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Summary

Cryptocurrencies are rising in popularity with each passing day. The interest and popular-
ity of cryptocurrencies can be mainly attributed to the excitement and hype surrounding
the biggest and most popular cryptocurrency, Bitcoin. Bitcoin was launched in 2009,
becoming the worlds �rst decentralised digital currency. It has since been the source of
motivation behind many alternative cryptocurrencies (altcoins) and introduced the world
to blockchain, the technology behind which bitcoin is founded upon. A blockchain is an
immutable digital ledger in which transactions made in bitcoin or another cryptocurrency
are recorded chronologically and publicly. As the popularity of altcoins and in particular
bitcoin grows, the number of transactions in the blockchain grows proportionally, mean-
ing that there is a need to make the system as e�cient as possible in order to sustain
this growth in popularity.

This dissertation aims to make the current Bitcoin system more e�cient by targeting
the current �ooding protocol implemented by Bitcoin. As Bitcoin is a decentralized
peer-to-peer network, nodes participating in the network are only aware of their con-
nected neighbours and therefore are not aware of the network as a whole. The �ooding
protocol implemented by Bitcoin is the mechanism in which information such as trans-
actions and blocks are propagated to all the nodes in the network. However, the current
�ooding protocol is wasteful, producing a large number of duplicated and redundant
messages.

The current �ooding protocol works as follows:

1. If Node A wants to broadcast a transaction to the network, Node A will send an INV
message to its neighbours. The INV message contains the hash of transactions
Node A wants to broadcast to its neighbours, rather than the transaction as a
whole.

2. If Node A's neighbour, Node B, wants a transaction contained in the INV message
sent from Node A, Node B will respond to Node A with a GETDATA message,
indicating which transactions it requires.

3. However, if Node B does not require any transactions contained in the INV message
sent by Node A, Node B will simply ignore the INV message.

4. Node A will send the required transactions outlined in the GETDATA message to
Node B through a tx message.

The main contribution of this dissertation is the proposal of a novel protocol that aims
to reduce the number of redundant and duplicated messages being generated by the cur-
rent �ooding protocol. The proposed protocol changes the current �ooding mechanism
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employed by Bitcoin to a probabilistic �ooding approach. The proposed probabilistic
�ooding approach is based on the idea that nodes in the Bitcoin network have a wide
variance in the number of neighbours they are connected to. Node A may be connected
to 8 neighbours, whereas Node B may at the best case, be connected to 125 neighbours.
Therefore, if Node A sends an INV message to one of its neighbours that is highly con-
nected in the network, it is unlikely that they will respond to the INV message with a
GETDATA message as they are likely to have received the transactions contained in the
INV message already from their other neighbours. However, it is likely that if Node A
sends an INV message to a less well-connected neighbour, they will with a higher prob-
ability, respond to the INV message with a GETDATA message when compared to the
neighbour that is well-connected. Therefore, Node A will send an INV message to its
neighbours based on a calculated probability. The probability is based on the number of
INV messages sent to its neighbour and the number of GETDATA messages received in
response to the INV message. This idea forms the basis of the proposed novel protocol
presented in this dissertation.

The proposed protocol was evaluated through the results of multiple simulations. The
simulation simulates 58 hours of Bitcoin network usage. The proposed probabilistic
�ooding protocol was implemented in the simulation and was evaluated against the
results obtained from the simulation when the current �ooding bitcoin protocol was
implemented. The results showed that the probabilistic �ooding approach reduced the
number of INV messages sent per node and the total number of messages sent per node
by 29% and 14% respectively. It is important that along with the reduction of the
number of messages, the integrity and reliability of the system remained unchanged from
the proposed changes. The results show that along with the large reduction of messages
on the network, the system maintained its 100% transactions commit rate and the time
taken for a transaction to be committed remained unchanged. The results indicate
that a reduction of redundant messages is possible whilst maintaining the integrity and
reliability of the system, therefore meeting the main objectives of this dissertation.

iii



Abstract

An E�cient Peer-to-Peer Bitcoin Protocol with
Probabilistic Flooding

Huy Vu

The main aim of this dissertation is to adjust the �ooding protocol that is currently being
implemented within the bitcoin network in order to reduce the number of redundant
messages that each peer in the network receives. The �ooding protocol is adjusted to
take a probabilistic approach in which a node will send their transactions or blocks to
their neighbours based on a calculated probability.

The probabilistic �ooding approach was implemented within a bitcoin simulation. The
simulation results showed that the number of redundant messages exchanged within
the network and duplicated messages received by nodes had been reduced without any
negative impact on the number of transactions or blocks committed.
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1 Introduction

Cryptocurrencies, of which Bitcoin is the most popular, have risen greatly in popularity

in recent times. A cryptocurrency is a digital currency designed to work as a medium

of exchange, without the need for a central authority. Cryptocurrencies make use of

strong cryptography in order to secure and verify transactions. With the popularization

of cryptocurrencies comes an increase in daily users. As a result of this increase in daily

users, countless more transactions are made within the network leading to an increase

in network resources and power consumption by the systems in order to maintain the

cryptocurrencies. For example, Bitcoin between 2011 and 2012 averaged approximately

7,000 transactions per day, but at the time of writing, Bitcoin currently averages

approximately 270,000 transactions per day, with the daily trading value estimated at

around $500 million [3].

There are a number of reasons as to why cryptocurrencies have increased in popularity

in recent times:

1. Financial Gains - Cryptocurrencies interests many individuals, especially those

in the �nancial sector, as they are very similar to equities. Unlike �at currency

that is declared legal tender by a government, cryptocurrencies are not legal

tender and not backed by the government. Hence, the value of cryptocurrencies

is set by supply and demand. This leads to a very unpredictable and volatile

market, where the investment returns can be enormous. For example, Bitcoin

showed an approximate increase of 1,500% while Ethereum showed an increase

of over 10,000% in 2017. [3]

2. Technology - Never before in human history has there been a way to digitally

transfer currency between two parties without relying on a trusted intermediary.

The underlying technology behind which Bitcoin and many other

cryptocurrencies are founded upon is known as blockchain. Blockchain was

introduced to the world in 2009 by the pseudonym Satoshi Nakamoto, in his

paper 'Bitcoin: A Peer-to-Peer Electronic Cash System' [4]. A blockchain is an

immutable digital ledger in which transactions, made in Bitcoin or any other

cryptocurrency that uses blockchain technology, are recorded chronologically and
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publicly. This distributed ledger technology allows for a more open and

trustworthy way for people and companies to store information in a decentralized

fashion. This revolutionary technology has attracted many developers and

technologically-interested individuals as developers are now able to create

decentralized applications (dApps) on top of existing blockchain-based platforms

such as Ethereum[10].

3. Psychology - The main attribute of cryptocurrencies is that there is no central

authority. Individuals who advocate for freedom and dislike the control that

governments or companies have can �nd solace in cryptocurrencies. With

cryptocurrencies, the user is solely responsible for the management and security

of their funds. Another issue that is tackled by cryptocurrencies is privacy. If an

individual wants to stay anonymous, cryptocurrencies like Bitcoin or Monero o�er

tremendous value to protect the individual's online identity.

4. Word-of-mouth - With massive popularity in recent times, it would be di�cult

to �nd someone who has not heard of Bitcoin or cryptocurrencies. With such

enthusiasm and excitement surrounding cryptocurrencies, individuals are

intrigued to learn more about them. Whether it be the enormous return on

investments that are being generated or the innovative technology that underpins

how these cryptocurrencies work, there are many reasons why the cryptocurrency

industry is gaining so much traction.

Due to the rise in popularity of Bitcoin and other cryptocurrencies, there is a need to

make the underlying system of these cryptocurrencies as e�cient as possible in order to

sustain this growth.

Bitcoin and other blockchain-enabled cryptocurrencies usually work as follows:

• Users exchange digital assets between each other through transactions.

• Transactions are placed together in blocks.

• Blocks are linked together in a chain, creating what is known as the blockchain.

• The linking of the blocks establishes a chronological order of the blocks and

transactions, forming a distributed ledger.

As Bitcoin is a peer-to-peer (P2P) network, transactions and blocks are relayed to each

peer in the network through a mechanism known as �ooding. Flooding is when a

node receives a new transaction or block, they will attempt to send it to their

connected neighbour peers, who will then, in turn, send it to their neighbours, who will

then send it to their neighbours etc., until the transaction or block has reached every

peer in the network.
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The broadcasting of transactions and blocks usually requires the use of three messages

- an INV message, GETDATA message and a tx/block message. If there were only two

nodes in the Bitcoin P2P network, and we wanted to broadcast the 270,000 daily

transactions to the network, this would require at the worst-case, 810,000 exchanged

messages between the two peers. However, this number is much bigger in the real

Bitcoin network, as there are approximately over 10,000 nodes in the network [11].

With over 10,000 nodes in the network, and with each node required to forward a

message to all of its neighbours due to the �ooding protocol, a lot of redundant and

duplicated messages will be generated in the network.

In this dissertation, we explore a way to adjust the current �ooding protocol that is

currently implemented in the Bitcoin network to a probabilistic approach with the aim

to reduce the number of redundant messages that are currently being generated whilst

still maintaining the integrity and correctness of the system.

1.1 Motivation

The main objective of this dissertation is to reduce the number of redundant and

duplicated messages that are currently being generated in the Bitcoin network.

Reducing the number of redundant messages that are generated and received by nodes

in the network is bene�cial to the node as it will help decrease unnecessary power

consumption and CPU cycles being wasted on duplicated messages. Within the

network as a whole, reducing the number of redundant messages being broadcast

throughout the network will help reduce the bandwidth consumption.

Whilst changing the �ooding protocol, we need to also ensure that we are not a�ecting

the integrity, security or the distributed nature of the system in any way. As we are

changing the protocol in which information is disseminated in the Bitcoin network, it is

important to ensure that all valid, created transactions are con�rmed in blocks

eventually. It is also important to ensure that the system is still resilient to the major

security issues of Bitcoin such as the 51% attack or double-spending, as explained in

section 2.8.

1.2 Dissertation Structure

The dissertation is structured as follows:

1. Chapter 2 will describe the Bitcoin system in detail, outlining and explaining

the main building blocks of Bitcoin. The objective of this chapter is to give the

reader the necessary background information regarding Bitcoin and to brie�y
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outline some of the issues the Bitcoin system faces.

