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Abstract
Public events in urban environments often suffer from large amounts of congestion and unpre-
dictable journey times due to the high volume of drivers in the surrounding road network e.g.
concerts. To address this problem, the co-operative slot-based driver guidance system is proposed.
This system applies traffic shaping measures in an attempt to organise the flow of traffic, leading
to more accurate journey time predictions and alleviating congestion.

This project explores whether this slot-based system is a more beneficial form of driving, rather
than the current unco-operative approach. The system that was developed focused on analysing
the feasibility and potential benefits gained from incorporating this driver guidance into event
management plans. The potential benefits include more accurate journey time predictions and an
overall better-organised flow of traffic. Existing research has been completed for slot-based driving
scenarios for highway on-ramp merging and intersections. However, this project will specifically
target public events in an urban environment, particularly around the entry and exit routes to
parking lots.

The slot-based solution is similar to time division multiple access (TDMA) in computer networking.
In this instance, the road is the channel to be divided up and drivers are allocated time slots on
demand to travel within towards their destination. Each driver is provided with real-time guidance
information in order to maintain their position within the slot.

An implementation of this system has been developed and tested using PTV Vissim, a traffic
simulation software. Initial results indicate that the overall throughput of vehicles in the vicinity
of the event is increased and journey times are significantly more consistent during varying traffic
volume levels. These slot-based results are in comparison to the results generated from the
simulations run using the Wiedemann 74 human driver model within Vissim.
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Summary

Research on traffic shaping and more efficient traffic management is dramatically increasing in
popularity, due to the increasing number of vehicles on the road. Many institutions and organi-
sations are funding that research and development in this domain. One concept which has been
around since the early stages of these areas is the idea of co-operative driving. Co-operative driving
is the concept of drivers on the road making informed decisions which benefit each other rather
than driving in a selfish nature.

The specific area of interest for this project is using a slot-based co-operative approach to driving,
to attempt to alleviate congestion by organising the flow of traffic. This project explores whether
this slot-based system is a more beneficial form of driving, rather than the current unco-operative
approach. The system that was developed focused on analysing the feasibility and potential ben-
efits gained from incorporating this driver guidance into event management plans. The potential
benefits include more accurate journey time predictions and an overall better-organised flow of
traffic. Existing research has been completed for slot-based driving scenarios on highway on-ramp
merging and intersections. However, this project will specifically target public events in an urban
environment, particularly around the entry and exit routes to parking lots.

This project implements a dynamic slot provisioning and control system for all vehicles entering
the specified road network surrounding an event. The system simulates the desired driver guidance
system with one hundred per cent driver compliance. Each road is allocated a number of slots
based on the length of the road. Vehicles that enter any of the roads within the boundary are
assigned a slot. The driver guidance system, in turn, provides guidance to the driver to maintain a
central position within the assigned slot, as it moves. The guidance provided directs the driver to
the specified destination. The slot is propagated along the road at each time step in the simulation
until the destination is reached. Vehicles that are attending the event are assigned a parking space
in the parking lot and vehicles that are not attending the event are directed away from the event
towards their destination. To reduce the complexity of the system, roads are restricted to one lane
per direction. There are no turning restrictions at intersections except u-turns and routes that are
predefined within PTV Vissim. Results are obtained by observing the simulation.

The slot-based guidance system has been developed in Java, an object-oriented computer program-
ming language. The testing and visualisation of this system were carried out using PTV Vissim, a
microscopic multi-modal traffic flow simulation software. This software allows for the creation of
road networks, parking lots, vehicle movement and control. Vissim has built-in functionality with
the COM API for seamless communication between Vissim and Java. The results of the simula-
tions indicate that average journey times can be more accurately predicted using the slot-based
system. In comparison to human drivers which have large differences in average travel times at
varying degrees of traffic volume, the slot-based driver travel times remain relatively consistent.
The overall throughput of vehicles is also significantly increased at high traffic volume levels by
using the slot-based system.
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1 Introduction

This project seeks to address the problem of congestion in the road network of a public event
located in an urban environment. This congestion causes journey times and the overall flow of
traffic to be inconsistent at different times of the day or night. The proposed solution is to
develop a slot-based driver guidance system which will track vehicles on the road and provide each
of them with the required information to maintain their position within a virtual slot for the entire
duration of their journey. This will implement traffic shaping measures in an attempt to alleviate
the congestion and organise the flow of vehicles in the vicinity of an event.

1.1 Research Question

Does complete compliance with a slot-based driver guidance system positively affect the flow of
traffic around events, allowing for vehicle journey times to be more accurately predicted?

1.2 Motivation

Humans are unpredictable by nature and this also applies to their driving behaviour [6]. Each driver
has various instincts, opinions, reflexes and skill levels, leading to certain decisions being made while
driving. These decisions include turning, stopping, slowing down and speeding up. If two drivers
were faced with a similar scenario, both may choose to react differently and complete different
manoeuvres. This unpredictable behaviour is amplified in high pressure situations, alongside the
input of the other occupants of a vehicle [7].

The majority of events attempt to mitigate the impact of traffic and non-reoccurring congestion
during an event through traffic management plans. Non-reoccurring congestion is defined as
unusual congestion caused by unpredictable incidents including accidents and planned special
events [8]. However, the unpredictable and reckless driving nature of road users ultimately can
cause disruption to these events and all the surrounding roads [8]. The cause of congestion
experienced by drivers at events can be narrowed down to variations of these four causes: poorly
planned traffic management, unexpected events, poorly designed road networks and the drivers
themselves [9].

1



This project proposes a co-operative slot-based driver guidance system as a solution to the problem
of congestion in the vicinity of public events located in an urban environment. By removing the
need for drivers to make their own decisions whilst within the event and the surrounding road
network, one of the four variations of the causes of congestion is removed [9]. This project will
focus on whether or not this has a significant impact on the flow of traffic in the vicinity of the
event at a driver compliance rate of 100%.

The hypothesis is that a more organised approach will alleviate congestion and improve the pre-
dictability of travel times for drivers who are attending the event, and also those who are driving
in the area and not attending the event.

1.3 Project Overview

1.3.1 Co-operative Driving

Co-operative driving is a specific approach to driving, whereby there is some form of communication
between drivers on a road network. Every co-operative driver is in pursuit of a common goal. This
communication allows for the vehicles to make decisions which will benefit other vehicles in the
network [10]. This communication is either vehicle to vehicle (V2V), vehicle to infrastructure
(V2I) or vehicle to central control to vehicle (VCV) communication.

1.3.2 Time-Slot Drving Approach

The time-slot approach follows the same principles as Time Division Multiple Access (TDMA) in
networking. TDMA is a channel access method (CAM) which is used to allow channels to be
shared among senders without any interference between the packets being sent [11]. When this
is applied to a road network, the channel to be divided up is the road, and each vehicle is the
equivalent of a packet which is assigned a slot on demand.

Combining the Time-Slot Approach and Co-operative Driving

The combination of co-operative driving and the slot-based approach allows for a more advanced
driving system to be created. The co-operative driving portion of the system retrieves real-time
information from all of the vehicles in the network which will then be used by the centralised
guidance system, to provision slots for the vehicles and manoeuvre all vehicles accordingly. Real-
time information gathered from the vehicles includes origin, destination, current speed and position
in the road network. The central guidance system will, in turn, assign slots to the vehicle as they
become available. The slot will act as a guide for where the driver should position themselves. The
system will identify the required speed and direction for the car to drive at to prevent collisions
with other vehicles, while allowing the vehicle to make progress towards the final destination in
a more co-operative fashion. In regards to simulating this guidance, the slot-based system will
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assume full control of the vehicles in the simulator, replicating a 100% driver compliance rate.
This system will allow for cars to be routed towards available parking lot spaces when the driver
is attending the event.

1.3.3 Research Aims

The aim of the study is to prospectively evaluate how the flow of traffic in the vicinity of an event
is affected by the introduction of a slot-based driver guidance system, and in turn, whether or not
journey times can be more accurately predicted [2]. The specific objectives of this study are:

• Create a slot-based driver model to provide drivers with guidance on roads and parking
locations of varying sizes in the vicinity of an event.

• Examine the resultant effects on the flow of traffic at multiple driver volume levels.

• Design test scenarios, using various road networks within the PTV Vissim simulation soft-
ware.

• Analyse how the degree of compliance with the driver guidance system affects the flow of
traffic.

1.3.4 Potential Benefits of this Research

The potential benefits of this research include improvements to the congestion on roads in the
vicinity of events. Another benefit is a reduction in congestion levels and the amount of accu-
mulative time spent stationary without making any progress on the roads. This is in comparison
to the current unconstrained approach to driving. There is also potential positive impacts on the
intelligent organisation of parking lots [12], whether these are permanent or temporary parking
locations.

1.3.5 Description of Research Area

The direct area of research for this project is traffic management systems, specifically the area of
co-operative vehicle systems. Co-operative driving targets the safety and efficiency of road traffic
[13]. Inter-vehicle communication means that guidance can be directly provided to the driver of
the vehicle in order to make more informed decisions and reduce dangerous driver behaviour.

1.3.6 Project Scope

This project will solely focus on whether any benefits can be gained from a basic implementation
of the system at a 100% compliance rate. The project will not take into account various safety
aspects which must be considered before a production release. This is due to the fact that rigorous
testing cannot be completed outside of the simulation environment and the simulation software
also has testing limitations as to what can and cannot be controlled within the simulation. The
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discussion of how information could be transferred between drivers and the system is also out of
scope for this project. Potential security and privacy concerns will be briefly discussed to highlight
the future research and work required for this project to be applied to physical real world scenarios,
however, it is not a primary concern for this research project.

1.3.7 Road Map

The following sections will begin with several pieces of related research about slot-based driving,
parking lot design and parking management systems. Following on from the research that currently
exists, the design and implementation of the solution will be examined and the main challenges
encountered during the project will be discussed at length. This chapter will also include informa-
tion on the intended implementation of the system and what was actually completed within the
time frame. Finally, the results of all simulations run with the slot-based system will be compared
to the control cases within the simulator, accompanied by analysis and evaluation of the overall
project.

1.3.8 Key Words

Search strategy keywords: Co-operative driving, Car following model, Driver model, Vissim,
TDMA, time-slot driving, slot-based driver, driver guidance system, driver guidance mobile appli-
cation, traffic management, traffic flow, traffic stream, traffic density, calculating vehicle journey
times, traffic shaping, parking lot management, parking lot.
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2 Background

This chapter provides an insight into the multiple areas related to this project which were examined
at the beginning of the project. It takes a deeper look at existing research which was completed in
the domains of slot-based driving, traffic management systems, co-operative driving and parking
lot management systems. The papers which were examined are discussed in relation to events and
with the design of the new driver guidance system in mind. Third-party software and tools are
also discussed, to provide insight into why they were chosen to be used in this project.

2.1 State of the art

The current state of research on slot-based driving highlights specific circumstances where benefits
can be gained. These circumstances are focused on particular use-cases and driving scenarios,
which are more specialised than an entire control system for driving in the urban road network
surrounding a public event e.g a concert. To date, there is very little publicly available research on
slot-based driving, which would suggest benefits could be gained from using this approach within
the traffic management plan of an event. There are two key elements to this project: the road
network surrounding an event and the parking lots for attendees.

2.2 Related research

As previously mentioned in this report, there are several research papers which have attempted to
implement and analyse the slot-based driving approach in different driving scenarios. These papers
include street intersections [14], on-ramp merging on highways [15] and guaranteed arrival times
with slot-based traffic shaping [2]. Work has been carried out on analysing parking lot layouts,
smart parking and optimising parking spaces. This will also be discussed in this section.

