

Adaptive Stylization with Vertex
Attributes

Eoin O’Connor

Submitted for
Master of Computer Science

Trinity College Dublin

Supervised by
Dr. John Dingliana

Submitted to the University of Dublin, Trinity College, May, 2018

1

"I, Eoin O’Connor, declare that the following dissertation, except where otherwise stated, is
entirely my own work; that it has not previously been submitted as an exercise for a degree,
either in Trinity College Dublin, or in any other University; and that the library may lend or copy it
or any part thereof on request.
Signature:
Date:

2

0 Summary 5

1 Introduction 8
1.0.1 Line Drawing 9

1.0.1.1 Why change line thickness? 9
1.0.1.2 Why not automate the line thickness? 9
1.0.1.3 Why Inverted Hull? 9

1.0.2 Painterly Rendering 10
1.0.2.1 Why change detail in the first place? 10
1.0.2.2 Why have a human decide what’s important? 13
1.0.2.3 Why not paint in image space? 14

2 State of the Art 15
2.0.1 Line Drawing 15

2.0.1.1 Line Placement 15
2.0.1.2 Line Style 18
2.0.1.3 Temporal Coherence in Line Drawing 20

2.0.2 Painterly Rendering 21
2.0.2.1 Varying Detail Automatically 22
2.0.2.2 Varying Detail with Human Input 24
2.0.2.3 Paint-Stroke Placement 26
2.0.2.4 Temporal Coherence of Paint strokes 28

2.0.3 Other Uses of Vertex attributes 28

3 Inverted Hull 29
3.1 Implementation 29

3.1.1 Painting Vertex Attributes 29
3.1.1.1 Why Maya? 29
3.1.1.2 On the Intuitiveness of Painting Vertex Attributes 30

3.1.2 Inverted Hull Rendering Algorithm 30
3.2 Results 33

3.2.0.1 Practical and aesthetic benefits 34
3.2.0.2 Different distances 36
3.2.0.3 Different viewing angles 37

4 Painterly Rendering 39
4.1 Implementation 39

4.1.1 Painting vertex attributes for level-of-detail 39
4.1.2 The Stroke-Based Rendering Algorithm 40

4.1.2.1 Rendering to the textures 40

3

4.1.2.2 Generating Stroke Positions with Poisson Disk Distribution 40
4.1.2.3 Rendering Strokes 43

4.2 Results 45
4.2.0.1 Aesthetics 47
4.2.0.2 Tuning the stroke parameters for full stroke coverage 48
4.2.0.3 Real time poisson disk distribution 49

5 Conclusions and Future Work 52

References 54

4

0​ Summary

This dissertation presents an examination of the use of vertex attributes in two

non-photorealistic rendering techniques. The question I aim to answer is “How can

vertex attributes be used effectively in non-photorealistic rendering?”. To answer

this, I examine an existing line drawing technique that uses vertex attributes to

control line-thickness, then introduce a novel painterly rendering algorithm that uses

vertex attributes to mark high-detail areas.

The existing line drawing technique, referred to inside as ‘Inverted Hull’, is a

standard from the days of the fixed-function pipeline and while the use of vertex

attributes with this technique is not completely novel, it has not been published to

this date. It is found to be primitive compared to more modern line drawing

techniques, though at least some of its shortcomings can be mitigated by the use of

vertex attributes.

The novel painterly rendering technique can produce images that exhibit an artistic

variance in detail reminiscent of impressionism in painting or Bokeh in photography,

although not quickly enough for real time interaction and not temporally coherent.

The vertex attributes are shown to be a viable way to mark areas of high detail in

way that is view independent.

5

Acknowledgements

Thanks to
Dr. John Dingliana for supervising my project,
Junya C Motomura, whose talk at GDC gave me the idea,
Ross, ‘prime motivator’,
Huw, who turned up on time.

6

Abstract:​ This paper examines two non-photorealistic rendering techniques for 3D
models that make use of vertex attributes to control style. The first is an existing
technique used for drawing outlines around objects, where vertex attributes govern
the thickness of the outline. The second is a novel painterly rendering technique that
uses vertex attributes to mark important areas of a 3D model so that they can be
rendered in greater detail, while abstracting away the details in other areas.

7

1 ​ Introduction
Non-photorealistic computer graphics are “characterized by randomness, ambiguity,

or arbitrariness rather than completeness and adherence to the portrayed object’s

properties” (Strothotte, 2002). Many research papers in this area aim for more

automated computation of the non-photorealistic elements of an image - the

randomness, the ambiguity, etc. I aim for more control over the non-photorealistic

elements.