2. Chapter 3 discusses recent and related work associated with trying to improve

the Bitcoin system or potential P2P network improvements that could be applied

to the Bitcoin system.

3. Chapter 4 outlines the problem identi�ed currently in the Bitcoin system and

describes the suggested protocol changes proposed - the protocol changes that

form the basis of this dissertation.

4. Chapter 5 describes the results gathered from the simulations. Compares and

contrasts the results received from simulating the normal Bitcoin protocol and

the adjusted Bitcoin protocol that implements the proposed protocol changes.

5. Chapter 6 concludes the dissertation by summarising the objectives of the

dissertation, whether or not the objectives were achieved and possible future

work.
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2 Bitcoin Background

2.1 Bitcoin introduction

Bitcoin was the world's �rst decentralized digital currency, proposed in 2008 under the

pseudonym Satoshi Nakamoto in their paper titled 'Bitcoin: A Peer-to-Peer Electronic

Cash System' [4]. The objective of Bitcoin is to create a means of exchange, without

dependence on a central authority, that could be transferred electronically in a secure,

veri�able and immutable way. The most important attribute of Bitcoin is the

decentralization nature of it - the lack of dependence on a central server or trusted

parties. As mentioned in a forum post shortly after Bitcoin was launched, Satoshi

wrote that 'The root problem with conventional currency is all the trust that's required

to make it work.' [12]

In the Bitcoin network, users are able to exchange bitcoins for a multitude of purposes,

including buying and selling goods, sending money to people or charities or buying

services. Bitcoin can also be sold, purchased and exchanged for other cryptocurrencies

at cryptocurrency exchanges. Bitcoin is an entirely virtual currency, with no physical

bitcoins in existence. In order to exchange bitcoins between two parties, both parties

must have their own Bitcoin address, which is derived from their public/private

key-pair. These keys prove ownership of bitcoins in the network. With these keys, the

payer can digitally sign transactions which unlock the value of the bitcoin and transfer

the ownership of the currency to the payee. These transactions are then registered in

an immutable ledger known as the blockchain. The blockchain consists of a chain of

linking blocks, where each block is added approximately every ten minutes and

contains the transactions made within the network. The blockchain, combined with a

P2P network that uses proof-of-work (PoW)[4] as its consensus mechanism to record a

public history of transactions is the method in which Bitcoin prevents double-spending

in the network.

The network operates as follows, as outlined directly from Satoshi Nakamoto's original

paper:
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1. New transactions are broadcast to all nodes.

2. Each node collects new transactions into a block.

3. Each node begins to mine their block

4. When a node successfully mines their block, it broadcasts the block to all nodes.

5. Nodes accept the block only if all transactions in it are valid and not already

spent.

6. By updating their ledgers with this block, miners will begin mining the next block

on top of this block.[4]

2.2 Ownership - Keys and Addresses

Bitcoin is based on cryptography. Cryptography and encryption are often thought of as

synonyms for each other, however, cryptography encompasses a lot more than just

encryption. Bitcoin uses cryptography to prove knowledge of a secret (digital

signature) and to prove the authenticity of data (digital �ngerprint). These

cryptographic proofs and mathematical tools are key to how Bitcoin operates.

Bitcoin uses public key cryptography in order to create a key pair that allows users to

claim ownership and spend their bitcoins. The key pair consists of a private key and a

public key. The public key is used to derive a user's Bitcoin address from which they

can receive funds, whereas the private key is the key that allows users to spend the

funds by digitally signing transactions. As key pairs are used to store and spend funds

in the Bitcoin system, every user that wants to use bitcoin must have their own

public/private key-pair.

The private key used in Bitcoin is a 256-bit number. The public key is derived from the

private key through elliptic curve multiplication. Elliptic curve multiplication is a

one-way cryptographic function, meaning that we can generate the public key from the

private key but not vice versa [13]. The public key is then passed through a one-way

cryptographic hash function (SHA-256 & RIPEMD-160), as well as using Base58Check

encoding, to generate a user's Bitcoin address [14]. Figure 2.1 shows the process of

generating the Bitcoin address from a private key.

As we will see in further detail in the next section, when sending bitcoins through the

Bitcoin network, a new transaction must be created. The payer must present their

public key as well as digitally signing the transaction with their private key. Through

this method, everyone in the Bitcoin network may now verify and accept the transaction

as valid as the digital signature veri�es the authenticity of the transaction.
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Figure 2.1: Generating a Bitcoin Address from a Private Key.

A Bitcoin wallet is normally used to store a user's key-pair. However, storing just the

private key is also possible as you can generate your Bitcoin address from just the

private key. Ownership of the private key allows full control of the Bitcoin address

associated with that private key. The private key can be used to move the funds

associated with the corresponding Bitcoin address by creating the digital signature that

is required by transactions. It is important to keep the private key secret at all times as

allowing third parties access to the private key will give them control of the funds

associated with the key. If a user loses their private key through accidental loss, unless

they have the key backed up, there is no method to be able to retrieve the private key

and the funds associated with the key.

2.3 Transactions

Transactions are the most important part of the Bitcoin system. Everything in the

Bitcoin system from mining to the blockchain is designed so that transactions are able

to be created, propagated, validated and added to the globally distributed ledger (the

blockchain).

Transactions can be broken down into transaction outputs, transaction inputs and the

transaction ID. The transaction inputs are the accounts of the payers and the

transaction outputs are where the bitcoins are being sent to i.e. the payee's account.

The transaction ID uniquely identi�es each transaction [7]. Transaction outputs are

fundamental in Bitcoin transactions. Transaction outputs are indivisible chunks of

Bitcoin currency that are recorded on the blockchain and are seen as valid and

spendable by the Bitcoin network. Unspent transaction outputs or UTXO are available

and spendable transaction outputs. A user's Bitcoin 'balance' is the sum of all the

UTXO associated with the user's Bitcoin address.

Just as Euros can be broken down to two decimal places, transaction outputs can be

broken down to eight decimal places, known as satoshis. A satoshi represents the
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smallest unit of Bitcoin currency, it is one hundred millionth of a Bitcoin (0.00000001

BTC) [15]. However, an important characteristic of transaction outputs is that once it

is created, it is indivisible and must be consumed in its entirety during a transaction. If

a UTXO is larger than the value of a transaction, it must still be consumed in its

entirety and change will be generated. For example, if Alice wants to send Bob 7BTC,

but she has a UTXO that is worth 5BTC and another UTXO worth 5BTC, she can

combine the two UTXO to satisfy the transaction value. The transaction between Alice

and Bob will consume Alice's combined UTXO worth 10BTC, sending 7BTC to Bob's

Bitcoin address and generating 3BTC as change back to Alice's address. Figure 2.2

shows this transaction example.

Figure 2.2: Example of Transaction Showing How Change is Generated.

Transactions consume UTXO which in turn creates new transaction outputs that can

be spent by the payee. Every output of a transaction will also contain one or more

inputs that indicate where the Bitcoin originated from before the transaction. This list

of inputs in every transaction creates a chain of previous owners, which you can follow

and will eventually lead you back to the coinbase transaction.

The coinbase transaction is a special transaction which contains no inputs. It is the

�rst transaction of any given block. It is placed there by the miner who successfully

mined the block and creates brand-new, unspent bitcoins that will be sent to the

mining node as a reward for mining the block. This is the method by which the entire

supply of bitcoins is generated.

In order to transfer bitcoins to an account, the public key of the payee's account must
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be listed as the destination of the transaction. The payer must also sign the

transaction. They do this by digitally signing a hash of the previous transaction and

the public key of the next owner as shown in Figure 2.3 [4]. The previous transactions

in Figure 2.3 represent where the payer received the current bitcoins they are using in

the current transaction.

Figure 2.3: Example Transaction [4]

In order for a transaction to be valid, the following criteria must be ful�lled by the

outputs claimed and created:

• An output may be claimed at most once.

• New outputs are created solely as a result of a transaction.

• The sum of the values of the inputs has to be greater than or equal to the sum

of the values of the newly allocated outputs 1. [7]

As new transactions are being propagated through the Bitcoin network, the state of

the local ledger is constantly changing. Transactions are propagated through the

network to keep the nodes informed of the latest UTXO. As the Bitcoin network is a

P2P network, transactions may reach di�erent nodes at di�erent times. This may

introduce inconsistencies across nodes local ledgers. A nodes local ledger may:

• Receive a transaction sending bitcoins from a certain bitcoin address but may not

yet have received the transaction which made those coins available to that

address.
1If inputs > outputs, miners can collect the di�erence as a transaction fee or may be sent back to

the payee's address as change.
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• Receive multiple transactions from the same bitcoin address that attempt to

spend the same coins multiple times. This is known as the double-spending

attack. [7]

The double-spending attack occurs when a user attempts to spend the same coins

multiple times. In real life, a double-spending attack would be equivalent of a user

attempting to send multiple transactions to their bank, attempting to spend that

balance multiple times. In this situation, the bank will recognize the attempt to spend

the balance multiple times and decline it. However, as Bitcoin is a decentralized

system, attempting to prevent double-spending is far from trivial. When a node receives

the �rst transaction of multiple transactions attempting to spend the same coins, they

will verify and validate that transaction. As more transactions attempting to spend the

same coins are received by the node, the node will reject the transactions as the

outputs have already been spent by the �rst transaction. However, it is not guaranteed

that nodes in the network will receive con�icting transactions in the same order. As a

result, the nodes will disagree about the validity of the con�icting transactions and all

other transactions that were built on top of the claimed outputs.

Therefore it is extremely important that a common order of transactions are agreed

among all the nodes within the network. We will see how Bitcoin solves this problem in

the following sections.

