
University of Dublin

TRINITY COLLEGE

Privacy Enhanced Recommendations Using Group
Clustering Techniques

Yasir Mohamed

Master in Computer Science

Masters Dissertation Project May 2018

Supervisor: Dr. Douglas Leith

School of Computer Science and Statistics

O’Reilly Institute, Trinity College, Dublin 2, Ireland

Declaration

I hereby declare that this project is entirely my own work and that it has not been submitted

as an exercise for a degree at this or any other university.

Yasir Mohamed Date

i

Permission to lend

I agree that the Library and other agents of the College may lend or copy this report upon

request.

Yasir Mohamed Date

ii

Acknowledgements

First and foremost, my eternal gratitude to my parents Amira & Ahmed who pushed me to

pursue this masters, and indeed for their overwhelming support in my education these past

5 years.

My sincere gratitude to my supervisor, Dr. Douglas Leith, for his enthusiasm, support,

and guidance over the course of this dissertation.

Lastly, thank you to my sister Maye, my brothers Mohamed and Mazin, and my closest

friends who each supported me in their own way.

iii

Summary

Online privacy has become an increasingly important topic of discussion in recent years

in light of leaks by Edward Snowden and privacy scandals such as that of Facebook and

Cambridge Analytica. Websites are collecting user data to provide content personalisation

to users, but this data collection comes at the cost of individual user privacy. Users who try

to circumvent this data collection by deleting their browser cookies end up with a severely

degraded online experience as content is no longer tailored to their interests.

OpenNym provides a middle-ground to this all or nothing approach, where users can

browse as part of a group with similar interests. Using the BLC Clustering algorithm (an

unsupervised machine learning algorithm), we cluster users with similar interests into groups

called Nyms, then build item ratings for the Nyms based on their user’s ratings. Then we

propose a system to allow users to browse as part of a group composed of a browser extension

for Firefox and a web server. The browser extension is responsible for substituting a user’s

cookies for a selected Nym’s cookies, and intercepting all individual user rating requests and

substituting them with a group’s average rating. This allows the user to appear as part

of a Nym to websites that track users. Additionally, by sending a group average rating to

the website, the group’s interest is effectively represented to the website without disclosing

any personal rating information to the website. The web server is responsible for storing all

information pertaining to Nyms, their ratings, and a wealth of metadata required for the

browser extension to function. Additionally, the web server has a responsibility to be as fast

as possible so the impact of the browser extension to a browser’s performance is minimal.

To demonstrate the functionality of the OpenNym system, we cluster 40,000 users from

a publicly available music dataset called the Million Song Dataset. This resulted in 14 Nyms

which were then loaded into the OpenNym web server. The resulting OpenNym system

was successful in allowing users to browse as part of a Nym and intercepting user ratings

for YouTube.com. To evaluate the performance of the OpenNym system, we evaluated the

accuracy of Nym recommendations, the browser extension, and the web server separately.

To evaluate the performance of each Nym, we measured the accuracy of recommendations

iv

from Spotify for Nyms and generate wealth F-measure. This was to demonstrate that users

browsing as part of a Nym do not experience a loss in content personalisation when browsing

online. The ground truth for this evaluation was a sample of users taken from each Nym and

subjected to the same evaluation process as each Nym. Results showed that of 14 Nyms, 10

scored higher than the average F-measure of it’s users. 3 of the 4 Nyms that scored lower

than it’s users only scored marginally lower, within a ≈ 0.05 range. The Nym that scored

the worst performed exceedingly poorly due to only 12 users being assigned to the Nym.

To evaluate the performance of the browser extension, we measure the average page load

times of Spotify when substituting user cookies for Nym cookies, and the average increase

in rating request latency for videos on YouTube. Results showed that page load times on

Spotify only increased by ≈ 8% over browsing without OpenNym in the best case scenario.

There was less than a 1% increase in rating request latency for videos on YouTube in the

best case scenario.

To evaluate the performance of the web server, we measure request latency to the server

for a number of concurrent users and the overall server throughput. Results showed most

of the APIs on the server performed exceedingly well, with some APIs when serving 1,000

concurrent users attaining a mean request latency below 400 milliseconds and throughput of

over 600 requests per second on a relatively low powered server.

In conclusion, the proposed OpenNym system is effective in affording users a privacy

enhanced browsing experience by allowing them to browse anonymously as part of a larger

group, while retaining the ability to meaningfully rate items and receive a largely personalised

experience.

v

Abstract

OpenNym: Privacy Enhanced Recommendations Using Group

Clustering Techniques

Yasir Mohamed

This project is an investigation into the feasiblility of a system that affords users privacy

enhanced browsing. The system, known as OpenNym, would allow users to ’hide in a crowd’

while browsing online such that they can subvert individual user tracking by websites while

still receiving a personalized online experience.

The premise for this project is that users with similar interests can be grouped together

such that recommendations generated for the group are still relevant to the group’s users.

To achieve this, an unsupervised machine learning algorithm is used to cluster the users. A

system for allowing users to browse as a group is also implemented using a browser extension

and an accompanying OpenNym server.

The effectiveness of this proposed system is demonstrated by clustering users in a publicly

available music dataset and showing recommendations from Spotify for the resulting groups

are still accurate.

vi

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Research Background . 3

1.3 Research Question . 3

1.4 Research Objectives . 3

1.5 Dissertation Outline . 4

2 State of the Art 5

2.1 Recommender Systems . 5

2.1.1 Content Based Recommendations . 5

2.1.2 Collaborative Filtering . 7

2.1.3 Privacy Concerns . 7

2.2 User Data Collection . 8

2.2.1 Explicit Feedback . 9

2.2.2 Implicit Feedback . 10

2.2.3 User Tracking . 10

2.3 BLC Clustering . 13

2.4 Private Recommendations . 14

3 Design 16

3.1 OpenNym Web Service . 16

3.1.1 Nym API . 18

3.1.2 Rating API . 19

3.1.3 Session Cookie API . 23

3.1.4 Rules API . 25

3.1.5 OpenNym Identity Interface API . 29

3.2 OpenNym Database . 33

3.2.1 Nym Database Table . 33

vii

CONTENTS CONTENTS

3.2.2 Ratings Database Table . 33

3.2.3 Session Cookies Database Table . 34

3.2.4 Rules Database Table . 35

3.2.5 Identity Interface Table . 35

3.2.6 Nym Metadata Table . 36

3.3 OpenNym Browser Extension . 36

3.3.1 Functional Requirements . 37

3.3.2 Non-Functional Requirements . 38

3.3.3 Design . 38

4 Implementation 44

4.1 Web Service . 44

4.1.1 Web Framework . 44

4.1.2 Database . 46

4.2 Browser Extension . 47

4.3 Threat Model . 48

4.3.1 Transport Security . 49

4.3.2 Server Security . 49

4.3.3 Private Ratings . 50

4.3.4 Private Nym Selection . 50

4.3.5 Rating Anonymity . 50

4.3.6 Rating Integrity . 51

4.3.7 Availability . 51

5 User Clustering 52

5.1 Data Analysis . 52

5.2 Data Cleaning . 53

5.3 Data Preprocessing . 54

5.3.1 Data Parsing . 54

5.3.2 Data Normalization . 55

5.3.3 Sparse Matrix Generation . 55

5.3.4 Song Filtering . 56

5.4 BLC Clustering . 57

5.5 Nym Construction . 58

5.6 Nym Rating Generation . 58

viii

CONTENTS CONTENTS

6 Evaluation 62

6.1 Server Performance . 62

6.1.1 Response Latency . 63

6.1.2 Server Throughput . 67

6.2 Extension Performance . 68

6.2.1 Page Load Performance . 70

6.2.2 Rating Request Performance . 70

6.3 Nym Analysis . 71

6.4 Recommendation Performance . 73

6.4.1 Generating Recommendations . 73

6.4.2 Precision . 75

6.4.3 Recall . 77

6.4.4 F-Measure . 79

7 Conclusion 81

7.1 Research Objectives . 81

7.1.1 Browser Extension . 81

7.1.2 Web Server . 82

7.1.3 Proof of Concept . 83

7.2 Future Work . 84

7.3 Closing Remarks . 84

8 Appendix 92

8.1 Listings . 92

8.2 Top Nym Artists . 93

8.3 Tables . 94

ix

List of Tables

2.1 Content Based Recommender System Users for a Music Service 6

2.2 Content Based Recommender System Items for a Music Service 6

2.3 User-Item matrix, where each Item is a song rated between 1 and 5 7

5.1 Sparse Matrix with a subset of users ratings 56

5.2 Comparison of sparse matrix properties for differing numbers of users and

minimum number of users in each column . 56

5.3 Comparison of clustering predictive performances for different sparse matrices 58

6.1 Selected endpoints for Each API based on expected number of I/O operations 63

8.1 Precision scores for each Nym . 94

8.2 Average user precision scores for each Nym 95

8.3 Recall scores for each Nym . 95

8.4 Average user recall scores for each Nym . 96

8.5 F-measure scores for each Nym where β = 0.25 96

8.6 Average user F-measure scores for each Nym where β = 0.25 97

x

List of Figures

3.1 System Architecture Diagram . 17

3.2 Browser Extension First Run Sequence Diagram 39

3.3 Browser Extension Subsequent Run Sequence Diagram 40

3.4 First Time Extension Loads Domain . 41

3.5 Extension loading Domain with cached Session Cookies 41

3.6 Extension intercepting uncached user rating 43

3.7 Extension intercepting cached user rating . 43

3.8 Extension intercepting cached user rating with an update conflict 43

6.1 A comparison of mean latency between OpenNym APIs 64

6.2 A detailed comparison of OpenNym API mean latencies excluding the Nym API 65

6.3 A comparison of median latency between OpenNym APIs 66

6.4 A detailed comparison of OpenNym API median latencies excluding the Nym

API . 67

6.5 Comparison of server throughput for the different APIs 68

6.6 A Comparison of average page load times in seconds on Spotify 70

6.7 A Comparison of average rating request latency on YouTube in milliseconds . 70

6.8 An analysis of the number of users assigned to each Nym 71

6.9 An analysis of the total ratings available for each Nym from it’s users 72

6.10 An Analysis of the Number of artists listened to by each Nym 73

6.11 A comparison of Nym and average user precision scores taken at the highest

common value of n . 77

6.12 A comparison of Nym and average user recall scores taken at the highest

common value of n . 78

6.13 A comparison of Nym and average user f-measure scores taken at the highest

common values of n where β = 0.25 . 80

xi

Abbreviations

Acronym Meaning

API Application Programming Interface

CA Certificate Authority

HTML Hypertext Markup Language

HTTPS Hypertext Transport Protocol Secure

IMDB Internet Movie Database

JSON JavaScript Object Notation

KB Kilobytes

MSD Million Song Dataset

MVC Model-View-Controller

NO-SQL Not Only SQL

RAM Random Access Memory

RMSE Root Mean Square Error

RPS Requests Per Second

SQL Structured Query Language

SSO Single Sign On

TLS Transport Layer Security

URI Uniform Resource Identifier

URL Uniform Resource Locator

XML Extensible Markup Language

xii

Chapter 1

Introduction

This dissertation is an investigation into whether a system can be developed such that users

can browse websites online as part of a group of users with similar interests. This is an

extension of the proof of concept demonstrated by Checco et al. [14] who showed users of the

MovieLens service could effectively be clustered into groups with similar interests, and then

access MovieLens as part of a group without experiencing a loss in content recommendation

accuracy. Group based access to service recommender systems provides individual users of

the group an enhanced level of privacy by allowing them to ’hide in the crowd’ while using

the service.

Before discussing an approach to attaining an enhanced level of privacy, we must first

define privacy. Indeed privacy is a context-sensitive concept, but at it’s most fundamental

level it is an individual’s right to be free from interference or intrusion [53]. Privacy is

a broad, open concept, but as this dissertation is concerned with an individual’s privacy

while browsing online, all references to privacy henceforth will refer to Information Privacy.

Information Privacy refers to the claim of individuals, groups, or institutions to determine

for themselves when, how, and to what extent information about them is communicated to

others [57].

This dissertation will examine content personalisation techniques online and the inherent

privacy concerns of the collection of user information for use in content recommendation. We

will then propose a novel design for a functioning system that will allow individuals to browse

online as part of a group in such a manner that they still receive personalised content while

also achieving an enhanced level of privacy.

In this chapter, the motivation behind the research is introduced, a brief overview of the

Research Background is given, the Research Question is stated, and Research Objectives for

the dissertation are outlined. Finally, the structure of the document is outlined in the last

section of this chapter.

1

1.1. MOTIVATION CHAPTER 1. INTRODUCTION

1.1 Motivation

Content personalisation has become an important aspect of user experience when browsing

online. Users have come to expect a personalised experience when using a service, where

a personalised experience is one where the service recommends content that is tailored to

the user’s personal interests. Content personalisation plays such an important role in user

experience that companies such as Netflix [37] have come to rely on it heavily to ensure users

remain interested in content served to them and return to their service.

Online content personalisation is powered by recommender systems. Recommender sys-

tems are sophisticated software tools developed to provide suggestions for items that would

be of use to a user [47]. Recommender systems are required as often there are more items

available than can be displayed to a user at once, and so they allow a service to show items to

a user that are deemed to be of the most interest to the user. Recommender systems operate

on information known about user interests and the set of items available to be recommended.

Recommender system accuracy improves when more user preference information is made

available to it. For this reason it is important for web services to be able to collect user infor-

mation to better understand their interests and be able to make better predictions. However,

the gathering of user interest information for use by these web services raises some inherent

privacy concerns. The collection of personal information by web services for use in recom-

mender systems increases the risk of exposure of this information to third-parties [49], either

willingly from the web service or forcibly obtained by a malicious third-party. Calandrino

et al. were also able to develop a series of passive inference attacks to demonstrate that

information about individual users is leaked by collaborative filtering recommender systems

[12].

Recommender systems rely on user feedback to improve recommendation accuracy, where

feedback refers to a measure of how positively or negatively a user has reacted to an item.

Given user feedback for a set of items, a recommender system would be able to infer the

interests of that user. Feedback mechanisms are methods incorporated by web services to

gather user feedback on items consumed by the user. There are currently a number of

feedback mechanisms in use by web services that are effective in gathering user information

to improve recommender performance, but they also introduce a number of privacy concerns.

One of the major concerns for privacy is the lack of user control over what data is collected,

when it is collected, and what is done with the data. These concerns are discussed in greater

detail in Section 2.2.

2

1.2. RESEARCH BACKGROUND CHAPTER 1. INTRODUCTION

1.2 Research Background

The research conducted in this project will build off the proof of concept demonstrated by

Checco et al. [14] in their OpenNym project. The basis of OpenNym is that users with

similar interests can effectively be clustered into groups (henceforth referred to as Nyms)

based on their ratings for items. Users can then browse as part of these Nyms and still

receive personalised recommendations while achieving enhanced privacy through ’hiding in a

crowd’. This proof of concept was carried out by clustering users in the MovieLens dataset

[22] and implementing a prototype browser extension to intercept and replace cookies sent

to the MovieLens service. By intercepting the session cookies sent to the MovieLens service,

users of the browser extension were able to browse as part of a Nym without the need to

authenticate themselves. Results of this work showed that users could browse as part of a

Nym and still receive a high level of personalisation in recommendations from the MovieLens

service.

1.3 Research Question

With the above research motivation and background in mind, the research question for this

dissertation is:

”In the context of the work performed by Checco et al. [14], can a robust, scalable

system be implemented such that users with largely similar interests can browse as

part of a group and still receive a largely personalised service online while subverting

individual user tracking?”

1.4 Research Objectives

In order to achieve the stated research question, the following objectives must be fulfilled:

1. A browser extension capable of assigning users to Nyms based on their interests and

allowing users to browse as part of a Nym for multiple recommender systems must be

developed.

2. A web server that maintains a list of Nyms, their item ratings, and associated metadata

must be developed such that the browser extension can use it to facilitate users browsing

as part of a Nym.

3. The working system must be demonstrated by clustering users in a publicly available

3

1.5. DISSERTATION OUTLINE CHAPTER 1. INTRODUCTION

dataset and using the top rated items of resulting Nyms to seed an appropriate recom-

mender system.

• Performance metrics measuring the effectiveness of the clustering of users should

also be generated using an appropriate recommender system.

1.5 Dissertation Outline

The remainder of this document is structured as follows:

• Chapter 2 is a discussion of the current State of the Art of online content personalisa-

tion, user data collection, and existing privacy enhanced recommendation approaches.

• Chapter 3 details the system architecture and design proposed to achieve the outlined

research objectives, and contains an in depth review of all design choices made.

• Chapter 4 details the implementation of the system design proposed in Chapter 3 and

will contain a review of the technologies used in the implementation.

• Chapter 5 details the process of clustering users in a publicly available dataset and

generating ratings for each of the resulting Nyms.

• Chapter 6 evaluates the performance of the implemented system and the accuracy of

the generated Nyms.

• Chapter 7 discusses the results obtained from Chapter 6, how they relate to the

research objectives, and draws conclusions based on these results. Additionally, Chapter

7 discusses research limitations, and outlines possible future work.

4

Chapter 2

State of the Art

This chapter will discuss current methods of content personalisation through recommender

systems and user data collection, and the privacy concerns they raise. This chapter will also

discuss previous attempts at improving privacy in recommender systems.

2.1 Recommender Systems

Recommender systems are the driving force behind content personalisation. Recommender

systems operate on existing knowledge of users and content items to recommend items that

are deemed to be of the most interest to users. Two of the most popular approaches to

developing recommender systems for content personalisation are:

• Content Based Recommender Systems

• Collaborative Filtering Recommender Systems

Both Collaborative Filtering and Content Based Recommendations make extensive use of

user information. In this section we will examine how recommender systems work, how user

information to seed recommender systems is obtained, and their associated privacy concerns.

2.1.1 Content Based Recommendations

A Content Based recommendation system is a system that recommends items to users based

upon a description of the item and a profile of the user’s interests [41]. Content based

recommender systems analyze the features of available items and identify items that would

be of particular interest to the user, based on predefined user interests. Each user for which

recommendations are generated for is examined independently of other users.

When generating recommendations for a user, the user profile with predefined interests

is examined and compared with the set of available items to be recommended to the user.

5

2.1. RECOMMENDER SYSTEMS CHAPTER 2. STATE OF THE ART

The items which align the closest with the user’s interests are recommended. Table 2.1 shows

how users are represented in a content based recommender system for a music service. Note

how each user has a set of scores for the predefined metrics valence and arousal. These

metrics were obtained from the valence-arousal interface to measure perceived emotion of

music developed by Eerola et. al [18]. Valence is a measure of how positive or negative

a song is, and arousal is a measure of how exciting or calm a song is. Each item in the

set of available songs also has a score for the same metrics, as each score defines the song’s

properties. This can be seen in table 2.2. The properties used to describe items are usually

domain specific, and would be expected to be different in a non-music recommender system.

User Username Valence Arousal

00 Alice 0.4 0.7

01 Bob 0.7 0.8

02 Collin 0.3 0.5

03 Dean 0.9 0.4

Table 2.1: Content Based Recommender System Users for a Music Service

Item Song Name Artist Valence Arousal

00 King Kunta Kendrick Lamar 0.5 0.3

01 Black Skinhead Kanye West 0.8 0.5

02 Hot Thoughts Spoon 0.6 0.4

03 Rosa Parks OutKast 0.5 0.4

Table 2.2: Content Based Recommender System Items for a Music Service

Given knowledge of both a users interests and details of the set of available items, items can

then be recommended to the users based on their interests. A popular method of evaluating

which items to recommend is to map the user interests and item properties in vector-space

and use the Euclidean Distance formula [41, 43].

