Turing used prior knowledge of the contents of German encrypted messages to help to

probabilistically determine the contents, e.g. “Beacons lit as ordered”. However, it was
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not until Metropolis et al. (1953) and the practical use of Markov Chain Monte Carlo

that the real value of it was realized in statistical physics, though at the time only

places like Los Alamos had computers which were required to use it. Hastings (1970)

generalized the algorithm to what is now known as Metropolis-Hastings and allowed

asymmetric proposal distributions. However, the larger statistical community was quite

unaware of this according to Geyer (2011); Robert and Casella (2011). Despite what

are considered to be well known papers now, (Geman and Geman, 1984; Tanner and

Wong, 1987), it was not until (Gelfand and Smith, 1990) that it was brought to the

wider statistical community.

In modern usage we write Bayes’ rule as either of the following:

p(y|x) =p(x|y)p(y)
p(x) (3.2)

= p(x|y)p(y)∑
y p(x|y)p(y) (3.3)

Where the latter is used when we can enumerate all possible values of y. For

continuous variables this becomes:

p(y|x) = p(x|y)p(y)∫
p(x|y)p(y)dy (3.4)

This is often written as:

p(θ|D)︸ ︷︷ ︸
Posterior

= p(D|θ)︸ ︷︷ ︸
Likelihood

p(θ)︸ ︷︷ ︸
Prior

/ p(D)︸ ︷︷ ︸
Evidence

(3.5)

Where D is the data which is considered fixed and θ are the parameters of the model.

Since the denominator is not a function of θ,

p(θ|D) ∝ p(D|θ)× p(θ) (3.6)

is all that is needed in many practical instances.

A fundamental tenet of Bayesian statistics is that everything that is unknown can

be described by a probability distribution, i.e. a random variable, though it might

be difficult to describe this probability distribution, refer Bernardo and Smith (2000).

Furthermore, as de Finetti (1937) says in his opening paragraph as he outlines the

contents of the paper, probability is subjective:
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‘Il s’agit, d’une part, de la définition de la probabilité (que je considère

comme une entité purement subjective) et de la signification de ses lois,

et, d’autre part, des notions et de la théorie des événements et nombres

alétoires « équivalents »; . . . ’

Which very roughly translated is:

‘On the one hand this paper is about the definition of probability (which I

consider as something purely subjective) and the importance of these laws,

and on the other hand about the theory of events and random numbers . . . ’

In theory it is thus easy to evaluate the posterior, unfortunately in many instances

it can turn out to be difficult in practice. In the simplest scenario where we only have

a few parameters, we might evaluate the likelihood on a grid and multiply by the prior,

however, how does one know where to put the grid and how finely it should be spaced?

In higher dimensions, it is simply not practical to evaluate on a grid or using quadrature

(Acton, 1990; Evans and Swartz, 2000; Press, 2007), so Markov Chain Monte Carlo is

one common technique that is used, see Section 3.4.

3.4 Markov Chain Monte Carlo Methods

Having described some of the background above in Section 3.3, Markov Chain Monte

Carlo (MCMC) methods are a family of techniques used for statistical analysis in high

dimensions. In particular when we have a likelihood that is of low dimensions, say

five or less, then it is possible to evaluate it on a grid (possibly an adaptive grid)

using standard numerical analysis techniques of numerical integration or quadrature.

If we use a fixed grid of g points in each of d dimensions, then the number of function

evaluations, N , rises exponentially with the dimension, i.e. N = gd. However in higher

dimensions, because of the so called curse of dimensionality1, this is no longer possible

because with each extra dimension, calculations grow exponentially with dimension.

In contrast, using Monte Carlo techniques, we are not limited by the number of

dimensions but more by the complexity of the geometry of the sample space, since

the variance is not a function of the dimension. Here also we specify the number of
1http://en.wikipedia.org/wiki/Curse_of_dimensionality
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function evaluations, N .

p(θ|D)→ θ1, . . . , θn (3.7)

E[f(θ)] ≈ 1
N

N∑
i=1

f(θi) (3.8)

Following Bolstad (2010, Chapter 6) and Chib and Greenberg (1995), we attempt

to find a Markov chain that has the posterior distribution we are looking, π(·), for

given a long run. In continuous space, A, where A is any measurable subset, and π(·)

is the distribution of interest, we attempt to find P (θ, A) such that
∫
A
π(θ′)dθ′ =

∫
A
π(θ)P (θ, A)dθ (3.9)

where P (θ, A) is the transition kernel. Metropolis et al. (1953) and then extended

by Hastings (1970) came up with a general way of doing this in practice. As Gilks

et al. (1996, Page 6) explains, if we have a proposal function2, q(θ′, θ), and a likelihood

function, g(x), where x is the current location and θ′ is the proposed new location,

then to ensure detailed balance or reversibility, we need to ensure that

g(θ)q(θ, θ′) = g(θ′)q(θ′, θ) (3.10)

The Metropolis-Hastings algorithm supplied the solution by only moving with prob-

ability:

α(θ, θ′) = min
[
1, g(θ′)q(θ′, θ)
g(θ)q(θ, θ′)

]
(3.11)

In the following, we outline the Metropolis-Hastings algorithm for a single param-

eter θ, though it is trivial to extend this algorithm to a multi-dimensional ~θ:

1. Pick an initial value, θ(0), which you think is reasonable for your parameter based

on your prior knowledge.

2. Initialize the iteration counter i = 0, and then iterate the following many times,

say N times:

(a) Increment the iteration counter i
2Note that Chib and Greenberg (1995) describes q(θ′, θ) as the candidate-generating density, defined

as q(θ′, θ) =
∫
q(θ, θ′)dθ′ = 1 and interpreted as when a process is at the point θ, the density generates

a value θ′ from q(θ′, θ).
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(b) Generate θ′ ∼ q(θ(i−1), θ′)

(c) Calculate α(θ(i−1), θ′) = min
[
1, g(θ′)q(θ′,θ(i−1))

g(θ(i−1))q(θ(i−1),θ′)

]
(d) Draw a uniform random number u = U(0, 1)

(e) if u < α(θ(i−1), θ′) then accept the proposal and let θ(i) = θ′, else reject the

proposal and let θ(i) = θ(i−1),

When we have carried out the N iterations we obtain an array θ(1:N), or a chain.

Typically we would carry out the above procedure four times simultaneously on a quad-

core CPU from slightly different starting points and using different random number

generator sequences to obtain four chains. At one stage there was a lack of agreement

in the community as to whether it was better to have one very long chain or a number

of shorter chains (Gilks et al., 1996, Section 1.4.4), however with cheaper computing

power and multi-core processors, it seems to be general practice now to create multiple

chains. At this point, it is normal practice to plot the chains θ(1:N) on the Y-axis

against the iteration count, i.e. (1 : N) on the X-axis and review the chains for mixing

and convergence, i.e. do all the chains converge to the same approximate value and

does it bounce around this value for a while (Gelman et al., 2013). In practice, this

almost never works first time, and we adjust the initial values and the parameters of

the proposal function, and possibly run longer chains and chains of more than 100,000

iterations are not uncommon. In the case of Random Walk Metropolis we might use

Gaussian proposal distribution in which case the mean will be the current position and

the standard deviation is an adjustable parameter.

When we are happy with the convergence, then Gelman et al. (2013) recommends

throwing away the first halves of the chains and merging the remaining half-chains.

We can then calculate the mean and quantiles which should approximate our desired

distribution.

The well known Gibbs sampler (Geman and Geman, 1984) was been shown to be

a special case of Metropolis-Hastings by Gelman (1992).

We further note that this is a field with a wide and diverse literature and much

active research is being carried out.
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3.5 Hamiltonian Monte Carlo

Neal (2011) gives a clear description of the history of Hamiltonian Monte Carlo(HMC)

and then gives a good description of the technique. In this paper he states that the

first statistical use of HMC was his own in a tutorial paper in 1993 (Neal, 1993).

Informally, HMC uses the idea that if we are making good progress in exploring a

probability distribution by looking in one particular direction, then we should keep

going in this direction. In contrast Random Walk Monte Carlo (RWMC) will be

heading in a good direction and then will pick a new random direction, thus throwing

away the information that it has gained about going in a good direction. HMC is done

in a similar way as in Hamiltonian mechanics by adding the concept of momentum,

potential energy and kinetic energy. Following Neal’s description, we have our current

position and our speed and as we start to climb, our speed will decrease, our kinetic

energy will decrease and our potential energy will increase. To do this the gradient

at the current position needs to be calculated and in Stan (Stan Development Team,

2014a), this is done using automatic differentiation. So clearly this will only work when

we are using continuous and differentiable parameters and will not work for integer

valued parameters. Gelman et al. (2013) gives a clear description of the algorithm,

which we will skip here for space reasons.

3.6 Markov Chain Convergence

Following Connor and Goldschmidt (2012), we will outline the properties of Markov

chains in the discrete case (time and space), but this argument can be extended to the

continuous case. A Markov Chain X = X0, X1, . . . has state Xt at time t and X must

have the Markov property, that its current state must only depend on its last state,

i.e. that it has no memory, P (Xi+1|Xi, . . . , X0) = P (Xi+1|Xi) ∀ i ≥ 0.

If a Markov Chain is irreducible and positive-recurrent then it has a unique equi-

librium distribution. If in addition it is aperiodic, then the equilibrium distribution is

also the limiting distribution.

These well known conditions are:

irreducible

A discrete Markov chain is irreducible if for all i, j, it has a positive chance of
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visiting j at some positive time, if it starts at i.

positive-recurrent

A discrete Markov chain that returns to a given state i in finite time T is said to

be positive-recurrent.

aperiodic

If one cannot divide state-space into non-empty subsets such that the chain pro-

gresses through the subsets in a periodic way, then it is aperiodic.

In theory, if these conditions are held to be true, then a Markov Chain will converge

to a unique stationary distribution (Meyn and Tweedie, 1993). In theory and in practice

if there is detailed balance, then these conditions will hold, (Bolstad, 2010; Chib and

Greenberg, 1995).

If pi,j is the probability that the chain will move from i to j, then a Markov chain

satisfies detailed balance if there is a non-trivial solution of:

πipi,j = πjpj,i (3.12)

where π. is the distribution of interest.

In practice, there are no firm rules to tell us whether convergence will occur in a

finite (and reasonable) number of iterations, nor whether we have actually achieved

convergence. However, we do have some rules of thumb to guide us: (Gelman et al.,

1996; Gelman and Shirley, 2011; Gelman et al., 2013)

• Looking at the trace plot of a given parameter, i.e. a plot of the value on the

Y-axis against the iteration number on the X-axis, it should stabilize to a value

after some initial instability. Thereafter it should not jump around too much but

remain stable with what is known as mixing, i.e. that the parameter value of

high density is reasonably covered.

• Run a few chains, commonly four, from different starting points in the parameter

space and check that they appear to converge to the same value.

• Following Gelman et al. (2013), the chains are tested by splitting them in half

and then testing the variance between the eight halves (if you had four chains).
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It is important to note that no methodology is perfect and all tests are susceptible

to deception. Particularly in high dimensions, it is not possible to know for certain

that a chain or set of chains has converged. We guard against this by initializing the

parameters for each chain at different values and when we see the same regions being

explored by each of the chains, then this is considered in the community to be indicative

of good convergence.

Kruschke (2011, Section 7.1) gives a nice tutorial example of how Metropolis-

Hastings works.

When we have a Markov chain, there is almost inevitably some autocorrelation and

Gelman et al. (2013, Section 11.5) describes how the effective sample size might be

calculated.

3.7 Adaptive Monte Carlo

When doing Markov Chain Monte Carlo (MCMC) analysis, one problem that crops

up again and again is tuning, the process of persuading the chains to converge in

a reasonable time. This process involves, manually running the analysis a number of

times and looking at density plots and trace plots for the parameters and seeing whether

they make sense and whether the chains converge with good mixing and looking at the

acceptance rate for the chains. For a given MCMC setup we do not know the ‘best’

rate of acceptance, but we have the guidance from Gelman et al. (1996) that a rate

between 0.1 and 0.6 is probably optimal, though their research did not use our MCMC

chains, it has been found to be reasonable in common practice. As Rosenthal (2011)

clearly describes, the process of adjusting the initial values and proposal distributions

is generally done in an ad hoc manner, they further point out that Metropolis et al.

(1953) recognized this early. In high dimensions this is clearly difficult to do manually,

so why not try and automate the process?

We could create an optimization ‘wrapper’ around our code to find better param-

eters and restart over and over again, in effect mimicking the manual tuning process.

The most well known, early attempt at the automatic identification of ‘optimal’ pro-

posal distributions is probably Haario et al. (2001), but a lot of other work has been

done on this and it is still an active research area. Well known work includes Andrieu
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and Thoms (2008); Roberts and Rosenthal (2009) and indeed the first of which was in

a special issue of Statistics and Computing on Adaptive Monte Carlo Methods, with

guest editor Paul Fearnhead. There is even an R library which implements many of

these methods 3.

It is important to point out that one key difficulty with adaptive MCMC is that

it is easy to lose the important properties of MCMC and thus invalidate the work,

e.g. if we change the proposal distribution after 100 iterations, then we strongly risk

breaking reversibility and detailed balance. Roberts and Rosenthal (2007) gave some

important results relating to adaptive MCMC whereby if there is diminishing adaption

and containment, in particular the former, then Ergodicity should hold adaption and

thus the validity of using summaries of the full chains for inference.

An alternative approach is to run one of the many adaption algorithms to find

a better set of proposal parameters, and then to run from scratch using plain, non-

adaptive MCMC.

3.8 Imputation of Missing Data

Data can be missing from a dataset, and it is important to understand that there are

different ways of describing this ‘missingness’ (Carpenter and Kenward, 2013)4.

Missing data can be Missing Completely At Random (MCAR) where there is no

pattern what so ever to the missingness. Missing at Random (MAR) describes the case

where the factors that cause the data to be missing are independent of our covariates.

Finally, data can also be missing in a way which is dependent on our covariates - this

is a serious issue and more difficult to manage - Missing Not At Random (MNAR).

Following (Carpenter and Kenward, 2013), if we have a dataset Y , and we say that

Y = {Yo, Ym}, where Yo is observed and Ym is missing. We further say that R is an

indicator variable, which is zero if an observation is missing and 1 if it is observed. Thus

we denote the probability that a set of values are missing given the values taken by the

observed and missing observations, as P (R|Yo, Ym). Then we can say for MCAR that

P (R|Yo, Ym) = Pr(R). While for MAR that P (R|Yo, Ym) = Pr(R|Yo). Unfortunately,

we cannot make assumptions about missing data which is MNAR.
3http://www.bayesian-inference.com/software
4www.missingdata.org.uk
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When we have missing data, one possibility is to just pretend we did not know it

was there in the first place which is commonly done. However, this can lead to a loss

of efficiency because of the reduced size of your database. Rubin (1977, 1987) was the

first to come up with the idea of multiple imputation which seeks to replace the missing

data with a distribution and when this is done a number of times, then the analyst can

examine the effect on the outcome to get a better understanding of the full dataset and

the missing data. Further important work in the area was also carried out by Tanner

and Wong (1987); Tanner (1996).

In an MCMC context where we have missing data, it is generally not difficult to

replace missing data with a distribution and in each iteration we sample from that

distribution, and calculate our statistics on a nominally full dataset - except that in

each successive iteration the dataset will be different because of random sampling. The

advantage of this is that we will better understand the variability of the statistics we

wish to calculate than if we had discarded the missing data. A difficulty arises in

determining the distribution to use for the missing data. How this is done will depend

on whether we think that the missing data are missing at random (MAR) or missing

completely at random (MCAR). Special care is needed when we think that the data

are missing not at random (MNAR). In the context of recent election polling results in

the UK, it has been suggested that one of the reasons for the poor predictions was that

a larger proportion of Conservative voters who were polled either refused to answer or

answered that they would vote Labour than vice versa.

3.9 The Recursive Property of Bayes’ Theorem

If we take a dataset D1, a prior P0 and put these into a model M , we generate the

posterior P1. When we get a new updated dataset, D2, we know more about the

dataset and we can use the posterior P1 above as an informed prior. Using P1 as the

prior for the updated dataset D2, we then generate a new posterior P2.

Alternatively, we can put the two datasets D1, D2 together in an appropriate fashion

and use the same uninformative prior P0 and the result will be theoretically identical

to the above posterior P2. This has the nice advantage that we do not have to sample

from the empirical distribution P1 to be able to get to P2 in the first scenario.
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3.9.1 Proof of Recursive Property of Bayes’ Theorem

By the direct application of Bayes’ Law to our problem we say:

P (θ|D1, D2) = P (D1, D2|θ)× P (θ)
P (D1, D2) (3.13)

Where the term P (D1, D2|θ) is known as the ‘likelihood’, P (θ) is known as the ‘prior’

and the denominator, P (D1, D2) is a constant, since it doesn’t involve the parameter

θ.

In the case where the data D1, D2 are independent (technically this is not the case

in our scenario), we can say the following:

P (θ|D1, D2) = P (D2|θ)P (D1|θ)P (θ)
P (D1, D2) (3.14)

= P (D1)
P (D1) ×

P (D2|θ)P (D1|θ)P (θ)
P (D1, D2) (3.15)

= P (D1)
P (D1, D2) × P (D2|θ)

[
P (D1|θ)P (θ)

P (D1)

]
(3.16)

= P (D1)
P (D1, D2) × P (D2|θ)× P (θ|D1) (3.17)

= Constant× Likelihood× Prior (3.18)

In the case where D1, D2 are not independent which is true in our case, the im-

portance of this depends on how different the Likelihood term is from the independent

case.

P (θ|D1, D2) = P (D1|θ)× P (D2|θ,D1)× P (θ)
P (D1, D2) (3.19)

In the case where D1, D2 are independent, the term P (D2|θ,D1) is, by definition

equal to P (D2|θ).

3.10 Non-Homogeneous Poisson Process

Closely following the definition in Ross (1996, Chapter 2.4), a Non-Homogeneous Pois-

son process is a counting process {N(t), t ≥ 0} with a rate (intensity) function λ(t) for

t ≥ 0 if:

1. N(0) = 0.

42



2. {N(t), t ≥ 0} has independent increments.

3. P{N(t+ h)−N(t) ≥ 2} = o(h)

4. P{N(t+ h)−N(t) = 1} = λ(t)h+ o(h)

where by definition5 a function f is said to be o(h) if

lim
h→0

f(h)
h

= 0 (3.20)

However, going back to basics, a plain Poisson process looks like:

P [N(t) = k|λ] = (λt)k
k! e−λt (3.21)

A Non-Homogeneous Poisson Process (NHPP) has a rate Λ(t) which is a function

of time, so it looks like:

P [N(t) = k|Λ(t)] = Λ(t)k
k! e−Λ(t) (3.22)

In our case that is an estimate of the number of bugs that will be discovered by

time t. In our case, we have the actual times of the N bugs up to time T , i.e. we have

observed the values of the times:

t1 < t2 < . . . < tn (3.23)

up to time T , for T >= tn and thus we can write the likelihood of this as:

∏
i

Λ(ti)× e−Λ(T ) (3.24)

3.11 Hierarchical Models

Gelman and Hill (2007, Chapter 11) introduce multilevel structures in a text book

situation and they describe these models as:

‘. . . extensions of regression in which data are structured in groups and

coefficients can vary by group.’
5Ross (1996, Chapter 2, page 60)
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In other words there are layers of groups of data which are related as in pupils, class-

room, school, district.

Lindley (1969a) appears to be the first reference to Bayesian hierarchical regression

and this is followed by a series of other papers, (Lindley, 1969b, 1970), published by

the Educational Testing Service (ETS) in Princeton under Melvin Novak who was the

principal investigator.