2.4 Blocks

A block is a data structure that is composed of a set of transactions and a block

header. Blocks on the blockchain are identi�ed via the block header hash. The block

hash is calculated by running the block header through the SHA-256 algorithm twice

[15]. The block header is 80 bytes long and consists of the following six �elds

[15]:

Size Field Description

4 bytes Version The bitcoin version number

32 bytes Previous Block Hash The previous block header hash

32 bytes Merkle Root A hash of the root of the Merkle tree of this block's transaction

4 bytes Timestamp The timestamp of the block in UNIX

4 bytes Di�culty Target The di�culty target for the block

4 bytes Nonce The counter used by miners to generate a correct hash

The block size limit of blocks in bitcoin is limited to 1MB per block, therefore there is

a maximum number of transactions allowed in each block. Currently, there is an
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average of approximately 2,000 transactions included per block [3].

Figure 2.4: Example blocks in the blockchain [1]

2.5 Mining

When a new transaction is propagated through the Bitcoin network, it is stored in each

node's local mempool. The Bitcoin mempool is a pool of uncon�rmed transactions in

the Bitcoin network. Each node has their own mempool. The transactions in the

mempool may be valid transactions but are not yet con�rmed by the Bitcoin network.

The transactions are not seen as con�rmed transactions until they are included in a

block that is on the blockchain. The process in which transactions are taken from the

mempool and included in blocks is known as mining.

As mentioned in section 2.4, nodes in the network may not receive transactions in the

same order which leads to inconsistent and con�icting transactions. There is a need for

a common order of transactions to be agreed among all the nodes in the Bitcoin

network. Mining, along with blockchain, are the mechanisms used in Bitcoin which

allows for a network-wide consensus without the need for a central authority.

As seen in section 2.5, transactions are bundled into data structures known as blocks.

The block is then added to the blockchain, the public ledger of all transactions that

every node in the network agrees upon to be valid 2.

2.5.1 Proof-of-Work

The process of mining a block is a computationally di�cult process. The nodes which

attempt to mine a block, known as miners, must �nd the solution to Bitcoin's PoW

problem. The PoW problem consists of �nding an integer value, known as a nonce,

that when combined with the block header, will provide a hash with a given number of

2Nodes may have temporary con�icting ledgers caused by forks, as explained in section 2.5.4.
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leading zeroes, known as the di�culty [7]. As cryptographic hashes are a one-way

function, the only solution for miners to �nd the nonce that will satisfy the di�culty of

the block is to use a brute-force approach, testing di�erent values for the nonce until a

suitable hash is found. The nonce which satis�es the di�culty check of the block,

known as the golden nonce, is therefore very di�cult to �nd but once found, is

straight-forward to verify it. When mining a block in bitcoin, there is no such thing as

being '15%' to solving a block; a miner's chance of mining a block is the same as it

was when they started mining the block [1].

2.5.2 Di�culty

The Bitcoin network attempts to produce a block, on average, every ten minutes3 [4].

As the hash power of the Bitcoin network increases, the rate at which blocks are solved

would increase and vice versa, as the hash power of the Bitcoin network decreases, the

rate at which blocks are solved would also decrease. The di�culty to solve a block is

therefore adjusted every 2016 blocks or approximately every two weeks. If the 2016

blocks solved during the two week period is solved faster than average, the Bitcoin

di�culty increases proportionally. If it took longer than average to solve the 2016

blocks, the di�culty is decreased proportionally.

2.5.3 Incentives

As mentioned in section 2.3, a special type of transaction known as the coinbase

transaction is the �rst transaction in any given block. The coinbase transaction is the

reward given to a miner for successfully mining a block. As the Bitcoin protocol

speci�es that there can only be 21 million bitcoins mined in total [15], the amount of

bitcoins awarded to the miner as part of the coinbase transaction decreases over time

as mining is the sole method in which bitcoins are created. When the �rst block,

known as the genesis block, was mined by Satoshi Nakamoto on January 3rd 2009, the

block contained just one transaction - the 50 BTC reward for mining it. The Bitcoin

reward for mining a block is halved every four years or every 210,000 blocks. The �rst

Bitcoin halving occurred on November 28, 2012 when block 210,000 was solved [15].

The Bitcoin reward was then changed from the original 50BTC to 25BTC until block

420,000 was solved. The next Bitcoin halving date is expected to be on May 24th,

2020 where the coin reward will be decreased from 12.5 BTC to 6.25 BTC. It is

estimated that the last bitcoin to be mined will be in 2140.

As mentioned in section 2.4, the block size limit is 1MB, therefore there is a maximum

3Ten minutes was chosen as a compromise between block rate and the risk of a fork in the chain
occurring.
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Figure 2.5: Number of Bitcoins in Circulation [2]

number of transactions that can be placed in a block. Block rewards are not the only

incentives for miners as miners also collect transactions fees. Every transaction may

have a transaction fee attached to it - the higher the transaction fee, the higher priority

the transaction has to be placed in the next block by the miner. If there are two

transactions of similar byte size but only one will �t in the block, the miner will

prioritize the transaction that has the higher attached transaction fee. The transaction

fees associated with every transaction the miner includes in the block they mined will

be collected as payment by the miner. As mentioned above, the mining reward for

mining a block will continue to halve every four years until the 21 million Bitcoin limit

is hit and there are no more Bitcoin left to mine. When this happens, transaction fees

are then left as the only incentive for miners to continually mine blocks. It is important

to note that the purpose of mining is not to create new bitcoins but to provide an

incentive for nodes in the network to mine blocks which maintain the network's

security.

2.5.4 Forks

As the Bitcoin network is a decentralized P2P network, nodes within the network may

sometimes have an inconsistent view of the blockchain. This inconsistency may occur

when two nodes in the network discover and propagate di�erent blocks at

approximately the same time. The two di�erent blocks will propagate through the
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Bitcoin network, arriving at nodes at di�erent times. The nodes will accept the �rst

block that they received and reject but save the other block when they eventually

receive it [4]. Nodes in the network will now have a temporary inconsistent view of the

blockchain, as there are now two blocks claiming to be the blockchain head. In order

to resolve this inconsistency, nodes can work on either branch of the fork but are likely

to work on the block that they received �rst [16]. The fork would likely be decided

when the next block is mined and one branch becomes longer than the other. The

longer branch will become the correct one and nodes working on the other branch will

then switch to the longer one. This occurs as nodes always consider the longest chain

to be the correct one and will keep working on extending it [4].

The fork may not always be resolved after the �rst block after the fork is found, it may

be prolonged by the partitions of the network �nding more blocks h+1, h+2, h+3...

until one branch becomes longer than the other. The partitions that did not adopt the

branch will then switch over to the longest branch. At this point, the blockchain fork is

resolved and there is no longer an inconsistency among the nodes in the network. The

blocks that are discarded when the fork is resolved are known as orphan blocks

[7].

2.5.5 Mining pools

As mining is extremely competitive and it is very unlikely that individual miners by

themselves will �nd the solution to the proof-of-work to produce the next block; miners

are encouraged to join mining pools. Miners collaborate with each other by pooling

their hashing power and sharing the rewards among each other. By participating in a

mining pool, you receive a smaller reward for mining the block as opposed to mining

the block individually. However, the frequency in which you are rewarded is higher

when participating in a mining pool as the miner's hash power in the pool are

combined, leading to a higher probability of mining the next block.

Mining pools, although helpful to the average miner, unfortunately, concentrate a lot

of the networks hashing power to the mining pool's owner. The issue of having such a

large concentration of the network's hashing power is the potential of the 51% attack,

which will be discussed in more detail in section 2.8.
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Figure 2.6: Hashrate Distribution Amongst the Largest Mining Pools. [3]

2.6 The Blockchain

Thus far, when blocks are mined and transactions are placed in the blocks, the blocks

do not o�er any synchronization or chronological ordering of the transactions.

However, this changes when blocks are linked together sequentially, creating a

chronological ordering over the blocks and therefore the transactions in the blocks [7].

This sequential formation of blocks is known as the blockchain [17]. When a block is

created and propagated through the network, it is added to the blockchain by creating

a reference to the latest block on the blockchain (the previous block). The chaining of

each block to the previous block is what creates a chronological ordering of

transactions in the network. The referenced previous block is known as the parent

block. Blocks may only have one parent block, but can temporarily have multiple

children during a blockchain fork, as seen in section 2.5.4. As every block references

the previous block, the blockchain is made up of a single sequence of blocks from the

�rst block, or the genesis block, to the latest generated block [17]. The blocks can be

thought of as a directed tree, with the genesis block being the root of the tree and the

subsequent blocks represented as leaves of the tree [7]. The distance between a block

and the genesis block is referred to as its block height, and the block that is furthest
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away from the genesis block is known as the blockchain head [7].

Figure 2.7: Blockchain representation example [4]

2.6.1 Merkle Tree

The set of transactions included in blocks are summarized using a Merkle tree [4].

A Merkle tree, also called a hash tree, summarizes all the transactions in a block by

producing a digital �ngerprint of the entire set of transactions [18]. The digital

�ngerprint enables nodes to e�ciently verify the integrity of the data and whether or

not a transaction is included in a block.

As mentioned in section 2.4, the byte header consists of six di�erent �elds, one of

which is the Merkle root.

The Merkle root represents the �nal hash of a Merkle tree. A Merkle tree is created

bottom up from the hashes of the transaction IDs from the set of transactions included

in the block. The hashes are then repeatedly hashed together until there is only one

hash left i.e. the Merkle root. As Merkle trees are binary, if the number of transactions

is not a power of 2, the last hash will be duplicated in order to create an even number

of leaf nodes.

Satoshi discusses the use of Merkle trees as a way to save disk space [4]. By using a

Merkle tree, it is only necessary to store the most recent transactions and the hashes of

the tree, the spent transactions can be pruned to save disk space, as seen in �gure 2.8

[4].