2.2.1 The Managed Motorway

The Managed Motorway paper details a very early novel approach to vehicle scheduling on a
motorway type road network [1]. This approach proposes a system which divides the available
road space into slots. Vehicles are assigned slots for which to travel in for the duration of their
journey. This paper relates this system to the channel access method of TDMA, which is used
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to allocate slots to messages as they are transported through a network. However, this TDMA-
approach is modified to allow for unexpected events to occur, which is common in vehicular
traffic. The types of unexpected events listed in the paper vary from vehicles suffering from a
malfunction to pedestrians appearing on the road. To cater for these unexpected events, a local
real-time vehicle coordination system is suggested. Vehicles can communicate in an on-the-fly
type situation to adapt to these unexpected events in a way which does not drastically disrupt the
overall global scheduling of slots. The system shifts to a more local coordination style approach
where the inter-coordination of affected vehicles supplements the global slot-based control system.

The paper assumes either the driver or an on-board cruise control system is responsible for main-
taining the position of the participating vehicle within the assigned slot. Where the driver is the
responsible party, a ‘heads-up’ display is proposed which will provide feedback. Also in the case of
the driver, the researchers suggest the use of enforcement mechanisms to ensure driver compliance
with the system.

The architecture for the managed motorway is proposed as being a series of entry and exit ramps
with a selection of lanes in both directions. Emphasis is placed on one direction of the motorway
in particular. Any motorway structures or irregularities are ignored (bridges, tunnels, medians).
Hard shoulders are also excluded. Before entering a motorway, vehicles are assumed to have all
the requirements necessary to comply with the system. Vehicles remain in the queuing lane until
a slot becomes available on the motorway.

Figure 2.1: The Managed Motorway [1]

The researchers identify the concept of scopes as a method for managing the motorway. The
global scope represents the entire motorway and manages the capacity and coordination of all
local scopes. The local scope covers a specific segment of the motorway e.g. between entry/exit
ramps. This scope includes a local control system and is responsible for managing all vehicles within
the motorway segment of which the scope has been assigned. Each local scope collaborates with
other neighbouring local scopes to coordinate the hand-off of vehicles. Finally vehicular scope is
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only responsible for the vehicle and the vehicle’s direct surroundings through sensors. Both the
local scope and vehicular scope make decisions which comply with the global scope.

Admission control is stated as being required to ensure safety measures are met and the number
of available slots on a motorway cannot exceed a peak number. This will prevent safety distances
from being shortened and allow for local coordination to be less restricted by the smaller available
area. This is enforced by tollgates situated on each on-ramp to the motorway. The tollgates check
the availability of slots through communicating with the global scope. This paper concludes by
proposing various types of solutions for allowing vehicles to communicate with each other, which
is beyond the scope for this project. Marinescu et al.[2] run tests over a highway distance of
2472 metres, the tests included four different traffic volume levels: 2000, 3000, 4000 and 5000
vehicles per hour. The human driver simulations were controlled using Vissim’s Wiedemann 99
driver model. Results showed that at lower traffic volume levels, travel times were consistent for
both human drivers and slot drivers. However, at higher traffic volume levels (5000), the human
drivers had a travel time increase of up to 400%. On the other hand, the slot-based drivers had
similar times to the slot-based drivers at lower traffic volume levels. Hence, this data proved the
hypothesis that the slot based approach is a definite improvement for guaranteeing travel times in
the presence of bottlenecks.

2.2.2 Street Intersections

This paper discusses the potential benefits of implementing what the researchers call Slot-based
Intersections (SIs) [14]. The motivation behind their research was the apparent lack of a com-
prehensive analytical framework to compare the SIs to existing traffic light intersection access
systems. Their goal for this project was to create this framework, where their implementation of
SIs could be examined against current traffic light systems [16].

The research identifies intersections as the common shared resource in urban road networks which
are a bottleneck, and therefore, needs an organised system in place to coordinate vehicles travelling
on conflicting paths. The coordination of vehicles is achieved through a complex switching process,
allowing intersection access to vehicles travelling on different paths which do not conflict. Traffic
lights currently carry out this coordination through a periodic series of phase switching operations.
A phase is identified as a time period whereby only a certain number of vehicles travelling on
non-conflicting paths are allowed to enter and pass through the intersection.

This paper examines the delay required when switching between phases (the amber light) which
generally lasts up to 8 seconds [17]. This delay directly impacts the volume of traffic entering and
exiting the intersections every hour. More frequent phase changes directly lead to an increase in
the number of delays occurring at the intersection every hour. The delays are required to ensure
smooth transitions between phases, and hence, this increase in delays leads to a decrease in the
overall capacity of an intersection per hour.
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The advancements in technology and opportunities it provides in vehicle to vehicle and vehicle to
infrastructure communication enables co-operative driving and slot-based approaches to become a
reality [18]. Past SIs provide information to vehicles, identifying the speed at which they need to
travel, in order for them to reach the intersection at the beginning of their assigned access slot. The
purpose of the SI is to maximise the capacity of the intersection while minimising the total number
of delays in switching between phases. If consecutive vehicles are grouped, intersection capacity
is increased. However, the delay is increased for vehicles who need to slow down to allow the
group of vehicles to pass before they can obtain access to the intersection. The researchers have
developed two main strategies in finding a balance between capacity and delays at intersections,
FAIR and BATCH. FAIR seeks to establish fairness between vehicles and grants access slots to
vehicles on a first come, first served basis. BATCH is a strategy used to increase capacity by
granting slots to groups of vehicles and attempting to form platoons of vehicles that can access
the intersection over a short period of time.

The research carried out concluded that the evidence gathered during simulations of their system,
gave support to the theory that slot-based intersections offered improvements versus traffic lights.
The results identified an increase of up to twice the intersection capacity of traffic light systems
for the BATCH strategy and even better reductions in the delays occurring at these intersections
for both the BATCH and FAIR strategies. This higher performance of SIs is determined to be
caused by the increase in flexibility, finer granularity in merging traffic flows and better usage of
road space [14]. Limitations of their research are stated as, further work is required in order to
scale the analysis to a network of multiple road intersections. A bonus benefit of the SIs is stated
to be a reduction in car emissions caused by the ‘stop-and-go’ effect from the different driving
styles of humans [14].

2.2.3 On-ramp Merging

Another paper in which slot-based driving systems were applied, examined the on-ramp merging of
vehicles on a highway. Under heavy traffic, congestion develops due to the inefficient ways in which
merging manoeuvres are completed by human drivers. The research conducted by Marinescu et
al. proposed an optimised merging algorithm based on their previous work mentioned in 2.2.1 of
this paper, which uses a slot-based system to coordinate vehicles on both the main highway and
vehicles merging between the highway and on-ramp [15].

Research conducted by Shladover [19] showcases how a maximum of 5% of the total road surface of
a highway is utilised at any one point, due to safety measures between vehicles. Another research
paper by Chen et al. [20] analyses how congestion is caused by poor operation of motorways
under heavy traffic conditions. The motivation behind the paper by Marinescu et al. is in reducing
the amount of congestion on highways using this co-operative slot-based system, which in turn
allows for journey times to be more accurately predicted. The work by Marinescu et al. defines
a slot S as S = z, p, t, b, o, z is the size of the slot, p is the position of the slot at the time t
and b represents the behaviour of the slot in terms of acceleration, deceleration and lane changing
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manoeuvre. Finally, o represents the occupancy status of the slot (free or vacant) [15]. Vehicles are
assumed to be equipped with radar, DGPS, wireless communication and are (semi)-autonomous.
The proposed TMS system assumes vehicles drive under their own guidance until a threshold
is reached and the TMS decides that more efficient management of the highway is required to
prevent congestion.

There are two approaches examined for determining a slot’s availability. The first approach dis-
cussed is a hierarchical approach. This approach instructs the TMS to maintain occupancy infor-
mation for all slots on the highway. If a car wishes to move into another slot, the TMS accepts or
rejects the change, rejections occur if multiple vehicles attempt to access slots at the same time.
This approach relies only on vehicle to infrastructure (V2I) communication. The second approach
is the distributed approach. This approach relies on vehicle to vehicle (V2V) communication.
When a vehicle wishes to change slot, this manoeuvre is then coordinated with all surrounding
vehicles using V2V. The use of V2V communication and coordination makes this approach scalable
in comparison to the hierarchical approach. However, it requires a complex protocol and group
communication which was beyond the scope of the paper.

The final proposed approach combines the best aspects of both the hierarchical and distributed
approaches. Vehicles on the road use the distributed approach to coordinate. However, a roadside
unit (RSU) acts as a proxy between vehicles on the main road and vehicles on the on-ramp, enabling
vehicles to communicate with the RSU (Vehicle to Infrastructure communication) to request a slot.
The RSU uses V2V to determine suitable slots with existing vehicles on the highway. An optimised
version of the merging algorithm discussed in [2] is used to allow merging between vehicles on
the on-ramp and main highway. This optimisation allows for the merging algorithm to utilise all
available slots across all lanes, not just the first lane.

Figure 2.2: Maximum on-ramp throughput [2]

Results from the research concluded that under medium traffic conditions the slot-based driving
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without cooperation achieved a 41% increase and the slot-based driving with cooperation achieved
a 106% increase for heavy traffic conditions in comparison with PTV Vissim’s human driver model.
Under heavy traffic conditions, both approaches achieved a 230% and 452% increase in throughput
compared to the human driver model. The results conclude that slot-based approaches can create
a more efficient merging manoeuvre between on-ramp vehicles and vehicles on the highway.

2.2.4 Optimisation of Parking Spaces

The increase in car usage in recent years has not been sufficiently matched by the advancements
in the organisation and planning of vehicular infrastructure. A case study by researchers from the
University of Teknologi examined different layouts of parking spaces. The three different parking
designs that were examined were: parallel parking, perpendicular parking and diagonal (angled)
parking. The parallel parking design positions cars in a line with the front bumper of one car facing
the back bumper of an adjacent car. This design layout is more common for on-street parking
layouts, however, this design may also be used in parking lots and other parking structures. The
perpendicular design organises cars in a format with which each car is parked side by side. Each
car is parked so that either the front or back bumper is perpendicular to the curb, wall or line
which separates the aisles of parking spaces. Finally, diagonal parking is designed so that each
parking space is positioned at an acute angle to the aisle from which cars approach the parking
spaces.

Three mathematical algorithms were proposed for calculating the maximum number of parking
spaces that can be created from a given available area. The first of the three being parallel parking.
The first step in the algorithm for parallel parking is to generate the set of all the required variables.
P = {w , k , y} where parking lot P is represented by w the width of the lane, k the length of
the lane and y the length of available parking space. The exact area available for parking spaces
needs to be measured and finally, the maximum number of spaces is calculated using:

Number of Parking Spaces =
y

k
(1)

The algorithm for calculating the maximum number of diagonal spaces in a region is calculated by
P = {x , z , θ, k ,w} where parking lot P is represented by the curb length x , the depth z , the angle
θ, the lane length k and the lane width w . The values of w , k and z are calculated according to
the value of θ by using:

tan θ =
w

z
and z =

w

tan θ
(2)

The minimum space for a lane is then calculated using:

Minimum area of parking space = (w × k) +
1

2
× (z × w) (3)

Finally, the number of lanes to optimise the area of available parking spaces is determined by:
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Figure 2.3: Parallel parking layout [3]

Number of spaces =
Area Available

Minimum area of parking space
(4)

Figure 2.4: Diagonal parking layout [3]

The third design is of the perpendicular parking lot spaces. P = {w , k} where w is the width of
the lane and k is the length of the lane. The minimum space for a parking space is determined by
k×w . Finally, the maximum number of parking spaces that can be created is calculated by:

Number of spaces =
Area Available

Minimum area of parking space
(5)

The researchers applied these three designs to the total parking area they had available, the results
showed a noticeable increase in the number of parking spaces in comparison to the parking lot
design that was currently in use for the available parking area. This current design of their parking
lot had 127 parking spaces, however, each of the new optimised layouts was calculated to create
166 perpendicular spaces, 129 diagonal spaces or 100 spaces for the parallel design.