The ETS publications were followed up by Lindley and Smith (1972) though it

appears to be similar to non-Bayesian work by Zellner and Theil (1962). Other papers

followed by Aitkin et al. (1981) who apply the technique in an educational setting as

does the slightly better known paper by Raudenbush and Bryk (1986), though this

appears to be significantly pre-dated by Novick et al. (1972), who cite Lindley and

Smith (1972) as the originator.

In our situation, we have multiple versions and we make the assumption that the

parameters for each version come from a pool which has its own distribution, e.g. we

will later discuss the model by (Goel and Okumoto, 1979) which has two parameters

(a, b), and when used in this situation, we will be assuming that there is a distribution

for each of (a, b) and that the versions are interchangeable and un-ordered. We might

assume that the (a, b) are each log-normally distributed, with given means (µa, µb) and

variances (σ2
a, σ

2
b ). For a particular version, then we will get a particular (ak, bk) for

which, in a Bayesian setting, we will see a distribution on that pair of values. We might

then be trying to estimate the distribution of the ‘parent’ (a, b).

The clear advantage of hierarchical modelling in a Bayesian setting is the ability to

set the priors in a meaningful way and ‘share strength’.

Exchangeability is the concept closely related to Independent and Identically Dis-

tributed (IID), and informally says that given a set of data points, the order doesn’t

matter. Clearly exchangeability does not apply for time series or in many spatial

models, but it is quite widely applicable. Exchangeability is generally attributed to

de Finetti (1929, 1974), though strictly speaking the representation theorem only ap-

plies as the data set size goes to infinity. More formally, if we have data, x1, x2, . . . , xn,

then p(x1, . . . , xn) is invariant to any permutation of the subscripts {1, . . . , n}. Ex-

changeability is particularly important in the context of hierarchical models as it allows

us to make inference based on the hierarchical parameters. For instance, if we look at
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a set of data based on different versions of software, and another version is given to us,

then under the assumption of exchangeability, we can infer the properties of this new

version.

As it turns out, it is a bad idea to use uninformative priors for the hyper-parameters,

i.e. the hyper-priors, as discussed in Hobert and Casella (1996) and Bolstad (2010, Chap-

ter 10). If we were to use an uninformative prior such as a Jeffreys prior for the hyper-

parameters, then the joint posterior will be improper and though the output might

appear to be reasonable, it can converge to the wrong value because the Markov chain

will be null recurrent rather than positive recurrent.

3.12 Model Comparison

When we have two statistical models using the same dataset, it is useful to be able to

objectively compare the effectiveness of the two models. There are a number of different

methodologies used, in the field of machine learning, the effectiveness of prediction is

prioritised, i.e. given a subset of the original data which was not used for generating

the models, which model is in some sense ‘better’ at predicting the known values

that we have, whether in regression or classification (Kuhn and Johnson, 2013), i.e.

the out of sample predictive accuracy. In Bayesian statistics there is a preference

for methodologies based on information criteria such as AIC (Akaike, 1974) and BIC

(Schwarz, 1978), or so called Bayes factors which are credited to Jeffries (1939) but

significant work also goes to Kass and Raftery (1995); DiCiccio et al. (1997); Han and

Carlin (2001); Lavine and Schervish (1999). It is important to note that all of the

above methodologies require that the exact same dataset is used. Using Bayes factors

to compare two models, (M1,M2) for the same data set is done as follows:

BF = P (Data|M1)
P (Data|M2) (3.25)

Kass and Raftery (1995) suggest that the if the value of BF is greater than 20,

then there is strong evidence for M1.

If we have two possible models, then the motivation for this is as follows:
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P (M1|Data) = P (Data|M1)P (M1)
P (Data|M1)P (M1) + P (Data|M2)P (M2) (3.26)

P (M2|Data) = P (Data|M2)P (M2)
P (Data|M1)P (M1) + P (Data|M2)P (M2) (3.27)

Looking at the ratio between the priors and the posteriors:

P (M1|Data)
P (M2|Data) = P (Data|M1)

P (Data|M2)︸ ︷︷ ︸
Bayes Factor

P (M1)
P (M2) (3.28)

Posterior Ratio = Bayes Factor× Prior Ratio (3.29)

Note that P (M1|Data) + P (M2|Data) = 1.

By the partition law we have:

P (Data|M1) =
∫

Parameters
P (Data|Parameters in M1)︸ ︷︷ ︸

Likelihood of M1

×P (Parameters)︸ ︷︷ ︸
Prior

(3.30)

=E (P (Data|Parameters in M1)) (3.31)

≈ 1
K

∑
k

P (Data|Parameters(k)inM1) (3.32)

Parameters(k) ← P (Parameters) Prior (3.33)

Unfortunately if we calculate the Bayes factors in this way, then the variance of the

estimate from MCMC is very high.

P (M1|Data) =
∫
P (M1|Params)P (Params|Data) (3.34)

Thus, we use the method of ‘Harmonic Mean’, (Kass and Raftery, 1995, Section 4.3).

If we have k iterates through MCMC samples

P (Data|M1) ≈
[

1
K

∑
k

1
P (Data|Parameters)

]−1

(3.35)

Where

Parameters(k) ← P (Parameters|Data) (3.36)

k =1, . . . , K (3.37)
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In practice we compute[
1
M

M∑
m=1

1∏K
k=1 L(tk|a

(m)
k , b

(m)
k )

]−1

(3.38)

Where

log(L) =− b(m)
k

∑
tk + nk

[
log(a(m)

k ) + log(b(m)
k )

]
− a(m)

k (1− exp (−b(m)
k Tk)) (3.39)

as before and where (a(m)
k , b

(m)
k ) are samples of (ak, bk) from the respective MCMC

iteration m = 1, . . . ,M .

3.13 Classification Background

In Supervised learning, which Murphy (2012) calls predictive learning we aim to learn

how to map inputs, x to outputs, y, given a training set, i.e. given a new input x′, how

can we predict a new output y′? When y is categorical we call the process classification

or pattern recognition and when y is real-valued we call the process regression. An

example of categorical supervised learning is where we have photographs of men and

women with a gender label associated with each one and we are then asked to be able

to predict the gender of a new unlabelled photograph.

In contrast in Un-Supervised learning, which Murphy (2012) calls descriptive learn-

ing, we are looking for “interesting patterns” in the data. Barber (2012, Section 13.2)

describes both supervised and unsupervised learning as mature fields. As Hastie et al.

(2009, Chapter 14) point out, un-supervised learning is like learning without a teacher

and the goal is to make some inference on the properties of the probability distribution

of the data. Bishop (2006, p.3) points out that the goal may be to find clusters of

similar examples within the data, or to estimate densities, or to project down from

high dimensional space for visualization.

We use Semi-Supervised Learning when we have some labelled data, which might

have been hand labelled and we wish to infer labels for a large quantity of unlabelled

data. As described in Chapelle et al. (2006, Section 1.1.2), this is like unsupervised

learning where the small quantity of labelled data gives some guidance. Other forms

of semi-supervised learning allow for constraints to be placed on the output labels.

In our case we have labelled and unlabelled data but we also are prepared to make

some assumptions about the unlabelled data. We assume that bugs for a particular
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version are more likely to be closer to the nominal release date for that version than

those from a release which is long beforehand or long afterwards. We further assume

that the density of bugs is ‘bell-shaped’ around a nominal date which is at or near

the official release date - which is known for each of the releases. We will discuss this

further in Chapter 5.

Transduction is a term introduced by Vapnik (1998) to distinguish between a learn-

ing process which can generalize from a set of points to be able to predict anywhere

from a process which is only capable of inferring the values at specific points. Vapnik

insists that one should not create a system which was too general as that is wasteful.

More formally, if we have a data set of n points, X = (x1, . . . ,xn) with labels

Y = (y1, . . . , yn), then in un-supervised learning we try to infer yi from xi with no

knowledge of yi. In supervised learning we know the values of yi for the training set

and we try to infer some predictive knowledge of why xj is labelled as yj, in order

to be able to predict for a new xk with unknown label yk. In contrast, during un-

supervised learning we only have some labels in our training set. This can occur if, for

instance, it requires a human to look at the data to say what class a given x is and it

is comparatively expensive in time and/or money to do this.

Assessing the performance of classification models is a large and active field of re-

search, we the interested reader to Kuhn and Johnson (2013); Hastie et al. (2009);

Agresti (1990). According to Kuhn and Johnson (2013, p.254), a Confusion Matrix is

‘. . . a simple cross-tabulation of the observed and predicted classes for the data.’ In the

simple binary class case we have four possible cases, True Positives (TP), True Nega-

tives (TN), False Positives (FP) otherwise known as Type-I errors and False Negatives

(FN) otherwise known as Type-II errors. In the following, ∑TP and ∑TN correspond

to the count of TP and TN cases respectively. Similarly ∑P and ∑N are the count of

all Positive and Negative cases respectively.

Accuracy =
∑TP +∑TN∑

P +∑
N

(3.40)

Kappa = O − E
1− E (3.41)

Where O is the Observed accuracy, and E is the Expected accuracy.

Given a confusion matrix, there are many ways to summarize the performance of

the classification model. We understand that it is still an open research question as
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to whether it is possible to summarize a confusion matrix into a single measure of

performance. Frankly we consider it to be unlikely given the number of degrees of

freedom in a square confusion matrix that has 22 levels. By this we mean that there

are measures such as the imbalance in the true counts of each level, the symmetry

and others which need to be taken account of in any performance measure. We have

chosen to use the Kappa measure as implemented in the function confusionMatrix()

in the R caret package. In general, the Kappa statistic attempts to highlight the real

gain in the performance of the classifier compared to a classifier which was completely

random, or as Agresti (1990, p.366) says “is the excess of the observer agreement over

that expected purely by chance, i.e. if the ratings were statistically independent.”

3.14 Software Reliability

In general, software reliability models assume that a single piece of software is developed

by a homogeneous team who then pass it over to a single homogeneous test team who

work on it and record all the bugs they find perfectly and as soon as they “occur”.

Any bugs found are assumed to be fixed instantaneously and perfectly, i.e. the fixing

of the first bug does not introduce any new bugs. More recent work, e.g. Ruggeri and

Soyer (2008), looks at imperfect debugging where new bugs are introduced with a small

probability when an old bug is being fixed.

In the Open Source world, most people who record a bug do not work for the

organization and only ever record one bug; a very small group of testers record a large

number of bugs.

As can be seen in Figure 2.2, there are four distinct regimes of bug finding: an initial

flurry of activity in October 2011, a steady stream of bugs until release date with clear

curvature downwards, then the line straightens and the rate at which bugs are recorded

increases until the middle of March when version 11 of Firefox was released, thereafter is

the fourth phase where the rate of bug recording is significantly slower than previously

- no doubt due to the fact that relatively few people are using it and most have the

option of upgrading to a later version.

The development process for open source software is not as clear cut as elsewhere

and testers can pull development code at any time and build it for themselves and

49



record bugs. These testers (and indeed the developers) can be anywhere in the world

and are not necessarily competent. Many bugs are incorrectly recorded in the bug

database and some of these errors are detected and corrected by the triage team, and

others by developers. Some of these incorrect bug reports are never corrected.

Another big difference between models described in the literature and modern Open

Source practice is that the older literature expects there to be one computer running

one instance of the software and there are no other instances of relevance. We all

know the phones in our pockets are more powerful than these old 1970s era mainframe

computers, and those same phones can also run Mozilla Firefox. According to Mozilla

there are 500 million people around the world who use Firefox6 on all sorts of devices

from Desktop PCs to laptops to tablets to phones and a variety of other devices.

Statistics are available on the use of older versions of Firefox7.

3.14.1 Models for Software Reliability

The statistical modelling of software reliability has a long history since the seminal

paper of Jelinski and Moranda (1972) to more recent times. Goel and Okumoto, which

we will explore in more detail later, was one of the first Non-Homogeneous Poisson

Process (NHPP) models and this work has since been extended by for instance Jeske

and Pham (2001) who identified difficulties with the MLE estimates of the parameters.

Yamada et al. (1983) take this analysis further. Other significant references in the

domain include Littlewood and Verrall (1973); Littlewood and Mayne (1989); Musa

(1975); Musa et al. (1987); Musa (2004). Thorough reviews have been written on the

topic of software reliability including Singpurwalla and Wilson (1994, 1999) and Pham

(2010). While Soyer (2011) is a recent survey article.

Following (Singpurwalla and Wilson, 1994), there are two basic kinds of model,

Type-I: those that model the inter-failure time which as Soyer (2011) notes is often

accomplished using a failure rate function of time; Type-II: those that model the failure

count at a given time which are point processes such as a Poisson process with mean

value Λ(t).

Note that many of these models make the explicit assumption that any errors found

6http://blog.mozilla.org/press/ataglance/
7http://www.w3schools.com/browsers/browsers_firefox.asp
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are instantaneously repaired; for the case where software has been released, then this

does not make sense - once released on the Internet it cannot be recalled. To be fair

though, the Internet did not exist when these models were created.

Some examples of models include:

• Jelinski and Moranda (1972) is a Type-II model and used a homogeneous Poisson

process and is considered to be the first software failure rate model. Many other

Type-II models are variants on this so the assumptions that it made are important

and according to Pham (2010) these are:

– There are a fixed but unknown number, N , of faults in the program.

– Faults are independent and do not affect other faults.

– The inter-fault time is independent.

– Faults are removed instantaneously and reliably.

– The failure rate λ(t) is constant in a failure interval and proportional to the

number of faults remaining. So

λ(ti) = φ[N − (i− 1)], i = 1, . . . , N (3.42)

• Goel and Okumoto (1979) is another Type-II model and the first to use a non-

homogeneous Poisson process. We will discuss this model in more depth in Chap-

ter 4.

• Yamada et al. (1983) describes an S shaped reliability growth model based on a

non-homogeneous Poisson process where the mean value function is

Λ(t) =K
[
1− (1 + λt)e−λt

]
(3.43)

where t is time, λ is the error detection rate and K is the total number of bugs.

The assumptions made in the model are:

– failures occur at random times.

– The time between failures (k−1) and k depend on the time to failure (k−1).

As is common in these older papers, the language used makes the failures sound

like hardware failures.
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One class of model that can be both a Type-I or a Type-II model is known as

‘imperfect debugging’ where there is an assumption that there is a small probability

that a bug fix will fail or introduce another bug.

More recent work includes:

• Ray et al. (2006) which looks at the use of covariates to improve modelling.

• Ruggeri and Soyer (2008) considers a hidden Markov model which assumes failure

times are exponentially distributed with parameters depending on an evolving

latent variable. They also look at using a self-exciting point process for modelling

bug fixing, which looks like a really good idea, since of the order of 20% of bug

fixes create new bugs, (Yin et al., 2011).

• Ravishanker et al. (2008) looks at Markov switching with a multivariate model

to try to model the more modern iterative software development practices found

in industry.

• Pievatolo et al. (2010, 2012) uses a Hidden Markov Model (HMM) to look at how

debugging does not reliably fix bugs.

The books Singpurwalla and Wilson (1999); Musa et al. (1987); Pham (2010) go into

considerable detail on many aspects of software reliability modelling and compliment

each other.

3.14.2 Modelling Multiple Version Reliability

There is very little published work on the modelling of the reliability of multiple ver-

sions. Musa et al. (1987, p.165) briefly mentions the issue of multiple versions, but

there is no specific modelling done. Musa et al. (1987, Section 6.3) discusses Evolving

Programs, i.e. programs that are changing in a number of ways and the issues around

modelling their reliability. Pham (2010) touches on the subject, but does not explore

it in any depth.

Singpurwalla and Soyer (1985) refers to multiple versions, but by this they are

assuming instantaneous bug fixing upon first sight of a bug and that the period between

each bug is a new version - quite a different scenario to what we discuss.
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3.15 Modelling Defect Identification

It should be emphasized at this point that the data that we are attempting to model are

the time stamps of the first recording of bugs. By this is meant that the time element

is the moment that this defect was first recorded in the Bugzilla database. There is

no attempt to model when or if these defects will be fixed nor is this an attempt at

identifying when a bug was first seen.

It should also be emphasized that where a problem is seen more than once, that

this will be marked as a duplicate when after being recorded in the database and will

be ignored in our analysis.
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Chapter 4

Goel-Okumoto

4.1 Introduction

This chapter reviews the seminal paper by Goel and Okumoto (1979) and looks at

appropriate extensions to this model where projects have multiple versions of software

released sequentially.

4.2 The Goel and Okumoto model

The paper by Goel and Okumoto (1979) was ground-breaking in modelling the failure

phenomenon with a Non-Homogeneous Poisson Process (NHPP). This model has been

heavily studied over the last 35 years and as of June 2015 there were 1490 citations

on Google Scholar and 615 citations in the Web of Science core collection. The model

makes the quite reasonable assumption that the rate bugs are found is proportional to

the number remaining undiscovered in the system, i.e. when there are few bugs left,

they are harder to find, so at a constant level of effort, the interval between finding

bugs will increase as time goes on. If Λ(t), known as the mean value function (MVF),

gives the expected number of bugs detected in the system at time t, then Goel and

Okumoto (1979) assumed that:

d

dt
Λ(t) ∝ a− Λ(t) (4.1)

= b(a− Λ(t)), Λ(0) = 0 (4.2)
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Which has the solution:

Λ(t) = a(1− e−bt), (4.3)

where a is the total number of bugs in the system and b can be interpreted as a measure

of how hard the testers are working and finding bugs, or as Goel and Okumoto put it

“the occurrence rate of an error”.

Note that there is an implicit assumption that the rate of testing work is assumed

constant and that the system does not change during this period.

More formally, if E {N(t)} is the expected number of bugs that have been discovered

at time t, and E
{
N̄(t)

}
is the expected number of bugs remaining undiscovered, then

E {N(t)} + E
{
N̄(t)

}
= a. The expected number of errors remaining in the system at

time t is E
{
N̄(t)

}
= ae−bt by inspection.

The intensity function, which they also call the error-detection rate, λ(t) of the

model is:

λ(t) = Λ′(t) = abe−bt (4.4)

An illustration of the MVF can be seen in Figure 4.1 where the full NTDS dataset

(Goel and Okumoto, 1979) is plotted with the cumulative bug count on the Y-axis

against time in days on the X-axis. The parameters used in the plot were the MLE

parameters published in Goel and Okumoto (1979) of (a = 34, b = 0.00579) which is

based on the first 26 points in the dataset. The dashed vertical line shows the nominal

date when the production phase was finished at about 250 days and the software was

released for testing after 26 had been discovered. A further 8 bugs were subsequently

discovered in the system. This model appears to be a good fit for this dataset.

If N(T ) is the cumulative number of bugs detected to time T , and N(T ) is a

non-homogeneous Poisson process with mean value function Λ(T ), then:

P [N(T ) = n|a, b] = [Λ(T )]n
n! e−Λ(T ) (4.5)

= an

n!
(
1− e−bT

)n
e−a(1−e−bT ) (4.6)

This is appropriate if we know how many bugs occurred from t = 0 to t = T ,

however, if we also know what times these n bugs occurred, then it is appropriate to

use this information and thus we say:
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Fig. 4.1: A plot of the Mean Value Function of the Goel-Okumoto model for the

NTDS dataset based on MLE parameters for the first 26 data points as published by

Goel-Okumoto.

When we have already encountered n bugs to time T , and we know the times

recorded for these bugs t1, . . . , tn then the log-likelihood as given by (Goel and Oku-

moto, 1979) in our notation is:

p(t1, . . . , tn, T |a, b) = n log(a) + n log(b)− a
(
1− e−bT

)
− b

n∑
i=1

tn (4.7)

Note that ∑n
i=1 ti and n are sufficient statistics.

