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Abstract

Healthcare information, for example patient records, must be available to appropriate pro-

fessionals at all times. The application of pervasive technology to healthcare means that

those professionals are using such technology while mobile, but still, healthcare information

must remain available at all times and across multiple locations. “Pervasive healthcare” has

emerged as the field that is concerned with the application of pervasive computing to health-

care, increasing productivity, reducing human error and increasing interoperability between

various healthcare areas and facilities.

However, the development of pervasive healthcare applications has proved to be signifi-

cantly more complex than traditional healthcare applications. Two concerns are of particular

interest to this thesis. Firstly, these applications must support the storage and exchange of

healthcare information in a mobile, distributed environment. Secondly, adapting to such a

changing environment requires the handling of contextual information, such as location infor-

mation or device heterogeneity. Incorporating these concerns into the development process

increases its complexity both for new applications and for existing applications to be upgraded

with pervasive functionality.

The focus of this thesis is to reduce the level of complexity in pervasive healthcare appli-

cation code. The complexity is analysed against two dimensions; difficulties with modularity

and inappropriate levels of abstraction. Poor modularity emerges because many pervasive

healthcare concerns cut across the entire system. Such concerns are referred to as “cross-

cutting” and are difficult to encapsulate using traditional programming models, leading to

complicated, unmanageable code. Inappropriate levels of abstraction in the implementation

of pervasive healthcare applications emerge when using general purpose languages (GPLs),
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whose constructs tend to be at a low-level of abstraction. This means that developers need

significant domain knowledge to produce the required verbose, low-level code that is neither

expressive nor semantically intuitive.

Aspect-oriented programming (AOP) provides modularisation capabilities for crosscut-

ting concerns and has successfully been applied to the modularisation of a selection of perva-

sive computing concerns. However, it has not been considered for the broad set of concerns

required by pervasive healthcare applications. Domain-specific languages (DSLs) provide

high-level, expressive constructs that encapsulate domain knowledge, reducing the require-

ment for domain knowledge, but its application in healthcare has been limited. One notable

exception is MUMPS, a language that provides database functionality that was previously

applied to healthcare information. However, it does not provide any constructs specific to

healthcare, mobility or adaptation.

In this thesis we combine these two software engineering techniques in a programming

language called ALPH (Aspect Language for Pervasive Healthcare). The research question

addressed was whether the collaboration of aspect-oriented programming and domain-specific

languages significantly reduces complexity in pervasive healthcare application code. ALPH

provides a set of constructs for thirteen abstractions derived from analysis of the pervasive

healthcare domain. These abstractions model concerns that reoccur in pervasive healthcare

applications and that have exhibited crosscutting characteristics. To modularise these con-

cerns, they are implemented using an aspect-oriented language and assembled in a library of

modular pervasive healthcare aspects. To achieve the benefits of a domain-specific language,

the ALPH language syntax and semantics have been formally specified as a grammar and a

compiler has been created from this grammar. ALPH programs are constructed from these

high-level, expressive domain-specific constructs, parameterised according to application re-

quirements. The programs are then parsed by the compiler and the generative compilation

process triggers the use of code from the library of modular aspects. A configured aspect

implementation is produced and woven into the base application at relevant points using

the aspect language weaver. The result is a complete compiled and executable pervasive

healthcare application. In the development process, developers are aware only of the base
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application and the high-level ALPH constructs reducing the requirement for domain knowl-

edge.

ALPH has been empirically evaluated through comparative studies between standard

object-oriented and ALPH implementations of multiple applications. Applications were se-

lected based on their inclusion of pervasive healthcare concerns and on their base language

suitability. Metrics were used to measure variations in complexity. Common AOP code

metrics were used to measure modularity. Common code metrics were used to measure ab-

straction and an appropriate metric was selected to measure DSL expressiveness. Results

show reductions in elements of complexity. The ALPH model improves abstraction. How-

ever, although modularity is improved in the base application, dependencies introduced by

AOP negatively impact modularity when viewed from a larger perspective.
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Chapter 1

Introduction

Pervasive healthcare applications are required to make healthcare information available to

multiple users and systems in a mobile, adaptable environment [192]. These applications have

proved to be complex both in their development [139] [185] and in their resulting code with

poor modularity and inappropriate levels of abstraction as attributing factors. This thesis

describes an approach to address these difficulties, with the goal of reducing application

complexity. The proposed approach provides a means to create modular pervasive healthcare

applications using a high-level, domain-specific language called ALPH (Aspect Language for

Pervasive Healthcare) that reduces developer requirement for domain knowledge [187]. This

introductory chapter presents the background and motivation to this work and examines

challenges in pervasive healthcare application development. ALPH is introduced along with

the contributions of this thesis and an outline for the remainder of this document.

1.1 Background

Like many industries, healthcare has recognised the advantages to be gained by the applied

use of technology [209] [218]. Globally, technology has reengineered the healthcare indus-

try resulting in reduced human error [17], reduced cost [262] and increased interoperability

between various healthcare areas and facilities. Technology applied in the field of pervasive

healthcare can improve the productivity of healthcare professionals and greatly facilitate the
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delivery of a wider range of medical services to a broad spectrum of users [262].

Pervasive healthcare is a growing scientific discipline of considerable technological breadth

[153] with its many and varied research questions, agendas, approaches, and methods [34].

The field of pervasive healthcare is a relatively nascent one and therefore its definition contin-

ues to evolve with the progression of the field [193]. We define “pervasive healthcare” as the

application of pervasive computing technology to applications within the healthcare domain.

Research in the area of pervasive healthcare is imperative and has a strong impact on the

quality and effectiveness of healthcare in an aging society [153].

1.2 Pervasive Computing

To understand the implications of applying pervasive computing technologies to healthcare

applications we must first understand the field of pervasive computing itself. Pervasive com-

puting is defined as a “computing environment in which each person is continually interacting

with hundreds of nearby wirelessly interconnected computers” [270]. The proliferation of mo-

bile devices has propelled the use of pervasive computing technologies to support users via

mobile applications [63]. The application of pervasive computing technology enables the de-

velopment of intelligent environments with applications unconstrained by either geographical

location or by incapable hardware [223]. Mobile devices have advanced capabilities to com-

municate with other devices and resources within the environment [235]. Supporting user

activities in such environments requires that applications are capable of interpreting and re-

acting to information from the environment [255]. The ability for applications to react to

their environment in this way is known as “context-awareness” [228] [281]. Context-awareness

along with the ability to be mobile within the environment are the two key requirements for

pervasive applications.

1.2.1 Mobility

The central theme in pervasive computing is the ability to incorporate mobility in applica-

tions [226]. Mobility in applications overcomes previous geographical location constraints

2



Chapter 1. Introduction

and enables the user to carry out their activities in a mobile environment. Two enabling

requirements make this possible; mobile devices and wireless communications technology

[235].

Mobile devices are generally small, portable computing devices such as mobile phones,

laptops and PDAs [224]. These devices contain embedded technologies that enable them to

communicate wirelessly with the environment around them [106]. The environment encom-

passes other devices along with services, data stores and information from sensors embedded

in the physical environment. The full scope of development work with mobile devices spans a

spectrum of domains and has evolved from early work in Xerox with ParcTabs and ParcPads

[268] to the creation of intelligent workspaces with mobile devices [137] to the application

of user based services to mobile devices e.g., tourist guides [76] up to very recent work im-

plementing verification using the latest camera enabled mobile phones [177]. Wireless com-

munications technologies are concerned with the ability for mobile devices to communicate

with each other and with other elements in their environment. The transfer of information

between mobile devices is imperative in the development of mobile applications. Wireless

technology itself is the underlying enabler of communication in mobile devices [224]. Wifi,

Bluetooth and Infrared provide channels of communication with differing range and network

features. These wireless communication networks encourage and enable the ubiquitous nature

of pervasive computing.

1.2.2 Context-Awareness

Applications adaptation to information, or context, within its mobile environment is key to

pervasive computing [62]. Context has been defined as “any information that can be used

to characterize the situation of an entity. An entity is a person, place, or object that is con-

sidered relevant to the interaction between a user and an application, including the user and

applications themselves” [16]. Systems are required to observe and understand contextual

information in the environment and to use this information to adapt their behaviour con-

sequently. Context-aware applications can tailor or customise their behaviour according to

user and application requirements, making context-awareness a powerful tool in supporting
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user activities in pervasive environments [228]. Contextual information is generally acquired

by the interpretation of data from sensors within the environment. Sensors capture many

different types of data from the environment e.g., location data. Applications that handle

various context types can use contextual data to their advantage [190]. The applicability

of context-awareness can be seen in a chronological selection of applications across many

domains from early mapping applications [268] using location information, to interactive

shopping assistants [47], location based tourist guides [15], applications to analyse and aid

sport [23] [237] [182], automotive aids [97] and recent computer gaming applications [57].

1.3 Pervasive Healthcare

Pervasive healthcare addresses the application of pervasive computing technology to applica-

tions in the healthcare domain. Healthcare applications encompass myriad systems address-

ing multiple areas of healthcare from administrative activities to lab-based diagnosis systems

[192]. Pervasive technologies can be applied to the healthcare domain in many forms e.g.,

monitoring and body sensor networks, pervasive assistive technologies and pervasive comput-

ing for hospitals [34]. The applications in these areas may be located either at home or in

a healthcare facility environment to assist both patients and healthcare professionals in the

delivery of healthcare services [262].

The incorporation of mobility and context in pervasive healthcare applications are essen-

tial to achieving the two focal aims of pervasive healthcare as identified by Korhonen and

Bardram [153].

• To enable access to healthcare information anytime, anywhere in a mobile environment.

• To apply pervasive computing technology in order to create intelligent context-aware

applications that are not constrained by physical factors such as geographic location or

heterogeneous devices.

Healthcare applications have one crucial element in common; the use of and requirement

for healthcare information. Healthcare information must be available at all times and in
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multiple locations in a pervasive healthcare environment [65]. Information in healthcare

applications varies according to application-specific details, but centres around patient based

information [262] [126] [100]. The treatment of a single patient can involve many devices,

such as X-Ray machines, people, such as doctors and laboratory personnel, and systems,

such as administrative hospital systems [185]. Patient-based information is involved in each

of these phases in the delivery of healthcare services. Information management in a hospital

setting requires significant collaboration and mobility [139]. Patient health information is

increasingly being transferred to electronic formats, e.g., electronic health records [74] and

must remain available and accessible to the appropriate professional regardless of its format,

location or accessing device. Healthcare information in a pervasive environment should be

exchanged and shared in an interoperable manner enabling multiple systems or professionals

access to the same data. In this thesis, we investigate the use of the International Health

Level 7 [8] standard for interoperable healthcare information communication in pervasive

healthcare applications.

In a pervasive environment, mobile devices can be used to access healthcare informa-

tion. Applications executing on such devices require functionality relating to mobility to be

considered. Mobility encompasses functionality including limited connectivity, distribution,

discovery and quality of service. The incorporation of mobility into pervasive healthcare ap-

plications alleviates the location constraints of access to information in traditional healthcare

systems [123]. Mobile devices executing mobile pervasive healthcare applications can access

healthcare information when required within hospital and home environments [46].

Pervasive healthcare’s second aim addresses the requirement for applications to be intel-

ligent and unconstrained by physical factors such as geographic location or heterogeneous

devices. Incorporating context-awareness in healthcare applications in a pervasive environ-

ment facilitates the use of contextual information from the user’s environment to customise

the application to best suit the needs of the user [54]. The need for context-awareness in

pervasive healthcare applications has been recognised [262] [191] [236]. Customisation of

pervasive healthcare applications according to contextual information e.g., situations, people

and hardware, create systems that significantly improve the usefulness of such services to the
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user [185].

1.4 Motivation

As described, pervasive healthcare applications are beneficial to both healthcare facilities

and to patients themselves. However, the development of pervasive healthcare applications

has proved to be significantly more complex than traditional healthcare applications [139]

[185]. Incorporating pervasive technologies into healthcare systems to enable their execution

in a distributed, mobile environment is a complex transition with many difficulties [262].

This transition involves integrating the necessary underlying infrastructure required for a

fully pervasive healthcare system [262] e.g., distributed communication technology, network

connectivity, interoperable information formatting.

Incorporating context handling and mobility in applications involves the consideration of

a new set of concerns in the pervasive healthcare application development process. Mobility

involves technical challenges that arise from an unstable environment caused by factors such

as variable network connectivity quality, service availability and user/device mobility [204].

Context involves the handling of various context types and the adaptation of the applica-

tion behaviour relative to the current context [229]. Application developers must consider

these concerns in application development to support users and make healthcare information

available in a mobile, context-aware environment. Incorporating these concerns into the de-

velopment process increases its complexity [185] both for new applications and for existing

applications to be upgraded with pervasive functionality [262]. New pervasive healthcare

applications require complex designs for the inclusion of knowledge from healthcare, mobil-

ity and context domains. Existing healthcare applications require significant modification

and/or refactoring to upgrade to support a distributed, mobile environment. “This process

(of upgrading) should not interfere with the basic functioning of the current system” [262].

The focus of this thesis is to reduce the level of complexity in pervasive healthcare ap-

plication code and in the development process. The complexity is analysed against two

dimensions; difficulties with modularity and inappropriate levels of abstraction.
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Chapter 1. Introduction

1.4.1 Difficulties with Modularity

Modularisation involves the breaking up of an application into smaller, more independent

elements known as modules. Modular code reduces the complexity of applications and en-

ables the modules to be developed in isolation as each concentrates and addresses a separate

concern [201]. Modularisation promotes the use of well defined, independent modules to in-

crease the maintainability, manageability and comprehensibility of applications [201], which

in turn results in reduced complexity. Poor modularity in pervasive healthcare applications

emerges because many pervasive healthcare concerns cut across the entire system. These

concerns affect multiple parts of the application and are scattered and tangled with the base

application functionality. Such concerns are referred to as “crosscutting” and are difficult to

encapsulate using traditional programming models i.e., object-oriented programming [138].

Poor modularisation leads to highly coupled modules that present as complicated, unman-

ageable code [129] [201]. Pervasive healthcare applications are generally poorly modularised

due to the crosscutting nature of pervasive healthcare concerns. Incorporating pervasive

computing technology into healthcare applications creates a complex web of tangled code.

1.4.2 Inappropriate Levels of Abstraction

Inappropriate levels of abstraction in the implementation of pervasive healthcare applications

emerge when using general purpose languages (GPLs). As pervasive healthcare applications

are typically developed using traditional programming techniques, pervasive healthcare con-

cerns are generally developed using GPLs. The constructs available in GPLs are low-level,

syntactical elements that, together, provide a comprehensive language that supports the im-

plementation of solutions to a wide number of varied problems. Developers can implement

multiple applications using a single familiar language. However, the broad scope of GPLs

becomes inefficient when developing applications in a specific domain [81] [132]. Implemen-

tation of domain-specific functionality using GPLs requires programming at a low-level of

abstraction. It is difficult to identify the semantics of the targeted domain from the resulting

verbose code. The code also lacks any intuitive syntactic or semantic relation to the target

domain. This lack of expressiveness places the onus of comprehensive domain knowledge on

7



Chapter 1. Introduction

the application developer [179].

1.5 Approach

Software engineering approaches are applied in application development to achieve the goal of

generating high-quality software [257]. This includes approaches appropriate for controlling

and reducing complexity in software programs. A common set of contributing factors to

complexity are accepted [27], [144], [145], [77], [51]: namely size, composition, abstraction

and modularity.

1.5.1 Complexity Approaches

Complex systems require a “divide and conquer” approach to manage complexity [194]. “To-

day, it is generally accepted that we can cope effectively with complexity in software design

through abstraction and decomposition” [176]. The acceptance of abstraction and decom-

position, or modularisation, in domain literature illustrates the effectiveness of these two

approaches on application complexity. Studies establishing this position [194][176] reiterate

early programming analysis findings [82] [80] [277] and recent findings [241], [107], [66]. Ba-

sic principles for system construction outline abstraction and decomposition as fundamental

techniques within application development [50] and combined, they have been found to fa-

cilitate application development [66]. To address the identified complexity factors we adopt

the software engineering approaches of modularity and abstraction.

1.5.1.1 Modularity

The modularisation of a system into reasonably sized, encapsulated components, is a benefi-

cial approach to managing application complexity [27]. The division of a system into mod-

ules and the maximising of module independence from other modules is a universal means

of reducing complexity in any system [200]. To achieve good modularity, concerns must be

modularly encapsulated i.e., including a single behaviour or goal functionality in a module.

Modularity in applications allows programmers to avoid the “waterfall effect” of unwanted
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side effects when modifying a particular module. Modular encapsulation reduces complexity

by making sure that changes to the internal operation of a module are contained within that

module [254] [252]. Modularity helps to maximise cohesion and to minimise coupling between

modules [200] [232]. The effect of this is increasingly independent modules. Maximising the

independence of modules is useful in reducing the complexity of a software program [200] and

in the improvement of the overall application structure.

1.5.1.2 Abstraction

Abstraction is widely used as a technique to ease the development process [81]. Abstrac-

tion is a key technique in providing clarity through the selection and structuring of relevant

information for the developer and is an effective approach to combating complexity [176].

Through abstraction, higher levels of programming can be provided to application develop-

ers. A provision of high-level abstractions reduce application size [179], therefore reducing

complexity. An examination of major complexity metrics reveals that most of them confound

the complexity of a program with its size [27] [98] [71]. Smaller modules are easier understand

and are an indicator of a well designed program structure [200].

1.5.2 Modular Programming

Modular programming promotes the decomposition of systems (i.e., Parnas’ notion of modu-

larity [201]) and the separation of behaviours (i.e., Dijkstra’s “separation of concerns” [83]).

Object-oriented techniques support the modularisation of behaviours as classes. Advanced

modularity techniques have emerged to improve the separation of concerns by introducing

new units of modularity including subjects in subject-oriented programming [124] and aspects

in aspect-oriented programming [138].

1.5.3 Aspect-Oriented Programming

The aspect-oriented programming (AOP) [138] paradigm provides advanced modularisation

capabilities for crosscutting concerns. The encapsulation of code for a particular concern or

objective within modular components or “aspects” results in the removal of duplicated code
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and the separation of this code from the base functionality of the application [157]. The mod-

ularisation of this code removes the concern code that would previously have been scattered

and tangled throughout the entire system, reducing coupling and increasing cohesion. In-

creased modularity improves code quality [56] and results in more manageable, maintainable

and understandable code [201].

1.5.4 Domain-Specific Languages

Difficulties with inappropriate levels of abstraction can be addressed by the use of Domain-

Specific Languages (DSL) for the target domain [81]. DSLs address the problem of inadequate

semantic abstractions in GPLs by providing expressive semantic notations and constructs

tailored towards a particular application domain. High-level, expressive constructs model

domain tasks and entities that enable application developers to use language that is seman-

tically intuitive of the domain [179]. This reduces the requirement for application developers

to have significant domain knowledge. The resulting code is more concise, expressive and

modular within the domain [81].

1.5.5 ALPH Model

To tackle the complexity produced by poor modularity and inappropriate levels of abstraction

we combine two software engineering techniques, AOP and DSLs, in the ALPH model. By

combining the benefits of AOP and DSLs, the model provides a means to develop applica-

tions within the pervasive healthcare domain at a high-level of abstraction and in a modular

manner. Mobility, context-awareness and healthcare concerns are combined to create a set of

pervasive healthcare concerns. These concerns emerge following an investigation into recur-

ring crosscutting concerns in pervasive healthcare applications. ALPH models the pervasive

healthcare domain by providing modular abstractions for each concern. To ensure a mod-

ular composition, each concern is implemented using an aspect-oriented language, AspectJ

[147]. The functionality for each concern is encapsulated in appropriate modules i.e., aspects

and classes. These modules are assembled within a library of modular pervasive healthcare

functionality. It should be noted that the scope and depth of the modules are such that
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the required behaviour is delivered to a sufficient degree to enable the investigation of the

research question posed in this thesis.

Fig. 1.1: ALPH Overview

To achieve the benefits of DSLs, the ALPH model makes the library of aspects available by

the provision of domain-specific constructs in a programming language called ALPH (Aspect

Language for Pervasive Healthcare) [187]. These constructs relate to each of the concerns

implemented in the library of pervasive healthcare functionality. The syntax and semantics

of the ALPH language have been formally specified as a grammar in EBNF notation, as

illustrated in point 1 of figure 1.1. The ALPH compiler and compilation process is created

from the defined grammar, as shown in point 2.

To include the pervasive healthcare concerns provided by ALPH into a base applica-

tion a programmer must create an ALPH program defining the concerns to be included and

application-specific implementation details associated with each concern i.e., where the con-

cern behaviour should be applied. ALPH programs are constructed from the high-level, ex-

pressive, domain-specific constructs provided with application-specific details being provided
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as parameters to the constructs, as shown in point 3 of figure 1.1. The ALPH programs are

then parsed by the ALPH compiler, shown in point 4, and the generative compilation process

triggers the inclusion of code from the library of modular concerns as seen in point 5. This

code may be customised by the programmer according to application requirements specified

through parameterisation. A configured aspect-oriented implementation is generated as out-

put from the ALPH compilation process as shown in point 6. This is then “woven” into

the base application by the aspect language weaver as in point 7. The base application may

be an existing healthcare application undergoing upgrading to a pervasive environment or

a new pervasive healthcare application. In either case, the base application is written in a

base GPL language i.e., Java, and has no reference to or consideration for the domain-specific

pervasive healthcare functionality. In the development process, developers are aware only of

the base application and of the high-level ALPH constructs. This shields developers from

the low-level implementation details of the domain-specific pervasive healthcare behaviour

and reduces their requirement for domain knowledge. Subsequent to the ALPH compilation

and weaving process, a complete, compiled and executable pervasive healthcare application

is produced as shown in point 8 of figure 1.1.

An empirical evaluation was carried out to measure the effect of ALPH on application com-

plexity with measurements determined through comparative analysis. Comparative studies

took place between standard object-oriented and ALPH implementations of multiple appli-

cations. Applications were selected based on their requirement for any subset of the set of

pervasive healthcare concerns addressed by ALPH. Five applications were selected including

both internal case studies and independent third party codebases:

• DBay is a case study application based on an online auction website scenario. Its

requirements were outlined independently by a research laboratory in the Swiss Federal

Institute of Technology Lausanne [13] and both OO and ALPH implementations were

produced within this work.

• MedHCP is also a case study application based on a scenario from the pervasive health-

care domain. The scenario was conceived by the Centre for Pervasive Healthcare [3] and

staff at a collaborating hospital. Both OO and ALPH implementations were produced
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as part of this work.

• Rococo [10] is a Bluetooth mobile phone software company based in Dublin, Ireland.

They provided an OO mobile phone application codebase for comparative use in this

work.

• HL7 Browser [6] is an open-source application for the viewing and manipulation of HL7

data messages. This was used as an OO comparative implementation.

• Healthwatcher [120] is testbed codebase made available through Lancaster University

and was used as an OO implementation for comparison with ALPH.

Variations on application complexity were analysed against two dimensions; modularity

and abstraction. The evaluation of high-level concepts such as modularity and abstraction

is problematical due to the absence of explicit measurements techniques or metrics. The

Goal-Question-Metric [43] approach outlines methods to derive quantitative level metrics

from high-level conceptual goals. Using the GQM approach, metrics were selected for the

measurement of both complexity producers, modularity and abstraction. Modularity can

be measured by the variations in its indicators: maintainability, manageability and under-

standability [201]. Metrics for the measurement of modularity indicators are common AOP

code metrics to measure coupling, cohesion, and independence [154] [157] [188]. Indicators of

abstraction include conciseness and expressiveness [81] [70]. Metrics for the measurement of

variations in abstraction include common code metrics, i.e., size and also required a metric

to measure expressiveness.

Results show an overall beneficial effect of ALPH on application complexity. Modularity

is increased with benefits evident in many indicators of modularity i.e., coupling, cohesion

and independence. However, the use of AOP also produced a negative effect on indicators

of modularity by introducing dependencies due to its dependence on syntactical details in

the base code. Results show that ALPH has a beneficial effect on abstraction. Metrics

show ALPH code to be more concise and more expressive than standard OO application

code. The evaluation illustrates that the combination of the use of AOP and DSLs in ALPH
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reduces elements of complexity in pervasive healthcare application code and improves the

development process.

1.6 Contributions

The approach outlined in this work contributes to knowledge in the domain of pervasive

healthcare by addressing the following issues:

• The investigation of pervasive healthcare functionality in applications has identified a

set of crosscutting concerns in the pervasive healthcare domain. This set of comprehen-

sive domain concerns reoccur in, and influence multiple parts of, pervasive healthcare

applications. Their detailed functional purpose and crosscutting nature is documented

to enable the elimination of negative crosscutting consequences i.e., complexity pro-

duced by poor modularity resulting in tight coupling, low cohesion and poor module

independence.

• Current approaches to pervasive healthcare application development do not address the

modularisation of pervasive healthcare functionality. Singular and subsets of concerns

have been addressed regarding modularity, but the comprehensive set of concerns re-

quired in such applications remains difficult to encapsulate using existing approaches.

The proposed approach provides a model for the modularisation of a comprehensive set

of pervasive healthcare concerns. The approach provides a modular design and overall

architecture for each pervasive healthcare concern. These concerns have been imple-

mented and assembled in a library of modular components. This enables the clean

encapsulation of crosscutting pervasive healthcare behaviour, resulting in increased

modularity and hence, reduced complexity.

• Currently, the development of pervasive healthcare applications makes use of general

purpose languages. These languages offer low-level all-purpose constructs to enable the

programming of applications in a broad spectrum of domains. GPLs become prob-

lematic when implementing domain-specific functionality. Due to the low-level of ab-

straction, developers are required to have significant domain knowledge to produce the
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required verbose, complex code. This code bears no semantic relevance to the perva-

sive healthcare domain. This approach establishes a DSL for the pervasive healthcare

domain, thus raising the level of programming abstraction for the developer while re-

ducing the requirement for domain expertise. This contributes knowledge to the area

of software engineering in pervasive healthcare by realising a method of abstraction for

pervasive healthcare application development. The applications developed using the

approach are more expressive and semantically intuitive of the domain recognising the

benefits that can be gained by the employment of a DSL in pervasive healthcare.

• Currently, it is difficult to evaluate certain characteristics often associated with DSLs.

High-level concepts such as abstraction are difficult to assess as few means of quan-

tifiable measurement are currently available. In this work we investigated areas such

as empirical law, natural language processing and financial models to identify suitable

techniques. Using a natural language technique, along with common code metrics, we

establish appropriate metrics for DSL abstraction indicators.

These contributions are summarised in detail in section 7.1

1.7 Thesis Outline

The remainder of this thesis is presented as follows. Chapter 2 presents an overview of

the state of the art in the area of pervasive healthcare application development and the

related use of AOP and DSLs. Chapter 3 describes the design of the approach, detailing

the identification and functionality of pervasive healthcare concerns addressed. Chapter 4

describes the implementation of the modular library of concerns as aspects and the creation

of the domain-specific ALPH language. Chapter 5 presents an evaluation of the approach,

including a description of the comparative analysis of multiple applications and the metrics

applied in empirical experiments. Finally, Chapter 6 summarises the contributions of this

thesis and discusses findings of the approach and directions for future work.
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Related Work

ALPH was devised to combat complexity in pervasive healthcare application code and in its

development process by applying modularity and abstraction techniques to pervasive health-

care concerns. This chapter explores other programming support for pervasive healthcare

application development, modularisation of pervasive healthcare concerns and abstraction in

pervasive healthcare. A number of state of the art projects offer support for fractions of per-

vasive healthcare behaviour. This thesis examines the gap in support for a comprehensive set

of concerns required by pervasive healthcare applications, in particular their modularisation

and abstraction.

This chapter reviews relevant existing work related to reducing complexity in pervasive

healthcare applications. We examine existing research in three major areas:

• Pervasive healthcare application development

• Modularisation of pervasive healthcare concerns

• Abstraction of pervasive healthcare concerns

The three areas above include all works relevant to the approach described in this thesis

to reduce complexity in pervasive healthcare applications. These three areas combined in a

single approach are required to reduce the complexity produced by difficulties in modularity

and abstraction, as shown in figure 2.1. We examine the approach to the three areas in
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Fig. 2.1: Combination of areas to reduce complexity

existing work and, where appropriate, compare and contrast specific features of the ALPH

approach to those systems under review. We conclude by summarising the extent to which

each approach addresses these three areas for particular pervasive healthcare behaviour.

2.1 Pervasive Healthcare Application Development

Application development is aided by programming support in the form of APIs, middleware,

frameworks, targeted domain languages, etc. Such support is provided with a goal of easing

development from the application developer’s point of view. In this section, we examine work

on programming support for pervasive healthcare applications. We include work addressing

the broad area of application development support and focus on the development requirements

associated with incorporating HL7 and EHR functionality into healthcare applications.

2.1.1 Centre for Pervasive Healthcare

The majority of work on support for pervasive healthcare application development has taken

place in the Centre for Pervasive Healthcare at the University of Aarhus, Denmark [3]. Many

areas of research in pervasive healthcare application development have been investigated

by the group. Projects have delivered work including requirements engineering in the do-
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main, application architecture and design, investigation of computing paradigms in pervasive

healthcare application development and the implementation of technologies.

Requirements for the domain have been investigated [139] [208] and the requirement for

both context [32] [38] and mobility [36] [39] recognised. Use cases for a pervasive health-

care system have been described [140] [141] and challenges and technologies in the domain

have been examined [35]. The requirements identified in these works are included in the

domain analysis forming the basis for the ALPH model. While these are based on one par-

ticular research centre’s requirements engineering, they are a useful, broad and ample set of

requirements from the domain.

Designs have been outlined to aid in the development of pervasive healthcare applications.

An architecture has been described for the development of a personal medical unit [33]. A

pervasive healthcare middleware architecture vision is described in a white paper by Bardram

and Christensen [37]. This vision incorporates research in the area with experiences from

working with staff in a collaborating hospital [38].

This work has investigated supporting mobility and roaming in healthcare over heteroge-

nous devices using an architecture based on JMS [31]. Activity based computing has also

been investigated for the support of pervasive healthcare activities [30] and experiences in the

deployment of context-aware technologies and applications in a hospital environment have

been documented [32] [38]. The work at the Centre for Pervasive Healthcare contributes to

many areas of the pervasive computing domain e.g., requirements, design, experiences and

applications, adding valuable knowledge to the domain. However, it does not provide a con-

crete mechanism, available to developers, to aid in the development of pervasive healthcare

applications.

2.1.2 HL7

The HL7 international standards institution promotes the standardisation of electronic health-

care information to facilitate its use in healthcare applications globally [189]. HL7 provides

standards for the exchange, integration, sharing and retrieval of electronic health information

[189]. The implementation of the HL7 messaging standard improves quality, efficiency and
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effectiveness of healthcare delivery and shared medical information. Applications in the area

of distributed healthcare require HL7 in systems that exchange and share data with internal

and external systems [189].

Three approaches support the incorporation of HL7 standards in pervasive healthcare

applications. Microsoft created a software factory for healthcare systems based on HL7 [215].

A model-driven development approach enables developers to configure a HL7 collaboration

port application including messages, interactions, roles and flows. While the software fac-

tory provides valuable support and a useful tool for HL7, it does not provide support for

the incorporation of HL7 functionality into existing applications, as collaboration ports are

produced as separate applications. This requires existing applications to be refactored to

use this functionality, inhibiting the modularity of domain-specific behaviour. Ko et al [152]

have created a service-oriented architecture to ease HL7 healthcare application development.