6

2.1. RECOMMENDER SYSTEMS CHAPTER 2. STATE OF THE ART

2.1.2 Collaborative Filtering

Collaborative filtering recommender systems try to predict the utility of items for a particular

user based on items previously rated by other users [3]. Collaborative filtering relies on the

underlying assumption that users with similar tastes will rate items similarly. It is a popular

method of rating prediction, and is used by large organisations including GroupLens [26] and

Netflix [7]. Data used in a collaborative filtering algorithm can be represented as a user-item

matrix as seen in table 2.3.

King Kunta Black Skinhead Hot Thoughts Rosa Parks

Alice 4 3 5 3

Bob 2 5 1 4

Colin 3 4 2 4

Dean 5 3 4 3

Table 2.3: User-Item matrix, where each Item is a song rated between 1 and 5

Early collaborative filtering algorithms used association inferences between similar users

to generate recommendations. Association inferences would calculate the rating prediction

for a new item i by user u by examining the ratings given to i by users similar to u. The

issue with association inferences, however, was that they had quite a high time complexity

and didn’t scale well [10]. As a result, matrix factorization techniques have become a popular

approach to collaborative filtering. Matrix factorization allows users and items to both be

characterized by vectors of factors inferred from item rating patterns [28]. Collaborative

filtering algorithms based on matrix factorization techniques have been shown to be highly

accurate, even when dealing with sparse matrices. This was best demonstrated by Koren et

al. [28] whose team won the Netflix grand prize in 2009 using matrix factorisation techniques

[27].

2.1.3 Privacy Concerns

Recommender systems raise concern about individual privacy. As discussed by Resnick et

al. [46], recommender system recommendations improve the more personal information they

have. However, not all users want to have all their habits known. Indeed, Ackerman et al.

[2] surveyed a number of users and found they could be split into three groups in regards to

their view of privacy:

• Privacy Fundamentalists (17%) - This group was extremely concerned about use of

their personal data and were generally unwilling to provide their data to websites, even

7

2.2. USER DATA COLLECTION CHAPTER 2. STATE OF THE ART

those with privacy protection measures in place.

• Privacy Pragmatists (56%) - This group was concerned about the use of their per-

sonal information, but to a lesser degree than the privacy fundamentalists. This groups’

privacy concerns were greatly reduced by the presence of privacy protection measures

on the website.

• Marginally Concerned (27%) - This group was willing to provide personal informa-

tion under almost any condition, though they often expressed a mild general concern

about privacy.

Furthermore, Ramakrishnan et al. [44] have discussed in detail the inherent risk of iden-

tity compromise, where an engineer managing a recommender system, or indeed third-party

consultants carrying out routine auditing or data backup procedures, has access to the rec-

ommender system database. Research performed by Calandrino et al. [12] also showed that

it is possible to design a series of inference attacks on collaborative filtering recommender

systems, where information about individual users could be obtained given limited auxiliary

information such as a user’s public review for an item. Algorithms developed for these attacks

aggregate publicly available data with no personally identifiable information to infer a user’s

non-public transactions with a website.

Given the above privacy risks and the clear concern the majority of users have about

the use of their private information, it is clear the performance gain from collecting more

individual user data is antithetical to the concerns of many users.

2.2 User Data Collection

As discussed in Section 2.1, information is needed on users to build user profiles for recom-

mender systems. User information is gathered through the use of feedback, where feedback

can be broken down into two main categories:

• Explicit Feedback

• Implicit Feedback

In both cases, feedback refers to a measure of how positively or negatively a user has

reacted to an item. In section 2.2.3, methods of consolidating user profiles with active users

of a system are discussed.

8

2.2. USER DATA COLLECTION CHAPTER 2. STATE OF THE ART

2.2.1 Explicit Feedback

Explicit Feedback is a process that involves users assigning either scores or ratings to evaluate

the items recommended by the system [30]. It is different from implicit feedback techniques

as it requires the user to actively provide feedback for an item. Surveys are a common explicit

feedback mechanism, where a user is prompted to provide feedback about a particular item

consumed by a user. The following are some of the most popular forms of surveys:

• Rating or Score - This feedback mechanism prompts a user to give a numeric rating

for an item. This can be done in the form of a star rating between 1 and 5, where

a 1 star rating denotes a very poor rating and a 5 star rating denotes a very good

rating. An advantage of this feedback mechanism is that a user can express dislike for

items, but a disadvantage of this mechanism is there is no guarantee a user will remain

consistent with their ratings.

• Like - This binary feedback mechanism allows a user to express their interest in an

item. A major advantage of this feedback mechanism is it’s simplicity, but this comes

at the cost of granularity and the inability to express dislike for an item.

• Like/Dislike - This feedback mechanism allows a user to express either like or dislike

for an item. This feedback mechanism has the advantage of allowing users to express

dislike for items, and unlike the Rating/Score mechanism there is no granularity to

the ratings and so there is no concern regarding users remaining consistent with their

ratings. However, this lack of granularity comes at the expense of users not having

the ability to differentiate between items they like and items they strongly like. This

mechanism also has an implicit feedback element to it, in that a user leaving no rating

can be interpreted as a neutral reaction. However, it’s important to note that a user

can simply choose not to rate the item, and so any interpretation of a user not rating

an item is likely to be noisy.

Explicit user feedback is valuable in building a user profile for a recommender system, but

users generally don’t provide enough explicit feedback to generate accurate recommendations

for each user. This is a result of the intrusive nature of explicit feedback techniques, which

rely on user input. Consequently, many systems adopt a hybrid approach to gathering user

feedback by supplementing Explicit Feedback with Implicit Feedback.

9

2.2. USER DATA COLLECTION CHAPTER 2. STATE OF THE ART

2.2.2 Implicit Feedback

Implicit feedback mechanisms evaluate user ratings for objects without the intervention of

users, often without the user being aware [39]. Implicit feedback mechanisms rely on assump-

tions that can be made about user interactions with the system that can then be evaluated

by some metric. For example, given a music streaming service, the assumption that the more

a user listens to a song the more the user likes the song would be valid. Using play count as

a metric, a rating prediction can be generated for the user.

Implicit Feedback Mechanisms play a large role in current web systems where implicit

feedback can be gathered without the need for user intervention. This has the added benefit

of being able to gather much more information on a user and their interactions with the

system than would be obtained through just explicit feedback mechanisms. It is also worth

noting White et. al [58] also showed in their comparison of Explicit and Implicit feedback

techniques for web retrieval that both feedback mechanisms can be used interchangeably with

no real significant difference in performance.

Another major advantage of implicit feedback mechanisms is that a number of mechanisms

can be put in place in the same system. For example, the same music streaming service

monitoring user playback can also monitor how playtime is divided among different genre

and artists, what artists or album pages a user visits, etc. Results from each feedback

mechanism can be combined to build more advanced user interest profiles.

The issue with implicit user feedback mechanisms is that there is no way for a user to

control what information about themselves is collected by these mechanisms. Since implicit

feedback mechanisms require no user input, information is often collected without user knowl-

edge, and additionally there are no controls in place for a user to decide what is done with this

data. Web System providers have full autonomy over information collected about it’s users

through implicit feedback mechanisms. This collection and usage of user information poses

a substantial privacy risk, as demonstrated by Calandrino et al. who successfully designed a

series of passive inference attacks with limited auxiliary information to learn about the be-

haviour of individual users through information leaked by collaborative filtering recommender

systems [12].

2.2.3 User Tracking

User interest profiles for generating recommendations are useless if a user can’t be identified

after they leave a website. There are a number of methods of tracking users, including client

side information storage, user authentication, and browser fingerprinting. All three methods

will be examined in detail in this section.

10

2.2. USER DATA COLLECTION CHAPTER 2. STATE OF THE ART

Client Side Information Storage

This method uses local browser storage mechanisms to store information about the user that

will be communicated back to the server when a user revisits a website. Traditionally this

has been done through the use of HTTP cookies, where a server would assign a cookie with

a unique ID to each user that visits their website. These HTTP cookies have their expiry

date set to expire later in the future so they don’t expire when a user leaves the website.

HTTP Cookies can store up to 4KB of information, and are communicated back to the

server hosting a website as part of the user’s browser’s HTTP request headers. This allows

the server to identify a user, match them with an existing user interest profile, and generate

recommendations for the user. Use of HTTP Cookies to identify users is a common practice

among advertisers and analytics companies, who set cookies on websites to allow the website

owners to sell ads or view usage statistics for their websites [16, 20] . Cookies set by these

third parties will henceforth be referred to as third-party-cookies.

A study conducted by Abraham et al found approximately 31% of U.S. users clear their

first party cookies (cookies set by the website a user’s visiting) within a month [1]. If HTTP

cookies were the only method of user identification employed by the server, the server would

no longer have any method of re-identifying the user and a new interest profile would need

to be built under a new cookie. In an effort to overcome this, servers and third parties have

begun to use other browser storage mechanisms to ensure assigned cookies persist despite

deletion. Initially third parties used Flash cookies as the client side storage mechanism to

track users as they are less prone to deletion than standard HTTP cookies and have the

advantage of being able to store up to 100KB of information. Additionally, they could

be used to ’re-spawn’ deleted HTTP cookies [50]. Though initially popular, Flash cookies

depend on a Flash plugin being installed on the user’s device, which is becoming less common

as Flash becomes less popular. As a result, HTML 5 Web Storage has been adopted as a

popular client side storage mechanism. Indeed HTML 5 Web Storage is supported by all

major browsers, with some browsers supporting up to 10MB of storage for a single domain.

This is considerably larger than both Flash and HTTP cookies, and HTML 5 Web Storage

is more available than Flash cookies as it does not require users to install any third party

plugins on their browser. Research by Ayenson et al. [6] shows the use of HTML 5 Web

Storage to store cookies has already become quite popular in the top 100 websites online.

The prevalence of these tracking methods is a major cause for concern, as website owners

and third parties are explicitly taking action to circumvent users deleting their cookies (and

consequently their individual user IDs) to ensure cookies persist on the user’s browser.

11

2.2. USER DATA COLLECTION CHAPTER 2. STATE OF THE ART

User Authentication

User authentication refers to a user having a dedicated account with a website through which

a user verifies their identity to use this account. These accounts are usually linked to an

email address owned by the user. Users can then sign in to the service when they visit the

website. This allows websites to consolidate user interest profiles with user accounts, as user

authentication is a more reliable method of identifying users than tracking with just client

side information storage.

When a user signs into a website, they are generally assigned session cookie(s) to allow

them to revisit the website without logging in again. These cookies use the same client side

browser storage mechanisms previously discussed, but do not suffer the same volatility as

user tracking through cookies only. This is because when a user deletes their cookies they

will also delete their session cookies, requiring them to sign into websites they visit again.

When the user signs in, they’ll be assigned new session cookies which are consolidated with

their previous user interest profile.

User authentication is not limited to signing into independent websites. Many large

services including Google and Facebook make use of ’Single Sign On’ (SSO), where a user can

authenticate themselves on a third party service using their Google or Facebook credentials.

Hursti [23] defines a Single Sign On as a mapping from the physical world to the electronic

and logical world, meaning a user’s identity would not change between services. While a true

single sign on system is not in practice, the availability of SSO APIs and the reputation of

services such as Google and Facebook have resulted in widespread use of SSO services. The

use of SSO authentication has resulted in large services gaining the ability to track its’ users

activities outside its’ own network and gather additional user interest information through

implicit feedback mechanisms.

Browser Fingerprinting

Browser Fingerprinting is considered a passive method of user tracking. It does not involve

assigning users unique identifiers, but rather focuses on the individuality of user devices when

visiting a site. Browser Fingerprinting tries to calculate a unique string to identify a user

based on a number of properties of the user’s browser and machine. These properties can

include the User Agent sent with HTTP requests, the list of plugins installed on the browser,

the user’s timezone, the resolution of the user’s display, the set of installed browser fonts,

and so on [9]. The usability of browser fingerprinting was demonstrated by the Panopticlick

experiment [17], where Eckersley showed that browsers could be successfully re-identified

despite the relative volatility of browser fingerprints. Though browser fingerprints changed

12

2.3. BLC CLUSTERING CHAPTER 2. STATE OF THE ART

over time, 99.1% of the time these browsers could still be identified with a false positive

rate of only 0.86%. Furthermore, Eckersley concludes that despite the lack of stability of

browser fingerprints, the volume of data that can be transmitted as part of a fingerprint is

in itself a cause for concern for user privacy. The advantage of Browser Fingerprinting is

that, unlike cookies, fingerprints cannot be deleted. They can be modified by changing a

browsers properties, but as discussed, this does not guarantee tracking subversion. Though

this dissertation does not concern itself with browser fingerprinting, it is important to portray

the value of user data collection by discussing the various techniques that have been developed

to enhance data collection.

2.3 BLC Clustering

A key objective of this dissertation is to effectively cluster users based on their interests such

that recommendations made to the group are still relevant to the individual users. This

objective will be achieved by using the clustering algorithm proposed by Checco et. al as

part of their BLC: Private Matrix Factorization system [13]. This clustering algorithm allows

unsupervised, automated inference of abstract groups based on user interests through matrix

decomposition. Matrix decomposition is a method by which a matrix is reduced to it’s

matrix factors, similar to factorising the number 12 into 3 · 4. Similar to factorising numbers,

a matrix A that has been decomposed into it’s constituents B and C can be reconstructed

by calculating the product of B · C.

Checco et al. proposed a novel matrix factorisation method by which a matrix R of users

u and their item ratings v (as seen in table 2.3) can be decomposed into P T ŨTV , where the

matrix P T maps users to Nyms. The BLC Clustering algorithm calculates an appropriate

assignment P of Nyms to users by clustering users with similar ratings together such that

members of each resulting Nym have similar interests. Nyms can then be used as a proxy for

users, with each user browsing as a part of their assigned Nym. Each Nym has it’s own Nym-

item rating pairs R̃ calculated by using the ratings of the Nym’s users for each item. Checco

et. al [13] demonstrated that use of Nyms does not come at the cost of the recommendation

accuracy, as will be further demonstrated in Section 6.

Additionally, the assignment of users to Nyms is also completed in a privacy-enhanced

manner such that the assignment can be calculated on a user’s machine. As a result there

is no need for the user to submit their private rating information to any third party to be

assigned to a Nym.

13

2.4. PRIVATE RECOMMENDATIONS CHAPTER 2. STATE OF THE ART

2.4 Private Recommendations

Privacy concerns surrounding the use of recommender systems are well known, and as such

there has been a handful of previous attempts at making private recommendations through

different methods.

The ALAMBIC hybrid recommender system proposed by Ameur et. al [4] attempted

to make privacy-protecting recommendations by combining content based and collaborative

filtering techniques. The system then split user data between the recommender system owner

and a semi-trusted third party such that neither party would be able to derive sensitive

information from their share of data alone. While in theory this model would relieve the

major privacy concern of third parties knowing sensitive user information, it also has the

downside of requiring a major rewrite to existing recommender systems in order to implement

it. Additionally, the same amount of user information is still being collected for use by the

recommender system, it’s just partitioned across two entities. If someone was able to gain

access to both entities then private user information could still be compromised.

Researchers at the University of Minnesota also developed a group recommender system

called PolyLens [40]. While this dissertation is concerned with clustering a group of users

with similar interests, PolyLens recommends content for groups of arbitrary users who would

be consuming content together. For example, members of a family may not necessarily have

the same taste but because of their familial relationship they would like a recommendation

for a movie they can watch together. The PolyLens recommender system was successful

in generating recommendations for groups, but it also came at the cost of group member

privacy. While the goal of this dissertation is to ensure accurate recommendations for groups

are made by recommender systems, it cannot come at the cost of individual privacy.

Another approach to private recommendations is a method called Content Recommen-

dation System Based on Private Dynamic User Profile (CRESDUP) proposed by Chen et.

al [15]. CRESDUP attempted to improve recommender system accuracy by increasing the

amount of information available on a user in a privacy preserving manner. In a system using

CRESDUP, all user information is collected on the client side. Instead of submitting user

information to the server, a private Dynamic User Profile (DUP) that aligns with a user’s in-

terests is selected from the CRESDUP system and downloaded to the client’s machine. This

DUP already has a wealth of private user information from other users with similar interests,

and this DUP is used to supplement the user’s own information. The user’s DUP can then

be used by the recommender system to make more accurate recommendations, while also

increasing the user’s privacy. CRESDUP succeeds in improving content recommendations to

the user in a privacy preserving manner, but does not address the issue of individual user

14

2.4. PRIVATE RECOMMENDATIONS CHAPTER 2. STATE OF THE ART

tracking. Additionally, CRESDUP requires each individual website to support the use of

DUPs, otherwise the website would resort to traditional user information collection methods.

Shokri et al. [48] proposed a similar concept to CRESDUP, whereby each user would store

their user profiles offline and would modify them by partly merging their profiles with the

profiles of similar users through direct peer to peer communication with them. The user can

then periodically upload their profile to a centralised server that is making recommendations.

An individual’s user-item ratings are hidden by establishing this peer to peer profile sharing

mechanism as peers can transmit profiles directly without relying on an untrusted third

party. Since the recommender system won’t be able to distinguish user ratings from other

users’ ratings, users can still receive recommendations in a privacy preserving manner. While

this system is effective in keeping user rating information private from third parties, it still

requires a degree of trust from other peers in the system with whom users would be sharing

rating information. Additionally, it relies on the user to select their peers to share rating

information with so there is no guarantee a user will find a peer with similar interests to seed

their profile with. This can negatively impact the user’s ratings as their profile will be seeded

with ratings that do not reflect their interests.

15

Chapter 3

Design

This chapter will outline the overall design of the OpenNym system and the design choices

made for each component. The overall architecture of the system can be seen in Figure 3.1.

To facilitate enchanced privacy while users browse online, the OpenNym system must

achieve two goals. The first is to intercept a user’s session cookies as it is sent from the

browser with appropriate session cookies for a Nym. The second is to intercept all user

ratings for websites supported by OpenNym, and replace the ratings with an average Nym

rating calculated using the user’s intercepted rating. By accomplishing these two goals, users

will be tracked as part of a Nym and individual user interests do not leave the browser.

3.1 OpenNym Web Service

The OpenNym Web Service will be a server that acts as the main point of interaction for users

of the OpenNym Service. It will host several Application Programming Interfaces (APIs) that

will facilitate communication between the OpenNym service and both the OpenNym Browser

Extension and third-party recommender system services. There are five APIs that will be

hosted on the web service:

• Nym API

• Rating API

• Session Cookies API

• Rules API

• Identity Interface API

16

3.1. OPENNYM WEB SERVICE CHAPTER 3. DESIGN

Figure 3.1: System Architecture Diagram

17

3.1. OPENNYM WEB SERVICE CHAPTER 3. DESIGN

3.1.1 Nym API

The Nym API is responsible for communicating available Nyms and Nym details to the

OpenNym Browser Extension. It provides a readily accessible list of Nyms, and information

about the most rated items and most visited domains of each Nym.

1 {

2 "Nym": {

3 "id": 1,

4 "topRatings": [

5 { "rating" : {}},

6 { "rating" : {}},

7 { "rating" : {}},

8 { "rating" : {}}

9]

10 }

11 }

Listing 1: Structure of Nym JSON Object

1. GET, /nym/, Returns List of Available Nyms

2. GET, /nym/:id, Returns details of a single Nym identified by an id

Both of the above endpoints will take an optional lastUpdated Uniform Resource Locator

(URL) parameter that will contain the timestamp of the last time the endpoint was accessed

by the client. This will allow the Nym API to only return Nyms that have changed since the

timestamp provided. If there have been no changes then a 304-Not Modified response code

is returned.

The GET, /nym/ endpoint returns a JSON array of all Nyms, where a single Nym is

represented by Listing 1. Each Nym returns a JSON array in the key topRatings, where

each object in the JSON array is a JSON rating object as represented by listing 2. This

endpoint can be called by anyone to retrieve a list of Nyms and details of the top ratings of

each Nym. This endpoint is called by the OpenNym Browser extension to fetch and update

the list of Nyms available to users.