Interestingly, the Goel-Okumoto model allows positive probability to possible values

of a < n as it is a simple model. A more complicated model may well constrain a ≥ n

but will likely be more wieldy to work with, however the Goel-Okumoto model does

guarantee that the maximum likelihood estimate â ≥ n.

4.3 Approximations

The Goel-Okumoto model says that the predicted number of bugs, n by time t is:

n ≈ a
(
1− e−bt

)
(4.8)
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Hence:

n

a
≈ 1− e−bt (4.9)

b ≈ −1
t

log
(

1− n

a

)
(4.10)

By using the Taylor expansion

log(1 + x) =
∞∑
n=1

(−1)n+1

n
xn (4.11)

= x− x2

2 + x3

3 −
x4

4 + . . . for |x| ≤ 1 (4.12)

in Equation (4.10) this gives us:

b ≈ −1
t

[
−n
a
− 1

2

(
n

a

)2
− 1

3

(
n

a

)3
− . . .

]
(4.13)

≈ n

ta
+ o

(
n2

a2

)
(4.14)

Hence as a first approximation we have b ∝ 1
a
. This is an expected result as we

often see plots of the log-likelihood which have this b ∝ 1
a

structure, such as in example

plots Figure 4.2 and Figure 4.3 where we see the characteristic 1
x

structure when we

plot on plain axes and a linear structure when we plot on log-log axes.

When we evaluate on a grid and use Gamma priors i.e. the prior on a is Γ(1.1, 1
100),

and the prior on b is Γ(1.05, 1
1.01), we get a much more constrained posterior as shown

in example plots Figure 4.4 and Figure 4.5.

Looking at the marginals, Figure 4.6, of the log-likelihood and the posterior for

(a, b) we see that the influence of the data are very strong despite there only being 26

of the 34 data points used in this analysis. If we used the full 34 data points, the effect

would be even stronger.

58



0.000

0.005

0.010

0.015

0.020

0 50 100 150 200
a

b

Fig. 4.2: A contour plot of the log-likelihood as in Equation (4.7) of the Goel-Okumoto

model for the 26 point NTDS dataset, calculated on a rectangular grid.
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Fig. 4.3: A contour plot of the log-likelihood of the Goel-Okumoto model for the 26

point NTDS dataset on a log-log scale, calculated on a rectangular grid.
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Fig. 4.4: A contour plot of the posterior of the Goel-Okumoto model for the NTDS

dataset.
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Fig. 4.5: A contour plot of the posterior of the Goel-Okumoto model for the NTDS

dataset on a log-log scale.
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Fig. 4.6: A plot of the marginals of (a, b) of the Goel-Okumoto model for the NTDS

dataset.

4.4 RStan

RStan (Stan Development Team, 2014a) is relatively new software for doing Bayesian

modelling following in the footsteps of WinBUGS and JAGS. Stan and RStan are

being developed by a group led by Andrew Gelman at Columbia University, New

York. RStan is an R package which interfaces to the underlying Stan library (Stan

Development Team, 2014b) from R and uses the No-U-Turn Sampler (NUTS) (Hoffman

and Gelman, 2011, 2014; Betancourt, 2013). As Stan is based on Hamiltonian Monte-

Carlo (HMC), it uses the gradient at each point to improve its trajectory around

the sample space, so while the evaluation of each point on the trajectory might take

longer, it should traverse the sample space more evenly and thus converge more quickly

obtaining a better effective sample size. It is not clear yet at this stage that there is

a big advantage for Stan over the older alternatives like WinBUGS and JAGS, but

Stan is being actively developed and has a very helpful user mailing list1. Note in

particular that because Stan uses Hamiltonian Monte-Carlo, and thus the gradient, it

is not possible within Stan to use integer parameters as it is not possible to calculate
1http://mc-stan.org/groups.html
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the gradient with non-continuous parameters.

The Stan model code for the Goel-Okumoto model is in Figure 4.7. In particular

the last line of the model section defines the increment to the log-probability. Note

also that there is quite a bit of R code which is used to prepare the data and make the

call to Stan that is not visible in this figure.

When working with the NTDS dataset in RStan, it became clear that the best

results, given that we know the answer from our previous work with a grid solution,

comes when we only specify a vague prior for one of the parameters. Since it is more

intuitive to specify a prior for the total number of bugs, a, that is what we have done.

When we look in more detail at the plot in Figure 4.10 and output statistics in

Figure 4.8 from RStan for the NTDS model for 26 points, we see that the 50%ile esti-

mate of the a parameter is 33.94, and the (0.025, 0.975) quantile range is (20.94, 74.90).

When we look at the plot in Figure 4.11 and output in Figure 4.9 from RStan based on

the full 34 points we see that the range for a has considerably tightened, and similarly

for the b parameter. This is to be expected when we re-inspect Figure 4.1 as we can

see that the initial data points, pre-release are in a comparatively straight line and

when we add in the post-release points, the post-release points give more certainty to

the location of the asymptote. Compare and contrast the relative certainty shown by

the density plots from Figure 4.11 for 34 points as opposed to that for 26 points in

Figure 4.10. Note in particular the vastly different scales on the two plots for both

parameters.

Some further points to note are the column n_eff which is an estimate of the

effective sample size of this run, and the column Rhat which is a measure of convergence

fully described in Gelman et al. (2013) and originally published in Gelman and Rubin

(1992) and extended in Brooks and Gelman (1998). Note too that Gelman has modified

the definition of Gelman’s R̂, in Gelman et al. (2013) as compared with the first edition2.

As convergence improves and as n→∞, then R̂→ 1. Thinning, or only saving every

m parameter values will improve both R̂ and neffective for a given saved chain length n.

The argument for not thinning, if the computer memory is available, is that thinning

is throwing away information, i.e. why should we expect a better answer by throwing

away data?

2This is mentioned in the footnote in Gelman et al. (2013) on page 285
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// This is a Stan model for the Goel-Okumoto model with
// MVF = a(1 - exp(-b*t))
// where t is time
// a corresponds to the expected number of bugs
// in the system
// b is a parameter relating to the rate at which
// the bugs are discovered

data {
// number of data points (bugs observed)
int<lower=0> N;

// the observed bug times - in days or decimal years
real<lower=0> bugs[N];

}

// here we pre-"calculate"" some values once to save having
// to calculate them many times when sampling in the model
transformed data {

// bugsn and sumt are minimal sufficient statistics
real<lower=0> bugsn; // last value of time
real<lower=0> sumt; // the sum of all the time values
// used as a rough estimator for the prior on a
real<lower=0> arat;
real<lower=0> amid; // "mid"-point of a prior
// real<lower=0> bmid; // "mid"-point of a prior

// minimal sufficient statistics (MSS)
// Note that N is the third and final of the MSS
bugsn <- bugs[N];
sumt <- sum(bugs);

// Very crude estimates for the mid-points for a and b
// GROSS estimate of the prior on a that is 20% bigger
// than the number of bugs seen thus far
arat <- 1.2;
amid <- log(N*arat); // i.e. a is about 1.1*N
// based on approximation for b in terms of a
// bmid <- -log(log(1+1/arat)/bugsn); //

}
parameters {

// estimated number of bugs in the system
real<lower=1, upper=15000> a;

// finding "rate" parameter
real<lower=0, upper=1> b;

}
model {
// priors on a and b

// or for the log-gamma, a - shape=1.1, rate=1/100
// or for the log-gamma, b - shape=1.05, rate=1/1.01

a ˜ lognormal(amid, 1);
// flat prior on b for now so comment out...
// b ˜ lognormal(bmid, 1);

// GO model itself
increment_log_prob(-b*sumt + N*(log(a)+log(b)) -

a*(1-exp(-b*bugsn)));
}

Fig. 4.7: The full Goel-Okumoto model in Stan model code
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Inference for Stan model: goel_okumoto.
4 chains, each with iter=10000; warmup=5000; thin=1;
post-warmup draws per chain=5000, total post-warmup draws=20000.

mean se_mean sd 2.5% 25% 50% 75%
a 37.2274 0.3350 15.9460 20.9362 28.5150 33.9447 41.1979
b 0.0063 0.0000 0.0026 0.0017 0.0044 0.0061 0.0079
lp__ -88.8778 0.0182 1.0788 -91.7627 -89.3275 -88.5439 -88.0986

97.5% n_eff Rhat
a 74.8985 2266 1.0027
b 0.0119 3886 1.0019
lp__ -87.8107 3523 1.0011

Fig. 4.8: Output from a run of the Stan model for the Goel-Okumoto model for the
NTDS dataset using only 26 points.

mean se_mean sd 2.5% 25% 50% 75%
a 35.2945 0.0591 5.9893 24.5406 31.0240 35.0003 39.1276
b 0.0045 0.0000 0.0010 0.0027 0.0038 0.0045 0.0051
lp__ -135.1138 0.0136 1.0180 -137.8425 -135.5214 -134.7960 -134.3832

97.5% n_eff Rhat
a 47.9673 10269 1.0003
b 0.0065 10178 1.0002
lp__ -134.1147 5620 1.0007

Fig. 4.9: Output from a run of the Stan model for the Goel-Okumoto model for the
NTDS dataset using only 34 points.
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Fig. 4.10: A plot of the posterior of the Goel-Okumoto model from RStan for the
NTDS dataset for N = 26.
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Fig. 4.11: A plot of the posterior of the Goel-Okumoto model from RStan for the
NTDS dataset for N = 34. Note the very different scales on both the X and Y axes as
compared with Figure 4.10.
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4.5 Multiple Versions

When looking at multiple versions of software, we can infer the values of the Goel-

Okumoto parameters (ak, bk) separately for each version of software, k. Thus the

probability model for each release, k, separately is as follows:

p(t1, t2, . . . , tn, ak, bk) = p(t1, t2, . . . , tn|ak, bk)p(ak, bk)

If the times recorded for the bugs for each of releases (1 . . . K) are:

tk = (tk1, tk2, . . . , tkn)

We can write

p(t1, . . . , tK , a, b) =
K∏
k=1

p(tk|ak, bk)p(ak)p(bk)

where we assume that each release is an observation from a separate and independent

Goel-Okumoto model. We call this model Independent and an example of this applied

to the Firefox dataset can be seen in Figure 4.12. We note a profound difference in

the pattern in both a and b from version 19 onwards, which is also reflected in our

later models, in particular there is a sudden increase in the variance of the estimates of

the parameters (a, b), which we cannot explain. We further note that the independent

model handles each and every version identically, so this difference in the parameter

estimates arises from the data.

As an aside, note that the pattern of increasing and decreasing a mirrors the de-

crease and increase in the parameter b as we would expect given our approximation of

a ∝ 1
b
.

However, if we have already calculated a distribution for one version k, then we

can use this information to help us calculate the values of the parameters in the next

version (k + 1), i.e. use the previous posterior of (ak, bk) as the prior for the next

version and similarly for subsequent versions. This respects the chronological order of

the release versions. We call this model Cumulative. Here we assume that each release

is an observation of the Goel-Okumoto model with the same parameters, which is a

strong assumption. Refer to Figure 4.13 to see a plot for the Firefox dataset.
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Fig. 4.12: A box plot of the Goel-Okumoto a and b parameters for each of the versions
calculated using Stan using the independent model
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Fig. 4.13: A box plot of the Goel-Okumoto a and b parameters for each of the versions
calculated using Stan using the cumulative model
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We can say that:

p(t1, t2, . . . , tk, a, b) = p(a, b)
k∏
i=1

p(ti|a, b)

p(a, b|t1, t2, . . . , tk) ∝ p(a, b)
k∏
i=1

p(ti|a, b) ‘batch’

∝ p (a, b|t1, . . . , tk−1)︸ ︷︷ ︸
Prior

× p(tk|a, b)︸ ︷︷ ︸
Likelihood

‘streaming’

By ‘batch’, we mean that we calculate everything at once when we have all the

data. In contrast in ‘streaming’ mode we only get the data version by version so

after we receive each version, j, we calculate the new value of p(a, b|t1..j) by updating

the value for version (j − 1). Thus we might start the chain of versions by using a

very uninformative prior for (a, b) for version j = 1, but as j increases, we have more

information. Note that in our dataset the time ranges for bugs in each of the versions

overlap considerably.

An alternative to the cumulative model is to borrow strength from the other versions

by using a Hierarchical model as described in Section 3.11. This ignores the time

ordering of the releases and implies that they are exchangeable which is a weaker

assumption than the independence model. Here we are back to each release having

its own (a, b) but now they are conditionally independent given the hyper-parameters

(A,B, σ2
a, σ

2
b ). In particular, the hyper-parameter (A, σ2

a) are the unknown ‘true’ value

of a and its variance, and similarly for (B, σ2
b ) and b. This gives us the advantages of a

hierarchical approach, the borrowing of strength and the ability to predict the values

of (a, b) for future releases allowing for some differences between releases.

p
(
t1, . . . , tk, a, b, A,B, σ

2
a, σ

2
b

)
=
(

K∏
k=1

p (tk|ak, bk) p
(
ak|A, σ2

a

)
p
(
bk|B, σ2

a

))

× p
(
A,B, σ2

a, σ
2
b

)
where the final p(·) term is a prior on the hyper-parameters. Note that the first

p (tk|ak, bk) is NHPP, and the second pair of terms p (xk|X, σ2
x) for X = (A,B), are the

log-normal hyper-priors.

This can also be spelt out as:(
K∏
k=1

p(tk|ak, bk)
)

︸ ︷︷ ︸
Likelihood

×
(

K∏
k=1

p(ak|A, σ2
a)
)

︸ ︷︷ ︸
Prior on a

×
(

K∏
k=1

p(bk|B, σ2
b )
)

︸ ︷︷ ︸
Prior on b

× p(A,B, σ2
a, σ

2
b )︸ ︷︷ ︸

Hyper-Prior on (a,b)
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Fig. 4.14: A box plot of the Goel-Okumoto a and b parameters for each of the versions
calculated using Stan using the hierarchical model. Compare with Figure 4.13.

This is a simple hierarchical model, and assumes that there is no particular order

to the versions and that the parameters from each version are fully exchangeable with

the other versions. The results are shown in Figures 4.14 to 4.16. The corresponding

parameter values for this Stan run of the hierarchical model can be seen in Appendix A.

When we calculate the Bayes factors following the methodology in Section 3.12,

we find that in comparing the cumulative and independent model, the Bayes Factor is

1.67×101551, which Kass and Raftery (1995) describe as very strong evidence in favour

of the cumulative model.

When we compare the hierarchical model over the independent model, the Bayes

factor is 9.04× 10239, or very strong evidence in favour of the hierarchical model.

Finally when we compare the cumulative model and the hierarchical model, the

Bayes factor is 1.8× 101311 or very strong evidence for the cumulative model over the

hierarchical model.

These results should be taken with some caution given the difficulties in estimating

Bayes factors from MCMC results.
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Fig. 4.15: Density plots of the Goel-Okumoto meana (mean of a) and sda (standard
deviation of a) parameters from the Stan hierarchical model.
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Fig. 4.16: Density plots of the Goel-Okumoto meanb (mean of b) and sdb (standard
deviation of b) parameters from the Stan hierarchical model
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4.5.1 Practical Issues

Obviously for the independent model, the bugs for each version of Firefox were inde-

pendently extracted and the RStan model was run. However, for the box plots seen

in Figures 4.12 and 4.13, it was necessary to run each model so that the Neffective was

approximately the same so that the box plots were comparable between versions. Note

that the RStan implementation of Neffective is used, refer Gelman et al. (2013, Sec-

tion 11.5) for a text-book description.

The process of running the Stan code to obtain an effective sample size is done by

running for one chain of 100 iterations and then using a plain linear estimator to try

and scale this to an Neffective = 500 ± 10%. When there are more than two iterations,

plain linear regression is used to estimate Neffective against the number of iterations.

This cycles until it comes within the ±10% bound at which time the details are stored

and the function moves to the next version.

For the individual model the bug time data was extracted for a given release only

as follows:

bugt <- ffi[ffi$rver == Nrel, ’age’] # NB NOTE THE ==
# now rescale so that the first bug is at time=1
# 1 is just a nominal offset
bugt <- bugt - min(bugt) + 1

For the cumulative model, the data set was extracted for all releases up to and

including the given release Nrel, in contrast to the individual model which only looks

at that particular release.

bugt <- ffi[ffi$rver <= Nrel, ’age’] # NB NOTE THE <=
# now rescale so that the first bug is at time=1
# 1 is just a nominal offset
bugt <- bugt - min(bugt) + 1

As shown in Section 3.9, this is equivalent to calculating the posterior for release

Nrel − 1 and then using this as the prior for Nrel.

4.6 Hand written sampler

In order to meld with the later work we have written a Metropolis-Hastings sampler

by hand in R. In particular, as Stan is based on Hamiltonian Monte Carlo, it cannot

use integer parameters which we will need in later work. An acceptance rate of about
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a b
Prior Log-Normal(exp(30), 0.7) Uniform(10−4, 0.05)

Proposal Normal(a, 0.4) Normal(b, 0.4)

Table 4.1: A summary of the details of the hand sampler

0.39 is easily achieved, and is within the range highlighted by Gelman et al. (1996)

and Gelman et al. (2013, Section 12.2) as being optimal, i.e. 0.44 for single parameter

reducing to 0.23 in dimensions > 5. By optimal we mean that there is a trade-off

between exploring the probability space quickly and proposals being rejected. If a high

proportion of samples are rejected, then the proposal is likely too large and it is trying

to move too far. However, if all samples are accepted, then the proposal is likely too

small and is likely moving too little at each step so it will take too long to explore the

sample space - so there is a happy medium. Note that this is a general rule and while

quite widely applicable is not perfect.

The sampler is based on a simple Metropolis-Hastings step using the above like-

lihood and a summary can be seen in Table 4.1. The prior on the a parameter is

log-normal on a support of (0,∞), and uses the density, as written in R as:

dlnorm(x, meanlog=log(30), sdlog=0.7)

which we felt to be “reasonable”. As we had little intuition for the prior on the b pa-

rameter and we found previously that it was so highly correlated with the a parameter,

we have given it a uniform density on the support of (10−4, 0.05) also as per the models

above.

The proposal step is normal based on the log of the previous successful step and a

standard deviation of 0.4 for both parameters worked adequately. Since this step is a

relatively fast operation in comparison to the rest of the model and thus a lower priority

for optimization, we have not spent much time optimizing it for speed as recommended

by Knuth (1974). This sampler has been found to be very similar in operation to both

the RStan and grid based samplers and this gave us some confidence that we were on

the right track. As we obtained similar results to previous runs, we have not gone into

further details with results plots and output tables.

In addition some work was put into running the chains in parallel and merging the

output into one data structure for post-processing and analysis.
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4.7 Discussion

As mentioned in Section 4.2 there is an implicit assumption in the model that both

the environment and the rate of testing work stay constant. In reality, this is not the

case and in our scenario, particularly before the official release date, the environment,

i.e. the software, is being released on a nightly basis. Furthermore, some testers will

update to a new nightly release on a daily basis whereas others might only test some

of the nightly releases.

The number of people who are testing is also in constant flux with some working

full-time on testing an upcoming release. In other cases, somebody else might see a

bug in the live release, then download the latest nightly release and check that the

bug is also there and file the bug. As seen in Figure 2.4 most people only log a single

bug! Significantly, the number of people who will look at a particular release will be

measured in the thousands before the release date, and within days of the release will

be measured in the tens and then hundreds of millions.

While the models described above are for the most part a reasonable fit with the

Firefox data, it is clear when looking at the plot for the cumulative data in particular

that the a parameter is not modelled well from version 19 onwards as the values are

collapsed up against the support maximum for a of 15,000, but that said, the Bayes

factors strongly prefer the cumulative model.