In the architecture, a web service layer sends and receives HL7 messages over SOAP. This

approach provides an effective technique for easing the integration process of using HL7 func-

tionality in pervasive healthcare applications. However, the complexity introduced by the

functionality is not addressed. It requires significant effort on the developers part to create

HL7 messages from a DOM-like (Document Object Model) C# class library and to send them

via SOAP to a central Web Service for processing. CORBA and OLE have also been used

to develop HL7 components for healthcare applications [219]. While this component based

approach provides support in the development of pervasive healthcare applications and the

distribution of interoperable healthcare information, it is a dated approach and does not

address the complexity introduced by requiring the developer to implement the creation of

HL7 objects and to make them known to the object broker or implement the remote access

to a remote HL7 object.

2.1.3 Electronic Health Records

An Electronic Health Record (EHR) is defined as “digitally stored healthcare information

about an individual’s lifetime with the purpose of supporting continuity of care, education

and research, and ensuring confidentiality at all times” [134]. The information contained in an
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EHR may vary from notes, diagnostic images, laboratory tests, treatments, drugs prescribed,

legal permissions to administrative details [92].

Supporting EHRs in pervasive healthcare applications is a difficult task [44]. Vendor-

specific software packages are often used and are application-specific, so development in

general is not aided. EHR systems encounter complexity on many levels e.g., in their need to

be accessible to mobile users, their integration with knowledge bases such as terminology and

clinical guidelines and their need for medico-legal support. Despite international guidelines,

many hospitals and health facilities are yet to adopt EHRs. This intensifies the requirement

for methods of incorporating EHR systems in new and existing healthcare applications.

EHRs are generally used in conjunction with interoperability standards such as HL7 for

information and DICOM [183] for images [92]. The standards available for use with EHRs

have been outlined to aid their incorporation into healthcare applications [44]. General

rules for the architecture of an EHR system have been outlined and can be used in the

development of a new EHR system [143] [234]. New EHR systems are difficult to implement

due to the volume and heterogeneity of information held within them. The use of open-source

software for the provision of EHRs has been identified as an alternative solution to some of

the barriers encountered in the attempt to use electronic formats for patient information

in pervasive healthcare applications [181]. This open-source software is based on standards

and encompasses medico-legal support in its implementation [181]. However, it is a verbose,

complicated software that provides little abstraction requiring great developmental effort

from application developers.

2.2 Modularisation in Pervasive Healthcare

The use of modularisation as a software engineering approach to reducing complexity in

applications was examined in section 1.5.1.1. Separately, it has been noted that “a great deal

of literature extols the benefits of modularity, but very little is said about how to achieve

it” [200]. To achieve the benefits of modularity, as outlined in section 1.4.1, each particular

function, or concern, of a system must be encapsulated into modular components. A concern

is a focused attention on some aspect of a system [83]. Each concern relates to one specific
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topic that can be functional or non functional e.g., business logic such as authorisation or

system based concerns such as distribution.

2.2.0.1 Separation of concerns

Dividing an application so that each module addresses and encapsulates one concern is the

fundamental goal of modularisation, also known in software engineering as “the separation of

concerns” [83]. This approach reduces the complexity of applications [265] [96]. Separating

each concern enables it to be developed in isolation, understood without interference from

other concerns and minimises the “impact of change” allowing systems to be maintained

without requiring modifications in many other modules [252].

Dijkstra conceived the term, explaining that tackling various concerns simultaneously

caused complexity and must be resolved by focusing attention upon and separating particular

concerns individually [83]. Parnas had explored a similar notion under the name “modularity”

[201]. The focus on separating concerns and advanced modularity techniques continued in

subject-oriented programming [124] and multi-dimensional separation of concerns.

2.2.0.2 Crosscutting concerns

When many concerns are incorporated into one application, as is required in applications that

need to fulfil a large number of both functional and non-functional requirements, they become

difficult to develop [95]. Pervasive healthcare applications are one such group of applications.

Many concerns have an effect on multiple parts of an entire system, causing concern code to

be found “scattered” and “tangled” with the base functionality of the application [138]. These

concerns are known as “crosscutting” [138]. These types of concerns disrupt the modularity

desired in object-oriented systems [122] and introduce duplicated code [138]. Crosscutting

concerns cannot be modularised using traditional object-oriented techniques, inhibiting the

full separation of concerns.
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2.2.1 Aspect-Oriented Programming

Following on from the work described in section 2.2.0.1, AOP emerged as a primary technique

in the modularisation of crosscutting concerns. It is founded on the principle of separation of

concerns [146] and its goal is to achieve a high degree of separation of crosscutting concerns by

enabling developers to reason about, and implement them in separate modules [95]. Aspect-

oriented applications are implemented using an AOP language such as AspectJ [147]. We use

AspectJ terminology to explain the salient features of an aspect-language, namely aspects,

join points, pointcuts and advice.

• Aspects are the concrete code realisation of a crosscutting concern as a module. As as-

pects are implemented in isolation from the rest of the base application, the application

does not have any knowledge of or reference to the aspects [103]. Therefore, points of

reference must be defined within the aspect to identify where in the base application

the crosscutting behaviour should be executed.

• Join points are points in the execution of the base application at which aspect behaviour

may occur. A join point is defined as “a location that is affected by a crosscutting

concern” [199], “well-defined points in the execution of the program” [148] and “a

location in the base program where a set of aspects can intercess their behaviors” [203].

• Pointcuts are predicates over the set of available join points. A pointcut defines a join

point or set of join points along with information that might be required by the pointcut

e.g., variable values. Each aspect may have collection of pointcuts.

• Advice is the implementation of concern behaviour that will be executed when a join

point that matches a description in a pointcut is reached.

To combine the AOP implementation with the base application, the aspect implementa-

tion is “woven”, or merged, with the base application to produce an executable application.

When a pointcut predicate is matched during execution, advice behaviour is executed seam-

lessly.
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2.2.2 AOP in Pervasive Healthcare

The use of AOP to modularise concerns relating to pervasive healthcare has not been exam-

ined outside the scope of the ALPH project [189]. However, the pervasive healthcare domain

encompasses pervasive computing concerns that have been tackled by AOP techniques in

order to achieve increased modularity. We examine related works that have applied AOP to

any concern or subset of concerns in the pervasive healthcare domain. The work described

does not address abstraction levels and tackles modularisation in isolation.

2.2.3 Context Adaptation

Context-awareness has been addressed in several ways using AOP. Context-aware aspects

[251] apply the notion of context-awareness to aspects themselves using the Reflex AOP

kernel [250]. Contexts are defined using an annotation framework and a context defini-

tion framework, enabling aspects themselves to become context-aware rather than provid-

ing context-awareness behaviour. Context-awareness in virtual environments has also been

implemented using AOP [230]. In this work, an aspect layer was proposed to support cus-

tomisation according to context [230]. Personalisation in web servers has been modularised

using AOP [19]. The Apache Tomcat server was extended using AspectJ to adapt JSP pages

according to contextual information. A set of adaptability aspects have been created using

AOP and architectural patterns [75]. The developer provides adaptive behaviour by specify-

ing an interface whose methods will be invoked by the aspects. A context manager triggers

these adaptive actions. Displays can be adapted according to contextual information using

a technique that encapsulates three facets of adaptation as aspects i.e., display manage-

ment, content management and display adaptation [213]. The Dynamic Object Composition

Language (DynOCoLa) framework [271] offers another method of dynamic customisation of

applications based on context information. A healthcare system is used as an example ap-

plication and role-based access control was developed using the DynOCoLa framework. This

object-oriented framework has aspect-oriented language extensions including an “aspect” ob-

ject and a “typemarked” method where behaviour changes are applied. Context adaptation

behaviour defined in the aspects is woven on compilation and executed when appropriate
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at runtime. These approaches provide effective modularisation of context adaptation using

AOP. Some do not offer generic adaptation akin to that provided in the ALPH model as

they are too specific [19] or have a different notion of modularising context [251]. DynOCola

[271] and the adaptability aspects [213] offer modularity in adaptation similarly to the ALPH

model.

2.2.4 Distribution

Distribution concerns have been modularised using AOP in many attempts to ease distrib-

uted application development. Most approaches focus on Java-based distribution solutions.

Distributed object allocations [253] for Java have been modularised, aspects to distribute

existing applications using RMI created [59] and basic remote access to services using RMI

modularised using AOP [238]. Distribution using CORBA has also been separated using AOP

[231]. These approaches do not address any behaviour beyond distribution and abstractions

are not provided, requiring GPL level implementation from the application developer. The

modularisation using AOP applied to distribution in these approaches addresses the com-

plexity created by poorly modularised code. This approach is reused in the ALPH model as

distribution is separated in a similar manner apart from functional detail differences.

2.2.5 Persistence

Persistence has been successfully modularised using AOP in several existing works. In work

by Rashid and Chitchyan [212], persistence is successfully modularised using AOP producing

highly reusable persistence aspects for database access and SQL translation. Persistence is

modularised, along with awareness, authentication and multiple views, using AOP as part

of work that supports collaborative users in virtual environments [205]. A JDBC-based im-

plementation by Soares et al provides persistence in a similar fashion to ALPH [238]. The

modularisation reduced code size significantly, indicating the removal of duplicated crosscut-

ting code. The ALPH model reuses the approach of applying AOP to persistence described

in these works.
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2.2.6 Quality of Service

Quality of Service (QoS) requirements such as load balancing, efficient resource usage and

fault tolerance have been modularised using AOP [231]. The concerns are defined and gen-

erated in an aspect-oriented language by a CORBA-LC code generator [231] that uses infor-

mation from CORBA Interface Repository (IR) and definitions in components’ XML files.

This approach separates the QoS concern, but requires significant effort from the application

developer to design interfaces and establish the set of interfaces and events in each com-

ponent. This approach considers only QoS functionality and does not support any further

pervasive behaviour. The ALPH model includes QoS behaviour in a similar manner using

AOP in its modularisation of pervasive healthcare concerns, but abstracts the developer from

implementation details.

2.2.7 Mobility

Mobility has been described as an aspect [170] in the AspectM framework. Code mobility,

or software roaming, is implemented as a software agent using AspectJ. An actor-based

approach using AOP can also be used to develop time-dependent distributed applications

[115]. Actors are encapsulated units of data and finite state machines are used to represent

their behaviour providing the modular inclusion of software roaming in pervasive applications

[115]. The ALPH model addresses the modularisation of mobility in a more detailed manner

than existing approaches. Software roaming is provided using a software agent technique,

similar to that used in the AspectM framework. However, the ALPH model also addresses

the geographic roaming of a user, limited connectivity in a mobile environment, discovery of

mobile devices and services and the communication required to support mobility.

2.3 Abstraction in Pervasive Healthcare

As described in section 1.5.1.2, abstraction is commonly used as a technique to ease the

development process [81] and reduce complexity [176]. DSLs provide an efficient means of

programming while offering application developers the greatest level of abstraction possible
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for programming in a particular domain. We examine DSLs and their benefits in detail

before examining the application of DSLs to attain abstraction in the domain of pervasive

healthcare.

2.3.1 Domain-Specific Languages

DSLs are a valuable approach to facilitating efficient software engineering [118]. A DSL defines

an engineering methodology for a particular application domain [256]. ‘A DSL is defined

as “a programming language that offers, through appropriate notations and abstractions,

expressive power focused on and usually restricted to a particular domain” [81].

The use of GPLs for application development in a particular domain provide suboptimal

solutions [81]. A DSL is tailored to a problem domain, therefore focusing its syntax and

avoiding overly general constructs that are needed to support general-purpose programming

[273].

2.3.1.1 DSL Benefits

Adopting a DSL approach in programming for a particular domain offers a number of benefits

[81] as described below.

Conciseness

Conciseness is a well documented advantage in the use of DSLs [273] [81] [256]. Programs

written using DSLs are more concise and more self-documenting than GPL programs [81].

DSLs are found to be roughly a factor of ten times smaller than equivalent programs written

in a GPL [256]. Developers may specify as little as 2% of the code that would be needed

to program the equivalent functionality in a conventional programming language [273]. This

results in significantly shortened development and testing times [256], and related advantages

of comprehensibility, ease of writing, fewer errors and greater productivity [273].

Abstraction

The use of DSLs allow solutions to be expressed at the level of abstraction of the problem do-

main [81]. The use of abstraction in DSLs to reduce complexity is a common motivation [256].

The high-level constructs provided by the DSL abstract over low-level application details [274]
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leading to reduced complexity and shorter development times [256]. When programming at a

high-level of abstraction using a DSL, the reduction in domain knowledge required in domain

application development is the “single greatest advantage provided by the use of DSLs” [273].

The reduction in the requirement for comprehensive domain knowledge means that the team

of domain experts and programmers previously required to develop applications in the target

domain can be reduced [179]. As the language incorporates abstractions for domain knowl-

edge, the programmer requires little detailed knowledge of the underlying domain-specific

functionality [118]. This opens up application development in the domain to a larger group

of software developers, with less domain knowledge and/or programming expertise, compared

to using GPLs [179].

Expressiveness

DSLs offer substantial gains in expressiveness over the use of GPLs in their domain of appli-

cation [179] [81]. They trade generality for expressiveness, offering notations and constructs

tailored towards a particular application domain [179]. These notations capture the domain

meaning, therefore, the expressiveness of DSL semantics are accepted as being more famil-

iar to the developer [118] [274] [256]. The increase in expressiveness, or “focused expressive

power” [81] is a key distinguishing factor in DSL programs, achieving greater meaning to

the developer [118]. More meaningful code represents domain knowledge, making it easier to

understand and develop.

Reuse

Another documented benefit of DSLs is their enabling of reuse [156] [179] [153] [256]. DSL

constructs represent domain knowledge and enable the preservation and reuse of this knowl-

edge [81]. Language grammars, source code, software designs, application generators and

domain abstractions can all be reused [179], along with domain expertise [256] and the re-

sulting programs themselves [81]. As DSLs produce components specific to a target domain,

they are likely to be suitable for reuse in the domain to a greater extent than GPL compo-

nents.

Productivity

DSLs improve development efficiency in domain applications as developer productivity is
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increased resulting in shorter development times [274]. Developer productivity is increased

using DSLs both during and beyond the coding phase of software development [118] [79].

Increased productivity is a well documented benefit of using DSLs [81] as they can achieve an

order of magnitude of productivity over GPLs [274]. Using DSLs is more efficient than GPLs

for the developer who must solve the domain problem programmatically [273]. Application

development is both quicker and easier using a DSL for a particular domain [118].

Software Engineering “Ilities”

Software quality is defined as the degree to which software possesses a desired combination

of software engineering characteristics, known as “ilities”, such as maintainability, testability,

reusability, reliability, comprehensibility[12]. These “ilities’ are positively affected by the use

of DSLs in domain application development.

Due to the intuitive semantic and syntactical nature of DSLs they are more readable to

application developers [256] and resulting DSL programs are easier to understand and to

maintain [118]. DSLs increase reliability [81][256], maintainability[261] and portability [128].

They also enable validation and optimisation at the domain level [81] [55]. They can improve

testability [81] and increase safety and accessibility [256]. DSLs achieve gains in overall ease

of use compared to GPLs [179] and reduce complexity both in the development of applications

and in the resulting applications [256] [81].

2.3.1.2 Limitations

DSLs have disadvantages that limit their applicability. These limitations generally emerge

from the process of creating a new language i.e., high costs of designing, implementing and

maintaining a DSL, difficulties in scoping the DSL and the difficulty in defining appropriate

domain constructs [81] [156]. Users of new DSLs also require education on how to use the

language that is not neccessary when using familiar GPLs [81].

2.3.2 DSLs in Pervasive Healthcare

The application of DSLs to attain abstraction in the domain of pervasive healthcare has

not been addressed by any existing work. As no research exists in this specific area, we
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examine projects that have independently applied abstraction using DSLs to any concern

that is encompassed within the domain of pervasive healthcare.

As early as 1979, there were recommendations for the development of “high-level pro-

gramming languages for medical computing” by government agencies and academics [197].

Although the application of DSLs in healthcare was identified as a beneficial and advanta-

geous exercise [197], very little work has been done in the area of DSLs in healthcare. We

examine three approaches that apply abstraction to the area of programming for healthcare

applications.

2.3.2.1 MUMPS

MUMPS (Massachusetts General Hospital Utility Multi-Programming System) [52], was a

domain-specific language developed by Pappalardo and Barnett in the 1960’s with the orig-

inal target application domain of healthcare. However, the concepts abstracted were widely

applicable as they addressed the development of database applications. Backend datastore in-

tegration was made transparent, abstracting the developer from persistence implementation.

MUMPS was used to develop financial, healthcare and telecommunications applications. Its

constructs relate solely to operations based on data management e.g., SET, WRITE, DO,

NEW, QUIT, and its major competitor is SQL used in conjunction with general purpose

programming languages or as part of an enterprise solution. Despite its creation as a health-

care language, it provides no behaviour specific to healthcare. While it is still in use in

some financial markets, it has become almost obsolete in its application in new pervasive

healthcare applications due to its limited support for pervasive healthcare functionality. In

contrast, ALPH provides constructs and functionality to support behaviour specific to the

domain of pervasive healthcare. This includes the support for the distribution and storage of

healthcare information and the incorporation of mobility and context-awareness behaviour

in applications.
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2.3.2.2 Reformatting of HL7 Messages

HL7 is the international standard that enables healthcare information interoperability. It

outlines a standard for data format but does not provide any language support for its com-

munication or exchange. The HL7 standard has been constantly updated, which has given rise

to version compatibility problems. Williams [275] developed a language to generate programs

to automatically reformat HL7 messages to a particular version as required by an application.

The language takes specifications of what parts of the HL7 message to reformat and outputs

a HL7 message in the required format. While this is a useful tool in version compatibility,

it assumes the existence of HL7 support in a system and does not address any functionality

in pervasive healthcare applications other than version formatting. ALPH supports creation,

parsing and segmentation of HL7 messages, in addition to their communication and exchange.

2.3.2.3 Apache Camel

Apache Camel [2] is an open source integration framework based on known enterprise inte-

gration patterns. The API provided includes a HL7 component that supports sending and

receiving of HL7 messages, along with their formatting. The provision of constructs to sup-

port such behaviour enables HL7 functionality in pervasive healthcare applications. Camel,

like ALPH, makes use of HAPI (HL7 application programming interface) [4] to support all

possible HL7 functionality. ALPH however, provides a DSL rather than an extended API as

provided by Camel, achieving the DSL benefits outlined in section 2.3.1.1.

2.3.3 DSLs in Pervasive Computing

DSLs have been applied to many areas within the domain of pervasive computing. ALPH

supports mobility and context-awareness concerns particularly to support the deployment of

healthcare applications in pervasive environments. We examine existing work that abstract

mobility and context-awareness concerns within pervasive computing using DSLs.
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2.3.3.1 YABS

YABS [41] provides a DSL for defining entity behaviour and coordination in pervasive com-

puting applications. It bases its composition of components on the stigmergy model from

nature. YABS focuses on context-awareness and defines the proximity or area around an

entity and behaviours that can be performed by the entity. These are mapped according to

specifications so that the entity adapts according to contextual information. This approach

is not easily applicable to existing applications as it requires developers to define the sen-

sors and actuators in the base application using Java before defining entity behaviour using

YABS. The ALPH model does not require modification to existing base applications to in-

clude domain-specific functionality. YABS provides a DSL for context adaptation, but does

not address underlying mobility concerns such as distribution. ALPH deals with mobility

and healthcare concerns in addition to providing context handing functionality.

2.3.3.2 AmbientTalk

AmbientTalk [78] is a DSL for “ambient-oriented” programming. This includes support for

service discovery, distributed communication and composition in mobile ad hoc networks.

An underlying actor based, event-driven concurrency model is adopted to support the or-

ganisation of mobile nodes in an inherently unreliable mobile environment. An event-driven

model includes actors (event loops), events (messages), event notifications (message sends)

and event handlers (object methods). Actors are transparently distributed and use asynchro-

nous messaging to communicate messages. Limited connectivity is addressed in two ways;

during network disconnection, messages are stored for unavailable entities and remote refer-

ences are “leased” enabling the identification of persistent failures upon unrenewable leases.

AmbientTalk addresses many concerns from the domain of pervasive healthcare including lim-

ited connectivity, distributed communication, device and service discovery [260]. However,

context-awareness and healthcare specific functionality are not addressed. AmbientTalk is

a standalone DSL, meaning that the entire application is implemented using the language.

The ALPH model requires the ability to incorporate new behaviour in existing applications,

as well as new applications, making the AmbientTalk approach unsuitable.
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2.3.3.3 Indus

Indus [49] [48] provides abstractions in a DSL for programming with software agents in per-

vasive computing. Constructs in Indus enable the definition and coordination of concurrently

executing processes (agents) and components. Concerns related to the ALPH approach ad-

dressed by Indus are service discovery, distribution, routing, roaming, communication and

persistence. While Indus includes a construct called “Context”, this deals with an entity’s

application state alone e.g., its policies for transactionality, and does not provide the ability

to interact with contextual information from the environment. Applications are built using

the Java-based Indus language to develop the entire application. This approach is not ap-

plicable to existing languages, requiring full reimplementation using Indus. The ALPH model

addresses similar concerns to Indus, but can include domain-specific behaviour in both new

and existing applications without the need for refactoring.

2.3.3.4 PLUE

PLUE (Programming Language for Ubiquitous Environments)[161][162] is a DSL based on

event-condition-action rules and finite state automata based interactive responses for the

dynamic adaptation of pervasive computing applications. Events, conditions and states are

outlined using PLUE and transitions from state to state take place when an event satisfying

the condition occurs. PLUE acts as a pre-processor to a finite state machine, adding a level

of abstraction to the definition of the required states and rules. This approach is markedly

different from ALPH. The ALPH model abstracts developers from low-level implementa-

tion details by providing pre-implemented domain-specific behaviour via DSL constructs.

In PLUE, the developer is required to implement all required behaviour as no underlying

pervasive computing functionality is provided by the constructs of the PLUE language. Its

implementation also requires the refactoring of base applications to use PLUE to implement

the entire application, as opposed to using the ALPH model to introduce domain-specific

behaviour where required.
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2.3.3.5 Pantaxou

Pantaxou [178] is an event-oriented language that addresses the coordination of networked

entities in a pervasive computing environment. Pantaxou provides two services, one for

creating an environment description and one for programming coordination services. Entities

are adapted based on the states and interactions described using the environment description

language. Coordination is addressed by defining which components or services interact with

each other using the coordination logic language. Discovery and distribution are concerns

addressed by both ALPH and Pantaxou, although Pantaxou uses an event-driven approach.

Using Pantaxou, applications are developed using two languages, an environment description

language and a coordination logic language. This requires the full refactoring of existing

applications to use Pantaxou, requiring the developer to build a networked environment

and to develop the application to be deployed in that environment. This approach is not

applicable to the requirements of the ALPH model due to the refactoring required in existing

applications.

2.3.3.6 DiaSpec

DiaSpec [58] includes a language to define device descriptions and an architecture descrip-

tion modelling language to describe application architectures. It is a continuation of work

described in Pantaxou. The same event-based approach is taken, where a taxonomy of de-

vices’ implementations describe the types of data gathered from the environment and the

actions supported by the devices. The architecture is modelled in terms of a set of contexts

that detect relevant devices and trigger appropriate actions. DiaSpec focuses on supporting

context-awareness but also supports distribution and device discovery. It provides modelling

functionality along with an event-based context language. ALPH addresses the implemen-

tation stage of application development and is not concerned with modelling. Pervasive

healthcare functionality i.e., mobility, healthcare and context-awareness requires support for

a larger set of concerns than addressed by DiaSpec. Also, the same restrictions apply as when

using Pantaxou, i.e., applications must be developed from scratch using DiaSpec making its

use with existing applications infeasible.
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2.3.3.7 Scooby

Scooby [220] provides a service description language for pervasive computing environments.

Services are described and composed using high-level constructs. While Scooby offers abstrac-

tion and expressivness for detailed service-oriented applications, its applicability is limited to

service descriptions and does not offer support for any other pervasive healthcare function-

ality. It it also limited in its applicability as it is based on the use of Elvin 1, a distributed

event routing service. The version of Elvin used is limited and unsuitable for largescale, dis-

tributed systems. The ALPH model makes use of scalable technologies in its implementation

e.g., RMI.

2.3.3.8 PerIDL

PerIDL [142] is an interface definition language (IDL) that describes services for pervasive

computing applications. Services are described by their properties and supported actions,

or commands. Event notifications are published by event sources prompting commands to

be carried out on the appropriate services. PerIDL offers excellent DSL support for defining

services in a similar manner to Pantaxou and DiaSpec. Applications using PerIDL for service

discovery extend abstract classes generated by PerIDL. These explicit references to domain-

specific code do not support the goal of modularity in the ALPH model.

2.3.3.9 Olympus

Olympus [210] is a programming framework built on the Gaia middleware that allows the

specification of entities and operations in pervasive environments. While considered a mid-

dleware, Olympus provides a layer of abstraction above most middlewares as a set of classes

in an API. It provides high-level programming interfaces to define these components in active

spaces. However, the framework remains general purpose and provides abstraction only for

the specification of active entities. These entities are then referenced from the developer’s

base application. This approach does not address the modularity of the domain-specific code,

leaving complexity resulting from poor modularity in applications.

1http://elvin.org/
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2.3.3.10 Context Adaptation

A context-based programming DSL for dynamic adaptations by Fritsch et al is for use in

context-aware applications [109]. Context graphs are described using a high-level language

and a condition-event-action model is adopted to trigger transitions from one state to an-

other based on contextual events. Adaptation to contextual information is well supported

in this work, although no other pervasive healthcare functionality is addressed. It is also

applicable only to applications using context graphs, representations of context for finite

state machines. Other projects that abstract contextual adaptation include an XML based

language that allows adaptation strategies to be defined and system services, such as cache

size and underlying communication services, adapted [158]. In addition, a generic adaptation

language for component based applications also enables the adaptation of system services

[121]. This language adapts the behaviour of existing middlewares to system services and it

is not applicable to applications that use unsupported middleware.

2.4 Domain-Specific Aspect Languages

While aspect languages such as AspectJ or AspectC++ [245] enable the modularisation of

crosscutting concerns, they are still GPLs and lack support for domain-specific features of

the application problem domain [243]. A domain-specific aspect language (DSAL) describes

specific crosscutting concerns and provides language constructs tailored to the particular

representation of such concerns [214] [233]. This enables the modularisation benefits of AOP

to be coupled with those of DSLs which helps to encapsulate the characteristics unique

to a particular problem domain [243]. DSALs have addressed many crosscutting concerns

including advanced transactions [96], virtual machines [258] and embedded real time systems

[243].

We examine existing work on DSALs that address any concern required by pervasive

healthcare applications. No single approach supports a comprehensive set of pervasive health-

care concerns in a DSAL, although several languages exist that support a single concern or

subset of concerns.
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2.4.0.11 AOPAmI

The AOPAmI [111] platform applies AOP in ambient intelligent application development.

This approach evolved from the Dynamic Aspect-Oriented Platform (DAOP) platform that

supports component-based development. DAOP is concerned with the architecture of component-

based applications, and dynamic reconfiguration of these components at runtime. It performs

dynamic weaving of components according to architectural definition, making use of aspect-

oriented techniques.

As part of the early DAOP work, an ADL was created for architecture definition in

the DAOP platform. This XML architecture language, known as DAOP-ADL [206] defines

components, their possible implementation classes, inputs and outputs, composition rules

and dependencies and aspect evaluation rules. While the language provides a method of

defining application information outside the use of a traditional GPL, it does not provide

DSL constructs and is targeted at the modelling and design phase of development. DAOP-

ADL does not consider the majority of pervasive healthcare concerns.

The DAOP platform and ADL evolved into DAOPAmI [112] to support ambient intelligent

environments. Still XML based, the language was extended to define device types as profiles,

system aspects such as discovery and strategy rules for strategies to apply when events happen

in the environment. This version of the platform supports many pervasive healthcare concerns

i.e., discovery, limited connectivity, distributed communication and device context handling.

While these are supported, the creators themselves acknowledge the lack of a “complete

vocabulary for each concern” in the domain and question the limitations of XML as a means

of providing a higher-level language [158].

The work progressed to be known as AOPAmI [111]. The platform, now referred to as a

middleware, continues to address the same concerns, describing the weaving of components

and aspects at the architectural level [113] using the previously described XML based ADL.

Most recently, a feature model is described for a product line architecture building on the

existing AOPAmI platform again using the existing XML ADL for architecture descriptions

[110].
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2.4.0.12 Distributed Definition Language

The Distributed Definition Language (DDL) is a simple high-level DSAL [242]. This language

provides descriptions of remote classes and methods using a specified Java distribution tech-

nique e.g., RMI or Java sockets. The language compiler, RemoteJ, generates the scaffolding

distribution code and manipulates the existing application bytecode directly. This approach

offers both modularisation and abstraction in the same way as the ALPH approach, though

addressing the single concern of distribution. They differ through functional properties and

in the design and scope of the language provided.

2.4.0.13 D Language Framework

The D Language Framework [171] addresses the concern of distribution. Within D, COOL

is an aspect language for synchronisation, RIDL is an aspect language for the definition of

remote interfaces and JCore is an object-oriented language to express the base functionality

of the system. In application development using D, the base application is programmed in

JCore, a subset of Java. COOL is then used to outline the coordination of threads i.e., the

synchronisation of objects and methods as required. RIDL is used to express remote access

strategies. D is implemented as a pre-processor to Java, using an aspect weaver to create the

resulting Java application. The D Framework provides both modularisation and abstraction

for the concern of distribution though it does not address any other pervasive healthcare

concerns. The COOL and RIDL languages provide more distribution behaviour than is

available in the current implementation of the ALPH model, i.e., synchronisaion support.

Base applications are required to be in a specified using the JCore language meaning that

existing base applications may require slight refactoring to conform to JCore requirements.

2.4.0.14 AWED

AWED [195] is a comprehensive DSAL for distribution. Aspect-oriented support for distrib-

ution is provided through extensions to the JAsCo [249] framework. Three features can be

described using domain-specific constructs; remote pointcuts, distributed advice and distrib-

uted aspects. AWED is concerned with the explicit distribution in the aspect language itself,
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rather than the application of distribution code using AOP as provided in the ALPH model.

Like D and DDL, distribution behaviour is both well modularised and abstracted in AWED

but no other pervasive healthcare concerns are addressed.

2.5 Middleware

Middleware is computer software used to glue together or mediate between separate software

components or applications. Various middleware models, APIs, frameworks and architectures

have emerged to assist in the development of pervasive applications. We include middleware

for completeness. No existing middleware supports the development of applications in the

pervasive healthcare domain.

Some examples of middleware that support various aspects of pervasive applications

include: middleware for static and dynamic adaptation [222] [116] (TAO, ACE, Orbix,

OpenORB, MetaSockets, Isis, Horus, , Electra, FRIENDS, EmbeddedJava, ZEN, OpenCorba,

DynamicTAO, FelxiNet, Globe, LIME, TSpaces, JavaSpaces, Nexus, Hermes, Bayou, Jini)

sensor networks [127] (Cougar, TinyDB, TinyLIME, SINA, MiLAN), service composition

[135] (MySIM, PERSE, SeSCo, Broker, SeGSeC, WebDG, SAHARA) , context-awareness

[150] [25] [14] (Aura, CARMEN, CARISMA, Cooltown, Gaia, Middlewhere, CORTEX, Mo-

biPADS, SOCAM, CASS, CoBrA, ContextToolkit, Hydrogen, CMF, JCAF, ContextFabric,

Context Shadow, HyCon, WildCAT, Solar), service discovery [136] (Jini, JMatos, Salutation,

Konark) and components (PCOM). These middleware and frameworks provide support for

subsets of pervasive computing concerns. However, they all require references in the base

application to their components. The ALPH model provides modular pervasive computing

behaviour that requires no modification of the base code. No middleware exists to provide

healthcare specific programming support. The ALPH model includes support for the distri-

bution and storage of healthcare information in addition to pervasive computing concerns.