2.6.2 Simpli�ed Payment Veri�cation

Merkle trees are used extensively by SPV (simpli�ed payment veri�cation) nodes. SPV

nodes are nodes that only downloads the headers of the blocks during the initial

syncing process, as opposed to downloading the full blockchain [2]. The SPV node may

then request transactions from full nodes as needed [2]. The Merkle root located in the

block headers, along with the Merkle path can prove to the SPV node that a

transaction exists in a block in the blockchain. When the SPV node �gures out the

Merkle root associated with the transaction, it will request the respective Merkle path
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Figure 2.8: Merkle Tree example [4]

from a full node. A full node is a node that fully downloads and validates the entire

blockchain, from the genesis block to the latest block. Once the SPV node receives the

Merkle path, they can con�rm if the transaction is included in the block. The SPV

node may then look at the block depth for transaction validity and con�rmation. The

more blocks built on top of the block for which the transaction was located in, the

more secure and valid the transaction may be. The block depth represents the number

of blocks built on top of the block for which the transaction is located. The higher the

block depth, the more secure and valid the transactions located in the block are. It is

suggested to wait until a transaction is six blocks deep for it to be considered as

'con�rmed' [2]. This is to prevent the double-spending attack, which is explained in

section 2.8.
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2.7 The Bitcoin Network

The Bitcoin network is structured as a decentralized P2P network. In a P2P network,

nodes participating in the network are seen as peers. Peers are all treated as equal,

with shared responsibility in providing network services. The Bitcoin network consists of

over 10,000 nodes [6]. Each node in the network implements a version of the Bitcoin

protocol through the use of a Bitcoin client. Although there are several Bitcoin clients

available to use, the Bitcoin client used by the majority of the nodes in the network is

Bitcoin Core, also known as the reference client or the Satoshi client [19].

Although all the peers in the network are equal, they may have di�erent roles based on

the di�erent functions they support. For example, as discussed in section 2.6.2, SPV

nodes do not keep a copy of the full blockchain and do not participate in mining. They

are lightweight nodes that integrate the wallet and routing function, designed for peers

with limited resources. In contrast, full nodes may be either a full blockchain node

when it includes routing and full blockchain functions, or a solo miner when it includes

routing, the full blockchain and mining functions [6]. However, in order to participate

in the Bitcoin network, nodes must implement a mandatory routing function. The

routing function includes network discovery of new peers, establishing inbound and

outbound connections, validating transactions and blocks and propagating information

through the network [6].

2.7.1 Network Discovery

Nodes on the Bitcoin network are identi�ed based on their public IP address. A node in

the network may have a maximum of 8 outbound connections and 117 inbound

connections, however, a node with a private IP address only initiates eight outgoing

connections [20]. Connections are created and maintained over TCP.

When a new node joins the Bitcoin network, it must discover nodes already

participating in the network. The geographic location of the connecting node and other

nodes on the network is irrelevant as the Bitcoin network is not geographically de�ned.

There are several mechanisms for peer discovery in the Bitcoin network [6]:

• Local Address Database - The primary method for which nodes in the

network to locate clients is to connect to the nodes in their address database.

This is a list of nodes stored locally from a previous connection to the network.

However, this method does not work for nodes joining the network for the �rst

time or joining after a very long period of disconnection.

• Asking DNS Seeds - If the node has no nodes in their address database, the

primary fallback option is to query DNS seeds. DNS seeds are DNS servers that
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provide a list of stable Bitcoin listening nodes.

• Seed Node - The command-line argument -seednode can be used to connect to

one node, known as the seed node4. The connection to the seed node is used to

introduce the node to other peers in the network. After the seed node is used to

receive information about other peers in the network, the node may disconnect

from the seed node to prevent too many connections to the seed node.

• User-speci�ed Commands - The node may run user-speci�ed commands on

the command line (-addnode and -connect)5 to connect to speci�c nodes where

the IP address is known.

• GETADDR messages - The node may request for other peers by sending the

GETADDR message to their neighbours. The neighbours will respond with a list

of possible IP addresses of Bitcoin nodes in the network.

Using one of the methods mentioned above, a node connecting to the Bitcoin network

will now have at least one known IP address of a node in the Bitcoin network to

connect to. To connect to one of the peers in the network, the node must establish a

TCP connection to the node, usually on port 8333 which is generally known as the

port used by Bitcoin [5].

Once a connection over TCP has been established, the nodes will initiate a 'handshake'

to determine compatibility between the nodes. The handshake is initiated by the

transmission of a version message, which contains the following basic information

[5]:

Field Description

nVersion The current Bitcoin P2P protocol version the node implements

nLocalServices A list of local services supported by the node

nTime The current time

addrYou The IP address of the node that you are attempting to connect to

addrMe The IP address of the current node

subVer Type of software running on this node (e.g., /Satoshi:0.17.1/)

BestHeight The block height of the node's blockchain

The version message is always the �rst message sent by peers attempting to establish a

connection to another peer. The version message is sent by �rst to determine whether

or not the peers or compatible. The node receiving the version message will examine

the received nVersion �eld of the version message and determine whether or not they

are compatible. If the peer is compatible, the version message is acknowledged and the

4This argument is speci�c to Bitcoin Core.
5Speci�c to Bitcoin Core.
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connection is established by the sending of a verack, as shown in �gure 2.9.

Figure 2.9: Initial Handshake [5]

Once a connection or one or more peers in the network have been established, the node

may request for more IP addresses in the Bitcoin network by sending a GETADDR

message to their connected peers. As mentioned earlier, each node maintains a local

address database containing discovered peers in the network. For each entry in the

database, the database includes the peer's IP address, port number, the last time the

peer was seen on the network and the timestamp of the last connection [6]. All entries

are classi�ed and added into buckets. There are two buckets in the database, buckets

for tried addresses and buckets for new addresses. The peer addresses that have had at

least one outgoing/incoming successful connection to it are placed in the tried

addresses whereas the peer addresses for which there were no connections established

are placed in the new addresses. There are 256 buckets for the tried addresses and

1024 buckets for the new addresses, with each bucket able to contain a maximum of

64 entries each. Therefore, the max number of entries in the database is limited to

81920 addresses [6]. The local database is called the addrMan [21]. When a Node X

wants to request a list of node addresses from a Node Y, it will issue a GETADDR

message to Node Y. In response to the GETADDR message, Node Y will respond with

up to 1,000 entries from their addrMan database, chosen uniformly at random [21].
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The vast majority of entries in addrMan do not always necessarily correspond to active

addresses in the Bitcoin network as the entries in the addrMan database are mainly

composed of addresses that the node has learned from other ADDR messages. Figure

2.10 shows the protocol explained above for further address discovery.

Figure 2.10: Address Propagation and Discovery [5]

2.7.2 Neighbour Selection

As mentioned previously, a Bitcoin node may have up to a maximum of eight outbound

connections and a maximum of 117 inbound connections. Nodes may refuse any

inbound connections if desired, however, this is bad for supporting the Bitcoin network.

When a node's number of outbound connections is less than the maximum of eight, a

selection algorithm is applied to decide the new outbound connection [6]. Although a

node can reject any inbound connections, it should never drop its outbound

connections. A Bitcoin node never deliberately drops a connection unless the connected

peer is blacklisted (e.g., if the peer sends ADDR messages that are too large) [20].

The selection algorithm is shown in �gure 2.11, with the main idea of the algorithm

being the use of unequal selection probabilities favouring fresh peers [6].
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Figure 2.11: Algorithim for Selecting a New Outbound Connection [6]

2.7.3 Information Propagation

When new transactions or blocks are created in the Bitcoin network, they must be

broadcasted to the entire network to inform the peers in the network of the new

transactions/block. As the Bitcoin network is a decentralized P2P network, there is no

central authority to distribute the transactions/blocks to every peer in the network. As

nodes in the network are only aware of their directly connected neighbours, Bitcoin

implements a gossip-based �ooding protocol to propagate transactions and blocks

across the network.

When propagating information across the Bitcoin network, a node maintains a message

queue for all of their connected neighbours. This message queue may contain di�erent

types of messages that a node may want to send to their neighbours, such as

transaction hashes or block hashes etc. Along with the message queue, there is a timer

associated with each neighbour. All the messages within the message queue will be

sent to the associated neighbour when the timer elapses. The time out is calculated

using a Poisson distribution [11].
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In order for a node not to send the same transactions or blocks that their neighbouring

peers may already have, transactions and blocks are not forwarded directly to their

neighbours. Instead, an INVentory message or INV message is sent to their

neighbours. The INV message transmits one or more inventories of objects known to

the transmitting peer and are now available to be requested from the transmitting peer

if the receiving node is missing one or more of the inventories of objects in the INV

message[7]. If the receiving node requires any of the transactions or blocks within the

INV message, they will respond to the sender node with a GETDATA message, which

contains the hashes of the information the node requires. Once the GETDATA

message is received, the sender node will send the requested block or transaction via

individual block or tx messages [7]. However, if a node receives an INV message that

contains transactions and blocks that the node already possesses, the node will simply

ignore the INV message and not respond with a message to the sender node.

Although sending INV messages to neighbouring peers will prevent the peers from

receiving duplicate transactions, peers may still receive duplicate INV messages for the

same transaction. This occurs as a node's neighbours does not know which

transactions the node currently has or is missing. Therefore, if a node's neighbour

recently received new transactions, they will add it to the INV message that will be

sent to the node as they assume the node might not have the transactions they just

received. As every node's neighbours may think the same, a node may receive an INV

message for the same transaction from all of their connected neighbours (125 worst

case) whereas 1 INV message would have su�ced to send the transaction to the

node.

Figure 2.12: Message Exchange For The Propgation of Information across the Bitcoin
Network [7]
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Compact Blocks

Historically, the Bitcoin P2P protocol for the dissemination of blocks had not been very

bandwidth e�cient. This is due to the fact that every transaction was included in the

blocks when propagated through the network, even though the nodes in the network

already had the majority, if not all, the transactions in their local mempool.

Blocks would be advertised in INV messages, just as transactions are. If a node does

not have the broadcasted block, they will again respond with a GETDATA message to

the transmitting node. The node will then send the entire block containing the full set

of transactions to the node, regardless of the fact that the receiving node may already

have all the transactions in their local mempool. Bitcoin Core developers identi�ed this

waste of bandwidth during block propagation and introduced compact block relay, BIP

152, in 2016 [8].

In compact block relay, peers send compact block 'sketches' to receiving peers. The

sketches include the following information:

1. The 80-byte header of the new block

2. Shortened transaction identi�ers (txids)

3. Some full transactions which the transmitting peer predicts the receiving peer

may not have in their mempool

The receiving peer will attempt to reconstruct the block from the 'sketch', using the

received information and transactions in its mempool. If the peer is still missing

transactions to completely reconstruct the block, it will request the missing

transactions from the transmitting peer by sending a getblocktxn message [8].