I believe that adding information to the 3D object itself is more efficient than adding

information to a 2D image because the input is reusable and view-independent.

Adding an artist’s input to a 2D frame of animation could yield the same quality of

result, but it must be added to every other frame. Storing this input in 3D means the

information can be mapped to infinitely many 2D frames automatically.

This paper examines two non-photorealistic rendering techniques that make use of

vertex attributes to influence the final image. First, I will discuss an old technique

used to draw lines around the contours of a 3D model, where line thickness is

governed by vertex attributes. Then I introduce a novel painterly rendering technique

for 3D models that allows the level of detail to be controlled by the vertex attributes

of the model.

8

1.0.1 ​ Line Drawing

1.0.1.1 ​ Why change line thickness?

Varying line thickness is an important expressive tool in line drawing. It can be used

to convey weight, light/shadow (Goodwin, 2007) and exaggerate the shape of the

subject being drawn. As stated in (Goodwin, 2007):

“Stroke width and style are key features of art, comics, and technical illustration. Line
style adds life and clarity to drawings [McCloud 2006], and provides cues to 3D
shape [Guptill 1997; Hodges 2003].”

1.0.1.2 ​ Why not automate the line thickness?

Automating line thickness has been achieved with good results, such as by

(Goodwin, 2007). However, I propose that similar results can be obtained using a

much simpler algorithm with the aid of vertex attributes. Furthermore, I propose there

is some added value in directly influencing the rendering of particular part of the

model.

1.0.1.3 ​ Why Inverted Hull?

For a detailed description of the Inverted Hull technique, see section ​3.1​. I chose the

inverted hull technique as a proof of concept because of its simplicity, and because it

provides a very straightforward opportunity to use vertex attributes in the rendering

process (that being the extrusion of vertices in the first pass). Usually, using inverted

hull would mean having no control over stylization. With the help of vertex attributes,

the thickness of the outline can be changed around certain areas of the model.

9

I believe that the input from vertex painting could be generalised to other line

techniques as well.

1.0.2 ​ Painterly Rendering

1.0.2.1​ Why change detail in the first place?

Santella et al. addressed this issue using Johannes Vermeer’s “Girl Reading a Letter

at an Open Window” (1657) (figure 1) as an example.

“The realistic look belies the effort of the artist, who has organized the image to

highlight meaningful information. For example, the artist creates high contrast in

distinguishing the figure from the background and delineating her face, hair, dress

and hands. In comparison, unimportant objects in the scene—the chair, the panes of

glass, the tabletop, the back wall—lack the same sharp detail and fine contrasts”

(Santella, 2002).

10

Figure 1​ Johannes Vermeer’s “Girl Reading a Letter at an Open Window” (1657)

Understating the minor features of an image serves to emphasise the important
features. This is an important technique in painting that distinguishes it from a
photograph. Having said that, even in photography, the abstraction of detail is an
established technique known as Bokeh. By intentionally leaving elements outside the
depth of field, photographers can abstract away extraneous detail and isolate the
subject.

11

Figure 2​ Santella’s eye-tracking algorithm decides what is important by recording
what test subjects look at - then abstracting away everything else (Santella, 2002).

12

Figure 3​ Josefina with Bokeh, from Wikimedia Commons,
https://www.flickr.com/photos/paseodelsur/51805888/

1.0.2.2​ Why have a human decide what’s important?

Machines are not always able to determine an artist’s intention. Let’s look at the

cinematic use of depth of field in this shot from ​The Matrix​.

Figure 4 ​The Matrix​, Wachowski Brothers, (1999)

13

https://www.flickr.com/photos/paseodelsur/51805888/

A mobile phone ringing is not a dramatic event in normal circumstances, but in this

scene it is ​made ​dramatic by blurring everything else (and by the extreme upward

angle of course). Even when sharing the screen with a human face, this phone gets

all the attention. You don’t need to look far for more examples of this technique in

cinema. Whether it is in the foreground or background, it is difficult to guess what an

artist might want to communicate when composing shots like this. For that reason, I

have chosen to let a human decide what is important for this technique.

1.0.2.3​ Why not paint in image space?