In particular, this can be interpreted as very strong evidence for single Goel-

Okumoto pair (a, b) underlying all release versions.
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Chapter 5

Semi-Supervised Classification

5.1 Introduction

This chapter reviews semi-supervised classification and applies it to the sorts of dataset

found in bug databases. Notably in a bug database there are normally bugs associated

with a particular release or version, and then other bugs which are not assigned to

a particular release. This chapter outlines one possible solution to this problem by

imputing a version label for unlabelled bugs. All the labelled bugs can then be analysed

using a model such as that of Goel and Okumoto (1979) as discussed in Chapter 4 and

further analysed in Chapter 6.

5.2 Data

We will continue to use the Firefox dataset described in Section 2.4 and seen in Fig-

ure 2.3. As can (just about) be seen in Figures 5.1 and 5.2, the density of each of

the Rapid-Releases are for the most part approximately ‘bell-shaped’, though some are

bimodal. Note that the density of version 25 is particularly intense, starting shortly

before the cut-off date of 2013-07-18 and it was not due to be released for some time

and was actually released on the 2013-10-29.
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Fig. 5.1: A plot of the densities of the different versions of Firefox with related release
date for each version plotted in a vertical dashed line of the same colour.
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Fig. 5.2: A facet plot of the densities of the different versions of Firefox. Note that
for clarity, the y-scale is ‘free’, i.e. not identical, in each facet.
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Fig. 5.3: An area plot of the densities of the different versions of Firefox. At a
given date, the probability that a bug is from a particular release will be strongly
approximated by the proportion of colour associated with a particular version in a
vertical transect at that date. The release dates of each version (5-22) are shown as
dashed vertical lines in the colour of the release. It is not expected that the reader can
read this in detail, merely that they see the overall pattern.
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5.3 Informal Model Outline

We expect bugs which are recorded ‘near’ the time of an official release date are more

likely to be from that release than from another release from which they are not as ‘near’.

Detailed examination of Figures 5.1 and 5.2 shows that this is not an unreasonable

assumption.

Looking at Figure 5.4, we show a schematic of the version model where the density

of the time stamp of the identification of each bug is modelled as a Gaussian kernel

which is offset from the official release date (Tk) for that particular version (k), by a

time offset (α).

As a consequence of exchangeability we assume that the labelled data are represen-

tative of the unlabelled data. When we look at Figure 5.3 and pick a particular date,

say 2013-07-01, we imagine a vertical transect at that date and look at the proportions

of colour/versions at that date and we say that these proportions will be representative

of probabilities of the labels that we will apply at that date.

5.3.1 Assumptions:

Our model makes the following assumptions:

• The version label is Missing At Random (MAR). By this we mean that we assume

that the label is missing randomly in a way which does not affect the model itself,

which is slightly less strict than Missing Completely At Random (MCAR).

• Bugs are exchangeable in the sense of de Finetti.

• Bug distribution is bell-shaped around a date that is ‘near’ the release date. This

is partly supported by the density plots as seen in Figures 5.1 and 5.2, though

we will return to this assumption later.

• The version parameters, (dj, αj) are independent.
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Fig. 5.4: A schematic of the version model, showing the Gaussian kernel density and
the known release date.

5.4 Formal description of the model

The probability that a given bug ti is from a particular release j is:

P (R = j|d1:k, α1:k, ti, Tj) = e−dj(ti−Tj−αj)
2∑K

k=1 e
−dk(ti−Tk−αk)2 (5.1)

This uses the softmax function of Bridle (1989)1. The value Tj is the official release

date of release j and can be considered as a co-variate information about the release -

rather than about the main dataset. The parameters d1:k are not-unlike the standard

deviation of a Gaussian distribution - one for each release (1 : k). The parameters α1:K

are the offsets between the official release date of a given version and the ‘centre’ of

the ‘bell-curve’, refer Figure 5.4.

5.5 Algorithm

This section outlines the actual implementation of the model.

The priors for the model are:

αk ∼ N(−0.1, 1) (5.2)

dk ∼ Exp(rate = 1) (5.3)

1softmax(j, x1...n) = exp(xj)∑n

i=1
exp(xi)
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The likelihood is:
N∏
i=1

K∏
k=1

e−dj(ti−Tj−αj)
2∑K

k=1 e
−dk(ti−Tk−αk)2 (5.4)

The posterior is thus:
N∏
i=1

K∏
k=1

e−dj(ti−Tj−αj)
2∑K

k=1 e
−dk(ti−Tk−αk)2

K∏
k=1

1√
2π
e−

1
2 (αk+0.1)2

K∏
k=1

e−dk (5.5)

First, we initialize (αk = −0.1, dk = 12), jittered by 10 percent2. Then we initialize

all missing version labels with a linear estimate from 1 to K as a first very rough guess

at the labels. Then, for each MCMC iteration i:

1. Iterate the version counter, k from 1 : K

(a) For version k we make the following proposals:

• α∗k ∼ N (αk, σ2
α) where σα = 0.0125.

• d∗k ∼ U
(
dkcd,

dk
cd

)
where cd ∈ [0, 1], currently 0.9.

(b) Based on the likelihood in Equation (5.1), jointly accept or reject the (α∗k, d∗k)

via a Metropolis-Hastings step, with priors:

• α ∼ N(µα, 1), where µα is the initial value of α, in our case µα = −0.1

as mentioned above.

• d ∼ Exp(rate = 1), i.e. the exponential distribution.

We calculate the acceptance probability as follows:
g_num <- loglikelihood (alpha.star , d.star) + log(

prior.alpha(alpha.star [[k]])* prior.d(d.star [[k]]))
g_den <- loglikelihood (alpha.star , d.star) + log(

prior.alpha(alpha[i, k])*prior.d(d[i, k]))
accept .prob <- min (1, exp(g.num - g.den)*d[i,k]/d.

star [[k]])

Which is equivalent to the following:

Accept Prob =Likelihood(data|α∗1:K , d
∗
1:K)

Likelihood(data|α1:K , d1:K) ×
N(α∗1:K + µα, σα)
N(α1:K + µα, σα)

× Exp[d∗k, λ = 1]
Exp[dk, λ = 1] ×

d∗k
dk

(5.6)

2. Impute release version labels for all unlabelled bugs using the new set of (α1:K , d1:K).
2We are using time in units of years with an origin at the start of the time series to reduce the

possibility of numerical overflow with the operator
∑

i exp(xi) as we had issues when using long time
series measured in units of days.
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(a) Given the set of i = 1 . . . N time stamps, ti, calculate over the k = 1 . . . K

versions to get the Pver matrix:

Pver(i, k) =
exp

(
−dk (ti − Tk − αk)2

)
∑K
j=1 exp

(
−dj (ti − Tj − αj)2

) (5.7)

(b) For each bug, i, pull weighted sample, i.e. take index weighted by Pver, or

in R:

sample(K, size=1, prob=pver[i,])

Note that we initially tried to do a Metropolis-Hastings accept/reject step with all

(α1...K , d1...K) simultaneously, but the acceptance rate was virtually zero, so we changed

to doing the accept/reject on a single pair of (αk, dk) and we found a much improved

acceptance rate which we were able to tweak by hand to get into the acceptable range,

being of the order of 0.2.

5.6 Acceptance Ratios

There is a curious exponential decay shape to the plot of acceptance rate for the version

model of Chapter 5 as seen in Figure 5.5. By adjusting the proposal rate, this curve

can be moved up and down and can be made more linear, however, it will have the

same basic shape with the highest acceptance rate for the earliest release (in fact the

Pre-Rapid releases) and the lowest acceptance rate for the latest release, 25.
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Fig. 5.5: A plot of the acceptance ratios by version for the Chapter 5 version model.
This is based on an MCMC run with two chains and 2,000 iterations, however the same
pattern is visible in chains with 100,000 iterations.

This pattern is all the more curious if we examine the trace plots of (α, d) for

the later versions where we see that the traces still have not converged after 100,000

iterations.

To overcome the very low acceptance ratios for the most recent releases, a simple

scheme to use a scaling of the proposals so they were smaller in a way which attempts

to mirror the ‘exponential decay’ type curve of the acceptance ratios. Our solution is

to apply a multiplier to the proposal variances. Here we create a global fixed parameter

β which we use to set the ‘decay rate’ of the multiplier:

Multiplier =e
−βk

e−β
(5.8)

where k varies from 1 : K and in our case K = 22, i.e. we have 22 versions

(PreRapid, 5, . . . , 25). Through experimentation, we have found that a value of β =

0.25 gives an improved acceptance ratio for the more recent versions, i.e. for the higher

values of k, than β = 0 which is a flat proposal rate across all k versions. Typical

acceptance ratios might start at about 0.5 and rapidly decay within a few versions to
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an asymptote of about 0.1, but these values can be tweaked by adjusting β and the

base proposal values for α, d.
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Fig. 5.6: A plot of the acceptance ratios by version for the Chapter 5 version model.
This is based on an MCMC run with two chains and 40,000 iterations, with a decaying
proposal as k increases and β = 0.25.

There is a trade-off between a ‘good’ acceptance ratio and good convergence of the

traces, i.e. that a given chain for each of the parameters appears to have come to be

stable about a particular value, and also that other chains come to be stable about the

same value. In some cases, particularly at higher values of k, i.e. more recent versions,

there can be a tendency to have chains which appear to ‘converge’, but each chain has

‘converged’ to a different value - which is a problem. However, in our case the data for

the later versions is far from complete and in particular the data for the last version,

25, has only just started to be recorded, so we feel that the lack of proper MCMC

convergence can be justified for the later versions - without destroying the argument

for the model as a whole.
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5.7 Validation with synthetic dataset

A synthetic dataset was created over the support (0, 1), with three labelled Cauchy

distributions with scale 0.2. The points from the set A were centred at 0.0, B were

centred were at 0.55 and C were centred at 1.0. There were (50, 91, 52) points in each

of the sets A,B and C. We then labelled these points as ‘unknown’ with probability

0.25.

The distribution of the points in the dataset can be seen in Figure 5.7 where we show

a rug plot of the three dataset with their corresponding original Cauchy distribution

densities in black (A), red (B) and blue (C).

In Figure 5.8, we show a density plot of the three synthetic sets, weighted by

the number of points in each set. The density curves we calculated using the ”SJ”

methodology, Sheather and Jones (1991) with a grid size of 512. In Figure 5.9 we show

the corresponding weighted area density plot of the three synthetic sets.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

Fig. 5.7: A rug plot of distribution of the points in the synthetic dataset with their
corresponding original Cauchy distribution densities in black (A), red (B) and blue
(C).

We set the nominal ‘true’ values of α, to be c(0.05, 0.5, 0.95) respectively for the

sets (A,B,C) and we ran our MCMC code with four chains, each of length 200,000

iterations and the results are shown in Figures 5.10 to 5.12. The trace plots show that
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Fig. 5.8: A density plot of the three synthetic sets, weighted by the number of points
in each set.
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Fig. 5.9: An area density plot of the three synthetic sets, weighted by the number of
points in each set.
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the chains are not mixing particularly well.

Inference for the input samples (4 chains: each
with iter=200000; warmup=1e+05):

mean se_mean sd 2.5% 25%
alpha.1 -0.5106671 0.06740459 0.3924952 -1.54378652 -0.6779093
alpha.2 0.2105992 0.25464919 1.0723841 -1.84682250 -0.1912538
alpha.3 0.5303048 0.11747280 0.3936637 0.08566444 0.2691472
d.1 2.2514311 0.15743345 1.1798654 0.60049799 1.3416202
d.2 2.4435176 0.59868077 2.2656859 0.16946966 0.5230970
d.3 2.7456790 0.22816172 1.4635900 0.67072027 1.5946887

50% 75% 97.5% n_eff Rhat
alpha.1 -0.4086104120 -0.2370744 -0.03082931 34 1.146626
alpha.2 -0.0002651797 0.8568064 2.57493313 18 1.354177
alpha.3 0.4231749520 0.6688123 1.73586912 11 1.257576
d.1 2.0538821680 2.9462958 5.01700139 56 1.081420
d.2 1.4565390434 4.1432472 7.54789172 14 1.098672
d.3 2.5405387268 3.6468223 6.08915422 41 1.095703

For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).

Fig. 5.10: The results of the MCMC simulation for the three class synthetic dataset.
Note that the values of the alpha that we are expecting to see are (−0.05, 0.05, 0.05),
and clearly these are not close.
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Fig. 5.11: Trace plots of the parameters (αi=1:3, di=1:3 for an MCMC simulation with
4 chains each of length 200,000 iterations. The top line of plots shows the parameter
values of (αi=1:3 for each of the three sets and the bottom line of plots shows the
corresponding values for d = i = 1 : 3.
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Fig. 5.12: Density plots of the parameters (αi=1:3, d = i = 1 : 3 for an MCMC simu-
lation with 4 chains each of length 200,000 iterations. The top line of plots shows the
parameter values of (αi=1:3 for each of the three sets and the bottom line of plots shows
the corresponding values for d = i = 1 : 3.
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5.8 Validation with Firefox-2013 dataset

To validate the model, we took our Firefox-2013 dataset and removed any bugs that

have no version label, leaving us with 1,959 bugs out of the full dataset of 10,420 or

18.8% of the original dataset size. The next step was to temporarily pretend that we

did not know some of the labels, and then impute these missing labels by sampling

using our model. Finally we compared the predicted against the actual version labels

using a confusion matrix and compared the accuracy of our predictions.

However, if we have N classes, and a uniform distribution of the classes, then there

is a 1/N chance of predicting the correct class at random and the Kappa statistic of

Cohen (1960) and described by Kuhn and Johnson (2013, Section 11.2) is intended to

remove this random chance element.

Kappa = O − E
1− E (5.9)

Where O is the observed accuracy and E is the expected accuracy.

The actual implementation used was the function confusionMatrix() from the R

package caret (Kuhn et al., 2014).

To validate our model we selected proportion Q of the full dataset, a subset which

was selected at random, and temporarily pretended that we did not know the labels

for this subset. We then imputed the labels and validated against the known label for

this subset.

We selected nine random subsets with values of Q from 10% to 90% in increments of

10%. We then ran our label prediction model for a number of chains of length 500,000

iterations for each of the nine subsets. The predicted class for a bug is the one that

was sampled most frequently in the MCMC. At each MCMC iteration we saved the

full set of predictions and at the end of the run these were saved to a file, thus allowing

us to do more detailed analysis afterwards. Typical average acceptance rates were of

the order of 0.28 which is reasonably close to the Gelman suggested value of 0.24 for

high dimensional MCMC.

Figure 5.13 shows a box plot of the Kappa score for each of the nine subsets of data

and it is interesting to note that there is only a small decreasing trend as we rise from

10% of the dataset unknown to 90%. As we had the full chain information we also

re-did the analysis for chains which were much shorter, i.e. for chains of lengths 1000,
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Fig. 5.13: Box plot of the values of Kappa for the nine increasing values of Q (pro-
portion of missing data).
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Fig. 5.14: Box plot of the values of Kappa against NStop faceted againstQ (proportion
of missing data).

89



2000, 5000, 10000, 20000, 50000, 100000, 200000 and 500000. The faceted box plot in

Figure 5.14 shows the results of this re-analysis and despite poor values for Gelman’s

R̂ (Gelman and Rubin, 1992), and thus low values of the estimated effective N , the

results are reasonable for even relatively low numbers of iterations, i.e. prediction

accuracy improves slowly with the number of MCMC iterations. As we might expect

there is a slight increasing trend as we increase the number of iterations. Note that

we used Gelman’s recommendation of using only the second half of the chain in each

case(Gelman et al., 2013). In total 294 chains were run with length 500,000 iterations,

at the different values of Q.

We note that looking at the shape of the typical confusion matrix produced, they

show a strong band down the diagonal, which we might expect given our model as-

sumption that a label is more likely to be associated with a version whose release date

is nearby, and the matrix labels are ordered.

Figures 5.15 and 5.16 show a set of trace plots for four chains and the corresponding

density plots for an MCMC run of 500,000 iterations for Q = 0.10. Traces for the α, d

parameters from the last few versions, 22 to 25, are notably less well behaved than those

for the earlier versions, but this is to be expected as there is much less information. By

this we mean that in the early days of a version, like 25 which was released long after

the cut-off date for the dataset, the rate that bugs are being found is still climbing

rapidly and has not yet levelled off as we see for the much older versions. We see this

levelling off most clearly in Figure 2.3 for the ‘PreRapid’ bugs at the far left of the

plot, and the steep rate of climb for releases 23 to 25 at the right hand side of the plot.

We have also looked at the change in labels between two MCMC iterations and a

trace plot for one sample chain is shown in Figure 5.17. In each MCMC iteration the

labels will randomly change under the likelihood model described earlier. How far will

each bug change label between any two iterations - this is what we try to describe in

Figure 5.17. We have N MCMC iterations and J bugs that are unlabelled and we have

a matrix P which has N rows and J columns, and each element of the matrix holds

the sampled version label for that bug for that iteration. For a given MCMC iteration

i = 2 . . . N , the Change between this MCMC iteration and the last is:

Changei =
∑J
j=1 |Pi,j − Pi−1,j|

J
(5.10)

The intent of this metric is to give a sense of the “average” distance that a label will
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Fig. 5.15: Trace plots of all α and d for four chains for Q = 0.1 and 500,000 MCMC
iterations. Note that from the top left the first 22 plots are the traces of α5:25 followed
by the corresponding d5:25.

change each iteration.

In Figure 5.17, we have over plotted the change value in red using Friedman’s

SuperSmoother, (Friedman, 1984a,b) implemented in the R function stats::supsmu()

which is a very strong smoother and it is clear that there is no particular trend, and

the smoother values start at 2.15 and after half a million iterations, the last value is

2.154295.

In Figure 5.18, we show a plot of the empirical probability that a given bug is from a

particular version. Note that the bell curves strongly overlap, particularly in the region

between bug numbers 2000 to 4000. Note also that initially, at the start of 2011, the

Rapid-Releases do not exist so the probability that a bug is from the PreRapid releases

is almost 1.0. The slightly jagged shape of the curves is due to the empirical nature of

the curves combined with plotting on bug number on the x-axis rather than time.

We have experimented with different priors for (α, d) and we have observed small

shifts in the plot and it is possible to have wider or narrower ‘bells’, but essentially the

results are similar.

In Figure B.1, we can see a table of the results for one run of 100,000 iterations of
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Fig. 5.16: Density plots of all α and d for four chains for Q = 0.1 and 500,000 MCMC
iterations and corresponding to the traces in Figure 5.15. Note that from the top left
the first 22 plots are the densities of α5:25 followed by the corresponding d5:25.
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Fig. 5.17: Plot of the change in label for one chain for Q = 0.1 where the MCMC
iteration is on plotted on the X axis. Described further in the text.
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Fig. 5.18: A typical plot of the empirical probability that a given unlabelled bug is
from a particular version.

the version model with 4 chains. Note in particular that the values for the effective

N are highest for the versions near the low teens, i.e. in the middle, but that they do

not necessarily coincide for α and d. This might imply that the Metropolis update for

the d parameter could be better tuned, which could of course be done adaptively. We

also note that the maximum effective N is 1111 which is 0.56% of the 200,000 draws

examined which is in stark contrast with the results for the Goel-Okumoto model in

Figure A.1 which reaches 100% in some instances for only 20,000 draws examined.

5.9 Discussion

Our results described in Section 5.8 show that the ability to predict the version labels

is far from perfect, but it is genuine as can be seen in Figure 5.18, and shows promise.

This is due to the substantial overlap in bug reporting with release times. So the

question that arises is whether the model captures this uncertainty well. There is

uncertainty with how a given bug is labelled and we think that our model captures

this uncertainty.
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One issue with the use of the Kappa statistic is that it is a single number summaris-

ing a 22 × 22 confusion matrix. Clearly there is an issue with the loss of degrees of

freedom and it is clearly impossible to summarise this succinctly with a single number.