However, while the perpendicular design was the best approach for creating the most parking
spaces in the given area, in [21] evidence is provided for specific designs where angled parking
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Figure 2.5: Perpendicular parking layout [3]

is the more optimised design. In a parking lot of eighty spaces, the diagonal space layout uses
less floor area: 22,532 Sq ft. in comparison to 24,200 Sq. ft used by the perpendicular layout
when the use of turning bays are required. This is caused by the need for perpendicular spaces
to have wider entrance lanes to allow more room for vehicles to manoeuvre in and out of the 90
degree spaces. Furthermore, the diagonal space design requires only one, one-way entrance lane
of regular width, due to the vehicles being restricted to only entering the parking spaces from one
side. Diagonal parking spaces also require significantly less lane width to manoeuvre in and out.
However, in [22], concerns are raised regarding the approach to the diagonal parking lot spaces.
Drivers may approach the spaces the wrong way and attempt u-turns or reverse backwards as
an attempt to drive into the free space, even if there is not enough room for most vehicles to
make these manoeuvres in tight parking lot environments, which can further cause congestion and
unpredictability.

2.2.5 Smart Parking

Dsouza and Hussain [23] propose a system for an entire intelligent parking lot management system.
This will allow for drivers to book a parking space and be directed to the space, once it has been
booked. The implementation utilises several modern technologies to track the availability of the
spaces by leveraging existing CCTV infrastructure and computer vision algorithms to process the
video feed and determine whether a parking space is occupied or not. This occupancy information
is sent to a centralised control, where the booking of spaces is managed and payments are handled
for the use of each parking space. The proposed system will include marker based navigation
through an augmented reality interface which will guide the user to the booked parking space.

The concept of pre booking parking spaces is not a new concept, however, utilising modern
technologies will improve the ease and efficiency of the booking procedures. In [24], a parking lot
reservation system is proposed which is accomplished through the use of the Internet of Vehicles
and intelligent transport systems. IoV is described as being an integrated network system which
connects different people in different vehicles and environments within an urban setting. The
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proposed parking lot reservation model has three main components: the co-operative network of
drivers, parking lots and a control system [24]. This model contains parking intention parameters,
which includes a walking distance threshold from parking lot to destination, the parking duration,
the type of parking space required (disabled, motorbike, road level) and also the threshold parking
fee. These values are consumed by the control system when evaluating the best parking space
to recommend to the driver. Weighting is used to determine the order of preference for these
parameters.

Two main algorithms are used by the system. The first is the candidate parking lot selection
algorithm, the walking distance threshold is screened and all parking lots within that distance from
the destination are returned in a set. The parking lot types are then screened against the set
of parking lots, which were found in the previous step. All parking lots which do not match the
user’s requirements are removed. The parking lot fee is then screened against the set of parking
lots and any parking lots above the fee threshold are removed from the candidate set. Finally, any
unavailable parking lots are also removed from the set, all remaining parking lots are considered
candidate parking lots. If no suitable parking lots have been found, the driver is notified to lower
their demands, and the algorithm repeats to find a suitable parking lot.

The other fundamental algorithm used by the reservation system is the optimal parking lot selection
algorithm. The algorithm uses the newly created set of candidate parking lots and re-screens the
users preferences against this set. One parking lot is chosen which is both available and the best
option, given the weights provided for each parameter by the user. The researcher’s evaluated
their system by studying the occupancy rate for three parking lots in the same vicinity: A, B,
C. Observations concluded that drivers spent significantly more time than was necessary queuing
to enter parking lot A during peak times, even though parking lot B and parking lot C had a
large number of unoccupied spaces. When the algorithms were applied to this data, it was found
that the utilisation rate of parking lot A remained high, as usual, however, the utilisation rates
of B and C improved immensely during peak times. Hence, the overall utilisation rates for the
area containing the three parking lots improved by using this optimal reservation algorithm in
comparison to blindly choosing a parking lot.

2.2.6 Parking Lot Induction Method

This paper analyses the main considerations of a driver on how to choose a parking space, in
turn proposing a solution for path optimisation within parking lots by using a modified version of
Dijkstra’s algorithm [4]. To eliminate the congestion caused by drivers spending too much time
driving around parking lots, blindly attempting to find an available space, the modified Dijkstra’s
algorithm is applied to enable the driver to find an available parking space quickly and accurately.

The parking system model uses Dijkstra’s algorithm to calculate the distance between two given
points. Dijkstra’s algorithm is described as a graph search algorithm that solves the single source
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shortest path problem [4]. The traditional algorithm is used to find the shortest path between
nodes on a graph, which can be applied to a road network. Each road is constructed of a series
of nodes which are all connected. Connecting roads share a node and parking lot spaces are each
connected to the graph by a single node.

Figure 2.6: Parking lot layout as a graph [4]

The proposed solution is to have sensors monitoring the occupancy status of spaces; the best of
the available parking spaces is found and the shortest path from the entrance to the parking lot is
shown on the screen to the next incoming vehicle. However, the original Dijkstra algorithm returns
the shortest path from one known source node to all other nodes, but for the researcher’s proposal
they only required the shortest path between two known nodes. The modified algorithm finds the
shortest path from source to destination while excluding all other paths and accounting for factors
including driving distance, the number of vehicles currently on the same route and the occupancy
status of spaces (the weights between nodes are adjusted to account for these factors).

[4] solves the problems of:

• the drivers not being alerted to when and where a parking space becomes available

• the drivers not being allocated optimal parking spaces and many driver’s driving to the same
space, when a driver has been allocated a spot further away but finds an alternative along
its route (which has been assigned to someone else)

• no parking lot induction, causing the drivers to spend a lot of time finding parking spaces
by themselves, without guidance.
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2.2.7 Vehicle Networking

Vehicle Ad Hoc Networking (VANET) is a specific adaptation of Mobile Ad hoc Networking
(MANET). This solution allows for vehicle to vehicle (V2V) communication. Vehicles equipped
with the appropriate VANET technology can communicate with all other equally equipped vehicles
in their vicinity. The direct use cases of V2V are to allow for a more low level co-operative
approach for vehicles to self organise as necessary. Vehicles can form platoons or prevent collisions,
based on the information they receive from the neighbouring vehicles. Each vehicle and road side
infrastructure forms a node in the network. The information gathered from each node is sent to
every other node in the network. The accumulated data is analysed and informed decisions can
then be made by the vehicles [5]. The nodes in the network are free to join and leave the network
as per design, VANETs are an open and fault tolerant. While conventional MANETs are composed
of nodes communicating without a central network, the freedom given to nodes by MANET to
leave or stay at will, a variation on the routing protocol is required. Multi-hops are used to allow
for the efficient transferral of information over a longer distance.

VANET assumes unlimited power and storage capabilities of each node, however, vehicle to broad-
band (V2B) communication enables vehicles (nodes) to send and store their information in the
cloud [25]. This circumvents the challenges of having large physical on-board storage for each
node. V2B also is a solution to allow a central control system to provide input to the VANET
and provide external guidance to the nodes. In [25] the two main applications of VANETs are
considered to be:

• Safety applications, increasing the overall safety of road and other users by implementing
collision avoidance, co-operative driving and traffic optimisation.

• Infotainment application, providing drivers with information that hold entertainment value
e.g nearest car repair station, parking lot, supermarket.

2.3 Technology Used

This section will briefly provide detail on the types of software and technology used in the devel-
opment of the slot-based system. The four specific cases that are covered are OpenStreetMap,
the publicly available OSM Java library, OSM-Commons and finally, PTV Vissim.

2.3.1 OpenStreetMap

The OpenStreetMap (OSM) collaborative project aims to deliver free geographic data to anyone.
The collection of mapping data is created by local contributors and is supported by the OSM
foundation. The data is open data and free to use for any purpose, on the condition that open-
streetmap is given credit alongside its contributors. OSM data is exported in either XML or PBF
formats. OSM utilitises a topological data structure consisting of four main components:
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• Nodes - points with a pair of latitude and longitude coordinates. Nodes are used to represent
‘ways’ or other significant points of interest on a map.

• Ways - an ordered collection of nodes which create a line. A way denotes linear elements
including roads and rivers.

• Relations - used to represent the relationships between existing nodes and ways.

• Tags - attributes which contain additional information about each map object (node, way,
relation). Tags are used to store speed limits, names, road types etc.

OSM-Common

Java is the programming language used to develop this slot-based system, a connection was
required between the Java system and OSM. OSM-Common is a Java library for accessing Open-
StreetMap services [26]. This library allows for parsing and processing of OSM data. The supported
OSM APIs include OverPass and Nominatim. OverPass is a read-only API that returns custom
segments of OSM map data. The overpass API is optimised for accessing large amounts of data
in a short period of time, in comparison to the main OSM API which is used for both reading and
editing the map data. On the other hand, Nominatim is a search engine for OSM data. The search
engine accepts queries constructed of a name and address, returning OSM map data relating to
the query.

2.3.2 PTV Vissim

PTV Vissim is a microscopic multi modal traffic flow simulation software developed by PTV
Planung Transport Verkehr AG. This software is used to model and simulate road networks of
vehicles. The software can simulate many types of traffic including vehicles, public transport and
pedestrians. The software package uses an optimised version of the human car following model
developed by R. Wiedemann. Vissim provides a graphical user interface for the modelling of
simulations. For more in depth control of simulations, Vissim is provided with the COM interface
which is a hierarchical model in which functions and parameters of the simulator that are normally
controlled by the GUI can be controlled by external programming [27]. The COM interface provides
control to any programming language which is able to handle COM objects including C++, Java
and Python. The interface allows for the dynamic manipulation of a selection of Vissim object
attributes. The main elements of PTV Vissim are:

• Links - objects within vissim which denote a continuous strip of road.

• Connectors - objects which are used to connect two links.

• Routes - objects used to indicate a course to follow along a series of links and connectors.

• Vehicle Inputs - the starting point from where vehicles and other moving objects will be
generated from.
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2.3.3 Simulation Software Comparisons

To evaluate the system, the use of traffic simulation software is required. Modern traffic simulation
software includes various car-following models, which enable the user to simulate human drivers in
custom road networks and scenarios. The two simulation software packages that were examined
for this project were Simulation of Urban Mobility (SUMO) and PTV Vissim. SUMO is an open
source traffic microscopic and continuous road traffic simulation package which is capable of
handling large road networks. Vehicles move under the control of the default car following model
(others may be chosen) in this simulator, collisions and accidents are simulated. Vehicle behaviour
is taken into consideration for manoeuvres like changing lanes. Roads are shown as a combination
of lanes and each lane has a fixed width. Vehicle width is also fixed and SUMO has various APIs
that allow simulations to be controlled remotely.

On the other hand, PTV Vissim, as discussed in the previous section 2.3.2, is a licenced microscopic
multi-modal traffic simulation software package. Vissim is one of the most used traffic simulation
software on the market. Vissim allows for the user to define custom vehicles and other road users.
The biggest advantage of Vissim is the component object model (COM) interface. The COM
API allows a user to programmatically control the Vissim simulation using many programming
languages. Currently the COM interface is unmatched in other traffic simulation software packages
including SUMO, as it allows access to signal control, path flows, vehicle behaviour and the entire
road network topology. This enables the user to model complex flows, transportation systems and
components, including custom driver models which was the most important component regarding
the development of the slot-based driver guidance system.

Figure 2.7: A comparative table of traffic simulators [5].

As shown in Fig.2.8, in the comparative study of all traffic simulators, Vissim is the only simulator
to achieve an easy difficulty rating and "Flexible" infrastructure flexibility rating in terms of its
infrastructure. It is also centred around urban road networks, which is the appropriate network
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Figure 2.8: Legend for the comparative table of traffic simulators Fig.2.8 [5].

type for testing the slot-based driver guidance system in an event scenario. Hence PTV Vissim
was chosen as the most suitable simulator for this project.