Hertzmann used a ‘weight image’ to govern the level of detail in his stroke based

rendering, but this was intended for 2D still images only (Hertzmann, 2001). This

paper presents a technique that can generate a similar type of weight image

automatically by rendering it from 3D model data. This is a step towards enabling 3D

animation with authored areas of high and low detail. Temporal coherence of strokes

is out the scope of this paper, but I believe this technique could be made compatible

with (Vanderhaeghe, 2007) in the future.

14

2 ​ State of the Art

In this chapter I will describe how others have approached the important problems

regarding line drawing and painterly rendering. The two areas share common issues,

such as stroke placement and temporal coherency of strokes, although their

methods tend to differ. Line drawings are rendered with much fewer strokes, so the

major concern is how to efficiently depict an object, normally with as few strokes as

possible placed on only the most important features. The main concern with painterly

rendering is style, and while stroke placement and stroke efficiency don’t hurt, they

are not held to the same constraints. With my technique, I would like to bring the

idea of ​leaving out what’s unimportant​ from line drawing into the sphere of painterly

rendering.

2.0.1 ​ Line Drawing

There are many research papers addressing line drawing. Usually, these papers

address one of three problems: line placement, line style, and temporal coherency of

strokes (in stroke-based line drawings).

2.0.1.1​ Line Placement

The placement of lines is obviously very important for artistic rendering. The current

state of the art techniques for line placement tend to be stroke-based algorithms; that

is to say they output a set of line segments which could be interpreted as

pen-strokes.

15

DeCarlo et al. provide a solution to the problem of line placement in ​Suggestive

Contours for Conveying Shape​ (DeCarlo, 2003). They define contours to be areas

on the 3d model where the surface normal is orthogonal to the viewing direction.

Building on this, they define ​suggestive contours ​to be areas that ​would ​be a contour

from a nearby view. The paper actually provides two different algorithms to generate

strokes: one in object space and one in image space. Their technique produces

aesthetically pleasing images, but they admit that “Objects without concavities have

no suggestive contours”, citing a rounded cube as an example. When rendered with

suggestive contours, only the outer silhouette of the cube is drawn.

Figure 5 ​Left: contours only. Right: contours and suggestive contours (DeCarlo,
2003)

Judd et al. propose a different solution in which they address some of the issues with

suggestive contours (Judd, 2007). This technique uses the ​principal curvature​ of the

model as well as ​view-dependant curvature​. The principal curvatures at a point are

the maximum and minimum of the normal curvature at that point. View-dependant

16

curvature is a measure of how the surface normal changes from a particular

perspective. The titular ​apparent ridges ​are found where the direction of the

maximum ​view-dependant curvature of a point is the same as the direction of the

principal curvature at that point (minimum, or maximum). Strokes are placed at

apparent ridges. This technique improves on suggestive contours in that objects do

not need concavities for their features to be drawn. Apparent ridges is better able to

depict the rounded cube that posed a problem for suggestive contours.

Figure 6​ Apparent Ridges (Judd, 2007)

17

Cole et al investigated how human artists used lines to depict a 3d render as a line

drawing (Cole, 2008). Among other things, they found that 57% of all lines drawn

appeared at interior and exterior occluding contours. The inverted hull algorithm may

not be as sophisticated as the aforementioned stroke-based algorithms with respect

to line placement, but it is capable of drawing lines around these contours.

2.0.1.2​ Line Style

The strokes produced by stroke based algorithms can be rendered in a number of

different ways, including using a texture map (of an ink brush stroke for example).

This can be tapered or widened based on the position within the stroke. However,

the current state of the art algorithms do not use vertex attributes to govern line style.

The problem of variable line thickness has been tackled by Goodwin et al in the

paper ​Isophote Distance: A Shading Approach to Artistic Stroke Thickness​, where

line thickness at each point on a stroke was governed by the distance from that point

to an isophote along the radial plane(Goodwin, 2007). This technique produces lines

whose thickness varies with the curvature of the model, the light direction, and the

viewing distance. It does not allow vertex attributes to affect the thickness of lines

around particular areas.

