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Summary

The dissertation’s main goal was to attempt to answer the research question: “How

accurate can a system using a combination of queueing theory and predictive analytics

be in creating predictions of queueing times in dynamic, single, real-time queues such

as those in walk-in food takeaway establishments?”

Queueing theory is the mathematical study of queues. Predictive analytics involves

analysing historical and current data and then feeding that data into a predictive

model. This dissertation combined queueing theory and predictive analytics to create

an application and web server to act as a system that creates predictions of queueing

times of walk-in food takeaway establishments with dynamic, single, real-time queues.

Queueing times in this context starts when a customer enters the queue, and finishes

when the customer receives their order. To begin, queueing theory was researched

thoroughly, with a look at different types of queueing models and queueing disciplines.

The algorithms to be used in the predictive model were also researched, with that

research present in Chapter 2. Related work was also discussed and critiqued.

This application acted as a client to the web server, sending and receiving HTTP

requests. The web server consisted of a queueing model and predictive model. The

queueing model was used to simulate a week of wait times to be fed into the predictive

model. The predictions created by the system proved to be quite accurate given the

test data, with an overall average absolute error of only 2.25 minutes. However, the

amount of test data used was not sufficient enough to answer the research question

fully. The results of this dissertation may not be enough to answer the research ques-

tion in a satisfactory manner, but it does give substance to the theory that that it may

be possible to create accurate predictions for food establishment queueing times.
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Queueing theory has its origin in research by Agner Krarup Erlang, with his design

of models that describe the telephone exchange in Copenhagen, Denmark. Since its

inception, queueing theory has been incorporated into telecommunications networks,

traffic engineering, and even in the design of retail locations and factories.

In the past few years, predictive analytics as a field has been gaining traction in both

research and commercial environments. Predictive analytics involves analysing histor-

ical and current data and then feeding that data into a predictive model. The model

then runs one or more algorithms, producing a prediction about future or unknown

events.

This dissertation aims to utilise a combination of both fields in an attempt to answer

the following research question: “How accurate can a system using a combination of

queueing theory and predictive analytics be in creating predictions of queueing times in

dynamic, single, real-time queues such as walk-in food takeaway establishments?”
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Chapter 1

Introduction

1.1 Why is this research being carried out?

Day to day, there are many times when people find themselves in a situation where

they need to queue. Such a queue can eat into people’s time, something invaluable in

this day and age. In order to make the most of our time, there needs to be a way to

predict queueing time, before entering the queue itself. Knowing this would allow for

better time management, and ultimately affect a person’s decision on whether or not

they will enter the queue.

A recent survey stated that on average, people spend 5 hours and 35 minutes a month

queueing [21]. This equates to 67 hours, or almost three days queueing annually. In a

world that is constantly moving and fast-paced, every minute counts.

The inspiration for this research topic came about in mid-2017, when going for lunch

with friends. Upon arrival at the food establishment, the queue was a lot larger than

we had originally anticipated. I remember vividly thinking that there must be a better

way than pure guess work to predict queue time. Also in 2017, I spent half a year

working as an intern in SAP’s advanced analytics division. This really forged my own

personal interest in predictive analytics.

1.2 What’s been done before?

Within related work, there are three approaches taken to attempt to manage queue

times. These are observation-based methods, mathematical modelling using queueing

theory, and those that utilise virtual queues. The observation-based methods main
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1.3. WHAT ARE THE OBJECTIVES? CHAPTER 1. INTRODUCTION

strengths come from the fact that they use historical data and display that data to

users. While this shows past queue times, it does not create any predictions. This

means that the user has to have some ability to analyse the data and make (possibly

inaccurate) assumptions. There is also the possibility of human error, due to the fact

that all calculations are done by humans. Systems that use mathematical models have

the advantage of being able to create these predictions using queueing theory. How-

ever, the lack of real-time data can lead to obsolete models which decrease in accuracy

over time. Another similar approach as regards handling queues involve the creation

of virtual queues. They let the user know how long they will be waiting based on how

many people are in front of them. While this approach does allow users to see how

long they will be waiting, they have to actually enter the virtual queue before seeing

the queue time.

The aforementioned approaches have their strengths, but they also have some fatal

weaknesses. They simply display current waiting times to users, but are unable to

predict what the queueing time would be in the future. The aim of this dissertation

is to create a system that takes advantage of those strengths, while neutralising the

weaknesses (or minimising their effect).

In this context, data will be gathered using both user-inputted data, as well as queue-

ing theory systems. Users will use an Android application to communicate with a

web server hosted on AWS. The application allows users to search for a specific food

establishment or choose from nearby food establishments. Once a user selects a food

establishment, the web server then returns a queueing time prediction. Users may also

enter in their own queue times, which will have an effect on predictions given to future

users.

1.3 What are the objectives?

The objective for this dissertation is simple. The main goal is to create a system that

creates accurate predictions for walk-ins to various types of food establishments, using

both queueing theory and predictive analytics. The fact that we are dealing with walk-

ins means that we will not be dealing with situations where the establishment received

an order for collection, which eliminates the need to queue. Secondary objectives also

include creating an easy-to-use system. The system should also perform well, i.e. the

2



1.4. HOW DID IT TURN OUT? CHAPTER 1. INTRODUCTION

prediction should be given in a quick and timely manner.

The system could then see a change in how queues are managed in food establishments,

as well as having the possibility to expand into other areas such as doctor’s offices,

theme parks, post offices, or anywhere else that a queue is regularly formed. This can

help users make informed decisions about how best to spend their time, which in turn

could have an impact on those businesses or areas where queues are needed.

1.4 How did it turn out?

Following research, design, and implementation of this system, the average absolute

error for predictions was 2.25 minutes. This gives what can be seen as a beginning

of an answer to the original research question. While the results are promising, no

final answer to the research question can be given until even further testing is done.

However, the results shown in Chapter 4 - Evaluation show that it is definitely possible

to get a somewhat accurate prediction, given the test data used in this dissertation.

3



Chapter 2

Research

This chapter will discuss the research done in order to craft the system. The chapter

begins by examining related work. It will then take a deeper look at queueing theory,

and the predictive analytics algorithms incorporated into the solution. Following this,

we will take a look at the cloud hosting options for the server, namely SCSSNebula vs.

AWS.

2.1 Related Work

As mentioned earlier in this report, there are several approaches that attempt to predict

queueing times. These include those that follow a mathematical model using purely

queueing theory, whereby data is collected beforehand and then fed into a queueing

model. Another approach involves physically counting queues and performing calcu-

lations. The results are then displayed. Finally, an approach that is used a lot in the

restaurant industry involves creating a virtual queue that users can enter, which will

tell them how long they have to wait before they get to the front of the queue.

Both the strengths and weaknesses of these similar applications will have an effect on

my overall solution.

2.1.1 Mathematical-based approach

One of the first similar applications examined was a project titled “Restaurant Wait

Time Estimation Report” by Segovia, Patel, & Lonneman [30]. For this project, the

authors collected data from a local sit-down restaurant and fed it into their queueing

model. The queueing model consisted of an M/M/c queue, where the arrival rate (λ)

4



2.1. RELATED WORK CHAPTER 2. RESEARCH

represented the amount of customers per hour, and service rate (µ) is how long it took

to serve each customer. The M/M/c queue represents a single line served by multiple

servers (c is greater than 1).

The simulation model involves creating data structures that represent the menu, servers,

parties, tables, and waiting list. Two methods were then created to initialize a night

at the restaurant and another to run through a step-by-step process of the night. The

second method created an arrival time for parties of random sizes, anticipated what

the party orders, and measured the total time the party spent in the queue.

The main strengths of this approach lies in the strict use of queueing theory. The model

was able to give precise predictions and because of this, the simulation resulted in an

overall margin error of +/- 2 minutes [30]. However, the fact that the data was only

collected once and not on a continuous, rolling basis means that the queueing models

can soon turn stale, possibly resulting in erroneous predictions. Another area in which

this approach falls short is the fact that the data collected is one hundred percent sim-

ulated, with no real-time data. The authors used a software program known as Arena

in an attempt to simulate a real-world restaurant.