The main advantage of compact block relay is that in the best case, transactions only

have to be sent once - when they are originally broadcasted. This reduction in

duplicated transactions reduces the overall bandwidth signi�cantly.

Compact block relay has two modes of operation - high bandwidth relaying and low

bandwidth relaying. In high bandwidth mode, the receiving peer asks its neighbouring

nodes to send new blocks without asking for permission i.e. without the INV message.

This increases the bandwidth as two or more nodes may be sending the same block to

the receiving node at the same time, however, this reduces the amount of time it takes

for a block to arrive at the receiving node [8]. The high bandwidth relaying option may

be of use to mining nodes, who want to receive the latest block as soon as possible so

they can be working on mining the next block. In low bandwidth mode, the receiving

peer will wait for an INV message from the transmitting peer before replying with a

GETDATA message for the compact block if needed. Figure 2.13 displays the three
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methods of relaying blocks - the two modes of operation of compact block relay and

the legacy version of block relay. The grey box represents the validation time.

Figure 2.13: Three Methods of Block Relay [8]

2.8 Bitcoin Security

As Bitcoin is the world's most popular cryptocurrency with a market cap of

approximately $70 billion at the time of writing, it is vitally important that the system

is resilient to potential attacks on the system. As the main attribute of a decentralized

digital currency is the lack of a need for a central authority, security and privacy

become exponentially more important than before. In this section, we will discuss

known security vulnerabilities in relation to Bitcoin.

51% attack

The 51 percent attack is an attack on the Bitcoin network where an entity controls

51% or more of the computing power, meaning it can control the blockchain [22].

With the PoW consensus mechanism that is implemented within Bitcoin, the

probability of mining a block is based on the computational power of a user relative to

the rest of the network's computational power. The better their CPU/GPU, the more

hashes they are able to check per cycle, leading to a higher chance of �nding the nonce

in order to mine the block. As the odds of a person mining a block with just a single
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CPU/GPU is extremely low, people are encouraged to join mining pools, as discussed

in section 2.5.5. In mining pools, miners harmonize their computational power in order

for a higher chance to successfully mine a block. When a mining pool becomes too

large and too powerful that it can manage to control 51% of the computational power,

it then becomes a problem to the Bitcoin network. Controlling over 51% of the

computational power would allow the entity to:

1. Prevent new transactions from gaining con�rmations.

2. Allow the entity to halt payments between some or all users.

3. Allow for the possibility of double-spending coins.

However, due to the e�ective computational power in the Bitcoin network, a 49.1%

share of the computational power in the network is enough for an attacker to carry out

the above attacks [7].

Hackers and Cyber-Attacks

As Bitcoin is a decentralized digital currency, cyber attacks directed at Bitcoin

exchanges and wallets is a real concern. The attackers are not attacking the blockchain

itself, as described above, as it is quite di�cult to attack the blockchain as it requires

the majority of computational power within the Bitcoin network. Attackers are more

likely to target the major bitcoin/cryptocurrency exchanges, where bitcoins and other

cryptocurrencies are exchanged and stored. An example of a successful attack on a

Bitcoin exchange is the attack on Mt. Gox. Mt. Gox was a Bitcoin exchange based in

Tokyo, Japan. Launched in 2010, by 2014 it was handling over 70% of all Bitcoin

transactions worldwide, meaning it was the largest Bitcoin intermediary and the world's

leading Bitcoin exchange. The attack in 2014 led to Mt. Gox losing approximately

850,000 bitcoins (around 7% of all bitcoins in existence at the time), valued at the

equivalent of $460 million at the time, or approximately $3.3 billion in today's market

[23]. As a result of this attack, Bitcoin users are highly recommended not to store their

bitcoins on an exchange but rather transfer them to their own personal cryptocurrency

wallet.

Double-Spending Attack

Double-spending means spending the same money twice. Double-spending is and will

always be an issue with digital currency as opposed to traditional, �at currency. If you

go to the shop and buy a sandwich worth $10, you hand the vendor $10 in cash in

exchange for the sandwich - there is no possibility that you would be able to spend

that $10 again. However, whenever you are making a transaction with digital currency,

you have to broadcast that transaction to your neighbouring nodes who then con�rm
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the transaction is valid. A double-spend attack occurs when a user attempts to send

their coins to two users at the same time by forwarding their transaction to two

di�erent nodes within the network. As the Bitcoin network is a distributed P2P

network, there is a propagation delay between nodes and due to this delay, there would

be a period in time where the two nodes both believe that they have the correct and

valid transaction from the node attempting to double-spend their coins. However,

transactions are not con�rmed in Bitcoin until they are placed in blocks. If an entity

has over 51% of the computational power, they can spend their bitcoin on the

`truthful' version of the blockchain while they do not include their transactions in their

`secret' blockchain that they are mining. As the secret blockchain gets longer than the

`truthful' version of the blockchain, the entity will then broadcast their `secret' and

longer blockchain to the network. Truthful miners and nodes will always work on the

longest chain [4], meaning that they will work on the malicious entities chain when it is

broadcasted. This means that the old chain, where the malicious entities transactions

were spent, will be abandoned and disregarded as it is the shorter chain, so that data is

now irrelevant. Now, the malicious entity can spend their coins again as the new

version of the blockchain does not contain any of their transactions that they spent -

the old, now abandoned, version of the blockchain contained their transactions [24].

The ability to double-spend in Bitcoin is highly dependant on the ability to control over

51% of the computing power within the network. An example of the double-spending

attack is shown in �gure 2.14.

Figure 2.14: An example of the double-spending attack
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Sel�sh Mining

Courtois and Bahack [25] indicated that miners could have a speci�c mining strategy

known as sel�sh mining, also known as block discarding attack. In sel�sh mining,

nodes purposely withhold mined blocks from the network, only revealing the mined

block(s) in a selective way which bene�ts the sel�sh miners. Through sel�sh mining,

the sel�sh miners purposely create a fork in the blockchain. The sel�sh miners will

continue working on their private chain, while honest miners are working on the public

chain. If the sel�sh miners can get a lead on the honest miners (i.e. have more blocks

mined than the public branch), they can maintain the lead for longer, therefore

increasing their rewards as well as wasting the honest miners time and resources. In

order to avoid any losses, the sel�sh miners will publish their private branch when the

public branch and honest miners are about to catch up to the private branch. By doing

this, the miners in the network will have to work on the sel�sh miners newly publish

branch, as miners always work on the longest branch [4]. The honest miners will now

lose their rewards for the previously mined blocks, as the blocks are now invalidated.

Eyal and Sirer [26] show that through the use of sel�sh mining, the sel�sh pool's

reward exceeds its share of the networks computational power. Figure 2.15 shows an

example of sel�sh-mining.

Figure 2.15: Sel�sh-Mining [9]
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Eclipse Attack

An eclipse attack is an attack on a speci�ed user/node(s) in a decentralized P2P

network. The attacker attempts to isolate their victim node by controlling all the

neighbouring nodes it is connected to, preventing the victim node from receiving a true

picture of the network and the network's activities/ledger state. This is able to occur

as in decentralized P2P networks, nodes are not able to connect simultaneously to all

the nodes within the network. Instead, they are only able to connect to a subset of

nodes, who in turn are connected to their own subset of nodes etc. Eclipsing a victim

node is bene�cial to the malicious actor as they would be able to exploit them. The

malicious actor would be able to double-spend their coins against the victim node. For

example, if User A is the malicious actor, User B is the victim and User C is a normal

node within the network, User A can send the same transaction to User C and User B.

However, since User B is eclipsed and isolated, User B would not know that the same

transaction has been sent to User C and will accept the transaction as valid. However,

when User B later connects to the true blockchain, they will realize that the coins for

the transaction has already been spent and they will receive nothing as the transaction

is invalid. Figure 2.16 represents a simple example of an eclipse attack.

Figure 2.16: A simple example of an eclipse attack [9]
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Sybil Attacks

A Sybil attack is an attack on a P2P network by creating multiple fake identities on

the network. To nodes within the network, these multiple identities seem to be unique

but in reality, they are all controlled by a single entity. This may help the entity

in�uence the network through additional power gained by having multiple nodes within

the network [9]. However, Bitcoin mitigates a Sybil attack through mining and PoW.

In order to create a new mining node, there needs to be a computer with processing

power in order to mine. Therefore, creating hundreds or thousands of pseudonymous

nodes comes at a signi�cant cost that is not worth it for the malicious entity. Sybil

attacks are di�erent to eclipse attacks as eclipse attacks are targeting a single node

whereas Sybil attacks is a network targeted attack.
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3 Related Work

In this section, we will discuss multiple studies that have focused on improving the

Bitcoin system.

Decker and Wattenhofer [7] explores the limits of the Bitcoin protocol and whether or

not changes in the node's behavior can change to improve the blockchain fork rate.

They attempt to improve information propagation within the Bitcoin network by:

1. Minimize veri�cation

2. Pipelining block propagation

3. Connectivity increase

They limit the changes in a unilateral manner in order to assess the e�ectiveness

without major changes in the Bitcoin protocol, which would have to be vetted and

agreed upon by the Bitcoin community.

The major contribution to propagation delay is the time a node spends on verifying a

block before further propagating the block to the network. Block veri�cation can be

divided into two phases:

1. Initial di�culty check

2. A transaction validation

The initial di�culty check is to ensure the correct nonce was found to solve the PoW

associated with the block. It also ensures that the block is not a duplicate block and it

references a recent block as its predecessor. The majority of the veri�cation time is

spent verifying the individual transactions included in the block. The suggested change

is to propagate the block as soon as the initial di�culty check is veri�ed. Figure 3.1

shows the changes described above.

Another improvement suggested by Decker and Wattenhofer was pipelining block

propagation. This is achieved by immediately forwarding incoming INV messages to the

node's neighbours. This is to amortize the round-trip times between the node and its

neighbours by pre-emptively announcing the availability of a block before it actually is
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Figure 3.1: Message Exchange After the Changes Described are Applied [7]

available. However, as stated in the study, these two changes are unlikely to result in a

large improvement if only implemented by a single node in the network.

The third change implemented was to decrease the distance between the

transactions/blocks between nodes. Decker and Wattenhofer attempted to connect to

every node, therefore creating a central communication hub between the nodes in the

network which resulted in the distance between two nodes to be 2 [7].