18

Figure 7 ​An example of an Isophote Distance render. (Goodwin, 2007)

Grabli et al. introduced a highly generalised approach to line style inspired by

programmable shaders in their paper: ​Programmable Style for NPR Line Drawing

(Grabli, 2004). This paper describes a multiple stage procedure for creating line

drawings much like the traditional 3D graphics pipeline. In the first stage, they create

a ‘view map’ which describes the potential lines that might appear in the drawing and

their topological arrangement from a 3D model. In the second stage, they apply ‘style

modules’ to the view map. Style modules might select and chain or split potential

lines, or change how they are rendered for the final image. Style modules are given

all the information of the view map to work with, so they can be quite sophisticated -

it is possible for style modules to operate only on particular types of lines. This paper

19

mentions ‘object importance’ among the possible data in the 3D scene. This idea is

quite similar to what I propose in the next section on painterly rendering in that some

areas of the render are considered more important than others. However, Grabli et

al. do not examine the use of vertex attributes as a measure of importance.

Figure 8​ Left: A sketchy style drawing with ‘construction lines’ generated by the
program and drawn in a different style. Right: A Japanese style drawing with two
style modules simulating different brushes. (Grabli, 2004)

Other papers dealing with line style include (Kaplan, 2000), who attaches geograftals

to a 3D surface to represent strokes and (Kalnins, 2002) who introduces a system to

design stylization, like hatching patterns and line styles, where users can draw

strokes directly onto 3D models.

2.0.1.3 ​ Temporal Coherence in Line Drawing

Another area of line drawing research is concerned with keeping strokes temporally

coherent. The configuration of strokes in a line drawing can be dramatically different

between two frames. Papers aiming for temporal coherence seek to keep strokes

consistent between frames. This involves moving and reshaping strokes, introducing

new strokes where necessary and culling strokes when they become occluded or too

densely packed.

20

(DeCarlo, 2004) handles temporal coherence for their own suggestive contours from

(DeCarlo, 2003). (Kalnins, 2004) addresses the problem of temporally coherent line

style by building upon their previous work where users can draw strokes directly onto

3D models by ensuring that the strokes stay consistent between animation frames as

well as running at interactive rates. (Lou, 2015) focuses on line drawing and

introduces a new technique to map strokes onto 3D models to help maintain

temporal coherency even with bumpy models - where normal techniques would fail.

(Bénard, 2012) addresses the temporal coherency problem of line strokes and also

eliminates cluttered lines based on a screen space density value.

2.0.2 ​Painterly Rendering

Painterly rendering is a vast field. Hegde et al. (Hegde, 2013) and Hertzmann

(Hertzmann, 2003) have done surveys of different techniques. Hegde approached

the problem of painterly rendering as a whole, whereas Hertzmann focused on

stroke-based rendering techniques alone.

Meier introduced a technique to render 3D objects with particles (or strokes) for

animation. (Meier, 1996) In this case, the particles were distributed across the

model’s geometry rather than screen space. This provided temporal coherency.

Some of the particle’s attributes are sampled from a ‘reference image’ which was

rendered image that the paint strokes are intended to depict. The technique

21

introduced in this paper also samples a reference image to obtain stroke attributes.

Meier’s technique does not vary detail across the image.

Figure 9​ Meier’s painterly rendering of a haystack (Meier, 1996)

2.0.2.1​ Varying Detail Automatically

Many painterly rendering algorithms attempt to automatically determine what parts of

the image to render in high detail. This obviously has the benefit of requiring less

input from a human to produce good images.

(Collomosse, 2002) uses image salience to prevent details from being lost in the

rendering process. The technique reduces the size of strokes in salient regions, as

well as ordering them such that they won’t be hidden behind the larger, less salient

strokes. The technique doesn’t alter the density of strokes and, being completely

automatic, doesn’t allow for authored low detail or high detail regions.

Hertzmann introduced a technique to bring a render from low detail with large brush

strokes up to high detail with small brush strokes (Hertzmann, 2003) wherein the

22

source image is blurred to a degree corresponding to the brush size. Then

progressively smaller strokes are layered on top where the source image differs from

the render, referencing a less blurred source image for each brush. Many 2D

techniques use a layering approach to detail including (Haeberli, 1990) and (Hays,

2004).

Figure 10​ Hertzmann’s brush strokes of different sizes. Left is the source image,
centre is the brush strokes, and right shows the same strokes with texture mapping.
(Hertzmann, 2003)

(Hays, 2004) goes a step further and enables temporal coherency for stroke based

rendering from video data. Their technique produces very high quality renderings

built up from layers of varying detail, shown in figure 11. What goes into each layer is

determined by increasing frequencies of gradient. In theory, these layers could be

filtered through a weight mask such as the vertex colour image described in this

paper. Unfortunately, implementing this was infeasible within the time frame.