18

3.1. OPENNYM WEB SERVICE CHAPTER 3. DESIGN

Responses

Status Code Response Reason

200 JSON Array of Nym Objects Request Successful

304 Empty No Nyms Modified Since Last Request

404 Empty No Nyms found

The GET, /nym/:id endpoint returns a single Nym in the form of a JSON Object, as

represented by Listing 1. This endpoint takes a single URL Path Parameter, an Nym ID,

which is used to retrieve a single Nym. As each Nym is assigned a unique ID on creation,

there should only ever be one Nym assigned to an ID (if a Nym for the ID exists). This

endpoint can be used by users and the OpenNym Browser Extension to retrieve a single

Nym’s details instead of having to retrieve the entire list of Nyms which can be an expensive

operation.

Responses

Status Code Response Reason

200 Single Nym JSON Object Request Successful

304 Empty Nym Not Modified Since Last Request

404 Empty Response Nym does not exist

3.1.2 Rating API

The Rating API is responsible for allowing the OpenNym Browser Extension to access a

Nym’s up to date ratings for items from a website, where these items could be songs on

Spotify or movies on IMDB. The browser extension needs to be able to quickly access these

ratings when intercepting user rating requests. For this reason, the API has an endpoint

that will allow a subset of a Nym’s most frequently accessed ratings for a web service to be

downloaded at once, and then subsequent ratings can be retrieved by the browser extension

by querying the API with the item ID. The Rating API endpoints are as follows:

1. GET, /ratings/:nym id/:domain, Returns a list of ratings for the 10 most rated items

for a given Nym for a given web service identified by it’s domain name

19

3.1. OPENNYM WEB SERVICE CHAPTER 3. DESIGN

2. GET, /ratings/:nym id/:domain/:item, Returns a Nym’s rating for a given item on a

given web service identified by it’s domain name

3. PUT, /ratings/update, Allows users to update a Nym’s rating for an item.

For the rating API, each of the GET endpoints returns either a standalone JSON rating

object or a JSON array of rating objects. The structure of a rating object can be seen in

listing 2.

1 {

2 "rating": {

3 "domain": "imdb.com",

4 "item": "tt0111161",

5 "nymId": 0,

6 "NymRating": {

7 "score": 3,

8 "numVotes": 12

9 }

10 }

11 }

Listing 2: Structure of Rating JSON Object

The item key in the JSON object displayed in Listing 2 represents the item identifier

used by the domain to which this item belongs to. So given Listing 2, the rating object

refers to unique item ”tt0111161” in the IMDB database, which represents the movie ”The

Shawshank Redemption”. Each item in the OpenNym database will have it’s own unique ID,

but for queries to the Rating API items will be referred to by their respective website’s IDs.

This is because services such as IMDB would already assign each of their items a unique ID.

By pairing a website’s domain and it’s ID for an item, it should be possible to retrieve the

rating for this item from the OpenNym database without any form of mapping function of

the website’s item ID to an OpenNym ID. The unique OpenNym ID given to each rating is

purely for database foreign key referencing.

The sub-object NymRating contains the actual rating a Nym has given to an item and

20

3.1. OPENNYM WEB SERVICE CHAPTER 3. DESIGN

the number of users of the Nym who have voted on the item. Storing the number of users

who have voted and the actual rating for an item is important as it is necessary to calculate

an updated average when a new user rates the item. It is important to note that the actual

rating is only stored in the OpenNym database if the web service does not have an API

available by which the browser extension can retrieve the ratings for the Nym it is currently

using. If an API is available through which the Nym’s ratings can be retrieved from the

OpenNym Browser Extension, we opt to use it instead of storing the average rating on the

OpenNym server. This is because it helps to preserve user privacy as they do not need to

communicate their rating updates to the OpenNym server, but instead the average rating

can be retrieved by the OpenNym server periodically.

The GET /ratings/:nym id/:domain endpoint will be used by the OpenNym exten-

sion to get an array of JSON rating objects that it’s most likely to use when it visits a website.

The service determines which ratings are most likely to be used by simply returning the 10

most used ratings for a Nym for the given domain, as measured by each rating number of

votes. This endpoint will be queried by the OpenNym extension when it detects the user is

opening a website which is supported by the OpenNym web service.

Responses

Status Code Response Reason

200 JSON Array of Rating Objects Request Successful

404 Empty Body Requested Nym does not exist

404 Empty Body Requested Domain not Supported

The GET /ratings/:nym id/:domain/:item endpoint will be used to retrieve a rating

object for a given Nym, domain and item. If the domain is supported by OpenNym but no

rating for the item is available, a rating object will be created in the OpenNym database

and a response returned with score 0 and numVotes 0. If a request to the endpoint is made

for a domain which is not yet supported by OpenNym, a 404-’Not Found’ Response code

is returned. If the request is successful (The domain-item rating pair exists for the given

Nym), a 200-OK response code is returned with a single JSON Rating object represented

by Listing 2. Clients can include an optional lastUpdated URL parameter which contains

the timestamp of the last time the client retrieved the rating for the specified item. This

timestamp is used to determine if there has been any changes to the rating since it was last

21

3.1. OPENNYM WEB SERVICE CHAPTER 3. DESIGN

retrieved by the client. If there hasn’t then a 304-Not Modified response code is returned.

Otherwise the rating is sent to the client as normal.

Responses

Status Code Response Reason

200 JSON Rating Object Request Successful

404 Empty Body Requested Nym does not exist

404 Empty Body Requested Domain not Supported

The PUT /ratings/update endpoint will be used to update the rating details of an item

for a Nym. The item is identified using the domain and item identifier from the web service

itself, where the web service is identified by the domain. The body of this PUT request will

contain the JSON rating object as shown in Listing 2, but will have the updated number of

votes and, in some cases, the updated scores. Updated scores will only be included in the

case where a web service has an API from which ratings can be retrieved from the browser

extension. If this API is unavailable, then ratings must be saved in the OpenNym server too.

All the information required by the OpenNym web service to update a rating can be found

in the request body which contains the rating item’s domain and ID.

Furthermore, the Web Service must ensure ratings are not overwritten. Take two users

of the same Nym, Alice and Bob, for example. Alice and Bob both retrieve rating item C

at the same time, but Alice updates C before Bob. When Bob tries to update C, his update

would fail to take Alice’s update into account. To ensure Alice’s update is not lost, the Web

Service must check the numVotes key in each update request and ensure it increments the

current number of votes by 1. If the request fails to do so, a 409-Conflict response will be

returned with the server’s up to date score and number of votes for an item. The sender will

need to recalculate the average score for the item using it’s up to date information before

re-sending the request. Conflict Resolution has been chosen over a preventative method such

as Bob requesting his rating item again before sending an update request to try and keep the

system as performant as possible. If a user had to retrieve the updated rating before sending

an update request, this would effectively double the number of requests to the server. By

allowing a user to submit an update request and only have them update their rating when a

conflict occurs, the overall number of requests to the OpenNym Web Service is reduced.

22

3.1. OPENNYM WEB SERVICE CHAPTER 3. DESIGN

Responses

Status Code Response Reason

200 Empty Update successfully made

400 Empty Request Body missing mandatory field

404 Empty Document does not already exist

409 Up to Date JSON Vote count and rating Update conflict

3.1.3 Session Cookie API

The Session Cookie API is responsible for allowing the OpenNym Browser extension to

retrieve Session Cookies for a Nym to use on websites. This is important as these session

cookies are how websites keep track of authenticated users, and so for OpenNym this means

each Nym group account will have a number of Session Cookies associated with them. The

OpenNym Browser Extension needs to be able to quickly access these session cookies, as

it would be infeasible for the extension to download all session cookies for a Nym at once.

Similar to the Ratings API, this API will allow for the session cookies for the 10 most popular

domains of a Nym to be downloaded when a Nym is joined. The top domains for a Nym will

be determined by the most popular domains accessed by members of a Nym. Subsequent

requests for session cookies belonging to other domains can then be made. The Session Cookie

API endpoints are as follows:

1. GET, /cookies/:nym id, Return the session cookies for the 10 most popular domains

of a given Nym

2. GET, /cookies/:nym id/:domain, Return the Session Cookies given a Nym ID and a

domain

3. GET, /cookies/issue/:nym id/:domain, Returns the date-time for when a Nyms session

cookies for a domain was last updated

For the Session Cookie API, the first 2 endpoints return an array of JSON Session Cookie

Objects and a single JSON Session Cookie object respectively. The third endpoint returns a

JSON Session Cookie date-time object. The structure of these JSON objects can be seen in

Listings 4 & 3.

23

3.1. OPENNYM WEB SERVICE CHAPTER 3. DESIGN

1 {

2 "session": {

3 "issued": 1521026899

4 }

5 }

Listing 3: Structure of Session Date-time JSON Object

1 {

2 "session": {

3 "domain": "spotify.com",

4 "issued": 1521026899,

5 "cookies": {

6 "cid": "abcdefghijklmnop",

7 "val": "abc123"

8 }

9 }

10 }

Listing 4: Structure of Session Cookie JSON Object

The GET /cookies/:nym id endpoint will be used by the OpenNym browser extension

to retrieve the session cookies for the 10 most popular domains given Nym. As can be seen

from the endpoint, a Nym ID is supplied as part of the URL. The extension will make a call

to this endpoint when it first selects a Nym to join.

Responses

Status Code Response Reason

200 JSON Array of Session Cookie Objects Request Successful

400 Empty Nym ID Not supplied

404 Empty Specified Nym does not exist

404 Empty Specified Nym has no domains associated with it

24

3.1. OPENNYM WEB SERVICE CHAPTER 3. DESIGN

The GET, /cookies/:nym id/:domain endpoint is used by the OpenNym Extension to

retrieve a session cookie object for a single domain, represented by listing 4. This is used by

the Browser Extension when it doesn’t already have the session cookies for a domain cached.

Responses

Status Code Response Reason

200 Session Cookie Object Request Successful

404 Empty Specified Nym does not exist

404 Empty Specified Domain not supported

The GET, /cookies/issued/:nym id/:domain endpoint is used by the OpenNym exten-

sion to retrieve the date-time a domain’s session cookies was last updated. The relevant

session cookies are identified by the Nym ID and a domain. This will allow the extension to

check if a cached cookie has expired before using it.

Responses

Status Code Response Reason

200 Session Cookie Datetime Object Request Successful

404 Empty Specified Nym does not exist

404 Empty Specified Domain not Supported

3.1.4 Rules API

The Rules API is responsible for allowing the OpenNym extension to retrieve up to date

rules for intercepting rating requests on supported OpenNym websites. This API will allow

the OpenNym extension to retrieve a list of supported OpenNym websites and retrieve rules

in the form of Registered Expressions and URL endpoints to allow the extension to intercept

rating requests to supported websites and parse the users rating out from the request body.

This will allow the extension to calculate an average for the Nym the user is a part of before

allowing the request to proceed. The endpoints are as follows:

1. GET, /rules/supported, Returns a list of domains OpenNym supports

25

3.1. OPENNYM WEB SERVICE CHAPTER 3. DESIGN

2. GET, /rules/supported/version, Returns the current version of the OpenNym Support

list

3. GET, /rules/top/:nym id, Returns a list of rules for the top 10 domains for a given

Nym

4. GET, /rules/:domain, Returns the intercept rule for a given domain

5. GET, /rules/issued/:domain, Returns the date-time the rule for a given domain was

updated

1 {

2 "domainRule": {

3 "domain": "spotify.com",

4 "timestamp": "2018-05-14T12:07:48.203697",

5 "rule": {

6 "method": "GET",

7 "endpoint": "/track/1235",

8 "regex": "~r{Some Regex}"

9 }

10 }

11 }

Listing 5: Structure of OpenNym JSON Rule Object

1 {

2 "domainRule": {

3 "timestamp": "2018-05-14T12:07:48.203697"

4 }

5 }

Listing 6: Structure of OpenNym JSON Rule Version Object

The GET, /rules/supported endpoint returns a JSON object which contains an array

of domains supported by OpenNym, as represented by listing 7. This endpoint will be used in

26

3.1. OPENNYM WEB SERVICE CHAPTER 3. DESIGN

the OpenNym browser extension to determine which domains the extension should be active

on.

Responses

Status Code Response Reason

200 JSON Object with array of domains Request Successful

The GET, /rules/supported/version endpoint returns a JSON object which contains

just the version number of the current list of websites OpenNym supports, as represented by

listing 8. This endpoint will be used by the OpenNym extension periodically to check if there

have been any updates to the list of supported websites.

Responses

Status Code Response Reason

200 JSON Object with current support list version Request Successful

The GET, /rules/top/:nym id endpoint returns a JSON array of JSON objects containing

the interception rules for the top-n domains for a given Nym, where each individual JSON

Object is in the form of listing 5. In listing 5, the key endpoint represents the endpoint to

which ratings are submitted for the given domain. The key regex is a registered expression

that will be used to retrieve the rating submitted by the user.

Responses

Status Code Response Reason

200 JSON Array of Rule Objects Request Successful

404 Empty Given Nym ID unrecognized

The GET, /rules/:domain endpoint returns a single JSON object containing the inter-

ception rule for a given domain, where this JSON object is represented by Listing 5. The

endpoint will be used by the OpenNym extension to retrieve the interception rule for a domain

where it’s interception rule isn’t already cached.

27

3.1. OPENNYM WEB SERVICE CHAPTER 3. DESIGN

Responses

Status Code Response Reason

200 JSON Object representing Rule Request Successful

400 Empty Given Domain not supported by OpenNym

The GET, /rules/issued/:domain endpoint returns a single JSON object with the times-

tamp for when the rule of a given domain was last updated. This JSON object is represented

by listing 6. This endpoint will be used by the OpenNym extension periodically to ensure

cached rules are up to date, otherwise there may be issues in intercepting user ratings for

given websites.

Responses

Status Code Response Reason

200 JSON Object with rule’s timestamp Request Successful

400 Empty Given Domain not supported by OpenNym

1 {

2 "supportList": [

3 "youtube.com",

4 "spotify.com",

5 "movielens.org",

6 "vimeo.com"

7]

8 }

Listing 7: Structure of OpenNym supported website list JSON object

28

3.1. OPENNYM WEB SERVICE CHAPTER 3. DESIGN

1 {

2 "version": 1.23

3 }

Listing 8: Structure of OpenNym supported website list version JSON object

3.1.5 OpenNym Identity Interface API

The OpenNym Identity Interface is designed to allow third party services to access Nym

ratings and update their own systems accordingly. This interface is necessary because for

a Nym to receive accurate recommendations from a web service, the recommender system

must have previous ratings for the Nym.

Ideally OpenNym wouldn’t rely on web services to update ratings for Nyms themselves

and would automatically update all ratings that changed for a Nym through an automated

script. The issue with this approach however is that websites have taken considerable steps to

prevent bot traffic on their networks through the use of captchas, and most notably, Google’s

ReCaptcha [21]. As a result, it would be infeasible to try and write a script to automatically

update website ratings and circumvent state of the art bot-deterrents. As such, the decision

has been made to design an interface that third party websites can interact with to manually

retrieve ratings from the OpenNym service and update the ratings of OpenNym accounts on

their own web services accordingly.

The OpenNym Identity Interface will not require authentication to query the API initially

as all Nym rating information is already publicly available from the other APIs, but section

7.1.2 discusses how the API may need authentication in the future.

The endpoints for the OpenNym identity service are as follows:

• GET, /identity/:domain, Return a JSON array of all ratings for all Nyms for a domain

• GET, /identity/:domain/:timestamp, Return a JSON array of all ratings for all Nyms

for a domain that have changed since the supplied timestamp

• GET, /identity/nym/:domain/:nym id, Return a JSON array of all ratings for a spec-

ified Nym for a domain

• GET, /identity/nym/:domain/:nym id/:timestamp, Return a JSON array of all ratings

for a specified Nym for a specified domain that have changed since supplied timestamp

29

3.1. OPENNYM WEB SERVICE CHAPTER 3. DESIGN

• GET, /identity/:domain/:username, Given a domain and username, return the Nym

ID associated with the username

1 {

2 "NymId": 1,

3 "ratings": [

4 {

5 "item": "abc",

6 "rating": 123

7 },

8 {

9 "item": "def",

10 "rating": 456

11 }

12]

13 }

Listing 9: Structure of JSON Domain Rating

1 {

2 "NymId": 1

3 }

Listing 10: Structure of username to Nym mapping response object

The GET, /identity/:domain endpoint is responsible for retrieving all ratings asso-

ciated with all Nyms for a given domain. A successful response to this request is a JSON

array of domain rating objects represented by Listing 9. This will be used by third party

recommender systems to retrieve ratings for Nym accounts registered with their service so

they can update the Nym’s ratings in their own system’s database. This endpoint is intended

to allow third party web services to populate each Nyms account with ratings to avoid the

cold start problem in recommender systems. Ideally this endpoint would only be used once

by each third party service to populate each Nym account with it’s initial ratings.

30

3.1. OPENNYM WEB SERVICE CHAPTER 3. DESIGN

Responses

Status Code Response Body Reason

200 Array of Ratings for each Nym Query Successful

400 Empty Specified Domain not supported

The GET, /identity/:domain/:timestamp endpoint is responsible for retrieving all rat-

ings associated with all Nyms for a given domain that have been modified since a given

timestamp. This endpoint should be used by third party services to view all rating changes

since they last updated their ratings. The timestamp supplied must be in the same format

(YYYY-MM-DDTHH:MM:SS) as is served by the Web Service. This endpoint should not

be necessary as the OpenNym browser extension should update ratings on the third party

service automatically, but has been provided to allow services to ensure ratings are being

properly recorded. This endpoint also returns a JSON array represented by listing 9, but

ratings are filtered to show only those that have been modified since the provided timestamp.

Responses

Status Code Response Body Reason

200 Array of Ratings for Each Nym Query Successful

400 Empty Body Specified Domain not supported

400 Empty Body Specified Timestamp in incorrect format

The GET, /identity/nym/:domain/:nym id endpoint is responsible for retrieving all

ratings associated with a given Nym for a given domain. This endpoint is also to be used by

third party services to allow them to update ratings for a given Nym. A successful response

to this request will return a single JSON response represented by listing 9.

31

3.1. OPENNYM WEB SERVICE CHAPTER 3. DESIGN

Responses

Status Code Response Body Reason

200 Nym Ratings for a Domain Query Successful

400 Empty Specified Domain is not supported

400 Empty Specified Nym does not exist

The GET, /identity/nym/:domain/:nym id/:timestamp endpoint is similar to the

previous endpoint, but results are filtered to show only ratings that have been modified

since the supplied timestamp. The supplied timestamp must be of the format (YYYY-MM-

DDTHH:MM:SS). A successful response to this request will return a single JSON response

represented by listing 9.

Responses

Status Code Response Body Reason

200 Nym Ratings for a Domain Query Successful

400 Empty Specified Domain is not supported

400 Empty Specified Nym does not exist

400 Empty Supplied Timestamp in incorrect format

The GET, /identity/:domain/:username endpoint is responsible for allowing a third

party web service to map a Nym username to a Nym ID. This endpoint has been included

because the Nym ID is needed for some endpoints and it is unreasonable to expect third

parties to infer a Nym’s ID from the username, which may not even be possible in all cases.

The response to a successful query is represented by listing 10, where the response is simply

the ID of the Nym associated with the username.

Responses

Status Code Response Body Reason

200 Single JSON Object representing Nym ID Query Successful

400 Empty Specified Domain not supported

404 Empty Specified username does not exist for domain

32

3.2. OPENNYM DATABASE CHAPTER 3. DESIGN

3.2 OpenNym Database

The OpenNym Database will be responsible for storing all the information served by the

APIs. A number of database tables will be used to store required information, as will be

outlined in detail in this section.