Another project that follows this approach is “The Waiting Game: Fast-Food Queu-

ing Theory” by AetherWorks employee Shannon Cody [20]. Cody was inspired by her

daily lunch trips, and wanted to see if she could “eat there more frequently and waste

less time stuck in line” [20]. Unlike the report by Segovia, Patel, & Lonneman, Cody

examines multiple restaurants with different queueing styles. These are single server

with a single queue, single server with multiple queues, as well as multiple servers in

multiple queues. Where the two are similar is in their choice of queueing model. Both

use an M/M/c queue to simulate their respective queues. Some of Cody’s test restau-

rants include Subway, Chipotle, and Starbucks. The author breaks down each station

at each restaurant and estimates the time spent at each station. For example, Cody

states that at Chipotle there are 5 stations, each taking up different amounts of time.

For her queueing model, Cody assumes an arrival rate of 1 customer every 200 seconds.

This assumption is one of the main weaknesses of her approach, with the author herself

stating that it is “admittedly unrealistic” [20]. The service rate appears to have been

observed in the restaurants themselves and noted down by the author.

Overall, the strength of mathematical-based estimations is the accuracy of their pre-

5



2.1. RELATED WORK CHAPTER 2. RESEARCH

dictions. The fact that the projects could focus on a certain amount of restaurants

allowed the authors to fine tune their designs to ensure this high level of accuracy.

However, this focus also has drawbacks. Due to the fact that only a few restaurants

were selected, the models that were created are not a “one-size-fits-all” solution. The

main weakness in both of the aforementioned projects lie in the fact that the data is

collected once, before the model is executed. This can lead to obsolete models which,

as previously mentioned, could possibly lead to miscalculated predictions.

2.1.2 Observation-based approach

The observation-based approach that will be discussed here is seen at https://queue-times.

com/. This website draws information from theme parks’ native apps to one place, and

then displays them to users. To estimate a queue time, these parks estimate the amount

of people in a queue, then figure out how long it takes to fill a ride vehicle, finish the

ride, and then leave the line. They also factor in how many people they can fit into a

ride vehicle. The website also displays historical data, meaning that users can see the

queue times of specific days in the past.

This approach updates over time, at different intervals (dependent on the park’s sched-

ule). This makes this approach quite powerful, as the times can never become obsolete.

Users can get quick up-to-date results whenever they want them.

Where this approach fails our current objective is down to how long it takes to update

queue times. An update requires recounting the entire queue, an activity that can be

time-consuming, especially as the queue gets longer. There is also the possibility of

human error when counting the queue, thus leading to incorrect queueing time calcu-

lations.

2.1.3 Virtual queues

Virtual queues are mainly used by restaurants. Some popular choices are QLess [15]

and Nowait [12]. These systems work by creating a virtual queue that customers can

then join. This queue assigns each users a number. The lower the number, the closer

to the front of the queue you are. Both operate via text message, sending a text to

users when they enter the queue, and when they are next in the queue. Once someone

in the virtual queue has been served, the restaurant hosts then move the queue along.

6

https://queue-times.com/
https://queue-times.com/


2.2. QUEUEING THEORY CHAPTER 2. RESEARCH

This adds a possibility of human error to the system, which could result in incorrect

wait times.

The strengths of this approach are clear. Users can immediately see how long they will

have to wait once joining the queue. It also eliminates the need to physically queue.

However, the weaknesses lie in the reliance on restaurant hosts to move the queue

along. Particularly on busy nights, employees may become too flustered to remember

to move the queue on every single time. Another issue I found with this approach is

that users can only see the wait time once they enter the queue. If a user sees the

wait time and is not willing to wait that long, they could throw off the entire queueing

operation by leaving the queue or worse, forgetting to leave the queue.

2.1.4 Takeaways

Analysing these similar approaches really helped to shape the overall design of my

solution. The solution will attempt to take the accuracy of the mathematical-based

approach and combine that with the constant updating of the observation-based ap-

proach, while also attempting to emulate the ease-of-use of the virtual queues. The

goal is to create a system that requires minimal input from the user while producing

accurate and up-to-date predictions.

2.2 Queueing Theory

Queueing theory is the mathematical study of queues. A queueing model is created in

order to predict queue lengths and wait times. The field has its origins in research by

Agner Krarup Erlang, a Danish mathematician, in the early twentieth century. Queues

themselves are crucial economically. In order to eliminate queues, resources would have

to be unlimited. Managing queues is also an essential task as excessive wait times can

lead to loss of sales, as well as losing custom to competitors.

2.2.1 Kendall’s Notation

Queues are generally described using Kendall’s notation in the form A/S/c, where A

is the time between arrivals to the queue, S represents the time it takes to complete

service, and c represents the number of servers. Kendall’s notation is the standard

system used to classify queueing nodes proposed by David George Kendall in 1953.

7



2.2. QUEUEING THEORY CHAPTER 2. RESEARCH

Below are two figures showing tables of the various symbols used in Kendall’s notation

[23]:

Figure 2.1: Arrival process codes

Figure 2.2: Service time distribution codes

Figure 2.1 shows the arrival process codes, while figure 2.2 shows the service time

distribution codes.

2.2.2 Queueing Disciplines

Queueing discipline determines the way the server serves the customers. It tells us

whether customers are served consecutively or simultaneously. If consecutively, it also

describes the order in which they are served. If simultaneously, it describes how the

server capacity is shared among customers. Queueing nodes can follow one of the fol-

lowing service disciplines [27]:

8



2.2. QUEUEING THEORY CHAPTER 2. RESEARCH

First in first out (FIFO) - A traditional approach to queues whereby the cus-

tomer who has been waiting the longest is served first.

Last in first out (LIFO) - The opposite approach to FIFO, whereby the customer

who has been waiting the least is served first.

Processor sharing - Service capacity is equally shared between customers.

Priority - Customers with high priority are served first.

Shortest job first - The next job to be served is the one with the smallest size.

Shortest remaining processing time - The next job to serve is the one with the

smallest remaining processing requirement.

2.2.3 Queueing Models

There are various queueing models that are used in queueing theory. Below is an inves-

tigation into these models which will help to pick the appropriate model for the final

system. The choice of queueing model is extremely crucial, as the queueing model will

be producing the simulated data to be fed into the predictive model. This pipeline is

discussed in further detail in Chapter 3 - Design & Implementation.

M/D/1 Queue

The M/D/1 queue represents a queue with a single server (1), a Poisson process arrival

distribution (M), with a fixed (deterministic) service time (D). The model was first

published by Erlang in 1909, and used in the design of the Copenhagen Telephone

Exchange. This initial queueing model was the beginning of the field of queueing the-

ory. An M/D/1 queue is a stochastic process whose state space is the set 0, 1, 2, 3,

where the value corresponds to the number of entities in the system, including any

currently in service. Arrivals occur at rate λ according to a Poisson process, moving

the process from state i to i + 1. Service rate is µ = 1/D, where D is the fixed service

time. Utilization = ρ = λ/µ. The single server serves those in the queue, one at a

time (following a FIFO discipline). Once the service is complete, the customer leaves

the queue, decreasing the queue length by 1. The queue capacity is infinite.

9
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Figure 2.3: State space diagram of M/D/1 queue[39]

Performance Metrics

The waiting time in the system, ω is given by:

ω =
1

µ
+

ρ

2µ(1− ρ)
(2.1)

The waiting time in the queue, ωQ is given by:

ωQ =
ρ

2µ(1− ρ)
(2.2)

M/D/c Queue

This model is an extension of the previously described M/D/1, where the number of

servers c is greater than 1. Like M/D/1, this model was first published in 1909 by

Erlang. Arrivals are determined by a Poisson process and job service times are fixed

(deterministic). An M/D/c queue is a stochastic process whose state space is the set

0, 1, 2, 3, where the value corresponds to the number of customers in the system,

including any currently in service. Arrivals occur at rate λ according to a Poisson

process and move the process from state i to i + 1. Services times are deterministic

time D (serving at rate µ = 1/D). The servers, c, serve customers from the front of

the queue, according to a FIFO discipline. Once the service is complete, the customer

leaves the queue, decreasing the queue length by 1. The queue capacity is infinite.