2.3.4 Conclusion

The related work discussed in this section were in the areas of slot-based driving and parking.
The previous work on slot-based driving showcased the benefits that can be gained from using the
approach and also the considerations that must be made when doing so. However, the slot-based
driving research targeted single instances of specific road segments including highways, on-ramps
and intersections. The chaining of intersections and on-ramps has not been examined.

This project will continue on from the work completed on slot-based intersections by accounting
for the chaining of intersections. The concept of scope will be used from [2], to have different
entities controlling specific segments of road. The various levels of scope will be at the global
scope of the entire system, parking lot scope of the parking lot, the local scope of each road
and finally the vehicular scope of each vehicle. This project will apply similar considerations to
the previous work on intelligent parking lot management system and parking space reservations,
however, this system will implement these elements using the slot-based driving approach.

18



3 Design and Implementation

This chapter details how the slot-based cooperative driver guidance system was implemented and
how it functions. Each component of the system is discussed, whether they were included in the
final implementation or not. Explanations for design choices are also included, to allow the reader
to understand how the project developed over time. The implementation is focused on creating
a slot-based system with 100% compliance, that will eliminate the stops incurred by each driver
[14]. This solution will attempt to alleviate congestion [2] by applying traffic shaping measures
to maintain traffic speeds, consistent trip times and queuing for light and heavy vehicle traffic
volumes. This solution attempts to test the hypothesis that journey times can be more accurately
predicted, due to more consistent average journey times and overall traffic flow.

The design and implementation choices led to the successful build of the slot-based driver guidance
system. The central guidance system was developed in Java and had working features allowing
external communication with both OpenStreetMap’s online database and also the simulation soft-
ware PTV Vissim. This communication enabled real world roads to be replicated in the guidance
system, however the limitations of the simulation software meant separate test road networks
had to be designed and used when testing the simulations. Parking lots were designed in Vissim
using diagonal spaces as previously discussed in 2.2.4, due to the diagonal spaces requiring less
lane width and allowing quicker manoeuvres for moving in and out of the spaces. Aspects of
the intelligent parking lot management system 2.2.5 were also used to incorporate parking space
reservations and routing within the parking lots to all available parking spaces. The implemented
system successfully provisions slots for each vehicle and manages their position on route to the
destination, with no collisions between cars at intersections.

3.1 Requirements

• The system should allow road networks containing multiple roads and complex intersections with
many incoming and outgoing roads.

• Each road may be constructed of multiple lanes.

• Information should be sent to the system from the vehicles.

• Information from the vehicles should be received from the system.

• Vehicles should maintain a safe distance from one another and no vehicles should collide.

• Parking lots should be capable of holding 100+ spaces.
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• Parking spaces should be booked in advance.

• Traffic should utilise the entire road network, being re-routed as necessary.

• Statistics should be gathered for simulations (slot-based simulations and control cases).

There were many challenges during the planning and development of this system; the majority
of these challenges came from connecting to, and controlling, the simulation software. These
challenges forced compromises to be made on the original design, to allow for a basic guidance
system to be developed within the designated time frame.

The slot-based system is complex. The build of this system had to be planned very carefully. It
was important to identify the MVP components of the entire system. These components were
either external standalone features of the system, functioning outside of the Java implementation,
or these components were internal features within the Java implementation. Determining the
requirements 3.1 for the system were crucial to then be able to identify the MVP components.
The MVP components of the system included: a road management system for managing all roads
in the external road network surrounding the event and a parking lot management system for
managing all roads and parking spaces within each parking lot of the event.

3.2 Restrictions

The project had to be managed, so that the intended system could be developed within the short
time frame. In order to accomplish the build and testing of this system certain restrictions had to
be placed in regards to the road networks, vehicles, compliance levels:

• All vehicles have the same capabilities, in regards to speed, acceleration, technology etc.

• All vehicles are the same size and type.

• All road segments have a maximum of only one lane in each direction.

• All Vissim Connectors only have room for one slot (one vehicle).

• All Vissim links end before an intersection (there is no overlap between a connector and its
ToLinks or Fromlinks)

• All intersection zones are composed of overlapping connectors

• All incoming links to an intersection zone are connected to all other outgoing links except
for the outgoing link in parallel.

• There are no turning restrictions at intersections, except for u-turns.

• There is only one type of intersection zone. All intersections with incoming and out-going
links are considered to be the same type of intersection zone, there is no type difference
between "forks" and "T junctions".

• Intersections do not allow multiple vehicles access at once.
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• All routes must end at a link with no other further connections.

• There are no security and privacy concerns in this project, however, they will be briefly
discussed.

• Parking lots have diagonal spaces.

• Parking lots use a one-way system.

• All vehicles in the system are 100% compliant with the system and immediately follow all
guidance given to them by the system.

A selection of restrictions were added to this list as the project developed. This was mainly due to
the limitations of the simulation software that could only be discovered by attempting to implement
certain features (e.g OSM maps).

3.3 High-Level Overview

The MVP components of the system are the shown in Fig.3.1. The Driver guidance system,
developed in Java communicates with the simulation software through the COM interface. The
driver guidance system requests network and vehicle specific information from the simulation every
tenth of a second. The parking lot routes towards the parking spaces and parking lot exit routes
from all parking spaces are exported from Vissim to CSV files. These CSV files are then imported
by the driver guidance system to be assigned to the vehicles attending the event. The parking
routes had to be exported from Vissim as CSV files, as there were no functions for requesting the
parking routes from Vissim through the COM API.

Figure 3.1: High-level system overview
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System Architecture Development

The requirements gathering process, provided a good foundation for composing an architec-
ture diagram of the ideal system. After many iterations, the proposed architecture is shown
in Fig.3.2.

Figure 3.2: Proposed system architecture.

The proposed ideal architecture Fig.3.2 included a mapping utility, which is used to extract mapping
information from OpenStreetMap (OSM) and this data is then used by the driver guidance system
to recreate real world road networks. A database entity was proposed to store all the schedules,
driver information and parking information of the system in a well organised and efficient structure.
The proposed slot-based driver guidance system has five key components: the parking management
system, the scheduling system, the slot management system, the routing component and a system
for predicting the average journey times. To connect the guidance system to the mobile application
and the simulation software, an API is required. The API allows for the sending and receiving of
vehicle information in real time.

Due to the challenges encountered over the course of the project and time constraints, re-
adjustments to the previously planned deliverables had to be made. This meant reducing the
system down to a more basic architecture which can be seen in Fig.3.3. The mobile application
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Figure 3.3: Final system architecture.

was removed and the database became redundant during development. The mapping utility, while
not used in the final simulation, still held enough successful functionality to include in the final
architecture as the only limitation was importing the OSM maps into Vissim.

3.4 Driver Guidance System Entities

To fully understand the system, insight is required into the design of the main entities of the
guidance system before the system’s functionality can be discussed. This provides the necessary
background information regarding the composition of the main entities that shape this slot-based
driver guidance system. Relationships between the entities are briefly covered before a more in-
depth discussion in later sections.

3.4.1 Vehicle

Vehicles are one of the two most important objects in the system. The vehicles are an abstraction
of real world vehicles and represent the ‘users’ - without them there is no need to provide guidance.
Each vehicle is a unique entity, which is created by the user or in this case the simulation software.
The vehicle symbolises a driver on the road using the system. The main attributes that define a
vehicle are:

• ID

– This a unique reference to each vehicle, to easily identify them individually.

• Origin

– The location at which the vehicle joined the road network controlled by the slot-based
system.

• Destination

23



– The desired final location of the vehicle. This is either a parking space within the
parking lot of the event or a specific destination away from the event. On first entry to
the system, if a vehicle provides the event as the desired destination, this destination
is updated to a parking space, if one is available.

• Current Position

– This is the vehicle’s current position in the road network or parking lot. This is updated
on a regular basis through real-time communication with the vehicle.

• Speed

– This is the current speed of the vehicle at a specific period in time. This is used to
provide guidance to the vehicle on maintaining its position within the assigned slot.

• Is Parking

– The system needs to know if the vehicle is completing a parking manoeuvre or not, as
additional space and time needs to be accounted for to allow the car to successfully
move in and out of the parking space.

• Allocated Parking Space

– If the occupants of the vehicle are attending the event and the vehicle’s destination is
the event, an available parking space should be assigned to the vehicle.

• Stay Time

– If the vehicle intends to stay in a parking space, the stay duration must be declared.

• Route

– The current route the vehicle is instructed to follow.

• Start Time

– The simulation time at which the vehicle first entered the road network controlled by
the slot-based system.

• End Time

– The simulation time at which the vehicle left the road network controlled by the slot-
based system.

3.4.2 Slot

Slots are the second most important component in the system, as without slots the concept of
a slot-based driver guidance system could not be implemented. Slots are specific regions spread
over the width of a lane and long enough to match the length of a vehicle. However, by definition,
slots are created to be longer than the vehicle that has been assigned to it. This is to account for
potential delay or error by the vehicle in maintaining a central position within the slot. A safety
distance is added between each slot. This safety distance is proportionate to the speed at which
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vehicles travel at and the larger distances required to slow down or stop. The positions of each
slot are tracked via the road management system and the position is the distance in metres from
the start of the road segment.

Figure 3.4: Example of slots on a road.

The main attributes that define a slot are:

• ID

– This is the unique identifier for each slot.

• Road ID

– This is the reference for the road to which the slot is currently assigned.

• Lane

– This is the lane number on the road to which the slot is currently assigned.

• Size

– Each slot is constructed to be of a specific size; big enough to contain the vehicle by
which it is occupied.

• Occupied By

– The vehicle currently occupying the slot.

• Reserved By

– If no vehicle currently occupies the slot, a reservation can be made to prevent multiple
vehicles from attempting to occupy the slot at the same time. This acts as a form of
lock or mutex, similar to those used in concurrency control.
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3.4.3 Road Segment

In this system, a road is a specific polyline within the road network which is positioned between
two intersections. Vehicles cannot leave a given road segment before the end of that road segment
is reached.

Figure 3.5: Example road segments in Vissim.

In Fig.3.5, the road architecture is shown. While in the physical world, a road usually covers a long
distance with multiple turns every few meters. The slot-based system design requires roads to be
divided into segments. This division is required for both the simulation and the OpenStreetMaps
as there is a need to separate the intersections from the straight roads. The intersections require
more complex management than the road segments. A road segment is defined as being the
distance between each pair of subsequent intersections. Initially the road segment entity was
created for the road networks imported from OpenStreetMaps, however, the link and connector
style design that is used within Vissim meant that this road segment design was also required for
Vissim simulation networks. The main components of each road segment are:

• ID

– Unique identifier for each road.

• Name

– The name of a given road as per the road naming system in Ireland.

• Length

– The length of a road segment, from start to end.

• Number of Lanes

– The number of lanes that the road has of the same direction.

• Speed Limit
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– The maximum speed limit for the given road.

• Nodes

– All nodes from the OSM map data, which are used to create this road.

• Requests

– A list containing all current access requests from vehicles that are attempting to enter
a given road controlled by the slot-based guidance system.

3.4.4 Lane

Each road segment, contains one or more lanes. A lane is a specific stretch of road, used to
separate lines of traffic. Lanes are intended to divide traffic based on direction or speed. This
system limits each road segment to containing one lane of one direction or two lanes of two
different directions. The main components of a lane are:

• Lane Number

– The unique identifier for each lane of a given road.

• Road ID

– The reference for the road to which the lane belongs.

• Lane Length

– The length of the given lane, as it could be shorter than the entire road (e.g. it merges
into another lane).

• Slot Positions

– The position of a slot in a given lane, the distance the slot is from the start of the lane.

• Slots

– All slots currently travelling on the given lane.

• Lane Waiting

– This is used to determine whether or not the lane is held up by other vehicles, either
awaiting access or due to an unexpected event.

• Minimum Slot Gap

– Used to maintain a safe distance between slots travelling in the lane.