A further issue with the use of the Kappa statistic is that there are a number of

different versions of Kappa for ordered classes which is done by appropriate weighting.

How these weighting might be used to better understand the results has not been

explored due to time constraints.

Unbalanced classes is a further issue which we have mostly ignored. The numbers

of bugs in each version class are moderately imbalanced before relabelling (refer Ta-

ble 2.1). If we choose the most smallest and largest classes, with 23 bugs counted

towards release 25 and a count of 135 bugs towards release 17, a ratio of 135
23 = 5.9. For

one particular sample, after relabelling the ratio counts are 18 and 294 for the same

releases, 25 and 17 respectively, a ratio of 294
18 = 16.3.

Clearly there is a considerable amount of further work that could be done with

the measure of change, in the labels, as seen in Figure 5.17. One possibility would be

to look at things vertically instead of horizontally, does the “amount” of change for a

given bug change as the MCMC chain progresses?

As there is a considerable amount of data, and comparatively few parameters, a

very significant increase in speed could be achieved by re-writing the likelihood function

for a GPU. The big issue with using a GPU is the copying of large quantities of data

to the GPU from the computers main memory and vice versa. The speed of one of the

‘processors’ in a GPU is an order of magnitude slower than one core in a modern CPU,

however even this four year old laptop has 96 GPU cores, and more recent commodity

GPU cards on desktop hardware have 2048 cores3. With a sufficiently large power

supply, a number of these cards can be fitted into one chassis to work in parallel. Each

GPU generation is running faster and with more cores. As the data itself could be

cached in the GPU memory and only the K = 44 parameters (αi, di) are passed to the

GPU at each iteration this should mean that using a GPU would significantly increase

the speed of the calculations. In fact, the entire Metropolis algorithm could be run on

the GPU.

It has been suggested in Semi-Supervised Learning that sometimes it is better to
3Nvidia GTX 980 http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-980/

specifications
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feed in unknown labels slowly and then use the results of the imputation to better label

the next incremental feed of unknown labels. Unfortunately due to time constraints,

this has not yet been explored.

We have worked with different priors, by changing the size of the variance and the

mean for α and the rate for d, and it appears to make little difference except to make

the ‘bells’ in Figure 5.18 more or less uniform in height and width.
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Chapter 6

Combined Model

6.1 Introduction

In Chapter 4 we discussed the Goel-Okumoto model as a stand alone model given a

full data set. In Chapter 5 we discussed a model for imputing the missing version

labels using a Gaussian kernel. In this chapter we present and discuss a model which

combines both of the above models in a coherent way.

Following Bishop (2006, Section 1.5) and Bishop (2007), a generative approach

explicitly or implicitly models the distribution of inputs as well as outputs, because by

sampling from them it is possible to generate synthetic data points in the input space.

By contrast, a discriminative approach directly models the posterior probability.

Our version model from Chapter 5 can be viewed as a discriminative model, p(ri|ti),

the distribution of version given discovery time, refer to the DAG in Figure 6.1. Note

the arrow directions (ti → ri). By contrast our Goel-Okumoto model from Chapter 4

is a generative model, p(ti|ri), refer Figure 6.2. Note the arrow directions (ri → ti),

where ri is a class and ti is a feature in Bishop’s terminology.

When we try and combine these two models together we end up with a ‘DAG’

which has an arrow both directions between the parameters version label, ri, to time,

ti, which clearly will not work. We have resolved this by jointly modelling the ti and

the ri as can be seen in Figure 6.3.
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Ti
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Fig. 6.1: A DAG for the version model.
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Fig. 6.2: A DAG for the Goel-Okumoto model.

(ri, ti)

Ti
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di

ai

bi

Fig. 6.3: A DAG for the Combined model.
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6.2 Model details

The combined model relies on the version model in Chapter 5, namely that we use the

version model to impute version labels, and then we use the Goel-Okumoto likelihood

function using time stamps for the known and imputed labels to obtain distributions

for ak, bk for each version k. The likelihood of labels are imputed, as in Chapter 5,

using:

L(d, α|t1:N , T1:K , (r1:N)) =
N∏
i=1

exp
(
−dk (ti − Tk − αk)2

)
∑K
j=1 exp

(
−dj (ti − Tj − αj)2

) (6.1)

We then sample from the imputed labels. However, because of the dependence as

seen in Figure 6.3, we need to allow for the Goel-Okumoto model in our sampling

procedure. The details of this are in Appendix C.

The full conditional for ri, where ri = 1, . . . , K is:

p(ri = k|
¯
t,

¯
a,

¯
b) ∝ p(

¯
t|

¯
a,

¯
b,

¯
r)p(

¯
a)p(

¯
b)p(

¯
r) (6.2)

∝ briarie
−bri ti × p(ri) (6.3)

where ri is the release version for bug i. This allows us to sample a set of bugs with

label ri = k from the bugs with no labels, and then combine them with the bugs with

known label ri = k to get a vector of time stamps when bugs were recorded for version

k.

This can then be put into the model for Chapter 4 in a straight forward manner -

with the minor difficulty that the time stamps need to be adjusted to be ‘small’ and

positive so that when we calculate the exponential of a sum we do not overflow the

numerical capacity of a real number represented on the computer in limited precision

as an IEEE double (Goldberg, 1991; IEEE Task P754, 2008). To do this we used

the minimum value of the time stamp for each version for the known data, i.e. the

minimum tk for the known data and just pass this in - then the probability for any ti
which is less than this T ′k is just zero, i.e.

99



T ′k = min{ti|ri = k} (6.4)

p(ri = k|
¯
t,

¯
a,

¯
b,

¯
α,

¯
d) ∝

 bkake
−bk(ti−T ′k)e−dk(ti−Tk−αk)2

ti > T ′k

0 ti <= T ′k

(6.5)

k = 1 . . . K (6.6)

Thus we have the combined model:

p(
¯
Θ,

¯
Ψ,

¯
rn+1:N |¯

t,
¯
r1:n) ∝ p(

¯
Θ)p(

¯
Ψ)
(
N∏
i=1

p(
¯
ti|¯

Θ)
)(

N∏
i=1

p(
¯
ri|¯

Ψ)
)

(6.7)

Where p(
¯
tX |¯

Θ) is the Goel-Okumoto likelihood for
¯
tX and p(ri|¯

Ψ) is the version model

for
¯
rX .

¯
tX = {ti|ri=X} (6.8)

¯
Θ = {(ax, bx)|x = 5, . . . , 25} (6.9)

¯
Ψ = {dx, Tx, αx)|x = 5, . . . , 25} (6.10)

In merging the two models, we started with the code implementing the Chapter 5

model, then we:

• We added the extra parameters for the Goel-Okumoto model from Chapter 4,

i.e. (a, b), along with their initialization.

• The way in which the sample from Pver was chosen had to be modified because

of the joint dependency between t and r as described in Section 6.1. Obviously

the Goel-Okumoto parameters, (a, b) are also passed into this procedure.

• The Goel-Okumoto model code was inserted after suitable extraction and correct

labelling of the bugs from the Pver matrix, as described in Section 5.5. This code

was parameterized so that we can repeat it a number of times within each MCMC

iteration to get better convergence of the (a, b) parameters.

• When the time stamps for the original and the imputed bugs for a particular

version have been extracted, there will inevitably be a small number of bugs,

most likely from the original dataset which are assigned to a particular version
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a long time before the release date. This gave the growth curve an elongated

flattened ‘S’ shape where the bottom half of the ‘S’ left a very long and flat tail

to the left. We manually looked at the history for a sample of these bugs and

found that they were incorrectly assigned, or had been originally assigned to a

previous version but for operational reasons due to resource constraints had been

re-assigned to the current version. Since we found no such ‘early’ bug which

was correctly assigned, we decided to discard the handful of bugs which were so

assigned if they were more than three release periods - i.e. 3×42 days before the

official release date for a particular version.

• To improve convergence we changed the initialization for the parameters ~α, ~d,~a,~b

so that they are done individually instead of en masse with the same value for

each vector - based on experience running the chains - in effect this means that

a chain running for say 15,000 iterations has a much longer effective length since

it is starting from values similar to the closing values of a previous chain. That

said, the initial values are still jittered by 10% for each chain.

Figures 6.4 and 6.6 show the trace plots for two different MCMC runs with 100,000

iterations and four chains each. The corresponding density plots can be seen in Fig-

ures 6.5 and 6.7. It is interesting to note that the densities for the parameters (α, d) for

imputing the versions seem less stable than the Goel-Okumoto parameters (a, b); this

can be at least partly explained by the fact that (α, d) pairs are only updated every

K = 22 iterations, whereas for the Goel-Okumoto parameters (a, b), all K parameters

are updated every iteration. As we have been hand turning the proposal parameters,

and it is a slow process, we have not managed to get the acceptance rates for the version

model above 0.006 - which is clearly very low and this must also be a reason for the

apparent ‘noisiness’ and poor quality of the density plots. Details of the distributions

of the posterior parameters along with corresponding Neffective and R̂ can be seen in

Figure C.1. Note that the effective N for the version model parameters is lower than for

the Goel-Okumoto parameters as we would expect given that the former are updated

only every K = 22 iterations.

It is also interesting to note that in Figures 6.4 and 6.5 we can see that the param-

eters alpha.18, d.18 show one chain, of the four, which does not seem to converge

to the same mode as the other three chains. When we look at the corresponding
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Goel-Okumoto parameters, a.18, b.18, we note that there is no noticeable difference

between the four chains. This shows that our overall goal of modelling the Goel-

Okumoto parameters (a, b) for the imputed data is robust to significant perturbations

in the version model.

In our version model, we created a matrix, pver which we used to store the imputed

versions for each bug at each iteration. Each column in the matrix corresponds to a

particular bug and each row corresponds to an MCMC iteration. We used the pver

matrix to examine the effectiveness of increasing the number of MCMC iterations on

the predictive power on accuracy, or more precisely Kappa. In the combined model, we

calculate the pver matrix slightly differently because we need to take account of the

dependence between the two models, as seen in Figure 6.3 and discussed above.

Figure 6.8 shows a plot of the imputed bug labels, i.e. from the pver matrix, for the

bugs without labels. We can see that approximately the first 1,000 bugs are from the

first version, i.e. PreRapid. Then as time passes, we come across bugs in the known set

and we allow these versions to be used with the imputed set. We can see that typically,

there is a band approximately 7 versions wide for a given bug.

In Figure 6.9 we show a plot of our normalized distance metric, Equation (5.10),

for the first 1,000 iterations of the model on one chain (removing the first two zeros for

clarity). By normalized, we mean that we have divided the metric by K to give the

mean absolute distance that each label has moved per iteration.

When we compare the results for the parameters (α, d) for the version model in

Chapter 5 as seen in Figure B.1, with the results for the combined model which can

be seen in Figure C.1, the values of the mean show a remarkable similarity. On the

other hand when we look at the values of the predicted Goel-Okumoto parameters

(a, b) and compare the values with those of the Chapter 4 model as seen in Figure A.1,

the results are significantly different. For the combined model the mean values for

a are significantly higher as there are many more labelled bugs to start with, e.g.

in the Figure A.1, the mean value of avec[10] is 120.6 whereas in Figure C.1, the

corresponding value of a.10 is 1605.7. There are a total of 1,959 labelled bugs used

in Chapter 4 with 99 labelled as being due to version 10. By comparison, there are

10,420 bugs used in the Combined model in this chapter and in one sample iteration

chosen there were a total of 1,120 bugs labelled as version 10 in the Pver matrix which
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Fig. 6.5: A density plot of four chains for 100,000 iterations of the Combined model.
Note in particular the excursion one chain for d.18 and alpha.18, i.e. the (d, α for
Firefox version 21, and most interestingly the corresponding Goel-Okumoto model
parameters, a.18 and b.18, seem quite robust to this.
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Fig. 6.6: Based on another run, a trace plot of four chains for 100,000 iterations of
the Combined model.
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Fig. 6.7: Based on another run, a density plot of four chains for 100,000 iterations of
the Combined model.
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Fig. 6.8: A plot of one sample of bug labels returned by the combined model before
being processed by the Goel-Okumoto model. This was taken early in an early MCMC
iteration before warm-up had completed and is illustrative. In particular we can see
that version index of 1 (PreRapid) applies to the early bugs only and version 25 has
only been applied to the final bugs.

0 200 400 600 800 1000

1.
4

1.
5

1.
6

1.
7

1.
8

iteration (ignoring first two)

st
an

da
rd

iz
ed

 a
bs

ol
ut

e 
m

ov
e 

di
st

an
ce

Fig. 6.9: A plot of the normalized absolute difference between two iterations in the
version section part of the combined model.
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were originally labelled as such and imputed labels.
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6.3 Hierarchical Model

In order to allow us to make inference on the Goel-Okumoto parameters (a, b) which

in turn sit on the version model, we need to have exchangeability of the parameters

which we do by re-writing the model so that the Goel-Okumoto part of the model is

hierarchical.

In particular, we will use a hierarchical model for the (a, b) parameters and assume

a gamma distribution. The hyper-parameters will thus be (Arate, Ashape, Brate, Bshape)

which we derive as follows, firstly we will look at Arate, noting that the derivation for

(Arate, Ashape) can be applied to (Brate, Bshape) by simply swapping B for A.

p(Arate| . . .) ∝
[∏
k

p(
¯
tk|ak, bk)p(ak|Arate, Ashape)p(bk|Brate, Bshape)

]

× p(Arate)p(Ashape)p(Brate)p(Bshape) (6.11)

∝
∏
k

p(ak|Arate, Ashape)× p(Arate) (6.12)

=
 A

Ashape
rate

Γ (Ashape)

K∏
k

a
(Ashape−1)
k e−akArate × p(Arate) (6.13)

= A
(KAshape)
rate e−Arate

∑
k
ak × p(Arate) (6.14)

We can see that the first term, i.e. A
(KAshape)
rate e−Arate

∑
k
ak is proportional to the

density of a standard gamma distribution - i.e. where we let Arate = β and ak = x in

the rate parameterization of the gamma distribution density:

1
Γ(α)β

αxα−1e−xβ (6.15)

and drop the terms 1
Γ(α) × x

α−1 which do not depend on β.
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Similarly for Ashape:

p(Ashape| . . .) ∝
[∏
k

p(
¯
tk|ak, bk)p(ak|Arate, Ashape)p(bk|Brate, Bshape)

]

× p(Arate)p(Ashape)p(Brate)p(Bshape) (6.16)

∝
∏
k

p(ak|Arate, Ashape)× p(Ashape) (6.17)

=
 A

Ashape
rate

Γ (Ashape)

K∏
k

a
(Ashape−1)
k e−akArate × p(Ashape) (6.18)

=
 A

Ashape
rate

Γ (Ashape)

K∏
k

a
(Ashape−1)
k × p(Ashape) (6.19)

Note that Equation (6.13) and Equation (6.18) are the same aside from the prior,

i.e. ×p(Arate) versus ×p(Ashape). It’s really only in the following step that things cancel

out to get Equation (6.19) - and that first term
(

A
Ashape
rate

Γ(Ashape)

)K ∏
k a

(Ashape−1)
k does not look

anything like a gamma distribution - thus we have to do a Metropolis-Hastings step.

So for Metropolis-Hastings, we use
(

A
Ashape
rate

Γ(Ashape)

)K ∏
k a

(Ashape−1)
k as the likelihood in

the Metropolis step.

However on implementation it became obvious that as the values of ak are of the

order of 50, summing these to the power of Ashape quickly causes numerical overflow,

so moving onto the log scale we have the following. For clarity here, we will use the

substitution S = Shape and R = Rate, and drop all mention of A, in particular because

the same function will be used similarly for both A and B.

log-likelihood = log
( RS

Γ(S)

)K∏
k

a
(S−1)
k

 (6.20)

=K log
(
RS

Γ(S)

)
+ log

∏
k

a
(S−1)
k (6.21)

=KS logR−K log Γ(S) +
∑
k

log(a(S−1)
k ) (6.22)

=KS logR−K log Γ(S) +
∑
k

(S − 1) log ak (6.23)

=K [S logR− log Γ(S)] + (S − 1)
∑
k

log ak (6.24)

6.4 Current implementation - a description

For the Goel-Okumoto hierarchical model, the following is an outline description of

how it is implemented.
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Parameter Distribution
α Gaussian mean=0 sd=1
d Exponential rate=1
Ashape log-normal meanlog=log(1.1) sdlog=1
Arate gamma shape=1 rate=100
Bshape log-normal meanlog=log(1.1) sdlog=1
Brate gamma shape=1 rate=0.01

Fig. 6.10: Hierarchical Priors for the combined hierarchical model

As compared with the non-hierarchical model, we changed the model to iterate

across all K releases of the version model every single MCMC iteration, instead of

previously only visiting each release every Kth iteration.

6.4.1 Hierarchical priors

The priors and proposals and steps for the version model which is embedded in the

combined hierarchical model are identical to what we used before. The priors for the

Goel-Okumoto model are shown in Figure 6.10.

A dgamma(x, shape=Ashape[[i]], rate=Arate[[i]], log=TRUE)

B dgamma(x, shape=Bshape[[i]], rate=Brate[[i]], log=TRUE)

6.4.2 Proposals

The proposals for both (a, b) are effectively exp(rnorm(1, log(x), 0.5)).

6.4.3 Step Functions

The ‘Step’ functions, so called because they allow us to make an MCMC step and are

as follows:

A shape A Metropolis step:

runif(1, oldshape*0.5, oldshape/0.5) and log-likelihood function:

abshapeloglikelihood <- function(shape, rate, abk) {
K <- length(abk)
K*(shape*log(rate) - lgamma(shape) + (shape - 1)*sum(log(abk)))

}

A rate A Gibbs step: Gamma(KAshape,
∑
a)
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B shape exactly as per A shape, with b instead of a.

B rate A Gibbs step: Gamma(KBshape,
∑
b)

6.4.4 Results

Detailed results plots can be seen in Appendix C.0.1.

6.5 Discussion

Looking at the parameters seen in the box plots Figures C.2 to C.5, we notice some

patterns. Firstly there is more certainty with the parameters (a, b) for the earlier

versions, however, this is reversed for the parameters (α, d) for the version model where

there is more certainty for the more recent versions.

The more recent Goel-Okumoto a parameter indicates both more uncertainty in

its value and that it is higher, i.e. there are more bugs - which could be due to more

professional testers being employed by Mozilla, or that the code has more bugs. Over

time, the Goel-Okumoto b parameter is relatively steady, but might be decreasing

which implies that bugs are being found more slowly but there is large uncertainty

here, so this cannot be said to be clear.

There is a dramatic decrease in the α in the early Rapid-Releases where initially

the Gaussian kernel is centred after the release date, i.e. suggesting that many bugs

were found post release. Then until alpha.12 - i.e. Release-15.0, there is a steady

movement to centre the Gaussian before the release date - which makes sense - it is

better to find the bugs before the release! After Release-15, and depending on which

MCMC run we use, α seems to stabilise about 0.1 years, ie. 42 days or one release

cycle before the release date. This matches our intuition that in the period between

2× 42 days and 1× 42 days before release, the software is in ‘Alpha’ or as Mozilla calls

it ‘aurora’1, then 1 × 42 days before release, it goes into ‘Beta’, i.e. getting ready for

release, so they are trying to fix the outstanding bugs and checking there are no more

bugs - or as few as possible and that bugs claimed to be fixed, really are fixed.

The version model d parameter is reducing over time with some exceptions, i.e.

the width of the Gaussian bell is reducing over time, implying that there is more

concentration of effort into a particular release. As Mozilla becomes a more professional
1https://wiki.mozilla.org/RapidRelease/Calendar
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organization, this is to be expected. As we saw in Section 2.5, more and more effort is

being put into finding bugs by a small number of people.