10
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Performance Metrics

When ρ = (λ D)/c < 1, the waiting time distribution has distribution F(y) given by:

F (y) =

∫ ∞
0

F (x+ y −D)
λcxc−1

(c− 1)!
e−λxdx, y ≥ 0 c ∈ N. (2.3)

Below, Lq represents the number of customers in the queue, while Ls represents the

number of customers in the entire system:

Figure 2.4: M/D/c Queue model with 2 servers. The service rate is given as 1/D, where

D is the fixed service rate time.

M/M/1 Queue

The M/M/1 queueing model follows a Poisson distribution of arrival (λ) and service

rate (µ) with a single server [42]. Below, Lq represents the number of customers in the

queue, while Ls represents the number of customers in the entire system.

Figure 2.5: M/M/1 Queue example

It is a continuous-time Markov chain, assuming that the M/M/1 queue-size process

11
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starts at state 0 (i.e. no one in the queue). It will remain in state 0 for a period of

time that is exponentially distributed with parameter λ then it moves to state 1.

Performance Metrics

The waiting time in the system, ω is given by:

Wait in the System = ω = ωq +
1

µ
(2.4)

The waiting time in the queue, ωq is given by:

Wait in the Queue = ωq =
Wq

λ
(2.5)

where Lq is:

Number in the Queue = Lq =
ρ2

1− ρ
(2.6)

where ρ is:

ρ =
λ

µ
(2.7)

Average time spent waiting:

ρ

µ− λ
(2.8)

M/M/c Queue

The M/M/c queue is a generalization of the M/M/1 queue to the case of c servers.

As in M/M/1, for an M/M/c queue, the buffer is infinite and the arrival process is

Poisson with rate λ. Service time of each of the c servers is exponentially distributed

with parameter µ. As in the case of M/M/1 we assume that the service times are

independent and are independent of the arrival process [42]. Utilization (ρ) for the

M/M/c queue model is defined as:

ρ =
λ

c ∗ µ
(2.9)

12



2.2. QUEUEING THEORY CHAPTER 2. RESEARCH

Below, Lq represents the number of customers in the queue, while Ls represents the

number of customers in the entire system:

Figure 2.6: M/M/c Queue model with 2 servers. The queue is the same as an M/D/c

queue, with the one exception being that the service rate is not deterministic.

Performance Metrics

The probability that an arriving customer is forced to join the queue (all servers are

occupied) is given by:

C(c, λ/µ) =
( (cp)

c

c!
)( 1

1−ρ)∑c−1
k=0

(cp)k

k!
+ ( (cp)

c

c!
)( 1

1−ρ)
=

1

1 + (1− ρ)( c!
(cp)c

)
∑c−1

k=0
(cp)k

k!

(2.10)

The average number of customers in the system (in service and in the queue) is given

by:

ρ

1− p
C(c, λ/µ) + cρ (2.11)

The average total time a customer spends in both the queue and in service is given by:

C(c, λ/µ)

cµ− λ
+

1

µ
(2.12)

2.2.4 Takeaways

Our system is focusing on food establishments, and food establishments generally follow

a traditional queueing discipline. For our system, all queues will be utilising a first-in-

13
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first-out discipline.

The arrival rates for our queueing model will be random, due to the fact that it will be

determined using Google’s Popular Times feature. When it comes to the service rate,

there is no way to efficiently determine a dynamic service rate for each type. However,

the library used to create our queue, “Ciw” [33], allows us to get a random service rate

using its network methods. The service rate will be random, with the average of the

sampled service rates equalling the value we pass into the method. This value will be

obtained by observing the food establishments. The reasoning for this is that different

customers will have different orders of varying size, meaning that the rate at which

they are served should be different.

Finally, our number of servers is unknown at this point, so the best choice would be to

assume that it could be 1 or more. Therefore the queueing model that meets our needs

the greatest is the M/M/c queue, where the arrival and service rate follow a Poisson

distribution process, and the number of servers is 1 or more.

2.3 Predictive Analytics

Predictive analytics involves creating predictions about future or unknown events us-

ing current or historical data fed into predictive models. These predictive models

consist of one or more machine learning algorithms. Predictive analytics is used in

healthcare, marketing, insurance, telecommunications, retail, and many more fields.

Each prediction depends on multiple factors, for example every characteristic known

about a patient [31]. The predictive model that will be used by my web server will

involve reading in user inputted wait times as well as simulated wait times created by

a queueing model. The predictive model examines this data and looks for patterns in

an attempt to produce an accurate prediction. Due to this, the model will incorporate

regression-based algorithms.

2.3.1 Regression

Regression is a set a statistical processes for estimating relationships among variables.

Modelling refers to the development of mathematical expressions that describe in some

sense the behaviour of a random variable of interest [28]. This variable can be anything,

be it a student’s grade in a module, the price of oil, or in our case, a queue time for a

14
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food establishment. In all cases, this variable is called the dependent variable and is

generally denoted by y. Other variables which are thought to provide information on

the behaviour of the dependent variable are incorporated into the model as predictor or

explanatory variables. These variables are called the independent variables and gener-

ally denoted by X [28]. The focus is on the relationship between the dependent variable

and one or more independent variables (occasionally referred to as “predictors”) [41].

2.3.2 Linear Regression

Linear regression is one of the most common statistical tools for modelling relationships

between independent variables and some desired value (our dependent variable). When

there is only one explanatory variable, the algorithm used is referred to as “simple linear

regression”. Simple linear regression can be defined by the following equation:

hθ(x) = θ0 + θ1x (2.13)

The goal of the equation is to select θ0 and θ1 that minimises J(θ0, θ1) where J(θ0, θ1)

is the cost function and is defined by:

J(θ0, θ1) =
1

m

m∑
i=1

(hθ(x(i))− y(i))2 (2.14)

The above is the simplest form of linear regression, that does not see much use in the

real world. Most real world uses utilise multiple linear regression, where there is more

than one predictor variable. Multiple linear regression’s hypothesis can be defined by:

hθ(x) = θTx (with θ, x is now n + 1− dimensional vectors) (2.15)

As before, the goal is to select θ that minimises J(θ) where J(θ) is the cost function

and is defined by:

J(θ) =
1

m

m∑
i=1

(hθ(x(i))− y(i))2 (2.16)

Linear regression is extremely useful if the goal is prediction, or forecasting, or error

reduction. It can be used to fit a predictive model to an observed data set of y and X

values. After developing such a model, if an additional value of X is then given without

its accompanying value of y, the fitted model can be used to make a prediction of the

value of y [38].
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2.3.3 Ridge and Lasso Regression

Ridge Regression is the name given to Tikhonov Regularization in the statistical realm.

It gets its name from the diagonal of ones in the correlation matrix, as it may be thought

of as a ridge. It is a technique for analysing multiple regression data that suffer from

multicollinearity. Multicollinearity, or collinearity, is the existence of near-linear rela-

tionships among the independent variables [25].

Lasso regression is quite similar to ridge regression. It performs both variable se-

lection and regularization in order to enhance prediction accuracy. It was introduced

by Robert Tibshirani in 1996 based on Leo Breiman’s non-negative garrotte. It was

originally created for use in least squares models, but is easily extended to a wide va-

riety of statistical models.

Given a linear regression with standardized predictors xij and centred response values

yi for i=1,2,...,N and j =1,2,...,p, the lasso solves the problem of finding β ={βj} to

minimize [34]:
N∑
i=1

(yi −
∑
j

xijβj)
2 + λ

p∑
j=1

|βj|. (2.17)

2.3.4 Random Forest

Random forests are an ensemble learning method that operate by constructing a mul-

titude of decision trees and outputting the mean prediction of the individual trees [22].