3.4.5 Route

A route is defined as being a path that any vehicle can take, providing both the route and vehicle
have the same points of origin in the slot-controlled road network. A route consists of multiple
roads and may contain multiple intersections.
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Figure 3.6: Example of routes in PTV Vissim.

In Fig.3.6 using a one-way road with an intersection of 3 different turns, a route is shown as the
arrows on each link and connector. The origin point in this case is at the line labelled 1. The
arrows from line 2 to lines 3 or 4 are variations of the route from the same point of origin (line 1).
The lines 3 and 4 indicate the destination point of a route. The slot-based driver guidance system
considers each variation to be a unique route, for simplicity purposes. The main components of a
route are:

• ID

– Unique identifier for a route.

• Origin

– The point from which any vehicle on this route first joined the slot-controlled road
network.

• Destination

– The final destination point where the route ends.

• Link Sequence

– A list of all the roads (links) and intersections (connectors) that a vehicle must travel
along in order to complete that route.

3.4.6 Parking Lot

In this system, a parking lot is an area containing many parking spaces. Vehicles will only be
routed towards a parking lot if they intend to park and attend the event. The parking lot has been
designed in Vissim to be a one-way system with several aisles of parking spaces in a diagonal parking
space layout. The parking lot has been design as a one-way system to reduce the complexity of
intersections within the road network of the parking lot. As previously mentioned, the diagonal
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spaces are used to increase vehicle change over efficiency by reducing the difficulty of completing
a parking manoeuvre.

Figure 3.7: Parking lot design in Vissim.

Fig.3.7 shows the design of the parking lot which was used when testing this system. The grey poly-
lines are the combination of links and connectors to form the roads and intersections throughout
the parking lot. The blue rectangular squares positioned on short grey links are the parking
spaces.

• ID

– The unique identifier for the parking lot.

• Spaces

– All parking space objects in the parking lot.

• Routes

– Routes to each parking space in the parking lot.

• Entrance

– The road segment that holds the entrance to the parking lot road network.

• Exit

– The road segment that holds the exit from the parking lot road network.
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• Free Spaces

– The current number of unoccupied parking spaces.

• Occupied Spaces

– The current number of occupied parking spaces.

3.4.7 Parking Space

A parking space is similar to the slot mentioned before. However, the parking space does not
move. It is in a fixed location on its own unique link, as shown in Fig.3.7.

• ID

– The unique identifier for the given parking space.

• Link ID

– The Vissim link / road where the parking space is located.

• Parking Lot ID

– The reference for the parking lot where the parking space is located.

• Occupied By

– If the parking space is occupied by a vehicle or not.

• Reserved By

– If the parking space has been reserved by a vehicle, but not yet occupied by one. This
prevents the system from assigning this parking space to other vehicles.

3.4.8 Intersection Zone

An intersection zone is defined as being one or more connectors between two or more road segments
(links). However, if multiple connectors overlap or form conflicting paths, these are considered to
be part of the same intersection zone rather than individual intersections.

In this system, there is only one type of intersection zone. All intersections with different amounts
of incoming and out-going links are consider the same type of intersection zone, there is no
type difference between "forks" and "T junctions", which are differentiated in the real world.
In Fig.3.8, the intersection zones for both A and B are denoted by the rectangles with dotted
lines. Intersection zone A is shown to be have only one incoming link and two out-going links.
In the slot-based system, this intersection is considered the same object as zone B, even though
B is more complex with multiple incoming and outgoing links on conflicting paths and would be
managed differently to zone A in the real world. This system only allows one vehicle access to
an intersection zone at any given time, due to the complexity involved in coordinating vehicles on
conflicting and non-conflicting paths which is discussed in a later section.
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Figure 3.8: Examples of intersection zones as per definition for the slot-based system.

The main components of an intersection are:

• Intersection ID

– The unique identifier for each intersection zone.

• Links

– A List of IDs for all incoming and outgoing road segments which create this intersection
zone.

• Occupied By

– If the intersection zone is occupied by a vehicle, the ID of that vehicle is stored.

• Reserved By

– If a vehicle has reserved the intersection in the future of the simulation, the ID is stored
of the vehicle, alongside the future reservation it has made for the intersection zone.

3.4.9 PTV Vissim Communication

To allow for the Java implementation to communicate back and forth between the simulation
software, a Vissim controller, network controller, route controller and vehicle controller were cre-
ated. A controller in this system is an object that contains many functions for making calls to the
COM interface and reduces the overall complexity involved in making calls to the Vissim COM
interface. Unfortunately, the controllers took longer than expected to implement, as the Vissim
COM interface documentation lacked clarity when making API calls through Java. The attribute
names used in API calls were slightly different to the attributes used in every other language and
could only be found through online research or trial and error.
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Vissim Controller

This controller is used to handle the invocation of the connection to the PTV Vissim software
and to load one of several types of test road networks. The Vissim Controller is also responsible
for starting the simulation when required. This controller is called once at the very start of the
simulation to connect to the Vissim software and then continuously during the simulation to run
the next time step.

Network Controller

The Network Controller is responsible for retrieving all the information required by the slot-based
guidance system, to recreate the road network in the system’s own objects. This includes retrieving
all links, link attributes (length, speed, name, ID), connectors and connector attributes (FromLink,
ToLink, length). This controller is called once at the start of the simulation to import the Vissim
road network into the guidance system.

Route Controller

The Route Controller is responsible for retrieving all possible "static routing decisions" from the
simulation. A static routing decision in Vissim is a route which is predefined during the creation
of the road network. Vehicles generated during a simulation may be assigned to follow that
static routing decision, if the point where the vehicle enters the network first is on a link that
is part of that route. Routing was intended to be configured by the slot-based guidance system,
however due to restrictions on static vehicle routes being read-only attributes in Vissim, a selection
of predefined routes were configured in Vissim. This gave the responsibility of routing vehicles
entirely to Vissim. Vehicles are assigned routes based on their point of entry and the relative
flow of each route variation. The relative flow is an attribute stating the proportion of vehicles
that should be assigned a given route. Routing was also intended to be dynamic, however, the
COM interface lacked the functionality to retrieve dynamic routing decisions made by Vissim and
hence, this had to be static. A way to circumvent this routing shortfall of the COM interface was
discovered during the latter stages of the project. This solution was to export the routes from
Vissim as CSV files and then using move vehicle functions via the COM interface to override the
route assigned to a vehicle by Vissim. Due to time constraints, this dynamic routing solution was
only applied to the routing of vehicles in the parking lot.

Vehicle Controller

The Vehicle Controller is responsible for retrieving information about all vehicles in the simu-
lation at a given time. The retrieved information includes: the current route, speed, position,
current link/connector and vehicle ID. However, unlike the other controllers, the vehicle controller
also sends commands to the simulation, including changing the speed, merging to another link,
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changing the vehicles position, and adding or removing vehicles. This controller is used continu-
ously throughout the simulation. These continuous calls are to send information to and receive
information from each vehicle in the network, at every time step.

3.5 The Slot-based Solution

As discussed in section 1.2, high volumes of vehicles in a small urban environment, accompanied
by chaotic driving behaviour negatively effects traffic flow and causes congestion. The goal of this
project is to improve the flow of traffic in the vicinity of an event and to increase the accuracy
of predicting vehicle journey times. The proposed traffic shaping solution was to allow vehicles
to travel in slots for the duration of time that they are in the vicinity of the event. The initial
challenge was in architecting a solution to accomplish this. Several design iterations were analysed
including using a single data structure to track slots on a coordinate based system and using a
system similar to the nodes used by OSM, where additional nodes were created and each node in a
network represented a slot. However, these were far too complicated for solving this slot movement
problem, due to the complexity of the data structures and the limitations of data available. To
further reduce the intricacy of the system, the compliance rate of the drivers in the system is
assumed to be 100%. This removes the need to handle on the fly scheduling as unguided drivers
enter and move around the event’s road network.

The final design is similar to a production line in a factory. Factories utilise conveyor belts to
move product across large floor distances. When applied to a road network, each road segment
is thought of as a conveyor belt. Road segments move each slot along until the end of the road
is reached, where the vehicle is then passed onto the next road in the vehicle’s route. This solved
the problem of moving slots for road segments. However, in contrast to a conveyor belt in a
factory, each product (slot) should be capable of moving at different rates along each belt. Hence
the design was altered to allow each slot to move along the conveyor belt data structure in two
ways:

• All slots under the control of the conveyor belt (all cars moving at the same rate).

• Or selections of slots allowed to move at different rates (vehicles moving at different speeds).

The main conveyor belt road segment implementation utilises two arrays to keep track of the slot
objects on the road and also the position of each slot on that road. This enables the system
to adjust the movement of slots as required, whilst maintaining safe distances and slot locations
throughout. An array was a suitable data structure as it enforced the restrictions on the number
of slots which could be located on a road at any one period of time, similar to the maximum
number of vehicles that can fit on a stretch of road while maintaining a safe driving distance. The
implementation uses the concept of traffic shaping as discussed in the related work by Marinescu
et al. [2], to form traffic into a more manageable pattern. This slot-based solution intended
to schedule slots at the start of the vehicle’s journey upon entering the controlled road network
surrounding the event. Access to every intersection would be pre-booked and the vehicle’s slot on
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approach to each intersection would adjust to allow for it to reach the intersection at its scheduled
time. The slot-based system uses look-ahead algorithms to check for all vehicles ahead of the
vehicle. If there is no occupied slot ahead of the current slot, the current slot is allowed to drive
at the maximum speed for that road. However, if there is an occupied slot ahead of the vehicle,
the distance and speed difference between them is calculated. If the slot ahead of the vehicle
is travelling at the max speed limit for the current road, the current slot is allowed to drive at
maxmimum speed for that road, otherwise calculations are done to control the movement of the
current slot to allow it to catch up to the next slot while maintaining the safe distance.

Simple tests within the console and Vissim were completed using this conveyor belt system for one-
way, single lane road segments for coordinating the slots. The test cases included slot scheduling
and position adjustment within the guidance system and for vehicles within Vissim. The tests
were completed for different vehicle volume levels, increasing from a low vehicle input to a heavy
vehicle input. These tests successfully scheduled vehicles within slots, adjusting their position and
propagating each slot (vehicle) towards the end of the road segment. The driver guidance system
did not lose control over each vehicle in the network for the entirety of the tests, also showing
a successful 100% driver compliance rate. Slots maintained a safe distance between them. The
success of these tests meant work using this solution could continue, the concepts of the coordinate
based system and OSM node style solution were dropped. The next iteration of the system was to
develop features to handle more complex road networks including the transfer of vehicles across
two road segments (intersections) and other networks with bidirectional traffic flow.

The intended design when adding intersections was to have an intersection zone reservation system.
The slot based system, would use a more complex look ahead algorithm to check for occupied slots
ahead of the current vehicle, but also oncoming intersection zones. The movement of the current
slot would be adjusted to allow the slot to reach the intersection at a time when it is available to
enter and pass through. At the start of a journey, calculations were done to schedule reservations
for each intersection along the new vehicle’s assigned route. This would ensure a time would
always be available for the vehicle to pass through each intersection without stopping, although
they may have to slow or speed up to reach the intersection at the correct reservation time. The
scheduling of slots would no longer be primarily down to the slots ahead of the vehicle, but instead
scheduled based on the available access times to the intersections along the route.