Overall, we are quite happy with the performance of the combined model, particu-

larly in the hierarchical form, as it seems quite robust to wild excursions in the (α, d)

parameters without visibly affecting the Goel-Okumoto parameters (a, b).

When we take the last set (for instance) of parameters from a chain and plot the

corresponding original and imputed data points and then take the sampled hierarchical

parameters for (Ashape, Arate, Bshape, Brate), and then use these parameters to sample the

Goel-Okumoto parameters (a, b) and plot the mean value function (MVF)

MVF(t|a, b) =a(1− e−bt) (6.25)

We get plots like in Figure C.14. As can be seen, there is quite a range in the sampled

MVF traces, however they are generally in the same ball park as the data for all

versions, despite the fact that the MVF traces are not version specific. We find this a

powerful supporting argument for our model.
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Chapter 7

Case Study

This chapter discusses a case study which uses the combined model.

7.1 Utility

Extending the work in McDaid (1998); McDaid and Wilson (2001) and in earlier chap-

ters, we will look at the idea of making a decision, one-step-ahead, as to when to release

given the information we have. We will avoid any more complicated decision theoretic

approaches.

In Chapter 6 we fitted a hierarchical model for the K known versions of Firefox.

We can thus ask a number of questions then about version K + 1, such as what is the

optimal release time?

In order to do this define a utility for releasing every T days and then find the value

of T that maximises the expected utility.

We define specific cost factors C∗1 , C∗3 , C∗3 in ‘real’ units, such that these are respec-

tively, the cost of finding a bug before release, the cost of finding a bug after release

and the cost per day of continuing to test. Note that N(T ) is the number of bugs

found by time T , and N̄(T ) is the number of bugs remaining in the system at time T .

Thus we can write a utility function as:

U∗
[
T,N(T ), N̄(T )

]
=− C∗1N(T )− C∗2N̄(T )− C∗3T (7.1)

Alternatively, we can write a function by dividing across by C∗1 , to get a function

relative to C∗1 , i.e. C2 is the relative cost of finding a bug after release compared with

the cost of finding a bug before release, C1. We know from studies that C∗2
C∗1

is of the

order of 10 - in the case where the bug is found just after release, compared with finding

the bug in the final phase of testing.

115



U
[
T,N(T ), N̄(T )

]
=−N(T )− C2N̄(T )− C3T (7.2)

However, we are really interested in the Expected Utility:

Expected Utility =− E [N(T )|data]− C2E
[
N̄(T )|data

]
− C3T (7.3)

=− E
[
aK+1(1− e−bK+1T )|data

]
− C2E

[
aK+1e

−bK+1T |data
]
− C3T

(7.4)

Which we can approximate as follows, assuming the we have M , MCMC iterations

and in our notation, x(m) refers to the value of x at the mth iteration:

≈ − 1
M

M∑
m=1

a
(m)
K+1(1− e−b

(m)
K+1T )− C2

1
M

M∑
m=1

a
(m)
K+1e

−b(m)
K+1T − C3T (7.5)

Where the term C3T corresponds to the cost per day of prolonging testing.

We simulate a
(m)
K+1 from p(a|hyper-parameters(m)). We also simulate b

(m)
K+1 from

p(b|hyper-parameters(m)). Where hyper-parameters(m) is themth set of hyper-parameters

in MCMC samples.

We evaluate the above for different T to maximise utility, e.g. by simply iterating

from a small to a large T and plot to find the optimal release time T ∗. In our case we

might look at selecting T from 1 to say 365 to look at the expected value over a year.

Note that as C2 increases, so does T ∗, i.e. as the relative cost of a bug being found

post-release increases compared with finding it before the release, the testing period

will be increased to reduce the number of bugs found post-release.

Alternatively, we could fix T ∗ = 42 days and examine the relationship between C2

and C3 - which are of course relative to C1, as mentioned above.

7.2 Results

We have an MCMC simulation with four chains which ran for 15,000 iterations. At

every point in the chain we simulated the hyper-parameters Ashape, Arate, Bshape, Brate.

From these hyper-parameters, we sample from the Gamma distribution with these

shape and rate parameters to get pairs (a, b) from which we can calculate the utility

as described above and shown in Figure 7.1. Note that the values of T ∗ where the
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Fig. 7.1: A plot of the utility for four samples from two chains.

utility is maximised is similar for the four chains. In this case we have defined the cost

parameter vector, C1:4 = (1, 10, 18750, 0).

We also looked at the standard deviation of T ∗ from the generated samples and it

is of the order of 4.5 days given our chains and samples.

If we fix C2 = 10 and then examine the relationship between T ∗ and C3, the cost

per day of extra testing relative to the cost of finding a bug before release, we see the

following:

We note in particular that as C3 increases, T ∗ decreases until about 24,600 when

T ∗ goes below 1 day, which realistically is not reasonably practical - i.e. on an ongoing

basis it is very difficult to regularly release software at a rate faster than once per

day. In emergency situations, for instance when a severe security flaw is detected in

a release, it is reasonable that software gets re-released only hours after the previous

release, but on an ongoing basis, it is not practical.

Knowing that Firefox is regularly released every 42 days, we then fix C3 = 17550

and look at the relationship between T ∗ and C2, as it is not that far from the T ∗ we

found above which is of the order of 35 days. In more traditional, non-open source

software development, C2 has been found to be an order of magnitude greater than C1

which is why we started by using C2 = 10, but how sensitive is this? In Figure 7.3
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Fig. 7.2: A plot of the relationship between C3 and T ∗.

we look at the relationship between C2 and T ∗ and we see that T ∗ increases as C2

increases which we would expect, i.e. as the relative cost of a bug being found after

release goes up, it makes sense to spend more time looking for bugs before release since

that is cheaper. Conversely if the relative cost drops down toward 7, then T ∗ drops

dramatically down towards one day.

It would also be interesting to fix T ∗ = 42, the fixed release schedule of Firefox, in

order to look at the relationship between C2 and C3. We have carried such an analysis

with 40 replicates at each value of C2 and we have added a smoother, refer Figure 7.4.

Noting in advance that there is obvious heteroscedasticity, the approximate straight

line through these points on the plot is C3 = −1106 + 1721C2. We further note that

for C2 < 5 the value of C3 ≈ 7000, we have not ascertained why there is a change point

as yet.
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Fig. 7.4: A plot of the relationship between C2 and C3 for a fixed T ∗ = 42.
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7.3 Discussion

The standard figure of a bug being an order of magnitude more expensive if found after

release, is consistent with what we have found. The C3 coefficient is of the order of

16,100 in time units of a year, or of the order of 44 in time units of a day. By this we

mean that delaying the release by one day is equivalent to finding 44 bugs!

7.4 Further Work

Further work that could be done on the case study.

The following is a list of possible scenarios that might be developed.

• Look at different priorities of bugs, assigning different utility values to each pri-

ority.

• Look at different severities of bugs, assigning different utility values to each sever-

ity.

• Look at bugs from different subsystems - possibly at multiple priorities and sever-

ities.

• We could also add a further term, C4
1
T

which we might describe as a marketing

parameter to keep the time distance between releases low. We feel that it would

be interesting to further explore the use of C4.
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Chapter 8

Discussion

8.1 Discussion

This work has taken an old model (Goel and Okumoto, 1979) and shown that it can be

extended to model the rate at which bugs are found in modern open source software

using a hierarchical model.

Historically, references such as Jelinski and Moranda (1972); McDaid and Wilson

(2001) look at the reliability of software and use language like that relating to hardware

reliability. These older papers make assumptions about the instantaneous repair of

bugs, possibly in a faulty manner. Given that there are 157 open bugs in Firefox

at the time of writing, some of which have been open for more than four years, this

assumption might need to be reviewed. What we have examined is the rate at which

bugs are recorded in a database which says nothing about the repair rate of said bugs or

the reliability. Before the official release of Firefox, there are so called nightly releases

which are automatic builds from the source code control system and then released

to the testing community. After the official release, the code used does not change

except in the rare circumstances of a security patch release - in other words there are

no bug fixes post release. Furthermore, many bugs are repaired by developers which

were never recorded in a bug database. By this we are saying that we are not really

looking at the reliability of Firefox, merely the rate at which bugs are recorded, by a

tiny fraction (thousands) of the total user base which is of the order of 500 million.

The assumptions and the language used by the software reliability community might

need to change.

An interesting line of further inquiry would be to examine the Mercurial version
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control logs1 for information on the fixing bugs during the same period. In a discussion

about the source code of R with Prof. Brian Ripley, he suggested that this would be a

more reliable way of looking at bugs in R. An ambitious project would be to simulta-

neously examine the version control system for bug fixes, look at the bug database for

the opening and possible closing of cases, and to create a full reliability model for such

complicated software as Firefox with more than 10 million lines of code and which is

in a state of constant flux.

8.1.1 Data

We define the age of a bug as the release date minus the creation date - which clearly

only works for bugs with a known version label. Then looking at the raw data for age

in more detail, Figures 8.1 to 8.3, we can see that the intensity of bugs logged can be

divided into two distinct regimes, firstly before the release, and secondly from the date

of release. Before the release there is a peak about two releases (2 × 42 = 84 days),

before the release date - this corresponds with when Firefox is marked as aurora, or

being in alpha state. At 42 days before release, the code goes from aurora into beta2

and the next batch of code is promoted to aurora. A lot of internal testing and fixing

by staff (paid or otherwise) in the Mozilla organization occurs when the code goes into

aurora. After the first peak, the bug creation rate then falls away until the release date

when there is a sharp peak followed by an exponential type decay in the bug creation

rate. Since there are no code changes after the release (except urgent security patches),

the rapid exponential type decay rate supports the Goel-Okumoto hypothesis.

In further work, it would be most interesting to explore the insights in this histogram

further, possibly looking at a two peak mixture model for the bug creation rate and

exploring the implications of this.

1Mercurial is the version control system used by the Mozilla project to manage
source code, https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Source_
Code/Mercurial. Version control or Revision control systems are used to manage changes in files
in a system and include functions for reverting to older versions and merging (often automatically)
changes from more than one person.

2https://wiki.mozilla.org/RapidRelease
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Fig. 8.1: A histogram of the age (defined in the text) of bugs

Age with weekly breaks
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Fig. 8.2: A histogram of the age (defined in the text) of bugs, looking at -200 to +100
days, with daily breaks
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Age with daily breaks
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Fig. 8.3: A histogram of the age (defined in the text) of bugs, looking at -200 to +100
days, with weekly breaks
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8.1.2 Covariates

In Section 2.4.2 we described three covariates for each version, namely the number of

files changed between versions (FChanged), the number of lines added in this version

(LInserts) and the number of lines deleted in this version (LDeletions). It is worth

recalling that where there is a minor change to a line, e.g. a single character is changed,

then that will be recorded as a file change, as one line deleted and one line added.

When we plot these three covariates against version number as seen in Figure 8.4, a

clear pattern is visible and indeed as seen in the correlation matrix in Figure 8.5, the

three covariates are, in our opinion, highly correlated.
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Fig. 8.4: The three covariates plotted as a function of version covariate information:
number of files changed, number of lines of code inserted and number of lines deleted.

In Figure 8.6, the posterior distributions of the ak and bk are plotted against co-

variate information for the release. Notably, we see little relationship between the

parameters and covariates.

We note the wide variation in the parameters as seen in Figure 8.6, i.e. the large

vertical spread seen in the figure for the parameter values for some versions, noting

also the log10 scale on the Y-axis. We do a linear regression of the mean values Goel-
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> cor(ffcov)
FChanged LInserts LDeletions

FChanged 1.000 0.876 0.897
LInserts 0.876 1.000 0.861
LDeletions 0.897 0.861 1.000

Fig. 8.5: The correlation matrix for the version covariate information: number of files
changed (FChanged), number of lines of code inserted (LInserts) and number of lines
deleted (LDeletions).

Okumoto parameters (a, b) from the combined model on the three covariates as seen

in Figure 8.7. We note that there is a significant relationship between the parameter a

and the covariates. However, we note that no significant relationship appears to exist

between the parameter b and the covariates.

We conclude that, there is some evidence that the number of bugs and their rate of

discovery are a function of these covariates but the relationship is not straightforwardly

linear. This may be due to the nature of open source testing, where the bug creation

and discovery processes are rather isolated from each other. It would be interesting to

extend this initial work and look at it in more depth.

It would also be interesting to look at the bug covariates, e.g. the information on

bug severity, as opposed to the version covariates we spoke of above.
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FChanged LInserts LDeletions
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Fig. 8.6: The posterior distribution of the log10(ak) (top) and log10(bk) (bottom)
plotted as a function of version covariate information: number of files changed, number
of lines of code inserted and number of lines deleted.
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> summary(lm(a˜FChanged+LInserts+LDeletions, data=MPw))

Call:
lm(formula = a ˜ FChanged + LInserts + LDeletions, data = MPw)

Residuals:
Min 1Q Median 3Q Max

-2581.7 -461.0 -215.7 583.2 4855.4

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -8.321e+02 8.945e+02 -0.930 0.36523
FChanged 7.040e-01 2.247e-01 3.133 0.00606 **
LInserts -5.865e-03 9.797e-03 -0.599 0.55729
LDeletions -1.647e-02 6.314e-03 -2.609 0.01833 *
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 1601 on 17 degrees of freedom
Multiple R-squared: 0.3886, Adjusted R-squared: 0.2807
F-statistic: 3.601 on 3 and 17 DF, p-value: 0.03521

> summary(lm(b˜FChanged+LInserts+LDeletions, data=MPw))

Call:
lm(formula = b ˜ FChanged + LInserts + LDeletions, data = MPw)

Residuals:
Min 1Q Median 3Q Max

-3.4821 -1.4286 -0.0966 0.5906 5.0410

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.002e+00 1.168e+00 4.282 0.000504 ***
FChanged -2.804e-04 2.935e-04 -0.955 0.352728
LInserts -7.594e-06 1.280e-05 -0.593 0.560714
LDeletions 1.349e-05 8.247e-06 1.636 0.120150
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 2.091 on 17 degrees of freedom
Multiple R-squared: 0.1361, Adjusted R-squared: -0.0163
F-statistic: 0.8931 on 3 and 17 DF, p-value: 0.4648

Fig. 8.7: The output of linear regression for (ak) (top) and (bk) (bottom) regressed
as a function of version covariate information: number of files changed (FChanged),
number of lines of code inserted (LInserts) and number of lines deleted (LDeletions).
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8.1.3 Version Model

There are weaknesses in the validation of the version model including:

• It is open for debate whether a Kappa of the order of 0.1 is sufficient to say that

the model is good enough for use in the combined model.

• The model was validated by running 20 chains and assessing these chains against

the true values and examining box plots of these 20 values at different values of

Q and of chain length. This could have been done using leave out K, instead of

the low volume (N = 20) bootstrapping, however, in our case it was not plain

bootstrapping as the sample was without replacement.

It would be interesting to further explore the Pver matrix, e.g. when we look at a

longitudinal plot of the number of bugs assigned to each version by MCMC iteration

as in Figure 8.8.
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Fig. 8.8: A thinned sample plot of the counts in each of the versions
PreRapid, 5, . . . , 25 against iteration count.
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8.1.4 Model Speed

The models in Chapters 4 to 6 have all been written in R with the exception of the

RStan model and the log-likelihood function for the model in Chapter 4 - in general

the models can take a comparatively long time, e.g. one run four chains of 100,000

iterations of the Combined model took nearly 23 hours with most of that time being

taken up by the evaluation of the two models. Aside from statistical considerations,

such as using adaptive techniques as reviewed in Rosenthal (2011), these models could

be rewritten to run considerably faster.

• The chains could be run in parallel independent processes if there was enough

memory.

• Information from very long chains could be saved only intermittently, say every

10 iterations generating big memory savings and allowing longer chains to be

used.

• As the log-likelihood functions are not vectorizable in R, considerable speed ad-

vantage can be gained just by re-writing these functions in C++, while leaving

the rest of the Metropolis-Hastings algorithm in R. This has been done for the

Goel-Okumoto model and initiated for the version model.

• As the dataset has thousands of points and the log-likelihood function is com-

paratively complex, considerable advantage can be had by using the graphics

processor (GPU) which is ideally suited to calculating the same function many

times over with different data points. Initial work has been done on calculating

the log-likelihood function on the GPU and the function runs of the order of 30

times faster on the GPU than when written in R. Clearly if the entire version

model was ported to the GPU there would be a very considerable gain in speed.

8.2 Further Work

Some further work ideas include:

• It would be useful to profile the MCMC code to see where the bulk of the time is

being spent and then work on speeding up this core element as this is the weak
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link in the chain, as under the theory of constraints (Goldratt and Cox, 1984),

trying to increase the speed of some other part of the code will be less useful.

• Speed up calculations in the version model by writing the core elements in C++

inside Rcpp, or going even further and moving the entire version model code onto

a GPU, this work has been initiated.

• For the combined model, examine why Neffective is an order of magnitude smaller

for the version model than for the Goel-Okumoto model.

• Clearly, the model could be improved if different proposal standard deviations

could be used across each of the versions as we have done in the hierarchical

model, and we feel sure that adaptive MCMC would tune the parameters to

much better acceptance rates and better convergence.

• Extend the GO model to (a, b, b′) where the later two parameters refer to the

before and after the release date for a particular version.

• Looking at covariates would be a useful extension of our work, as Ray et al.

(2006), amongst others, have done.

• Autoregressive models have been examined by Singpurwalla and Soyer (1985),

and it would be interesting to look at how they might be extended to software

with multiple versions to describe the evolution of the parameters from one release

to the next.

• If we look at a plot of the data for a particular release, i.e. Time on the X-axis

and the cumulative number of bugs assigned to this version on the Y-axis, it

appears that there might be changes in slope every 42 days (i.e. every release

cycle) - this is worth looking at in more detail using cut-point analysis on the

imputed data.

• When people find a bug, if they are curious, then this will lead them to find

other similar bugs which could be modelled by a self-exciting process. It would be

interesting to further explore whether this exists in the dataset. Singpurwalla and

Wilson (1999) briefly mentions using self-exciting processes for software reliability

models.
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• It has been suggested that we should look at other fields in the raw Bugzilla

database to identify if the version attached to a given bug should really be earlier

than what is actually marked. We have done some initial work on this and of

the order of 20% of bugs might be moved to an earlier version. This work might

overcome some of the issues that we have with the small number of bugs which

are recorded more than three release cycles before the release date, which we

discard in the hierarchical model.

• This work was carried out based on the Firefox-2013 dataset where the last release

is version 22 and the data goes as far as a few bugs in version 25. The cut-off date

for the dataset is the 18th of July 2013. Two years later, we are using Firefox

release 38 and it would be interesting to develop a new and more recent dataset

and to look at the effectiveness of our work on a newer dataset.

• It would also be possible to go into more detail in this work by looking at the

other data associated with each bug, e.g. the severity, and doing inference on say

the number of bugs rated SEVERE for an upcoming release. To help decision

making, a utility cost could be applied to each level of severity, e.g. 1 to TRIVIAL,

to 1000 to SEVERE and ∞ to BLOCKER to calculate the expected cost of an

upcoming release.

• For our purposes, we did not need to create a hierarchical version model in the

combined model, but we think that it would be an interesting exercise.

The following is an initial description of our implemented hierarchical version

model.

p(αk) = 1
N2π × 92 e

1
18α

2
k (8.1)

– In hierarchical model:

p(αk|µα, σ2
α) = 1

N2πσ2
α

e
− 1

2σ2
α

(αk−µk)2

(8.2)

and (µα, σ2
α) are unknown and must be sampled.

– So in Metropolis move for αk, replace p(αk) with p(αk|µα, σ2
α).