The training algorithm for random forests applies the general technique of bootstrap

aggregating, or bagging, to tree learners [40]. Given a training set X = x1,...,xn with

responses Y = y1,..., yn, bagging repeatedly (B times) selects a random sample with

replacement of the training set and fits trees to these samples [40]:

For b = 1,..., B:

1. Sample, with replacement, n training examples from X, Y; call these Xb, Yb.

2. Train a classification or regression tree fb on Xb, Yb.

After training, predictions for unseen samples x’ can be made by averaging the predic-

tions from all the individual regression trees on x’ [40]:

f =
1

B

p∑
j=1

fb(x
′) (2.18)
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The number of trees necessary for good performance grows with the number of predic-

tors. The best way to determine how many trees are necessary is to compare predictions

made by a forest to predictions made by a subset of a forest. When the subsets work

as well as the full forest, you have enough trees [24].

2.3.5 K-Nearest Neighbours

K-nearest neighbours (KNN) is a pattern recognition method used for both regression

and classification. In KNN regression, the output is the property value for the object.

This value is the average of its k nearest neighbours [37]. KNN has been used in

statistical estimation since the beginning of 1970s [29]. KNN can be quite easy to fit,

and one only needs to estimate a small number of coefficients. The KNN method is as

follows [32]:

1. Assume a value for the number of nearest neighbours K and a prediction point

x0

2. KNN identifies the training observations N0 closest to the prediction point x0

3. KNN estimates f(x0) using the average of all the responses in N0, i.e.:

f(x0) =
1

K

∑
xi∈N0

yi (2.19)

A commonly used distance metric for continuous variables is Euclidean distance, which

is defined as the straight-line distance between two points. Euclidean distance can be

defined as: √√√√ k∑
i=1

(xi − yi)2 (2.20)

Choosing K can be a challenging task. A small value for K provides the most flexible fit,

which will have low bias but high variance. This variance occurs because the prediction

in a given region is dependent on just one observation. Contrarily to this, choosing

a large value for K will provide a smoother and less variable fit. The prediction in a

region is an average of several points, and so changing one observation has a smaller

effect.
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2.3.6 Takeaways

Each of the described algorithms all have their strengths, and can provide fast and

timely calculations for our system. Each of the algorithms will be used to calculate

predictions. The average of each algorithm’s prediction will give us our overall pre-

diction. The reasoning behind this choice will be discussed in Chapter 3 - Design &

Implementation.

2.4 Cloud Hosting

The user application will communicate with a server that will perform the necessary

operations to create a prediction. In order for this communication to take place, the

server needs to be hosted on a virtual machine, on the cloud. Cloud hosting will allow

for easy access and take some of the heavier operations off the hands of the application.

Two options came to mind straight away when thinking of cloud hosting. These are

SCSSNebula and Amazon Web Services (AWS).

2.4.1 SCSSNebula

SCSSNebula is an enterprise cloud and data centre virtualisation Infrastructure as a

Service (IaaS) platform for use in research and teaching in the School of Computer

Science and Statistics. It is based on OpenNebula, a cloud solution founded by Ignacio

M. Llorente and Ruben S. Montero in 2005. Some of the design principles of Open-

Nebula are openness of the architecture, flexibility, portability, stability, scalability,

and simplicity. Following years of research and development in efficient and scalable

management of virtual machines on large-scale distributed infrastructures, OpenNeb-

ula has now become one of the leading supplier of cloud hosting solutions. OpenNebula

currently have numerous high-profile clients such as Hitachi, BBC, Unity, and Deloitte

[6]. SCSSNebula could be accessed via the college network using an online Sunstone

portal, available at https://nimbusselfservice.scss.tcd.ie.

In order to create a new virtual machine (VM), users can simply choose a predefined

template from the templates menu, give the VM a name and define the number of

instances they wish the VM to have. Any images associated with these VMs are non-

persistent i.e. all changes will be lost once the VM is deleted. Each new VM is given

an IP address, only routable via the college network. In order to communicate with

18

https://nimbusselfservice.scss.tcd.ie


2.4. CLOUD HOSTING CHAPTER 2. RESEARCH

the VM outside of the college network, a proxy must be configured.

Figure 2.7: The proxy acts as a “barrier” between the outside world and the VM

2.4.2 Amazon Web Services

Amazon Web Services (AWS) is a subsidiary of Amazon.com that provides on-demand

cloud computing platforms to both individual and commercial users. The service was

launched as a public beta in March 2006. Within AWS, Amazon Elastic Compute

Cloud (Amazon EC2) provides scalable computing. EC2 removes the need to imple-

ment hardware, meaning applications can be built and deployed quickly and efficiently.

EC2 provide virtual computing environments, known as instances. Amazon EC2 re-

duces the time required to obtain and boot new server instances to minutes, allowing

users to quickly scale capacity. Similar to SCSSNebula, predefined templates allow

users to choose the operating system of their VM. Users may also choose different

amounts of storage and memory for their VMs, and authentication is used via “key

pairs” (AWS keeps track of the public key while the user keeps the private key in a se-

cure location [2]). Security is also customisable, with users having the ability to create

“security groups”. Within these groups, users can control access permissions, meaning

total control over who can communicate with their VM [2].
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Figure 2.8: An overview of the Amazon EC2 instance security [8]

Amazon themselves moved their retail site to AWS and EC2 instances in November

2010. Like OpenNebula, they boast a wide array of successful customers, namely

Netflix, Lamborghini, NASA, and AirBnB among them [2].

2.4.3 Takeaways

The choice of which service to use here was a difficult one. However, the decision was

made to go with AWS, as it is used more widely than SCSSNebula. The use of AWS

means that there is not the need to configure proxy allowances for the client and server

to communicate. AWS also offers better security, including AWS Shield [1].
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Chapter 3

Design & Implementation

In this chapter, we will take a look at the design and implementation of the solution

devised following the research mentioned in Chapter 2. We will start by taking a look at

the original plan for the solution that was theorized before the research was complete.

We can then follow the evolution of the idea right up to the final implementation.

Within this chapter and beyond, there are several words whose definitions may be

unclear or unfamiliar. These words are used in this dissertation with the following

definitions:

Queue time - The time from when the customer enters the queue, to when they

receive their food.

Cafe - Food establishment that serves coffee and light snacks e.g. Starbucks/Costa.

Deli - Food establishment in which servers go step by step with customers when

preparing orders e.g. Centra Sandwich Counter/Burrito restaurant.

Takeaway - Food establishment that produces food that is generally eaten outside the

establishment e.g. Chinese Takeaway/Chip shop.

Fast food - Food establishment that produces fast food e.g. McDonald’s/KFC.

3.1 Design

3.1.1 Overview

Initially, the plan was to create an application that users can use to see queueing times

for nearby food establishments. The application would take in a user’s input and pass

it to a predictive model that would then run various algorithms to produce a queue

time prediction. The overall UI of the application was originally planned to have a
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similar style to Google Maps [9], whereby users could see themselves on a large map

and also see nearby food establishments. Users could then click on a food establishment

they wanted to get a prediction for, enter in a few more clarifying details and then be

presented with a queueing time prediction.

Figure 3.1: The original concept for the application UI

The entire operation would be performed on the user’s smartphone. The applica-

tion would be developed as an Android application, due to my background in Java

development. Another reason for choosing Android is that of the 432 million smart-

phones sold in the final quarter of 2016, 81.7% ran Android [35]. This would give the

application greater exposure to potential users.

The main flaw of this approach is the fact that all calculations and functionality is

carried out on the user’s smartphone itself. This places too much responsibility on the

user’s device, with less powerful devices taking more time to create a prediction. This

also makes the application quite large, which again can alienate certain users who do

not have the storage available to download large applications. In order to combat this,
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the decision was made to create a web server that will handle the calculations and that

the application will communicate with. This decision to create a web server effectively

turns the mobile application into a basic HTTP client application.

Figure 3.2: An overview of a user process

The above shows the following:

1. The mobile application displays the UI to the user. This can be the initial

requests screen, or the calculated prediction.

2. The user makes a request using the application UI.

3. The application takes the user input and formats it into a structure that can be

read by the web server. It then forwards the request to the web server.

4. The web server scrapes the necessary information from the request and feeds it

into the predictive model.

5. The web server returns the prediction to the application, to be displayed with

step 1 to the user.

The application allows users to get a prediction from the web server and submit their

own queueing time for later use in the predictive model.