The results of the studies showed that the blockchain fork rate dropped from 1.69% to

0.78%. The pipelining and veri�cation, as mentioned previously, had a very small e�ect

on the system. The last change had high bandwidth spikes up to around 100 MB/s

and resulted in a total upload of 2.31TB of raw data during the testing period.

However, the issue with the approach taken by Decker and Wattenhofer is the third

change, which essentially centralizes the network. As stated previously, one of the main

and most important characteristics of Bitcoin is the decentralization nature of it,

making it highly resilient to the potential attacks described in section 2.8. By creating

a central hub of communication, the author risks a targeted attack on the central hub

which could decimate the network.

Fadhil et al. present a new protocol, Bitcoin Clustering Based Super Node (BCBSN) as

a mechanism to speed up information propagation in the Bitcoin network [27]. In this

protocol, the Bitcoin network is divided into geographically diverse clusters. Within

each cluster, there is a cluster head or super node responsible for maintaining the

cluster. Each peer is connected to a cluster head, and each cluster head is connected

to other cluster heads. The claim is that this would reduce propagation delay as it

reduces the number of non-compulsory hops that blocks or transactions required to
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reach all the peers in the network. Nodes at each cluster are geographically localized,

with the hope of reduction in the link latencies between nodes at each cluster. The

BCBSN protocol resulted in a reduction of the transaction propagation time variances,

compared to that of the normal Bitcoin network. Possible limitations of the BCBSN

protocol may include a successful attack on a cluster head. By successfully attacking a

cluster head, the nodes in the associated cluster are unable to connect to the rest of

the network as the cluster head was their means of contact to the rest of the network.

If the cluster head was in�ltrated by a malicious node, they have essentially partitioned

the nodes within the cluster from the rest of the network and may carry out an eclipse

attack, as described in section 2.8. As nodes in the clusters are geographically

localized, this may make the network highly prone to partitioning.

Following on from BCBSN, Fadhil et al. proposed a proximity-aware extension to the

current Bitcoin protocol, named Bitcoin Clustering Based Ping Time Protocol

(BCBPT) [28]. Based on their previous work BCBSN, which placed nodes in clusters

based on their geographic location, BCBPT will place nodes in clusters based on their

ping latency. Nodes that are geographically close could be quite far away from each

other on the physical internet [28]. The results of BCBPT show that the protocol

maintains an improvement in variances of delay over their previous work, BCBSN. This

may be due to the fact that in BCBSN, clusters are based on geographic location,

meaning they could be close geographically but far away on the physical internet. By

creating clusters based on ping latencies, Fadhil et al. concluded that proximity

awareness in the physical internet improves delivery latency with a higher probability

than clusters based on geographic locations. The protocol is split into two

phases:

1. Distance calculation

2. Cluster creation and maintenance

Distance Calculation

In the distance calculation phase, each node is responsible for gathering proximity

knowledge regarding discovered nodes. This is done by calculating the distance in the

physical internet between the node and the discovered nodes. Proximity is de�ned as

how far a node is from another node in the physical internet.

Cluster Creation and Maintenance

When joining the network for the �rst time, a node N will learn about other available

Bitcoin nodes in the network from a list of DNS services, as mentioned in section 2.7.1.

The node N will calculate the proximity distance to each of the discovered nodes. The
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node N will then send a JOIN request to the closest node K of the discovered nodes.

Once node N establishes a connection with node K, it will receive a list of IPs of nodes

that are in the same cluster as node K. Node N will then connect to all the nodes in

the cluster. If node N discovers a node that is physically closer than the current

cluster, node N will leave to join the nearer cluster.

Although the transaction propagation time and variances are lowered in the proposed

protocol, the same issues from BCBSN can be applied to the proposed protocol. As

mentioned by Fadhil et al. in the paper, they identify that eclipse and network partition

attacks have great potential due to the clustering based on countries. An attacker

might concentrate a number of bad peers within a cluster in order to create a malicious

cluster on the network. [28].

Marçal [11] proposes a new protocol for the dissemination of transactions in the

Bitcoin network. The protocol proposes a bias to disseminate transactions to

neighbours that are more likely to reach miners quickly, as miners are the nodes that

need knowledge of the transactions in the network as they are responsible for placing

the transactions in blocks, and subsequently placing the block on the blockchain.

The protocol encompasses three changes to the Bitcoin dissemination protocol:

1. Nodes maintain for each of their neighbours, a list of transactions sent by their

neighbour and how long it took for these transactions to be included in a block.

2. Nodes maintain for each of their neighbours, the time it took to disseminate a

new block to the node.

3. Use the metrics collected above to rank their neighbours and prioritize the

dissemination of transactions based on the rankings.

The proposed protocol was able to reduce the bandwidth usage by 10.2% and reduce

the number of messages exchanged in the network by 41.5%. Some issues with the

aforementioned protocol are that the commit time of transactions may increase as

transactions are reaching miners, but may not necessarily reach the miner who is going

to mine the next block [11].

It is important to note that during the research for this dissertation, some P2P

algorithms unrelated to Bitcoin were studied to see if there were any new P2P

algorithms better �tted to suit the Bitcoin network.

Barjini and Othman [29] suggests a novel algorithm, SmoothFlood, which divides the

�ooding scheme into two phases. The �rst stage of the algorithm will follow the

standard �ooding protocol before switching to a super-peer (nosy node) phase. The

�ooding scheme discussed in this study, however, is a �ooding scheme for �le-sharing
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rather than the �ooding for information propagation used in bitcoin. However, the

concepts discussed in the paper could still prove to be useful.

In the �rst phase of SmoothFlood, pure �ooding is implemented for a high coverage

growth rate of peers, accompanied by low redundant messages. Conversely, the second

phase will be implemented when the coverage rate is low and the number of redundant

messages is high. The second phase does not follow the pure �ooding algorithm.

Instead, noisy nodes are selected as super peers. Super peers create an index table

(cache), which indices all the �les their neighbours would like to share. When a query

reaches a noisy node, it will look up in its cache if the �le is there and return the

address of the client for getting the �le. Otherwise, the super-peer will query other

super-peers on his level. Results from the study show a decrease of 65% of redundant

messages and save up to 70% in searching tra�c.

Applying a similar concept to the Bitcoin system could prove to be di�cult. Identifying

the noisy node in the Bitcoin network may prove to be impossible as currently, there

are no direct ways to get information about a node's neighbour and ways to do so are

considered a security threat. It would prove to be impossible to verify a node's claim

that they are the nosiest node with X amount of neighbours if we are unable to receive

information about a node's neighbour.
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4 Probabilistic Flooding

This chapter will describe the issue that we have identi�ed with the current Bitcoin

propagation method and the proposed protocol changes that we have implemented in

order to improve the identi�ed issue.

4.1 The Problem

As described in section 2.7.3, when new blocks are mined or new transactions are

created, they must be propagated across the entire network to ensure that nodes in the

network are aware of the new transactions/blocks. As Bitcoin is a decentralized

peer-to-peer network, nodes in the network do not have a global view of the network

topology. Nodes in the network are only aware of their immediate, connected

neighbours. In order to propagate the transactions or blocks across the network, nodes

must send the information to their neighbouring nodes, who in turn will send it to their

neighbouring nodes etc. until eventually every node in the network is aware of the new

transactions/block. The process of disseminating information across the network in

this manner is known as gossip-based �ooding [30].

The broadcasting and sending of a transaction requires the exchange of three

messages:

• INV message

• GETDATA message

• tx/block message

This message exchange is required to prevent sending the entirety of a transaction or

block to a node that may already possess it. Through the use of INV messages, the

transmitting node only sends hashes of transactions or blocks to the nodes, which is

only a fraction of the size of the transaction or block as a whole.

As mentioned in section 2.7.3, a node contains a message queue and a timer for all of

their connected neighbours. When the timer elapses for the neighbour, the node will
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send an INV message to the associated neighbour. The INV message transmits one or

more inventories of objects (transaction hashes and/or block hashes) to the neighbour

[2].

There are two options when a node receives an INV message:

1. If the node receiving the INV message already has knowledge of all the

transactions/blocks contained in the INV message, the node will ignore the INV

message. No GETDATA message or any additional messages are needed to be

exchanged between the nodes.

2. If the node receiving the INV message requires one or more of the

transactions/blocks contained in the INV message, the node will respond to the

node that sent the INV message with a GETDATA message. The GETDATA

message will request the missing transactions/blocks that the node requires [2].

On receiving a GETDATA message, the node will respond with the requested

transactions or blocks with a tx message or a block message respectively [2].

Figure 4.1 illustrates the scenario described.

Figure 4.1: Messages Exchanged between Two Nodes for Information Propagation

Even though INV messages in Bitcoin are used to prevent nodes from sending the

entirety of a transaction or block to a node that already possesses it, it does not

prevent duplicated INV messages being received by nodes. If node A had just received

a new transaction, the node will add that transaction to the message queues of its

connected neighbours as node A does not know if its connected neighbours have the

transaction or not. However, it does not add the transaction to the message queue of

the neighbour that sent them the transaction as node A knows that the neighbour who

sent them the transaction already possesses the transaction. However, a node may at
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the worst case, receive 125 INV messages for the same transaction, therefore receive

124 duplicated INV messages whereas one INV message would have su�ced to have

received the transaction.

The example in �gure 4.2 shows the propagation of transaction X. The green nodes,

nodes A - H, have already received transaction X through the standard INV message

protocol shown in �gure 4.1. However, node I has not had transaction X propagated to

itself yet. As one can see in the diagram, four out of the seven neighbours that node I

is connected to have transaction X and are going to send an INV message to node I,

which will contain the transaction hash of transaction X. Although node I only needs

one INV message to be able to successfully receive the transaction, it receives a total

of four INV messages. Three of the INV messages that node I received are redundant

and node I will not respond to three of the nodes. Node I will, however, respond to one

of the INV messages (most likely the �rst INV message received) and respond with a

GETDATA message, which will inform the transmitting peer that node I requires

transaction X. The transmitting peer will then send transaction X to node I with a tx

message.