– We also have to sample (αk|µα, σ2
α). These can be done by Gibbs sampling

moves assuming N(m, s2) prior for µα and Inverse-Gamma(f, g) for σ2
α.

133



∗ p(µα| . . .) is normal with mean

m
s2 + Σαk

σ2
α

1
s2 + 1

σ2
α

(8.3)

and variance:

1
1
s2 + 1

σ2
α

(8.4)

∗ p(σ2
α| . . .) is Inverse-Gamma with scale= f+1

2Σk(αk−µk)2 and shape=g+
1
2K.

• It would be interesting to look at change points in the parameters of the NHPP

used in a release for the bugs recorded.

• Considering alternative intensity functions would also be interesting - there are

many possible suggestions out there in the literature, some of which are mentioned

in Section 3.14.1.

• In a fully subjective Bayesian approach one would elicit and employ the opinions

of experts as much as possibble. In our case that information would be used to

inform the initial values, the priors and hyper-priors in the models. That said,

employing the opinions of experts in a coherent manner is an entire domain of

research in itself.

• The calculation of the log-likelihood at each of the 10,000 data points can be

done in parallel and is a prime candidate for being delegated to a GPU. Initial

work has started on this and the results are very promising.

• Overall, we have shown that given a high proportion of imputed data (80%), our

model appears to work in a robust manner.

• While the acceptance ratio in the Goel-Okumoto part of the model is quite ac-

ceptable, typically being of the order of 0.2, the acceptance ratio in the version

model is not so clear cut having a strange ‘exponential decay’ type shape which

needs more investigation.
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Chapter 9

Conclusions

A brief summary of the important results.

• Firefox-2013, a multi-version bug dataset with covariates was published.

• We have demonstrated how the Goel-Okumoto model can be used in version

models.

• A successful version model was created which imputes missing version labels.

• The above two models were combined together to predict the parameters for

multi-version bug databases with missing data.

• The Firefox-2013 dataset was used as a case study to examine the implicit cost

ratios for finding bugs before and after release.

• A working implementation of the above models.
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Appendix A

RStan results table - Chapter 4

Figure A.1 shows the results of a sample run of RStan for the Goel-Okumoto model

on the Firefox dataset in Chapter 4.

137



Inference for Stan model: ffh3.
4 chains, each with iter=10000; warmup=5000; thin=1;
post-warmup draws per chain=5000, total post-warmup draws=20000.

mean se_mean sd 2.5% 25%
avec[1] 159.68193 0.65766 63.79842 80.64330 117.30284
avec[2] 65.60814 0.21619 20.37350 40.00761 52.48957
avec[3] 60.79557 0.18384 17.36526 38.54920 49.53621
avec[4] 68.84632 0.06107 8.63714 53.12871 62.76686
avec[5] 99.64788 0.25953 24.47122 67.27905 83.49101
avec[6] 107.68871 0.08073 11.41676 86.92788 99.68443
avec[7] 87.48835 0.06864 9.70662 69.48722 80.80418
avec[8] 122.26919 0.07916 11.19525 101.48469 114.55922
avec[9] 138.32456 0.11071 14.49661 112.76338 128.27510
avec[10] 120.64820 0.07893 11.16279 99.90266 112.87870
avec[11] 125.86642 0.07800 11.03102 104.98854 118.27402
avec[12] 111.46957 0.15997 16.31860 85.23478 100.40570
avec[13] 161.72936 0.09544 13.49712 136.75076 152.33636
avec[14] 139.19065 0.12440 15.20481 112.61342 128.80322
avec[15] 420.90057 1.66474 138.39446 246.46961 327.56447
avec[16] 218.43788 0.52972 50.77972 149.81851 183.94140
avec[17] 359.66242 1.38123 118.26902 208.62969 280.63937
avec[18] 267.05681 1.01819 91.95994 151.33469 205.72791
avec[19] 275.35463 1.05100 100.43543 148.34959 207.30998
avec[20] 179.82893 0.73894 74.20362 85.30137 129.81680
avec[21] 192.69723 0.85208 89.83073 78.25725 131.60734
bvec[1] 0.00316 0.00001 0.00122 0.00127 0.00228
bvec[2] 0.00357 0.00001 0.00133 0.00132 0.00260
bvec[3] 0.00455 0.00001 0.00164 0.00176 0.00335
bvec[4] 0.00687 0.00001 0.00118 0.00465 0.00605
bvec[5] 0.00586 0.00002 0.00187 0.00264 0.00452
bvec[6] 0.00683 0.00001 0.00107 0.00478 0.00609
bvec[7] 0.00525 0.00001 0.00081 0.00371 0.00469
bvec[8] 0.00741 0.00001 0.00083 0.00582 0.00686
bvec[9] 0.00523 0.00001 0.00084 0.00362 0.00466
bvec[10] 0.00914 0.00001 0.00112 0.00700 0.00838
bvec[11] 0.01259 0.00001 0.00121 0.01030 0.01176
bvec[12] 0.00645 0.00001 0.00144 0.00375 0.00546
bvec[13] 0.00793 0.00001 0.00094 0.00613 0.00729
bvec[14] 0.00604 0.00001 0.00103 0.00407 0.00534
bvec[15] 0.00161 0.00001 0.00050 0.00075 0.00125
bvec[16] 0.00353 0.00001 0.00098 0.00178 0.00284
bvec[17] 0.00176 0.00001 0.00056 0.00080 0.00136
bvec[18] 0.00324 0.00001 0.00111 0.00141 0.00244
bvec[19] 0.00306 0.00001 0.00107 0.00131 0.00229
bvec[20] 0.00518 0.00002 0.00218 0.00203 0.00363
bvec[21] 0.00574 0.00002 0.00258 0.00219 0.00393
lreala 4.94471 0.00139 0.15075 4.66149 4.84430
lrealb -5.35990 0.00152 0.15064 -5.67509 -5.45635
lrealasd 0.60057 0.00142 0.13436 0.38966 0.50505
lrealbsd 0.54849 0.00127 0.10562 0.37323 0.47311
meana 172.91786 0.39751 35.96692 124.80464 149.14025
mediana 142.05269 0.20553 21.93784 105.79364 127.01403
sda 120.47619 0.71590 64.41327 56.45722 82.55225
meanb 0.00556 0.00001 0.00084 0.00412 0.00498
medianb 0.00475 0.00001 0.00071 0.00343 0.00427
sdb 0.00335 0.00001 0.00106 0.00197 0.00263
lp__ -3455.82192 0.06718 5.19084 -3466.89670 -3459.16249

Fig. A.1: The details of the output of the Goel-Okumoto model in Stan
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50% 75% 97.5% n_eff Rhat
avec[1] 146.18869 186.17966 319.11845 9411 1.00013
avec[2] 61.32779 73.42375 117.45153 8881 1.00046
avec[3] 57.35890 67.93651 103.76205 8923 1.00035
avec[4] 68.41388 74.46835 86.63972 20000 0.99993
avec[5] 95.17746 110.16974 158.90494 8891 1.00022
avec[6] 107.07977 114.92755 131.71347 20000 1.00004
avec[7] 86.97756 93.79626 107.52137 20000 0.99991
avec[8] 121.88586 129.59208 145.15844 20000 1.00003
avec[9] 137.44612 147.31625 169.80777 17145 1.00033
avec[10] 120.25200 127.94254 143.54955 20000 0.99992
avec[11] 125.61677 133.11121 148.44365 20000 0.99994
avec[12] 109.52230 120.23895 149.01234 10406 0.99988
avec[13] 161.17931 170.63574 189.16094 20000 0.99993
avec[14] 138.02128 148.49493 172.42518 14940 1.00044
avec[15] 391.43267 479.81282 763.51218 6911 1.00062
avec[16] 208.77062 241.29933 344.98943 9189 0.99990
avec[17] 334.70652 411.02502 657.03472 7332 1.00052
avec[18] 247.57732 304.67081 497.45641 8157 1.00037
avec[19] 254.12129 318.48798 528.98494 9132 1.00064
avec[20] 164.55777 211.31268 363.02779 10084 1.00025
avec[21] 173.96034 232.17983 418.92204 11115 1.00048
bvec[1] 0.00299 0.00385 0.00598 12028 1.00004
bvec[2] 0.00345 0.00441 0.00646 13763 1.00006
bvec[3] 0.00442 0.00561 0.00808 13419 1.00005
bvec[4] 0.00683 0.00764 0.00928 20000 1.00000
bvec[5] 0.00571 0.00707 0.00985 12498 1.00038
bvec[6] 0.00682 0.00754 0.00900 20000 1.00010
bvec[7] 0.00522 0.00579 0.00688 20000 1.00024
bvec[8] 0.00740 0.00796 0.00908 20000 0.99998
bvec[9] 0.00522 0.00579 0.00689 20000 1.00019
bvec[10] 0.00913 0.00988 0.01139 20000 0.99996
bvec[11] 0.01257 0.01338 0.01503 20000 0.99997
bvec[12] 0.00640 0.00739 0.00937 14582 0.99991
bvec[13] 0.00793 0.00856 0.00980 20000 0.99991
bvec[14] 0.00602 0.00673 0.00813 20000 1.00036
bvec[15] 0.00157 0.00193 0.00270 8393 1.00030
bvec[16] 0.00348 0.00416 0.00559 11806 0.99999
bvec[17] 0.00171 0.00211 0.00299 8982 1.00044
bvec[18] 0.00313 0.00391 0.00575 10654 1.00022
bvec[19] 0.00294 0.00370 0.00548 11116 1.00067
bvec[20] 0.00482 0.00633 0.01048 12196 1.00019
bvec[21] 0.00526 0.00700 0.01201 12694 1.00030
lreala 4.94035 5.03897 5.26017 11780 1.00027
lrealb -5.35254 -5.25718 -5.08105 9765 1.00053
lrealasd 0.58300 0.67531 0.91497 8902 1.00025
lrealbsd 0.53729 0.61150 0.79020 6939 1.00030
meana 166.11722 188.37872 263.18890 8187 1.00040
mediana 139.81966 154.31098 192.51470 11393 1.00025
sda 105.49281 138.61223 277.17859 8096 1.00034
meanb 0.00548 0.00604 0.00741 20000 1.00024
medianb 0.00474 0.00521 0.00621 9998 1.00052
sdb 0.00313 0.00381 0.00599 10105 0.99996
lp__ -3455.48817 -3452.14235 -3446.67491 5971 1.00047

Samples were drawn using NUTS(diag_e) at Mon Dec 8 08:26:05 2014.
For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).
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Appendix B

RStan results table - Chapter 5

Figure B.1 shows the results of a sample run of RStan for the Version model on the

Firefox dataset in Chapter 5 with four chains each of 100,000 iterations, and following

Gelman’s conservative procedure, the first half of each chain is dropped. This table

was generated using rstan::monitor().
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Inference for the input samples (4 chains: each with iter=100000; warmup=50000):

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
alpha.1 -0.4 0.0 0.2 -0.8 -0.5 -0.4 -0.3 -0.2 61 1.1
alpha.2 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.1 568 1.0
alpha.3 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.1 454 1.0
alpha.4 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 478 1.0
alpha.5 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 540 1.0
alpha.6 -0.1 0.0 0.0 -0.2 -0.1 -0.1 -0.1 -0.1 800 1.0
alpha.7 -0.1 0.0 0.0 -0.1 -0.1 -0.1 -0.1 0.0 656 1.0
alpha.8 -0.1 0.0 0.0 -0.1 -0.1 -0.1 -0.1 0.0 757 1.0
alpha.9 -0.2 0.0 0.0 -0.2 -0.2 -0.2 -0.1 -0.1 610 1.0
alpha.10 -0.1 0.0 0.0 -0.2 -0.1 -0.1 -0.1 -0.1 631 1.0
alpha.11 -0.1 0.0 0.0 -0.2 -0.1 -0.1 -0.1 -0.1 921 1.0
alpha.12 -0.2 0.0 0.0 -0.2 -0.2 -0.2 -0.2 -0.1 1111 1.0
alpha.13 -0.1 0.0 0.0 -0.2 -0.1 -0.1 -0.1 -0.1 974 1.0
alpha.14 -0.1 0.0 0.0 -0.2 -0.1 -0.1 -0.1 -0.1 873 1.0
alpha.15 -0.1 0.0 0.0 -0.2 -0.1 -0.1 -0.1 -0.1 699 1.0
alpha.16 -0.1 0.0 0.0 -0.2 -0.1 -0.1 -0.1 -0.1 611 1.0
alpha.17 -0.1 0.0 0.0 -0.1 -0.1 -0.1 -0.1 -0.1 131 1.0
alpha.18 -0.1 0.0 0.0 -0.1 -0.1 -0.1 -0.1 0.0 26 1.0
alpha.19 0.5 0.1 0.2 0.2 0.4 0.5 0.6 0.8 7 1.2
alpha.20 -0.1 0.0 0.1 -0.2 -0.1 -0.1 -0.1 0.0 10 1.3
alpha.21 0.2 0.0 0.1 0.0 0.1 0.1 0.2 0.5 10 1.2
alpha.22 -0.2 0.0 0.0 -0.2 -0.2 -0.2 -0.2 -0.1 22 1.2
d.1 1.2 0.0 0.3 0.7 1.0 1.2 1.4 1.8 76 1.1
d.2 17.4 0.4 2.8 12.2 15.3 17.3 19.4 23.0 40 1.1
d.3 12.6 0.1 1.7 9.6 11.5 12.5 13.6 16.1 122 1.0
d.4 7.7 0.1 0.9 6.1 7.1 7.6 8.3 9.6 186 1.0
d.5 6.8 0.1 0.8 5.3 6.3 6.8 7.3 8.6 147 1.0
d.6 19.9 0.3 3.1 14.1 17.7 19.6 21.7 26.7 88 1.0
d.7 9.1 0.1 1.2 6.7 8.2 9.1 9.9 11.7 97 1.0
d.8 7.1 0.1 0.9 5.6 6.5 7.1 7.7 8.9 220 1.0
d.9 8.0 0.1 1.1 6.1 7.2 8.0 8.8 10.2 87 1.0
d.10 7.4 0.1 0.9 5.9 6.9 7.4 8.0 9.2 72 1.0
d.11 12.8 0.1 1.5 10.2 11.7 12.6 13.7 16.3 122 1.0
d.12 11.3 0.1 1.3 8.8 10.4 11.3 12.2 13.8 103 1.0
d.13 18.7 0.2 2.4 14.3 17.1 18.8 20.4 23.4 108 1.0
d.14 11.4 0.1 1.2 9.3 10.6 11.4 12.1 14.1 143 1.0
d.15 15.9 0.2 1.7 13.0 14.7 15.8 17.0 19.5 118 1.0
d.16 15.2 0.2 1.8 11.9 13.9 15.3 16.5 18.8 92 1.0
d.17 19.1 0.2 2.1 15.3 17.5 19.0 20.6 23.0 120 1.0
d.18 21.0 1.0 3.4 14.4 18.8 21.1 23.3 27.9 12 1.1
d.19 2.2 0.3 0.8 1.1 1.6 2.1 2.7 4.0 8 1.2
d.20 35.0 3.9 14.2 13.7 24.0 34.1 42.9 70.5 13 1.3
d.21 5.5 0.7 2.1 2.1 3.9 5.5 6.9 10.0 9 1.2
d.22 53.7 5.3 22.1 21.7 33.8 52.7 68.0 98.9 17 1.3

Fig. B.1: The details of the output of the Version model.
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Appendix C

Combined Model details - Chapter
6

In the following, T ′k is the minimum known value of ti for version k.

For a single version:

p(t1, . . . , tn|a, b, T, T ′) =
[
n∏
i=1

λ(ti − T ′)
]
e−Λ(T ) (C.1)

=
[
n∏
i=1

abe−b(ti−T
′)
]
e−a(1−e−bT ) (C.2)

However for K versions we have:
K∏
k=1

[
nk∏
i=1

bkake
−bk(tik−T ′k)

]
e−ak(1−e−bkTk ) (C.3)

And equivalently, writing it for n bugs:

p() =
[
n∏
i=1

briarie
−bri (ti−T

′
k)
]

K∏
k=1

e−ak(1−e−bkTk ) (C.4)

where: (C.5)

nk =
n∑
i=1

I(ri = k) (C.6)

Where nk is the total number of bugs with version k.

We note that if we use the following prior in Equation (C.11), then things will

cancel so that we get back the same as in Chapter 5.

p(ri = k) ∝exp (−dri(ti − Tk − αk)2)
bkake

−bk(ti−T ′k) (C.7)

then if ri is not known, we have the full conditional for ri as:

p(ri = k|
¯
t,

¯
a,

¯
b) ∝ p(

¯
t|

¯
a,

¯
b,

¯
r)p(

¯
a)p(

¯
b)p(

¯
r) (C.8)

∝ briarie
−bri (ti−T

′
k) × p(ri) (C.9)

ri = 1, . . . , K (C.10)
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It is up to us to use what we choose as a prior for p(ri) which we could choose to

be Gaussian as we previously used.

NB. T ′k is the offset towards zero for the Goel-Okumoto model, in our model for

Chapter 6 it is set so that the first time stamp of the known dataset is 0, so it is a

fixed function of the data, i.e. T ′k = min (ti|k).

p(ri = k|
¯
a,

¯
b,

¯
t) = bkake

−bk(ti−T ′k)p(ri = k)∑K
j=1 bjaje

−bj(ti−T ′j)p(ri = j)
(C.11)

= bkake
−bk(ti−T ′k)e−dk(ti−Tk−αk)2∑K

j=1 bjaje
−bj(ti−T ′j)e−dj(ti−Tj−αj)2 (C.12)

= bkake
−bk(ti−T ′k)−dk(ti−Tk−αk)2∑K

j=1 bjaje
−bj(ti−T ′j)e−dj(ti−Tj−αj)2 (C.13)

Which allows us to sample the version release given everything else.

Or in log form:

log(bk) + log(ak)− bk(ti − T ′K)− dk(ti − Tk − αk)2 (C.14)

Note that should we have the ratio p(ri=k)
p(ri=j) in the Metropolis-Hastings calculations,

the summation term on the bottom of each of the two p() terms will cancel.

p(ri = k)
p(ri = j) =

e−dk(ti−Tk−αk)2∑
m
e−dm(ti−Tm−αm)2

e−dj(ti−Tj−αj)2∑
m
e−dm(ti−Tm−αm)2

(C.15)

= e−dk(ti−Tk−αk)2

e−dj(ti−Tj−αj)2 (C.16)

So the full conditional that we need to use in our code is

p(ri = k|
¯
t,

¯
a,

¯
b,

¯
α,

¯
d) ∝ bkake

−bk(ti−T ′k)e−dk(ti−Tk−αk)2 (C.17)

k = 1 . . . K (C.18)

where (ti−T ′k) is a normalized ti such that the t in the Goel-Okumoto model is always

positive, we do this by setting the minimum value of t for a particular version to be 0

for consistency. Note too that we have used time in decimal years to ensure that the

summed values stay sufficiently small to avoid numeric overflow.