3.5.1 OSM Mapping Utility

OpenStreetMap was intended to be the source of all road network data. This was to ensure the
most realistic network possible on which to test the slot-based system. Hence, the mapping utility
was designed to retrieve road networks from the OSM database using the OSM-Commons Java
library [28]. The OSM-Commons library enables Java code to query the OpenStreetMap API
at api.openstreetmap.org. Initially, an OsmConnection had to be created. Once the connection
was successfully established, the API could be continuously queried. OSM-Commons utilises
a function called ’getMap’, which returns all map elements within a given area. However, a
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BoundingBox object needs to be provided as an argument. The BoundingBox object was created
from 4 coordinates representing the top, bottom, left and right edges of the box. For the purpose
of this project, this was modified to only require one coordinate, which would return all map
elements within a 3km radius of the given coordinate. Each element returned is stored for future
use. The tags of OSM Ways are filtered and the required information to create Road Segments
were extracted including (ID, name, speed limit, OSM Nodes which make up the way and the type
of way). The direction of each OSM Way is determined by checking the order of the OSM Nodes
that make up the way. Any tags stating if the way is a one-way road or in reverse order are also
checked, as this is how direction is stored in OpenStreetMap.

Upon retrieval of the road networks, OSM ways 2.3.2 are converted into road segments. However,
the OSM-Commons library lacked functionality for determining the length of ways. Hence, research
was completed on how to calculate the length of roads based on latitude and longitude coordinates
of each OSM node.

Haversine Formula

The haversine formula calculates the shortest (straight) distance between two given points on a
sphere. These two points have longitude and latitude coordinates. When applied to the earth,
this is only an approximation due to the earth not being a perfect sphere shape. Hence, an
assumption was made for this project whereby the distance of each road used in this system is
only an approximation.

haversin(
d

r
) = haversin(θ1 − θ2) + cos(θ)haversin(λ1 − λ2) (1)

Where haversin is a reference to the haversine function:

hav(θ) = sin2(
θ

2
) = (

1− cos θ

2
) (2)

d = the distance between the two coordinates.
r = the radius of the sphere (in this case the radius of the earth, approx 6, 371km).
φ1, φ2 = the latitude of coordinate1 and the latitude of coordinate2 in radians.

λ1, λ2 = the longitude of coordinate1 and the longitude of coordinate2 in radians.

As shown above, the latitude and longitude must first be converted into radians, which are then
used in the haversine formula and haversine function. Tests were conducted on the Java imple-
mentation of this formula by comparing the distances of results from Google Maps along certain
roads. Calculations by Google Maps are also an approximation, however, they were seen as a good
base case for this project. While there was minor differences in the results, it was on average
less than a 2 metre difference. This was an acceptable difference, as the road network used in
this project was intended to be as realistic as possible, it did not need to be exactly correct and
the slot-based system was capable of adapting slot provisioning and scheduling to roads of any
size.
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3.5.2 Connecting Road Segments

The OSM data was used to form road segments. Multiple OSM Ways (a sequential series of OSM
nodes, creating a road) may share the same node, hence creating an intersection. Therefore, all
nodes where an intersection was created, were tracked in a list. After the entire road network
and required OSM Way-specific information was imported from OSM, road segments were created
using the remaining nodes in each OSM Way that were not intersection nodes. The intersection
nodes are therefore the start and end nodes for road segments.

Figure 3.9: OSM Network of interconnected Ways.

In Fig.3.9, Black circles are intersection nodes and circles labelled A are the nodes closest to the
intersection node. The layout of the intersection was determined from the coordinates of the
closest node to each intersection node. Intersection objects were created for each node to keep
track of whether intersections were occupied or unoccupied.

Unfortunately, this entire OSM mapping system could not be used for the OSM road networks
imported into PTV Vissim. This was because the original OSM map data was difficult to import
to the simulation software, without manually creating every link and connector to be the exact
length and position replicating the OSM map, which is extremely time consuming. Previous
research on determining which simulator was the most suitable for this project found that another
software offering from the PTV group called Vissum had a built-in feature for importing OSM
Maps. This Vissum import had features to export the OSM map as a .ANM file which could
be imported to Vissim. However, when this was tested, the imported .ANM network was far too
complex and different to the original OSM data retrieved from the OSM database. Due to pressing
time constraints of the project, the decision was made to move onto implementing custom road
networks within the simulation software instead of using OSM real world maps.

3.5.3 The Intersection Zone

The decision to use custom-made Vissim networks instead of OSM maps, led to another challenge
in determining where intersections were formed in Vissim. The link and connector design used by
Vissim meant that only the potential intersections were known, as each connector was definitely
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part of an intersection. However, determining which connector overlapped other connectors to
form an intersection, from my research, could not be identified. The useful information relating
to each connector was limited to the from and to links.

The solution to finding the overlapping connectors (intersections) in Vissim is to use the basics of
set theory and a key-pair data structure, to form an ‘intersection zone’:

1. Each unique FromLink is checked for all corresponding ToLinks. A set is then generated for
all of these corresponding ToLinks, with the FromLink as the key for the set. This new set
is the connectedSet.

2. Multiple connectedSets are generated for each unique FromLink.

3. Every connectedSet is compared to all other connectedSets to find sets with matching
elements (this is done using the intersection function within Java).

4. If a matching element is found for two sets, those two connectedSets are combined, replacing
the two original connectedSets. A list is formed of all keys (FromLinks) of the two original
connectedSets.

5. This happens repeatedly until no new combined sets are formed. The lists which were
created containing all keys and respective connectedSets are now the links which form an
‘intersection zone’.

6. For this method to work, all incoming links must be connected to all out-going links,
and no turning restrictions should apply. This is therefore stated as another assumption
for this project.

Example:

Figure 3.10: Example of two intersections in Vissim
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ConnectorID FromLink ToLink
10001 1 5
10002 1 3 From Key ToLinks Set
10003 4 2 1 {3, 5}
10004 4 5 => 4 {2, 5}
10005 6 4 6 {2, 3}
10006 6 2 7 {8, 9}
10007 7 8
10008 7 9

Intersection New Connected Set
1 ∩ 4 {5} {2,3,5}
1 ∩ 6 {3} {2,3,5}
1 ∩ 7 {} {}
4 ∩ 1 {5} {2,3,5}
4 ∩ 6 {2} {2,3,5}
4 ∩ 7 {} {}
6 ∩ 1 {3} {2,3,5}
6 ∩ 4 {2} {2,3,5}
6 ∩ 7 {} {}
7 ∩ 1 {} {}
7 ∩ 4 {} {}
7 ∩ 6 {} {}

Any sets with no matching elements with any other set, are then added as ConnectedSets. In this
case "From Key" 7:

FromKeys ConnectedSets
{1,4} {2,3,5}
{1,6} {2,3,5}
{4,1} {2,3,5}
{4,6} {2,3,5}
{6,1} {2,3,5}
{6,4} {2,3,5}
{7} {8,9}

All matching ConnectedSets are combined, the final result is the sets of links which form an
intersection zone:

FromKeys ConnectedSets
{1,4,6}: {2,3,5}
{7}: {8,9}

38



3.5.4 Phasing

Phasing is a concept discussed in section 2.2.2 of related work. It is identified as a time period
whereby only a certain number of vehicles travelling on non-conflicting paths are allowed to enter
and pass through an intersection. This was an important concept to implement as multiple
vehicles should be allowed to enter an intersection, on the condition that they will not collide
or cross paths. To successfully implement phasing, the layout of an intersection is required. In
earlier work, the layout of an intersection was successfully implemented using OSM nodes and
their corresponding coordinates. An attempt was made to recreate the layout of the intersection
based on the ConnectedSets generated when forming intersection zones from Vissim. However, it
was found that multiple variations of neighbouring intersections could be formed. This is shown in
Fig.3.11, as both Intersection A and Intersection B are potential layouts of the ConnectedSet and
it was impossible to determine which one was the correct layout with the information currently in
use. Due to time constraints, a solution could not be found and phasing was chosen not to be
implemented. Hence this meant the system could only successfully allow one vehicle to enter an
intersection zone at any one period of time. Therefore, this created another assumption for the
project that only one vehicle can access an intersection at any given time.

Figure 3.11: Multiple variations of intersections can be made from one connected set

3.5.5 The Parking Lot

In section 2.2.4, Abdullah et al. discusses how to optimise the available space, to create the
maximum number of parking spaces using a perpendicular style parking space layout. Yet, [22]
provides specific instances where a diagonal layout creates more spaces than the perpendicular
layout for a given area. This is due to diagonal spaces requiring less lane width on approach to
each space. The diagonal spaces also essentially enforce a one-way system in a parking lot.

For simplicity and improved flow of traffic around the parking lot, the goal was to design a traffic
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flow optimised system. Events have many attendees and hence require a greater number of parking
spaces. However, the flow of traffic was determined to be a more important factor as the goal
of the slot-based system is to improve traffic flow and allow journey times to be more accurately
predicted. The diagonal layout reduces the time spent manoeuvreing in and out of parking spaces
[21], alleviating congestion and reducing the number of slots which are either stationary or moving
slowly during these manoeuvres . The one-way system created by the diagonal layout is more
beneficial to the flow of traffic in comparison to a two-way system as this reduces the number of
conflicting paths and the complexity involved in scheduling slots on conflicting paths within the
parking lot.

As shown in section 3.4.6, Fig.3.7 presents the final parking lot design in PTV Vissim. Vehicles
enter the parking lot in their respective slots through the left-hand side of the parking lot and
exit out the right-hand side. Diagonal spaces are interleaved between aisles and two spaces are
positioned opposite each other on every aisle.

The parking lot is created as a separate parking lot network to every other external road network in
the slot-based guidance system. Nonetheless, it is composed of a similar road and intersection zone
design. Due to the network within a parking lot consisting of multiple turning choices following
each other in quick succession, there is a significant increase in intersection zones for the parking
lot. Slots are scheduled the same as the external road network, however, additional complexity is
added when vehicles request to exit the parking space. To allow a vehicle to exit a parking space,
the vehicle must reverse out of the space and manoeuvre so it is in a central position and parallel
to the edges of the aisle. To account for this manoeuvre, temporary slots are added to the road
segments leading up to the parking space if they are available. If they are unavailable, the slot
scheduling system makes a reservation for them to become available at the next best opportunity.
All slots leading up to the reserved road segments and newly added temporary slots are rescheduled
to account for this change. Once the vehicle has completed the parking space exit manoeuvre,
the temporary slots and road segment reservations are removed from the system.

3.5.6 The Handover between Parking Lot and Road Network

The completed parking lot management entity and road management entity were the two major
slot control components of the system. The next challenge was to combine each of the entities
and ensure a smooth transfer of the control of the vehicles as they are passed from one to the
other. The initial scheduling of slots for new vehicles entering the slot-controlled road network
was reused for this purpose. As a vehicle entered the road leading up to a parking lot, the vehicle
was reassigned a slot within the parking lot entity. A similar process was followed when exiting
the parking lot: a slot was assigned to the vehicle. This process replicates the very first slot-based
process experienced by the vehicle when it first entered the event’s surrounding road network under
the direction of the guidance system.
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No Availability Re-Routing

When a new vehicle enters the slot-controlled road network, the destination of the vehicle is
evaluated. If the destination matches the parking lot of the event, the system searches for a parking
space. The parking lot entity tracks all parking spaces determining which ones are occupied,
unoccupied or reserved. When a vehicle requests a parking space, the furthest parking space
available from the entrance is reserved for the vehicle. The furthest space available is returned
as this alleviates any potential congestion closer to the entrance of the parking lot, causing the
schedules of slots entering the parking lot to be rescheduled.

If no parking space is available in the parking lot, the vehicle is re-routed out of the test network
by the shortest available exit route. The re-routing of vehicles is intended to be to another parking
lot with available spaces, or else away from the event as there is no legal parking available.

3.5.7 Intended System vs Implemented System

The original intention of the slot-based system’s ’conveyor belt’ style design was to schedule slots on
entry to the network. Upon entry, the route of a vehicle would be analysed and all intersection zones
that the vehicle needed to pass through would be scheduled appropriately. Each road segment’s
management system would then adjust the rate at which the vehicle arrives at the intersection to
meet the reserved time. Due to time constraints and the complexity of this scheduling challenge,
this was not completed. However, a successful implementation was completed for scheduling slots
on each road, as previously mentioned using the look-ahead algorithms. This implementation
successfully propagated slots along each road segment and if the intersection zone was available
upon reaching it, the slot would also be propagated through the intersection or delayed to prevent
collisions.