3.2.1 Nym Database Table

The Nym table’s responsibility will be to store key information about each Nym. This is the

Nym’s ID, the Nym’s top rated items, and the Nym’s most used services. Each Nym’s top

domains and top rated items will be stored in the database and periodically updated instead

of being dynamically generated on each request to both improve API response times and

avoid unnecessary computation. Each Nym’s top domains and top ratings can be periodically

updated through the use of a scheduled script.

Nym Table Fields

Name Primary Type Not Null Unique Foreign Key

id Yes Integer Yes Yes No

top ratings No Array of Rating Foreign Keys Yes No Yes

top domains No Array of Domain Foreign Keys Yes No Yes

3.2.2 Ratings Database Table

This table is responsible for storing all Nym’s ratings for all domains. Each rating will be

assigned a unique ID which will act as the primary key for this table, but the ID will only

be used internally by the OpenNym service when referencing a rating as a foreign key. The

OpenNym extension and API will still allow ratings to be searched by domain name & item

ID. The reason a separate ID must be assigned as opposed to using a field such as domains is

that it’s expected there will be multiple entries in the table for the same domain, but different

items.

33

3.2. OPENNYM DATABASE CHAPTER 3. DESIGN

Rating Table Fields

Name Primary Type Not Null Unique Foreign Key

id Yes Integer Yes Yes No

domain No String Yes No Yes

item No String Yes No No

score No Float Yes No No

num votes No Integer Yes No No

inserted at No Timestamp Yes No No

updated at No Timestamp Yes No No

The domain field in this table references an existing domain in the Rules database table. This

constraint ensures ratings for websites that are not yet suppported by OpenNym cannot be

inserted into the database.

The only additional constraint to this Database Table will be that no two entries in the

rating table can have an identical domain & item value. This is not expected to ever happen,

but an alarm will be set in the case such a situation arises so it can be investigated.

3.2.3 Session Cookies Database Table

Only one table will be needed to properly store session cookie information. Session Cookies

for domains will be stored such that they can be retrieved using the domain name only.

Each entry in this table will have a unique ID to act as the primary key, but cookies will be

retrieved using the domain’s name and the cookies associated Nym ID.

Session Cookie Table Fields

Name Primary Type Not Null Unique Foreign Key

id Yes Integer Yes Yes No

domain No String Yes Yes Yes

cookies No String Yes No No

nym id No Integer Yes No Yes

inserted at No Timestamp Yes No No

updated at No Timestamp Yes No No

34

3.2. OPENNYM DATABASE CHAPTER 3. DESIGN

Session Cookies for each domain will be stored as a serialized JSON string instead of using

multiple table entries for each cookie because it is expected there will be no need to retrieve

cookies individually, and as such there is no reason to index them separately. The domain

field references a domain name that exists in the Rules database table. The nym_id field

references an existing nym in the Nym database table.

3.2.4 Rules Database Table

The rules database table will store a list of rules, one for each domain. Since there’s only one

rule for each domain, the domain field will be used as the primary key. For each domain the

table will store the timestamp of when the rule was created and last updated, the endpoint

the OpenNym extension should intercept requests to, the HTTP Verb used to make the

request to intercept, and a registered expression to parse the user’s rating from the request

body.

Rule Table Fields

Name Primary Type Not Null Unique Foreign Key

domain Yes String Yes Yes No

method No String Yes No No

endpoint No String Yes No No

regex No String Yes No No

inserted at No Timestamp Yes No No

updated at No Timestamp Yes No No

There is no need to have a separate table to store the list of supported domains because a

supported domain list can be generated from the above table by returning only the domain

names to the OpenNym extension.

3.2.5 Identity Interface Table

The Identity Interface as discussed in section 3.1.5 is primarily concerned with returning

Nym ratings which are stored in the Nym Ratings table (section 3.2.2). As a consequence,

the Identity Interface table will only store the mappings of Nym usernames for various services

to Nym IDs. IDs for this table will be automatically generated integers which will act as the

primary key. The nym_id key will reference the ID of an existing Nym in the Nym database

table.

35

3.3. OPENNYM BROWSER EXTENSION CHAPTER 3. DESIGN

Identity Interface Table Fields

Name Primary Type Not Null Unique Foreign Key

id Yes Integer Yes Yes No

domain No String Yes No Yes

username No String Yes No No

nym id No Integer Yes No Yes

inserted at No Timestamp Yes No No

updated at No Timestamp Yes No No

3.2.6 Nym Metadata Table

The Nym Metadata Table is designed to store additional information about the Open-

Nym web service. It currently contains an ID to act as the primary key, and the field

support_list_version which represents the version number of the list of domains sup-

ported by OpenNym. Users can retrieve the support list version to decide whether are not

they need to update their list of supported domains. It is intended that additional metadata

not currently used will be stored in this table.

Nym Metadata Table Fields

Name Primary Type Not Null Unique Foreign Key

id Yes Integer Yes Yes No

support list version No Float Yes No No

3.3 OpenNym Browser Extension

The OpenNym Browser extension is responsible for facilitating users to browse as part of a

Nym. To achieve this, the browser extension must:

• Allow a user to select a Nym to browse as part of.

• Intercept user session cookies and substitute them with a Nym’s session cookies. This

would result in websites tracking users as part of a Nym.

• Intercept user ratings and calculate a new Nym average rating using the user’s ratings.

Nym average ratings must then be sent in place of user ratings.

36

3.3. OPENNYM BROWSER EXTENSION CHAPTER 3. DESIGN

As a consequence, the OpenNym browser extension will be responsible for interacting

with the OpenNym Web Service to retrieve Nym information, ratings, rules, and session

cookies. The browser extension will also be the user’s main point of interaction with the

OpenNym service. This section will outline the functional and non-functional requirements

of the browser extension, and how the browser extension should behave in a series of expected

user scenarios to ensure the user successfully browses as part of a Nym. The description of

the browser extension’s behaviour in each scenario will be aided by the use of UML Sequence

Diagrams.

3.3.1 Functional Requirements

• Keep an up to date list of available Nyms to browse as part of.

• Keep an up to date list of domains supported by OpenNym.

• Intercept all outgoing requests to supported domains, including rating requests. All

outgoing requests must be intercepted as session cookies for each request must be sub-

stituted.

• Retrieve Nym ratings for items when the ratings are not cached.

• Allow a user to manually select a Nym.

• Keep an up to date list of the top 10 domains for a user’s Nym.

• Keep a valid cache of cookies and rules for the Nym’s top 10 domains.

• Substitute user session cookies in all outgoing requests with the Nym’s session cookies.

• Cache the top ratings for each website a user visits.

• Calculate the Nym’s average rating for each user rating that is intercepted.

• Update the average rating for items on the OpenNym web service.

• Store user ratings locally in the browser.

• Cache OpenNym session cookies for domains that are not in the Nym’s top 10 domains

when they are requested.

• Cache OpenNym interception rules for domains that are not in the Nym’s top 10 do-

mains when they are requested.

• Ensure cached information is valid.

37

3.3. OPENNYM BROWSER EXTENSION CHAPTER 3. DESIGN

3.3.2 Non-Functional Requirements

• Impact on website load times must be minimal.

• Usage should require no specialized knowledge from users.

3.3.3 Design

For the browser extension to function, it must be able to handle a number of browser events

successfully to ensure private user rating information is not sent to third parties. This section

will detail a number of sequence diagrams outlining the sequence of actions taken to ensure

browser extension functionality. In this section, ”YouTube.com” will be used as the example

website.

Browser Start

The extension should have a listener defined such that it receives an event when a new browser

window is opened. When the event is received, the extension must ensure it has an up to

date list of Nyms, supported domains, rules, and session cookies for the selected Nym’s top

10 domains. There are 2 possible sequences of events for when a new browser window is

opened:

• First Run - This sequence of events is outlined in Figure 3.2. It outlines the process

the extension must take to retrieve all necessary Nym information when no information

is available in the cache. This sequence of events can occur when the user has just

installed the extension or cleared their browser cache.

• Subsequent Run - This sequence of events is outlined in Figure 3.3. It is run when

cached information is available to the extension. It is mainly concerned with ensuring

cached information is still valid by querying the server with timestamps to check whether

any information has expired.

38

3.3. OPENNYM BROWSER EXTENSION CHAPTER 3. DESIGN

Figure 3.2: Browser Extension First Run Sequence Diagram

39

3.3. OPENNYM BROWSER EXTENSION CHAPTER 3. DESIGN

Figure 3.3: Browser Extension Subsequent Run Sequence Diagram

Website Request

This event is concerned with the user navigating to a website. When the browser extension

retrieves the list of domains supported by OpenNym, it adds a listener for outgoing requests

to each domain. When a user navigates to YouTube.com, the session cookies in the request

must be substituted for the Nym’s session cookies. There are two possible scenarios for

retrieving the Nym’s session cookies for YouTube.com:

• Session Cookies Not In Cache - If the Nym’s session cookies for YouTube.com

are not already cached, then the user’s request is blocked while the session cookies

are retrieved from the OpenNym Web Service. This is shown in Figure 3.4. It is

important to note that the browser extension only waits to receive the session cookies for

YouTube.com before substituting the session cookies and unblocking the user’s request.

The other requests are run asynchronously. This is to improve performance as the

response to the other requests are not necessary for the user to load YouTube.com as

part of a Nym.

• Session Cookies In Cache - If the Nym’s session cookies for YouTube.com are al-

ready cached, then the user’s request is blocked while the cached session cookies are

40

3.3. OPENNYM BROWSER EXTENSION CHAPTER 3. DESIGN

substituted into the user’s request. This is shown in Figure 3.5. It is important to note

here that all cached cookies are validated when the browser starts, ensuring the browser

is not using expired cookies. It is also important to note that requests for the top ten

ratings and the rule for YouTube.com is also sent asynchronously despite being cached.

The timestamp of the when the cached information was retrieved from the OpenNym

web service and if there is no change then the extension simply receives a 304 - Not

Modified. If there has been a change, then the OpenNym web service would respond

with the up to date information and the cache would be overwritten.

Figure 3.4: First Time Extension Loads Domain

Figure 3.5: Extension loading Domain with cached Session Cookies

41

3.3. OPENNYM BROWSER EXTENSION CHAPTER 3. DESIGN

Rating Request

This event is concerned with intercepting user ratings to websites. It is important for the

browser extension to intercept ratings as ratings submitted to YouTube.com must be rep-

resentative of the entire Nym and private user rating information must not be leaked. As

such, when a user rating is submitted to YouTube.com it is intercepted by the browser ex-

tension which blocks the request, and parses the users rating from the request body using

YouTube.com’s rule. An average rating for the Nym must then be calculated, and the aver-

age rating is first updated on the OpenNym server before being substituted into the rating

request for YouTube.com. After substituting the rating in the rating request, the request is

unblocked and continues as normal. There are three possible scenarios for this:

• Uncached Rating - When the rating request is intercepted, the rating item ID is

retrieved and the cache is checked for an existing rating. If the rating is not already

cached, then the rating request must be blocked while the rating is retrieved from

the OpenNym Web service. The Nym’s new average rating for the item is calculated

and updated on the OpenNym web server. If this is successful, then the new rating

is substituted into the user’s rating request and the request is unblocked. The new

average rating is cached. This is demonstrated in Figure 3.6.

• Cached Rating with No Update Conflict - Similar to with the uncached rating,

when a rating request is intercepted the rating item ID is retrieved and the cache is

checked for an existing rating for the item. If the rating is already cached, the new

average Nym rating is calculated and updated on the OpenNym web service. If the

rating updates successfully, the new average rating is then substituted into the user’s

rating request and the rating request unblocked. This is demonstrated in Figure 3.7.

• Cached Rating with Update Conflict - Similar to the previous example, the rating

is successfully retrieved from the cache and the new average rating for the Nym is

calculated. The new average rating is sent to the OpenNym Web Service but fails to

update the server’s rating as the cached rating was not the most up to date rating.

As a result, the OpenNym Web Service returns a 409 - ’Conflict’ with the up to date

rating in the body. The extension must then recalculate the Nym’s new average rating

and send it to the OpenNym Web Service again. If this update is successful, the new

average rating is cached and substituted into the user’s rating request, and the user’s

rating request is unblocked. This is demonstrated in Figure 3.8.

42

3.3. OPENNYM BROWSER EXTENSION CHAPTER 3. DESIGN

Figure 3.6: Extension intercepting uncached user rating

Figure 3.7: Extension intercepting cached user rating

Figure 3.8: Extension intercepting cached user rating with an update conflict

43

Chapter 4

Implementation

This chapter will outline the technologies and processes used to implement both the web

service and browser extension, according to their specifications outlined in Chapter 3. Addi-

tionally, section 4.3 will outline security and privacy issues related to the implementation of

both the web service and the browser extension.

4.1 Web Service

The OpenNym Web Service was implemented according to the specification outlined in Sec-

tion 3.1. The implementation can be split into two major components:

• The Web Framework

• The Database

Both these components will be discussed in detail.

4.1.1 Web Framework

The Web Framework used for the OpenNym Web Service was Phoenix v1.3 [33]. Phoenix

is a relatively new web framework implemented in Elixir that uses the model-view-controller

design pattern. Elixir is a dynamic, functional programming language that operates in the

Erlang Virtual Machine [56]. Erlang is another functional programming language that was

developed by Ericsson that is popular in the Telecommunications industry for it’s ability

to run low-latency distributed and fault tolerant systems [19]. By using the Erlang Virtual

Machine, Elixir leverages Erlang’s fault tolerance and scalability while providing additional

features.

Phoenix & Elixir were selected because Phoenix benchmarks have shown it to be extremely

high performant. This was demonstrated best by Gary Rennie, who managed to run a chat

44

4.1. WEB SERVICE CHAPTER 4. IMPLEMENTATION

room with 2 million concurrent users on a single server [45]. This benchmark was run on

a server with 40 CPU cores and 128GB of RAM, but managed to broadcast all chatroom

messages to all 2 million subscribers within 1 second. Phoenix was also selected because it is

an open source web framework, allowing anyone to inspect the source code and ensure it is

safe to use. This is a very compelling factor from a privacy standpoint.

Phoenix’s use of the Model-View-Controller design pattern was also a compelling factor

in it’s selection for implementing the OpenNym Web Service. The Model View Controller

design pattern abstracts the functionality of a web framework into the following components

[25]:

• Model - A model is a representation of the data of the application. It is a structured

representation with a number of field names and associated field types. A model can

also have defined relations with other models. There can be many instances of the same

model in the same web service. For example, if there is a Nym model, multiple Nyms

can be represented in different instances of the model.

• View - A view is a template responsible for displaying information requested by the

user. Views are usually populated with information from the Model.

• Controller - A controller is responsible for handling user requests. In Phoenix, con-

trollers handle requests for resources by retrieving relevant information from models

and populating views. As such, the controller can be seen as the middleman between

models and views, where the main application logic is performed.

The model-view-controller design pattern was advantageous for the OpenNym Web Ser-

vice as the web service is primarily concerned with retrieving information as quickly as pos-

sible for users. There is no real complex application logic as the response to most requests

involves retrieving information from the database, formatting it as JSON, and returning it

to the user.

Web Service Models

Each of the database tables outlined in Section 3.2 were implemented as models. This was

done primarily to keep application logic simple by abstracting different components into their

own models. As such, each of the following models have the same fields as the tables they

represent:

• Identity Interface - This model represents the mappings of usernames to Nym IDs

for given domains.

45

4.1. WEB SERVICE CHAPTER 4. IMPLEMENTATION

• Nym - This model is a representation of Nyms.

• Nym Metadata - This model is a representation of the Nym metadata table. There

should only ever be one entry in the Nym metadata table, so this model should only

ever have one instance.

• Rating - This model represents a single rating object.

• Rule - This model represents a single rule object.

• Session Cookies - This model is a representation of the Session Cookies table. There

should be an instance of this model for each Nym for each website supported by Open-

Nym.

Web Service Views

Views in the OpenNym Web Service are responsible for populating JSON templates with

formatted data received from the controller. In the OpenNym Web Service, each controller

had it’s own view with which it would format response data into predefined templates. Each

view contained multiple templates, and the template to be used is selected by the controller.

After the template is populated, Phoenix sends it to the user in response to their request.

Web Service Controllers

In the OpenNym Web Service implementation, there was a controller responsible for handling

requests to each API outlined in section 3.1. Each controller was responsible for parsing any

supplied URL parameters from the request, retrieving the necessary data from the database

models, formatting the data, and sending on the formatted data to the appropriate view,

specifying which template should be used. Core application logic is performed in the con-

trollers.

4.1.2 Database

The Database for the OpenNym Web Service was implemented in PostgreSQL [55]. Post-

greSQL is an object relational database system, meaning it’s a database with object orien-

tation. This is an important feature of the database as Phoenix abstracts the database with

the use of models and each model would need to be represented as an object in the database.

Additionally, PostgreSQL is open source. This means anyone can review the source code,

which is an important attribute to have from a privacy standpoint as it allows us to ensure

the database is safe to use.

46

4.2. BROWSER EXTENSION CHAPTER 4. IMPLEMENTATION

PostgreSQL also makes use of Structured Query Language (SQL). This is advantageous

as the OpenNym service will deal with large amounts of homogeneous data. All informa-

tion stored in the OpenNym database is structured with clearly defined fields and relations.

Thus, SQL was the best choice for the service as it allows for quick retrieval of structured

information. The structured nature of the information is also why Not-Only-SQL (No-SQL)

databases were not used.

4.2 Browser Extension

The OpenNym browser extension was developed for Mozilla Firefox [54] using the web ex-

tensions API [36]. Firefox is a free, open source web browser developed by the Mozilla Cor-

poration. As with Phoenix and PostgreSQL, a major factor in selecting Firefox was the open

source nature of the project allowing users to ensure the browser is safe to use. Additionally,

Firefox’s adherence to the Browser Extensions Standard means the browser extension should

also work on Google Chrome, Microsoft Edge, and Opera Web Browser [11].

The Firefox extension was designed with simplicity and performance in mind. As such,

most of the functionality of the extension is hidden in the background JavaScript file, requiring

little user input. The only input required from the user is selection of a Nym, and so there is

a very simple user interface (UI) presented to the user in this extension where the user can

select a Nym to browse as from a drop-down menu.

The Firefox extension was designed to have as little impact on browser performance as

possible. This was primarily achieved by using as little blocking OpenNym API requests as

possible and by caching responses from the OpenNym Web Service. By using mostly non-

blocking (asynchronous) requests to the OpenNym Web Service, information can be retrieved

in the background from the OpenNym Web Service independently of other browser requests.

The Firefox extension makes extensive use of caching by caching session cookies, Nym

information, user’s selected Nym, rating information, and OpenNym supported domains in

Firefox’s local storage mechanism. This allows the Firefox extension to quickly load important

information from local storage instead of querying the server for all information, improving

extension performance and user experience. The extension currently performs sanitation

checks when the browser starts to ensure cached information is still valid. These sanitation

checks require less information to be sent from the server and less background processing

than outright retrieving all Nym information each time Firefox starts.

Application logic for the Firefox extension is programmed in JavaScript [35]. JavaScript is

an asynchronous programming language, meaning that by default it does not make blocking

47

4.3. THREAT MODEL CHAPTER 4. IMPLEMENTATION

function calls. This is advantageous as it means JavaScript is not waiting on a response to a

function to continue working, and so overall performance is improved. However, in the case

of the OpenNym Firefox extension, a number of calls must be made to the OpenNym Web

Service to retrieve information. These requests are performed by using XMLHttpRequests, a

built in function to allow JavaScript to make web requests. In most cases it is okay to allow

these XMLHttpRequests to be made asynchronously as the user will not be depending on

the result of the requests to browse as part of a Nym. However, there are still a number of

requests which are made by the browser extension for which a response is required before the

user can continue to browse anonymously as part of a Nym. These requests must be made

synchronously, where the browser must wait for a response to the XMLHttpRequests before

continuing. The following is a list of scenarios where a synchronous (or blocking) request

must be made:

• When the user sends a request to a domain supported by OpenNym for which the

Nym’s session cookies for the domain have not already been cached. The request must

be blocked until the session cookies for the Nym can be retrieved from the OpenNym

Web Service.