Figure C.1 shows the results of a sample run of the combined model on the Firefox

dataset in Chapter 6. This output was generated using Rstan::monitor(). Note that
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mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
alpha.1 -0.4 0.0 0.2 -0.8 -0.5 -0.4 -0.3 -0.1 50 1.0
alpha.2 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.1 101 1.0
alpha.3 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.1 131 1.0
alpha.4 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 69 1.0
alpha.5 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 80 1.0
alpha.6 -0.1 0.0 0.0 -0.2 -0.1 -0.1 -0.1 -0.1 176 1.0
alpha.7 -0.1 0.0 0.0 -0.1 -0.1 -0.1 -0.1 0.0 87 1.0
alpha.8 -0.1 0.0 0.0 -0.1 -0.1 -0.1 -0.1 0.0 89 1.1
alpha.9 -0.2 0.0 0.0 -0.2 -0.2 -0.2 -0.1 -0.1 74 1.0
alpha.10 -0.1 0.0 0.0 -0.2 -0.1 -0.1 -0.1 -0.1 154 1.0
alpha.11 -0.1 0.0 0.0 -0.2 -0.1 -0.1 -0.1 -0.1 60 1.0
alpha.12 -0.2 0.0 0.0 -0.2 -0.2 -0.2 -0.2 -0.1 39 1.1
alpha.13 -0.1 0.0 0.0 -0.2 -0.1 -0.1 -0.1 -0.1 123 1.0
alpha.14 -0.1 0.0 0.0 -0.2 -0.1 -0.1 -0.1 -0.1 73 1.1
alpha.15 -0.1 0.0 0.0 -0.2 -0.1 -0.1 -0.1 -0.1 39 1.1
alpha.16 -0.1 0.0 0.0 -0.2 -0.1 -0.1 -0.1 -0.1 141 1.0
alpha.17 -0.1 0.0 0.0 -0.1 -0.1 -0.1 -0.1 -0.1 35 1.1
alpha.18 -0.1 0.0 0.0 -0.2 -0.1 -0.1 -0.1 -0.1 61 1.1
alpha.19 0.4 0.0 0.1 0.2 0.4 0.4 0.5 0.7 82 1.1
alpha.20 -0.1 0.0 0.0 -0.2 -0.2 -0.1 -0.1 0.0 133 1.0
alpha.21 0.2 0.0 0.1 0.0 0.1 0.2 0.2 0.4 108 1.1
alpha.22 -0.2 0.0 0.0 -0.2 -0.2 -0.2 -0.2 -0.1 202 1.0
d.1 1.2 0.0 0.3 0.7 1.0 1.2 1.4 1.8 67 1.0
d.2 17.4 0.2 3.0 12.2 15.2 17.3 19.4 24.3 173 1.0
d.3 12.6 0.2 1.9 9.4 11.1 12.4 13.8 16.4 86 1.1
d.4 7.9 0.1 1.0 6.1 7.1 7.8 8.6 9.7 117 1.0
d.5 6.9 0.1 0.8 5.5 6.3 6.9 7.5 8.5 69 1.0
d.6 20.4 0.4 3.5 14.4 17.9 19.9 22.1 30.3 66 1.1
d.7 9.2 0.1 1.2 6.9 8.3 9.1 10.0 11.6 107 1.0
d.8 7.2 0.1 0.9 5.7 6.6 7.1 7.8 9.1 193 1.0
d.9 8.2 0.1 0.9 6.1 7.6 8.2 8.9 10.1 104 1.0
d.10 7.5 0.1 0.9 5.9 7.0 7.5 8.0 9.4 164 1.0
d.11 12.7 0.2 1.5 10.1 11.7 12.7 13.8 15.6 56 1.1
d.12 11.6 0.1 1.2 9.5 10.8 11.7 12.3 14.1 111 1.0
d.13 18.7 0.5 2.2 14.7 17.0 18.6 20.2 22.9 19 1.1
d.14 11.3 0.1 1.3 9.1 10.3 11.3 12.2 13.7 97 1.0
d.15 15.6 0.2 1.9 12.0 14.2 15.5 17.2 18.9 81 1.0
d.16 15.0 0.1 1.5 12.3 14.1 15.1 15.7 18.5 98 1.0
d.17 18.7 0.2 1.8 15.3 17.3 18.6 19.5 22.5 113 1.0
d.18 20.0 0.3 2.9 14.2 17.9 20.1 22.1 25.2 105 1.1
d.19 2.3 0.1 0.7 1.2 1.8 2.3 2.6 4.2 75 1.1
d.20 40.9 1.1 14.8 15.6 31.1 39.4 51.5 70.6 171 1.0
d.21 4.9 0.1 1.6 2.3 3.7 4.5 6.0 8.6 122 1.0
d.22 57.3 1.7 18.6 24.4 43.8 56.7 68.1 95.0 118 1.1

Fig. C.1: Details of the output of one run of the Combined Model from Chapter 6

as we might expect, the effective N is much higher for the Goel-Okumoto parameters,

(a, b), than for the version model parameters (α, d), since the latter are only updated

in pairs every K = 22 iterations, while the former are all updated every iteration.
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mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
a.1 101.0 0.1 10.1 82.0 94.1 100.6 107.6 121.9 19681 1.0
a.2 2406.0 21.7 1106.3 981.7 1640.4 2168.6 2907.9 5195.9 2605 1.0
a.3 1021.2 14.4 565.3 474.6 681.6 865.4 1167.1 2487.8 1543 1.0
a.4 5629.1 49.3 2011.7 2729.9 4242.6 5299.0 6613.4 10600.6 1664 1.0
a.5 1129.7 25.7 726.6 429.3 673.3 917.7 1341.0 3100.0 799 1.0
a.6 3191.5 20.9 1212.6 1501.6 2342.4 2973.0 3787.7 6141.9 3367 1.0
a.7 2361.6 18.4 1117.6 891.0 1576.9 2135.4 2889.8 5153.9 3680 1.0
a.8 3657.0 29.5 1586.1 1550.7 2571.6 3344.6 4368.5 7634.7 2898 1.0
a.9 6796.8 82.5 2544.0 3338.6 5082.0 6315.9 7928.8 13079.8 950 1.0
a.10 1605.7 18.6 842.5 561.0 1028.4 1417.4 1968.0 3782.9 2054 1.0
a.11 2793.1 32.7 1484.1 1006.2 1803.1 2464.2 3390.8 6545.0 2057 1.0
a.12 41.2 0.0 6.4 29.6 36.7 40.9 45.3 54.7 25578 1.0
a.13 2540.3 32.6 1533.4 769.5 1501.6 2164.4 3154.5 6493.1 2217 1.0
a.14 14832.9 74.2 4052.5 7547.2 12159.4 14669.3 17183.4 23518.9 2981 1.0
a.15 555.8 11.3 500.4 87.6 230.4 403.1 707.1 1922.1 1973 1.0
a.16 852.7 12.6 607.5 195.2 439.3 693.8 1086.2 2434.5 2307 1.0
a.17 1598.4 28.4 1150.9 325.2 812.0 1295.5 2040.5 4630.8 1644 1.0
a.18 1347.9 9.4 545.7 662.2 981.4 1228.5 1573.4 2761.5 3404 1.0
a.19 42.1 0.0 7.0 29.8 37.3 41.6 46.4 56.9 23293 1.0
a.20 41.4 0.0 6.6 29.6 36.8 41.1 45.7 55.4 29337 1.0
a.21 488.4 9.8 221.1 299.8 381.0 436.1 520.7 1030.6 511 1.0
a.22 469.0 2.8 96.9 320.7 404.7 455.7 518.3 690.7 1208 1.0
b.1 2.5 0.0 0.3 2.0 2.3 2.5 2.7 3.1 19604 1.0
b.2 0.1 0.0 0.1 0.0 0.1 0.1 0.1 0.2 2715 1.0
b.3 0.6 0.0 0.3 0.1 0.3 0.5 0.7 1.2 973 1.0
b.4 0.1 0.0 0.1 0.1 0.1 0.1 0.2 0.3 1308 1.0
b.5 0.4 0.0 0.2 0.1 0.2 0.3 0.5 0.9 1104 1.0
b.6 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 3584 1.0
b.7 0.1 0.0 0.1 0.0 0.1 0.1 0.1 0.2 3151 1.0
b.8 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.2 3582 1.0
b.9 0.2 0.0 0.1 0.1 0.2 0.2 0.3 0.4 1172 1.0
b.10 0.2 0.0 0.1 0.1 0.1 0.2 0.2 0.4 3197 1.0
b.11 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.2 3177 1.0
b.12 4.2 0.0 0.7 2.9 3.7 4.2 4.7 5.7 26352 1.0
b.13 0.2 0.0 0.1 0.1 0.1 0.2 0.2 0.4 3233 1.0
b.14 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.2 3866 1.0
b.15 0.2 0.0 0.2 0.0 0.1 0.1 0.2 0.7 1619 1.0
b.16 0.6 0.0 0.4 0.1 0.3 0.5 0.8 1.8 2629 1.0
b.17 0.2 0.0 0.1 0.0 0.1 0.1 0.2 0.5 2615 1.0
b.18 3.0 0.0 1.5 0.9 1.9 2.7 3.8 6.5 3431 1.0
b.19 2.1 0.0 0.5 1.2 1.8 2.1 2.4 3.0 18067 1.0
b.20 2.1 0.0 0.4 1.3 1.8 2.1 2.3 2.9 20872 1.0
b.21 1.9 0.0 0.8 0.5 1.4 1.9 2.5 3.4 433 1.0
b.22 2.0 0.0 0.6 0.9 1.6 2.0 2.4 3.1 465 1.0
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C.0.1 Hierarchical Combined Model Results
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Fig. C.2: Box plot of the a parameters for the hierarchical model from Section 6.3.
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Fig. C.3: Box plot of the b parameters for the hierarchical model from Section 6.3.
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Fig. C.4: Box plot of the α parameters for the hierarchical model from Section 6.3.
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Fig. C.5: Box plot of the d parameters for the hierarchical model from Section 6.3.
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Fig. C.6: Box plot of the A and B Shape parameters for the hierarchical model from
Section 6.3.
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Fig. C.7: Box plot of the A and B Rate parameters for the hierarchical model from
Section 6.3.
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Fig. C.8: Trace plots of the a parameters for the hierarchical model from Section 6.3.
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Fig. C.9: Trace plots of the b parameters for the hierarchical model from Section 6.3.
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Fig. C.10: Trace plots of the α parameters for the hierarchical model from Section 6.3.
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Fig. C.11: Trace plots of the d parameters for the hierarchical model from Section 6.3.
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Fig. C.12: Trace plots of the Acceptance for the version model portion of the hierar-
chical model from Section 6.3. Note that this plots the number of rejects on the Y-axis
+1.
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Fig. C.13: Trace plots of the Acceptance for the Goel-Okumoto model portion of the
hierarchical model from Section 6.3. Note that this plots the number of rejects on the
Y-axis +1.
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Fig. C.14: Sample plots of imputed and original points along with the corresponding
Goel-Okumoto Mean Value Functions sampled from the last iteration of a 10k MCMC
run.
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Inference for the input samples (2 chains: each with iter=3334; warmup=1667):

mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
alpha.1 0.3 0.0 0.0 0.2 0.3 0.3 0.3 0.3 134 1.0
alpha.2 0.3 0.0 0.0 0.2 0.3 0.3 0.3 0.3 237 1.0
alpha.3 0.2 0.0 0.0 0.1 0.2 0.2 0.2 0.2 172 1.0
alpha.4 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 112 1.0
alpha.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 98 1.0
alpha.6 -0.2 0.0 0.0 -0.2 -0.2 -0.2 -0.1 -0.1 135 1.0
alpha.7 -0.1 0.0 0.0 -0.2 -0.1 -0.1 -0.1 -0.1 52 1.0
alpha.8 -0.2 0.0 0.0 -0.2 -0.2 -0.2 -0.2 -0.2 33 1.1
alpha.9 -0.3 0.0 0.0 -0.3 -0.3 -0.3 -0.3 -0.3 3 1.2
alpha.10 -0.3 0.0 0.0 -0.3 -0.3 -0.3 -0.3 -0.3 39 1.0
alpha.11 -0.4 0.0 0.0 -0.4 -0.4 -0.4 -0.4 -0.4 2 1.5
alpha.12 -0.5 0.0 0.0 -0.6 -0.5 -0.5 -0.5 -0.5 11 1.1
alpha.13 -0.2 0.0 0.0 -0.2 -0.2 -0.2 -0.2 -0.2 8 1.2
alpha.14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9 1.5
alpha.15 -0.2 0.0 0.0 -0.2 -0.2 -0.2 -0.2 -0.2 13 1.1
alpha.16 -0.1 0.0 0.0 -0.1 -0.1 -0.1 -0.1 -0.1 3 1.8
alpha.17 -0.2 0.0 0.0 -0.3 -0.3 -0.2 -0.2 -0.2 1 3.4
alpha.18 -0.3 0.0 0.0 -0.3 -0.3 -0.3 -0.3 -0.3 6 1.9
alpha.19 0.3 0.0 0.0 0.3 0.3 0.3 0.3 0.3 1 2.4
alpha.20 -0.1 0.0 0.0 -0.1 -0.1 -0.1 -0.1 -0.1 1 3.9
alpha.21 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 1 2.9
alpha.22 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5 2.1
d.1 5.0 0.0 0.4 4.2 4.7 4.9 5.2 5.8 409 1.0
d.2 27.3 0.2 2.0 23.7 25.9 27.1 28.6 31.7 180 1.0
d.3 27.8 0.1 1.7 24.6 26.5 27.7 29.0 31.1 146 1.0
d.4 20.3 0.2 1.1 18.1 19.5 20.2 21.0 22.3 48 1.0
d.5 17.3 0.1 0.9 15.5 16.7 17.3 17.9 19.1 47 1.1
d.6 27.3 0.8 1.6 23.9 26.3 27.2 28.1 30.7 4 1.2
d.7 21.5 0.3 1.1 19.6 20.8 21.7 22.2 23.9 12 1.1
d.8 15.1 0.2 0.7 13.8 14.6 15.0 15.7 16.6 12 1.1
d.9 16.5 0.6 0.8 15.0 15.8 16.6 17.1 18.4 2 1.7
d.10 9.5 0.1 0.3 9.0 9.3 9.5 9.7 10.0 7 1.3
d.11 14.1 0.4 0.5 13.2 13.7 14.1 14.6 15.0 1 2.0
d.12 12.0 0.1 0.3 11.4 11.8 12.0 12.2 12.4 8 1.4
d.13 40.6 1.2 1.4 37.3 39.7 40.6 41.8 42.5 1 2.5
d.14 37.2 1.7 1.7 34.9 35.4 37.1 39.1 39.9 1 3.5
d.15 24.3 0.4 0.5 23.6 23.9 24.4 24.7 25.0 1 2.6
d.16 39.3 1.0 1.0 37.9 38.4 39.3 40.4 40.7 1 5.9
d.17 29.9 0.1 0.1 29.7 29.8 29.9 30.0 30.3 3 1.3
d.18 17.7 0.3 0.4 17.1 17.4 17.5 17.9 18.3 1 3.6
d.19 13.7 0.0 0.1 13.6 13.7 13.7 13.7 13.8 3 1.2
d.20 13.4 0.0 0.0 13.3 13.3 13.4 13.4 13.4 7 1.6
d.21 12.2 0.1 0.1 12.0 12.1 12.2 12.3 12.4 1 8.2
d.22 11.9 0.1 0.1 11.8 11.8 11.9 12.0 12.0 1 6.0

This figure shows some sample results from the rstan::monitor() for a thinned

run of the hierarchical combined model.
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a.1 1965.5 4.7 48.9 1870.7 1942.6 1964.3 1996.2 2058.5 110 1.0
a.2 65.9 0.4 10.7 47.3 58.7 64.9 72.8 88.5 690 1.0
a.3 63.0 0.3 10.0 45.3 55.9 62.2 69.5 84.5 816 1.0
a.4 76.9 3.5 13.4 54.0 67.5 75.9 85.7 105.2 15 1.0
a.5 160.7 2.5 23.2 118.2 144.9 160.0 175.6 207.2 85 1.1
a.6 348.1 1.7 28.0 295.1 328.6 347.4 367.9 403.3 273 1.0
a.7 120.8 0.5 13.9 96.6 110.8 119.8 130.1 149.4 790 1.0
a.8 192.1 1.4 22.6 150.9 175.7 191.3 206.3 241.2 256 1.0
a.9 122.3 0.4 11.6 100.9 114.2 121.7 130.1 146.3 976 1.0
a.10 868.3 4.4 50.7 765.3 836.4 869.0 901.6 974.3 134 1.0
a.11 283.3 2.7 31.0 226.9 262.8 281.7 303.5 346.2 132 1.0
a.12 156.2 0.5 15.6 126.3 146.3 155.5 165.8 187.1 1068 1.0
a.13 715.9 1.6 29.6 661.1 693.5 714.9 735.6 770.5 348 1.0
a.14 138.7 0.3 12.5 116.7 130.0 138.1 146.9 165.3 1422 1.0
a.15 980.6 2.6 37.7 911.8 954.1 979.4 1006.3 1060.4 206 1.0
a.16 824.6 65.8 569.7 301.5 480.2 646.4 945.3 2594.7 75 1.0
a.17 251.2 1.3 32.6 196.1 229.5 248.8 268.3 323.9 584 1.0
a.18 895.1 4.2 45.1 796.9 867.1 896.8 923.7 980.9 114 1.0
a.19 324.0 27.8 215.2 139.0 209.1 268.6 358.0 865.0 60 1.0
a.20 8721.1 216.7 2088.9 5747.0 7299.9 8243.8 9556.0 13967.2 93 1.0
a.21 202.1 35.9 202.9 65.8 100.6 139.6 208.5 818.0 32 1.1
a.22 334.3 24.2 203.0 112.2 192.4 270.8 416.7 904.5 70 1.0
b.1 3.3 0.0 0.1 3.1 3.3 3.3 3.4 3.5 62 1.1
b.2 3.5 0.0 0.5 2.6 3.2 3.5 3.9 4.6 741 1.0
b.3 2.3 0.0 0.4 1.6 2.0 2.3 2.5 3.0 927 1.0
b.4 2.6 0.0 0.4 1.9 2.4 2.6 2.8 3.3 709 1.0
b.5 3.4 0.0 0.4 2.7 3.1 3.4 3.6 4.1 262 1.0
b.6 6.0 0.0 0.5 5.1 5.7 6.0 6.4 7.0 549 1.0
b.7 2.7 0.0 0.4 2.0 2.5 2.7 3.0 3.6 1028 1.0
b.8 3.8 0.0 0.3 3.1 3.5 3.8 4.0 4.5 746 1.0
b.9 4.0 0.0 0.4 3.2 3.7 4.0 4.3 4.7 1219 1.0
b.10 4.9 0.0 0.2 4.5 4.7 4.9 5.1 5.3 395 1.0
b.11 5.7 0.0 0.4 4.9 5.4 5.7 5.9 6.6 941 1.0
b.12 6.0 0.0 0.5 5.0 5.7 6.0 6.3 7.1 1488 1.0
b.13 8.4 0.0 0.3 7.7 8.2 8.4 8.7 9.1 235 1.0
b.14 3.4 0.0 0.4 2.6 3.1 3.4 3.6 4.2 891 1.0
b.15 7.2 0.0 0.3 6.7 7.0 7.2 7.4 7.7 188 1.0
b.16 0.8 0.0 0.3 0.3 0.6 0.8 1.0 1.5 91 1.0
b.17 3.0 0.0 0.4 2.1 2.7 3.0 3.2 3.9 682 1.0
b.18 6.4 0.0 0.3 5.7 6.2 6.4 6.6 7.1 421 1.0
b.19 1.2 0.1 0.6 0.3 0.8 1.1 1.5 2.6 78 1.0
b.20 0.7 0.0 0.2 0.4 0.6 0.7 0.8 1.1 101 1.0
b.21 2.6 0.2 1.5 0.4 1.6 2.4 3.5 6.1 45 1.1
b.22 3.2 0.2 1.6 0.9 1.9 2.9 4.2 7.0 91 1.0
Ashape 0.8 0.0 0.2 0.5 0.7 0.8 0.9 1.2 236 1.0
Arate 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 214 1.0
Bshape 3.6 0.1 1.1 1.9 2.9 3.5 4.2 6.0 119 1.0
Brate 1.0 0.0 0.3 0.5 0.7 0.9 1.1 1.6 170 1.0
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