Aspect-oriented middleware supports common services that are non-functional and cross-

cutting in nature, such as persistence, distribution, security, and transactions [173]. Many

object-oriented middleware were evolved to aspect-oriented versions to support the definition

of these services outside component implementation [173].
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Some examples of AOP middleware are: AO4BPEL supporting web services, AspectJ2EE

supporting persistence, transaction management, security, load balancing and all J2EE ser-

vices, CAM/DAOP supporting distribution, security, persistence and communication, JAC

supporting distribution, persistence, transactions, broadcasting, authentication, access con-

trol, consistency and load-balancing, JBoss AOP supporting distribution, caching, communi-

cation, transactions and security, Lasagne supporting dynamic context adaptation, PRISMA

supporting distribution and communication, Spring AOP supporting transactions, persis-

tence and distribution, WSML/JAsCo supporting web services. AOP middleware provides

the separation of domain-specific behaviour in addition to support for distributed applica-

tions. No AOP middleware addresses healthcare specific concerns. The ALPH model could

have used components from existing AOP middleware, but would have had to combine sev-

eral frameworks, and extend them significantly to provide support for the modularisation of

pervasive healthcare concerns. The provision of DSL constructs on top of these middleware

may have also been a more complicated process than building the model to the targeted

domain from scratch.

While middleware assists in the development of pervasive applications, there is no spe-

cific focus on the reduction of complexity as in the work described in this thesis. In fact,

middleware itself is becoming so progressively complex that it threatens to undermine its

goal of simplifying the construction of distributed systems [69]. The huge volume of middle-

ware standards and technologies also contribute to this complexity [280]. While a level of

abstraction can be achieved using an API or framework, it cannot achieve the expressiveness,

conciseness and reduction in domain knowledge required by developers as can be achieved

using a DSL. The ALPH model combines AOP, the provision of pervasive healthcare func-

tionality and DSLs to achieve the best separation of concerns, a high-level of abstraction,

and a reduced developmental effort.

2.6 Summary

This chapter has presented related work in pervasive healthcare application development.

In particular, the chapter has examined state of the art projects in programming support
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for pervasive healthcare application development and support for the modularisation and

abstraction of concerns within the domain.

Table 2.1 summaries the approaches and projects examined. The extent to which these

approaches support pervasive healthcare concerns is illustrated. HL7 healthcare informa-

tion formatting is supported by a number of projects. However, each of these approaches

addresses HL7 in isolation and does not address the underlying mobility concerns required

for the distribution of the applications exchanging the information. There is little program-

matic support for the inclusion of EHRs, inhibiting the organisation of healthcare informa-

tion. State of the art context-awareness frameworks support the adaptation of applications

in response to changes in contextual information from the pervasive environment in which

pervasive healthcare applications are deployed. In most approaches, context-awareness is ad-

dressed in isolation and they provide limited, or no, support for mobility concerns. Mobility

concerns are supported by projects focusing on the distribution of applications, coordination

of entities and communication between entities. Concerns including service discovery, quality

of service, limited connectivity and software roaming are addressed by various projects with

many supporting a collection of mobility concerns. Again, these projects focus on only one

aspect of pervasive healthcare applications. The use of AOP in examined approaches has

modularised a number of pervasive healthcare concerns. The same can be said for the use

of DSLs enabling the abstraction of many concerns. However, existing approaches generally

address particular concerns in isolation, with only four approaches addressing three or more

concerns.

In summary, there are many approaches to support the incorporation of pervasive health-

care concerns in applications. However, while each of these projects provide some level of

support for pervasive healthcare application development, the support for a comprehensive

set of concerns is limited and no approach fully supports all requirements. From this we con-

clude that no single approach offers full support for a set of pervasive healthcare concerns.

These projects therefore cannot, without significant extension, be used to support modularity

and abstraction in pervasive healthcare application development.

The next chapter describes the design of a novel approach to the development of pervasive
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healthcare applications. This approach includes support for a comprehensive set of concerns

from the domain. In Chapter 3, the methodology used in the creation of the ALPH model

is explained. The rest of the chapter focuses on the domain analysis performed to identify

concerns for inclusion in the ALPH model.
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Microsoft Software Factory •

SOA HL7 • •

CORBA HL7 • •

Context-aware Aspects •△

Virtual Environments •△

Personalisation as an Aspect •△

Adaptability Aspects •△

Context-aware Displays •△

DynOCoLa •△

Distributed Object Allocation •△

Distribute existing applications •△

CORBA AOP •△

Persistence as an Aspect •△

Persistence and Distribution •△ •△

AspectM •△

Time-dependent Applications •△ •△

CORBA-LC AOP •△

MUMPS •2

Reformatting HL7 Messages •2

Apache Camel •2

YABS •2 •2

AmbientTalk •2 •2 •2 •2 •2

Indus •2 •2 •2 •2 •2

PLUE •2

Pantaxou •2 •2

DiaSpec •2 •2 •2

Scooby •2

Olympus

AOPAmI •△ •△ •△ •△

DDL •△2

D Language Framework •△2

• = Supported, △ = Modularised, 2 = Abstracted

Table 2.1: Summary of state of the art approaches to pervasive healthcare concerns
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Domain Analysis

The analysis of the state of the art approaches to pervasive healthcare application develop-

ment in the previous chapter shows that they are limited in their support for modularising

pervasive healthcare concerns and in providing high-level abstractions to application develop-

ers in the pervasive healthcare domain. The hypothesis of this thesis is that modularisation

and abstraction are required for crosscutting concerns in pervasive healthcare applications to

reduce the complexity of the development process and of application code.

This chapter describes the design of ALPH, a novel approach to the development of per-

vasive healthcare applications. The ALPH model was devised using the Cleaveland method-

ology [68] for its design, implementation and use. This chapter describes the phases in the

methodology used in the creation of the ALPH model. The chapter then focuses on the

analysis phase of the model, describing the steps carried out in domain analysis.

3.1 Overview of Model

The ALPH model provides support for pervasive healthcare application development with

the goal of reducing complexity. The model provides support to developers in three ways;

with means to include pre-written pervasive healthcare functionality, with modularisation

of pervasive healthcare concerns and with a means to abstract over domain implementation

details. Combined, these techniques address the complexity that is manifested in current
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pervasive healthcare application development, as outlined in section 1.4 i.e., difficulties with

modularity and inappropriate levels of abstraction. The ALPH model supports application

development in a modular and abstract way by using AOP and DSLs. This approach requires

the implementation of a library of crosscutting concerns and formation of a DSL that makes

this functionality available to the developer in an intuitive manner. The development of

such a model requires a methodical development process. The following section describes the

methodology adopted in the formation of the ALPH model.

3.2 Methodology

The ALPH model’s goal is to ease application development in the target domain of per-

vasive healthcare by providing modular implementations and programming abstractions for

domain-specific functionality. We follow the established design methodology based on work

by Cleaveland [68] in the development of the ALPH model. This model defines the steps typ-

ically involved in the development of a domain-specific language [81] [45]. The methodology

involves the following steps:

1. Recognise domain: identify the problem domain of interest.

2. Define domain boundaries: gather all the relevant knowledge in this domain.

3. Define an underlying model: cluster this knowledge in a handful of semantic notions

and operations on them.

4. Construct a library that implements the semantic notions.

5. Design a DSL that concisely describes applications in the domain.

6. Design and implement a compiler that translates DSL programs to a sequence of library

calls.

7. Write DSL programs for all desired applications and compile them.

The steps in the methodology can be broadly considered as analysis (steps 1-3), design and

implementation (steps 4-6) and use (step 7) [81]. This methodology systematically structures
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the development of a model, from early domain analysis to later implementation stages. This

chapter examines the analysis phase, with Chapters 4, 5 and 6 covering the remaining phases

in the methodology.

3.2.1 ALPH Design

Adopting the described development methodology, ALPH follows the stages of analysis and

design, implementation and use. Figure 3.1 shows the correlation of steps in the methodology

to phases of development and also to the chapters in this thesis that describe the details of

each step.

Fig. 3.1: Development Methodology Steps, Phases and Chapters

In the analysis phase, three steps are outlined. In the development of ALPH, these three

steps were required to assemble domain knowledge that form the basis of the ALPH model.

The steps, as they apply specifically to the ALPH model are:
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• Domain analysis of pervasive healthcare application functionality;

• Further analysis to identify the set of crosscutting concerns in pervasive healthcare

applications;

• Formation of a comprehensive set of pervasive healthcare concerns.

Each step in the analysis stage of the ALPH model requires significant investigation in

the domain of pervasive healthcare and contributes sequentially to the development of the

model proposed in this work. The first step involves domain analysis to identify application

requirements and common domain functionality (section 3.3). The second involves the in-

vestigation of the nature of the functionality from phase 1, to identify crosscutting concerns

(section 3.4). The third step involves the collation of identified crosscutting concerns into

a set of pervasive healthcare concerns (section 3.5). These concerns are described in detail

later in this chapter (section 3.6).

3.3 Domain Analysis

Analysis of a domain provides fundamental knowledge and understanding of domain func-

tionality. Domain analysis was performed on four sources of domain knowledge [179] in the

domain of pervasive healthcare, as shown in figure 3.2. Requirements analysis and elicitation

works in the domain were examined, a literature review of pervasive healthcare applications

was performed, pervasive healthcare case studies were studied and available codebases were

examined. We describe the process of domain analysis in each group in the following sections.

Pervasive healthcare concerns identified in domain analysis are documented throughout

this chapter. The terms used to label concerns, as in tables 3.1, 3.2, 3.4, are representative of

the concerns identified. Variations in wording was observed and concerns were allocated to

an appropriate concern category if it fell under the heading of an existing concern to maintain

consistency, as illustrated by a selection of examples in figure 3.3.
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Fig. 3.2: Domain Analysis

Fig. 3.3: Concern Terms

3.3.1 Requirements for Pervasive Healthcare Applications

The goal of the first step in designing the ALPH model is to identify the common functionality

within the domain of pervasive healthcare. In general, requirements outline the functionality

required by applications [240]. Requirements should describe both the core application logic,
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the technical constraints and the underlying infrastructure required for application deploy-

ment in its environment. We examine requirements specifications in the domain of pervasive

healthcare to identify functionality that reoccurs frequently in the domain.
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Req. For Mobile Middleware • • • • • • • • • • • • • • • • • • •

Pervasive Healthcare Req. Engineering • • • • • • • • • • •

Software Req. For Pervasive Healthcare • • • • • • •

Literature Review- Pervasive Healthcare • • • • • • • • • • • • • •

• = Concern required

Table 3.1: Pervasive healthcare requirements in domain analysis

Several requirements analysis projects have taken place in the domain of pervasive health-

care. For example, extensive work has been undertaken by the Centre for Pervasive Healthcare

and various other projects have also contributed to the area [279] [198].

The Centre for Pervasive Healthcare has produced two sets of requirements in the domain.

The first set of requirements is described following requirements elicitation from applications

in the area of pervasive healthcare [208]. Requirements identified include distribution, quality

of service, security, discovery, ad-hoc networking, adaptation to contextual information and

location along with other mobility based concerns. The concerns identified in this work can be

seen in row 1 of table 3.1. The second set of requirements emerged from a formal requirements

engineering project for a pervasive healthcare system [139]. This project collaborated with

a local hospital and elicited requirements from real world scenarios and academic future

scenarios devised in collaboration with medical personnel. Requirements are described using

executable use cases [140], Petri Nets [141], informal descriptions [37] and are represented in

row 2 of table 3.1.
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Support for mobile, heterogeneous devices, discovery mechanisms, managing context in-

formation, supporting interaction and supporting migration are examples of infrastructural

software requirements for pervasive healthcare systems [279]. We depict these in row 3 of

table 3.1.

Orwat et al outline a literature survey investigating 67 different pervasive healthcare

systems [198]. The goal of the survey was to find application requirements by categorising

applications based on purpose, deployment setting, user groups and system features. The

requirements identified are represented in row 4 of table 3.1.

3.3.2 Application Literature Review

During domain analysis, a literature review of pervasive healthcare applications was con-

ducted to identify reoccurring pervasive healthcare behaviour. Applications are either patient

or health care professional based i.e., used in the patient’s home or within a healthcare facility

environment [192] and both were investigated to gain a comprehensive view of functional-

ity provided by pervasive healthcare applications. Literature describing pervasive healthcare

systems and their specifications were examined and the concerns within the applications were

identified informally i.e., by reading and analysing application descriptions and requirements.

A taxonomy of pervasive healthcare applications [192] was also examined in the literature

review. For space reasons, all application literature examined cannot be detailed so a rep-

resentative selection of applications that show the set of concerns identified are outlined in

table 3.2.

3.3.3 Pervasive Healthcare Case Studies

Scenarios are an important method of eliciting and specifying software behaviour [163]. The

information contained in a scenario represents a specification that models domain knowledge

[248] and is an evolving description of situations in the environment [163]. Case studies

that describe applications based on scenarios can be used to investigate domain requirements

[248] [269]. In our domain analysis, we included two case studies that depict scenarios in

pervasive environments. The first case study is based on an optimal application solution for
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AwareHome • • •

Multimodel For Older Users • • • • •

Autominder • • • • • •

Orientation Aid For Amnesiacs • • • • • • •

Flexible Technologies And Smart Clothing • • •

Mobility In Healthcare Application • • • • • • • • • • •

• = Concern Required

Table 3.2: Pervasive healthcare literature analysis
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Auction Scenario • • • • • • • • • •

Hospital Scenario • • • • • • • • • • • • • • •

• = Concern required

Table 3.3: Pervasive healthcare case study analysis

a future scenario in pervasive healthcare by Raatikainen et al [208]. Clinicians were heavily

engaged in the process of envisioning, designing and testing proposals for future support

in healthcare applications for pervasive computing technology [3]. The scenario requires a

pervasive computing infrastructure along with healthcare specific functionality. Concerns

were identified from the scenario description and analysis and are shown in figure 3.3. The

second case study examined outlines a pervasive web-based application that requires support
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for mobility and context-awareness. The case study application is based on an online auction

scenario. This case study considers the various mobility issues that can affect the average

distributed application scenario [173]. Its requirements were outlined by a Swiss research

laboratory [13] and it was extended to execute on mobile devices in a pervasive environment.

The case study scenario was analysed and concerns relating to pervasive healthcare were

identified as illustrated in table 3.3.

3.3.4 Pervasive Healthcare Codebases

Requirements can be extracted by “mining” domain knowledge from code [179]. The proven

linkage between source code and domain knowledge [167] [166] makes code from applications

in a target domain a source of domain knowledge [179]. Domain knowledge and domain

concepts are embedded in source code e.g., as the names of variables, methods and classes

[278]. We requested access to pervasive healthcare application codebases from many sources.

However, a significant problem in this endeavour is the fact that pervasive healthcare is a

“nascent” or emerging domain [193]. Few operational systems exist, and where they do, they

are generally proprietary and code is unavailable. One operational hospital scheduling and

awareness system in Denmark, known as the iHopsital 1, started as an academic project in

the Centre for Pervasive Healthcare but the project was taken over and the system was made

commercial, making the code unavailable.

Nonetheless, we obtained codebases for several academic applications from Trinity Col-

lege and two third party applications. Two of the applications explicitly addressed healthcare

behaviour while the rest contributed from a pervasive perspective. As pervasive healthcare

applies pervasive technology in the healthcare domain, pervasive applications enable the

identification of pervasive computing concerns that are required by pervasive healthcare ap-

plications. The third party applications were sourced from Lancaster University [120] and

from a Dublin based software company that is a leader in Bluetooth technology [10]. Trinity

College applications were sourced from unrelated projects within the research group where

the ALPH model originated. The first Dynamic Healthcare Scheduling application is a per-

1http://www.ihospital.dk/
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Riddlehunt •• •• •• •• •• •• • • ••

Quazoom •• •• •• •• • •• •• • •• ••

TCI •• • •• •• • ••

Healthwatcher •• •• ••

Rococo •• •• •

Dynamic Healthcare Scheduling •• •• • •• •• • •• •• ••

Oisin •• •• • •• •• • •• • ••

••= Essential Concern, • = Ancillary Concern

Table 3.4: Pervasive Healthcare codebase analysis

vasive healthcare application that facilitates dynamic scheduling for healthcare professionals

[88]. The application, deployed on PDAs, uses Hermes framework [86] components to sup-

port mobile context-aware activity scheduling for healthcare professionals. The application is

aware of the physical and social situation in which they are deployed, detecting and reasoning

about sensor information from the environment to appropriately reschedule the “to-do list”

of medical workers. Riddlehunt is a mobile treasure hunt game, where players compete at

answering puzzles left at different geographical locations. Riddlehunt is built on a generic

framework for mobile, context-aware applications [86] and is based on the concepts of trails,

i.e., collections of activities with contextual information and a visiting order between them.

The application uses the location of the user to determine which riddles the user is able

to solve. The application is run on PDA devices which make use of external GPS location

sensors. The application is dynamically reconfigured according to the user’s mobile context.

Oisin is another context-aware mobile application that is also based on the notion of trails

[87]. It involves collaborative work in a mobile, context-aware environment and the recon-

figuration of the application depending on contextual information [87]. The Quazoom game

52



Chapter 3. Domain Analysis

uses the FLARE platform [149] which enables the development of mobile, location aware

applications. The application is a multiplayer game run on various mobile devices including

laptops, PDAs and wearable computers. The actual position of the user in the environment is

mapped into a virtual environment, which is overlaid onto the real world. Network partitions

due to limited connectivity must be handled frequently. The Traffic Congestion Indicator

(TCI) project [84] developed a traffic congestion level indicator which uses real-time data to

provide traffic information for a predefined area. The information is based on the location of

the mobile user.

Table 3.4 depicts the concerns identified in the code examined. Note that only two

applications were targeted specifically at the pervasive healthcare domain. The remainder are

pervasive computing applications that indicate concerns required in a pervasive environment.

Boxes checked with two bullets represent concerns which are essential for the application to

function correctly, whereas concerns checked with one bullet can be regarded as ancillary

functions for the application. This is discussed further in section 3.5.

3.4 Crosscutting concerns

In the domain analysis step, applications, case studies and articles were examined to extract

and identify common pervasive healthcare concerns in the domain. This generated a set

of reoccurring domain-specific concerns. Further examination of applications took place to

assess the crosscutting nature of the domain-specific functionality.

The examination of the codebases enabled us to observe the degree to which each concern

affected the application as a whole and to verify the classification of concerns as crosscutting.

A classification technique, by Eaddy, Aho and Murphy [91], based on concern identification

heuristics was used to identify crosscutting concerns in application codebases. This approach

is more accurate and easier to apply than other approaches including aspect mining and

static analysis techniques [91]. This systematic methodology defines guidelines for manually

identifying concerns and their associated code fragments through analysis of sourcecode.

A concern is scattered if it is connected to multiple elements (i.e., more than one), and

tangled if both it and at least one other concern are related to the same target element [101].
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Fig. 3.4: Codebase with Highlighted Crosscutting Concerns

Elements considered in OO implementations include files, classes, fields, methods, statements,

and statement blocks (for-loops, if-then-else blocks, etc.). The structure of crosscutting

concerns differ depending on the concern implementation. Structures of crosscutting concerns

manifesting themselves over a system range from a concern that touches only a few points in
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a system to a concern that is partially modularised by one or more classes but is also spread

across a number of others [89].

To illustrate the crosscutting effect visible on pervasive healthcare applications, figure 3.4

illustrates an application containing crosscutting concerns. This is an application supporting

wireless communication using mobile devices [10]. We do not discuss the code in detail, as it

is both verbose and low-level. A high-level view of the application as a whole is sufficient to

demonstrate the effect of crosscutting concerns in pervasive healthcare applications. Figure

3.4 provides a graphical illustration of the crosscutting nature of concerns within the example

application code. Concerns are highlighted in various colours e.g., discovery in blue, distri-

bution in yellow, limited connectivity in pink, distributed communication in red and device

context adaptation in green.

3.5 Concern Selection

The goal of the domain analysis was to find a set of pervasive healthcare concerns that would

be considered for the inclusion in the ALPH model. The concerns that emerged include

functionality that ranged in applicability from one application to many applications. To

scope the ALPH model, concerns identified in domain analysis were considered for inclusion

in the ALPH model based on the following criteria.

• The primary heuristic used to determine the inclusion of a concern is based on a term’s

frequency of use in the domain, relative to the total number of unique occurences.

• Concerns selected for inclusion must have been identified as crosscutting using con-

cern identification heuristics. These crosscutting concerns contribute to complexity in

pervasive healthcare applications and can be addressed by modularity in the ALPH

model.

Concerns were eliminated based on the number of applications requiring their functional-

ity and on their crosscutting nature. This eliminates outliers that occurred infrequently and

are not considered common domain functionality. Healthcare specific concerns were weighted
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in the calculation of frequency. This was necessary due to the lack of access to pervasive

healthcare applications resulting in the prevalence of pervasive computing applications and

codebases used in the identification of concerns. Healthcare specific concerns are also intrin-

sically linked to the communication and persistence of information in pervasive healthcare

applications. Following the examination of domain analysis outputs, the most frequently oc-

curring concerns (>7 occurances (weighting of +100% to healthcare concerns)) were selected

for inclusion in the ALPH model. The most frequently occurring crosscutting concerns form

a conclusive set of pervasive healthcare concerns include 8 mobility based concerns, 2 context

based concerns and 3 healthcare based concerns. The set of pervasive healthcare concerns

identified are described in the following section.

3.6 Pervasive Healthcare Concerns

The analysis phase in DSL design methodology requires input of documents or code from

which domain knowledge can be obtained [179]. The reoccurrence of functionality and the

repetition of domain-specific tasks throughout these inputs results in the identification of

domain-specific concerns. The output of domain analysis varies, but is some representation of

the domain knowledge obtained [179]. The variance in forms of knowledge extend from high-

level UML diagrams through design techniques to domain implementations [179]. Output

from domain analysis in the ALPH model is at the implementation end of the output spectrum

in the form of “a domain implementation consisting of a set of domain-specific reusable

components” [179].

This section describes the set of pervasive healthcare crosscutting concerns selected in

the domain analysis phase. Each concern relates to a particular functional or non-functional

requirement of pervasive healthcare applications. Each concern has been identified as common

and reoccurring across domain applications and has also been recognised as crosscutting.

These concerns form the basis for the pervasive healthcare functionality provided by the

ALPH model. We group these concerns in three categories relating to: mobility, context and

healthcare. The following sections describe the set of pervasive healthcare concerns under

these headings.
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3.6.1 Mobility

Developments in wireless technology facilitate the move from static physical locations to

mobile environments, enabling the paradigm of “mobile computing” [114]. Mobile computing

allows users to move freely through a geographical space while connected to resources and

other users through wireless links [114].

Mobility is a profound characteristic of hospitals and healthcare facilities [36]. Medical

work is highly mobile [31] and subsequently healthcare professionals are a highly mobile pop-

ulace, so support for mobility in pervasive healthcare applications is essential [104]. Working

in a hospital environment requires moving between different locations of work [155]. Health-

care professionals may cover distances up to 15 km during a shift in a hospital environment

[36]. This movement between patients, workplaces and locations, is a normal mode of work

in such environments but little or no technology supports this type of mobility in healthcare

applications [46].

Mobile access to healthcare information is key to improving medical work [46]. Increased

mobility also improves patient care, improves work systems [46] and allows healthcare pro-

fessionals to spend more time with patients and less time gathering information [174].

Concerns relating to mobility featured heavily in the analysis of the pervasive health-

care domain. These concerns are required to support healthcare professionals as they work

while on the move [36]. The following sections describe the selected concerns that relate to

mobility, namely; distribution, communication, roaming, device discovery, service discovery,

limited connectivity, location and quality of service. A high-level description is given in this

chapter, as further description, code based designs and implementation details are described

in Chapter 4.

3.6.1.1 Distribution

Distribution addresses the geographical and technical dispersion of nodes and the underlying

architecture used to support the transfer of data between nodes [187]. Distribution is a

central characteristics of pervasive healthcare environments [216] as applications deployed in

these environments are distributed both geographically and logically [186]. ALPH facilitates
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distribution using Java distribution techniques e.g., RMI, Sockets. This provides underlying

distribution for applications using the ALPH model.

3.6.1.2 Communication

Distributed applications require the use of network communication services to communicate

with other distributed nodes [227]. Distributed communication implementations, such as over

Java sockets or web services, provide reliable, efficient and flexible means of communication

[29]. Information communicated over these channels is subject to formatting according to the

applications transmitting and receiving the information e.g., HL7 for healthcare information.

3.6.1.3 Network Roaming

An important aspect of mobility handling is client roaming. When a user moves around

a geographic region, it is likely that different networks provide the best service in different

locations, and applications should adapt accordingly. We refer to the physical roaming of

a client as Network Roaming. Network roaming functionality in mobile systems identifies

and handles roaming events frequently during execution. When handling network change,

consideration should be given to changes in network features such as latency, bandwidth, and

any security provided by the network.

3.6.1.4 Software Roaming

The ability to move code across the nodes of a network is known as software roaming, or

code mobility [114]. Software roaming can be seen as changing the bindings between code

fragments and the location where they execute [114]. In pervasive healthcare applications,

certain tasks may require behaviour to occur at another location e.g., the acquisition of

information in a remote database. The use of mobile software agent systems is a technique

in achieving software roaming. The mobile software-agent paradigm allows data or state to

relocate from one machine to another [267]. A mobile software agent is designed to migrate

from one machine to another to carry out certain operations [267].
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3.6.1.5 Service Discovery

Pervasive environments are dynamic, observing services entering and leaving the environment

in various locations, constantly changing the view of resources within the system. Applica-

tions that use services in a mobile environment require the ability to dynamically discover

and acquire access to necessary services [160]. ALPH includes service discovery functional-

ity to facilitate the location of available services. Services advertise their existence on the

network and clients request a particular service and obtain access information for the most

suitable service in their current context [188]. The requested service is accessed via a service

discovery protocol. When the requested service is accessed, its availability is confirmed and

the application can proceed to use the service.

3.6.1.6 Device Discovery

As the user moves in the environment, new devices may come into communication range

and enable new interaction possibilities. It is often useful for an application to be notified

when new devices enter the environment e.g., the discovery of colleagues work nodes. These

notifications inform the application about a remote device’s status and interaction capabili-

ties. Currently, all wireless network standards support some kind of device discovery [217].

Whenever the appearance or disappearance of a device from the environment is detected, the

application should react by applying an appropriate strategy, e.g., connection or disconnec-

tion.

3.6.1.7 Limited Connectivity

In pervasive environments, network connectivity is no longer an expensive add-on, rather it

is a basic feature of any computing facility [114]. Users of mobile devices experience periods

of direct connectivity, intermittent connectivity, and disconnectivity and can have varying

amounts of bandwidth available to them as well as different networks latencies depending on

how they connect to the distributed application servers [20]. Limited connectivity hinders

users of portable devices from accessing distributed information systems, whenever they need

to [24]. Disconnections occur in pervasive healthcare environments for several reasons e.g.,
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due to path loss, poor network coverage, failed network handovers, severe network congestion

and client hardware failures [263]. Disconnections must be detected in a timely fashion and

contingency plans are required to adequately handle abrupt disconnections e.g., facilities for

rollbacks to ensure consistency in system state [188].

3.6.1.8 Location

In pervasive environments, healthcare applications often need to dynamically obtain infor-

mation that is relevant to their current location. Applications can adapt their behaviour

based on the current location of the device e.g., prescriptions may only be written within the

boundaries of the building. Pervasive applications use location systems to acquire location

information [211]. Each location system has its own accuracy and representation of location

data e.g., GPS.

3.6.1.9 Quality of Service

Quality of Service (QoS) assurances are significantly diminished when associated with a mo-

bile wireless environment [61]. The various choices of networks available provide fundamen-

tally different degrees of QoS, ranging from CAN networks with strong timing and reliability

behaviour to weaker guarantees in wireless ad hoc networks which are prone to high latency,

low bandwidth, and have a high probability of being congested and suffering collisions. To

handle the varying degrees of QoS assurances bound to particular networks, applications need

to be able to associate a QoS rating to each network and adjust its communications strategy

accordingly. Applications require different degrees of QoS under different configurations and

environmental conditions, and multiple QoS properties must be combined with and/or traded

off against each other to achieve the optimal application outcome [227].

3.6.2 Context

Adaptation in response to contextual information from a pervasive healthcare environment

featured heavily in the applications, case studies, papers and codebases examined in domain

analysis. Context-awareness allows applications to dynamically and appropriately adapt to
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their changing environment. Many types of context were identified and applications reacted

and adapted differently based on the context type. Schmidt et. al. describes a hierarchically-

defined context space used here to categorise context types [229]. We divided the overall

context space into eight sub-categories: device, location, user, social, environmental, system,

temporal, and application-specific context [190]. The ALPH model provides explicit function-

ality to adapt to context types that featured most frequently ; device context and location

context. We include descriptions of the other six context types as these were investigated

further and prototyped in the development of the ALPH model [190].

3.6.2.1 Device Context

Device context encompasses information that describes the device on which the application is

executed. Device information includes screen size, colour depth, processing power and storage

capacity [229]. The acquisition of device context allows applications to adapt according to

both the hardware and software characteristics of a particular computing device.

3.6.2.2 Location Context

Location is central to context-awareness [16] as geographical location enables the identification

of users in an environment and can infer higher-level context information e.g., user is present,

user is in a particular room. While Schmidt et al [229] argue that location is only one of

many context types, it remains the most widely-used element of context in context-aware

applications [22] [40] and appeared most frequently as context in the domain analysis of

pervasive healthcare described earlier in this chapter. Adaptation to location information

is useful when using mobile devices as location information can be used to infer higher-

level contextual information e.g., proximity to other entities [190]. Application adaptation

takes place in response to low-level, sensor location information based on the device’s current

location. This information can be acquired from various forms of location data providers e.g.,

GPS, Cell IDs.
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3.6.2.3 Other Context Types

The ALPH model does not provides explicit functionality in its current implementation for

adaptation to the following context types although the were prototyped and used in the

development of the ALPH model [190]. These context types occurred infrequently and so

were not selected as “common” context types for inclusion in the ALPH model.

User Context

User context represents information relating to the user of the application in question. This

includes all knowledge pertaining to the user that is known to an application i.e., the physi-

ological context, emotional state, current activity and the user’s schedule [190].

Social Context

Social context is defined as any information that is relevant to the characterisation of a

situation that influences the interactions of one user with other users and that describes the

relationships of the user to other people [266]. Again, social context enables the deduction

of higher-level context states e.g., a “free for lunch” context may be inferred from contextual

information relating to the location and availability of the user.

Environmental Context

Environmental context is defined as relating to the physical world in which the application

runs, e.g., temperature, noise and lighting conditions [16]. This type of contextual information

is acquired by sensors in the physical environment of the application.

Temporal Context

Temporal context encompasses all data related to time, e.g., current time, day, month or

year [16]. Temporal context can be used to adapt applications according to schedules, plans,

calendars and reminders.