• When the user rates an item for which the average rating has not already been cached.

The user rating request must be blocked until the item rating can be retrieved from the

OpenNym Web Service and an average rating for the Nym calculated.

4.3 Threat Model

This section is concerned with the security concerns associated with the OpenNym system

as a whole. OpenNym was designed to improve user privacy, but the system must be secure

and communications private to ensure user information remains private. As such, some of

the major threats to OpenNym are:

• Transport security

• Server Security

• Non-Private Ratings

• Non-Private Nym Selection

• Lack of Anonymity

• Loss of Rating Integrity

48

4.3. THREAT MODEL CHAPTER 4. IMPLEMENTATION

4.3.1 Transport Security

Transport security is concerned with the privacy of information in transit. The OpenNym

system relies heavily on communication between the Firefox extension and the OpenNym

Web Service. If this communication occurs over HTTP then the connection is not private

and user information can be intercepted in transit to and from the server.

To solve this problem, transport security should be employed in the form of Transport

Layer Security (TLS) version 1.2. Use of TLSv1.2 would allow communications between the

Firefox extension and the OpenNym Web Service to take place using HTTPS, ensuring all

transmitted information is encrypted. Additionally, TLSv1.2 would allow message integrity

to be verified. To make use of TLSv1.2, the server must obtain a Certificate Authority (CA)

signed Certificate to verify that it is the OpenNym Web Service and allow users to verify the

validity of the server’s public key.

4.3.2 Server Security

The server is responsible for communicating OpenNym information to all users and storing

most of the rating information. The server acts as a trusted entity in the service, meaning

users can be communicating rating information to the server and must trust the server is

secure and will not communicate this rating information to third parties. As such, it is

important to ensure the server is secure and make it as difficult as possible to compromise.

This can be achieved by using the following security best practices:

• Use private key files to log in to the server, do not allow login using passwords.

• Restrict the IP addresses that can log in to the server.

• Use strong, secure, unique passwords with a combination of alphanumeric characters

and symbols for the database and other password protected internal entities. No part

of these passwords should appear in a dictionary.

• Change the CA Certificate for the server periodically.

• Use HTTPS for all communications.

• Do not support outdated cypher suites for TLS [5].

• Do not store any personally identifiable information, such as IP addresses. Ensure no

IP addresses appear in server log files.

• Ensure software is up to date and the latest security patches are installed.

• Input sanitisation should also be performed to prevent against SQL Injection Attacks.

49

4.3. THREAT MODEL CHAPTER 4. IMPLEMENTATION

4.3.3 Private Ratings

A user’s interests can be pieced together by monitoring outgoing rating requests from the

Firefox extension. There are two possible solutions to this issue. The first is more concerned

with privacy, and involves requesting multiple items at a time so even if browser requests are

being monitored it is more difficult to establish which item exactly is being consumed by the

user. Additionally, Nym item ratings are only requested when an item is being rated by the

user. This reduces the number of rating requests to the OpenNym web service to essential

requests only.

The second solution involves using transport security as discussed in section 4.3.1. By

using TLSv1.2, both the Uniform Resource Locator (URL) path and URL parameters are

encrypted and cannot be seen in transport. Additionally, HTTPS request bodies are also

encrypted so PUT requests to update Nym ratings should also be secure.

The first solution is also useful if a user would like to obfuscate their interests from the

OpenNym Web Service as well, but any ratings the user makes must be communicated back

to the OpenNym Web Service. As such it must be treated as a trusted entity.

4.3.4 Private Nym Selection

Nym selection is carried out locally on the browser through manual user selection. When a

Nym is selected, a number of requests are made by the Firefox extension to retrieve informa-

tion pertaining to the selected Nym. This constitutes a privacy concern if the user wishes to

keep their Nym selection private from even the OpenNym Web Service. While the OpenNym

Web Service is supposed to be considered a trusted entity, an enhanced level of user privacy

can still be obtained by requesting information pertaining to several Nyms (including the

Nym selected by the user) at once. This makes it more difficult to determine which Nym was

selected by the user, but would also require all subsequent requests to the OpenNym web

service to be made for multiple Nyms.

4.3.5 Rating Anonymity

OpenNym provides users with an enhanced level of privacy by allowing them to ’hide in the

crowd’. However, not every item has been consumed by enough users to allow this enhanced

privacy through hiding in the crowd. This privacy concern is especially pronounced in the

case of a user rating an item previously unknown to the Nym, a ’new’ item. By being the first

user to rate the item, the OpenNym Web Service knows exactly what the user’s individual

rating for the item is.

50

4.3. THREAT MODEL CHAPTER 4. IMPLEMENTATION

The issue with this concern is that for all new items there needs to be a first rating.

Though not a solution to the problem, users can be made aware of this issue by having

a popup notification appear, warning them that by rating an item they will not have an

enhanced level of privacy. Users can then opt to not rate an item.

4.3.6 Rating Integrity

OpenNym does not require users to authenticate themselves in order to use the service. This

was deemed necessary to keep the service as open and private as possible. The issue with this

however is that it makes it possible for anyone to modify the ratings for any item stored on

the OpenNym Web Service. A potential bad actor can flood the server with rating updates

to manipulate the ratings of certain items according to their own agenda.

Since users cannot be authenticated before making requests, it is difficult to prevent users

from tampering with ratings in this way. One method that could work is to rate limit IP

addresses if they send too many requests to the OpenNym web service too quickly. However

it is trivial for a motivated attacker to spoof the source IP address.

Another approach is to simply perform damage control. Regular backups of ratings should

be made such that ratings that are suspected of being tampered with can be restored from

a previous backup. A machine learning model could be developed in the future to aid with

tamper detection.

4.3.7 Availability

OpenNym can only provide users with privacy enhanced browsing when the web service is

available. As such, a number of precautions can be taken to make the service as available as

possible:

• Take regular backups of database contents and store them off site.

• Set up multiple servers in different geographical locations in case of the event of a

disaster occurring in one of the server locations.

• Try to mitigate denial of service by investing in Denial of Service protection from a

provider such as Cloudflare.

51

Chapter 5

User Clustering

To achieve the final research objective of demonstrating the functioning OpenNym system, we

cluster users in The Million Song Dataset (MSD) [8] and use the resulting Nyms to generate

recommendations from Spotify [52].

The Million Song Dataset is a part of The Million Song Dataset Challenge, a challenge

that was run in the beginning of 2012 to allow researchers to develop state of the art music

recommender systems based on a massive collection of anonymised user’s song histories and

large amounts of relevant metadata. This dataset does not have explicit user ratings for each

song a user has listened to. As a result, we use an implicit feedback mechanism to give each

user-song pair a rating. To do this, we use the underlying assumption that the more the user

likes a song, the more they will listen to it. Based on this assumption, we can extrapolate

that the song with the most play counts from a user is the user’s favourite song.

This chapter will outline how data from the Million Song Dataset was clustered using

BLC Matrix Factorization and how ratings for each resulting Nym were generated. Section

6.3 contains an in depth analysis of the resulting Nyms, the distribution of users between

Nyms, the top rated items for each Nym, and a comparative analysis of the accuracy of

recommendations generated by the Spotify recommender system for both individual users

and Nyms.

Python [42] was used for all work in this section. Python was chosen primarily because

of it’s NumPy Library [38], it’s native Spotify API support [29], and it’s ease of use.

5.1 Data Analysis

As mentioned in the previous section, the Million Song Dataset is a collection of user play-

back histories that is accompanied by large amounts of song metadata from various sources.

52

5.2. DATA CLEANING CHAPTER 5. USER CLUSTERING

All users playback histories are available in the train_triplets.txt file1, whereby the file

contains a list of triplets in the format <user, song, play count>. An example of the

formatting of this can be seen in listing 13 in the appendix. Analysis of this file shows there

are:

• 1,019,318 users

• 384,546 unique MSD songs

• 48,373,586 triplets

Furthermore, each user in the file is represented by an anonymous alphanumeric ID and

each song is represented by a unique MSD Song ID. Each MSD Song ID can be mapped to

an actual song name and artist using the unique_tracks.txt file2. A small subset of this

file can be seen in listing 14 in the appendix.

The following are some important figures regarding the data:

• Number of unique songs listened to by users:

– Minimum: 3

– Maximum: 4,316

– Mean: 45

– Median: 26

• Total play counts of users:

– Minimum: 3

– Maximum: 13074

– Mean: 123

– Median 69

5.2 Data Cleaning

The initial dataset provided in the MSD challenge was released with an error affecting how

some unique song IDs were matched to the wrong track ID in the MSD [34]. Track IDs in

the MSD are the base identifier by which everything else is associated with it. Each song in

the MSD is associated with a track, and each track then has a wealth of metadata associated

1http://labrosa.ee.columbia.edu/millionsong/sites/default/files/challenge/train triplets.txt.zip
2https://labrosa.ee.columbia.edu/millionsong/sites/default/files/AdditionalFiles/unique tracks.txt

53

5.3. DATA PREPROCESSING CHAPTER 5. USER CLUSTERING

with it. An issue arose where it was found that songs were being incorrectly associated with

tracks in the dataset.

As a result of this error, a list of affected song IDs were released to ensure there is no

incorrect information in the dataset used for research3. This list was used in the Data Cleaning

stage to filter out all triplets in train_triplets.txt that were incorrectly matched. This

resulted in a loss of 2,578,486 triplets. This is the only Data Cleaning that was performed, and

the code for data cleaning can be found in the data_cleaner.py script in the accompanying

source code.

5.3 Data Preprocessing

This section is concerned with taking the sanitized train_triplets.txt file and formatting

it such that it can be input into the BLC clustering algorithm. There are a number of steps

involved in preprocessing the data:

1. Parsing train_triplets.txt such that each user’s songs and play counts are easily

accessible.

2. Normalizing play counts.

3. Generating a sparse matrix to input to the BLC clustering algorithm.

4. Filtering sparse songs from the matrix.

5.3.1 Data Parsing

As previously mentioned, the dataset was made available in the form of a list of <user,song,play count>

triplets. Before any form of processing could be carried out on the dataset, first the data

needed to be loaded into an appropriate data structure such that there would only be one

reference to a user. Each user reference would then point to a list of the users songs and play

counts.

To achieve this, a standard Python dictionary was used where the key was the unique

user ID. The value for each user key in this dictionary was a list of tuples in the form

(song id, play count). A dictionary was used because keys in a dictionary have constant

lookup time, allowing for much improved performance over the use of a data structure such

as a Python list. An example of the resulting dictionary can be seen in Listing 11.

3https://labrosa.ee.columbia.edu/millionsong/sites/default/files/tasteprofile/sid mismatches.txt

54

5.3. DATA PREPROCESSING CHAPTER 5. USER CLUSTERING

1 {

2 "user_1": [("song_a", 1), ("song_b", 2), ("song_c", 3)],

3 "user_2": [("song_d", 4), ("song_b", 5), ("song_f", 6)],

4 "user_3": [("song_a", 7), ("song_e", 8), ("song_c", 9)]

5 }

Listing 11: Structure of parsed dataset dictionary

5.3.2 Data Normalization

Naturally users in the dataset don’t all have the same number of play counts. The play

counts of each user was normalized between 0 and 1 to ensure there was a common metric

to define a user’s like for a song, where 0 represents a song listened to by a user once and

1 represents a user’s most listened to song. By normalizing a user’s play counts, each song

effectively scores between 0 and 1 with a higher score meaning the user liked the song more.

Normalizing the play counts also means every user in the dataset is using the same scale to

represent how much they like each song.

5.3.3 Sparse Matrix Generation

The BLC clustering algorithm takes a sparse matrix of user-item ratings as input, where a

sparse matrix is a matrix in which most of the elements are 0. Since the BLC Clustering

algorithm is performing matrix factorization, it is important to use as dense a matrix as

possible to give the clustering algorithm as much rating data as possible. To do this, we take

the users with the highest total play counts for the sparse matrix. An example of a sparse

matrix can be seen in table 5.1.

Given there are over 1 million users in the dataset, not every user could be included in

the sparse matrix. This is because the memory requirements to create a 1,000,000 x 384,000

matrix were simply too high. Thus, to find an appropriate sparse matrix to input to the

BLC clustering algorithm we vary the number of users used in the dataset and the minimum

number of values that must be in each column (song) of the sparse matrix. It is important

to note, the number of users taken are the top-N users in regards to total play count. The

results of this investigation can be seen in table 5.2.

Additionally, all the normalized ratings used in the sparse matrix are scaled to an integer

between 1 and 5 inclusive, where 1 represents the worst rating and 5 represents the best

rating. This means the only possible values for each rating are 1, 2, 3, 4, and 5. A rating

55

5.3. DATA PREPROCESSING CHAPTER 5. USER CLUSTERING

scale of 1-5 was chosen because it’s one of the most popular rating scales, and allows for a

distinction between having an opinion on a song (2 or 4), having a strong opinion on a song

(1 or 5), and having a neutral opinion on a song (3).

King Kunta Black Skinhead Hot Thoughts Rosa Parks

Alice 1 0 3 0

Bob 0 5 0 3

Colin 0 4 2 0

Dean 3 0 0 1

Table 5.1: Sparse Matrix with a subset of users ratings

5.3.4 Song Filtering

As discussed in the previous section, a goal when generating the sparse matrix is attempting

to make it as dense as possible to improve matrix factorization performance. As such, columns

(songs) with too few users are removed after the sparse matrix is generated. This is carried

out after the sparse matrix is generated, and the removal of some columns results in the loss

of some users completely. A comparison of the number of users lost and the resulting sparse

matrices can be seen in table 5.2.

Users Min Users Users Lost Songs Lost Songs Density

20 000 100 17 196 842 3 889 0.0117

20 000 200 147 199 649 1 262 0.0219

20 000 300 413 200 114 617 0.0325

30 000 100 15 217 078 5 756 0.0083

30 000 200 108 220 706 2 128 0.0148

30 000 300 357 221 767 1 067 0.0217

40 000 100 10 230 128 7 363 0.0066

40 000 200 97 234 573 2 918 0.0114

40 000 300 315 235 982 1 509 0.0164

Table 5.2: Comparison of sparse matrix properties for differing numbers of users and minimum

number of users in each column

56

5.4. BLC CLUSTERING CHAPTER 5. USER CLUSTERING

5.4 BLC Clustering

This section is concerned with the actual clustering of users based on their song ratings in

the supplied sparse matrix. Given a sparse matrix of user-item ratings, the BLC clustering

algorithm will continue to cluster users until it converges. Convergence in BLC occurs when

a predefined total error threshold has been reached. The total error threshold was set as 0.1,

though it was never reached in any clustering of users.

The BLC clustering algorithm performs a number of iterations to cluster users. In the

first iteration, all users are assigned to one Nym. In each subsequent iteration, the number

of available Nyms are doubled and users reassigned to the Nym most suited to them. A

predefined maximum number of Nyms is also used when running the algorithm, where the

algorithm stops iterating if the maximum numbers of Nyms has been reached without reaching

the predefined total error threshold.

To evaluate the performance of the clustering, root mean square error (RMSE) is used

to calculate the factorisation RMSE and the prediction RMSE is used. RMSE is used to

measure the predictive performance of the BLC recommender algorithm after clustering users,

initially with a small subset of the training data (factorisation RMSE), and then with a test

set (prediction RMSE). In each case of evaluating clustering performance, the test set for

calculating the prediction RMSE represented 20% of the input sparse matrix. The remaining

80% was used to train the clustering algorithm. RMSE is defined as:

RMSE =

√√√√ 1

n

n∑
i=1

e2i

where e is the error in the predicted rating for a user and n is the total number of users

in the set being evaluated.

To decide which sparse matrix input to use, a comparison of all the inputs was made by

running the BLC clustering algorithm on all the inputs listed in table 5.2 three times with a

maximum number of 16 Nyms. Of each input’s three iterations, the best factorisation RMSE

and prediction RMSE were taken for comparison. These results can be seen in table 5.3.

Based on the results in table 5.3, there is a variation of ≈ 0.728 in the Factorisation RMSE,

and a variation of ≈ 0.452 in the prediction RMSE. The best input based on factorisation

RMSE is the sparse matrix with 20,000 users and a minimum of 300 users in each column.

The best input based on prediction RMSE is the sparse matrix with 20,000 users and a

minimum of 100 users in each column. Despite this, the sparse matrix selected for use in this

research was the one with 40,000 users and a minimum of 100 songs. This sparse matrix was

selected because despite it’s lower density and poor factorisation RMSE, it’s performance was

57

5.5. NYM CONSTRUCTION CHAPTER 5. USER CLUSTERING

average in prediction RMSE despite having a much lower matrix density and a much higher

number of columns (7,363). By using a sparse matrix with a larger number of columns, more

user interests are represented through a larger selection of songs.

Users Min Users Max Nyms Factorisation RMSE Prediction RMSE

20 000 100 16 0.5645 0.7412

20 000 200 16 0.5605 0.7523

20 000 300 16 0.5449 0.7702

30 000 100 16 0.5989 0.7614

30 000 200 16 0.5879 0.7648

30 000 300 16 0.5723 0.7584

40 000 100 16 0.6177 0.7622

40 000 200 16 0.6083 0.7681

40 000 300 16 0.5974 0.7864

Table 5.3: Comparison of clustering predictive performances for different sparse matrices

5.5 Nym Construction

The result of the BLC clustering algorithm is the matrix P T which maps users to Nyms.

To construct each Nym, a list of every unique song listened to by the Nym’s users must be

made and the play counts for each song accumulated. This is represented in the same format

as in listing 11, where Nyms are used in place of users and play counts for the song are the

cumulative play counts for the song of all the users in the Nym.

5.6 Nym Rating Generation

Nym-song ratings then have to be generated for each song listened to by a Nym’s users.

Individual user-song ratings were calculated on the assumption that the more a user listens

to a song the more they like it. While this assumption is useful in identifying individual

user’s tastes, an issue arises with song popularity when taking just play counts into account

for Nym ratings.

When rating songs for Nyms based on play counts alone, it was found that the top 10

songs for each Nym had a substantial amount of overlap. This overlap was caused by songs

that were hugely popular in the years preceding the release of the dataset, songs that would

have been well known to almost all users in the dataset. While not every user in a Nym

would have listened to these popular songs enough for them to be in their individual top 10

58

5.6. NYM RATING GENERATION CHAPTER 5. USER CLUSTERING

rankings, these songs were listened to by enough users for them to cumulatively make it into

the top 10 for each Nym.

Since a Nym’s top ratings should be representative of the interest of users in the Nym, a

rating method that downplayed the influence of song popularity was developed. This rating

method operates on the basis that songs that are rated consistently highly by the Nym’s

users are more Representative of the Nym’s interests. To evaluate the consistency of ratings

for songs in each Nym, the variance in the Nym’s user ratings for the song is measured.

The initial approach for the rating method was to simply subtract the variance in a each

song’s rating from the Nym’s mean rating to create an adjusted rating. However, it became

evident that songs with more listeners tended to have a higher variance than songs with

fewer listeners. This meant that songs with more listeners were more heavily penalised than

songs with fewer listeners and would end up being rated relatively poorly. To alleviate this

problem, the rating method was adjusted to take the number of listeners for each song in a

Nym into account and applying a weighted penalty to every song in the Nym that has less

listeners than the song with the most listeners in the Nym. The penalty was more severe

the less listeners the song had. Each song’s individual weighted penalty was then added to

the song’s rating variance. The pseudocode for the adjusted rating method is represented by

listing 12.