A collision prevention system was implemented early on in the project to test the intersection zones
in the simulator and prevent multiple vehicles from entering an intersection at once. As a result of
the scheduling of intersections for the entire journey of each vehicle being incomplete, the collision
prevention system was once more used in its place. In this implementation, road segments are
responsible for scheduling all of their currently assigned slots. Therefore, the scheduling of the slots
is not based on when each slot’s next intersection booking is and the current slot circumstances
for the given road segment. The slots are instead scheduled based on the current road segment
information (distance between slots, speed of slots etc.) and also when the next intersection will
be available. If the intersection will not be available before a vehicle reaches the intersection
without travelling below a threshold speed, the vehicle must make a request to obtain access to
enter the intersection and then wait until access becomes available. The parking lot management
system was also successfully implemented as originally intended with parking space reservations
to the furthest available parking spaces from the entrance and slot scheduling accounting for the
manoeuvres required by vehicles to drive into and reverse out of the diagonal spaces.
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3.6 Security and Privacy Concerns

The slot-based guidance system is a centralised control system, which will utilise each participating
driver’s built-in location tracking feature of the smartphone device or another solution whereby
each vehicle can be tracked on the road. If a smartphone is not the primary form of delivering
guidance information to the user, this could be in the form of a heads up display as suggested
in [2]. Location tracking on smartphones is carried out by using sources like GPS, Wi-Fi, mobile
networks and sensors to help estimate the device’s location [29]. There is also an opportunity
to use V2I technology and road-side units to track vehicles and collect real time information, as
outlined in 2.1. Due to time constraints, the mobile application has not been developed, however,
the slot-based control system has been developed to control test road network simulations running
in PTV Vissim. The analyses of privacy and security concerns are briefly examined in the context
of this mobile app and control system being built in the future.

3.6.1 General Data Protection Regulation

The General Data Protection Regulation (GDPR) has most recently led the charge in ensuring
individuals and businesses who deal with personal data are conscious of both the security and
privacy aspects of obtaining, using and storing this data. The developers and manufacturers
of devices, services and utilities that collect and consume personal data have an ever-growing
responsibility to ensure the data is not only secure, but that the data privacy factors are maintained
for the entire duration of the data being in their possession. GDPR ensures the rights of users are
the number one priority for all parties involved.

The slot-based driver guidance system described previously collects location- and movement-
specific personal data from each driver. Therefore, the terms of GDPR must be strictly adhered
to. The regulation ensures each data controller is given definitive consent from the user, before
any data can be collected or used. The users must be provided with in-depth specifications on how
the gathered data will be used, controlled and protected [30]. As the personal data is collected
from the driver in real time, the driver must be immediately informed of the specific data being
collected. Immediately means at the time the data is obtained. As this system currently does not
transfer this data to any other party, the system is not required to inform the driver of any other
recipients or any intention to transfer the data outside of the EU. However, if the infrastructure
of the system changes and third party tools and services are used, the user must also be informed
of the intention to transfer this data to the third party. Information on the retention period of
the data and processing which will be carried out by the third party must also be provided to
the user. Under the new regulation the user has the right to withdraw any consent given to data
controllers, at any period in time, unless contractual obligations state otherwise [31]. Therefore,
the data collected must be well organised to allow seamless removal of data at the request of the
user without disrupting the system.

The users of the driver guidance system must be given explicit information on how the data is
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being collected, used and stored. The system will only store information for the duration of the
journey. Under the Right to be Forgotten clause, attention must also be given to various other
circumstances from which a user may withdraw consent without specifically stating the withdrawal.
Any users who stop their journey, become inactive or delete the app, should have their information
removed from the system. This is under the terms of GDPR. The data controller must erase all
personal data which is no longer needed for its original purpose [31]. In the case of the driver
guidance system, the original purpose of the data is solely focused on the driver’s current journey
travelling to and from the event. No data should be retained after the journey is complete or new
data collected for any subsequent journeys without consent being given again.

3.6.2 Security Concerns

There is a strong incentive for manipulating the system for personal gain. As the nature of the
system is to facilitate a more cooperative approach to driving to improve the overall flow of
traffic. This approach is not guaranteed to lead to shorter journey times. Hence, by maliciously
manipulating the system, those malicious users could generate better routes and more beneficial
slots for themselves, in turn shortening the journey times for specific users and increasing the
journey times of all other road users. This would be similar to the idea of maliciously targeting
traffic lights to always be green for your route.

The future implementations of this project could make use of vehicle-to-vehicle (V2V) and vehicle-
to-infrastructure (V2I) technology. The latter is currently simulated using Vissim, mimicing vehicle
communication with the overlying global slot-based guidance system (V2I). Therefore, if deployed
outside of the simulator, there would be many access points to the central control system, which
all need to be highly secure, as even vehicles themselves could be potentially used as a hop to gain
access to the central slot-based guidance system.

In the paper [32], the researchers outline various potential threats and associated attacks which
also apply to this project. These threats include:

• Passive vs Active: Passive attacks are those which are used to monitor rather than change
the operation or data of the system. However, active attacks could be used to inject packets
and modify the slot generation process.

• Malicious vs Rational: Malicious attackers intend to disrupt the system in some way, while
rational attackers seek to gain benefit from the attack. Vehicles could be routed to crash or
a slot could be scheduled to have preferential treatment through intersections and at parking
lots.

• Intentional vs Unintentional: Intentional acts are threats or attacks which are intended
to disrupt the system or achieve a specific outcome. Unintentional attacks are those which
are caused by accident, a lack of knowledge or system malfunction. The attacker could take
down the system disrupt the flow of traffic in road network.
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• Local vs Extended: Local attacks target a specific area of the system i.e. jamming vehicle
to vehicle communication. On the other hand, extended attacks that cover a large area
generally aim to carry out attacks over a longer period of time e.g. tracking or worms.

• Insider vs Outsider: Insider attacks are carried out by entities which belong to the slot-
based system. This includes any person or user with authenticated access to the system.
Outsider attacks are the opposite, and are caused by users who are external and have no
authenticated access.

Potential solutions to a selection of these security challenges faced by system include:

• Authentication: An efficient and reliable method for authenticating each user must be in
place. This will prevent unauthorised access to the system and provide confidence to the
vehicle that messages received from the slot-control system are authentic.

• Integrity: The integrity of messages should be verified. This will ensure that the data sent
from the user or slot central control system has not been modified. In principle, this can
be achieved by making use of HMAC (hash based message authentication code) using any
cryptographic hash function, one of such is SHA-256.

• Trace-ability: Any user or system which abuses the network should be identifiable.

• Revocation: If a user or system begins to abuse or attack the network, measures should be
in place to revoke the abusive entity’s access to the system.

This proposed system will have a direct connection and access to the personal information of users.
The collection, processing and storage procedures need to be transparent and the specifications of
each must be provided to users. This will ensure GDPR compliance and mitigate against potential
legal and financial ramifications of the system. Security concerns are also extremely relevant, as
there are multiple access points to the system from the users, vehicles, roadside infrastructure
and the central control itself. These all need to be addressed through various solutions including
authentication, encryption and message integrity. Outlined above are concerns relating to both
the privacy and security aspects of this slot-based cooperative driver guidance system, if it was
to be developed into a production system. The current implementation completed in this project
lacks the same direct risks, due to it being simulated in a controlled environment.
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4 Evaluation

In this section, the performance of the slot-based system is examined. The performance of the
system is analysed in comparison to the set of control cases control cases developed in Vissim,
controlled by the Wiedemann 74 car-following model [5]. The evaluation is conducted on a single
road network and parking lot design. All restrictions stated in chapter 3.2 are applied to all
slot-based test cases. The modelled road network specifically targetted the entrance and exit
of a parking lot, the approach roads to the parking lot and within the parking lot itself. An
event attendance ratio of 25% was tested for each simulation. The evaluation of the slot-based
cooperative guidance system’s performance is based on the following metrics:

• Average journey times for a selection routes

• Average number of vehicles passing through the network

• Observed congestion levels: The apparent build up of traffic on each road segment.

4.1 Testing of the Slot-Based System

To test the performance of the slot-based driver guidance system, the test cases were all run
using the same volumes of traffic per hour and under the same simulation seed. This simulation
seed (42), ensured the vehicle input generation was the same across all simulation runs for each
test variation. Vissim has built in metric evaluators, including vehicle count and average vehicle
travel times. Three variations of the single test network were examined: two control cases and
the slot-based system.

The two control test cases were attempts at replicating real-world scenarios. The first control
case modelled had operational traffic lights (signalling) at the intersections. The second control
case had a round robin style system (priority rules) at the intersections, with yielding vehicles.
The slot-based system controlled the same road network and vehicle inputs with a 100% driver
compliance rate. This was to showcase whether any benefits were gained from implementing this
slot-based system at all.

4.1.1 Testing Metrics

• Vehicle journey time measurements
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– Vehicle Travel Times are calculated by using the Vehicle Travel Time network object
within Vissim. Each vehicle travel time object requires a start point and destination
point. The travel time is calculated by the time taken for the vehicle to travel from the
start section to the destination section. Vissim calculates an average travel time for
vehicles travelling on this route alongside the total number of vehicles to have travelled
from the start section to the destination section.

• Vehicles passing through the network.

– Vissim has a feature for tracking all the vehicles currently in the network (vehicle
throughput). As a new vehicle enters the network, it is added to the list. If a vehicle
leaves the network, it is removed from the list. Vehicles that are generated are given
IDs increasing from one. Hence, the total number of vehicles that have passed through
the network at any given time can be retrieved by checking the latest vehicle ID to have
entered the network and subtracting the count of vehicles which are currently in the
network and have yet to leave. This measures the rate at which vehicles consistently
flow through the system, the less vehicles passing through the network indicate higher
congestion levels, due to vehicles taking longer to pass through.

• Observed congestion levels

– This metric is a visual metric which showcases when specific routes become heavily
congested during a simulation. This visual metric is the apparent build up of vehicles
on the road segments. This can be seen by a large increase in the number of vehicles
moving slowly or remaining stationary on each road segment.

Signalling Control Case

Within PTV Vissim, the concept of signal controls are used to implement traffic lights. These signal
controls follow the repetitive pattern of green, amber and red. Vehicles moving towards a signal
control unit detect the status of the next signal control unit and adjust their speed accordingly.
The signal control units for the test network are slightly optimised. After multiple simulation runs,
it was found that specific roads experienced higher congestion levels than others. This was caused
by one signal control unit remaining green, while no vehicles were passing through this green light
and all other signal control units at the intersection were preventing vehicles from accessing the
intersections with queues of vehicles forming. This inefficiency was reduced by setting the signal
times to reflect the road priority and alleviating the queues. This simulation not only simulated
traffic lights, but also stewards at an event, directing platoons of vehicles to enter and pass through
the intersection at any given time. Signal controlled intersections had a distinct advantage over
the slot-based approach, as multiple vehicles were allowed access an intersections at any given
time.
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Priority Rules Control Case

Another feature within Vissim for modeling right-of-way without signal controllers at intersections
is the use of priority rules. Priority rules are used in circumstances whereby vehicles on conflicting
links are required to consider each other. They are used to ensure choreographed, free flowing
traffic at a non-signalised intersections. The use of priority rules in the test event network imple-
ments a round robin style control system. It operates on a first come, first served basis. However,
vehicles slow down and yield if conflicts occur before they are given access to the intersection by
the car-following model. This control case also simulated stewards at an event directing traffic
using a round robin style approach to direct traffic through an intersection. The benefit of the pri-
ority rules strategy is that if an intersection is available the vehicle is given access to pass through,
it does not have to wait for the signal controller to go green.