Application Context

Application context represents information directly related to the core functionality of an

application [190]. This information is dependent on the business rules and functionality of

any particular application and so only limited support can be provided generically.

System Context

System context represents context related to the technical infrastructure in which an appli-
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cation executes, e.g., available computation resources, communication capabilities, and in-

formation pertaining to the system components and their configuration [229]. Often, system

context relates to performance requirements, hardware availability and network conditions

[190].

3.6.3 Healthcare

When applications are deployed in a healthcare environment, additional healthcare specific

concerns are encountered. In the domain analysis phase of the ALPH model a number

of healthcare specific concerns common to multiple pervasive healthcare applications were

identified namely; the use of healthcare standards, EHRs and persistence. The use of varying

hospital and departmental information systems result in various formats of data, inhibiting

interoperablity between systems and institutions. A number of standards have emerged to

address this problem and conformance to standards must be implemented in order to enable

interoperability of both in-house heterogeneous systems and inter-establishment systems. The

HL7 standard is a key concern in the domain to enable the exchange of standardised electronic

healthcare information. There are also design standards that should be considered such as

EHRs. EHRs are full patient records consisting of data from various hospital and healthcare

professional systems. Storage and persistence related functionality is also very prevalent in

healthcare systems affecting multiple modules. We describe the healthcare specific concerns

in the set of pervasive healthcare crosscutting concerns within the ALPH model below.

3.6.3.1 HL7

Healthcare information is central to pervasive healthcare applications, as discussed in 2.1.2.

Access to healthcare information is required at the point of care to facilitate decision making

[104]. To distribute healthcare information it must be captured in a standard format. This

standardisation defines layouts that enable the transfer and use of healthcare information in

heterogeneous healthcare information systems. The formatting of information makes it avail-

able for distribution in pervasive healthcare applications. The international HL7 standards

institution promotes and enforces the standardisation of electronic healthcare information
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to facilitate its communication and management [186]. In domain analysis, many pervasive

healthcare applications had a requirement for the distributed communication of information,

with no explicit reference to HL7. However, applications that communicate patient data

should conform to the international HL7 communication protocols and wrap all healthcare

information in the appropriate HL7 messaging format [225] [196].

3.6.3.2 EHR

Comprehensive EHRs are patient records consisting of files and components from various

hospital and healthcare professional systems. Large pervasive healthcare systems aim to

incorporate a form of EHR to structure patient data [143]. However, EHRs have proven ex-

tremely difficult to develop [44]. Huge duplication exists even in situations where EHRs have

been implemented for logging and paper trails [187] functionality. The release of open source

solutions provides an alternative to expensive vendor EHR systems. New EHR ventures, such

as Google Health and Microsoft’s Health-Vault, highlight the requirement for modularisation,

enabling EHR systems to be pluggable components [187]. EHR systems currently being im-

plemented in hospitals run on desktop PCs, and do not have any support for mobility [31].

Taking the degree of mobility within hospitals into account, “there is a substantial motivation

for both EHR vendors as well as the hospital administration to develop solutions for mobile

access to the EHR systems” [31].

3.6.3.3 Persistence

Healthcare systems require a large amount of data-centric functionality. Electronic healthcare

information must be persisted and details are retrieved from datastores frequently. A previous

programming language targeted at the healthcare domain was predominantly persistence

based [52]. In pervasive healthcare applications, remote connections to datastores are required

throughout the application to persist healthcare data, often in conjunction with an EHR

system.
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3.7 Summary

This chapter described the analysis phase of the ALPH model proposed in this thesis. The

overall methodology used for the development of the ALPH model was outlined. The design

steps of the methodology correspond to the analysis phase described in this chapter.

Domain analysis provides fundamental knowledge and understanding of domain function-

ality and identifies the common functionality within the domain of pervasive healthcare. The

analysis carried out in the development of ALPH included the analysis of requirements in the

domain, analysis of literature in the domain, studying domain case studies and examining

codebases. Common concerns were identified and analysed to identify crosscutting concerns.

The output of the analysis phase is the set of crosscutting pervasive healthcare concerns

that forms the basis of the ALPH model, shown in table 3.5. This resulting set of pervasive

healthcare concerns that are both reoccurring and crosscutting are inlcuded in the ALPH

model and will be made available through the ALPH DSL.

Distribution

Communication

Network Roaming

Software Roaming

Service Discovery

Device Discovery

Limited Connectivity

Quality of Service

Device Adaptation

Location

EHR

HL7

Persistence

Table 3.5: Concern Summary

The next chapter describes the design and implementation phase of the concerns in the
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ALPH model. The implementation details of the library of crosscutting pervasive healthcare

concerns in the ALPH model are described, including the set of techniques and designs used

in the implementation of each concern. Each concern’s behaviour and modular design is

described with details of the classes and aspects involved.
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Pervasive Healthcare Aspect

Library

Previous chapters have described complexity factors in pervasive healthcare application de-

velopment and identified a set of concerns in the domain that crosscut applications. These

crosscutting concerns reduce modularity and hence increase complexity. This chapter presents

a modular implementation of a library of crosscutting pervasive healthcare concerns. The set

of concerns, as listed in section 3.6, were identified during a domain analysis in the area of

pervasive healthcare application development. The modular implementations in this chapter

provide the underlying behaviour available using the ALPH model.

The chapter begins with a high-level overview of the library as an element of the ALPH

model. The languages and tools used to design, develop and describe the implementations are

detailed. This is followed by a description of the modular implementation of each concern

within the library. The set of aspects and classes involved in each concern are presented.

Design details and implementation descriptions are supplemented with sequence diagrams.

4.1 Library Overview

The ALPH model’s goal of reducing complexity in pervasive healthcare applications requires

us to address difficulties with modularisation and inappropriate levels of abstraction. Within
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the ALPH model, behaviour common to pervasive healthcare systems is made available to

the developer, aiding application development in the domain. To address complexity in the

applications, this behaviour must be both modularised and abstracted. Following the identi-

fication of crosscutting concerns through domain analysis, the modularisation of crosscutting

pervasive healthcare concerns is the next step in reducing complexity in pervasive healthcare

applications.

Poor modularity is a source of complexity in both application code and in application

development, as discussed in section 1.4.1. Poor modularisation increases complexity by re-

ducing code quality [56] and negatively impacts on manageability, maintainability and under-

standability [201] [129]. It is caused by the crosscutting nature of behaviour in applications.

The previous chapter investigated the behaviour in pervasive healthcare applications and

identified a set of crosscutting concerns. These concerns affect applications in multiple areas

and concern-specific code is intertwined with base application logic. Crosscutting concerns

require advanced modularisation techniques as object-oriented techniques lack the capacity

to cleanly encapsulate their code.

The ALPH model employs AOP to modularise crosscutting concerns. Aspect-oriented

separation of crosscutting pervasive healthcare concerns maximises the independence of both

the concerns themselves and the base application logic modules [200]. This “separation

of concerns”, discussed in section 2.2.0.1, reduces application complexity while increasing

application modularity [265] [96].

As discussed in section 3.6, the first step of DSL design methodology is to produce a model

or representation of the domain knowledge through domain analysis [179]. In the ALPH

model, domain analysis resulted in the identification of a set of reoccurring crosscutting

concerns in pervasive healthcare applications. This knowledge is the basis for the library of

elements in the ALPH model, i.e., “a domain implementation consisting of a set of domain-

specific reusable components” [179]. This chapter presents the implementation details of the

modular design and development of the crosscutting concerns that make up the library of

concerns in the ALPH model, as shown in figure 4.1. Each concern addresses a common,

crosscutting requirement in pervasive healthcare applications and is modularised using AOP.
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Fig. 4.1: Library in the ALPH Model

4.2 Language and Tools

In this chapter, we capture pervasive healthcare concerns at the design and implementation

level using an aspect-oriented UML-based approach, Theme/UML [67] and the implementa-

tion level languages AspectJ [147] and Java. There are two benefits of this approach. First, it

allows us to communicate the behavioural impact of each concern on an application. Second,

it illustrates a modular design to separate concerns from the rest of the base application,

achieving better modularity in this complex domain as a result. In this section, we describe

both Theme/UML and AspectJ.

4.2.1 Theme/UML

Theme/UML [67] extends standard UML to support modularisation and composition spec-

ification of concerns that cut across a system. In this chapter, mostly standard UML is

employed, with two new notations. First, the designer of a concern that has a behavioural
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impact on the base application must be able to abstractly refer to those places in the ap-

plication where the additional behaviour is to occur. This is done using templates. In

Theme/UML, each concern is modularised into a package called a theme, and the templates

appear in the top right-hand corner of the theme. Each template represents points in the

base application that can be referred to within the theme. The second notation relates to

how the templates are used in standard sequence diagrams. The template triggers augment

behaviour as defined by the concern, with the sequence diagram indicating where the con-

cern’s behaviour should occur relative to the execution of the base behaviour. The notation

“do” prepended to the template name on an operation call in the sequence diagram indicates

where the base behaviour should occur.

4.2.2 AspectJ

AspectJ is a general purpose aspect-oriented extension to the Java language [172]. The salient

features of AspectJ, as outlined in section 2.2.1, are aspects, join points, pointcuts and advice.

Aspects are modules that encapsulate crosscutting concerns as code. These aspects define

crosscutting functionality and where it should be applied in the base application by means

of join points, pointcuts and advice. Join points are points in an application’s execution

where aspect behaviour can occur e.g., method calls, constructors, field references. Pointcuts

are predicates that define a join point, or set of join points, where aspect behaviour should

be applied when a pointcut is matched during execution. The behaviour implementation is

defined in advice along with a keyword to indicate if the code should execute before, after,

or around the matched pointcut.

Applications requiring crosscutting concerns modularised using AspectJ are compositions

of both objects and aspects. Core application logic is implemented using Java and crosscutting

concerns are encapsulated in aspects. These components are combined by the AspectJ weaver,

ensuring that crosscutting behaviour is carried out during base application execution where

required. The ALPH model proposed in this thesis uses AspectJ to develop modularised

implementations of crosscutting pervasive healthcare concerns. Therefore, for the purpose of

prototypical demonstration, the model is for use with base pervasive healthcare applications
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programmed in Java. The use of AspectJ, and subsequent use of base applications written

in Java, is an implementation decision for the current implementation of the ALPH model.

Concerns could be re-implemented using an alternative aspect language to support other base

languages e.g., AspectC++ [245].

4.3 Concern Implementations

The following sections contain detailed descriptions of each concern in the set of crosscutting

pervasive healthcare concerns identified in Chapter 3.

4.3.1 Distribution

Distribution enables the geographical and technical dispersion of nodes and provides the

underlying architecture used to support the transfer of data between nodes [187]. ALPH

provides distribution functionality using Java RMI [85]. RMI is based on a client-server

model and provides mechanisms, for both client and server side applications, to facilitate the

availability of remote objects residing in different JVMs. RMI requires the following actions

to be taken:

• Remote interfaces must define methods available remotely

• Remote objects must implement at least one remote interface

• Remote objects must be exported

• Remote objects must be bound to the RMIRegistry by the Server

• Remote references must be located in the RMIRegistry by the client using JNDI

• Clients can then make calls to methods on remote objects

Given the amount of code relating to these actions, encapsulating distribution using RMI

as an aspect is a complicated process. Each action must be carried out transparently, i.e., the

base application must remain oblivious to the RMI distribution. The design implemented by
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the ALPH model is inspired by the aspect refactoring method by Ceccato and Tonella [59].

The components within the distribution model are illustrated in figure 4.2.

To maintain separation between the base application and the distribution aspect, re-

mote interfaces for objects being distributed are generated by the ALPH model. The remote

interface generated extends java.rmi.Remote, which enables the inclusion of RMI basic func-

tionality. The methods of the object being distributed, e.g., ServerImpl, are copied into a

remote interface, called IRemoteServer. Within this interface, each method is defined and

suffixed with “ remote”. Each method signature also throws the required RemoteException.

The distribution aspect, InterfaceImplAspect, defines that the original base class imple-

ments two interfaces by declaring them as parents. The first is the generated remote interface,

IRemoteServer. Declaring that the base class implements IRemoteServer requires the intro-

duction of IRemoteServer’s methods into the base class. InterfaceImplAspect introduces

these methods, “ remoteMethodName” etc. with no implementation, as the aspect will in-

tercept their execution and redirect the call to the original base class method. The second

interface that the base class is defined to implement is the IRemoteClass interface. This

interface does not require the base class to implement any methods and is used to distinguish

local classes from remote classes in execution.

Figure 4.3 illustrates the sequence of events on the creation of each base class which is

to be distributed. The ConstructorInvocationAspect aspect intercepts construction by

recognising each class implementing the IRemoteClass interface. The code executed instead

of the original constructor delegates the object creation to the factory, ObjectFactory. This

ObjectFactory is implemented to create remote object implementations. Its createObject

method obtains the internal details of the base class using reflection. The new remote object

created is exported using UnicastRemoteObject and bound in the RMIRegistry, making

it available remotely. When the object has been created on the remote host, an object

of Remote type is returned. The client class that launched the call to the constructor is

expecting an object of the base class type e.g., ServerImpl. To address this, we introduce

a facade ServerImpl object on the client in which we wrap the remote object. To do this,

the InterfaceImplAspect declares a new field for keeping a reference to the remote object
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Fig. 4.2: Distribution Module Class Diagram
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Fig. 4.3: Distribution on Server Construction

and a new constructor that assigns the remote reference. From the client’s point of view, it

communicates with a local instance of ServerImpl but as we will see in the next section,

each call will be transferred to the real server on the remote host. The process of object

construction in the distribution module of ALPH is illustrated in figure 4.3.

RMI is based on remote method invocations. When a method invocation occurs on an

object that is being distributed by the ALPH model, the ClientCallInterceptionAspect

aspect intercepts the invocation, as shown in figure 4.4. The aspect uses the reference of the

real server which is contained in the field introduced to hold its reference. The invocation

is replaced by a remote one, by concatenating the “ remote” suffix to call the method of

the IRemoteServer interface and handled as a remote method invocation by RMI. This step

is almost recreated backwards at the invocation of the remote method on the remote host.

The ClientCallInterceptionAspect aspect on that host intercepts the remote method call.

The call is then redirected to the original base class method implementation and the required

behaviour is achieved. The ServerCallInterceptionAspect aspect intercepts all the call to

the Remote Server methods and redirect their execution to their corresponding local method
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on the local Server object.

Fig. 4.4: Distribution on Method Invocation

The implementation provides clear modularisation of distribution from base applications.

The approach is based on a design previously used to modularise distribution using AOP

[59], i.e., the use of an object factory and interceptions on method calls and constructor calls.

This approach maintains the obliviousness of base applications to distribution functionality,

increasing modularity and thus reducing complexity. The ALPH model provides RMI distri-

bution in its current implementation to examine the reduction in complexity achieved using

this approach. The model could be extended to provide a choice of distribution technologies.

4.3.2 Network Roaming

Network Roaming and Quality of Service concerns share a fundamental concept i.e., appli-

cations may need to switch network at some point in an application’s execution. Quality of

Service builds on the functionality provided by the Network Roaming module in the ALPH

model. In this section, we focus on Network Roaming while the following section outlines

how the Quality of Service module builds on its network switching behaviour.
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Fig. 4.5: Network Roaming Class Diagram

Because of the unstable nature of wireless networks mobile devices can easily lose their

current network connection. However, most mobile devices support a variety of different

networks, like IEEE 802.11 and Bluetooth. This module addresses the situation where the

network connection the device is currently using is lost or deteriorates, so the device can

change the network connection depending on which networks are currently available to the

device.

The Network Roaming module consists of three main entities along with helper classes,

as illustrated in figure 4.5. The NetworkModel class represents a particular type of net-

work and is responsible for acquiring an accurate list of features relating to that network.

The NetworkMonitor class is responsible for managing the networks and searching for new

networks. The NetworkDatabase is populated from an XML file of properties of available

networks. The NetworkRoaming aspect encapsulates crosscutting code which is woven into

an application and is triggered whenever a network activity is required.

The Network Roaming module in the ALPH model provides a facility for selecting the
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Fig. 4.6: Network Roaming Module

network that the application uses and ensures that an appropriate network is available to

the application. The aspect intercepts connections to a network and executes network eval-

uation to select the most appropriate network, as shown in figure 4.6. The aspect must also

intercept any exceptions caused by network failures which in turn invokes the re-evaluation

of the characteristics of each known network and any new networks that may be found. The

application then selects the best available network over which network communications can

proceed before returning control to the method that threw the exception.

The Network Roaming module modularises the described functionality so it can be added

to new and existing base applications without the need for refactoring. No work exists

modularising network roaming behaviour and so the ALPH implementation is an original

design. The current implementation addresses only the outlined functionality. A limitation

of the design is the requirement for network properties to be provided by the user in XML

format, as shown in listing 4.1. The automation of this process would require an extension

of the current ALPH implementation.

1 <networkList>

2 <network networkName=”w i f i 1”>
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3 <p r op e r t i e sL i s t >

4 <property name=”NetworkType” value = ”1” type =”St r ing”/>

5 <property name=”Latency” value=”10” type = ” Int”/>

6 <property name=”Congest ion ” value=”5” type=” f l o a t ”/>

7 <property name=”bandwidth” value =”1000” type=” f l o a t ”/>

8 <property name=”encrypt ion ” value=”1” type=”boolean”/>

9 </p r op e r t i e sL i s t >

10 <area xStart = ”4” yStart=”0” length=”2” width=”10”/>

11 </network>

12 </networkList>

13 . . . . .

Listing 4.1: NetworkPropertyList.xml

4.3.3 Quality of Service

Quality of Service (QoS) controls resources to provide applications or tasks with different

priorities [99]. QoS assures certain guarantees regarding network properties to attain a cer-

tain level of performance e.g., bandwidth. The ALPH model provides functionality to meet

network based QoS assurances. Meeting these assurances requires moving a user to another

network when the current network cannot fulfill the required assurances. This function utilises

the Network Roaming functionality in the ALPH model, described in the previous section

4.3.2, to find an appropriate network to fulfill QoS assurances.

The QoS aspect uses the Network Roaming module functionality from the library of

concerns to facilitate the selection of a network that best suits the network requirements of

the application method which is crosscut. Components of the Quality of Service module,

shown in figure 4.7, interact with the Network Roaming module, as illustrated in figure 4.8.

The NetworkMonitor is responsible for providing the list of available networks in the user

area. NetworkDeterminers are responsible for selecting valid networks from the list provided

by the NetworkMonitor, i.e., networks that satisfy the quality of service assurances. The

AssuranceReqDB stores all the assurances defined by the user in a database. This database is

populated from configurations in an XML file. Different Assurances can be defined for each

task or method call.
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Fig. 4.7: Quality of Service Class Diagram

Fig. 4.8: Quality of Service & Network Roaming
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Fig. 4.9: Quality of Service Module

The NetworkMonitor continuously updates a list of available networks in the user’s area.

Simultaneously, the QualityOfService aspect checks in the assurance database to acertain

if the method needs specific assurances and manages the NetworkDeterminers accordingly.

As illustrated in figure 4.9, the QualityOfService aspect is triggered on a method call.

Acquisition of data regarding available networks in the environment is addressed by the Net-

workDatabase singleton class where information about networks is loaded from an XML

configuration file. Network configuration details include network type, bandwidth and en-

cryption, as illustrated in previously in network romaing, depicted in listing 4.1.

The QoS module, implemented on an original design, separates QoS functionality from

base applications using AOP. Unlike existing modularisations of QoS [231], the ALPH imple-

mentation does not require the application developer to design interfaces, classes or events

for each component. Behaviour is supplied in the aspects and classes in the module. The

current implementation of ALPH does, however, require the developer to explicitly provide

assurances in an external XML file as shown in listing 4.2.

1 <as suranceL i s t >
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2 <method methodName=”userPage”>

3 <assurance name=”bandwidth” value=”30” p r i o r i t y =”1” type=”min”/>

4 <assurance name=”conges t i on ” value=”20” p r i o r i t y =”2” type=”max”/>

5 <assurance name=”encrypt ion ” value=”1” p r i o r i t y =”3” type=”equ”/>

6 </method>

7 </as suranceL i s t >

Listing 4.2: AssurancesList.xml

4.3.4 Software Roaming

Software roaming facilitates the migration of code by allowing data or state to relocate from

one machine to another [267]. A mobile agent system can be used as an approach to achieve

software roaming, as outlined in section 3.6.1.4. Within the ALPH model, software roaming

is supported using a mobile agent approach. Mobile agents migrate code to carry out tasks on

remote machines. The code is encapsulated within an agent. Client and server applications

both require mechanisms for sending and receiving agents. These mechanisms include the

serialisation of mobile agent contents, and deserialisation on the receiving host. The agent

should also be returned to the original sender after its remote task is complete.

The ALPH model implements a software agent framework that represents the core compo-

nents of a mobile agent architecture. This provides the basic functionality required to serialise

mobile software agents and to transmit them across the network to a remote host. Figure 4.10

shows the components in the ALPH model software roaming module. The AgentManager

class is responsible for managing the sending and receiving of MobileAgent objects. Each

host has an AgentManager, enabling the application to be run on many interacting hosts or

devices. The AgentManager implements a remote interface, similarly to the distribution mod-

ule described in section 4.3.1 and provides functionality to receiveAgent and migrateAgent.

This class is registered with a directory service so that it is available to remote hosts. The

two aspects ClientAgentManagerAspect and ServerAgentManagerAspect are responsible

for adding a reference to the AgentManager in the client and the server classes. The Mo-

bileAgent is an abstract class that represent a mobile agent. This class is made the parent

of services or tasks that require software roaming. It provides functionality to start and sus-
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Fig. 4.10: Software Roaming Class Diagram

pend services, as well as enabling the agent to migrate and return to its original host. The

LaunchAgentAspect creates a new implementation of a mobile agent, ImplementedAgent.

The aspect intercepts points in the base application’s execution defined by the developer and

the agent migrates to the remote AgentManager, carries out functionality and returns back

to the original host.

The theme illustrated in figure 4.11 shows the allocation of an AgentManager on agent

startup and its registration with a naming or directory service. The migration of a Mo-

bileAgent during execution is also shown. The software roaming functionality provided by

the ALPH model maintains an oblivious base application, encapsulating roaming behaviour

in the AOP library. It supports the fundamental behaviour required to migrate tasks us-

ing mobile agents. The approach is similar to that of the AspectM framework [170], with

functional differences in implementation details.
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Fig. 4.11: Software Roaming Module

4.3.5 Service Discovery

Applications in mobile environments require the ability to to dynamically discover and ac-

quire access to necessary services [217]. The service discovery module in the ALPH model

provides means to discover and acquire access to services by weaving the required methods at

appropriate places in the source code [188]. The module provides mechanisms to find suitable

services based on the requirements of the application.

A directory service stores information about services and enables lookups to locate re-

quired services. Many directory services are available [272] [21] depending on the resources

available to the application. While these directory services were investigated, in the current

prototypical ALPH model, a more general, lightweight approach was substituted supplying

sufficient directory functionality.

The service discovery module consists of an aspect and several auxiliary classes, as shown

in figure 4.12. The DirectoryService class uses a relational database to retain service infor-

mation. The DirectoryService stores description and location information about available

83



Chapter 4. Pervasive Healthcare Aspect Library

Fig. 4.12: Service Discovery Class Diagram

active services, as well as providing interfaces to allow services themselves to maintain their

description entries in the directory service. The Service abstract class defines functionality

to maintain the state of a service. Services to be advertised are made a subclass of Service.

ALPH statements define intercept points in the application at which the ServiceDiscov-

eryAspect injects required service discovery behaviour, as shown in figure 4.13. It initiates

a ServiceDiscoveryRequest and sends it to theDirectoryService. A ServiceDiscov-

eryReply is sent back to the aspect containing details about the available service. If the

service is suitable for use a connection is accepted on behalf of the client. The ServiceDis-

coveryAspect also enables the updating of service descriptions in the DirectoryService

when required by base applications.

The ALPH model provides basic service discovery behaviour based on an original design.

In future versions, the model could be extended to offer support for various service discovery

protocols and more sophisticated directory services. The current implementation modularises

the basic discovery functionality, removing crosscutting code from base applications.
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Fig. 4.13: Service Discovery Module

4.3.6 Communication

Applications in mobile, distributed environments require the use of network communication

services to communicate with other distributed nodes [227]. Communication mechanisms are

essential in pervasive healthcare systems to send and receive data from peers over a network.

Underlying network communication implementation details are encapsulated by the ALPH

model in the Communication module. Java sockets are used as the underlying transport

mechanism. Sockets provide the lowest level network transport available with higher level

technologies building on their simple transport facility e.g., RMI and JMS.

A collection of classes and aspects work together to provide methods to transfer data,

as well as handlers to manage data transferred, as shown in figure 4.14. The Communica-

tionAspect is responsible for intercepting points in the base application where distributed

communication is required, as shown in figure 4.15. The CommunicationAspect creates

Sockets on both sides of a communication channel, ClientSocket and ServerSocket with

associated Connection classes. The Data class represents message send or receive entities.

Two subclasses, OutgoingData and IncomingData represent data at either end of the com-

munication channel.

The Receiver class is a Thread that runs on each node to listen for incoming data. On
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Fig. 4.14: Communication Class Diagram

the setup of this listener, an instance of the IncomingData class is created which creates a

connection to another node via a socket. An IncomingHandler is also created on the setup of a

Receiver to handle message processing. When data is transferred using the communication

module, it is received by the Receiver on that node. This data is then passed to the

IncomingHandler where a vector holds a queue of messages. Its thread constantly processes

messages in the queue on the receiver side.

The ALPH model modularises communication functionality outside the base application.

The current implementation offers support for socket based communication only. Higher level

messaging technologies such as JMS and other communication protocols such as SOAP could

also be used for communication functionality. These are not supported in the current ALPH

implementation and would require further extension of the model.
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Fig. 4.15: Communication Module

4.3.7 Device Discovery

Devices frequently enter and leave mobile environments. Applications require notifications

when new devices enter the environment. The Device Discovery module in the ALPH model

adapts the application when new nodes, or devices, become active. The module is based

on a multicasting discovery mechanism. The components that make up the device discovery

ALPH module are illustrated in figure 4.16.

The DeviceDiscoveryAspect is responsible for intercepting the base application at points

where new devices become available. A DeviceDiscoveryListener is set up for the device,

and a DeviceDiscoveryRequest is multicasted to a predefined multicast address, as shown

in figure 4.17. The device discovery module uses communication functionality from the com-

munication module in the ALPH model to transfer the request to nodes across the network.

When a node’s DeviceDiscoveryListener receives a DeviceDiscoveryRequest, the node

ensures it is not a self sent request. Requests are handled and a DeviceDiscoveryReply is re-

turned to the discovered node containing location information about other nodes. The ALPH
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Fig. 4.16: Device Discovery Class Diagram

model also supports the discovery of devices using Bluetooth. The described architecture is

used but with Bluetooth protocols over the Bluetooth stack.

ALPH provides modular device discovery functionality using AOP in an original design.

The current implementation is based on the Bluetooth device discovery protocol and a mul-

ticasting implementation, similar to that of the Simple Service Discovery Protocol (SSDP).

Other discovery protocols e.g., Cisco Discovery Protocol (CDP), Universal Plug and Play

(UPnP), Link Layer Discovery Protocol (LLDP) could be used but would require extensions

to the current ALPH model.
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Fig. 4.17: Device Discovery Module

4.3.8 Limited Connectivity

Due to the unstable nature of wireless mobile networks, connectivity is often interrupted by

disconnections. ALPH provides two mechanisms for handling limited connectivity, provided

as contingency plans. The first is a logging mechanism that maintains application state

which can be used to ensure consistency when recovering from a disconnection. The second

provides the use of the Network Roaming module to find an available network in the event

of a disconnection.

The components in the Limited Connectivity module are shown in figure 4.18. The Con-

tingencyPlan class defines methods common to all contingency plans. Concrete subclasses

provide specific actions to be taken when handling disconnections. The LimitedConnectiv-

ityAspect invokes a contingency plan whenever a disconnection is identified, as shown in

figure 4.19. The Network Roaming module is utilised in the identification of network discon-

nections. The LimitedConnectivityAspect uses the LoggingContingencyPlan class to log

application state and activity. This maintains an external log that can be used by contingency

plans to ensure application state consistency. This log is managed by the LogRepository.

The contingencies are fully modularised in the limited connectivity module in ALPH and

can be used with any Java base application. The ALPH model implementation is limited to

logging and network contingency plans for limited connectivity events. More concrete con-
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Fig. 4.18: Limited Connectivity Class Diagram

tingency plans could be implemented as extensions to the current implementation, including

plans for transactional rollbacks. Transactions are not supported in the current ALPH model.

If transactions are necessary, transactions code is explicitly required.

4.3.9 Device Context

Device context information includes device-specific properties such as screen size and storage

capacity [229]. This information can be used to adapt applications appropriately to the

current device. The Device Context module in the ALPH model encapsulates all concerns

dealing with the adaptation of content with respect to the current capabilities of a device

e.g., screen size, colour depth, processing power, storage capacity, and bandwidth [229]. This
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Fig. 4.19: Limited Connectivity Module

information is used to adapt the application to accommodate device capabilities. The overall

architecture of the module is depicted in figure 4.20.

The adaptation of content to the current capabilities of the device is encapsulated within

the DeviceAdaptationAspect aspect and a collection of auxiliary classes. The DeviceAdap-

tationAspect intercepts calls to methods that generate or display content, as shown in figure

4.21. It then obtains the current capabilities of the device from the DeviceMonitor, which

maintains the state and the capabilities of the device currently in use. The device currently

in use is represented by the Device class. After having obtained device capabilities, the

DeviceAdaptationAspect reasons about the contextual information to compute the optimal

course of action. The next section describes the reasoning mechanism.

4.3.9.1 Reasoning

The adaptation is realised using artificial intelligence techniques, specifically rule-based rea-

soning, whereby a set of rules can reason about the device’s current characteristics and adapt

the application’s content prior to sending it to the device. Jess is a Java based rule engine
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Fig. 4.20: Device Context Class Diagram

Fig. 4.21: Device Context Module

1 that uses an enhanced version of the Rete algorithm to process rules [105]. Templates are

created to represent a condition or context based on a particular set of rules or facts. The

developer must provide a file that contains definitions of Jess templates to adapt the appli-

1Jess - http://www.jessrules.com/
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cation according to their requirements. A template file is shown in listing 4.3. The rules are

evaluated at defined points of execution, and the template is changed if another context is

more suitable. The RuleBasedEngine class interacts with the Jess framework and sets the

templates and rules. The DeviceAdaptationAspect uses the RuleBasedEngine class to rea-

son about device information and to relate the current context of the device to the rule-based

reasoning system.

1 ; ( de f template dev i c e ( s l o t name) ( s l o t s c r e enS i z e ) )

2 ; ( r e s e t )

3 ; ( d e f r u l e screen−s i z e

4 ; ”Adapt to s c r e en ”

5 ; ( dev i c e { s c r e enS i z e < 200})

6 ; =>

7 ; ( p r in tout t ”Adapt to smal l s c r e en . ” c r l f ) )

8 ; ( a s s e r t ( dev i c e ( s c r e enS i z e 200) ) )

9 ; ( run )

10 ;

Listing 4.3: DeviceScreenRules.clp

Device adaptation functionality is modularised into aspects and classes in the library of

the ALPH model. The implementation is not based on any related work, but provides similar

functionality to existing adaptability aspects [213]. The current ALPH model uses the Jess

rule-based engine, and is therefore limited to adaptations in response to rules defined by the

developer. Any further behaviour, including set rules for particular devices, would require

the extension of the current prototypical ALPH model.