Figure 3.3: Design Overview
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3.1.2 Application

As previously discussed, the application was originally planned to perform all calcula-

tions. Once the decision was made to create a web server, the goal of the application

changed quite dramatically. It now acted as a middle man between the user and the

web server. On start-up, the UI displays several options for the user. Users can choose

between searching for a food establishment by name, searching nearby food establish-

ments, or submitting their own wait time.

Figure 3.4: Basic overview of application’s function

Figure 3.5: The initial UI displayed to the user when they start the application

Once users select a button, the relevant UI screen is displayed to the user. If the

user selects the “Search by name”, the user is prompted to enter the food establishment
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name, the type of food establishment (from a drop-down containing “cafe”, “deli-style”,

“fast food”, or “takeaway”), the time they wish to get a prediction for, and a day they

wish to get a prediction for. Users can then press the “Get times” button in the bottom

right. Once the button is pressed, the information is formatted and sent to the web

server to create a prediction.

Figure 3.6: Searching by name screen
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Figure 3.7: Searching nearby food establishments screen

Selecting the button “Search Nearby” brings the user to the screen shown in Fig

3.7. Once this option is chosen, a request is sent to the Google Places API [10] to

retrieve a JSON formatted response that contains all food establishments within a

500m radius of the user’s location. A sample JSON response is located in Appendix

A. The nearby food establishments are displayed with their name and full address in

various buttons. Once a button is chosen, the relevant information is displayed to the

user on a screen that is similar to Fig 3.6, with food establishment name, time, and

day filled in already. The only field the user has to input is the establishment type, in

order to help the queueing model on the web server.
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Figure 3.8: The chosen food establishments details before making the request

If a user selects the “Submit wait time” button, the application displays the screen

seen below. Users input the name of the food establishment, the time they began

waiting, the day they waited, and how long (in minutes) they waited in the queue.

Once submitted, the application sends the formatted information to the web server to

be stored for later use in creating predictions.
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Figure 3.9: The submit wait time UI screen

3.1.3 Web Server

The web server can be further split into two sections, the queueing model and the

predictive model. The queueing model creates the simulated data that is combined

with user-inputted data that will be passed into the predictive model.

Figure 3.10: A request’s journey from request to prediction

Queueing Model
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As stated in Chapter 2 of this dissertation, there are many types of queueing models

that can be used to describe a queue. Due to there being several different types of food

establishment, the decision was made to create a queueing model that used the M/M/c

queue. This was due to the versatility of this type of queue. Arrival times and service

rates are given in a Poisson process (random). The number of servers can vary, with

somewhere like a deli possibly having only one server, but somewhere like a fast-food

food establishment having several servers available. Arrival times are determined using

Google Places popularity feature, which tracks how popular a location is at any given

time. The average value of the service rate is determined by the web server looking

at the establishment type chosen by the user. This was added to compensate for the

different service speeds of different types of food establishments (e.g. a deli would

have a faster service rate than a takeaway). Originally, the responsibility of setting the

number of servers lay with the user, but after careful consideration, it was decided that

this number would be based on the establishment type as well. Admittedly, this can

be flawed, but it allows a generic number of servers be chosen for each establishment

type.

Predictive Model

The predictive model contained a variety of regression algorithms, which are discussed

at length in Chapter 2 of this dissertation. The idea here was to create a model that

would be quick and efficient in returning a prediction to the user. Another goal was to

be as accurate as possible. In order to achieve these goals, all types (cafe, takeaway,

deli-style, and fast food) use a combination of linear regression, lasso regression, ridge

regression, k-nearest neighbours (KNN) regression, and random forest (RF) regression.

The reasoning behind this choice will be further discussed later on in this chapter,

within the Implementation section.

The data that is fed into this predictive model is a combination of the data simulated

by the queueing model and historical data inputted by the user.
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Figure 3.11: The inner workings of the web server

3.2 Implementation

This section will cover how the solution was created, including a look at the libraries

chosen and techniques used to build the final product. The section will also include a

look at the process followed in completing the project.

3.2.1 Where to start?

Once the appropriate research was completed and the design drawn out, there was

a decision to be made. The first step to building this solution was crucial as it was

desirable that the project began as it meant to go on - productively. The application

was going to be the main point of interaction for end users, so there was an argument to

be made to get that up and running first. Testing the functionality would be pointless,

however, due to the need for the application to communicate with a server and react

to the various responses it would receive. Due to this, the decision was made to make

a start on the web server, as this would be easy to test with a dummy HTTP client.

3.2.2 Web Server

The web server began as a simple HTTP server using the Flask library [7]. The server

would listen on port 80 for incoming requests. Flask allows application developers to

determine the type of HTTP requests that are accepted by the server, which deals

with the risk of inappropriate usage. The first implementation of the server accepted

GET requests only. These requests contained parameters that the server would pass

to the queueing and predictive model. Within Flask, the incoming request is stored
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in a variable named “request” with application developers being able to access various

attributes of that variable.

Figure 3.12: A sample of attributes of a Flask request object [4]

With this first implementation, the incoming requests were sent using the Postman

application [14]. This application allows for the testing of APIs and servers, allowing

developers to customise requests and send them to any URL they wish. The first re-

quests sent to the web server contained five different variables:

1. restaurant name - The name (including address) of the requested food establish-

ment

2. service rate - The rate of service of the food establishment (e.g. slow, medium,

fast)

3. request time - The time that the prediction should be made for

4. request day - The day that the prediction should be made for

5. servers - The number of servers at the requested food establishment

The first request sent via Postman to the web server was a GET request in the follow-

ing form:

server address:80?restaurant name=Centra Westland Row, Dublin 1&

service rate=fast&request time=14&request day=Thursday&servers=1

The server sees that the request is a GET request and passes it into the “if” clause in
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the start() function in our server’s code. Using the request.values attribute, the param-

eters sent in the request are extracted and placed into their own variables. Following

this, the code begins to format the queueing model variables.

As mentioned in Chapter 2 - Research, in the “Queueing Models” subsection, there

were many choices for a queueing model. It was decided that an M/M/c queue would

be used. Within this model, the arrival rate (M) is random, the service rate (M) is

random, and the number of servers is ≥ 1. The arrival rate was determined using

python libraries “python-google-places” [16] and “populartimes” [11]. To get the ar-

rival rate, an API request is made using “python-google-places”. This request returns

the raw JSON response returned by the Google Places API. The ID of the place is

then extracted and used in a “populartimes” request. This request returns a JSON

response that is quite similar to the “python-google-places” response, with the addition

of an array that contains the popular times for every single hour in every single day.

This is a JSON array that consists of each day and its corresponding popular times.

The popular times are returned as an array of 24 integers representing the 24 hours

in the corresponding day. These integers range between 0 and 100, where 0 indicates

nobody being present and 100 indicates an extremely busy period. The service rate

was obtained using Ciw’s network function, whereby we set the average value of the

service rate. Sampled rates give an average of the set value. This was used in order to

simulate real-world establishments, as no two orders are the exact same or follow the

same process.

In order to prevent needless requests being sent to the Google Places API, once

the initial request is made, the popular times are written to .csv files stored in a

“times/createddata/” directory. Subsequent arrival rates can be obtained by reading

a local .csv file. This will cut down on execution time and increase overall throughput.

Once the popular times are obtained, the popular time allocated to the request’s time

is taken. This value is converted to a percentage value (e.g. a value of 46 would result

in an arrival rate of 0.46).

The service rate was originally left to the user to decide. This can be confusing and

vary from user to user. The service rate could be “fast”, “medium”, or “slow”. This

choice affects the service rate that is passed into the queueing model. This was also

the case for the number of servers. This can cause an issue if a user is attempting to

get a prediction for a location they have never visited before. In this scenario, the user
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will not be able to correctly enter the number of servers, which could possibly result

in an incorrect prediction.