23

Figure 11​ Hays’ multiple layers of detail. (Hays, 2004)

2.0.2.2​ Varying Detail with Human Input

Bridging the gap between automatic and human-authored detail is (Santella, 2002).

Using an eye tracker, Santella et al recorded the parts of an image test subjects

looked at. With this data, they were able to raise and lower the detail in areas based

on where their subjects looked. This technique is different to the one presented in

this paper because it only applies to still images, and isn’t exactly ‘authored’ (anyone

who has experience with an eye tracker will understand how little control we have

over our own eyes).

Varying detail by painting detail masks has been done before for 2D images.

(Hertzmann, 2001) uses an interactively painted weight image to mark the level of

detail desired for each area in the image. Hausner, although his technique was

intended for mosaic blocks rather than paint strokes, demonstrates the use of user

defined regions to changes level of detail (Hausner, 2001). In doing so, the the

mosaic blocks are made smaller and more dense like the paint strokes in the

24

technique describes in this paper. What these two papers lack is the capability to

attach the desired detail information to a 3D model which can be moved around.

Figure 12​ Paint By Relaxation: Weight image and the corresponding painterly
render. (Hertzmann, 2001)

Figure 13​ Simulating Decorative Mosaics: The user-defined detail areas and the
mosaic image. (Hausner, 2001)

The issue of detail in 3D been addressed in (Winkenbach, 1994), where a user

marks areas of a 3D model to be rendered in detail in a pen and ink style, while other

areas are left flat (this is known as indication). This is very much a texture oriented

approach. The detail marks are placed interactively onto the texture where the

25

surface is to be ‘indicated’. The model is then rendered and texture mapped rather

than abstracted and depicted with particles like paint stroke algorithms.

Figure 14 ​Computer-Generated Pen-and-Ink Illustration: User-defined marks, with
indication, and without indication. (Winkenbach, 1994)

2.0.2.3​ Paint-Stroke Placement

Placing paint strokes usually requires extensive trial-and-error iteration in order to

guarantee full coverage of the canvas as well as to achieve an accurate rendering of

the source (Hertzmann, 2001). Usually this involves making a random change to one

stroke and evaluating some energy function over the new image - if the energy

decreases, the change is accepted - and once the energy function converges, the

job is finished. There are other ways to achieve acceptable stroke placements which

are quicker and simpler, though less exact. The fastest way would be a uniform

random distribution, but as you can see in figure 15, this results in large gaps and

clusters everywhere - due to the fact that it’s random. The next best option is

Poisson disk distribution. Samples are placed randomly, but no two samples can be

closer than some minimum distance.

26

Figure 15​ Uniform random vs Poisson disk distribution

Different methods for generating Poisson disk distributions have been examined

thoroughly in (Lagae, 2008) with respect to quality mostly - though the quality of the

distribution is not a vital concern for technique introduced in this paper. Achieving a

maximal distribution, where the samples are so densely packed that no more can be

added without violating the conditions, is also not a concern for this paper.

An added advantage of Poisson disk distribution is that the minimum distance can

vary per location, ensuring sparsity and therefore low detail, making it an ideal fit for

the technique in this paper. Varying sample density was described in (McCool,

1992), using a function rather than a texture lookup as in this paper. A fast technique

for generating samples has been described in (Dunbar, 2006), but I don’t believe it is

fast enough to run this technique in real time, so I use an adapted version of ​Fast

Poisson Disk Sampling in Arbitrary Dimensions ​(Bridson, 2007) because it is simpler

and still quite fast.

27

2.0.2.4 ​ Temporal Coherence of Paint strokes

While sadly out of scope for this paper, temporal coherence for paint strokes is a

very important issue for the future. The main papers that deal with this problem are

(Vanderhaeghe, 2007), where screen space paint strokes are projected back onto

3D models before they are rotated; (Meier, 1996) where paint strokes are attached to

the 3D model as it moves around the scene; and (Hays, 2004) where the temporal

coherence of strokes is maintained by tracking the movement of pixels in image

space.

2.0.3 ​ Other Uses of Vertex attributes

Anyone who has rigged a 3D model for animation will be no stranger to painting

vertex attributes as influence weights for joints on a skeleton. (Bando, 2002) used

vertex attributes as direction vectors for modeling how human skin wrinkles, shown

in figure 16.

Figure 16​ Left: a few direction vectors are defined at key points. Right: A direction
field formed by interpolation (Bando, 2002).