Figure 4.2: Node Receiving Duplicate INV Messages for the Same Transaction

As one can see from the example above, there are a large number of duplicate INV

messages that are produced in the Bitcoin network using the current �ooding

mechanism. The more neighbours a node is connected to, the more well-connected the

node is and as a result, the more duplicated INV messages the node will receive. Each

node currently receives 6.6 duplicated INV messages for each transaction in the

network [11].
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4.2 Probabilistic Flooding

As described above, when propagating a transaction through the network, an INV

message will be sent to the node's neighbours 100% of the time. This �ooding

mechanism implemented by Bitcoin produces many duplicated INV messages being

received by nodes in the network.

The solution and protocol change that we propose changes the current �ooding

mechanism approach that was described above to a probabilistic �ooding approach.

The probabilistic approach will aim to maintain a probability for each of the node's

neighbours. This probability is the probability that a node will send an INV message to

the associated neighbour. The probability is calculated based on the number of INV

messages sent to the neighbour and the number of GETDATA messages received in

return from the neighbour.

Formula for Calculating a Neighbours Probability

neighbourProbability =
totalGetdataFromNeighbour

totalInvSentToNeighbour

The idea of sending INV messages based on probability is centered around the fact that

nodes in the Bitcoin network have a large variance in the number of connected

neighbours. A node may be well-connected, and in the best case, have 125 neighbours

whereas another node may have as low as 8 neighbours. The node with 125 neighbours

is more likely to have already received the transactions contained in the INV message

that it received and therefore will not reply to the INV message with a GETDATA

message. The idea of the protocol change to a probabilistic �ooding approach is based

on the criteria that well-connected nodes will already have the transactions contained

in an INV message and will not need to receive an INV message 100% of the time,

whereas a node that is less connected may need to receive an INV message the

majority of the time.

For example in �gure 4.3, node A will send an INV message to node B with a higher

probability than sending an INV message to node C. This is due to the fact that node

B has a total of three neighbours and is less connected than node C, who has a total of

�ve neighbours. As node C is more well-connected, it is more likely that node C may

already have the transactions contained in the INV messages, whereas node B is less

likely to have the transactions as it has two fewer neighbours than node C. The

probability is based on previous message exchanges between the nodes. In this case,
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node A may have previously sent 54 INV messages to node C and may have only

received 34 GETDATA messages in return. In this case, the probability that node A

will send an INV message to node C, based on the formula mentioned above, will be

63% (34/54). The probability of sending an INV message from node A to node B is

also based on the exchange of previous messages between the two nodes. In this case,

node A sent 77 INV messages to node B, whilst receiving 64 GETDATA messages in

reply. Based on the formula of calculating neighbour probability, the probability node A

will send an INV message to node B will be 83% (64/77).

From the example, node B replies to INV messages more times than node C, and

therefore will have a higher probability of receiving an INV message in the future from

node A. The higher probability can be attributed to the fact that node B only has

three neighbours and is not as well-connected as node C, who has �ve neighbours. As

node B has fewer neighbours, this leads to fewer options for which it may receive an

INV message for certain transactions in the network, leading to a higher GETDATA

response rate when it receives an INV message. Conversely, node C is better connected

than node B, having �ve neighbours. This leads to more avenues for which node C

may receive INV messages, therefore leading to a lower response rate to INV messages.

As node C has more neighbours, this leads to a higher probability that they have

already received the transactions contained in the INV message.

Figure 4.3: Probabilistic Flooding Example
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4.3 Implementation

In order to test our protocol changes, multiple simulations were run.

There were a number of Bitcoin simulators to choose from, however, many of them

were out of date and did not support the newest changes to Bitcoin such as the

introduction of compact blocks. The Bitcoin simulators shadow-plugin-bitcoin1 and

Arthur Gervais' bitcoin-simulator 2 did not support the latest versions of Bitcoin and

were no longer supported.

However, Joao Marcal's bitcoin-simulator 3 [11] did support the newest versions of

Bitcoin and recorded a number of important metrics that would be vital to compare

and contrast the current Bitcoin protocol and the proposed probabilistic �ooding

approach. The metrics recorded by the Bitcoin simulator are as follows:

• Average number of INV messages sent per node

• Average total number of sent messages per node

• Percentage of duplicated messages received per node

• Total transactions created

• Percentage of transactions created and committed

• Total number of forks created

The simulator is an event-driven simulator, where the behaviour of each node in the

network is de�ned by a deterministic state machine, that consumes events and

produces events. The simulator and consequent code changes required to implement

the probabilistic �ooding mechanism was coded in Python2.7.

The simulator allows for custom con�gurations, allowing the user to adjust certain

properties within the simulation such as:

• Number of nodes in the network

• Number of miners

• Minimum neighbourhood size of each node

• Number of cycles

Each cycle in the simulation represents a second in real-time. The default settings and

the settings for which the results in section 5 are formed are based on the following

1https://github.com/shadow/shadow-plugin-bitcoin
2https://github.com/arthurgervais/Bitcoin-Simulator
3https://github.com/JoaoBraveCoding/bitcoin-simulator
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con�gurations:

• Number of nodes in the network - 625

• Number of miners - 5

• Minimum neighbourhood size of each node - 8

• Number of cycles - 208800

As each cycle represents a second in real-time, the experiments were run for a

simulation time of 58 hours. The �rst �ve hours and the last �ve hours of the

simulation were discarded in order to study the system in a stable state. As the Bitcoin

protocol is highly complex, simulating the full network resulted in a resource-intensive

simulation that lasted for days. Originally the simulation set the number of nodes to

6,000 nodes. However, the number of nodes was scaled down to 625 nodes and

produced similar results to the network with 6,000 nodes. Reducing the number of

nodes by almost tenfold will reduce the run-time required to run a simulation, allowing

for more simulations, experimentation with di�erent scenarios and run multiple

instances of each scenario. The simulator is tuned to generate blocks at the Bitcoin

desired rate of 1 block per 10 minutes, as well as creating 2 transactions per

second.

Algorithm 1 represents how the probability of sending an INV message to a speci�c

neighbouring node is calculated.

Algorithm 1 Function to calculate the probability of sending INV message to each
neighbouring node

1: function get_probability(myself , neighbouring_node)
2: total_inv_sent ← get_total_inv_sent(myself , neighbouring_node)
3: total_getdata_received ← get_total_getdata_received(myself , neighbouring_node)
4: probability_to_send ← total_getdata_received/total_inv_sent
5: return probability_to_send

Algorithm 2 is the function that will determine whether or not a node will send an INV

message to its neighbouring node. Algorithm 2 is called every cycle for every node, as

long as the adjusted probabilistic �ooding mechanism is enabled in the

simulation.

Algorithm 2 will �rstly get the current time of the simulation. For each of the node's

neighbours, the algorithm will receive the calculated probability of sending an INV

message to that speci�c neighbour based on algorithm 1. As mentioned in section

2.7.3, associated with each neighbouring node is a timer which is calculated using a

Poisson distribution. The node will receive the timer for the neighbouring node and will
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determine whether or not the timer elapsed for sending a message to the neighbouring

node, based on the current time received at the start of the algorithm. If the timer

elapses and the probability of sending an INV message is satis�ed, the node will send

the INV message to the neighbouring node and increment the INV messages sent to

that neighbour counter. This is to ensure that the data used in algorithm 1 to

calculate the probability of sending an INV message to neighbouring nodes is up to

date. However, if the timer elapsed but the probability of sending is not satis�ed, the

INV message scheduled to be sent to the node is ignored, with the contents on the

message discarded and the ignored messages count increased.

Algorithm 2 Broadcast Inventory Messages

1: function broadcast_invs_prob_flooding(myself )
2: now ← get_current_time()
3: for node in neighbourhood do

4: probability_to_send ← get_probability(myself , node)
5: time_to_send ← get_time_to_send(node)
6: timeout ← now > time_to_send
7: send_inv_based_on_prob ← random.random() < probability_to_send
8: if timeout and send_inv_based_on_prob then
9: sim.send(myself , node, INV_message)

10: myself .increaseInvSentToNeighbour(node)

11: if timeout and not send_inv_based_on_prob then
12: myself .deleteTransactionQueue(node)
13: myself .increaseIgnoredMessagesCount()
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5 Evaluation

In this chapter, the results of the simulations for the proposed changes to the Bitcoin

�ooding protocol to a probabilistic �ooding approach is presented. The probabilistic

�ooding approach is evaluated by comparing the results gathered from the simulations

when the probabilistic �ooding approach was implemented, to the results from the

simulations when the normal Bitcoin �ooding protocol was implemented.

As mentioned in section 4.3, several important metrics are recorded during the

simulations. The recorded metrics are essential in order to compare and contrast the

proposed probabilistic �ooding approach to the �ooding mechanism currently

implemented in the Bitcoin network.

The most relevant and important metrics to compare the two protocols are:

• Percentage of Committed Transactions is the most vital metric when

comparing the two protocol changes. The percentage of committed transactions

indicates whether or not every transaction that was created during the simulation

period was eventually committed into a block. As Bitcoin is the most popular

cryptocurrency and has a market cap of approximately 72$ billion, it is essential

that every transaction that is created is eventually committed in a block to

maintain the reliability of the system. The main objective of the protocol change

is to reduce the number of redundant messages being exchanged on the network.

However, if the protocol change negatively impacts the percentage of committed

transactions, reducing the 100% commitment rate of transactions then regardless

of the potential reduction of redundant messages, a less then 100% committed

transactions rate would be detrimental to the system and unacceptable.

• Total Number of Messages Sent Per Node is an important metric when

comparing the two protocols. As the main objective of the probabilistic �ooding

approach is to reduce the number of redundant messages exchanged on the

network, comparing the total number of messages sent per node between the two

protocols would indicate exactly how many messages were saved as a result from

the protocol.
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• The Commit Time of Transactions is also an important metric to consider

when comparing the two protocols. The commit time represents the time

between when a transaction was created to when it was placed in a block. As

commit times of transactions is an extremely important aspect in

cryptocurrencies, having an increased commit time when implementing the

proposed probabilistic �ooding approach may not be worth the tradeo� in

potential messages saved within the network.