Due to this, a new parameter was introduced in an attempt to stifle the aforemen-

tioned confusion. Rather than sending the service rate and number of servers, the

request would contain an establishment type that could be used to determine the ser-

vice rate and number of servers. The establishment type can be one of the following:

“cafe”, “deli”, “fast food”, or “takeaway”. These types result in an average service

rate of 0.25, 0.5, 0.41, or 0.41 respectively. These times were chosen as service rate

can be converted to minutes by dividing 1 by the service rate. For our types, the

average amount of minutes for service was 4 minutes, 2 minutes, 2.5 minutes, and 2.5

minutes respectively. These service rates averages were chosen based on real-world

visits to each establishment types. Originally, there was also a fifth establishment

type: “restaurant”. This type was removed as in most cases for traditional sit-down

restaurants, there is no queue for tables and a majority of the time customers have a

reservation, thus voiding the need to queue. These people would also be included in

Google’s Popular Times feature, adding erroneous values to the arrival rate. As stated

in the introduction, the goal was to create accurate predictions for walk-ins to food

establishments. For all types the number of servers is set to 1.

Once the arrival rate, service rate, and number of servers are determined, a variable is

created to represent the queue. This variable is an instance of the “Queue” class that

was created for this system. This class is quite simple, with attributes representing the

arrival rate, service rate, and number of servers. The class also has a function that is

used to generate a simulated queue, called “gen queue()”. This function utilises the

“Ciw” queue network simulation library [33]. This library requires the creation of a

network that incorporates the arrival rate, service rate, and number of servers. The

network then creates different arrival rates and service rates for the simulated queues,

ensuring that the averages are equal to the queue variables attributes. The network

fully describes the food establishment. A simulation object is then created, which

will act as the engine that will run the simulation. We then run the simulation for

an equivalent of 70 minutes, using Ciw’s “simulate until max time()” function. The

simulation is run for 70 minutes so that we have an observation period of 60 minutes,

with a 5 minute warm-up and a 5 minute cool-down. The warm-up ensures that the

simulation is up and running and “in the swing of it” by the time that the observa-
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tion period begins, while the cool-down ensures that no simulated customers are stuck

in the simulation when we collect the results [18]. We then extract the wait times

from the results and calculate the average wait time. This process is then repeated

99 more times in order to create an adequate amount of data to feed our predictive

model. This process is repeated for each hour and day of the week, in order to get

sufficient data to feed into the predictive model. The original idea was to just run the

previously described process for the request’s day, but the decision was made to sim-

ulate an entire week, so as to get a big enough dataset to feed into the predictive model.

The next step that the code takes involves feeding data into the predictive model.

The predictive model in this system uses regression algorithms, due to the fact that

we will be attempting to get a single value by observing past data. The predictive

model takes in the simulated wait times, as well as the establishment type, requested

day, requested time, and food establishment name. The server then checks to see if

there is any user-inputted data that can be used in the prediction. These regression

algorithms were ran using the scikit-learn library [26]. The results and time details

of each entry are placed into separate lists, to be turned into NumPy[13] arrays for

use in regression algorithms. The prediction was created by getting the average of the

predictions produced by linear regression, ridge regression, lasso regression, random

forest regression, and k-nearest neighbours regression. This was due to the fact that

some algorithms produced outliers with their predictions. The use of the other four

algorithms acted as a sort of damage control against these outliers. This approach

proved to be quite accurate. The graphs of the overall results of this approach, as well

as graphs comparing the individual performance of each algorithm can be found in

Chapter 4 - Evaluation.

However, due to the fact that the amount of test data was quite small, it was decided

that a mathematical approach should also be considered for choosing which algorithms

can be used. Mean Absolute Error (MAE) was chosen as the metric that would allow

us to choose which algorithms would perform best. MAE measures the average mag-

nitude of the errors in a set of predictions. It’s the average over the test sample of the

absolute differences between predictions and actual observation where all individual

differences have equal weight [36]. The dataset would be split using k-folds validation

and each fold would have its MAE calculated. Each algorithm was fitted with the

training data and predictions were compared to the test data. This gave the choice of
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algorithms concrete proof of being the best choice for creating predictions, based on

each algorithms MAE.

Both of the previous configurations of the predictive model were tested against real-

world algorithms. Both performed quite well, with the “Average of all algorithms”

approach having an average absolute error of 2.25 minutes, and the “MAE” approach

having an average absolute error of 2.75. The average absolute error for each type can

be seen in the following graph:

Figure 3.13: The average absolute errors of both methods of choosing algorithms

As you can see from the graph, the “Average of all algorithms” approach is the

superior choice. This meant that the configuration that used the average method

would be the configuration used going forward. The graphs displaying the results of

the MAE methodology can be found in Appendix B.

3.2.3 Application

The client application involved perhaps the most difficult choice to make, as the lan-

guage and style of application was debated for a long period of time. Originally, as

stated in the previous section, the client application was simplified to utilising Postman

[14]. The decision was made to go with an Android application [3]. The main reason

for choosing Android was due to the fact that 81.7% of new mobile phones at the end

of 2016 were Android devices [35].

The first step in creating this application was to create an application that could com-

municate with a server. This application needed to both send requests as well as receive
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and display responses. The application was created using Java with XML bindings.

The frontend would be written using XML with each XML element having an ID that

would allow it to be manipulated by the Java code that powered the backend. As

previously stated, the goal was to keep the required computational power of the appli-

cation low. In order to send HTTP requests, the application used Volley [17]. Volley is

a HTTP library that makes networking with Android apps easy and straightforward.

The application displayed a form to users in which they could enter in a food estab-

lishment name, establishment type, a request time, and a request day. Using the IDs

of the various input forms, the data that was inputted by the user could be found and

placed in various Java variables. These variables were then used to compile a HTTP

request. Beneath the form, there is a button that the user presses to send their request.

Once this button is pressed, Volley takes the HTTP request and sends it to the server.

By default, Volley has a retry policy whereby if a response is not received within 2.5

seconds, Volley performs the request again, and so on and so forth until either a re-

sponse is received or the maximum amount of retries is reached. Due to the fact that

the server needs to perform some time-consuming calculations, the retry policy time

limit needed to be increased, so therefore the time was set to one minute.

Following the completion of this, the next feature to be implemented was the “Search

Nearby” feature of the application. As mentioned in the previous section “Design”, the

original idea for this feature was to create a “Google Maps-esque” screen where users

could see nearby food establishments on a map and select their desired food establish-

ment. This idea was quickly changed when it became apparent that the speed and

performance of the application would be entirely dependent on the user’s smartphone.

This would involve real-time rendering of the map, as well as constantly tracking the

user’s location. Not only would this use up the phone’s computing resources completely,

it would also be a drain on the smartphone’s battery. By reimagining the feature and

moving the heavier calculations to the web server, the speed and performance becomes

more uniform across all users, regardless of the hardware running the client applica-

tion.

The new design of the feature meant a reinvented main screen for the application.

Once users launched the application, they are now met with a home screen with two

buttons stating: “Search by name”, “Search nearby”, respectively. Selecting “Search

by name” takes the user to the form described previously. Selecting “Search nearby”

activates the new implementation of the feature discussed in the previous paragraph.
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This new implementation involves getting the user’s location and performing a request

(using Volley again) to the Google Maps API to locate nearby food establishments.

This dealt with the issue of continuously tracking user’s locations by only noting the

location once, when the “Search nearby” button is selected. By “nearby” the decision

was made to search a radius of 500m, as this seems like a reasonable “nearby” distance

to travel to a food establishment, as it would take roughly 5 minutes. Once a response

is received, a screen is created with buttons that display nearby food establishments’

names with their formatted addresses placed under the name. Users can then select a

food establishment that they wish to get a prediction for. This then launches a screen

that contains a form that is similar to the screen shown when users select “Search by

name”. The main difference between the forms is that for nearby food establishments,

there is an assumption that the user wants the prediction at the current time. There-

fore the only editable fields in this form are the establishment type, as the name, time

and day have already been determined. Users can then select the “Get times” button,

which invokes a similar Volley-based method that sends a request to the web server.

The results screens for both are the exact same.