59

5.6. NYM RATING GENERATION CHAPTER 5. USER CLUSTERING

1 for each Nym in all_nyms {

2 # Calculate the range in the variance for the Nym

3 max_variance = get_largest_song_rating_variance()

4 min_variance = get_lowest_song_rating_variance()

5 variance_range = max_variance - min_variance

6

7 # Get numbers of users who listened to each song

8 max_listeners = get_maximum_song_listeners()

9 min_listeners = get_minimum_song_listeners()

10

11 for each song in Nym {

12 num_listeners = normalize(song_num_listeners,

min_listeners, max_listeners)↪→

13

14 penalty = variance_range * (1 - num_listeners)

15 weighted_penalty = penalty * 0.1

16

17 # mean_rating is the average of Nym users' ratings

18 adjusted_rating = mean_rating - weighted_penalty

19 }

20 }

21 }

Listing 12: Nym adjusted rating method

With reference to listing 12:

• The rating variance range is used to calculate the penalty because in theory it will

always provide a penalty factor that is relevant to the ratings in the Nym.

• Listeners in the listing refer to the number of users who have listened to a song.

• num listeners is the number of listeners for each song normalized between 0 and 1

inclusive. Values are normalized only in the context of other songs in the Nym.

• num listeners is subtracted from 1 to ensure that songs with less listeners incur a higher

penalty.

60

5.6. NYM RATING GENERATION CHAPTER 5. USER CLUSTERING

• The penalty is then weighted using the factor 0.1 because using the penalty alone was

too harsh. 0.1 was selected through trial and error by examining the resulting Nym

song rankings using varying penalty values and selecting the value that saw the most

even spread of songs with high and low play counts in the resulting rankings.

The final song ranking was generated based on each song’s adjusted rating, with a higher

rating being better. Nym-song ratings can then be generated on the assumption that songs

that rank higher are more representative of the Nym’s interests.

61

Chapter 6

Evaluation

This chapter will evaluate the performance of the OpenNym system implemented in chapter

4 and the Nyms created in chapter 5. It will discuss the results of load testing the OpenNym

server, measuring the impact of the OpenNym browser extension on Firefox’s performance,

and an analysis of the Nyms generated in chapter 5 and the accuracy of recommendations

made for the Nyms.

6.1 Server Performance

To evaluate the server performance, we will investigate two areas:

• Response Latency

• Server Throughput

The goal of investigating these two areas is to gain an understanding of user experience

when interacting with the server and the servers current limitations. For the purpose of this

test, the server was an Amazon Web Service instance with the following specifications:

• Operating System - Ubuntu 16.04

• CPU - 1 Virtual CPU, 2.5GHz Intel Xeon Processor

• Memory - 2 Gigabytes

All requests to the service were sent from a different machine using the open source load

testing library Locust [32]. Locust allows the simulation of a number of concurrent users

accessing an endpoint, and additionally allows the addition of randomness of time in between

user requests. As such, Locust was used to simulate varying numbers of concurrent users

querying the web service, with users randomly sending requests between 500 milliseconds

62

6.1. SERVER PERFORMANCE CHAPTER 6. EVALUATION

and 1 second after receiving their last response. To evaluate latency and throughput, one

endpoint from each API will be selected to be queried by all concurrent users. The endpoint

used will be the endpoint that has the most expensive Input/Output (I/O) operations, and

in theory the endpoint that should have the worst performance. The selected endpoint for

each Nym can be seen in table 6.1. Any parameters required by the endpoint are randomly

selected. Additionally, by evaluating each endpoint individually we gain insight into the

relative performance of each API.

API Method Endpoint

Nym GET /nym/

Rating GET /ratings/:nym id/:domain

Session Cookies GET /cookies/:nym id

Rules GET /rules/top/:nym id

Identity GET /identity/:domain

Table 6.1: Selected endpoints for Each API based on expected number of I/O operations

Though the Identity API is listed in table 6.1, it’s performance evaluation is not included

in any of the comparison figures shown later in the section. The reason for this is it performed

exceedingly poorly, with request failure rates in excess of 50% for the lowest numbers of

concurrent users. On inspection of the performance of this endpoint it was found it was

returning JSON payloads in excess of 291KB, which is significantly larger than the 15KB

sent by the Nym API which is the next largest response. In it’s current form, this API will

not be very performant. Possible improvements to this API will be discussed in the conclusion

for the web server in section 7.1.2.

It is important to note the response failure rate for each of the APIs are not graphed

below because the failure rate never exceeded 0.005% for any of the APIs (excluding the

Identity Interface API), where a failure is defined as the server returning any 5xx HTTP

response code.

6.1.1 Response Latency

Latency is a measure of how fast a server responds to a client. It is calculated by measuring

the time between when a client sends a request and when the client receives a response.

Latency plays a major role in user experience, especially in the case of OpenNym where user

requests can be blocked while waiting for responses from the server. If response latency is

high, this will impact page load times and result in a poor user experience. It may even

63

6.1. SERVER PERFORMANCE CHAPTER 6. EVALUATION

discourage users from using the OpenNym service due to it adversely affecting their browsing

experience.

Figure 6.1 shows a comparison of the mean response latency of the 4 assessed APIs. As

can be seen from the figure, latency for the Nym API is substantially higher than any of the

other APIs. This can be attributed to the queried endpoint returning the top ratings for

each Nym available on the server, resulting in a large number of I/O operations to retrieve

rating information for each Nym. While the Nym API is expected to be queried less than

the other APIs, querying it is clearly quite a costly function and this must be addressed to

improve overall performance and efficiency of the server. One possible way of improving this

performance is to cache the response to the endpoint, as the response does not change for

individual user requests. By caching the response, the number of I/O operations to build the

response is drastically reduced. A more detailed view of the APIs excluding the Nym API can

be seen in figure 6.2, where each API’s mean latency is considerably better than the Nym API.

200 400 600 800 1,000

0

0.5

1

1.5

2

2.5

3
·104

Number of Concurrent Users

L
at

en
cy

(m
s)

Nym API
Rating API

Session Cookies API
Rules API

Figure 6.1: A comparison of mean latency between OpenNym APIs

In figure 6.2 we can see that both the Session Cookies and Rules APIs perform extremely

well under load, with latencies below 400ms with 1,000 concurrent users. The Rating API

does not perform as well as the other two APIs, but it does not perform poorly either. The

endpoint used for load testing the Rating API will only be called asynchronously by the

64

6.1. SERVER PERFORMANCE CHAPTER 6. EVALUATION

browser extension, meaning responses to this endpoint are not time critical. Additionally,

this endpoint requires the server to analyse every rating for a Nym for a domain and deter-

mine the 10 most popular ratings to return. Single item requests to this API by the Firefox

extension will not have nearly as high an overhead. For these reasons, the Rating API’s

performance is acceptable.

200 400 600 800 1,000

0

200

400

600

800

1,000

1,200

Number of Concurrent Users

L
at

en
cy

(m
s)

Rating API
Session Cookies API

Rules API

Figure 6.2: A detailed comparison of OpenNym API mean latencies excluding the Nym API

65

6.1. SERVER PERFORMANCE CHAPTER 6. EVALUATION

200 400 600 800 1,000

0

0.5

1

1.5

2

2.5

3
·104

Number of Concurrent Users

L
at

en
cy

(m
s)

Nym API
Rating API

Session Cookies API
Rules API

Figure 6.3: A comparison of median latency between OpenNym APIs

As discussed above, the poor performance of the Nym API in figure 6.3 can be attributed

to the number of I/O operations it must perform to retrieve rating information for each

Nym’s top ratings. A more detailed comparison of the APIs excluding the Nym API can

be seen in figure 6.4. This figure shows performance of the other three APIs are generally

good, especially in the case of the Session Cookies API which needs to perform well due to

the Firefox extension using blocking requests to retrieve session cookies. While the rating

API performs worse with higher numbers of concurrent users than the other two APIs, it

still returns valid responses within 1 second which is acceptable given the use of non-blocking

requests by the Firefox extension for this rating API endpoint.

66

6.1. SERVER PERFORMANCE CHAPTER 6. EVALUATION

200 400 600 800 1,000

0

200

400

600

800

1,000

Number of Concurrent Users

L
at

en
cy

(m
s)

Rating API
Session Cookies API

Rules API

Figure 6.4: A detailed comparison of OpenNym API median latencies excluding the Nym API

6.1.2 Server Throughput

Server Throughput is a measure of how many requests a server can handle during a specific

time interval. Requests per Second (RPS) will be used to evaluate server throughput. To

evaluate the server throughput, varying numbers of concurrent users will be used to measure

how many requests the server successfully responds to per second. Server throughput will

be evaluated in the same way as latency, using the same endpoints to represent each API as

outlined in table 6.1. The results of server throughput for each API can be seen in figure 6.5

67

6.2. EXTENSION PERFORMANCE CHAPTER 6. EVALUATION

200 400 600 800 1,000

0

100

200

300

400

500

600

700

Number of Concurrent Users

S
er

ve
r

T
h
ro

u
gh

p
u
t

(R
P

S
)

Nym API
Rating API

Session Cookies API
Rules API

Figure 6.5: Comparison of server throughput for the different APIs

As can be seen in figure 6.5, the Session Cookies API and Rules API perform exceedingly

well in server throughput with total RPS at 1,000 concurrent users ≈ 650 RPS. The Rating

API performs moderately well with a score of ≈ 350 RPS, and the Nym API performs quite

poorly with a score of ≈ 30 RPS.

6.2 Extension Performance

Extension performance is concerned with the impact of the Firefox extension on user load

times, both for web pages and rating requests. As discussed in section 4.2, there are blocking

requests made to the OpenNym web service where the Firefox extension temporarily stops

a user’s request to load a web page or rate an item while information is retrieved from the

OpenNym web service. These blocking requests effectively increase the latency of the user’s

requests. While OpenNym web service response latency is investigated in Section 6.1.1, this

section will investigate the added latency of the Firefox extension when a user browses to a

website and rates items under three different conditions:

• User Browsing Individually (not in a Nym).

• User Browsing as part of a Nym with no cached information.

68

6.2. EXTENSION PERFORMANCE CHAPTER 6. EVALUATION

• User Browsing as part of a Nym with cached information.

As the blocking requests are the only requests that should have a real impact on user

request latency, they will be the only requests evaluated. There are only two blocking requests

made by the Firefox extension, and they will be evaluated as follows:

• Session Cookies Request - Spotify1 will be loaded under each of the three conditions

outlined above. This will be repeated five times for each condition, with the average

page load time under each condition taken.

• Rating Item Request - Five different videos on YouTube.com will be rated by ’liking’

the videos under each of the three conditions outlined above. This will be repeated five

times for each condition, with the average rating request latency for all the videos

taken. YouTube.com was used for this evaluation because Spotify had no clear explicit

feedback mechanisms. As such, YouTube.com is used in lieu due to it’s easily accessible

like endpoint.

To measure the page load times and request latency, the built in Firefox network monitor

will be used. The Firefox network monitor gives comprehensive information for individual

requests and entire page loads. This will allow accurate results to be obtained. Additionally,

there will be no extensions installed on Firefox when evaluating performance while browsing

without a Nym. When evaluating performance of a user using a Nym, the OpenNym extension

will be the only installed extension. Additionally, the Firefox browser cache will be disabled

for all tests.

1https://open.spotify.com/browse/featured

69

6.2. EXTENSION PERFORMANCE CHAPTER 6. EVALUATION

6.2.1 Page Load Performance

No Nym

Nym with Cache

Nym No-Cache

4.6

4.97

6.34

Figure 6.6: A Comparison of average page load times in seconds on Spotify

Figure 6.6 shows the impact of browsing as part of a Nym both with and without cached

cookies. As can be seen in the figure, browsing as part of a Nym with no cookies cached

results in an increased page load time of ≈ 40% over page load times with no Nym. This

overhead is much less pronounced when the session cookies are cached, with an increased

page load time of ≈ 8% over browsing with no Nym.

6.2.2 Rating Request Performance

No Nym

Nym with Cache

Nym No-Cache

218.24

219.6

235.24

Figure 6.7: A Comparison of average rating request latency on YouTube in milliseconds

70

6.3. NYM ANALYSIS CHAPTER 6. EVALUATION

Figure 6.7 shows a comparison of average rating request latency in each of the predefined

browser conditions. The impact caused by the OpenNym Firefox extension is minimal in

both cases when compared to rating request latency when not using the Firefox extension.

Additionally, the Firefox extension with cached ratings performs better than the Firefox

extension with no cached ratings. This is in line with expectations as only one request is

made to the OpenNym web service rather than two.

6.3 Nym Analysis

This section will cover a brief analysis of the properties of the Nyms produced in chapter

5. Figure 6.8 shows the number of users assigned to each Nym. As can be seen in this

figure, user assignment is not uniform and Nym 0 in particular has substantially more users

than other Nyms. This behaviour is expected as users are clustered based on interest and it’s

expected that some groups are more popular than others. Additionally, Nym 11 was assigned

no users and Nym 13 assigned only 12 users. Nym 11 is not made available to users as a

result, and Nym 13 is found to perform quite poorly when generating recommendations as

discussed later in section 6.4.

In each of the below figures, the mean is represented by a solid line and the median is

represented by a dashed line.

0 1 2 3 4 5 6 7 8 9

1
0

1
1

12 13 14

0

0.2

0.4

0.6

0.8

1

·104

Nyms

N
u
m

b
er

of
U

se
rs

Number of Users
Mean

Median

Figure 6.8: An analysis of the number of users assigned to each Nym

71

6.3. NYM ANALYSIS CHAPTER 6. EVALUATION

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

13 1
4

0

0.2

0.4

0.6

0.8

1

·106

Nyms

N
u
m

b
er

of
R

a
ti

n
g
s

Number of Ratings
Mean

Median

Figure 6.9: An analysis of the total ratings available for each Nym from it’s users

Figure 6.9 shows the number of user ratings available to each Nym to generate Nym

ratings. The total number of ratings available to each Nym generally correlates to the number

of users in each Nym, as represented in figure 6.8.

Figure 6.10 shows the number of unique artists listened to by each Nym. It is important

to note that despite quite large variations in the number of users in each Nym, there is much

less variation in the number of artists in each Nym, where an artist listened to by a Nym can

be an artist listened to by only one of the users clustered with the Nym. It is also important

to note that this is not restricted to only the 7,363 songs used to generate the Nyms. The

reasons for showing the number of artists as opposed to the number of songs listened to by

each Nym are discussed in section 6.4.

72

6.4. RECOMMENDATION PERFORMANCE CHAPTER 6. EVALUATION

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

13 14

0

0.5

1

1.5

2

2.5

·104

Nyms

N
u

m
b

er
of

A
rt

is
ts

Number of Artists
Mean

Median

Figure 6.10: An Analysis of the Number of artists listened to by each Nym

6.4 Recommendation Performance

In chapter 5 we discussed how Nyms and their ratings were created using the Million Song

Dataset. This section will describe the process by which music recommendations were ob-

tained from the Spotify recommender system, and we will evaluate the accuracy of the rec-

ommendations for Nyms versus the recommendations for the top 5 users of each Nym. The

top 5 users refers to the 5 users with the highest play counts in each Nym.

To evaluate recommendation accuracy, we will use the precision and recall metrics to

generate an F-measure. These metrics were chosen because they accurately measure the

relevance of recommendations generated by the Spotify recommender system. Additionally,

they are very suitable metrics as recommendations returned by the Spotify recommender

system are unranked, meaning no song recommendation is of a higher value than another.

6.4.1 Generating Recommendations

Spotify was selected to act as the music recommender system for three main reasons. The

first is that it is a widely used service with 170 million monthly active users [51]. Secondly,

as one of the largest music streaming services available it would have invested heavily in

improving the performance of it’s music recommender system. Finally, Spotify opened access

to developers to access their service through extensive developer APIs. This made it much

easier to generate recommendations from the Spotify service.

Spotify have made available an endpoint2 on their developer API through which up to

100 song recommendations at a time can be retrieved. Requests to this endpoint can include

2GET https://api.spotify.com/v1/recommendations

73

6.4. RECOMMENDATION PERFORMANCE CHAPTER 6. EVALUATION

up to 5 seeds, where a seed can be a track, artist, or genre. The resulting 100 song recommen-

dations from the API are not ranked, and subsequent requests to the endpoint are performed

independently of previous requests and can return songs that were already recommended in

a previous request.

When generating recommendations for evaluation, there were two main challenges that

needed to be overcome:

• Seeds for generating recommendations from the Spotify API must be in the form of

valid Spotify Uniform Resource Identifiers (URIs).

• The Million Song Dataset was released in late 2011, but the Spotify API will recom-

mend songs from post-2011. This makes it impossible to evaluate the relevance of

recommendations for songs recommended post-2011 as we don’t know if the song is

relevant or not.

In order to tackle the issue of using Spotify URIs to generate recommendations, a Python

script was created to automatically map song artists to an artist URI using the Spotify API’s

search 3 endpoint. Artists were used as the seeds for song recommendations because when

mapping song names to URIs, there was no way to effectively distinguish a song from it’s live

version, a remastered version, a cover version, a remix credited to the same artist, and other

variations of the same song. By mapping the artist instead of the song name, the accuracy

of the mappings were much higher.

To work around the age of the dataset, the Python evaluation script would iterate through

each song recommended by the Spotify API, retrieve a list of albums released by the song’s

artist4, and check that at least one album was released by the artist before 2012. If the artist

hadn’t released an album before 2012, then the recommendation is considered invalid and

is discarded. The reasoning behind this is that if the artist had released music when the

dataset was released, then the artist would be a valid recommendation for the time. Using

artists instead of songs was also beneficial for this step, as it reduced the scope for error when

querying the API. This is because there was no longer the risk of songs being associated with

the incorrect artist, resulting in incorrect data being retrieved from the Spotify API.

To try maximise artist to URI mapping accuracy, standard information retrieval tech-

niques including stemming and removal of special characters were used to format search

results and lists of artists from the dataset.

Using the above methods, recommendations from the Spotify API were generated as

follows:
3GET https://api.spotify.com/v1/search
4GET https://api.spotify.com/v1/artists/id/albums

74

6.4. RECOMMENDATION PERFORMANCE CHAPTER 6. EVALUATION

• Take the top 10 artists for each Nym and map them to Spotify artist URIs.

• Use the first 5 artists to generate 50 artist recommendations, then use the remaining 5

artists to generate another 50 artist recommendations. Since the Spotify API only rec-

ommends songs, to retrieve 50 artist recommendations the Spotify API is continuously

requested to recommend songs using the same 5 seeds until 50 unique artists have been

recommended. The same is done for the second set of seeds.

• Evaluate the precision of the recommendations, by checking how many of the artist

recommendations appear in a Nym’s top 500 artists.

• Evaluate the recall of the recommendations by checking how many of the top 500

artists of the Nym has been retrieved in 100 artist recommendations. The maximum

Nym recall score is 0.2.

• Repeat the process 5 times for each Nym and calculate the average precision and recall

scores. These will be used to calculate the F-measure score.

To evaluate the individual performance of the top users of each Nym, the 5 users with the

highest play counts are selected from each Nym. Each individual user undergoes the same

process as the Nyms outlined above, and the average precision and recall scores for the 5

users in each Nym is calculated.

Note that in each of the tables containing user performance results, there is an additional

column called ’Num Artists’. This column is the average of the number of artists listened

to by the 5 selected users of each Nym. It is included because not every user listened to

100 artists, so 100 recommendations could not be used to evaluate performance. As such,

some table entries contain ’N/A’ (Not Applicable) when there were insufficient user artists

to calculate performance metrics.

Additionally, the top 10 artists selected for each Nym can be viewed in the appendix, in

section 8.2.