4.3.10 Location

Pervasive applications often use location information to adapt application behaviour to the

current context. Location was identified in chapter 3 both independently and encompassed

in context-aware adaptation. This ALPH location module provides functionality to obtain

location information and provides means to translate between different representations of a

location. The module consists of five classes and two aspects.

LocationProducer is an abstract class that represents hardware devices to encapsulate
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Fig. 4.22: Location Class Diagram

the location data provided by the device. Each type of location device class extends a common

LocationProducer class. The ALPH model provides an implementation for GPS location

information in the GPSProducer and GPSCoordinates classes. The LocationMonitor mod-

ule is responsible for monitoring all LocationProducers and for ensuring that the location

information provided is up-to-date. The LocationAspect aspect provides behaviour that is

executed anywhere within an application where a location is required. It obtains the current

location from the LocationMonitor class, as shown in figure 4.23.

An additional aspect, EnsureViableLocation, is available to carry out checks on current

location to ensure that the user is in a valid location for the task to proceed. The Location-

LookupService class provides methods for translating between the various different formats

that location information can be encoded in. This allows the aspect to reason about location

94



Chapter 4. Pervasive Healthcare Aspect Library

Fig. 4.23: Location Module

data from any form of device, for example the location producers may provide only GPS

coordinates whereas the location aspect may be required to filter data based on its origins

being within a particular named boundary e.g., facility or area. Explicit locations may also

be defined and passed to the application in an external file as shown in listing 4.4. The En-

sureViableLocation aspect obtains the current location from the LocationMonitor class.

It translates the location data into a form that can be easily reasoned about, and the current

location is queried using the LocationLookupService before deciding whether or not it is

safe to continue with the execution.

1 TCD, 53 .342383 , −6.250495 , 53 .34506 −6.259185

2 IRE , 55 .337268 , −5.516968 , 51 .442367 , −10.230103

Listing 4.4: safeLocations.txt

The ALPH model encapsulates location behaviour in a modular way, removing any re-

quirement for references to location monitoring in base applications. The current implemen-

tation is limited to GPS location information. The model would require extension to support

other location sources, e.g, RFID, mobile cell location information.
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4.3.11 HL7

Healthcare information requires standardisation to enable its use in the various systems of

healthcare facilities. These standards facilitate the transfer and sharing of healthcare infor-

mation, enhancing interoperability. The ALPH model includes support for the incorporation

of HL7 standards to facilitate this interoperability in healthcare applications. HL7 support in

the ALPH model is documented as the modularisation of HL7 healthcare information using

AOP [189].

HL7 version 2.4 includes over 70 message types. Many sections of the messages are

constant, but each message has particular elements relating to its purpose e.g., an OMD -

O03 message representing a Dietary Order message needs to receive specific information, the

most important being the diet order itself. To comprehensively support all message types an

existing API can be used in conjunction with AOP. HL7 application programming interface

(HAPI) [4] is an open-source, object-oriented HL7 parser for Java and can be used to manage

all forms of HL7 version 2.x messages.

Fig. 4.24: HL7 Class Diagram

The ALPH model HL7 module consists of various helper classes and an aspect to co-

ordinate their activity, as shown in figure 4.24. The HL7Aspect intercepts points in the
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base application where information should be formatted or where already formatted infor-

mation requires parsing. The HL7Aspect contains calls to the various helper classes to carry

out the required HL7 functionality e.g., to create or parse a HL7Message, shown in figure

4.25. Healthlink [5] have cooperated in the implementation of the ALPH model. Healthlink

is an electronic communications project funded by the Irish Government’s Health Service

Executive. The project provides a healthcare communications network that links general

practitioners, hospitals and healthcare related agencies. Healthlink facilitates data exchange

using HL7 version 2.4 in XML format. In collaboration with ALPH, Healthlink have pro-

vided templates for a selection of the HL7 messages currently used within the Irish healthcare

system. We used these templates to create XML DOM handler classes to create and parse

these messages. The ALPH model HL7 module is designed to make use of these handler

classes and to introduce the required behaviour into the base application at the appropriate

points in execution.

Fig. 4.25: HL7 Module

The ALPH model provides basic create, parse, display, send and receive HL7 functionality
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for messages in version 2.x, based on the co-operation of the Healthlink project. It does not

support the use of HL7 version 3.0 messages or protocols. In order to fully support HL7 v3

the ALPH model would need to be extended using the HL7 Java SIG Project API 2.

4.3.12 EHR

Electronic records of medical data are complex entities made up of various possible hetero-

geneous components. A patient record, or EHR, might consist of lab results, prescriptions,

personal data and administration information. Standardisation is therefore key in the im-

plementation of an EHR system. Similar to the use of the HL7 standard for the transfer

of healthcare information in the ALPH model, an EHR system based on standards is also

employed.

Building EHR systems is notoriously difficult [44]. In the migration to EHR systems

from paper based systems it has been discovered that over 2000 paper forms are used in

the treatment of patients in hospitals [246]. Given the enormity of possible record types,

the ALPH model uses an established standard EHR system, openEHR [9]. The openEHR

foundation is a non-profit organisation that develops open-source specifications for EHRs in

healthcare applications. The openEHR architecture is based on fifteen years of research in

numerous projects and standards from around the world. The organisation has worked with

the European Committee for Standardization (CEN) to standardise the format of data in

EHR systems and ISO/TR 20514.

openEhr applies a two-level modelling approach. The first level is a reference information

model that defines generic structures and data types for representing information within an

EHR. These structures are illustrated in figure 4.26. Each patient has their own EHR with a

unique EHR id. An EHR encapsulates a set of Composition objects where each Composition

represents information about a particular change to the EHR e.g. admission to a hospital or

a set of test results. Each Composition contains one or many Entry objects, each of which

represents a single medical statement e.g. a particular medication or result from a specific

test. openEhr defines five generic types of Entry- Administration, Observation, Evalu-

2HL7 JavaSig http://www.hl7.org/Special/committees/java/index.cfm
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Fig. 4.26: EHR Package Diagram

ation, Instruction and Action. The second level within the openEhr approach formally

defines the structure of clinical content in an archetype model. Archetypes are descriptions

of valid Entries and Compositions. For example a blood pressure Archetype defines all

the information a clinician might want to report about a blood pressure measurement (an

observation Entry). By formally defining valid structures openEhr enables the sharing of

EHRs across healthcare systems. In the archetype model Archetypes are defined using an

Archetype Definition Language (ADL) and edited using an ADL editor, as illustrated in

figure 4.27. Each Archetype defines constraints on the reference model for a particular Com-

position or Entry. For example an Archetype might define a set of Entries that must be

included for a hospital discharge summary.

ALPH uses the openEhr Java reference implementation in its EHR module. It provides

Archetypes for a limited selection of common healthcare information operations based on

previous work with the Irish Healthcare Executive Healthlink project [5]. An EHRAspect

intercepts the base application at specified points of execution, as shown in figure 4.28. The

developer specifies the Archetypes used to validate the Entry and Composition to be added
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Fig. 4.27: Archetype Definition Language

to the EHR. Variable values from the base application are used to instantiate an Entry, which

is encapsulated in a Composition. These structures are validated against the Archetypes as

they are created. The Composition is then added to the EHR.

4.3.13 Persistence

Healthcare systems replacing and supporting paper based systems handle large amounts of

data. This data must be persisted and accessed frequently in pervasive healthcare appli-

cations. The ALPH model provides persistence implementation using the JDBC API. The

modular persistence code is encapsulated in a set of aspects and helper classes, as shown in

figure 4.29. An abstract aspect defines persistence behaviour in a reusable module. Concrete

implementations use application-specific details required for persistence related functionality.

We support an object-relational model, where objects are persisted automatically on creation

and modification. Persistence requires general tasks to carry out basic persistence operations.
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Fig. 4.28: EHR Module

The ALPH model provides functionality for these operations, namely: connection handling

and datastore interaction handling i.e., inserting, updating, selecting and deleting database

content.

To acquire a connection to a database, the database name and location must be provided.

In addition, the driver required to create the connection must be specified. This behaviour

should be executed on the initialisation of an application. An initConnection pointcut

defines the appropriate join point on application startup to trigger the initialisation of the

database connection, as shown in figure 4.30. Object-relational based persistence requires

that the datastore be updated on the creation or manipulation of each object in application

memory. Classes which are to be persisted must be defined explicitly to enable the persistence

module to identify them. The PersistenceManager aspect compares the class of the object

being created to identify if it is to be persisted. If so, the datastore is checked to ensure a

table exists to hold its data and creates one if required with a column for each attribute of

the class, along with a column to represent the object id. An object id value is introduced

by the aspect into each instance persisted to enable its retrieval. The object is persisted by
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Fig. 4.29: Persistence Class Diagram

using a JDBC SQL insert statement. Further updates, deletes and retrievals are carried out

as the PersistenceManager aspect intercepts variable mutators.

To address the mismatch between the object model of the object-oriented programming

language and the database relational model mappings are required [93]. The ALPH model

provides limited prototypical persistence support for object references using object-relational

mapping. Mappings are maintained in a table and used to ensure all reachable references are

updated or deleted as appropriate. This approach to mapping has been used in previous AOP

persistence projects [212] [131]. ALPH reuses this approach, as it provides an architectural

solution to mapping in a modular manner, retaining the obliviousness of base applications.

4.4 Summary

This chapter has detailed the modular design and implementation of a library of crosscutting

pervasive healthcare concerns in the ALPH model. Modularisation is achieved by using AOP

in the implementation of concern functionality, encapsulating concern behaviour in modules
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Fig. 4.30: Persistence Module

of aspects and corresponding auxiliary classes. This approach increases the separation of

crosscutting concern code from the base applciation logic, in the attempt to reduce complexity

in pervasive healthcare applications.

Chapter 5 introduces the DSL in the ALPH model. The ALPH language provides high-

level domain-specific constructs that enable the developer to use functionality from the library

of concerns. The constructs abstract the developer from the implementation level details

discussed in this chapter, reducing the requirement for domain knowledge. An overview of

DSL development is outlined, followed by a detailed description of the ALPH language, its

compiler and the language processing technique. The domain-specific constructs provided in

the ALPH language are also presented.
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ALPH Language

This chapter describes steps 5 and 6 of the methodology followed in the development of ALPH,

described in section 3.2. These steps are the creation of a DSL and its associated translator

and are depicted in figure 5.1 as part of the ALPH model. An overview of the ALPH language

is given before describing the general process of implementing DSLs. The ALPH language

compiler and its implementation are described including details on the components developed

and language processing that takes place. The language constructs available in ALPH are

also outlined.

5.1 Overview

The pervasive healthcare concerns identified in Chapter 3 represent domain-specific func-

tionality that is common and crosscutting in pervasive healthcare applications. Chapter 4

addresses the modularisation of these concerns by compiling a set of modular implementa-

tions into a library of pervasive healthcare concern functionality. The goal for design and

implementation of these concerns using AOP is to increase modularisation in pervasive health-

care applications, thus reducing complexity. The second approach to reducing complexity in

the ALPH model is to provide an appropriate level of abstraction for reasoning about and

programming applications in the pervasive healthcare domain.

The ALPH language provides high-level domain-specific constructs that enable the devel-
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Fig. 5.1: ALPH Language in the ALPH Model

oper to use functionality from the library of concerns described in Chapter 4 in their pervasive

healthcare applications. Developers use the ALPH language constructs to define what con-

cerns they want to include in their applications and they provide information to assist the

customisation of the aspects generated to introduce pervasive healthcare behaviour into their

applications. Using these high-level constructs reduces the requirement for application de-

velopers to have extensive knowledge about the concerns they are using. The constructs

capture domain concerns and provide abstractions built on the library of pre-implemented

concerns, removing the need for developers to implement concerns from scratch. The ALPH

language abstracts the developer from the low-level implementation details concealed within

the library of concerns. The high-level constructs are also expressive, enabling developers to

use semantically intuitive language in the development of domain-specific behaviour.
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5.2 DSL Implementation

DSLs can be categorised into two basic categories; ones that build on existing languages and

ones that are entirely new languages [179]. Building on an existing language has the advan-

tages of using well known language formats and existing compilers. DSLs can be embedded

in GPLs by defining new types and operations in the existing language and by providing a li-

brary of domain-specific functionality. This embedding requires the extension of the compiler

or interpreter of a GPL to work with new domain-specific constructs. Appropriate domain-

specific constructs are usually beyond the limited user-definable notation offered by GPLs,

and DSL constructs and abstractions cannot always be mapped in a straightforward manner

to methods or objects that can be put in a library [179].

The alternative is to create a new language, which offers more flexibility than when ex-

tending an existing GPL [179]. New languages require a means of transforming source code

in the DSL language to a target executable language. Language processors, interpreters and

compilers perform these transformations. Providing an interpreter or compiler for a DSL

allows a custom transformation tailored towards applications in the target domain [81]. An

interpreter is a computer program that directly performs instructions written in a program-

ming language. A compiler is also a computer program that reads the DSL source code and

translates it to executable code. DSL compilers are also referred to as application generators.

While building a new DSL from scratch has advantages, there is increased difficulty and

development effort associated with creating a new programming language [179]. Many tools

exist to aid in the development of a DSL. Most of these tools support the description of

language transformers and are known as compiler compilers, parser generators, or compiler

generators. These tools create parsers, interpreters, or compilers from definitions created by

language developers. Some examples of well known tools of this kind include ANTLR [1],

Javacc [7], LISA [180], Lex [164] and Yacc [164].

In the ALPH model, a new language is implemented as a declarative DSL for perva-

sive healthcare. The ALPH language is a preprocessor to an aspect language using an

aspect-oriented library to produce target code making it a Domain-Specific Aspect Lan-

guage (DSAL). The Javacc (Java Compiler Compiler) parser generator tool is used in the
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development of the ALPH compiler, as described in section 5.3.2.

5.3 ALPHc Compiler

Compilers translate one language into another. The input program is known as the source

language and the output is known as the target language. The ALPH language compiler,

ALPHc, translates ALPH programs into AspectJ code. The translation can be described

using T-Diagrams [18].

5.3.1 T-Diagrams

Fig. 5.2: T Diagram Concept

Fig. 5.3: T Diagram

T-Diagrams consist of a set of graphical notations used for describing the transformations

provided by language processors i.e., generators, translators and compilers. They are useful

in the explanation of the transformation for the source language to the target language.

The notation takes the form of a “T” shape with the source language, target language and

implementation language forming the shape in the diagram, as shown in figures 5.2 and 5.3.

Figure 5.4 illustrates the ALPH transformation. ALPH programs are the source language
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that are translated to AspectJ using ALPHc. The ALPHc compiler was itself transformed

using Javacc into target Java representation. These Java objects are then used to transform

the ALPH source code into the target language AspectJ. The last step in the compilation

process is the weaving of the AspectJ representation into base Java. While this is not strictly

a compilation process, we include it as a transformation that takes place as part of language

processing within the ALPH model. The purpose of ALPHc is to interpret ALPH programs

and to generate intermediate objects used by the ALPH model to include domain-specific

pervasive healthcare functionality in base applications.

Fig. 5.4: ALPH T Diagram

5.3.2 Compiler Generation

Javacc (Java Compiler Compiler), as mentioned in section 5.2 is a parser generator tool. It

helps language developers to create parsers and lexical analysers for programing languages.

In particular, it was used in the development of the ALPH compiler, ALPHc. As with all

compiler generator tools, the language in question must be defined using a formal language,

e.g., BNF [151]. Javacc takes an EBNF, Extended Backus Naur Form [276], specification and

uses this to generate the appropriate parser. An EBNF definition describes the production

rules for the ALPHc compiler. The grammar definition of the ALPH language from the

ALPH model is included in Appendix B.
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5.4 Language Processing

A pervasive healthcare programmer will construct an ALPH program using the domain-

specific constructs available. This program defines what behaviour is to be included in the

base application along with other information required for its inclusion e.g., where in the

base application it is appropriate to insert the functionality. The first phase loads and parses

the ALPH program and completes lexical and syntactical analysis of the file. The parser

produces an abstract syntax tree of the file and passes it to the semantic analyser. The

semantic analyser checks the file for errors. The last phase generates an intermediate object

representation of the program. This consists of a series of objects that represent aspects for

the inclusion of the pervasive healthcare concerns described in Chapter 4, the parameters

used to configure the aspects to specific application requirements and the mappings from

constructs to target language code.

5.4.1 Components

Fig. 5.5: Compiler Class Diagram
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Figure 5.5 shows the main components of the ALPH language processor. The entry point

to the compiler is the Alph class. This class reads the ALPH program from a file using

standard input reading and passes it to the Alph.start() method. The start() method

is automatically generated by Javacc from the definition file AlphParser.jj. The contents of

the definition file is discussed in section 5.4.3 and included in Appendix B. It parses the file

presented on standard input into a List of Include objects and returns that list. The In-

clude objects are a form of intermediate representation for the ALPH “include” constructs.

The mapping between these objects and the code is explained in the next section on pars-

ing. The basic goal of the design of these objects is to allow the parsed ALPH code to be

queried and reformatted easily. Each ALPH construct, e.g., HL7, Location, is modelled as a

separate class that implements the ConstructBuilder interface. This interface defines a way

to query the ConstructBuilder’s name (getConstructName() : String) and a way to

parse an Include statement into Java code (buildConstruct(Include incl) : String).

Each parsed Include statement is iterated through and the appropriate ALPH construct

is selected by comparing the Include statement’s constructName with the constructName

of the available ConstructBuilder’s, e.g., HL7, Location. If a match is found, the In-

clude is passed to the corresponding buildConstruct method for that ConstructBuilder.

Each ConstructBuilder expands the Include statement into Java code. In the current

implementation, a template is filled out inserting the appropriate parameter data from the

application-specific ALPH file into the generated aspect template. Figure 5.6 illustrates the

sequence of events described for two example constructs, HL7 and Location.

5.4.2 Parsing Overview

The ALPHc parser, AlphParser, performs lexical and syntactical analysis on ALPH pro-

grams, enabling the compiler to recognise domain-specific constructs and to build up a rep-

resentation of the source language. This section describes the mappings between the ALPH

program defined by the application developer to the intermediate representation objects in

the ALPHc compiler. Lexical analysis is carried out by the AlphParserTokenManager. It

builds up a collection of Tokens from the input source ALPH program. Each Token repre-
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Fig. 5.6: Compiler Sequence Diagram

sents a token kind, each of which must have been defined in the original language grammar.

This process validates input e.g., keywords and their format.

Fig. 5.7: Compiler Mapping

The parser, AlphParser, maps statements formed from the domain-specific constructs

available in ALPH to Include objects. The statements are particular to each concern, or

module. The mapping of syntax to object is illustrated in figure 5.7. The “include” statement

maps to the Include object. Within the Include object is an Action and a number of

Options, mapping to the statement in figure 5.7. Syntactical analysis is performed by the

AlphParser. It parses the list of tokens resulting from the lexical analysis, building a parse
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tree on iteration. The AlphParserConstants interface associates token classes with symbolic

names e.g., “include” or “semicolon”. Boilerplate Javacc files SimpleCharStream, Token,

TokenMgrError and ParseException help the parsing process by providing representation

for the stream on input characters, single input tokens and the exceptions thrown when input

doesn’t conform the the parser’s grammar.

Include, Action, Option and OptionInfo objects represent the definition in the ALPH

program. OptionInfo is an abstract class that can currently be one of three subtypes:

• A String (e.g., ADT A01)

• A Parameter (e.g., User Application.currentUser)

• A JoinPoint (e.g., void App.setCurrentUser (User u))

Classes also exist to represent these subtypes i.e., JoinPoint, Parameter, OptionInfoS-

tring.

5.4.3 Definition

The AlphParser is defined using EBNF. The steps, or rules, defined outline the valid syntax

and semantics of the ALPH language. The definition file is annotated with snippets of Java

code to inform the parser of the required output, as shown in Appendix B. The ALPH

definition instructs Javacc to create the components described in section 5.4.1 and to create

the parsing behaviour described in section 5.4.2. Each rule outlines valid constructs and a

valid format for their use. Includes is a list of Include statements. Include is the token

“include” followed by a construct name and a list of actions, ended by a semicolon. Actions is

a comma delimited list of Action statements. Action is an optional ActionName surrounded

by parenthesis, the token “@”, and a list of Options. Options is a list of space separated

Option statements. Option is enclosed by braces and consists of one or more OptionInfo

statements. OptionInfo is one of either a single identifier, a Parameter or a JoinPoint.
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5.5 ALPH Language Constructs

The pervasive healthcare concerns identified in Chapter 3 were implemented and moduarised

as described in Chapter 4. The implementations described in section 4.3 provide modular

components that perform the behaviour required by each module addressed in the library of

pervasive healthcare concerns. The ALPH language constructs abstract application develop-

ers from the implementation in those components and provide

5.5.1 Terminology

The ALPH language terminology is based on the library of concerns described in section 4.3.

Collections of vocabularies in the healthcare informatics domain were also examined to inves-

tigate domain terminology. SNOMED CT (Systematized Nomenclature of Medicine-Clinical

Terms) [244] and ICF (International Classification of Functioning, Disability and Health)

[11] are the most widely used international vocabulary standards for medical applications.

To achieve full standardisation, the standards would have to be considered in the entire appli-

cation placing constraints on the base application implementation. As this is not suitable for

the ALPH model, standards are integrated within the limits of maintaining base application

obliviousness. Both EHR and HL7 concerns in the ALPH model include standard formats

of healthcare information. The EHR in the ALPH model is built on SNOMED CT and is

interoperable with HL7 v2.

5.5.2 Constructs

Each concern from the library of modular pervasive healthcare concerns described in Chapter

4 has an associated construct. The constructs form the core of an ALPH program, with

a set of “include” statements defining the inclusion of any one particular concern. The

statements follow the pattern shown in figure 5.7. That general format is customised for

each concern according to the parameters and actions required. The statements outline

what concerns to include, passing in application-specific information to enable the ALPHc

compiler to generate an application-specific aspect implementation that will incorporate the
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required pervasive healthcare behaviour from the library of concerns in the base application.

The following sections describe the statements and constructs as they are provided in the

ALPH language, and the resulting generated application-specific aspect implementation. The

resulting generated output is included in Appendix A.

5.5.2.1 Distribute

The use of the distribute construct generates three aspects; ConstructorInvocationAspect,

ClientCallInterceptionAspect and ServerCallInterceptionAspect. These aspects are

customised using the Objects passed as parameters to the distribute construct. Currently

RMI is the only supported technology.

The general format of the distribute construct statement is:

• include distribute (Technology) @ [objectsToDistribute];

A concrete example of a statement including distribution of a particular object using RMI

in an application is as follows:

• include distribute (RMI) @ [ServerImpl];

5.5.2.2 AdaptDevice

The adaptDevice construct includes adaptation to device context information in applications.

A DeviceAdaptationAspect is generated to intercept application behaviour at the points in

execution specified by the developer. Classes from the device context module in the library

of concerns are configured to carry out device adaptation e.g., DeviceMonitor, Device, and

contextual information is reasoned about using a rule based engine according to rules provided

by the developer. Adaptation uses a rule-based reasoning engine requiring developers to

provide a file containing application specific rules to adapt the application according to their

requirements. A template file is shown in listing 4.3 in section 4.3.9.1.

The general format of the adaptDevice construct statement is:

• include adaptDevice (RulesForDevicesFile) @ [EvaluateRulesJoinpoints];
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A concrete example of a statement including the adaptation of an application to particular

devices is as follows:

• include adaptDevice (rules.clp) @ [void App.setCurrentUser (User u)];

5.5.2.3 HL7

The HL7 construct generates a configured HL7Aspect that creates, parses, displays, sends

and/or receives healthcare information in applications. The parameters specify what func-

tionality to include, and the points in application where this behaviour should occur.

The general format of the HL7 construct statement is:

• include HL7 (create) @ [HL7CreateJoinpoint, MessageType],

(parse) @ [HL7ParseJoinpoints] , (display) @ [HL7DisplayJoinpoints], (send)

@ [HL7SendJoinpoints], (receive) @ [HL7ReceiveJoinpoints];

A concrete example of a HL7 statement to create a HL7 message in an application is as

follows:

• include HL7 (create) @ [void App.dischargepatient (String patientID, String

surname, String firstName, String DOB, String address, String Doctor, String

admitDate, String dischargeDate), ADT A01 ];

5.5.2.4 Location

A LocationAspect is generated when the location construct is used in an ALPH program.

The construct takes parameters that define location format, any high-level locations that are

to be inferred from location data, and the points in the execution of the base application where

location monitoring behaviour should be applied. An external file including application-

specific locations is illustrated in listing 4.4 in the description of the implementation details

of the location module in section 4.3.10.

The general format of the location construct statement is:

• include location (LocationType) @ [DeviceInitJoinpoint] [JoinpointsRequir-

ingLocation] [HighLevelLocationInformation];
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A concrete example of a statement to include location monitoring in an application is as

follows:

• include location (GPS) @ [Device App.setDevice()] [void locationMethod()]

[safeLocations.txt];

5.5.2.5 SoftwareRoaming

The softwareRoaming construct takes parameters to describe the points at both client and

server sides where agent roaming should occur. The LaunchAgentAspect, ServerAgent-

ManagerAspect and ClientAgentManagerAspect handle the application-specific calls to the

AgentManager to handle roaming activity. In the current ALPH implementation, to migrate

an agent to a remote node requires the specification of network addresses. In an extended

implementation, a collection of remote nodes could be maintained, removing this requirement.

The general format of the softwareRoaming construct statement is:

• include softwareRoaming (DirectoryService) @ [InitJoinpoint] [ServerJoin-

point, ServerObjectName] [ClientJoinpoints];

A concrete example of a statement to include software roaming in an application is as

follows:

• include softwareRoaming (RMIRegistry) @ [void User.userPage(..)] [ Remote-

ServerImpl.new(..), RemoteServerImpl] [void App.welcome(..)];

5.5.2.6 NetworkRoaming

The use of the networkRoaming construct generates the creation of a configured NetworkRoamin-

gAspect that uses the NetworkModel, NetworkMonitor, NetworkDeterminer and other helper

classes from the NetworkRoaming module in the library of pervasive healthcare concerns. Sec-

tion 4.3.2 includes an example of a network configuration file in XML format, as shown in

listing 4.1.

The general format of the networkRoaming construct statement is:
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• include networkRoaming (NetworkConfigurationFile) @ [NetworkJoinpoints];

A concrete example of a statement to include network roaming in an application is as

follows:

• include networkRoaming (NetworkPropList.xml) @ [User Application.currentUser(..)];

5.5.2.7 Persist

Persistence is included in an application using the persist construct in the ALPH language.

A persistenceManagerAspect is generated to create connections to the application-specific

datastore as defined by the developer in the construct parameters.

The general format of the persist construct statement is:

• include persist (datastoreNameLocation, driverType) @ [startingApplication-

Point] [objectsToPersist];

A concrete example of a statement to persist and object in an application is as follows:

• include persist (MyDatabase, sun.jdbc.odbc.JbdcOdbcDriver) @ [Hospital.run()]

[Doctor];

5.5.2.8 QualityOfService

Using the qualityOfService construct generates a QualityofServiceAspect that tailors

the relevant classes from the library of concerns using the application-specific parameter

values supplied by the application developer. An example of an assurances file that is passed

as a parameter is illustrated in listing 4.2 in section 4.3.3.

The general format of the qualityOfService construct statement is:

• include qualityOfService (AssurancesFile) @ [QoSJoinpoints];

A concrete example of a statement to in an application is as follows:

• include qualityOfService (NetworkPropertyList.xml) @ [* User.*Page(..)];
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5.5.2.9 ServiceDiscovery

The serviceDiscovery construct takes parameters to advertise and discover services in per-

vasive healthcare applications. A ServiceDiscoveryAspect is generated using the application-

specific parameters to configure the service discovery module in the library of concerns.

The general format of the ServiceDiscovery construct statement is:

• include serviceDiscovery () @ [Action][ServiceName][ServiceDiscoveryJoinpoints()

||ServiceAdvertisementJoinpoints()];

Concrete examples of statements to discover and advertise a service in an application are

as follows:

• include serviceDiscovery () @ [advertise][PRINTING SERVICE][ Printer.new(..)];

• include serviceDiscovery () @ [discover][PRINTING SERVICE][void print*(..)];

5.5.2.10 DeviceDiscovery

The deviceDiscovery construct generates a DeviceDiscoveryAspect that configures an

application-specific DeviceDiscoveryListener where specified in the pervasive healthcare

application to carry out device discovery functionality.

The general format of the deviceDiscovery construct statement is:

• include deviceDiscovery () @ [DeviceDiscoveryJoinpoints];

A concrete example of a DeviceDiscovery statement to discover a device in an application

is as follows:

• include deviceDiscovery () @ [Device.new(..)];

5.5.2.11 LimitedConnectivity

A LimitedConnectivityAspect enacts contingency plans at specified points in the devel-

oper’s application by using the parameters passed to the limitedConnectivity construct.

The general format of the limitedConnectivity construct statement is:
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• include limitedConnectivity () @ [Action] [LimitedConnectivityJoinPoints];

A concrete example of a statement to employ a LimitedConnectivity contingency plan,

logging is the default plan, in an application is as follows:

• include limitedConnectivity () @ [log] [* *.*(..)];

5.5.2.12 EHR

The EHR construct generates an EHRAspect that creates EHR records where specified in the

base application. Parameters specifiy these points and provide access to the data to be

entered in the EHR records.

The general format of the EHR construct statement is:

• include EHR (Action) [EntryArchetype] [CompositionArchetype] @ [EHRJoinPoints];

A concrete example of statement that includes an EHR record at an appropriate point in

an application is as follows:

• include EHR (Create) [openEHR-EHR-OBSERVATION.laboratory-glucose.v1][openEHR-

EHR-COMPOSITION.encounter.v1] @ [void App.glucoseReading (String patientID,

String Doctor, String data)];

5.5.2.13 Communication

A CommunicationAspect is generated by using the communication construct. The aspect

creates communication channels on nodes and configures the corresponding Connection, Data

and IncomingHandler classes from the communication module in the library of concerns.

The general format of the communication construct statement is:

• include communication (Server |Client) @ [Technology] [IP] [CommunicationJoinPoints];

Concrete examples of statement that includes Communication over Sockets in an appli-

cation are as follows:

• include communication (Server) @ [Sockets] [249.353.142.87) [void App.init(..)];

• include communication (Client) @ [Sockets] [Device.new(..)];
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5.5.3 Parameter Values

The parameters in each construct are outlined and described in figure 5.8, along with a range

of allowable values for each construct parameter.

5.6 Summary

This chapter described the DSL provided in the ALPH model. DSLs reduce complexity by

enabling developers to programme at a high-level of abstraction in their target domain. The

ALPH language provides abstractions for pervasive healthcare application developers. These

abstractions, in the form of domain-specific constructs, generate aspect-oriented modular

components that include domain-specific functionality in base pervasive healthcare applica-

tions. ALPH programs are written using provided domain-specific constructs along with

application-specific data provided by the developer through parameters. The ALPH lan-

guage compiler, ALPHc, parses ALPH programs and generates AspectJ application-specific

implementations. The architecture of the ALPHc compiler and the parsing process is de-

tailed, and the constructs available to the developer are described. The description of the

ALPH language concludes the presentation of the ALPH model. The next chapter, Chapter

6, describes the final step of the ALPH model creation methodology to implement and eval-

uate applications built using ALPH. The impact of using ALPH in reducing the complexity

of pervasive healthcare applications is evaluated through the examination of five different

application implementations.
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Fig. 5.8: ALPH Language Construct Parameters
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Evaluation

The ALPH model aims to reduce complexity in pervasive healthcare application code and

in its development process. To quantifiably examine using the ALPH model we evaluate

the model in terms of variations in indicators of complexity, specifically modularity and

abstraction. This chapter presents a comparative evaluation of the ALPH model using five

applications to illustrate its effect on application complexity. Implementations using the

ALPH model are compared to versions developed using an object-oriented GPL. We examine

complexity and how it can be measured in terms of modularity and abstraction using the Goal-

Question-Metric (GQM) [43] approach. Results of the comparative analysis are illustrate the

variations in modularity and abstraction achieved using the ALPH model.