Another important feature of the application and overall system is providing the ability

for users to add their own wait times to be included in later predictions. This involved

adding a new section to the application’s main screen under a new “Submit Data”

section. A new button is displayed stating “Submit Wait Time”. Once this is selected,

a screen is shown where users can input the food establishment’s name, the time and

day they waited, and how long they waited for. This new data is sent as a POST

request using Volley. This involved adding new functionality to the web server to be

able to handle POST requests. Upon receiving a POST request, the server extracts

the parameters from the request (using the request.values attribute) and stores them

in unique variables. These wait times are then stored in .csv files for use in later pre-

dictions. This required the changing of how the prediction model got its data. The

new method involved combining the user data with the simulated data created by the

queueing model. The server then sends a thank you response to the client application

that gets displayed to the user.
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Figure 3.14: A high-level look at the libraries and frameworks used to create the overall

system

Figure 3.15: The screen displayed to users once a prediction is returned

3.2.4 Testing

The main method of testing for the web server was unit testing. Unit testing is a

software testing method that involves testing individual sections of code (in this case

individual functions) and determining if they perform as they were designed to. A unit

is considered the smallest testable part of any software. It follows a method known

as “White Box Testing”, whereby the tester knows the inner workings of the item

being tested [19]. The tester chooses the unit’s inputs and determines the appropriate
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outputs. The method is named so due to the fact that the software being tested, in the

eyes of the tester, is like a transparent or white box, into which the tester can clearly

see. The main advantage of White Box Testing is that it is very thorough, meaning

that almost all paths can be covered. A disadvantage that critics of the method argue

is that the test script maintenance can be difficult and cumbersome if the software

changes regularly [19]. The contrast to this method is “Black Box Testing”, whereby

the tester does not know the inner workings of the item being tested [5]. The code

located in Appendix C is an example of a function used in the web server, as well as

the corresponding unit test for that function. The unit test ensures that the correct

output is produced when given certain inputs.
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Chapter 4

Evaluation

This chapter will take a look at just how accurate the predictions created by our web

server are. The predictions will be compared to real-world examples, whereby the

establishment in question is visited and the queueing time taken and compared to our

prediction. Each establishment type was represented by one selected venue. These

venues were visited during the same hour on the same day for a number of weeks

(a different hour and day for each type). Predictions were given prior to entering

each establishment. The queueing time recording began as soon as the queue was

entered. The time was stopped when the food was received. After getting the real-

world queueing time, the time was then entered into our system and noted for future

calculations. This meant that the following week, the prediction given would take into

account the previous weeks’ actual queue time.

4.1 Results

This section will talk about exactly how accurate the predictions produced by the web

server are. The predictions were produced using the queueing model and predictive

model in the web server. We will then take a look at each individual establishment

type and measure just how accurate the predictions were, from no user inputs up to

four user inputs.

4.1.1 Individual Algorithm Performance

This subsection contains graphs that display each algorithm’s individual performance

when creating a prediction for each establishment type. The graphs begin with no user
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inputs, and increase by one user input until four user inputs are reached.

Figure 4.1: Individual algorithm results after 0 inputs

Figure 4.2: Individual algorithm results after 1 input
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Figure 4.3: Individual algorithm results after 2 inputs

Figure 4.4: Individual algorithm results after 3 inputs
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Figure 4.5: Individual algorithm results after 4 inputs

From these graphs, it can be seen that the choice to average out the five algorithms

was a good one. As you can see in 4.1 in the “Fast food” section, KNN produces a result

of 17 minutes. This is a massive outlier and may have caused even more inaccuracy

in the prediction. However, the other algorithms’ predictions bring the average down,

resulting in an error of merely 1 minute. The tables containing the data displayed in

the previous graphs are located in Appendix D.

4.1.2 Prediction Accuracy

Cafe

The chosen venue for the cafe type was a local branch of an international cafe chain.

The venue was chosen due to the fact that it is generally very busy and always has a

queue. The chosen time and day for this venue was 3pm on a Sunday. The real-world

queueing time was measured from the time the queue was entered, to the time that the

coffee was received. The below graph shows the results obtained after no user inputs,

up to four user inputs:
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Figure 4.6: Cafe queueing times compared to the predictions made by the system

As you can see from the graph, all of the predictions produced results that turned

out to be longer than the actual queueing time. While users may be satisfied with

the results, where the actual queue time is shorter than the prediction, in terms of

accuracy it is not as desired. The below table shows the errors in minutes:

Figure 4.7: The absolute error rate of the cafe establishment type

The average error in minutes was 3.2 minutes, rounded out to 3 minutes. This error

is most likely due to the various changes in the real-world queueing times, which are

something that cannot be controlled. Adding in more user inputs should, in theory,

provide a more accurate prediction.

Fast Food

The fast food venue was a local branch of an international fast food restaurant. Like

previous choices, this venue was chosen due to it being rather popular and having a

rather large queue (the majority of the time). The real-world queue time was measured

from when the queue was first entered, to when the food was received. The chosen

time and day for this venue was 4pm on a Saturday. The following graph shows the
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results obtained after no user inputs, up to four user inputs:

Figure 4.8: Fast food queueing times compared to the predictions made by the system

This establishment type allowed us to see how much user inputs can affect the sys-

tem’s predictions. Following one user input, the system’s prediction lowered by one

minute. After the second input is entered, the system’s prediction is lowered once

again. This is due to the system making adjustments to the data being fed into the

model in accordance with the user inputs. The following two inputs are then off by 1

and 0 minutes respectively. These results can be seen in the table below:

Figure 4.9: The absolute error rate of the fast food establishment type

Here, the average error is 1.4 minutes, which can be rounded out to 1 minute. This

average error is quite low and as such is quite impressive. As stated previously, these

results showcase how much of an effect user inputs can have on incorrect predictions.

Takeaway

The takeaway venue was a local takeaway. The venue is a busy establishment with
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both delivery and over-the-counter options. As stated previously, the system was de-

signed to deal with walk-ins, so therefore the over-the-counter choice was used. The

real-world queue time was measured from when the queue was first entered, to when

the food was received. The chosen time and day for this venue was 9pm on a Tuesday.

The following graph shows the results obtained after no user inputs, up to four user

inputs:

Figure 4.10: Takeaway queueing times compared to the predictions made by the system

Figure 4.11: The absolute error rate of the takeaway establishment type

The average error here is 2.6 minutes, which can be rounded out to 3 minutes. The

main cause of errors here could be down to the fact that the venue is also taking deliv-

ery orders as well as over-the-counter orders. This means that when a person enters a

queue of, for example, 3 people, they may also be behind several orders that have been

placed for delivery. This possible delay could be taken into consideration and may be

something that could be investigated in future work.

Deli

The deli venue chosen for this establishment type was a burrito restaurant popular
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with students in the vicinity of Trinity College. This venue’s notorious queues were

one of the inspirations for this entire dissertation, as choosing the hour of visiting had

to be done carefully in order to avoid longer queues. The venue is consistently busy

and fits the mould of a deli-style establishment needed for this system’s testing. The

real-world queue time was measured from when the queue was first entered, to when

the food was received. The chosen time and day for this venue was 11am on a Thurs-

day. The following graph shows the results obtained after no user inputs, up to four

user inputs:

Figure 4.12: Deli queueing times compared to the predictions made by the system

User inputs play a small part in shaping the system’s predictions here, too. The

prediction is lowered by 1 minute after “Real-world Queue Time 1”, and then remains

the same when a user input of similar queue time is entered. The fact that the queue

time is a float number rounded out to an integer is the reason that the prediction

doesn’t lower after “Real-world Queue Time 3”. The prediction was most likely a

value that was greater than or equal to 8.5, thus resulting in a prediction of 9 minutes.

The below table displays the errors in minutes:

Figure 4.13: The absolute error rate of the deli establishment type
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The average error here is only 2 minutes, which is quite accurate. A deli-style

establishment has different order sizes, which aren’t taken into consideration here.

This could be the reasoning behind the errors.

4.1.3 Summary of Results

After all calculations, the average absolute error was 2.25 minutes, which can be

rounded to 2 minutes. This result shows that the system is quite accurate, even

given a small number of user inputs. When there are no inputs, the average error

is 2.2 minutes, which can be rounded to 2 minutes. Once the system gets introduced

to user inputs, the average error increases to 2.375 minutes, which can be rounded to

2 minutes. While this would make it seem that the system works best without user

input, keeping the data fresh and up-to-date via user input is important in preventing

obsolete models (as mentioned in Chapter 2 - Research). As more inputs are given,

the system is likely to become even more accurate.