5.1 Results

The results that are presented in this section are based on a 58 hour simulation time,

where the �rst 5 hours and the last 5 hours are discarded in order to observe the

system at a stable state. The network is comprised of 625 nodes, 5 of which are

miners. Each node in the network may have a di�erent number of neighbours,

however, there is a minimum of 8 neighbours and a maximum of 125 neighbours a

node can have when participating in the network.

5.1.1 Percentage of committed transactions

As mentioned previously, the most important metric when comparing the proposed

probabilistic �ooding protocol to the current Bitcoin �ooding protocol is the

percentage of committed transactions. Both protocols produced a 100% transaction

commitment rate, committing every transaction to a block during the simulation

period. The results are displayed in �gure 5.1 and we can conclude from these results

that the adjustment of the �ooding protocol to a probabilistic �ooding approach did

not have an e�ect on the number of committed transactions during the simulation. A

100% transaction commitment rate ensures that the system remains reliable when the

probabilistic �ooding approach is implemented.

Figure 5.1: Comparison of the Percentage of Transactions committed.
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5.1.2 Transaction Commit Time

Another important metric that was previously discussed when comparing the two

protocols is the time taken to commit a transaction. Figure 5.2 represents the average

time taken for a transaction to be committed into a block for the two protocols. As you

can see from �gure 5.2, the time taken for a transaction to be committed into a block

for both protocols were very similar. The small di�erence between the two protocols is

negligible. This is very important as the results indicate that changing the �ooding

protocol to a probabilistic �ooding approach does not have an e�ect on the transaction

commitment time. As transaction commit time is an extremely important aspect for

cryptocurrencies, if there was a signi�cant increase in transaction commit time when

changing to the probabilistic �ooding approach, the potential reduction in redundant

messages may not be worth the trade-o� in increased transaction commit time.

Figure 5.2: Comparison of the average time taken to commit a transaction between the
two protocols.

5.1.3 Total Sent Messages

As mentioned in section 1.1, the main objective of changing the current bitcoin

�ooding protocol to the probabilistic �ooding approach is to reduce the number of

redundant and duplicated messages that are currently being generated in the Bitcoin

network. Figure 5.3 represents the number of total sent messages per node gathered

from our simulations for the two protocols.

The results show that when running the probabilistic �ooding approach, there was a

signi�cant decrease in the total number of messages sent per node during the

simulation. When running the Bitcoin �ooding protocol, the simulation showed that

there were approximately 790,000 total messages sent per node, whereas when the

simulation was run with the probabilistic �ooding protocol implemented, there were

approximately 675,000 total sent messages per node. This results in a 15% reduction
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Figure 5.3: Comparison of the average total sent messages per node.

in the total number of messages sent per node during the simulation period. As the

115,000 reduction in messages mentioned is the number of messages saved per node,

the total number of messages saved throughout the entire network can be estimated at

approximately 70.5 million messages as there are 625 nodes participating in the

network during the simulation. Figure 5.4 represents the total number of sent messages

during the simulation period for both protocols.

Figure 5.4: Comparison of the total number of sent messages during the simulation
period between the two protocols.

5.1.4 Other Metrics

As mentioned in section 1.1, the main objective of switching from the current Bitcoin

�ooding protocol to a probabilistic �ooding approach is to reduce the number of

redundant messages that are generated within the network. However, when

implementing this change in protocol, we need to also ensure that the reliability and

resilience of the system are not a�ected. Metrics such as the percentage of

transactions committed and transaction commit time is a good indicator of ensuring
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the reliability of the system has not been a�ected as a result of the protocol change.

However, there are other metrics such as the number of blocks/forks created, that can

provide additional information on whether or not changing �ooding protocols has had

an undesired e�ect on the system.

Figure 5.6 shows the number of blocks created for both protocols during the

simulation. The number of blocks created during the simulation of both protocols are

very similar, with the di�erence between the two minuscule and negligible. As a key

concept of Bitcoin is to generate a block at an average time of 10 minutes, we need to

ensure that the change in protocols does not a�ect the 10-minute block creation time.

There were approximately 350 blocks created by both protocols during the 58-hour

simulation. If a block was created every 10 minutes during this 58 hour period, a total

of 348 blocks would be created. The di�erence between the number of blocks created

during the simulation and the theoretical number of blocks that should have been

created is negligible. The slight di�erence in the number of blocks created between

both protocols and the theoretical number of blocks can be attributed to the fact that

not every block is mined every 10 minutes. A block can be mined in 2 minutes if a

miner gets lucky and solves the proof-of-work or it could take 15 minutes to mine a

block. This variance in times needed to create a block explains the di�erence in blocks

generated during the simulation.

Figure 5.5: Comparison of the number of blocks created during the simulation period.

Another metric that can be used to ensure the resilience and reliability of the system is

not a�ected or compromised by the proposed changes is the number of forks generated

during the simulation. Figure 5.6 represents the number of forks generated during the

simulation for both protocols. As with the previous metrics, the results show that there

is a small and negligible di�erence between the two protocols when discussing the

number of forks generated. The results indicate that changing the current Bitcoin

�ooding protocol to the probabilistic �ooding approach does not a�ect the fork rate in

the system.
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Figure 5.6: Comparison of the number of forks created during the simulation period
between the two protocols.

5.1.5 Varying the Probability Percentage

The above results are based on the current Bitcoin �ooding protocol and the

probabilistic �ooding protocol, with the probabilities calculated from the formula in

section 4.2. However, the results described below are based on setting the probability

of all neighbours in the network to a default percentage, as opposed to a calculated

percentage based on the number of INV messages sent and GETDATA messages

received in return. The purpose of setting default probabilities is to determine at what

percentage does the number of non-committed transactions increase drastically which

in turn creates an unreliable system.

Figure 5.7 represents the total number of sent messages per node during the simulation

for the default percentages tested - 60%, 50%, 40%, 30%, as well as the current

Bitcoin protocol and the probabilistic �ooding protocol. The chart indicates that as the

default percentage of sending an INV message to neighbours in the network decreases,

the total number of messages exchanged in the network also decreases as a result.

With every 10% decrement in percentage, the total number of messages sent also

decreases proportionally. The default percentages all produce a total number of sent

messages that is lower than both the Bitcoin protocol and the probabilistic �ooding

protocol, however as mentioned in section 1.1, the reliability and resilience of the

system must not be negatively a�ected by the changes.

The reliability of the system is of the utmost importance as if Bitcoin were to ever be

adopted by the mainstream. A user must have full con�dence that when they make a

transaction in the network that eventually the transaction will be committed into a
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Figure 5.7: Comparison of the total number of sent messages.

block. Figure 5.8 represents the number of uncommitted transactions for the default

percentages tested along with the Bitcoin and probabilistic �ooding protocols. The

chart shows that for the Bitcoin and probabilistic �ooding protocol, there are 0

uncommitted transactions during the simulation period.

Figure 5.8: Comparison of the total number of uncommitted transactions.

The default percentage of 60% and 50% indicate a small number of uncommitted

transactions, which can not be seen as negligible as even just 1 uncommitted

transaction indicates that the system is unreliable. However, when the default

percentage is set to 40% and 30%, the total number of uncommitted transactions

increases exponentially, as seen in �gure 5.9.

The results indicate that around 40% and 30% is when the system becomes extremely
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Figure 5.9: Chart indicating the exponential increase of uncommitted transactions.

unreliable, leading to an exponential increase in the number of uncommitted

transactions. Although setting the percentage to a lower default percentage results in a

lower total number of messages exchanged in the network during the simulation, it also

leads to an unreliable system. As mentioned in section 1.1, the unreliability introduced

by setting the default percentage is a huge factor as the main goal was to reduce the

number of redundant messages whilst ensuring that the reliability and resilience of the

system were not negatively a�ected. Therefore, using a default percentage of the

percentages tested above could not be used in the Bitcoin system.
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6 Conclusion

The main aim of this dissertation was to adjust the current �ooding protocol

implemented by Bitcoin to a more e�cient protocol, with the aim of reducing the large

number of redundant messages and duplicated messages being generated by the

current �ooding protocol, whilst maintaining the reliability and resilience of the Bitcoin

system. As Bitcoin continues to grow in popularity and more users actively join and

participate in the network, it is essential to make the system, and the protocols

implemented by the system, as e�cient as possible.

In this dissertation, we proposed a novel protocol that aims to reduce the number of

redundant messages being generated by the current �ooding protocol. The proposed

protocol changes the current �ooding protocol implemented by Bitcoin to a

probabilistic �ooding approach. The proposed probabilistic �ooding approach presented

in this dissertation is based on the idea that well-connected neighbours will more likely

not respond to an INV message compared to a node that is less-connected, therefore

the probability of sending an INV message to a less-connected node is higher than that

of a well-connected node.

As we have shown in section 5, the proposed protocol is able to signi�cantly reduce the

total number of messages being exchanged on the network, whilst maintaining the

reliability of the system. The number of INV messages sent per node and the total

number of messages sent per node decreased by 29% and 14% respectively when

running the probabilistic �ooding protocol. During the 58 hour simulation period, the

total number of messages saved when running the probabilistic �ooding approach when

compared to the current �ooding protocol was approximately 70 million

messages.

Nodes will bene�t from the change in protocol to a probabilistic �ooding approach as

it reduces the number of redundant messages that are being generated and received by

each node. The reduction in redundant messages will lead to a decrease in power

consumption and CPU cycles being wasted on duplicated messages. When attempting

to solve the proof-of-work to mine a block in Bitcoin, the power consumption required

to attempt to mine a block is huge. The consumption of energy to mine a block,
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therefore, leads to a large electricity bill. By reducing the number of redundant

messages being exchanged on the network and the cycles being wasted on duplicated

messages, the decrease in power consumption will lead to a lower electricity bill. As a

result of the decrease in costs of running a mining node, the hope is to make mining

more accessible and encouraging more nodes to join the network, making the network

more stable.

The novel protocol proposed in this dissertation met the objectives that it aimed to

achieve - reducing the number of redundant messages on the network whilst

maintaining the reliability and resilience of the system. We have shown that the

current �ooding protocol implemented by Bitcoin for the dissemination of information

across the network is ine�cient and wasteful, and have proved that the mechanism can

be improved upon whilst maintaining the reliability and integrity of the system. This

leads to many possible, alternate �ooding solutions to the current �ooding protocol for

future work.
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