6.1 Complexity

Complexity in software is often defined in relation to a collection of software engineering

attributes known as “ilities”. For example “software complexity refers to the extent to which a

system is difficult to comprehend, modify and test” [27] and “complexity is often synonymous

with understandability or maintainability” [72]. Complexity is therefore observed through the

presence of external properties of a program, such as understandability and maintainability

[257].

Software quality is also defined as the degree to which software possesses a desired com-
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bination of these software engineering ilities such as maintainability, testability, reusability,

reliability, interoperability [12]. The complexity and the quality of an application are there-

fore related [184].

Other definitions of complexity consider not only the software characteristics, but also

take into account the interaction of the software with other entities i.e., people or systems

“complexity is a characteristic of the software interface which influences the resources another

system will expend or commit while interacting with the software” [72]. This illustrates the

effect of application complexity on more than just code based quantitative values. These

interaction with other people and systems are also affected by the “complexity” of a piece of

software.

This thesis addresses complexity in pervasive healthcare applications by providing means

to raise modularity and abstraction using the ALPH model for application development.

Complexity is introduced in application code and in the development process by poor mod-

ularity and inappropriate levels of abstraction. These are identified in complexity literature

both explicitly as “modularity” [27] [144] [145] [51] and “abstraction” [176] [179] and indi-

rectly as “size” [27], “magnitute” [27], “decomposability” [27], “structure” [145] [144] and

“the relationships between elements” [77].

The ALPH model addresses only the complexity introduced by poor modularity and low-

levels of abstraction. Complexity is also introduced from other sources including the control

structures, data flows [42] and hierarchies [77] used in systems. These are beyond the scope

of this work.

6.2 Goal-Question-Metric Approach

This thesis focuses on increasing modularity and abstraction in pervasive healthcare appli-

cations. We measure the effect of the ALPH model on these two indicators of application

complexity. High-level concepts such as modularity and abstraction have no corresponding

single metric to allow their measurement. They do however, have many lower-level indica-

tors that together, enable their quantification. A process that defines the use of low-level

indicators to measure a high-level concept is the Goal-Question-Metric approach, or GQM
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Fig. 6.1: Goal-Question-Metric Approach

[43].

We use GQM to derive quantitative measurements for the high-level conceptual charac-

teristics of modularity and abstraction. This allows us to trace the goals to the data that are

intended to define those goals operationally, and finally provide a framework for interpreting

the data with respect to the stated goals [43]. We map measurable quantitative-level metrics

to operational level questions, which in turn map to conceptual level goals. The result is

concrete measurements for modularity and abstraction derived using the established GQM

approach.

Figure 6.1 illustrates the GQM approach applied to modularity and abstractness. To

quantify changes in modularity, Parnas’ benefits of modular programming [201] are used as

indicators of modularity. Parnas describes how manageability, maintainability and compre-

hensibility reflect modularity. These in turn can be broken down into software based char-

acteristics that signify each modular indicator based on their definition, namely coupling,

cohesion and independence. Metrics exist to quantifiably measure these software character-

istics. Using these metrics e.g., coupling between modules, lack of cohesion in operations,

instability, measurements for coupling, cohesion and independence can be calculated and used

to indicate Parnas’ modularity indicators.

Metric level measurements must also be derived to measure changes in abstraction. To

achieve this, literature relating to several aspects of high-level languages was analysed to
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identify the assumed benefits of abstraction. Three categories of benefits emerged; expres-

siveness, conciseness and comprehensibility. Comprehensibility indicators are derived using

Parnas’ definitions, as discussed under modularity. Conciseness can be easily broken down

as size is the most obvious and widely used indicator of conciseness. Program size can be

quantifiably measured using a lines of code metric. Expressiveness measurements do not

commonly exist. Using existing definitions of expressiveness in languages, the syntactic ex-

pressiveness of a language was identified as an indicator of overall expressiveness. A suitable

metric was found to quantifiably measure the syntactical expressiveness of a language.

The following sections describe in detail how quantitative metrics are derived to measure

the concepts of modularity, section 6.3, and abstraction, section 6.4.

6.3 Modularisation

To evaluate how the approach addressed modularity, we have conducted a study to measure

the effect of the approach on the modularity of pervasive healthcare applications. Modu-

larisation can be defined as the separation of concerns in an application into smaller, more

independent elements known as modules. The GQM approach is applied to modularisation

to identify indicators that can be quantifiably measured to illustrate variations in modularity

when using the ALPH model. This section identifies the goals, questions and metrics for

modularity.

6.3.1 Conceptual Level Goals

The first aim of the ALPH model is to separate crosscutting pervasive healthcare concerns to

improve modularity in pervasive healthcare applications. Modular code reduces the complex-

ity of applications and enables the modules to be developed in isolation as each concentrates

and addresses a separate concern [26].

The conceptual level goals used to model modularity are based on Parnas’ benefits of

modular programming [201], which are:

• manageability
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• maintainability

• comprehensibility

These “ilities” describe the ease with which software can be developed in components

and composed easily, modified and extended and understood and are themselves indicators

of complexity, as referred to in section 6.1.

6.3.1.1 Manageability

Manageability relates to ease with which components can be developed and composed. Ap-

plications that employ modularisation can be developed more easily as each module can be

implemented independently. Manageability is measured by metrics that can identify the level

of autonomy of a module, enabling the module to be developed and modified in isolation e.g.,

independence and coupling metrics.

6.3.1.2 Maintainability

Maintainability indicates the ease with which modifications and extensions can be made in

the future. Modifications made to modular code affect fewer other modules and so increase

the flexibility of the overall application. Maintainability assesses the modifiability of the code

base and is negatively affected by dependencies between modules. Maintainability relies on

metrics that affect how easily the codebase can be modified. Coupling metrics identify such

dependencies between modules. The more dependencies, the more difficult it becomes to

anticipate the effects a change in a module may have.

6.3.1.3 Comprehensibility

Comprehensibility evaluates how easily developers can understand, learn and use a language,

application or development approach. Coupling and cohesion are good indicators of com-

prehensibility [28], as the number of dependencies a module has greatly increases the effort

required to understand the application, as does badly encapsulated functionality. If a module
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is highly complex and deals with multiple concerns, the effort to understand the module is

greatly increased.

6.3.2 Operational Level Questions

Operational level questions are defined by identifying language features that best describe the

goals of measurement. Each of these questions represents one or more of the goals which in

turn represent the modularity and abstraction the ALPH model uses to reduce complexity in

pervasive healthcare applications. The questions are defined as terms that accurately describe

each goal of measurement. For modularity, the operational level questions that represent the

conceptual level goals are indicators of maintainability, manageability and comprehensibility.

As described in the previous section, three factors are evident as indicative of these goals:

couping, cohesion and independence.

6.3.2.1 Coupling

Coupling refers to the dependencies between modules. It has been identified as an indicator

of maintainability and comprehensibility [28], as dependencies introduce architectural con-

nections between modules, making the code and control flow harder to understand. Low

coupling describes a module that will not be affected by changes in another module indicat-

ing good maintainability. Low coupling is also beneficial for manageability as modules with

less dependencies are easier to develop in isolation.

6.3.2.2 Cohesion

Cohesion refers to the functionality of a module, for example all methods of a class performing

related tasks. High cohesion is an indicator of good encapsulation. A module exhibiting low

cohesion is unfocused in its responsibilities and has multiple unrelated tasks intertwined

within its code, negatively affecting maintainability. Low cohesion is also an indication that

the application developer may have difficulty understanding the module as a component with

high cohesion is easier to understand [28].
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6.3.2.3 Independence

Independence indicates the isolation of a module. Independence is an important question

in the indication of all three goals of modularity. Comprehensibility is negatively affected

by modules that have many dependencies as these interactions make the module more com-

plex. More independent modules are more maintainable as fewer modules require subsequent

changes. Manageability is concerned with the ability to develop a module in isolation which

is closely related to the independence of a module’s implementation.

6.3.3 Quantitative Level Metrics

Quantitative level metrics are applicable measurement techniques that offer results to answer

the operational level questions. The answers achieved by this step enable the quantifiable

measurement of the conceptual level goals. The quantitative level metrics used to answer

the questions of coupling, cohesion and independence are a combination of object-oriented

and aspect-oriented metrics. The following metric suites are designed for evaluating object-

oriented designs, are based on sound measurement theory and have been empirically as well

as theoretically validated [259]. They are:

• Chidamber and Kemerer metrics suite (CK metrics) [64]

• Robert Martin’s metrics suite (package dependencies metrics) [175]

• Henry and Li metrics suite [165]

The AopMetric1 suite was used in conjunction with standard object-oriented metrics.

This suite provides aspect-oriented extensions to the C and K, Martin and HenryLi metrics

suites. Metrics tools were used to ensure a comprehensive metric analysis and are described

in section 6.5.

1http://aopmetrics.tigris.org/metrics.htm
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6.3.3.1 Coupling

Coupling measures coupling between modules (CBM) (also known as coupling between ob-

jects (CBO)) measures the number of modules that are linked to the module in question.

These links are caused by referencing the module itself or some data within the module [64].

Afferent coupling (Ca) [175] measures the number of external modules that depend on mod-

ule within the package being measured. Efferent coupling (Ce) [175] measures the number of

external modules that depend on module within the package being measured. These metrics

represent the question of coupling and quantifiably indicate the dependencies that are evident

in application code.

6.3.3.2 Cohesion

Cohesion is measured by the lack of cohesion in operations (LCO) metric, which is an aspect-

oriented extension to the Lack of Cohesion in Methods(LCOM) object-oriented metric. LCO

is the number of operations working on different class fields minus operations working on

common fields [60]. This cohesion metric highlights operations working on various subsets of

module fields, indicating multiple tasks in one module. Connected methods and variables in

a class have shared variables and method calls, which are indicative of cohesion.

6.3.3.3 Independence

Two metrics quantify the independence of a module, Response for a module (RFM) and

instability (I). RFM is the number of methods and advices potentially executed in response

to a message received by any given module [60]. This measures the possible communication

between the given module and the other ones, indicating the dependence of the module on

others [60]. The more possible communications, or invocations from a class, the greater the

complexity of the class [64]. I measures the ratio of efferent coupling (Ce) to total coupling

(Ce + Ca) such that I = Ce / (Ce + Ca). This metric is an indicator of the package’s

resilience to change2 or maintainability.

2http://aopmetrics.tigris.org/

129



Chapter 6. Evaluation

6.4 Abstraction

In the ALPH model, our second goal is to raise the level of abstraction. Abstractness is

achieved by providing the developer with concise, expressive constructs which shield low-level

functionality. This abstraction is encapsulated in the provision of a DSL. While modularisa-

tion has been quantified [190] [60] using the described metrics in the previous section, very

few studies have quantified improvements offered by abstraction [119]. The lack of measure-

ments for abstraction is a hard and an important open problem’ [179]. The GQM approach

is particularly useful in quantifying abstraction due to the lack of measurements targeted

at high-level languages providing abstraction. To evaluate abstraction capabilities when us-

ing the ALPH model, we base our measurement features on the perceived benefits of using

high-level abstractions.

6.4.1 Abstraction Benefits

We examined literature associated with high-level languages that provide abstractions to ap-

plication developers in a target domain. Literature describing, using, critiquing, taxonomis-

ing and analysing high-level languages [159] [133] [179][119] [118] [81] were all considered.

Claimed benefits were:

• B1 “Programs are concise and can be reused.” [159].

• B2 “Allows development quickly and effectively, yielding programs that are easy to

understand, reason about, and maintain.” [133]

• B3 “Programs are generally easier to write, reason about, and modify.” [133]

• B4 “Offers substantial gains in expressiveness and ease of use.” [179]

• B5 “Enable a concise representation of a programmer’s intention.” [119]

• B6 “Programs are more concise.” [119]

• B7 “Enhance the productivity of an application developer.” [118]
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• B8 “Express solutions at the level of abstraction of the problem domain.” [81]

• B9 “Allow domain experts to better understand, validate, modify, and often even de-

velop DSL programs.” [81]

It emerged that certain benefits were occurring frequently, described using differing terms

and synonyms. The categories exposed were:

• Expressiveness i.e., intuitive and domain relevant constructs (B4, B5, B8);

• Conciseness i.e., size (with resulting increased productivity) (B1, B5, B6, B7)

• Comprehensibility i.e., developer understanding; 3 (B2, B3, B4, B9)

6.4.2 Conceptual Level Goals

Abstraction is deconstructed using the GQM approach to quantifiably measure the variations

in abstraction when using the ALPH model to develop pervasive healthcare applications. The

benefits identified in section 6.4.1 are the conceptual level goals. They represent high-level

advantages and are the starting point for the identification of quantitative metrics. Each goal

is described in this section under the headings identified in section 6.4.1.

6.4.2.1 Expressiveness

We define expressiveness in a programming language as the support a language provides to

a developer in performing tasks using a comprehensive, semantically intuitive syntax. In

a DSL, expressiveness is expected to increased compared to GPLs as domain language is

generally used as part of the language’s syntax [179].

We endeavour to quantify the relationship between the words and the expressiveness of the

language. This goal has been identified in conceptual modelling research [168] and in recent

work [125] both under the title of expressiveness and in many synonymic terms including

language appropriateness, domain appropriateness etc.

3Comprehensibility is addressed in detail in the GQM breakdown of modularity and therefore is not repeated

in the measurement of abstraction. Its measurement will indicate both benefits achieved by modularisation

and abstraction.
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6.4.2.2 Conciseness

The fundamental purpose of a DSL is to concisely describes applications in the domain [81].

A DSL exhibits conciseness when one can express the same semantics in a smaller body of

material using the given language, than in a GPL. A DSL is typically more concise because the

notations and abstractions modelling the domain abstract the developer away from low-level

GPL code. They often execute the same functionality as a verbose GPL program but with a

reduced body of code. The conciseness of a DSL allows the syntax to be declarative because

the domain semantics are clearly defined, therefore constructs have a precise interpretation

[119].

6.4.3 Operational Level Questions

The operational level questions are defined as terms that accurately describe each goal of

measurement as follows:

• Expressiveness is represented by Syntactic expressiveness.

• Conciseness is incorporated into a measure of Size, as codebase size is the most direct

and common measurement of conciseness.

6.4.3.1 Syntactic Expressiveness

The syntactic expressiveness of a language is defined as the adequate provision of constructs

that enable the developer to fulfil the requirements of an application [53]. Fabbrini [94] defines

a relationship between the language used in the requirements and the ability of people to

understand the language. It has also been defined as follows: “The expressiveness of a

language is some measure of the variety of lexical and grammatical constructions it allows”

[239].

6.4.3.2 Size

With conciseness as a goal, the crucial and basic indication required is size. The size of the

program or module produced by the DSL may be a primitive measure, but size is still the
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most widely measured software detail [264] and is the most common concept used in language

comparison. We measure DSL size by means of the code that the developer is responsible

for implementing. This measurement detail takes into consideration the generative nature

of DSLs, eliminating generated code. DSLs are mostly declarative in nature resulting, in

generally reduced size.

6.4.4 Quantitative Level Metrics

Metrics are the lowest-level representation of the DSL under measurement. Each operational

level question is answered by a corresponding metric;

• The question of syntactic expressiveness is answered by using the Syntactic Expressive-

ness Valuation (SEV) metric.

• The question of size is answered by the most commonly used metric for measuring

software size, Lines of Code (LOC).

Metrics are applied to yield concrete measurements for each operational level question.

An analysis of previous attempts at evaluation each question was undertaken. We attempted

to make use of previously verified measurements when possible, as the technique of measure-

ment is more valid when it has been proven to evaluate a subject. Metrics exist for code based

measurements which can be used to measure size. Where common metrics were not applica-

ble, i.e., expressiveness, measurements applied to related topics were analysed. Unsuitable

metrics [207] [202] were disregarded. Causes for unsuitability were; the fact that a metric

could not be applied to a DSL in a way that developers could repeat i.e., huge computa-

tion or unavailable data inhibiting repetition, and the difference in definition of measurement

subjects. A suitable metric were found in the analysis of expressiveness measures for natural

languages [53].

6.4.4.1 Syntactic Expressiveness Valuation

Zipf’s law is one of the most noted linguistics laws. It describes the statistical distribution

of words with different ranks by means of frequency, revealing the relationship between word
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Fig. 6.2: Syntactic Expressiveness

frequency and its rank in a language. Zipf’s law [282] states that the frequency of any

word is roughly inversely proportional to its rank in the frequency table i.e., there are a small

number of commonly used words, and a large number of infrequently used words. To measure

syntactic expressiveness we need to measure the number of domain requirements that can be

syntactically expressed by a language. The measure is described using set theory notation as

shown in figure 6.2.

In other words, the syntactic expressiveness of a language is defined as the number of

requirements that can be syntactically expressed by the language divided by the number

of requirements. If we measure the words most frequently used in the domain, we can

discount the lesser used words and maintain the ability to perform most of the domain

functionality. We can also remove synonyms without reducing the expressiveness of the

language as the semantic meaning is maintained [53]. Firstly we identify particular parts

of speech (POS) within the requirements using a tool e.g., verbs [53]. The frequency with

which these words occur can then be calculated. Next, we can measure the number of

domain-specific requirements that can be syntactically expressed by the words divided by

the number of requirements in the domain i.e., the syntactical expressiveness. The results

range in percentage value SEV for a corresponding fraction of the syntax. Following the

examination of previous tests [53] and the application of this metric to DSLs, a value of 50%

SEV should be acheived using the fewest possible constructs from the language syntax. As

this measurement is appicable at the language level, and not per application, the results for

SEV will be included later in this chapter.
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6.4.4.2 Lines of Code

Lines of Code (LOC) counts the number of lines of class code. Although crude, LOC is still

the most commonly used metric to represent software size [264]. We count the number of

lines of class code based on the internal string representation of the JDT compiler, the result

of which is independent from original code styling etc. This results in a measurement of

program length. We measure the LOC from the application developer’s point of view, that

is how many lines of code the developer implements, not the amount of code generated.

6.5 Tools

Metrics were computed using various tools. CyVis4 is a software metrics collection and

analysis tool used to compute metrics. AopMetrics5 was used to calculate object-oriented

metrics and aspect-oriented metrics. It is extended to take aspect-oriented language features

into account, e.g., advice, pointcuts etc. JDepend6 traverses Java class file directories and

generates design quality metrics for each Java package. These package measurements show

higher level dependencies. These tools compute the quantitative level metrics discussed in

section 6.3.3 and section 6.4.3.

6.6 Applications

The following sections outline the applications used in the evaluation of the ALPH model.

6.6.1 DBay

DBay is a case study based on an online auction system. It illustrates the various context

handling and mobility issues that can affect the average distributed application scenario.

It has been modified from a generic online auction site case scenario [13] to make explicit

references to interactions with mobile devices. The auction system, known as DBay, was

4http://cyvis.sourceforge.net/index.html
5http://aopmetrics.tigris.org/
6http://clarkware.com/software/JDepend.htm
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implemented using two techniques, an object-oriented (OO) approach using Java and using

the ALPH model. In the OO version, all pervasive healthcare functionality was coded where

needed within the base application. Using the ALPH language, the required crosscutting

concerns as listed in table 6.1 were separated in the DSL.

DBay

Distribution X

Communication X

Network Roaming X

Software Roaming X

Service Discovery X

Device Discovery X

Limited Connectivity ✗

Quality of Service X

Device Adaptation X

Location X

EHR ✗

HL7 ✗

Persistence ✗

Table 6.1: DBay Concerns

6.6.2 HL7Browser

The second application used in the evaluation of the ALPH model is an open-source product,

“HL7 Browser”7. This third party application uses HL7 functionality, and has been developed

using standard Java. In this implementation, the HL7 functionality is scattered throughout

the application. We refactored the HL7 functionality into an aspect that uses the library

in the ALPH model and compared the two implementations. This HL7 functionality is

implemented using the ALPH model, as shown in table 6.2.

7http://nule.org
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HL7Browser

Distribution ✗

Communication ✗

Network Roaming ✗

Software Roaming ✗

Service Discovery ✗

Device Discovery ✗

Limited Connectivity ✗

Quality of Service ✗

Device Adaptation ✗

Location ✗

EHR ✗

HL7 X

Persistence ✗

Table 6.2: HL7Browser Concerns

6.6.3 MedHCP

The third application used in the evaluation is MedHCP. MedHCP is a case study scenario of

pervasive healthcare [37]. The scenario was conceived by the Centre for Pervasive Computing

and staff at a collaborating hospital in Aarhus county, Denmark.

It describes a futuristic picture of a pervasive healthcare application that exploits perva-

sive computing technology resulting in an advanced pervasive healthcare application. The

scenario depicts an ideal use for mobile and pervasive computing devices in the medication

of patients in a hospital setting and requires support for many of our identified pervasive

healthcare concerns. The requirements identified by the authors of the scenario (mobile de-

vices, composite devices, heterogeneous devices, discovery of resources, location and context

awareness) [37] map closely to the concerns we identified in section 3.6, as shown in table 6.3,

making it suitable for evaluation purposes.

MedHCP has been implemented in two ways; using traditional OO developmental tech-

niques and using the proposed ALPH approach. The object-oriented approach used a gen-
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Fig. 6.3: Mobile Clinical Assistant

MedHCP

Distribution ✗

Communication X

Network Roaming ✗

Software Roaming ✗

Service Discovery X

Device Discovery X

Limited Connectivity ✗

Quality of Service ✗

Device Adaptation ✗

Location X

EHR ✗

HL7 X

Persistence X

Table 6.3: MedHCP Concerns
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eral purpose language, Java, for the implementation of all functionality. The ALPH approach

was implemented using ALPH to define the incorporation of the required pervasive healthcare

functionality and Java for the base application functionality. The application was deployed on

the Motion C5 mobile clinical assistant (MCA) created by the Digital Health Group (DHG)

at Intel Health 8, as shown in figure 6.3. The Motion C5 MCA is a hospital-grade portable

device specifically designed for use by healthcare professionals in hospital environments.

6.6.4 Healthwatcher

Healthwatcher is a web-based healthcare information system developed by the Software Pro-

ductivity research group from the Federal University of Pernambuco and made available

through Lancaster University [120]. This application was developed as a testbed codebase

and many implementations are available. We use only the OO Java implementation as a

comparison against a refactored version using the ALPH model.

Healthwatcher

Distribution X

Communication X

Network Roaming ✗

Software Roaming ✗

Service Discovery ✗

Device Discovery ✗

Limited Connectivity ✗

Quality of Service ✗

Device Adaptation ✗

Location ✗

EHR ✗

HL7 ✗

Persistence X

Table 6.4: Healthwatcher Concerns

8http://www.intel.com/healthcare/ps/mca/index.htm
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6.6.5 Rococo

Rococo [10] is a Bluetooth mobile phone software company based in Dublin, Ireland. They

build Bluetooth-based mobile phone software for manufacturers including Nokia and Sony

Ericsson. Rococo provided access to the codebase for a mobile phone based chat application

built using J2ME. We refactored the provided OO application and replaced functionality from

the pervasive healthcare behaviour in ALPH with domain-specific instructions as shown in

table 6.5.

Rococo

Distribution ✗

Communication ✗

Network Roaming ✗

Software Roaming ✗

Service Discovery X

Device Discovery X

Limited Connectivity ✗

Quality of Service ✗

Device Adaptation ✗

Location ✗

EHR ✗

HL7 ✗

Persistence ✗

Table 6.5: Rococo Concerns

6.7 Results

This section outlines the results from comparative analysis of quantitative level metric results

from the OO and ALPH implementations of the applications described in section 6.6. This

section outlines the results from the quantitative metric analysis.
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6.7.1 Presentation of results

Metrics implemented by the Aopmetrics project can be applied to both classes and aspects.

Therefore, “module” can be used as a common term for classes and aspects. Similarly,

methods, advices and introductions will be referred to as operations. All OO results are

depicted in graphics in a dark gray colour while the ALPH model results are illustrated using

a light white colour.

It should be noted that the code generated by the ALPH model is not included in some

graphical representations, e.g., when it creates new modules which would have no comparative

component in the OO implementation. All generated code is fully included in explanations

and taken into consideration in the overall evaluation except where specified i.e., size mea-

surements considering the implications for the application written by the developer, not the

generated implementations.

6.7.2 Coupling

In DBay the ALPH model significantly reduced the coupling of the modules which were most

affected by pervasive healthcare crosscutting concerns, as shown in figure 6.4. CBM shows

that coupling in the ALPH approach was decreased by up to 42% due to the removal of

method calls in the OO version, used to include domain-specific functionality.

As expected, Ce in packages with many calls to other modules for concern behaviour in

the OO version decreases in the ALPH implementation, as shown in figure 6.5. They becomes

more independent due to the encapsulation of its core functionality and the separation of the

pervasive concerns. As shown in figure 6.5, the OO approach has a high external dependency

for Packages 1, 2 and 3 as they rely on other modules for pervasive functionality. The ALPH

model provides this functionality through aspects introduced by the ALPH DSL, which those

packages are not dependent on, therefore reducing their outward dependencies. These results

illustrate the modularisation benefits of AOP on the base classes, as they can be oblivious

to the functionality in the aspects [103]. Packages 4 and 5 contain the generated behaviour

in the ALPH implementation. In the OO approach, they have a low Ce as they has minimal

outward dependencies. These dependencies increase using the ALPH model due to the use
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Fig. 6.4: DBay Coupling Between Modules

of base class information in the aspects.

Fig. 6.5: DBay Efferent Coupling
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Figure 6.6 shows the increase in Ca in Packages 1, 2 and 3 using the ALPH model.

Pointcuts in aspects refer to syntactical references in the base code , e.g., method signatures,

as indicators of where crosscutting behaviour should occur. These references introduce inward

dependencies on the base application, hence the increase in Ca. Packages 4 and 5 contains

the generated pervasive healthcare aspects. The AOP code does not have any additional

inward dependencies. There is an expected decrease in dependencies in Package 2 as the OO

version contained domain-specific code, which has been removed.

Fig. 6.6: DBay Afferent Coupling

In the HL7Browser application, the package containing the modules most significantly af-

fected by the refactoring of the pervasive healthcare functionality was evaluated using package

level metrics. Coupling in the package was reduced by up to 67%, as illustrated by Ce in

figure 6.7. This reduction in coupling is due to the reduction in outgoing dependencies as

the base application no longer makes calls related to the HL7 functionality. CBM further

illustrates a reduction in coupling with a decrease of up to 27% observed in base application

modules. The inward dependency introduction of AOP can be seen in the increase of Ca by

33%. Ca is a coupling measurement to quantify the number of modules outside a package
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that depend on modules within the package, and so is increased by the use of base application

references when using AOP.

Fig. 6.7: HL7Browser Efferent Coupling

Fig. 6.8: HL7Browser Afferent Coupling

In MedHCP, figure 6.9 illustrates the coupling measurements for the modules that were
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most affected by the handling of pervasive healthcare functionality. By modularising the

domain-specific concerns, the ALPH model significantly reduced coupling as the base code

does not explicitly make use of ubiquitous computing or healthcare code at any time. Cou-

pling was reduced by between 33% and 75% in the affected modules.

Fig. 6.9: MedHCP Coupling between Modules

The Ca of the three modules most influenced by the pervasive healthcare concerns are

illustrated in Figure 6.10. Package 1 and 2 have an increased number of dependencies using

the ALPH model. The aspect makes use of information from the base classes therefore

introducing dependencies. The dependency is due to the use of syntactical elements such as

method names in pointcut designators. The dependencies on Package 3 do not differ in the

OO and ALPH approach as Package 3 has no additional dependencies from aspects or other

modules.

As shown in Figure 6.11 Package 1 has a high external dependency in the OO approach

as it called other modules to perform ubiquitous computing and healthcare functionality.

The ALPH model provides this functionality through aspects, on which Package 1 does

not depend, therefore reducing Package 1’s dependencies by 40%. Package 2 and 3 are

also less dependent on external modules using the ALPH model. These results illustrate

the modularisation benefits of AOP on the base classes, as they can be oblivious to the

functionality in the aspects [103].
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Fig. 6.10: MedHCP Afferent Coupling

Fig. 6.11: MedHCP Efferent Coupling

In the Healthwatcher application, figure 6.12 shows that the ALPH model reduced the

coupling of the modules most affected by pervasive healthcare crosscutting concerns. CBM

reductions, however, were smaller than in other evaluation applications. Healthwatcher is a

large application and the functionality addressed in the ALPH implementation represented

a smaller percentage of code than in other evaluation applications.

The first of the package coupling metrics, Ca, shows a reduction in outward coupling

dependencies in a third of the packages using ALPH. One package is hugely increased due to

the addition of aspects and the introduction of outward dependencies on base code in other
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Fig. 6.12: Healthwatcher Coupling Between Modules

Fig. 6.13: Healthwatcher Efferent Coupling on all Packages

package. The remaining modules remain unchanged, as shown in figure 6.13. Of the modules

reduced, 11%, 60% and 6% reductions were observed using the ALPH model as shown in

figure 6.14. These reductions are due to the removal of dependencies on other modules for

pervasive healthcare functionality.

Ca is the number of modules outside this package that depend on modules within the
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Fig. 6.14: Healthwatcher Efferent Coupling on Reduced Packages

package. Using the ALPH model we expect to see an increase in any module referred to in

the aspects provided by ALPH due to the dependencies introduced by references to points

in execution in the base code. Figure 6.15 shows that equal numbers of modules had Ca

readings reduced and increased using the ALPH model. This illustrates that the modules

reduced pregiously provided domain-specific behaviour, as the dependencies inwards, e.g.,

method calls, were decreased. Modules increased are referred to by aspects, increasing inward

dependencies on base application code.

Coupling results in the Rococo application showed a similar pattern to the previous

evaluation applications when using the ALPH model for application development. CBM

was reduced in all base modules by up to 52%. The new module, module 9, containing

the AOP implementation causes an obvious increase by its creation. Outgoing dependencies

were significantly reduced due to the removal of calls to other modules for domain-specific

functionality. This is now provided by the ALPH model reducing outgoing dependencies in

the base application modules as shown in figure 6.16. Again, incoming dependencies were

increased in each base module by the AOP references by 11% to 34% as shown in Ca in figure

6.17.
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Fig. 6.15: Healthwatcher Afferent Coupling

Fig. 6.16: Rococo Coupling Between Modules

6.7.3 Cohesion

In DBay, the LCO value in the OO approach was made up to 8% more cohesive using the

ALPH model illustrating the modularisation of the pervasive healthcare concerns outside the

base functionality.
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Fig. 6.17: Rococo Afferent Coupling

Fig. 6.18: Rococo Efferent Coupling

In HL7Browser, the cohesion of modules, where variations were observed, were also posi-

tively affected using the ALPH model as all base modules saw decreases in LCO measurements

by up to 11%.