6.4.2 Precision

In the context of our evaluation, precision is a measure of how many of the artists recom-

mended by Spotify are relevant to the Nym. A relevant artist to a Nym is defined as an artist

that is one of the Nym’s top 500 artists. The higher the precision score the better, and the

best possible score for precision is 1. A precision score of 1 means all recommended artists

are relevant, where precision is defined as follows:

Precision =
A ∩B
|B|

75

6.4. RECOMMENDATION PERFORMANCE CHAPTER 6. EVALUATION

Where:

• A is the set of relevant artists for the Nym.

• B is the set of recommended artists for the Nym by Spotify.

• A∩B is the set of artists that are both relevant and have been recommended by Spotify.

Precision scores for each Nym and average precision scores for the users of each Nym can

be seen in tables 8.1 & 8.2 in the appendix. The precision scores were taken at intervals of

n, where n represents the number of recommended artists used to calculate precision. The

intervals used for n are 10, 30, 50, 70, 100. These values for n are also used in calculating

recall and f-measure scores. A comparison of the overall precision scores between Nyms

and users can be seen in figure 6.11. It is clear from figure 6.11 that Nym recommendation

precision performs better in nearly every case. The notable exception is in the case of Nym

13, where average user precision is higher by ≈ 0.069. This can be attributed to the lack

of users in Nym 13. Indeed there are only 12 users in Nym 13, meaning there is a lack of

information available to accurately select artists to properly represent the Nym and generate

accurate recommendations. Conversely, precision scores for Nym 2 are vastly superior to the

average of it’s individual users. Nym 2’s precision score is 0.497, whereas it’s user’s average

precision score is 0.228. This results in a difference of ≈ 0.269.

76

6.4. RECOMMENDATION PERFORMANCE CHAPTER 6. EVALUATION

0 2 4 6 8 10 12 14

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Nym

P
re

ci
si

o
n

S
co

re

Nym
Users

Figure 6.11: A comparison of Nym and average user precision scores taken at the highest common

value of n

6.4.3 Recall

In the context of our evaluation, recall is a measure of how many of the relevant artists

of a Nym are recommended by the Spotify recommender system, where relevant artists are

again defined as artists who appear in the top 500 artists of a Nym. The higher the recall

score the better, with the highest possible recall score changing depending on the number of

recommended artists used to calculate recall. Recall is defined as follows:

Recall =
|A ∩B|
|A|

Where:

• A is the set of relevant artists for the Nym.

• B is the set of recommended artists for the Nym by Spotify.

77

6.4. RECOMMENDATION PERFORMANCE CHAPTER 6. EVALUATION

• A∩B is the set of artists that are both relevant to the Nym and have been recommended

by Spotify.

Recall scores for each Nym and the average user recall scores for each Nym can be seen

in tables 8.3 & 8.4 in the appendix. A comparison of the overall recall scores between Nyms

and users at the highest common value for n can be seen in figure 6.12. As can be seen

in figure 6.12, average individual user recall scores were consistently higher than their Nym

counterparts. This, however, can be attributed to the smaller number of relevant artists (B)

available for individual users. Nyms have the advantage of aggregating a number of user

playback histories, resulting in a larger collection of relevant artists. As such, each Nym had

500 relevant artists from which to calculate recall. This is in stark contrast to the average

number of artists available to calculate recall for each selection of users in each Nym, as can

be seen in table 8.4.

0 2 4 6 8 10 12 14

0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

0.35

Nym

R
ec

al
l

S
co

re

Nym
Users

Figure 6.12: A comparison of Nym and average user recall scores taken at the highest common

value of n

78

6.4. RECOMMENDATION PERFORMANCE CHAPTER 6. EVALUATION

6.4.4 F-Measure

F-measure is generally considered the harmonic mean of recall and precision, and has the

advantage of summarizing the precision and recall metric in one value. The higher the value

of the F-measure the better, where F-measure is defined as:

F = (β2 + 1) · P ·R
(β2 · P) +R

Where:

• R is the Recall.

• P is the Precision.

• β emphasizes either precision or recall. β = 0.25 will be used to emphasize precision

in our evaluation. This is because recommendation precision is more important than

the overall recall, and also due to the differing number of relevant artists available for

users, resulting in skewed recall scores.

F-measure scores for each Nym and the average user f-measure scores for each Nym can

be seen in tables 8.5 & 8.6 in the appendix. A comparison of the f-measure scores between

Nyms and users can be seen in figure 6.13. As can be seen in figure 6.13, Nyms generally

outperform users with the exception of Nyms 5, 6, and 7. In the case of these Nyms, the

f-measure scores of it’s users generally beat those of the Nyms within a narrow range of

≈ 0.05. This can be attributed to the relatively poor precision performance of these Nyms,

as outlined in table 8.2. The outlier in this figure is Nym 13, which performs exceedingly

poorly both in relation to the performance of the other Nyms, and individual users of Nym

13. This again can be attributed to the low amount of users assigned to the Nym.

79

6.4. RECOMMENDATION PERFORMANCE CHAPTER 6. EVALUATION

0 2 4 6 8 10 12 14

0.1

0.15

0.2

0.25

0.3

0.35

Nym

F
-m

ea
su

re
S

co
re

Nym
Users

Figure 6.13: A comparison of Nym and average user f-measure scores taken at the highest common

values of n where β = 0.25

80

Chapter 7

Conclusion

This chapter will reflect on work carried out in the dissertation, and discuss the outcome

of each individual research objective outlined in section 1.4. Additionally, this chapter will

detail the limitations of this research, and outline future work that may be completed.

7.1 Research Objectives

This section will discuss the results of each research objective, outline whether the objective

has been completed, and detail any limitations of the results of each objective.

7.1.1 Browser Extension

As discussed in section 4.2, the browser extension was implemented in Firefox. The browser

extension showed it was indeed possible to intercept user ratings where there is a defined

rating endpoint (as was the case with YouTube.com), and it was possible to allow users to

browse as part of a nym by substituting user cookies in real-time. Additionally, we evaluated

the impact of the browser extension on page load times and rating request latency and found

in most cases the overhead caused by the extension was almost negligible when caching was

used. Indeed, better pre-emptive caching techniques could be implemented in the future to

further minimise the impact of the extension.

To this extent, the research objective for the browser extension has been achieved. It

is not, however, without it’s limitations. The most glaring of which is it’s dependence on

third party websites for cooperation. In section 6.2, YouTube.com had to be used to measure

the impact of intercepting rating requests because Spotify only used implicit feedback mecha-

nisms, and it wasn’t possible to intercept requests for individual songs on Spotify as the body

of song requests were encrypted when intercepted by the browser extension. Additionally,

websites can easily subvert rating request interception by sending ratings over WebSockets.

81

7.1. RESEARCH OBJECTIVES CHAPTER 7. CONCLUSION

WebSocket traffic, at the time of writing, cannot be intercepted by browser extensions.

Additionally, the browser extension relies on goodwill from users. For users to be able to

browse as part of a Nym, the browser extension relies on session cookies for OpenNym ac-

counts on each supported website that are obtained by manually logging in to each individual

website, and inserting these cookies in the OpenNym database. However, given Spotify for

example, users of a Nym can easily browse to the account settings page and ’log out’ of the

website. This invalidates the cookies being used by the Nym and makes Spotify inaccessible

as part of that Nym until an authorized user logs in to the Spotify service and updates the

Nym’s session cookies. This limitation can even be taken so far as to see users changing

passwords to OpenNym accounts, locking OpenNym administrators out of Nym accounts.

7.1.2 Web Server

The OpenNym web server was to be developed such that it maintains a list of Nyms, their

ratings and associated metadata so the browser extension could interact with it and allow

users to browse as part of a Nym. The web server was designed in accordance with the spec-

ification outlined in section 3.1, and it’s performance evaluated in section 6.1. Though good

performance was not necessarily an objective for the web server, it is nonetheless important

for user experience.

As shown in Section 6.1, the web server performs quite well when retrieving ratings, session

cookies, and rules. Both the Nym API and the Identity Interface API performed relatively

poorly. This can be attributed to the large amount of database read/write operations that

must be carried out to respond to each request.

In the case of the Nym API, investigation into the code revealed the bottleneck was the

retrieval of the rating information for each of the top ratings for all of the Nyms. A possible

solution to this issue, as previously discussed, is to cache the responses from the Nym API as

they should remain identical for each request until the top ratings for each Nym is updated.

Any future optimisations to the web server should focus on improving performance of the

Nym API.

In the case of the Identity Interface API, requests to this API should be made quite

sparingly by website administrators intending to add Nym ratings to their own database. As

a consequence, the API’s relatively poor performance is acceptable as it is not expected to

ever receive a high volume of traffic. Indeed, to ensure this API is not abused by malicious

users taking advantage of it’s poor performance, user authentication for queries to this API

can be considered in the future. Authentication should not pose any privacy concerns for

this API as users should not be using this API for privacy enhanced browsing.

82

7.1. RESEARCH OBJECTIVES CHAPTER 7. CONCLUSION

Despite the limitations of the web server posed by the Nym and Identity Interface APIs,

we still consider this research objective achieved. As demonstrated by the browser extension

tests performed in section 6.2, communication between the Firefox extension and the web

server is working and facilitates privacy enhanced browsing for users.

7.1.3 Proof of Concept

The final research objective was to demonstrate the viability of OpenNym by clustering users

in a publicly available dataset and using the resulting Nyms to generate recommendations

from a suitable recommender system. The steps taken to create the proof of concept were

outlined in section 5, and evaluation of recommendation performance for Nyms are shown

in section 6.4. The evaluation of the proof of concept recommendation performance on the

Spotify web service showed that users can generally expect more precise recommendations

when browsing as part of a Nym than when browsing individually. This can be attributed

to the increased number of ratings available for each Nym, allowing for better seeds to be

selected to represent a Nym’s interests.

To this effect, the final research objective has also been achieved by demonstrating the

viability of clustering users based on their ratings history. There are some limitations to

this proof of concept however, with one of the most important being the cold start problem.

The cold start problem is a common issue in Machine Learning and refers to the sparsity of

information available for training a machine learning model [31], or clustering users in this

case. OpenNym requires a relatively large dataset to perform initial user clustering so that it

can create the initial Nyms which users can then join and browse as part of. These datasets

need to have anonymised user information to preserve the integrity of OpenNym, and the

data would also need to be relatively current to ensure new users have enough ratings to be

assigned to an appropriate Nym.

Another major limitation to the approach taken in the proof of concept is the considerable

background work needed to cluster users and generate Nym ratings. As discussed in Section

5, Nym ratings could not be generated by simply averaging user ratings due to the impact

of song popularity. Popularity can be expected to affect items in other genres, meaning

considerable work will also be required to generate nym ratings for items of other genres.

The final major limitation of this proof of concept is the association of items from the

dataset to items in a website’s recommender system. While standard information retrieval

techniques were used to map artist names to artist URIs in the Spotify system, the mapping

tool only had a success rate of ≈ 80%. This meant 1 in 5 artists in the dataset remained

unidentified, and could not be used as recommendation seeds or for evaluating recommenda-

83

7.2. FUTURE WORK CHAPTER 7. CONCLUSION

tion performance. No analysis was performed to determine the popularity of these artists.

7.2 Future Work

This section will detail work that can be carried out that may address some of the limitations

of the work produced in this dissertation, or improve the overall privacy and performance of

the OpenNym system.

• WebSockets can be used as the communication protocol between the browser extension

and the web server instead of HTTP. WebSockets have the advantage of a much smaller

communication overhead, as both parties can enjoy full duplex communication when

a WebSockets connection is established. This is in contrast to HTTP, which requires

an individual HTTP request be submitted for each individual resource. The reduced

communication overhead would also result in reduced latency between the browser

extension and the web server.

• Automatic Nym Selection on the browser extension could be implemented, where the

browser extension recommends a Nym for the user to join based on the user’s local rating

history. This Nym recommendation can be calculated by using a standard distance

function, such as Euclidean distance, to find the Nym which most aligns with the user’s

top ratings. Since the distance function would be used locally, no individual user ratings

need to leave the browser to select a Nym. This feature would require that the Firefox

extension also start caching user individual ratings locally.

• An OpenNym Single Sign On service could be developed, similar to OAuth [24]. This

would be an API that allows users to authenticate themselves as part of a Nym when

’logging in’ to a website. These OpenNym identities would have special properties

on websites that support authentication via OpenNym, the most important being that

users cannot modify any account settings for OpenNym identities. This approach would

be beneficial for both OpenNym and websites, as OpenNym would no longer need to

rely on substituting user’s session cookies and websites would have a wealth of rating

information to associate with new users.

7.3 Closing Remarks

This dissertation set out to prove the concept proposed by Checco et al. [14] using the

MovieLens service could be implemented as a scalable solution to attaining privacy enhanced

browsing. In this dissertation we designed and implemented an OpenNym web server and

84

7.3. CLOSING REMARKS CHAPTER 7. CONCLUSION

companion browser extension, demonstrated the ability to browse as part of a group without

changing exising web infrastructure, and proved Nyms could also receive accurate recommen-

dations from recommender systems.

Through the process of achieving these research objectives, we also highlighted a number

of limitations encountered during the course of our research. These are limitations that

would need to be addressed before the OpenNym system could be made available to the

public. Further research would need to be conducted to solve these limitations, preferably in

cooperation with recommender system owners. However, as discussed in chapters 1 & 2, there

is value in user data and it remains doubtful whether a privacy enhanced recommendation

system would be embraced by recommender system owners.

Our concluding remark is that while OpenNym is very effective, there are a number of

hurdles it must overcome before it can become a viable service that can be used by the public.

85

Bibliography

[1] Abraham, M., Meierhoefer, C., and Lipsman, A. (2007). The impact of cookie deletion on

the accuracy of site-server and ad-server metrics: An empirical comscore study. Retrieved

October, 14:2009.

[2] Ackerman, M. S., Cranor, L. F., and Reagle, J. (1999). Privacy in e-commerce: examining

user scenarios and privacy preferences. In Proceedings of the 1st ACM conference on

Electronic commerce, pages 1–8. ACM.

[3] Adomavicius, G. and Tuzhilin, A. (2005). Toward the next generation of recommender

systems: A survey of the state-of-the-art and possible extensions. IEEE TRANSACTIONS

ON KNOWLEDGE AND DATA ENGINEERING, 17(6):734–749.

[4] Aı̈meur, E., Brassard, G., Fernandez, J. M., and Onana, F. S. M. (2008). Alambic

: a privacy-preserving recommender system for electronic commerce. Int. J. Inf. Sec.,

7(5):307–334.

[5] Aviram, N., Schinzel, S., Somorovsky, J., Heninger, N., Dankel, M., Steube, J., Valenta,

L., Adrian, D., Halderman, J. A., Dukhovni, V., Käsper, E., Cohney, S., Engels, S., Paar,

C., and Shavitt, Y. (2016). Drown: Breaking tls using sslv2. In Holz, T. and Savage, S.,

editors, USENIX Security Symposium, pages 689–706. USENIX Association.

[6] Ayenson, M., Wambach, D., Soltani, A., Good, N., and Hoofnagle, C. (2011). Flash

cookies and privacy ii: Now with html5 and etag respawning.

[7] Bell, R. M., Koren, Y., and Volinsky, C. (2007). The bellkor solution to the netflix prize.

Technical report, AT&T Labs.

[8] Bertin-Mahieux, T., Ellis, D. P., Whitman, B., and Lamere, P. (2011). The million

song dataset. In Proceedings of the 12th International Conference on Music Information

Retrieval (ISMIR 2011).

[9] Boda, K., Földes, Á. M., Gulyás, G. G., and Imre, S. (2012). User Tracking on the Web

via Cross-Browser Fingerprinting. Springer.

86

BIBLIOGRAPHY BIBLIOGRAPHY

[10] Bokde, D., Girase, S., and Mukhopadhyay, D. (2015). Matrix factorization model in

collaborative filtering algorithms: A survey. Procedia Computer Science, 49(1):136–146.

[11] Browser Extension Community Group (2017). Browser extensions draft community

group report 23 july 2017. https://browserext.github.io/browserext/ [Online; ac-

cessed 07-May-2018].

[12] Calandrino, J. A., Kilzer, A., Narayanan, A., Felten, E. W., and Shmatikov, V. (2011).

”you might also like: ” privacy risks of collaborative filtering. In IEEE Symposium on

Security and Privacy, pages 231–246. IEEE Computer Society.

[13] Checco, A., Bianchi, G., and Leith, D. (2017a). Blc: Private matrix factorization rec-

ommenders via automatic group learning.

[14] Checco, A., Bracciale, L., Bianchi, G., and Leith, D. (2017b). Opennym: Enabling

privacy preserving recommending via pseudonymous group authentication.

[15] Chen, T., Han, W.-L., Wang, H.-D., Zhou, Y.-X., Xu, B., and Zang, B.-Y. (2007). Con-

tent recommendation system based on private dynamic user profile. In Machine Learning

and Cybernetics, 2007 International Conference on, volume 4, pages 2112–2118. IEEE.

[16] Digital Advertising Alliance (2017). Understanding online advertising. http://www.

aboutads.info/consumers/#cookies [Online; accessed 25-April-2018].

[17] Eckersley, P. (2010). How Unique Is Your Web Browser? Springer.

[18] Eerola, T. and Vuoskoski, J. K. (2011). A comparison of the discrete and dimensional

models of emotion in music. Psychology of Music, 39(1):18–49.

[19] Erlang (2018). Erlang programming language. https://www.erlang.org/ [Online;

accessed 18-May-2018].

[20] Google (2018a). Cookies and user identification. https://developers.google.com/

analytics/devguides/collection/analyticsjs/cookies-user-id [Online; accessed

25-April-2018].

[21] Google (2018b). recaptcha: Easy on humans, hard on bots. https://www.google.com/

recaptcha/intro/android.html [Online; accessed 04-May-2018].

[22] Grouplens (2016). Movielens. https://grouplens.org/datasets/movielens/ [Online;

accessed 18-April-2018].

87

https://browserext.github.io/browserext/
http://www.aboutads.info/consumers/#cookies
http://www.aboutads.info/consumers/#cookies
https://www.erlang.org/
https://developers.google.com/analytics/devguides/collection/analyticsjs/cookies-user-id
https://developers.google.com/analytics/devguides/collection/analyticsjs/cookies-user-id
https://www.google.com/recaptcha/intro/android.html
https://www.google.com/recaptcha/intro/android.html
https://grouplens.org/datasets/movielens/

BIBLIOGRAPHY BIBLIOGRAPHY

[23] Hursti, J. (1997). Single sign-on. In Proc. Helsinki Uiniversity of Technology Seminar

on Network Security.

[24] IETF OAuth Working Group (2018). Oauth 2.0. https://oauth.net/2/ [Online; ac-

cessed 18-May-2018].

[25] Kerr, D. (2013). An introduction to mvc frameworks. http://blog.scottlogic.com/

2013/12/06/JavaScript-MVC-frameworks.html [Online; accessed 18-May-2018].

[26] Konstan, J. A., Miller, B. N., Maltz, D., Herlocker, J. L., Gordon, L. R., and Riedl, J.

(1997). Grouplens: Applying collaborative filtering to usenet news. Communications of

the ACM, 40(3):77–87.

[27] Koren, Y. (2009). The bellkor solution to the netflix grand prize. Netflix prize documen-

tation, 81:1–10.

[28] Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix factorization techniques for recom-

mender systems. Computer, 42(8).

[29] Lamere, P. (2014). Welcome to spotipy! http://spotipy.readthedocs.io/en/

latest/ [Online; accessed 18-May-2018].

[30] Lerato, M., Esan, O. A., Ebunoluwa, A. D., Ngwira, S., and Zuva, T. (2015). A survey

of recommender system feedback techniques, comparison and evaluation metrics. In 2015

International Conference on Computing, Communication and Security (ICCCS), pages

1–4.

[31] Lika, B., Kolomvatsos, K., and Hadjiefthymiades, S. (2014). Facing the cold start prob-

lem in recommender systems. Expert Systems with Applications, 41(4):2065–2073.