This absolute error rate is similar to that of “Restaurant Wait Time Estimation Re-

port” by Segovia, Patel, & Lonneman [30]. The advantage that the system created for

this dissertation has over the system created for “Restaurant Wait Time Estimation

Report” is the fact that the data is constantly updated, meaning the models will not

become obsolete. The report mentioned is also only designed for one particular restau-

rant, whereas the system created for this dissertation uses a more general approach

applied to various food establishment types.

The most accurate establishment type was the fast food type, with an average absolute

error of just 1 minute, which is quite impressive. The least accurate establishment type

was tied between the takeaway and the cafe type. These types produced an average

absolute error of 3 minutes, which is not too poor given that the average wait time for

these types were both 8 minutes. The full ranking from most to least accurate can be

seen in the following table:
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Figure 4.14: Ranking the establishment types from most to least accurate

4.2 Criticism

As a reminder, the research question was:

“How accurate can a system using a combination of queueing theory and predictive an-

alytics be in creating predictions of queueing times in dynamic, real-time queues such

as walk-in food takeaway establishments?”

As mentioned in the previous section, the average absolute error was 2.25 minutes.

This result means that the system was quite accurate, given that the average real-

world wait time was 8.8 minutes. Despite this, the question cannot be answered quite

yet. The amount of testing for the system is not at a high enough level to allow us

to give a satisfactory answer. If we were to base it on this dissertation alone with the

small amount of test data used, we would most definitely say that the research question

has been answered with a resounding “very accurate”. Unfortunately, due to time and

financial constraints, the establishments could not be visited as many times as needed

to prove this.

Rather than explicitly answering the question, this dissertation has indeed given sub-

stance to the theory that it may be possible to create accurate predictions for food

establishment queueing times. Just how accurate these predictions can be has also

been hinted at in the research carried out in this report, but as mentioned, signifi-

cantly more testing needs to be carried out before guaranteed accuracy can be claimed.

Where this dissertation could have been improved (as well as what I would change

if I were to start again) is mainly focused on getting more test data (real-world queue-
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ing times). In designing the system, I assumed that I would be able to get sufficient

data to answer the research question. As I stated above, more data would have made

answering the research question a lot easier. This data could have been obtained by

using volunteers who could have simply collected data on their lunch break.

Another area that could have been improved is in the queueing model. Every time a re-

quest is made, a new set of simulated data is created with the queueing model. To save

time and increase performance, one could implement a way of storing the simulated

data. When a request is made, the simulated data could be checked for “freshness”.

For example, if the data is more than a week old the model could be run again and

fresh data simulated.

The application is another area that could be improved. Instead of getting a user

to select an establishment from a list of nearby establishments, the queueing times

could be instantly displayed to the user when “Search nearby” is selected. There could

also be a change made that removes the need for users to select the establishment type

every single time (e.g. a learning model that associates similar restaurants to one type).

Overall, I find that this dissertation has been a success. Our goals were to create

a system that was simple and straightforward to use while producing accurate results.

The system is very easy to use, and the predictions created were proven to be accurate,

given the test data used.
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Future Work

This chapter will take a look at the possible work that could be carried out as a contin-

uation to this dissertation. The main focus of possible future work would be improving

the queueing model for better predictions, further testing (and tweaking if necessary)

of the created system, as well as the extension of the idea to other establishments with

queues including theme parks, doctor’s offices, post offices and more.

5.1 Queueing Model Improvements

One area that could be explored in future work inspired by this dissertation is in regards

to the queueing model. The current model relies on Google’s Popular Times in order

to get the arrival rate, issues arise in areas where two establishments of the same name

(i.e. a franchise) are. In this scenario, the queueing times are unable to be predicted

as no arrival rate can be determined.

The queueing model could also be improved by creating a method to create dynamic

service rates. At present, the system uses service rates that were simulated while the

system ran. Future work could be carried out to attempt to obtain service rates in

a similar manner to arrival rates. This could lead to improved accuracy due to more

accurate service rates. These changes could spur the creation of a completely new

queueing model that may be a better fit for establishments with similar queues to the

test food establishments used in this dissertation.

As mentioned previously, one improvement would be to implement a way of storing

the simulated data. When a request is made, the simulated data could be checked for

“freshness”. If the data is more than a week old, for example, the model could be run

again and fresh data simulated. This could improve overall performance and make for
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a smoother overall process.

5.2 Further Testing & Tweaking

As mentioned in the previous chapter while evaluating our system, the amount of test

data used in evaluating this system was small. This meant that the research question

could not be answered in a satisfactory manner. If someone wished to get a solid an-

swer to the research question, it would be a good idea to attempt to use volunteers

to gather queue times. This would allow the system to be fully tested and confirm or

deny the ability to predict accurate queue times.

Further tweaking to the system could also be done. As mentioned in the Implemen-

tation section of Chapter 3, there were two methods of choosing algorithms to use in

creating predictions. One utilised all five available algorithms, the other used the three

with the lowest Mean Absolute Error (MAE) values. After testing both methods, the

decision was made to go with the usage of all five algorithms. This choice may have

produced accurate results given the test data, but further testing with vast amounts

of data could be done to see if there is a superior method of choosing algorithms. This

could involve testing the use of all five, testing the choice of the three algorithms with

the lowest MAE values, or a method based on another metric or parameter entirely

(e.g. RMSE).

As mentioned in the Criticism section of the previous chapter, the application could be

changed to instantly display nearby establishment wait times when users select “Search

Nearby”.

Another area that could be considered would be improving the scalability of the current

system, if needed. At present, it is unknown how well the system will perform given

high levels of traffic or massive datasets.

5.3 Branching Out

The work carried out in the completion of this dissertation was focused on food es-

tablishments with dynamic, real-time queues. The system could be extended to pre-

dict queue times in other establishments that have dynamic, real-time queues such

as doctor’s offices, post offices, theme parks etc. The idea could also be extended to

establishments with multiple queues such as supermarkets. This would mean intro-
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ducing different queueing models to the system as well as potentially exploring more

algorithms to be used in creating predictions for those establishment types.
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Appendix A

Sample Google Places API

Response

Figure A.1: Sample response from Google Places API
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Appendix B

MAE Algorithm Choosing Method

- Results Graphs

Figure B.1: Cafe results after choosing predictive algorithms using the MAE method men-

tioned in Chapter 3
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APPENDIX B. MAE ALGORITHM CHOOSING METHOD - RESULTS GRAPHS

Figure B.2: Deli results after choosing predictive algorithms using the MAE method men-

tioned in Chapter 3

Figure B.3: Fast food results after choosing predictive algorithms using the MAE method

mentioned in Chapter 3
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APPENDIX B. MAE ALGORITHM CHOOSING METHOD - RESULTS GRAPHS

Figure B.4: Takeaway results after choosing predictive algorithms using the MAE method

mentioned in Chapter 3
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Appendix C

Sample Function and Unit Test

# Sample function to be tested

def day_to_number(day):

for i in range(len(test_vals.days)):

if day == test_vals.days[i]:

return i

# Sample unit test for above function

def test_day_to_number(self):

self.assertEqual(application.day_to_number('Monday'), 0)

self.assertNotEqual(application.day_to_number('Monday'), 10)

self.assertEqual(application.day_to_number('Sunday'), 6)

self.assertNotEqual(application.day_to_number('Sunday'), 205)
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Appendix D

Individual Algorithm Comparison

Data Tables

Figure D.1: Individual algorithm predictions after 0 inputs

Figure D.2: Individual algorithm predictions after 1 input
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APPENDIX D. INDIVIDUAL ALGORITHM COMPARISON DATA TABLES

Figure D.3: Individual algorithm predictions after2 inputs

Figure D.4: Individual algorithm predictions after 3 inputs

Figure D.5: Individual algorithm predictions after 4 inputs
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