Cohesion observed similar variations to RFM in MedHCP. LCO was increased in three

modules, as shown in figure 6.20. This is caused by the same increased number of advice,
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Fig. 6.19: HL7Browser Lack of Cohesion

compared to methods in the OO version, that caused the increase in RFM as the advice is

working on base application elements.

Fig. 6.20: MedHCP Lack of Cohesion

Cohesion was not varied greatly by using the ALPH model in the Healthwatcher system.

No real change was observed with the average LCO for methods improving marginally. The

ALPH version replaces method calls with equal numbers of potential advice, resulting in no

quantifiable variation.

In the Rococo mobile application, cohesion in modules was increased by up to 7% by

reducing the number of concerns the base application implements.
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6.7.4 Independence

Figure 6.21 summarises the RFM results from the DBay application. The RFM is reduced in

the ALPH model by up to 13%. This increases comprehensibility, as when a large number of

methods are invoked, the application requires a greater understanding of the execution path

and control flow of the application.

Fig. 6.21: DBay Response for a Module

As shown in figure 6.22 the stability of packages in DBay were both increased and de-

creased. Increases in stability are due to the ALPH module modularising the crosscutting

concerns externally, reducing the total dependencies for the package. Packages made less

stable had more dependencies introduced than removed using the ALPH model.

Stability in the HL7Browser application was increased by the ALPH model by 37.5%,

as shown by the decrease in the I (Instability) metric. Instability indicates a package’s

resilience to change. The package is more stable using ALPH due to the removal of package

dependencies on other modules for HL7 functionality.

However, the ALPH model produces some negative results. While using AOP, pointcuts

refer to syntactical references in the base code as indicators of where crosscutting behaviour
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Fig. 6.22: DBay Instability

Fig. 6.23: HL7Browser Instability
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is to be injected. These references introduce dependencies inwards on the base application

which did not exist before the use of AOP in the ALPH model. This is evident in this

study by the increase in RFM (Response for a Module) coupling metric in a module by 11%.

This measure indicates the number of potential advices that could be executed within the

particular module.

Fig. 6.24: HL7Browser Response for a Module

Figure 6.25 summarises the results for RFM in MedHCP. The RFM is reduced by 20% in

module 1 and 60% in modules 3 and 4. This is due to the reduced number of calls to other

modules decreasing coupling and complexity.

The increase in RFM for module 2 is caused by the number of potential joinpoints in the

ALPH implementation being higher than the number of method calls in the OO version. The

RFM metric is extended to take the number of advices implicitly invoked into account. The

increase in potential joinpoints result from design decisions in the ALPH implementation,

where more than one advice may carry out the behaviour previously implemented in one

method. The results illustrate the increased independence of base modules when modulari-

sation using the ALPH model, but also observe a negative result in specific circumstances.

As shown in Figure 6.26, the stability of the three modules that had most crosscutting

functionality modularised in MedHCP were all increased. The modules were made more
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Fig. 6.25: MedHCP Response for a Module

stable by the reduction in dependencies within the base code.

Fig. 6.26: MedHCP Instability

Healthwatcher RFM measurements were reduced by using the ALPH model in comparison

to the OO implementation. Figure 6.27 summarises the results from both approaches showing

reductions of 7% and 20% in the two most heavily affected modules.

Figure 6.28 shows that 7 of the 12 modules measured in the Healthwatcher application

were made more stable using the ALPH model. 4 were increased due to the dependencies

introduced by AOP outweighing the reduction in dependencies for the entire module as a
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Fig. 6.27: Healthwatcher Response for a Module

whole. The new module containing the aspects is included in these results. 1 remaining

module remained unchanged. Of the reductions observed, modules were reduced by 6.23%,

4.29%, 9.9%, 8.36%, 28.58% and 5.6% as illustrated in figure 6.29. This increase in stability

is consistent with other evaluation applications. The decrease observed can be explained

as some modules had more depedencies introduced than removed, e.g., more advices than

method calls.

In the Rococo application RFM shows reductions in two-thirds of the base modules as

there are fewer method calls. The increase in the other modules is a result of more potential

advice executions introducing a greater dependence on the module’s structure. Instability

was increased in each base application module by up to 28%, making the application more

resilient to changes and more easily maintained.

6.7.5 Size

In DBay, the ALPH model decreased the code written by the application developer by 18%.

This illustrates the large proportion of crosscutting code that was tangled within the base

application. The reduction in application size illustrates the advantage of using a concise

high-level language to encapsulate domain-specific behaviour. The HL7Browser application
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Fig. 6.28: Healthwatcher Instability

Fig. 6.29: Healthwatcher Instability Reductions

was reduced in size by 8% using the ALPH model. The module most heavily effected by

the refactoring of the HL7Browser application was reduced in size by 70%, illustrating the

crosscutting that took place.

Measuring the LOC from the application developers’ point of view, that is how many lines

of code the developer would have to implement, ALPH makes the MedHCP application 25%
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Fig. 6.30: Rococo Response for a Module

Fig. 6.31: Rococo Instability

more concise. Measurements on MedHCP including generated aspects and ALPH translation

files reveal an increase in total LOC by 9%, but this increase is irrelevant to developers as

no effort is required on their part in the implementation of these modules. Application size

is not reduced after weaving as the crosscutting code still exists in the aspects. This finding

has been discovered in other studies on AOP refactored systems [102]. LOC results in AO
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Fig. 6.32: DBay Lines of Code

applications depend on the design of the aspects [169] and as stated earlier, we measure size

from the developer’s perspective. The LOC metric reveals that the ALPH model reduced the

code written by the developer by 13% in the Healthwatcher implementation.

The Rococo mobile application was significantly reduced in size using the ALPH model

due to the large volume of discovery code tangled within the base application. This code

is modularised by ALPH and results in a 62% reduction in code written by the application

developer. This demonstrates the reduction in requirement of domain-specific knowledge

on the developers part when using a DSL to programme in a target domain. Figure 6.33

illustrates this result.

6.7.6 Expressiveness

Zipf’s law states that a small number of common terms cover the majority of occurences

in text. Most other terms occur infrequently or at a low frequency. We measure syntactic

expressiveness using a method based on Zipf’s law that measures a particular part of speech

(POS) within the requirements of a domain [53], exposing the frequency with which terms

occur in the domain. This identifies the common domain terms that should be incorporated

in a language for that domain. Any language being assessed has its constructs compared to

these terms to measure the number of domain-specific requirements that can be syntactically
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Fig. 6.33: Rococo Lines of Code

expressed by the language. This is then divided by the number of requirements in the domain

to achieve the syntactical expressiveness of the language.

An automated POS tagger CLAWS [117] was used to extract verbs from pervasive health-

care application requirements. A list of requirements was compiled from the concerns identi-

fied in domain analysis, section 3.6, and from requirements engineering research in the domain

[208] [37]. The large set of terms identified included many application-specific verbs relating

to the business logic of particular applications. However, as these were not common to many

applications they are placed further down the list of frequency in the resulting terms. A set

of 29 frequently recurring verbs was considered. Table 6.6 illustrates the most frequently

occurring verbs for the pervasive healthcare domain.

Table 6.6: Frequency of lexical terms
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The syntactic expressiveness for the entire set of requirements is illustrated in figure 6.34

showing the relationship between the word V and the syntactic expressiveness in relation to

the domain. It shows that 50% syntactic expressiveness can be achieved when V = 6 i.e. with

20% (6/29) of the verbs detected i.e., the words shown in figure 6.6. This 50% is the target

value for a DSL in a domain [53] using the fewest possible constructs. The ALPH model DSL

language syntax provides constructs to address 15 of the 29 terms identified in the domain.

ALPH only supports 15 constructs as these emerged as reoccurring within the target domain

and were also identified as crosscutting. Many of the other verbs identified do not refer to

specific behaviour e.g., make, fulfill, ensure and so cannot be easily supported in a DSL.

Importantly, it provides constructs for the top 6 most frequently occuring terms enabling it

to achieve the 50% SEV using 20% of the terms detected using its syntax. By supporting

the most frequently occuring terms the highest proportion of functionality is addressed, in

accordance with Zipf’s law. Using a GPL, i.e., Java, 0% SEV can be achieved using 100%

of its syntax as there is no correlation with its syntax in the requirments of the domain. As

this measurement is “per language” the result is valid for all evaluations comparing ALPH

with Java.

Fig. 6.34: Syntactical Expressiveness

161



Chapter 6. Evaluation

6.7.7 Comparison to Context Toolkit

An earlier ALPH implementation of DBay was also compared to an implementation of the

DBay application using the Context Toolkit to modularise context adaptation [190]. The

Context Toolkit approach had some negative effect in RFM results due to the introduction

of dependencies on its underlying framework classes. Module coupling was increased by the

Context Toolkit approach due to the introduction of the widget and supporting classes. The

base package’s dependencies on external modules, measured by efferent coupling, showed no

change in the Context Toolkit approach. The second package’s dependencies were increased

(as they were using ALPH) as the widget uses additional external modules. Incoming de-

pendencies for the base package remained unchanged by the Context Toolkit approach. The

Context Toolkit increased this package’s Ca as both Package 1 and Context Toolkit classes

make use of the widget in Package 2. The Context Toolkit did not improve the stability

of any part of the application. Using the AO approach, the package containing the base

code was made 3 times more stable than both the OO approach and the Context Toolkit

approach. The Context Toolkit reduced the base code by 15% by removing context handling

implementation.

6.8 Discussion

This chapter has described the evaluation of the modularisation and abstraction that can

be achieved using the ALPH model in the development of pervasive healthcare applications.

Comparative analysis of five applications, consisting of real world scenarios and codebases,

were conducted to assess the variations in modularity and abstraction indicators. It was

noted that larger codebases observed smaller variations, e.g., Healthwatcher, and that the

extent to which the crosscutting functionality affected the base application accounted for very

large variations e.g., HL7Browser’s majority of HL7 functionality in the original codebase.

Modularity is represented by maintainability, manageability and comprehensibility which

are in turn represented by coupling, cohesion and independence. Cohesion was both increased

and decreased in applications, due to the number of advices introduced compared to the num-
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ber of methods removed. In certain applications, more advices were introduced, accessing

varied base elements and decreasing cohesion. Independence and coupling observed an overall

beneficial effect from the use of the ALPH model. The base application was made more inde-

pendent with less outward dependencies. However, as described throughout the description

of application-specific results, the use of AOP in the ALPH model introduced dependencies

inwards on the base application. This is a recognised source of increase in afferent coupling

in AOP approaches [221]. The dependency is mainly due to the use of syntactical elements

from the base application in pointcut designators. The dependency here is a trade off for

the modularisation that is achieved by the removal of all crosscutting pervasive healthcare

functionality out of the base classes. This negative results for Ca, and its subsequent cal-

culation in I, and RFM are all due to these inwards dependencies. This makes the aspects

very fragile to the base code dependencies. In the ALPH model, the developer defines where

in the base code the pervasive healthcare behaviour should be applied and so is therefore,

unlike the code itself, not completely oblivious to these dependencies. RFM increases are

also caused by additional functionality added to base applications that did not exist before

e.g., more fault tolerance in limited connectivity contingency plans add more dependencies

as advice executions are greater than previous method calls.

Abstraction benefits in the form of conciseness and expressiveness were observed in each

evaluation application. Codebases were reduced in size by 13% to 62% reducing the amount

of domain-specific code in the application and also reducing the requirement for application

developers to implement such code. This reduction in knowledge requirement is a fundamental

goal of any high-level language providing abstractions for a domain. The ALPH model results

indicate that it increases the level of programming abstraction to a high-level for pervasive

healthcare application development. Expressiveness was also achieved by the ALPH langauge

by providing construct syntax to sufficiently fulfill the requirements of applications in the

pervasive healthcare domain.
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6.9 Summary

Using the goals, questions and metrics derived using the GQM approach, an overall view of

how the collaborative use of AOP and DSL affected modularity and abstraction, and therefore

complexity, can be deduced. Table 6.7 summarises the results observed in this chapter.

LOC CBM RFM LCO Ce Ca I SEV

DBay -18% ≤-42% -13% -8% Decrease Increase Both 50%(20%V)

HL7Browser -8% -27% +11% -11% Decrease Increase Decrease 50%(20%V)

MedHCP -25% ≤-75% -60%-+25% +20%-+200% Decrease Increase Decrease 50%(20%V)

Healthwatcher -13% ≤-10% ≤-20% -1% Decrease Increase Both 50%(20%V)

Rococo -62% ≤-52% 2/3(-) -7% Decrease Increase Decrease 50%(20%V)

Table 6.7: Results Summary

Modularity benefits maintainability, manageability and comprehensibility observed mixed

results. Their indicators of coupling, cohesion, and independence produced largely positive

results, but incurred negative results in modules where the use of AOP created new inwards

dependencies. Coupling was reduced in the majority of modules but was also negatively

affected by inward dependencies created by the use of AOP. Cohesion revealed mixed results

for the same reason but was reduced in 4 out of 5 applications. Independence indicators in-

stability and response for modules also produced mixed results due to the AOP dependencies.

Both were decreased in the majority of applications, but were also subject to increases in

modules referenced by aspects. This implies that modularity was increased in the majority

of modules, but that the use of AOP also has a negative effect on modularity measurements

due to its dependency on base application references. Abstraction indicators were positively

affected by the ALPH model across the board. Size was reduced and expressiveness was in-

creased, leading to an overall increase in abstraction. These conclusions are discussed further

in chapter 7. This includes a discussion on how the results observed relate to the research

question posed in this thesis in section 7.2.
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The next chapter discusses the conclusions drawn from the contents of this thesis. A

summary of the most significant contributions of this work is presented along with conclusions

from the creation, use and evaluation of the ALPH model in the aim of reducing complexity

in pervasive healthcare applications. A discussion of research issues that remain open for

future work is also presented.
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Conclusions and Future Work

This thesis describes the design and implementation of an approach to reduce complexity in

pervasive healthcare applications. The approach is developed as the ALPH model, built on

two software engineering approaches to combat complexity; modularity and abstraction. A

library of pervasive healthcare concerns and a DSL providing domain-specific constructs allow

the customisation of pervasive healthcare functionality to accomodate application-specific

requirements. This chapter summarises the achievements and contributions of the work,

discusses conclusions made following the completion of the work and describes the potential

areas for future work.

7.1 Achievements

Pervasive healthcare, the field concerned with the application of pervasive technology in

healthcare applications, requires applications to have access to healthcare information in a

mobile, adaptable environment. The integration of mobility and context-awareness behav-

iour in healthcare applications has proven difficult [139] [185]. Incorporating these concerns

increases complexity [185] in new and existing healthcare applications [262]. Mobility and

context-awareness are inherently crosscutting, affecting multiple parts of applications and

resulting in poor modularity. In the work described in this thesis, this lack of modularisation

causes poorly encapsulated concerns and reduced maintainability, manageability and com-
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prehensibility in applications resulting in complexity in pervasive healthcare applications.

Application developers implementing pervasive healthcare applications are required to use

GPL to include domain-specific behaviour. This requires programming at a low-level of

abstraction resulting in complex, verbose code with no semantic relation to the domain at

which the application is targeted [81] [132]. It also requires the developer to have extensive

knowledge of the domain [179]. Programming at an inappropriate level of abstraction for the

pervasive healthcare domain is also addressed in the ALPH model to combat complexity in

pervasive healthcare applications.

In analysing the state of the art in approaches to modularising and abstracting perva-

sive healthcare concerns, limitations of existing approaches were highlighted. Firstly, no

approach addresses the modularisation of a comprehensive set of pervasive healthcare con-

cerns. Approaches supporting the incorporation of singular concerns and subsets of pervasive

healthcare concerns were examined. Many of these approaches provide useful modularisations

of pervasive computing concerns using AOP, but no existing approach addresses healthcare

specific concerns. Secondly, abstraction has not been investigated for a comprehensive set

of concerns within the pervasive healthcare domain by any existing work. DSLs exist for

single healthcare concerns and for pervasive computing concerns but no DSL addresses both

the pervasive and healthcare specific concerns as required by pervasive healthcare applica-

tions. Thirdly, no existing approach exists to address both modularity and abstraction in

pervasive healthcare applications. The combined advantages of modularity for crosscutting

concerns and abstraction can be achieved by DSALs. Pervasive computing concerns have

been addressed by existing DSALs but no existing work addresses healthcare application

development using a DSAL. While existing techniques discussed in Chapter 2 can be used

to modularise and abstract segments of pervasive healthcare applications, the limitations of

these approaches restrict applications from meeting the requirements of applications in the

pervasive healthcare domain. To adequately meet the requirements of this emergent domain,

a new approach to support pervasive healthcare application development, in a modular way

and at an appropriate level of abstraction, is required.

This thesis presented the ALPH model designed to address the issues with modularity
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and abstraction in pervasive healthcare applications discussed in Chapter 1 and identified

in the limitations of Chapter 2. The ALPH model provides a DSL of domain-specific con-

structs linked to a library of modular pervasive healthcare concerns. Chapter 3 describes

the methodology used in the development of the ALPH model. Domain analysis conducted

in the identification of a comprehensive set of crosscutting pervasive healthcare concerns is

also described in Chapter 3. Requirements, application literature, case studies and codebases

from the pervasive healthcare domain were analysed and the following set of crosscutting per-

vasive healthcare concerns were identified: Distribution, Communication, Network Roaming,

Software Roaming, Service Discovery, Device Discovery, Limited Connectivity, Quality of

Service, Device adaptation, Location, HL7 messaging, EHR support and Persistence. The

ALPH model addresses complexity caused by difficulties in modularity and inappropriate lev-

els of abstraction in pervasive healthcare application development by employing two software

engineering approaches to combat complexity; modularity and abstraction. The crosscut-

ting pervasive heathcare concerns identified in Chapter 3 were implemented using AOP to

achieve improvements in modularisation. These modular components were assembled in a

library of pervasive healthcare aspects. The design and implementation details of the li-

brary of concerns is described in Chapter 4. To enable application developers to programme

domain-specific functionality at a higher-level of abstraction in pervasive healthcare applica-

tions, the ALPH model provides a DSL called the ALPH language. The language consists of

domain-specific constructs that model the modular concerns in the library of aspects. ALPH

programs written by application developers are constructed by providing application-specific

information as parameters to the domain-specific constructs to define what pervasive health-

care behaviour to include in the application and where to include it. The ALPH compiler,

ALPHc, transforms the ALPH program constructs into customised AspectJ implementations

by using components from the library of concerns tailored with the application-specific pa-

rameter details. The ALPH language, ALPHc and the domain-specific constructs provided

are described in Chapter 5.

The evaluation of the ALPH model is described in Chapter 6. Five applications were

used in a comparative study to evaluate the variations in modularity and abstraction us-
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ing the ALPH model. The GQM approach was used to deduce quantitative-level metrics

to measure modularity and abstraction indicators. The comparative studies compared OO

implementations with ALPH implementations. Modularity indicators revealed both positive

and negative results. Results indicate increases in cohesion due to the encapsulation of cross-

cutting concerns, and decreases when more advices were created than previous method calls

in OO versions. Independence metrics were both increased and decreased indicating that

although dependencies were removed from base application components, they were reintro-

duced by the aspects in the ALPH model. Coupling revealed similar results, with decreases

in dependencies from base application on other modules, but increases in the dependencies

inwards on the base application. This, as discussed in Chapter 6, is due to the reliance of as-

pects on base application syntax in pointcut designators. These mixed results in modularity

indicators show that while AOP does achieve the clean separation of crosscutting concerns,

“modularisation” benefits are balanced by increases in coupling elsewhere. Results measur-

ing conciseness and expressiveness revealed a significant increase in the level of abstraction

achieved when using the ALPH model. Applications were significantly reduced in size by the

use of domain-specific constructs to introduce pervasive healthcare functionality, reducing the

level of domain knowledge required by the developer. The ALPH language was also shown to

be more expressive in the domain of pervasive healthcare resulting in semantically intuitive,

expressive code. The results for modularity and abstraction reveal a reduction in complexity

in pervasive healthcare application development from the developer’s point of view, while

acknowledging the coupling effect of AOP on oblivious base application code.

In summary, the research presented in this thesis has focused on investigating the provision

of a model that supports the incorporation of pervasive healthcare functionality including

distributed healthcare, mobility and context-awareness behaviour in applications in a modular

manner and at a high-level of abstraction.

The main contributions of this thesis are summarised as:

• A set of pervasive healthcare crosscutting concerns have been identified from the analy-

sis of requirements, applications, literature, case studies and codebases in the domain.

Concerns were selected based on their reoccurrence and crosscutting nature. This set of
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pervasive healthcare concerns is indicative of functionality that is commonly required

by applications, yet complex in its implementation. The identification process in do-

main analysis is described in chapter 3 and the resulting set of concerns are outlined in

section 3.6.

• An overview of approaches with respect to the modularisation and/or abstraction of

pervasive healthcare concerns as presented in chapter 2. Approaches are evaluated with

a focus on their support for the modularisation (section 2.2 and/or abstraction (section

2.3) of pervasive healthcare concerns as identified through domain analysis.

• A modular design for a set of pervasive healthcare concerns, outlined in chapter 4. These

have been implemented using AspectJ and assembled into a library of modular pervasive

healthcare aspects. The use of AOP enables the modularisation of crosscutting concerns

into modules outside the base application. The library of concerns provides modular

implementations for 12 common crosscutting pervasive healthcare concerns described

in section 4.3.

• A DSL, the ALPH language, providing a high-level of abstraction for application de-

velopers in the pervasive healthcare domain as described in chapter 5. Constructs

abstract developers from low-level pervasive healthcare functionality implementation

details. This abstraction results in a reduction in the knowledge required by the de-

veloper and produces expressive, concise, domain-specific code. The constructs in the

ALPH language are outlined in section 5.5.

• The application of a DSAL in the domain of pervasive healthcare had not been in-

vestigated previously. Specifically, the application of AOP to healthcare concerns was

previously not investigated. Similarly, the application of DSL techniques to pervasive

healthcare has had very little investigation.

• A comparative analysis of five applications using the ALPH model to include a subset

of pervasive healthcare concerns produces results that illustrate a quantitative study

on the use of DSLs, or more specifically a DSAL, and GPLs. The comparative study is
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detailed in chapter 6.

7.2 Research Question

This thesis addresses the research question of whether the collaboration of aspect-oriented

programming and domain-specific languages significantly reduces complexity in pervasive

healthcare applications. Following the formation of the ALPH model and the investigation of

its effect on applications in the domain, the findings from this work form a view on the research

question under consideration. The use of AOP and DSLs reveal both positive and negative

effects on complexity factors in the quantitative evaluation of the research question. The

expressiveness achieved by using higher-level constructs has a positive effect on complexity

in all applications. Positive effects were also observed on complexity factors including size,

independence, coupling and cohesion. The negative results are caused by AOP’s references to

base application code. These results negate the positive coupling effects observed in the base

applications using AOP. From a higher level view, the dependencies have been reorganised

rather than actually removed. From a purely quantitative perspective, this points to an

indeterminate effect on complexity. However, the reorganisation of the dependencies has

a positive effect on all complexity factors in the base applications when viewed separately

from the AOP components. This separation increases modularity indicators maintainability,

manageability and comprehensibility in base application code. Also, from the developer’s

perspective, the dependencies are isolated in one clear module. These are all positive effects

on complexity from the developer’s perspective, adding to the view that the collaboration

of DSLs and AOP does significantly reduce complexity in pervasive healthcare application

development. The ALPH model DSL provides a set of domain functionality to application

developers. This reduces their requirement for domain knowledge and reduces the amount of

code they are required to produce. While application size was positively effected, the effect

of reduced knowledge requirement is not quantified in the comparative study in this thesis.

This also contributes to the view that the use of DSLs can significantly reduce complexity.

These positive features that were not quantified in the scope of this thesis would require

further user studies to confirm and enumerate. However, these features and effects were
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observed in the creation and use of the ALPH model. Therefore, it is the finding of this

thesis that the collaboration of aspect-oriented programming and domain-specific languages

does significantly reduce complexity in pervasive healthcare applications. This finding is

qualified with the acknowledgement of dependencies created when using AOP, as discussed

further in section 6.8. Also in the next section, there is a discussion on the general knowledge

that emerged from this study.

7.3 Discussion

The work presented in this thesis aims to reduce complexity in pervasive healthcare appli-

cations using modularity and abstraction. From the resulting evaluation, questions arise as

to whether the use of AOP increased modularity significantly as some negative results indi-

cated that dependencies introduced at times offset any coupling benefits achieved. It suggests

that the dependencies are moved around rather than eliminated. This question has arisen

in previous works and the dependencies created by AOP acknowledged [221]. Coupling, co-

hesion and independence measures can illustrate the advantages of increased and decreased

dependencies but cannot fully quantify the beneficial part AOP plays in the ALPH model by

allowing generated code to be woven easily into the base application from clearly separated

modules. This non-intrusive characteristic of AOP is advantageous in approaches such as the

ALPH model approach. The model can be used as easily with existing applications as with

building new applications and it can be extended or modified without implications for base

applications. This characteristic, referred to as obliviousness, is a topic of debate [247] [130]

[103] [73]. Oblivious base applications cause complex aspects and increase the dependence

of the aspects on the base code [247], as was observed in the ALPH model evaluation. This

tradeoff can be reduced by approaches including the enforcement of design rules in base ap-

plications [247] or explicit joinpoints [130], but such approaches impose constraints on base

applications. This is not optimal in the use of the ALPH model as a base application may

be an existing application with complex refactoring not being a viable option. Therefore the

tradeoff of complex, tightly coupled aspects in the ALPH model is tolerated to achieve as

much separation of crosscutting pervasive healthcare concerns from the base code as possible.
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Another argument is that the base code may be used in isolation as the unit of measurement

to evaluate improvements in modularisation using AOP. Taking this approach, our evalua-

tion would reveal improvements in all metrics for coupling, cohesion, independence, showing

a vast improvement in modularisation from the external encapsulation of crosscutting con-

cerns. However, this approach is not satisfactory as the references held by aspects need to

be accounted for in a conclusive study.

The ALPH model is limited in its scope and by its implementation language. The ALPH

model only supports the described concerns in the manner described. Many more concerns

exist and many different implementation options exist for the concerns supported. These are

out of the scope of this work and require explicit implementation by application developers.

The model as implemented provides sufficient functionality to enable this work to investigate

the research question by carrying out a proof by construction. As ALPH is a pre-processor

to the AspectJ language, it inherits the constraints and scope of this language. For example,

the AspectJ joinpoint model considers joinpoints including method or constructor call or ex-

ecutions, class or object initialisation, field read and write access, exception handlers and but

does not consider loops, super calls, throws clauses or multiple statements. In the evaluation

applications these constraints did not cause problems, but in larger applications it is possible

that AspectJ’s joinpoint model may not support all requirements. Another limitation of the

the ALPH model described in this thesis is its restriction to base applications implemented

in the Java language. As the current implementation is based on AspectJ implementations

of pervasive healthcare concerns, base applications written in Java are required. To sup-

port other base languages, the ALPH model would require implementations in appropriate

corresponding aspect languages and the refactoring of the ALPHc compiler.

7.4 Future Work

During the duration of the work presented in this thesis, a number of issues worthy of further

investigation were identified. This section outlines the key areas identified for future work.

Specifically these relate to the extensibility of the ALPH model and the measurement of

semantic expressiveness in languages.
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7.4.1 Extensibility

Ideally, DSLs model a particular domain comprehensively. This is a difficult task but an

achievable one in a finite, static domain. In reality, very few domains remain static over

time. This leaves DSLs susceptible to becoming obsolete. The way to counteract this and to

ensure the language is useful in practice is to make it extensible [108].

The ALPH model is extensible in its existing state. It can be extended in two ways.

The first is the creation of a new construct by extending the syntax and semantics in the

formal definition. The language designer must also extend the aspect library with code to

support the new construct. The new construct would then be recognised by the translator

and the corresponding functionality included once the definition has been changed and the

compiler regenerated. Secondly, construct parameterisation provides a means to customise a

construct’s behaviour. ALPH constructs use parameters to specify what functionality should

be included in a particular application, where it should be included and what application-

specific details are to be used. A new option can be added to any construct by defining a new

aspect containing the required functionality and extending the constructs definition to recog-

nise the new option as a parameter. Although these illustrate that ALPH can be extended,

this process would involve significant programming language development knowledge on the

application developer’s part. Building an abstraction on the extension process is a possible

extension to this work to simplify the process of extending ALPH.

7.4.2 Semantic Expressiveness

In the investigation of measuring expressiveness in languages, semantic expressiveness was

identified as an interesting and poorly investigated area in DSLs. Semantic expressiveness is

how well a language correctly reflects the domain reality that it represents according to users

[90]. It considers how users understand the language and how it relates to domain-specific

tasks and entities. This concept is dependent on user interpretation and so necessarily, is a

subjective measurement. “Although semantic expressiveness can be theoretically verified it is

the user’s perception of how well the model helps understanding the underlying reality that

determines whether the claimed benefits will be achieved” [207]. Some further investigation
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was undertaken and a measurement initially proposed by Dunn and Grabski [90] for deter-

mining the perceived semantic expressiveness of accounting systems was investigated and is

possible to adapt to programming languages to measure user interpretations. Future user

studies comparing a domain-specific task using both a GPL and the ALPH language would

add a qualitative result to the evaluation of the expressiveness provided by ALPH.

7.5 Summary

This chapter summarised the motivation for the research undertaken and the most significant

achievements of the work presented in this thesis. In particular, it outlined how this work

contributed to knowledge in the domains of pervasive healthcare, AOP, DSLs and DSALs.

The ALPH model is the first of its kind in supporting pervasive healthcare application de-

velopment, providing modular separation of domain-specific functionality and a high-level

of programming abstraction for application developers in the domain. Comparative analy-

sis showed that a high-level of abstraction eased application development for developers in

the domain and that separation of concerns was achieved despite modularity results indi-

cating that AOP offsets many removed coupling dependencies. The chapter concluded with

suggestions for future work arising from the research undertaken in relation to this thesis.
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[111] Fuentes, L., and Jiménez, D. An aspect-oriented ambient intelligence middleware

platform. In MPAC ’05: Proceedings of the 3rd international workshop on Middleware

for pervasive and ad-hoc computing (2005).
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Appendix A

Generated Construct Output

1 pub l i c aspect AConstructorInvocat ion {

2

3 s t a t i c Ob j ec tFac to ry In t e r f a c e ob jec tFactory = ObjectFactoryCl i ent . g e t In s tance ( ) ;

4

5 po intcut con s t ruc to r Invoca t i on ( ) : c a l l ( ServerImpl . new ( . . ) ) ;

6

7 ServerImpl around ( ) : c on s t ruc to r Invoca t i on ( ) {

8 . . . .

9 Class<ServerImpl> c = ServerImpl . c l a s s ;

10 className = c . getName ( ) ;

11 . . .

12 s i gna tu r e = c . getConstructor ( ) . getParameterTypes ( ) ;

13 . . .

14 ob j e c t = ( ServerImpl ) ob jec tFactory . createWrappedObject ( className , s ignature ,

argus ) ;

15 re turn ob j e c t ;

16 }

17 }

18

19 // Aspect 2

20

21 pub l i c aspect ACl i en tCa l l I n t e r c ep t i on {

22

23 po intcut methodInvocation ( ServerImpl obj ) :

24 ! with in ( ServerImpl ) && c a l l ( pub l i c ∗ IS e rve r . ∗ ( . . ) throws ! ( Exception+) ) &&

ta rg e t ( obj ) ;

25
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26 Object around ( ServerImpl obj ) : methodInvocation ( obj ) {

27 . . .