[32] Locustio (2018). Locust - a modern load testing framework. https://locust.io/

[Online; accessed 18-May-2018].

[33] McCord, C. (2018). Phoenix framework. http://phoenixframework.org/ [Online;

accessed 04-May-2018].

[34] millionsong (2012). Fixing matching errors. https://labrosa.ee.columbia.edu/

millionsong/blog/12-2-12-fixing-matching-errors [Online; accessed 08-May-2018].

[35] Mozilla Corporation (2018). Javascript. https://developer.mozilla.org/en-US/

docs/Web/JavaScript [Online; accessed 18-May-2018].

88

https://oauth.net/2/
http://blog.scottlogic.com/2013/12/06/JavaScript-MVC-frameworks.html
http://blog.scottlogic.com/2013/12/06/JavaScript-MVC-frameworks.html
http://spotipy.readthedocs.io/en/latest/
http://spotipy.readthedocs.io/en/latest/
https://locust.io/
http://phoenixframework.org/
https://labrosa.ee.columbia.edu/millionsong/blog/12-2-12-fixing-matching-errors
https://labrosa.ee.columbia.edu/millionsong/blog/12-2-12-fixing-matching-errors
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript

BIBLIOGRAPHY BIBLIOGRAPHY

[36] Mozilla Developer Network (2018). Browser extensions - mozilla — mdn. https:

//developer.mozilla.org/en-US/Add-ons/WebExtensions [Online; accessed 05-May-

2018].

[37] Netflix (2012). Netflix recommendations: Beyond the

5 starts (part 2). https://medium.com/netflix-techblog/

netflix-recommendations-beyond-the-5-stars-part-2-d9b96aa399f5 [Online;

accessed 25-April-2018].

[38] NumPy developers (2018). Numpy. http://www.numpy.org/ [Online; accessed 18-May-

2018].

[39] Núñez-Valdéz, E. R., Lovelle, J. M. C., Mart́ınez, O. S., Garćıa-Dı́az, V., de Pablos,

P. O., and Maŕın, C. E. M. (2012). Implicit feedback techniques on recommender systems

applied to electronic books. Computers in Human Behavior, 28(4):1186–1193.

[40] O’Connor, M., Cosley, D., Konstan, J. A., and Riedl, J. (2001). Polylens: A recom-

mender system for groups of users. In Proceedings of ECSCW 2001, pages 199–218.

[41] Pazzani, M. J. and Billsus, D. (2007). Content-based recommendation systems. In

Brusilovsky, P., Kobsa, A., and Nejdl, W., editors, The Adaptive Web, volume 4321 of

Lecture Notes in Computer Science, pages 325–341. Springer, Berlin / Heidelberg.

[42] Python Software Foundation (2018). Welcome to python.org. https://www.python.

org/ [Online; accessed 18-May-2018].

[43] Qian, G., Sural, S., Gu, Y., and Pramanik, S. (2004). Similarity between euclidean and

cosine angle distance for nearest neighbor queries. In SAC ’04: Proceedings of the 2004

ACM symposium on Applied computing, pages 1232–1237, New York, NY, USA. ACM.

[44] Ramakrishnan, N., Keller, B. J., Mirza, B. J., Grama, A., and Karypis, G. (2001).

Privacy risks in recommender systems. IEEE Internet Computing, 5(6):54–62.

[45] Rennie, G. (2015). The road to 2 million websocket connections in phoenix. http://

phoenixframework.org/blog/the-road-to-2-million-websocket-connections [On-

line; accessed 04-May-2018].

[46] Resnick, P. and Varian, H. R. (1997). Recommender systems. Communication ACM,

40:56–58.

89

https://developer.mozilla.org/en-US/Add-ons/WebExtensions
https://developer.mozilla.org/en-US/Add-ons/WebExtensions
https://medium.com/netflix-techblog/netflix-recommendations-beyond-the-5-stars-part-2-d9b96aa399f5
https://medium.com/netflix-techblog/netflix-recommendations-beyond-the-5-stars-part-2-d9b96aa399f5
http://www.numpy.org/
https://www.python.org/
https://www.python.org/
http://phoenixframework.org/blog/the-road-to-2-million-websocket-connections
http://phoenixframework.org/blog/the-road-to-2-million-websocket-connections

BIBLIOGRAPHY BIBLIOGRAPHY

[47] Ricci, F., Rokach, L., Shapira, B., and Kantor, P. B. (2011). Recommender systems

handbook, chapter Introduction to Recommender Systems Handbook. Springer, New York;

London.

[48] Shokri, R., Pedarsani, P., Theodorakopoulos, G., and Hubaux, J.-P. (2009). Preserving

privacy in collaborative filtering through distributed aggregation of offline profiles. In

Bergman, L. D., Tuzhilin, A., Burke, R. D., Felfernig, A., and Schmidt-Thieme, L., editors,

RecSys, pages 157–164. ACM.

[49] Shyong, K., Lam, T., Frankowski, D., and Riedl, J. (2006). Do you trust your recommen-

dations? an exploration of security and privacy issues in recommender systems. ETRICS

2006, LNCS 3995:14–29.

[50] Soltani, A., Canty, S., Mayo, Q., Thomas, L., and Hoofnagle, C. J. (2010). Flash cookies

and privacy. In AAAI Spring Symposium: Intelligent Information Privacy Management.

AAAI.

[51] Spotify AB (2018a). More people than ever are stream-

ing on spotify. https://newsroom.spotify.com/2018-05-02/

more-people-than-ever-are-streaming-on-spotify/ [Online; accessed 08-May-

2018].

[52] Spotify AB (2018b). Spotify. https://www.spotify.com/us/ [Online; accessed 08-May-

2018].

[53] The International Association of Privacy Professionals (2018). What is privacy. https:

//iapp.org/ [Online; accessed 25-April-2018].

[54] The Mozilla Corporation (2018). The new, fast browser for mac, pc and linux — firefox.

https://www.mozilla.org/en-US/firefox/ [Online; accessed 05-May-2018].

[55] The PostgreSQL Global Development Group (2018). Postgresql: The world’s most

advanced open source database. https://www.postgresql.org/ [Online; accessed 05-

May-2018].

[56] Valim, J. (2018). Elixir. https://elixir-lang.org/ [Online; accessed 04-May-2018].

[57] Westin, A. F. (1967). Privacy and Freedom. Atheneum, New York.

[58] White, R., Jose, J. M., and Ruthven, I. (2001). Comparing explicit and implicit feedback

techniques for web retrieval: Trec-10 interactive track report. In Voorhees, E. M. and

90

https://newsroom.spotify.com/2018-05-02/more-people-than-ever-are-streaming-on-spotify/
https://newsroom.spotify.com/2018-05-02/more-people-than-ever-are-streaming-on-spotify/
https://www.spotify.com/us/
https://iapp.org/
https://iapp.org/
https://www.mozilla.org/en-US/firefox/
https://www.postgresql.org/
https://elixir-lang.org/

BIBLIOGRAPHY BIBLIOGRAPHY

Harman, D. K., editors, TREC, volume Special Publication 500-250. National Institute of

Standards and Technology (NIST).

91

Chapter 8

Appendix

8.1 Listings

user_id song_id play_count

b80344d063b5ccb3212f76538f3d9e43d87dca9e SOAKIMP12A8C130995 1

b80344d063b5ccb3212f76538f3d9e43d87dca9e SOAPDEY12A81C210A9 1

b80344d063b5ccb3212f76538f3d9e43d87dca9e SOBBMDR12A8C13253B 2

b80344d063b5ccb3212f76538f3d9e43d87dca9e SOBFNSP12AF72A0E22 1

b80344d063b5ccb3212f76538f3d9e43d87dca9e SOBFOVM12A58A7D494 1

b80344d063b5ccb3212f76538f3d9e43d87dca9e SOBNZDC12A6D4FC103 1

b80344d063b5ccb3212f76538f3d9e43d87dca9e SOBSUJE12A6D4F8CF5 2

b80344d063b5ccb3212f76538f3d9e43d87dca9e SOBVFZR12A6D4F8AE3 1

b80344d063b5ccb3212f76538f3d9e43d87dca9e SOBXALG12A8C13C108 1

b80344d063b5ccb3212f76538f3d9e43d87dca9e SOBXHDL12A81C204C0 1

b80344d063b5ccb3212f76538f3d9e43d87dca9e SOBYHAJ12A6701BF1D 1

b80344d063b5ccb3212f76538f3d9e43d87dca9e SOCNMUH12A6D4F6E6D 1

b80344d063b5ccb3212f76538f3d9e43d87dca9e SODACBL12A8C13C273 1

b80344d063b5ccb3212f76538f3d9e43d87dca9e SODDNQT12A6D4F5F7E 5

b80344d063b5ccb3212f76538f3d9e43d87dca9e SODXRTY12AB0180F3B 1

Listing 13: Format of train_triplets.txt

92

8.2. TOP NYM ARTISTS CHAPTER 8. APPENDIX

track_id <SEP> song_id <SEP> artist_name <SEP> song_name <SEP>

TRMMMYQ128F932D901<SEP>SOQMMHC12AB0180CB8<SEP>Faster Pussy cat<SEP>Silent

Night↪→

TRMMMKD128F425225D<SEP>SOVFVAK12A8C1350D9<SEP>Karkkiautomaatti <SEP>Tanssi

vaan↪→

TRMMMRX128F93187D9<SEP>SOGTUKN12AB017F4F1<SEP>Hudson Mohawke<SEP>No One

Could Ever↪→

TRMMMCH128F425532C<SEP>SOBNYVR12A8C13558C<SEP>Yerba Brava<SEP>Si Vos Quers

TRMMMWA128F426B589<SEP>SOHSBXH12A8C13B0DF<SEP>Der Mystic<SEP>Tangle Of

Aspens↪→

Listing 14: Format of unique_tracks.txt

8.2 Top Nym Artists

• Nym 0: Coldplay, Adam Lambert, B.o.B, Eagles, The Verve, John Mayer, Rihanna,

Kings of Leon, 3 Doors Down, Muse

• Nym 1: Linkin Park, Coldplay, Eminem, The All-American Rejects, B.o.B, Jimmy

Eat World, Death Cab for Cutie, 3 Doors Down, OneRepublic, Foo Fighters

• Nym 2: The All-American Rejects, John Mayer, Nirvana, Justin Timberlake, The

White Stripes, Foo Fighters, Rihanna, Kid Cudi, OneRepublic, Coldplay

• Nym 3: Cage the Elephant, Paramore, The White Stripes, Radiohead, Plain White

T’s, Vampire Weekend, Muse, Bon Jovi, Justin Biever, OneRepublic

• Nym 4: Coldplay, Lady Gaga, Jack Johnson, Radiohead, Bon Jovi, The Verve, The

White Stripes, Linkin Park, DJ Dizzy, Muse

• Nym 5: Florence + The Machine, Kings of Leon, Coldplay, Rise Against, Radiohead,

M.I.A., Angels and Airwaves, The Killers, Edward Sharpe & The Magnetic Zeros, Three

Drives

• Nym 6: Coldplay, Rise Against, The White Stripes, John Mayer, The Verve, Plain

White T’s, Beyonce, Usher, Cartola, The All-American Rejects

• Nym 7: Coldplay, Lil Wayne, La Roux, Train, Kid Cudi, Charttraxx Karaoke, Tub

Ring, Justin Bieber, John Mayer, The Crests

93

8.3. TABLES CHAPTER 8. APPENDIX

• Nym 8: Coldplay, Usher, Drake, Black Eyed Peas, Nickelback, Justin Timberlake, The

White Stripes, Cartola, Lady Gaga, B.o.B

• Nym 9: California Swag District, Daft Punk, Justin Timberlake, Rise Against, Kid

Cudi, Cartola, Radiohead, Linkin Park, Kings of Leon, Jason Mraz

• Nym 10: Kid Cudi, Muse, Foo Fighters, Cartola, Jason Derulo, Modest Mouse, Cold-

play, Bon Jovi, Jimmy Eat World, Radiohead

• Nym 12: Vampire Weekend, Justin Timberlake, Nickelback, Linkin Park, The White

Stripes, The Killers, 3 Doors Down, Radiohead, Nirvana, Rise Against

• Nym 13: Amy Winehouse, Dwight Yoakam, Panic At The Disco, Keith Sweat, Sara

Bareilles, Cannibal & The Headhunters, Creedence Clearwater Revival, Sarah McLach-

lan, Margot & The Nuclear So and So’s, Me’Shell Ndegeocello

• Nym 14: Jack Johnson, Bon Jovi, Band Of Horses, Coldplay, The Verve, The All-

American Rejects, Eminem, Foo Fighters, Cartola, Muse

8.3 Tables

Nym @10 @30 @50 @70 @100

0 0.34 0.433 0.444 0.383 0.384

1 0.4 0.46 0.46 0.403 0.41

2 0.5 0.527 0.552 0.497 0.486

3 0.44 0.46 0.44 0.426 0.462

4 0.14 0.407 0.44 0.406 0.428

5 0.06 0.227 0.28 0.286 0.312

6 0.3 0.32 0.292 0.266 0.29

7 0.14 0.287 0.284 0.231 0.242

8 0.4 0.387 0.372 0.369 0.354

9 0.28 0.4 0.376 0.349 0.388

10 0.3 0.327 0.384 0.389 0.416

12 0.24 0.347 0.432 0.411 0.432

13 0.26 0.16 0.188 0.149 0.146

14 0.34 0.373 0.376 0.349 0.372

Table 8.1: Precision scores for each Nym

94

8.3. TABLES CHAPTER 8. APPENDIX

Nym Num Artists @10 @30 @50 @70 @100

0 200 0.331 0.284 0.287 0.275 0.263

1 66 0.169 0.207 0.187 N/A N/A

2 77 0.147 0.181 0.204 0.228 N/A

3 66 0.179 0.215 0.2 N/A N/A

4 72 0.285 0.254 0.233 0.225 N/A

5 67 0.196 0.219 0.2 N/A N/A

6 67 0.135 0.198 0.202 N/A N/A

7 95 0.104 0.205 0.216 0.221 N/A

8 166 0.249 0.275 0.28 0.28 N/A

9 58 0.133 0.158 0.15 N/A N/A

10 74 0.22 0.224 0.221 0.231 N/A

12 98 0.174 0.24 0.239 0.234 0.237

13 49 0.237 0.229 N/A N/A N/A

14 123 0.317 0.234 0.241 0.255 0.248

Table 8.2: Average user precision scores for each Nym

Nym @10 @30 @50 @70 @100

0 0.007 0.036 0.044 0.054 0.077

1 0.008 0.028 0.046 0.056 0.082

2 0.01 0.032 0.055 0.07 0.097

3 0.009 0.028 0.044 0.06 0.092

4 0.003 0.024 0.044 0.057 0.086

5 0.001 0.014 0.028 0.04 0.062

6 0.006 0.019 0.029 0.037 0.058

7 0.003 0.017 0.028 0.032 0.048

8 0.008 0.023 0.037 0.052 0.071

9 0.006 0.024 0.038 0.049 0.078

10 0.006 0.02 0.038 0.054 0.083

12 0.005 0.021 0.043 0.058 0.086

13 0.005 0.01 0.019 0.021 0.029

14 0.007 0.022 0.038 0.049 0.074

Table 8.3: Recall scores for each Nym

95

8.3. TABLES CHAPTER 8. APPENDIX

Nym Num Artists @10 @30 @50 @70 @100

0 200 0.022 0.06 0.098 0.132 0.184

1 66 0.029 0.107 0.157 N/A N/A

2 77 0.017 0.063 0.122 0.194 N/A

3 66 0.03 0.107 0.179 N/A N/A

4 72 0.041 0.116 0.178 0.238 N/A

5 67 0.029 0.119 0.189 N/A N/A

6 67 0.021 0.088 0.165 N/A N/A

7 95 0.013 0.079 0.156 0.235 N/A

8 166 0.0185 0.065 0.11 0.149 0.209

9 58 0.026 0.114 0.17 N/A N/A

10 74 0.036 0.103 0.164 0.238 N/A

12 98 0.017 0.095 0.168 0.217 N/A

13 49 0.054 0.156 N/A N/A N/A

14 123 0.044 0.089 0.176 0.241 0.324

Table 8.4: Average user recall scores for each Nym

Nym @10 @30 @50 @70 @100

0 0.090 0.263 0.289 0.282 0.311

1 0.103 0.241 0.301 0.295 0.332

2 0.129 0.276 0.360 0.366 0.393

3 0.115 0.241 0.288 0.314 0.374

4 0.038 0.210 0.288 0.298 0.347

5 0.013 0.120 0.183 0.210 0.252

6 0.077 0.166 0.190 0.195 0.235

7 0.038 0.148 0.185 0.169 0.196

8 0.103 0.200 0.243 0.272 0.287

9 0.076 0.208 0.247 0.257 0.314

10 0.077 0.172 0.250 0.285 0.337

12 0.064 0.181 0.282 0.303 0.349

13 0.065 0.085 0.123 0.110 0.118

14 0.090 0.192 0.247 0.257 0.301

Table 8.5: F-measure scores for each Nym where β = 0.25

96

8.3. TABLES CHAPTER 8. APPENDIX

Nym Num Artists @10 @30 @50 @70 @100

0 200 0.181 0.233 0.258 0.259 0.257

1 66 0.132 0.196 0.185 N/A N/A

2 77 0.101 0.163 0.196 0.226 N/A

3 66 0.139 0.203 0.199 N/A N/A

4 72 0.211 0.237 0.229 0.226 N/A

5 67 0.146 0.209 0.199 N/A N/A

6 67 0.102 0.184 0.199 N/A N/A

7 95 0.074 0.187 0.211 0.222 N/A

8 166 0.144 0.231 0.257 0.266 N/A

9 58 0.107 0.154 0.151 N/A N/A

10 74 0.169 0.210 0.217 0.231 N/A

12 98 0.113 0.220 0.233 0.233 N/A

13 49 0.198 0.223 N/A N/A N/A

14 123 0.232 0.214 0.236 0.254 0.251

Table 8.6: Average user F-measure scores for each Nym where β = 0.25

97

	Introduction
	Motivation
	Research Background
	Research Question
	Research Objectives
	Dissertation Outline

	State of the Art
	Recommender Systems
	Content Based Recommendations
	Collaborative Filtering
	Privacy Concerns

	User Data Collection
	Explicit Feedback
	Implicit Feedback
	User Tracking

	BLC Clustering
	Private Recommendations

	Design
	OpenNym Web Service
	Nym API
	Rating API
	Session Cookie API
	Rules API
	OpenNym Identity Interface API

	OpenNym Database
	Nym Database Table
	Ratings Database Table
	Session Cookies Database Table
	Rules Database Table
	Identity Interface Table
	Nym Metadata Table

	OpenNym Browser Extension
	Functional Requirements
	Non-Functional Requirements
	Design

	Implementation
	Web Service
	Web Framework
	Database

	Browser Extension
	Threat Model
	Transport Security
	Server Security
	Private Ratings
	Private Nym Selection
	Rating Anonymity
	Rating Integrity
	Availability

	User Clustering
	Data Analysis
	Data Cleaning
	Data Preprocessing
	Data Parsing
	Data Normalization
	Sparse Matrix Generation
	Song Filtering

	BLC Clustering
	Nym Construction
	Nym Rating Generation

	Evaluation
	Server Performance
	Response Latency
	Server Throughput

	Extension Performance
	Page Load Performance
	Rating Request Performance

	Nym Analysis
	Recommendation Performance
	Generating Recommendations
	Precision
	Recall
	F-Measure

	Conclusion
	Research Objectives
	Browser Extension
	Web Server
	Proof of Concept

	Future Work
	Closing Remarks

	Appendix
	Listings
	Top Nym Artists
	Tables