Slot-Based System

The slot-based driver guidance system had full control over the movement of each vehicle within
the test network. The vehicle input generation and initial routing assignment were configured by
Vissim. However, once the vehicle entered the network it was assigned a slot and re-routed to an
available parking space, if the vehicle was attending the event. The expected improvements from
the slot-based approach over the control cases were predicted to be at the intersections, with less
delays and vehicles coordinating in a improved free flowing manner; each vehicle was provided with
specific guidance on when they would be granted access to the intersection. Improvements were
also expected at the entry to parking lots, due to vehicles being routed away to the furthest parking
space available. The final improvements were expected upon the parking lot reaching capacity, as
vehicles in the control cases would be still routed towards the full parking lots. However, vehicles
controlled by the slot system would be re-routed from the very beginning reducing the congestion
at roads leading up to the event and also the time wasted driving towards the full parking lot.

4.2 Results

The test cases were conducted over the duration of 10 simulation runs, which is similar to that of
[2]. The simulations were run at four different driver volume levels; the same vehicle input ratio
was maintained for each link across all volume levels. This ratio was 4:1:2:1 for incoming links,
numbered 1, 2, 3, 4 in Fig.4.1. The driver volume levels that were tested were 1000, 2000, 3000
and 4000 vehicles per hour. The combined event-attendance ratio from all routes was 25% of the
driver volume levels.
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Figure 4.1: The test road network

Average Journey Times

The journey times of vehicles were evaluated over three distances. As the specific tests cases
were focused on the entrance and exit of the parking lot, the differences between the journey
times are not very large. The longest distance examined was 267m, the middle distance was
224m and the shortest distance was 137m. These variations of distances were specifically chosen
as they provided 3 unique scenarios to analyse including travelling through one intersection on a
non-conflicting path, travelling through two intersections on both conflicting and non-conflicting
paths, and also driving through two intersections on two conflicting paths. A non conflicting path
is defined as one whereby the vehicle does not have to pass through the intersection (e.g. taking
a left hand turn). A conflicting path is one where multiple paths must be crossed to access the
other side of the intersection.

Figure 4.2: Average travel times - Route 1
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Figure 4.3: Average travel times - Route 2

Figure 4.4: Average travel times - Route 3

In all three route variations, there is an improvement for the slot-based driver model. The two
control cases suffer from delays in either stopping at a status red signal controller, or slowing down
to check for right-of-way to the intersection. At lower volume levels, the journey times are similar
for all three test cases. However, as the volume levels increase, so does the difference between
the journey times. This is caused by the high congestion levels where the slot-based system is not
used, as vehicles remain stationary or travel at a reduced speed for much longer. This difference
remains consistent across all three of the routes tested, however, there are slight differences in
the performance between the priority rules and signal controllers at different distances and volume
levels, with both alternating between which of them has the best performance.

Average No. of Vehicles Passing Through

The vehicle throughput can be seen in Fig.4.5. Both the control cases had a near linear increase
in vehicle throughput between 1000 and 2000 vehicle volume levels. However, upon reaching 3000
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and 4000 vehicles per hour, this began to plateau, as it seems a threshold was being reached,
caused by the congestion in the network and new vehicles being unable to enter the network. The
slot-based system, continued on a near linear increase for all four volume levels. The error rate
for each simulation run was +/- <1 vehicle. This was negligible and could not be shown on the
graph.

Figure 4.5: Vehicle that have passed through the network after 300s

Congestion Levels

As previously mentioned, congestion levels were examined as a visual metric. Fig.4.6, Fig.4.7 and
4.8 are all snapshots of each simulation after running for 114 seconds.

Figure 4.6: Congestion levels: Signal controlled simulation at 114s
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Figure 4.7: Congestion levels: Priority controlled simulation at 114s

Figure 4.8: Congestion levels: Slot controlled simulation at 114s

Fig.4.6 and Fig.4.7 (control cases) have a significantly higher build up of vehicles on each of the
4 incoming links. However, the slot based simulation 4.8 has less vehicles in the network as they
are all scheduled to travel through the intersections in a more efficient manner. This leads to
lower congestion and traffic build up over time, as shown after the simulation has run for 114
seconds.

4.2.1 Conclusion

Each metric evaluated during this project under the restrictions listed in chapter 3.2, showed
improvements when the slot-based system was used, over the two control-cases. The limitations
of the tests, were primarily that the slot-based system was only tested for 100% driver compliance,
roads were restricted to one lane, the attendance ratio was limited to 25% and the slot-based
system restricted intersection access to only one vehicle at a time. Even with all these restrictions,
the slot-based system still returned lower average journey times, higher number of vehicles passing
through the network and a reduced build up of vehicles on road segments.
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5 Summary

This project focused on developing a slot-based co-operative driving solution for events, to alleviate
congestion by organising the flow of traffic. This project explored whether this slot-based system
is a more beneficial form of driving, rather than the current unco-operative approach. The system
that was developed focused on analysing the feasibility and the benefits gained from incorporating
this driver guidance into event management plans. The benefits were in respect to reduced average
journey times, higher number of vehicles passing through the network and also the reduced build
up of vehicles on road segments.

This project implemented a dynamic slot provisioning and control system for all vehicles entering
the specified road network surrounding an event. The system simulates the desired driver guidance
system with one hundred per cent driver compliance. Each road was allocated a number of slots
based on the length of the road. Vehicles that entered any of the roads within the boundary were
assigned a slot. The driver guidance system, in turn, provided guidance to the driver to maintain a
central position within the assigned slot, as it moved. The guidance provided directed each vehicle
in the simulation to their destination. The slot was propagated along the road at each time step
in the simulation until the destination was reached. Vehicles that were attending the event were
assigned a parking space in the parking lot and vehicles that were not attending the event were
directed away from the event towards their destination. To reduce the complexity of the system,
roads were restricted to one lane per direction. There were no turning restrictions at intersections
except u-turns and routes were predefined within PTV Vissim.

A custom parking lot with diagonal spaces and a one-way system was designed, accompanied by
an entrance and exit to the parking lot. The road network had four incoming roads, where vehicles
initially join the network. Intersections were only capable of granting access to one vehicle at a
time to prevent collisions. All vehicles tested in each scenario were considered homogeneous.
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6 Conclusion

From the evaluations of the implemented slot-based driver guidance system, there is a clear im-
provement to the flow of traffic in these scenarios. The road network where the guidance system
was tested was specifically designed to replicate the road network at the entrance and exit of the
parking lot of an event. Under 100% compliance with the system, there are significant improve-
ments to the average journey times of vehicles travelling in the network. These improvements
are in comparison to the two control cases tested. At higher volume levels, the slot-based system
reduces the congestion levels experienced by the road network over time, leading to an increase
in the overall vehicle throughput in the network. This higher vehicle throughput benefits drivers
by enabling parking lots to fill up faster and drivers not attending the event to pass through in a
shorter time. Accompanied by the intelligent parking lot management system, it reduces the time
wasted by drivers on-approach to a full parking lot or even searching for available spaces within
the full parking lot.

The overall biggest improvements were to the average journey times being notably more consistent
for each vehicle input volume level tested. During the testing of Fig.4.2, the slot-based simulations
average journey times only increased by a maximum of 5% across the four vehicle volume levels.
On the other hand, the priority rules average journey times increased by up to 290% and the
signalling simulation by 280%. This provides valuable evidence towards proving the hypothesis
that the slot-based driver guidance system improves the flow of traffic around events and allows
for journey times to be more accurately predicted.

6.1 Future Work

There are plenty of avenues left to explore for this project, as this implementation only scrapes the
surface. The immediate future work concerning this project should be to successfully implement the
scheduling of vehicles for the entire journey, preventing the need for vehicles to stop moving at any
point. This accompanied by handling unexpected events and varying degrees of driver compliance
with the system are the next steps in exploring the slot-based guidance system for events. The
road networks should also be made more complex, with several lanes for each direction and turning
restrictions. More road networks should be designed and tested, to ensure the results from this
system are consistent. The more ambitious future work for this project could include phasing,
allowing more than one vehicle on non-conflicting paths access to an intersection at any one
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period of time. There is also an opportunity to develop the mobile app, or explore the road-side
units (V2I) and create a physical real-world implementation of this slot-based system.
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A1 Appendix

Figure A1.1: Example of OSM Nodes data

Figure A1.2: Example of OSM Way data
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Vehicle Input Volume
1000 2000 3000 4000

priority 46.029 64.3294 102.2947 139.9857
signalling 51.10392 89.38439 118.1398 142.6378
slot-based 23.11234 23.22342 23.4349 24.31211

Maximum journey
times (seconds)

1000 2000 3000 4000
priority 45.68911 63.38845 99.3418 133.9182
signalling 48.74344 88.47378 115.0357 137.156
slot-based 23.00282 23.03836 23.0361 24.0836

Average journey
times (seconds)

1000 2000 3000 4000
priority 45.34921 62.44749 96.38887 127.8507
signalling 46.38296 87.56317 111.9317 131.6743
slot-based 22.8933 22.8533 22.6373 23.85509

Minimum journey
times (seconds)

Table A1.1: Route 1 results

Vehicle Input Volume
1000 2000 3000 4000

priority 32.20394 64.22314 84.56732 120.32451
signalling 35.21341 49.30013 84.99291 117.2956
slot-based 20.21345 20.34947 20.23953 21.29271

Maximum journey
times (seconds)

1000 2000 3000 4000
priority 31.952569 62.417594 82.498847 115.418357
signalling 34.915355 48.613101 83.853705 113.803708
slot-based 20.02837 20.10289 20.58263 21.937326

Average journey
times (seconds)

1000 2000 3000 4000
priority 31.905138 60.835188 80.497694 110.536714
signalling 34.73071 47.926202 82.80741 110.407416
slot-based 19.95674 19.90578 20.96526 21.974652

Minimum journey
times (seconds)

Table A1.2: Route 2 results

58



Vehicle Input Volume
1000 2000 3000 4000

priority 20.4 55.94831 66.91303 106.3922
signalling 30.4 44.96816 89.232 100.3847
slot-based 13.06 13.0923 13.1284 14.73211

Maximum journey
times (seconds)

1000 2000 3000 4000
priority 20.267117 54.45352 64.23511 102.5226
signalling 30.230158 44.07181 87.67112 96.38716
slot-based 13.00382 13.03826 13.00982 14.06937

Average journey
times (seconds)

1000 2000 3000 4000
priority 20.134234 53.90704 61.57023 98.65296
signalling 30.060316 43.24362 86.11024 92.38962
slot-based 12.94764 12.98422 12.89124 13.43874

Minimum journey
times (seconds)

Table A1.3: Route 3 results

59


	Introduction
	Research Question
	Motivation
	Project Overview
	Co-operative Driving
	Time-Slot Drving Approach
	Research Aims
	Potential Benefits of this Research
	Description of Research Area
	Project Scope
	Road Map
	Key Words


	Background
	State of the art
	Related research
	The Managed Motorway
	Street Intersections
	On-ramp Merging
	Optimisation of Parking Spaces
	Smart Parking
	Parking Lot Induction Method
	Vehicle Networking

	Technology Used
	OpenStreetMap
	PTV Vissim
	Simulation Software Comparisons
	Conclusion


	Design and Implementation
	Requirements
	Restrictions
	High-Level Overview
	Driver Guidance System Entities
	Vehicle
	Slot
	Road Segment
	Lane
	Route
	Parking Lot
	Parking Space
	Intersection Zone
	PTV Vissim Communication

	The Slot-based Solution
	OSM Mapping Utility
	Connecting Road Segments
	The Intersection Zone
	Phasing
	The Parking Lot
	The Handover between Parking Lot and Road Network
	Intended System vs Implemented System

	Security and Privacy Concerns
	General Data Protection Regulation
	Security Concerns


	Evaluation
	Testing of the Slot-Based System
	Testing Metrics

	Results
	Conclusion


	Summary
	Conclusion
	Future Work

	Appendix