28 S ignature s i g = th i s Jo i nPo in tS t a t i cPa r t . ge tS ignature ( ) ;

29 Class c = s i g . getDeclar ingType ( ) ;

30 rclassName = c . getName ( ) ;

31 . . .

32 MethodSignature msig = ( MethodSignature ) th i s Jo i nPo in tS t a t i cPa r t . ge tS ignature ( )

;

33 s i gna tu r e = msig . getParameterTypes ( ) ;

34 argus = th i s Jo inPo in t . getArgs ( ) ;

35 St r ing newMethodName = th i s Jo inPo in t . ge tS ignature ( ) . getName ( ) . concat (” Remote

”) ;

36 Method method = objec tFactory . getMethod ( className , newMethodName , s i gna tu r e ) ;

37 r ea lOb j e c t = obj . getRemoteStub ( ) ;

38 ob j e c t = method . invoke ( rea lObject , argus ) ;

39 . . .

40 re turn ob j e c t ;

41 }

42 }

43

44 // Aspect 3

45

46 pub l i c aspect AImplementationRemoteServer {

47

48 de c l a r e parents : ServerImpl implements IRemoteServer ;

49 d e c l a r e parents : ServerImpl implements IRemoteClass ;

50

51 p r i va t e Remote ServerImpl . remoteStub = nu l l ;

52

53 pub l i c ServerImpl . new(Remote remoteStub ) {

54 t h i s . remoteStub = remoteStub ;

55 }

56 pub l i c Remote ServerImpl . getRemoteStub ( ) {

57 re turn remoteStub ;

58 }

59

60 pub l i c void createEmptyRemoteMethods ( ) {

61 . . .

62 }

63

64

65 }
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Listing A.1: Distribution Output

1 pub l i c aspect DeviceAdaptation {

2 p r i va t e RuleBasedEngine Rbe = new RuleBasedEngine ( r u l e s . c l p ) ;

3 po intcut deviceConnected ( User u) : s e t ( User App . currentUser ) && args (u) ;

4

5 a f t e r ( User u) : deviceConnected (u) {

6 . . .

7 S t r ing kindOfDevice = u . ge tC la s s ( ) . getSimpleName ( ) ;

8 Rbe . createTemplate ( ) ;

9 Rbe . assertTemplate ( kindOfDevice . toUpperCase ( ) ) ;

10 Rbe . launchRules ( ) ; e

11 Rbe . run ( ) ;

12 }

13 catch ( JessExcept ion e ) {

14 e . pr intStackTrace ( ) ;

15 }

16 . . .

17 }

18 }

Listing A.2: AdaptDevice Output

1 pub l i c aspect HL7Aspect {

2

3 po intcut createHL7 ( St r ing patientID , S t r ing surname , S t r ing f irstName , S t r ing DOB,

St r ing address , S t r ing Doctor , S t r ing admitDate , S t r ing di schargeDate ) : c a l l

( void d i s cha r g epa t i en t ( Str ing , Str ing , S t r ing , S t r ing , S t r ing , S t r ing ,

Str ing , S t r ing ) ) && args ( patientID , surname , f irstName , DOB, address , Doctor ,

admitDate , d i schargeDate ) ;

4

5

6 a f t e r ( S t r ing patientID , S t r ing surname , S t r ing f irstName , S t r ing DOB, St r ing

address , S t r ing Doctor , S t r ing admitDate , S t r ing dischargeDate ) :

wr i t eDi scharge ( patientID , surname , f irstName , DOB, address , Doctor , admitDate ,

d i schargeDate ) {

7 createHL7Message ( patientID , surname , f irstName , DOB, address , Doctor ,

admitDate , d i schargeDate ) ;

8 }

9
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10

11 pub l i c void createHL7Message ( S t r ing patientID , S t r ing surname , S t r ing f irstName ,

S t r ing DOB, St r ing address , S t r ing Doctor , S t r ing admitDate , S t r ing dischargeDate )

throws HL7Exception {

12

13 . . .

14 ADT A01 adt = new ADT A01( ) ;

15 MSH mshSegment = adt . getMSH( ) ;

16 mshSegment . g e tF i e ldSepara to r ( ) . setValue ( ” | ” ) ;

17 mshSegment . getEncodingCharacters ( ) . setValue (”ˆ˜\\&”) ;

18 mshSegment . getDateTimeOfMessage ( ) . getTimeOfAnEvent ( ) . setValue (

dateTimeOfMessage )

19 mshSegment . getMessageType ( ) . getMessageType ( ) . setValue (ADT A01) ;

20 . . .

21 Parser p ipeParse r = new PipeParser ( ) ;

22 St r ing encodedMessage = pipeParse r . encode ( adt ) ;

23 Parser xmlParser = new DefaultXMLParser ( ) ;

24 St r ing encodedXmlMessage = xmlParser . encode ( adt ) ;

25 }

26

27 pub l i c void parseHL7 ( St r ing n o t i f i c a t i o n )

28 XMLParser xmlParser = new XMLParser ( n o t i f i c a t i o n ) ;

29 St r ing message =xmlParser . getMessageType ( ) ;

30 xmlParser . getMessageSect ions ( ) ;

31 . . .

32 }

33

34 pub l i c void displayHL7 ( St r ing n o t i f i c a t i o n ) {

35 . . .

36 }

37

38 pub l i c void sendHL7 ( St r ing n o t i f i c a t i o n ) {

39 . . .

40 }

41

42 pub l i c void receiveHL7 ( St r ing n o t i f i c a t i o n ) { }

43 . . .

44 }

45 }

Listing A.3: HL7 Output
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1 pub l i c aspect Locat ionAspect {

2 . . .

3 po intcut deviceConnected ( Device d) : s e t ( Device App . dev i c e ) && args (d) ;

4 . . .

5 a f t e r ( Device d) r e tu rn ing ( ) : deviceConnected (d) {

6 . . .

7 t h i s . monitorUserDevice (d) ;

8 t h i s . monitorLaunched = true ;

9 . . .

10 }

11

12 p r i va t e void monitorUserDevice ( Device deviceToMonitor ) {

13 t h i s . lm = new LocationMonitor ( ) ;

14 t h i s . lm . addLocationProducers ( deviceToMonitor . getLp ( ) ) ;

15 }

16 pub l i c void stopMonitor ing ( ) {

17 . . .

18 i f ( ! lm . getLocat ionProducers ( ) . isEmpty ( ) ) {

19 lm . getLocat ionProducers ( ) . removeAllElements ( ) ;

20 lm . getThreadForMonitoring ( ) . i n t e r r up t ( ) ;

21 . . .

22 }

23 }

24

25 Aspect 2

26

27 pub l i c aspect EnsureViableLocat ion {

28

29 LocationMonitor lm = new LocationMonitor ( ) ;

30 Locat ionLookupService l l s = new Locat ionLookupService ( ) ;

31 p r i va t e s t a t i c S t r ing f i l eAbso lu t ePath = ” sa f eLoca t i on s . txt ” ;

32

33 po intcut va l i da t eLoca t i on ( ) : c a l l ( void locat ionMethod ( ) ) ;

34

35 void around ( ) : va l i da t eLoca t i on ( ) {

36 . . .

37 lm . updateCurrentLocation ( ) ;

38 Double xLoc = new Double ( lm . getProperty (”X”) ) ;

39 Double yLoc = new Double ( lm . getProperty (”Y”) ) ;

40 GPSLocation c l o c = new GPSLocation ( xLoc . doubleValue ( ) , yLoc . doubleValue ( ) ) ;

41 St r ing currentLoc = l l s . getLocationFromGPS ( c l o c ) ; n
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42 ensureLocat i on I sVa l id ( c l o c ) ;

43 . . .

44 i f ( found ) {

45 proceed ( ) ;

46 }

47 }

48

49 pub l i c void addLocation ( S t r ing l o c a t i o n ) {

50 . . .

51 }

52

53

54 pub l i c s t a t i c boolean ensureLocat i on I sVa l id ( GPSCoordinates gpsc ) throws

IOException{

55 . . .

56 BufferedReader in = new BufferedReader (new Fi leReader ( f i l eAbso lu t ePath ) ) ;

57 . . .

58 x0 = Double . parseDouble ( tok . nextToken ( ) ) ;

59 y0 = Double . parseDouble ( tok . nextToken ( ) ) ;

60 lengthArea = Double . parseDouble ( tok . nextToken ( ) ) ;

61 widthArea = Double . parseDouble ( tok . nextToken ( ) ) ;

62 . . .

63 l o c a t i o n I s S a f e =compareWithTheUserLocation ( gpsc , x0 , y0 , lengthArea ,

widthArea ) ;

64 . . .

65 re turn l o c a t i o n I s S a f e ;

66 }

67

68 pub l i c s t a t i c boolean compareWithTheUserLocation ( GPSCoordinates userGpsC , double x0

, double y0 , double lengthArea , double widthArea ) {

69 . . .

70 }

71

72 }

Listing A.4: Location Output

1

2 Aspect 1

3

4 pub l i c aspect LaunchAgentAspect {

5 po intcut startAgent ( ) : execut ion ( pub l i c void User . userPage ( ) ) ;

211



Appendix A. Generated Construct Output

6

7 be f o r e ( ) : s tartAgent ( ) {

8 MobileAgent a = new ImplementedAgent (” rmi : / /192 . 3 53 . 7 4 . 7 8/ ClientAgentManager

” ,” rmi : // 142 . 325 . 54 . 75/ ServerAgentManager ”) ;

9 System . out . p r i n t l n (”Agent ” + a . getName ( ) + ” launched ”) ;

10 }

11 }

12

13 Aspect 2

14

15 import java . rmi . RemoteException ;

16

17 pub l i c aspect ServerAgentManagerAspect{

18

19 pub l i c s t a t i c AgentManager RemoteServerImpl . agtManager = nu l l ;

20

21 po intcut con s t ruc to r Invoca t i on ( ) : c a l l ( RemoteServerImpl . new ( . . ) ) ;

22

23 a f t e r ( ) : c on s t ruc to r Invoca t i on ( ) {

24 try {

25 RemoteServerImpl . agtManager= new AgentManager (” rmi : / /142 . 3 25 . 5 4 . 7 5/

ServerAgentManager ”) ;

26 }

27 catch ( RemoteException e ) {e . pr intStackTrace ( ) ;}

28 }

29 }

30

31 Aspect 3

32

33 import java . rmi . RemoteException ;

34

35 pub l i c aspect ClientAgentManagerAspect {

36

37 pub l i c s t a t i c AgentManager App . agtManager = nu l l ;

38

39 po intcut con s t ruc to r Invoca t i on ( ) : execut ion ( pub l i c s t a t i c void App . welcome ( ) ) ;

40

41 be f o r e ( ) : c on s t ruc to r Invoca t i on ( ) {

42 try {

43 App . agentManager= new AgentManager (” rmi : / /192 . 3 53 . 7 4 . 7 8/ ClientAgentManager

”) ;

44 }
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45 catch ( RemoteException e ) {e . pr intStackTrace ( ) ;}

46 }

47

48 }

Listing A.5: SoftwareRoaming Output

1 pub l i c aspect NetworkRoamingAspect{

2

3 po intcut userIsConnected ( User u) : s e t ( User App l i ca t ion . currentUser ) && args (u

) ;

4

5 a f t e r ( User u) r e tu rn ing ( ) : user IsConnected (u) {

6 . . .

7 NetworkDatabase networkDB = NetworkDatabase . g e t In s tan ce ( ) ;

8 networkDB . LoadDatabaseFromXmlFile (” NetworkPropList . xml ”) ;

9 t h i s . monitorNetworks (u) ;

10 . . .

11 }

12 p r i va t e void monitorNetworks ( User currentUser ) {

13 t h i s . nwMonitor = new NetworkMonitor ( currentUser ) ;

14 t h i s . monitorLaunched = true ;

15 }

16

17 pub l i c void stopMonitor ing ( ) {

18 nwMonitor . getMonitoringThread ( ) . i n t e r r up t ( ) ;

19 monitorLaunched = f a l s e ;

20 }

21

22 }

Listing A.6: NetworkRoaming Output

1 pub l i c aspect Pers i stenceManager extends P e r s i s t I n t e r f a c e {

2 . . .

3 po intcut in i tConnec t i on ( ) : c a l l ( Hosp i ta l . run ( . . ) ) ;

4 po intcut Const ructorCa l l ( ) : execut ion ( Doctor . new ( . . ) ) ;

5 po intcut accessorsAndMutators ( ) : c a l l (∗ s e t ∗ ( . . ) ) | | && ( with in ( Doctor ) ;

6

7 a f t e r ( ) : i n i tConnec t i on ( ) {

8 createConnect ion (”MyDatabase ” , ”sun . jdbc . odbc . JbdcOdbcDriver ”) ;

9 }
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10

11 a f t e r ( Doctor aDoctor ) : Const ructorCa l l ( ) && ta rg e t ( aDoctor ) {

12 aDoctor . u n i q u e I d e n t i f i e r = uniqueID ;

13 p e r s i s tOb j e c t ( aDoctor ) ;

14 }

15

16 a f t e r ( Doctor aDoctor ) : accessorsAndMutators ( ) && ta rg e t ( Doctor ) {

17 p e r s i s tOb j e c t ( aDoctor ) ;

18 }

19

20 pub l i c void p e r s i s tOb j e c t ( Doctor aDoctor ) {

21 . . .

22 stmt . execute (SQL) ;

23 }

24

25 pub l i c void createConnect ion ( S t r ing datastore , S t r ing d r i v e r )

26 . . .

27 Class . forName ( d r i v e r ) ;

28 St r ing DatastoreName = ” jdbc : odbc :”+ data s to r e ;

29 Connection conn = DriverManager . getConnect ion ( DatastoreName ) ;

30 . . .

31 }

32

33 }

Listing A.7: Persist Output

1 pub l i c aspect Qua l i tyOfServ i ce {

2

3 AssuranceGroup requ i r edAssurances = new AssuranceGroup ( ) ;

4 Vector<NetworkDeterminer> networkDeterminers = new Vector<NetworkDeterminer >(0) ;

5 Vector<NetworkModel> val idNetwork = new Vector<NetworkModel >(0) ;

6 NetworkModel bestNetwork ;

7

8 po intcut a s su r eQua l i tyOfSe rv i c e ( User u) :

9 t a r g e t (u) && c a l l (∗ User .∗Page ( . . ) ) ;

10

11 be f o r e ( User u) : a s su r eQua l i tyOfSe rv i c e (u) {

12

13 S ignature currentMethodSignature = th i s Jo inPo in t . ge tS ignature ( ) ;

14 AssuranceReqDB database = AssuranceReqDB . ge t In s tance ( ) ;

15 database . l oadAssuranceF i l e ( ) ;
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16 AssuranceGroup asGroup = database . getAssuranceFor ( currentMethodSignature ) ;

17 . . .

18 se tAssurances ( asGroup ) ;

19 updateNetworkDeterminers (u) ;

20 UpdateValidNetwork ( ) ;

21 determineBestNetwork ( ) ;

22 . . .

23 }

24 }

25

26 pub l i c void se tAssurances ( AssuranceGroup assGrp ) {

27 . . .

28 }

29 pub l i c void UpdateValidNetwork ( ) {

30 . . .

31 }

32 pub l i c void updateNetworkDeterminers ( User u) {

33 . . .

34 }

35 pub l i c void determineBestNetwork ( ) {

36 . . .

37 }

38 }

Listing A.8: QualityOfService Output

1 pub l i c aspect Serv i ceDiscoveryAspect {

2

3 pub l i c OutgoingServ iceDiscoveryRequest output ;

4 pub l i c D i r e c t o rS e r v i c e d i r e c t o r y ;

5 pub l i c S t r ing userIP ;

6

7 po intcut s e r v i c eD i s c ov e ry ( ) : c a l l ( void ∗ . p r i n t ( . . ) ) && th i s ( ob j e c t ) ;

8 po intcut adv e r t i s e S e r v i c e ( ) : c a l l ( Pr in t e r . new ( . . ) )&& th i s ( ob j e c t ) ;

9

10 a f t e r ( Object ob j e c t ) : a d v e r t i s e S e r v i c e ( ) {

11 . . .

12 d i r e c t o r y . adv e r t i s e ( PRINTING SERVICE , th i s Jo inPo in t . getThis ( ) . g e tC la s s ( )

, ob j e c t ) ;

13

14 }

15
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16 a f t e r ( Object ob j e c t ) : s e r v i c eD i s c ov e ry ( ) {

17 . . .

18 s t a r t S e r v i c e L i s t e n e r ( ) ;

19 sendServ iceRequest ( PRINTING SERVICE , ob j e c t ) ;

20 }

21

22

23 pub l i c void sendServ iceRequest ( ) {

24 . . . .

25 IP =ob j e c t . getIP ( ) ;

26 output = new OutgoingServ iceDiscoveryRequest ( ) ;

27 output . sendObject (new Serv iceDiscoveryRequest (”PRINTING SERVICE” +”,” +

userIP +” ,”) ) ;

28 }

29

30 pub l i c void s t a r t S e r v i c e L i s t e n e r ( ) {

31 . . .

32 userIP = ob j e c t . getIP ( ) ;

33 Se rv i c eD i s c ov e ryL i s t en e r mL = new Se rv i c eD i s c ov e ryL i s t en e r ( userIP ) ) ;

34 mL. s t a r t ( ) ;

35 }

36 }

Listing A.9: ServiceDiscovery Output

1 pub l i c aspect DeviceDiscoveryAspect {

2

3 pub l i c OutgoingDeviceDiscoveryRequest output ;

4 pub l i c S t r ing IP ;

5

6 po intcut dev i ceDi scovery ( ) : c a l l ( Device . new ( ) ) && th i s ( ob j e c t ) ;

7

8 a f t e r ( Object ob j e c t ) : dev i ceDi scovery ( ) {

9 s t a r tDev i c eL i s t en e r ( ) ;

10 sendDeviceRequest ( ob j e c t ) ;

11 }

12

13 pub l i c void sendDeviceRequest ( ) {

14 . . .

15 }

16

17 pub l i c void s t a r tDev i c eL i s t en e r ( ) {
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18 . . .

19

20 }

21

22 }

Listing A.10: DeviceDiscovery Output

1 pub l i c aspect LimitedConnect iv i tyAspect {

2

3 ContigencyPlan cont igencyPlan = new PreemptionContigencyPlan ( ) ;

4 LoggingContigencyPlan logContigencyPlan = new LoggingContigencyPlan ( ) ;

5

6 po intcut l og ( ) : execut ion ( Request makeRequest ( . . ) ) ;

7 po intcut handleEvent ( ) : execut ion (∗ ∗ . ∗ ( . . ) ;

8

9 be f o r e ( ) : handleEvent ( ) {

10 cont igencyPlan . enactContigency ( ) ;

11 }

12

13 a f t e r ( ) : l og ( ) {

14 . . .

15 logContigencyPlan . enactContigency ( ) ;

16 . . .

17 }

18 }

Listing A.11: LimitedConnectivity Output

1

2 import java . u t i l . ArrayList ;

3 import java . u t i l . L inkedLis t ;

4 import java . u t i l . L i s t ;

5 import java . u t i l . Set ;

6

7 import org . openehr . rm . ∗ ;

8

9 pub l i c aspect EHRAspect{

10

11

12 po intcut EHRCreate ( S t r ing patientID , S t r ing Doctor , S t r ing St r ing data ) : c a l l (App .

g lucoseReading ( Str ing , Str ing , S t r ing ) ) & args ( patientID , Doctor , data ) ;
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13

14 a f t e r ( S t r ing patientID , S t r ing Doctor , S t r ing St r ing data ) : EHRCreate ( patientID , Doctor

, data ) {

15 createObservat ion ( patientID , Doctor , data ) ;

16 createCompos i t ion ( patientID , Doctor , data ) ;

17 createEHR ( patientID , Doctor , data ) ;

18 }

19

20

21

22 pub l i c Observat ion createObservat ion ( . . ) {

23 St r ing archetypeId = ”openEHR−EHR−OBSERVATION. laboratory−g luco s e . v1 ” ;

24 . .

25 Archetyped arch = new Archetyped (new ArchetypeID ( archetypeId ) , ”1 . 1” ) ;

26

27 Pa r t y I d en t i f i e d prov ide r = new Pa r t y I d en t i f i e d ( performer , Doctor

28 nu l l ) ;

29 re turn new Observation ( archetypeId , meaning , arch ,

30 TestTerminologyAccess .ENGLISH, TestTerminologyAccess . LATIN 1 ,

31 subject , prov ider , data , termServ ) ;

32 }

33

34

35 pub l i c Composition createCompos i t ion ( ) {

36 UIDBasedID id = new HierObjectID ( ” 1 . 1 1 . 2 . 3 . 4 . 5 . 0 ” ) ;

37 St r ing archetypeId = ”openEHR−EHR−COMPOSITION. encounter . v1 ” ;

38 St r ing archetypeNodeId = archetypeId ;

39 Data r e s u l t = new Data ( data ) ;

40

41 PartyRef per former = new PartyRef (new HierObjectID ( ” 1 . 3 . 3 . 1 . 2 . 4 2 . 1 . 1 9 9 ” ) , ”PERSON”) ;

42 PartyProxy composer = new Pa r t y I d en t i f i e d ( performer , Doctor , nu l l ) ;

43 .

44

45 Composition compos it ion = new Composition ( id , archetypeNodeId , name , a rchetypeDeta i l s ,

f eederAudit , l i nk s , parent , content , language , context , composer , category ,

t e r r i t o r y , termServ ) ;

46 re turn compos it ion ;

47 }

48

49

50 pub l i c EHR createEHR ( ) {

51 HierObjectID systemID = new HierObjectID ( ” 1 . 3 . 3 . 1 . 2 . 4 2 . 1 . 1 9 9 ” ) ;
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52 HierObjectID ehrID = new HierObjectID ( ” 1 . 3 . 3 . 1 . 2 . 4 2 . 1 . 1 9 9 ” ) ;

53 DvDateTime timeCreated = new DvDateTime ( ) ;

54 Lis t<ObjectRef> c on t r i bu t i on s = new LinkedList<ObjectRef >() ;

55 HierObjectID id1 = new HierObjectID (” sysID002 ”) ;

56 ObjectRef ehrStatus = new ObjectRef ( id1 , ”namespace ” ,”PERSON”) ;

57 ObjectRef d i r e c t o r y = nu l l ;

58

59 List<ObjectRef> compos i t ions = new LinkedList<ObjectRef >() ;

60 compos i t ions . add ( createCompos i t ion ( ) ) ;

61 EHR ehr = new EHR( systemID , ehrID , timeCreated , cont r ibu t i on s , ehrStatus ,

d i r e c to ry , compos i t ions ) ;

62 re turn ehr ;

63 }

64 }

Listing A.12: EHR Output

1 pub l i c aspect CommunicationAspect {

2

3 pub l i c Cl ientSocketConnect ion c sc ;

4

5 po intcut ClientCommunication ( ) : c a l l ( Device . new ( ) ) ;

6

7 a f t e r ( ) : ClientCommunication ( ) {

8 s t a r t L i s t e n e r ( ) ;

9 c s c = new Cl ientSocketConnect ion ( ) ;

10

11 }

12

13

14 pub l i c void s t a r t L i s t e n e r ( ) {

15 Rece iver mL = new Rece iver ( ) ;

16 mL. s t a r t ( ) ;

17 }

18

19

20 }

21

22

23

24 pub l i c aspect CommunicationAspect {

25
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26

27 po intcut ServerCommunication ( ) : c a l l ( void App . i n i t ( . . ) ) ;

28

29 a f t e r ( ) : ServerCommunication ( ) {

30 s t a r t L i s t e n e r ( ) ;

31 ServerS ideSocket socke t = new ServerS ideSocket ( 2 49 . 3 5 3 . 1 4 2 . 8 7 )

;

32 .

33 }

34

35 .

36

37 pub l i c s t a t i c void s t a r t t L i s t e n e r ( ) {

38 Rec iever mL = new Rec iever ( ) ;

39 mL. s t a r t ( ) ;

40 }

41 .

42 }

43 }

Listing A.13: Communication Output
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1 opt ions {

2 STATIC = f a l s e ;

3 JDK VERSION = ”1 . 5 ” ;

4 }

5

6 PARSER BEGIN( AlphParser )

7 package alph . compi le r . pa r s e r ;

8

9 import java . i o . PrintStream ;

10 import java . u t i l . ArrayList ;

11 import java . u t i l . L i s t ;

12

13 import alph . u t i l . Jo ine r ;

14 import alph . compi le r . bu i l d e r s . ∗ ;

15 import alph . compi le r . syntax . ∗ ;

16

17 pub l i c c l a s s AlphParser {

18 }

19

20 PARSER END( AlphParser )

21

22 SKIP : { ” ” }

23 SKIP : { < ”//” (˜ [ ”\n” ,”\ r ” ] ) ∗ (<EOL>)? > }

24 TOKEN : { < EOL : ”\n” | ”\ r ” | ”\ r \n” > }

25 TOKEN : { < INCLUDE : ” inc lude ” > }

26 TOKEN : { < OPEN PAREN : ”(” > }

27 TOKEN : { < CLOSE PAREN : ”) ” > }
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28 TOKEN : { < OPEN BRACKET : ” [” > }

29 TOKEN : { < CLOSE BRACKET : ” ]” > }

30 TOKEN : { < AT : ”@” > }

31 TOKEN : { < COMMA : ” ,” > }

32 TOKEN : { < SEMICOLON : ” ;” > }

33 TOKEN : { < DOT DOT : ” . . ” > } // TOKEN : { < JAVATYPE : ” St r ing ” | ” i n t ” | ” void ” | ”

boolean ” | ”double ” > }

34 TOKEN : { < #DIGITS : ( [”0” −”9”])+ > }

35 TOKEN : { < #LETTER : ( [ ” a”−”z ” ,”A”−”Z” ] ) > }

36 TOKEN : { < #DIGIT : ( [”0” −”9”]) > }

37 TOKEN : { < #ALPHNUM IDENT : ( < LETTER > | < DIGIT > ) ( <LETTER> | <DIGIT> | ” .” | ”

” | ”∗” ) ∗ > }

38 TOKEN : { < IDENT : <ALPHNUM IDENT> > }

39

40

41 List<Inc lude> s t a r t ( PrintStream printStream ) throws NumberFormatException : {

42 List<Inc lude> i n c l s ;

43 }

44 {

45 (

46 i n c l s = Inc lude s ( )

47 // <EOL>

48 { r e turn i n c l s ; }

49 )

50 <EOF>

51 }

52

53 List<Inc lude> Inc lude s ( ) : {

54 Inc lude i n c l ;

55 Lis t<Inc lude> i n c l s = new ArrayList<Inc lude >() ;

56 }

57 {

58 (

59 i n c l = Inc lude ( ) <EOL>

60 {

61 i n c l s . add ( i n c l ) ;

62 }

63 |

64 <EOL>

65 ) ∗

66 { r e turn i n c l s ; }

67 }
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68

69 Inc lude Inc lude ( ) : {

70 List<Action> a c t i on s ;

71 Token moduleType ;

72 Inc lude i n c l ;

73 }

74 {

75 <INCLUDE>

76 moduleType = <IDENT>

77 a c t i on s = Actions ( )

78 <SEMICOLON>

79 {

80 i n c l = new Inc lude (moduleType . t oS t r i ng ( ) , a c t i on s ) ;

81 re turn i n c l ;

82 }

83 }

84

85 List<Action> Actions ( ) : {

86 List<Action> ac t s = new ArrayList<Action >() ;

87 Action act ;

88 }

89 {

90 act = Action ( )

91 { ac t s . add ( act ) ; }

92 (

93 <COMMA> act = Action ( )

94 { ac t s . add ( act ) ; }

95 ) ∗

96 { r e turn ac t s ; }

97 }

98

99 Action Action ( ) : {

100 Token actionNameTok ;

101 St r ing actionName ;

102 Action act ;

103 List<Option> opt ions ;

104 }

105 {

106 <OPEN PAREN>

107 (

108 actionNameTok = <IDENT> <CLOSE PAREN>

109 { actionName = actionNameTok . t oS t r i ng ( ) ; }
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110 |

111 <CLOSE PAREN>

112 { actionName = ”” ; }

113 )

114 <AT>

115 opt ions = Options ( )

116 {

117 act = new Action ( actionName , opt ions ) ;

118 re turn act ;

119 }

120 }

121

122

123 List<Option> Options ( ) : {

124 List<Option> opts = new ArrayList<Option >() ;

125 Option opt ;

126 }

127 {

128 opt = Option ( )

129 { opts . add ( opt ) ; }

130 (

131 opt = Option ( )

132 { opts . add ( opt ) ; }

133 ) ∗

134 { r e turn opts ; }

135 }

136

137 Option Option ( ) : {

138 Option opt ;

139 OptionInfo opt In fo ;

140 List<OptionInfo> op t In f o s = new ArrayList<OptionInfo >() ;

141 }

142 {

143 <OPEN BRACKET>

144 opt In fo = OptInfo ( )

145 { op t In f o s . add ( opt In fo ) ; }

146 (

147 <COMMA>

148 opt In fo = OptInfo ( )

149 { op t In f o s . add ( opt In fo ) ; }

150 ) ∗

151 <CLOSE BRACKET>
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152 {

153 opt = new Option ( op t In f o s ) ;

154 re turn opt ;

155 }

156 }

157

158 OptionInfo OptInfo ( ) : {

159 Token tok1 , tok2 ;

160 JoinPoint j o inPo in t ;

161 OptionInfo opt In fo ;

162 }

163 {

164 tok1 = <IDENT>

165 { opt In fo = new Opt ionIn foSt r ing ( tok1 . t oS t r i ng ( ) ) ; }

166 (

167 tok2 = <IDENT>

168 {

169 Parameter p = new Parameter ( tok1 . t oS t r i ng ( ) , tok2 . t oS t r i ng ( ) ) ;

170 opt In fo = p ;

171 }

172 (

173 j o inPo in t = JoinPoint ( tok1 . t oS t r i ng ( ) , tok2 . t oS t r i n g ( ) )

174 { opt In fo = jo inPo in t ; }

175 ) ?

176 ) ?

177 { r e turn opt In fo ; }

178 }

179

180 JoinPoint JoinPoint ( S t r ing retType , S t r ing funName) : {

181 St r ing paramStr ;

182 List<Parameter>params ;

183 JoinPoint j o inPo in t ;

184 }

185 {

186 // retType = <IDENT>

187 //funName = <IDENT>

188 <OPEN PAREN>

189 (

190 <DOT DOT>

191 { j o i nPo in t = JoinPoint . newDotDot ( retType , funName) ; }

192 |

193 params = Params ( )
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194 { j o i nPo in t = new JoinPoint ( retType , funName , params ) ; }

195 )

196 <CLOSE PAREN>

197 {

198 re turn j o inPo in t ;

199 }

200 }

201

202 List<Parameter> Params ( ) : {

203 List<Parameter>params = new ArrayList<Parameter >() ;

204 Parameter param ;

205 }

206 {

207 (

208 param = Param ( )

209 { params . add (param) ; }

210 (

211 <COMMA> param = Param ( )

212 { params . add (param) ; }

213 ) ∗

214 ) ?

215 { r e turn params ; }

216 }

217

218 Parameter Param ( ) : {

219 Token pType , pName ;

220 }

221 {

222 pType = <IDENT>

223 pName = <IDENT>

224 { r e turn new Parameter (pType . t oS t r i ng ( ) , pName . t oS t r i ng ( ) ) ; }

225 }

Listing B.1: ALPH Language Definition
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