28

3 ​ Inverted Hull
This chapter describes a technique to draw lines around the contours of a 3D model

where line thickness varies with vertex attributes.

3.1​ Implementation
For the implementation of this technique, vertex colours were painted on to each 3D

model using Autodesk Maya. The models were exported with their colour attributes

and then loaded into the rendering program. In the rendering program, each of the

model’s vertices is extruded outwards proportionally to its colour value. The

back-faces of this extruded model are rendered black, to represent the outlines.

Finally, the front-faces of the model are rendered, without extruding the vertices, to

colour inside the lines.

3.1.1 ​ Painting Vertex Attributes
3.1.1.1 ​ Why Maya?

Autodesk Maya provides a tool to paint vertex colours directly onto a 3D model using

a 3D brush. I believe many artists will be familiar with tools like this, since similar

tools are used when skinning meshes. For this reason, and because of time

constraints, I chose to use this tool as opposed to creating my own. As a result of

this decision, the vertex attributes cannot be changed during rendering. I chose to

use Maya over other programs simply out of convenience. Any tool that supports the

authoring of vertex attributes would be suitable.

29

3.1.1.2​ On the Intuitiveness of Painting Vertex Attributes

For the Inverted Hull technique, I make use of the red channel only, although in

theory it would be possible to use the full RGBA supported by Maya. Maya’s brush

tool allows for making changes to a single colour channel, but does not allow for

viewing the colour from a single channel. This would not be suitable for independent

parameters

The process of painting areas that should be more boldly outlined was unusual.

Colours are painted onto a vertex when it is facing the viewer (or painter), but the

rendering program only uses these colour values when the vertex is facing

orthogonally to viewer. For this reason, some knowledge of how the rendering

algorithm works is necessary to apply a good paint layer.

Furthermore, due to the long response time between painting a vertex in Maya and

seeing how it affects the render, it is impractical to be meticulous with details. For the

demonstrations, I used a broad brush to block out areas (like a face or a hand) and

then used a smoothing tool to smooth over the edges. If the tool was interactive, it

might be more practical to apply vertex colours with more precision (like on the side

of a nose or finger, for example).

3.1.2​ Inverted Hull Rendering Algorithm

This rendering algorithm is an old technique that works in two passes.

30

During the first pass, each vertex is extruded by a small amount in the direction of its

normal. This produces a slightly larger, and slightly deformed model. The back-faces

of this model are rendered black, or whatever colour is desired for the outline.

During the second pass, the front-faces of the model are rendered without any vertex

extrusion, using any desired shader.

The vertex attributes are used in the first pass. As mentioned earlier, only the red

channel is used. For each vertex, a ‘thickness’ value is interpolated (based on the

value of the red channel at that vertex) between a pair of minimum and maximum

thickness values shared across all vertices.

Here is an example vertex shader (in GLSL) for the first pass of the algorithm:

layout (location = 0) in vec3 aPos;

layout (location = 1) in vec3 aNormal;

layout (location = 5) in vec3 aColour;

uniform mat4 projectionview;

uniform mat4 model;

uniform float thicknessMin;

uniform float thicknessMax;

void main()

{

 float thickness = thicknessMin * (1 - aColour.r) + thicknessMax *

aColour.r;

 vec3 extendedPos = aPos + aNormal * thickness;

 gl_Position = projectionview * model * vec4(extendedPos, 1.0);

}

The inverted hull algorithm is a hybrid algorithm . These algorithms are

“characterized by operations in object space that are followed by rendering the

31

modified polygons in a more or less ordinary way using the zbuffer.” (Isenberg,

2003).

32

3.2​ Results
As expected, the lines are thicker around areas with higher red values, as shown in

figure 17.

Figure 17 ​Left: variable line thickness rendered over with white. Right: illustrating the
red channel of the vertex colours.

In reality, the vertex colours on the models are RGB values ranging from black

(0,0,0) to red (1,0,0). In order to illustrate them clearly alongside the black outlines, I

colour them with RGB(1, 1-​r​, 1-​r​), where ​r​ is the red channel of the vertex colour.

The result is that black areas appear white, while red areas still appear red.

The second pass of the inverted hull algorithm can really be performed by any

shader program. Figure 18 shows the use of a quantised shader.

It is also possible to render only the outer silhouette of the model by disabling depth

testing before rendering the back-faces in the first pass, as shown in figure 18.

33

Figure 18​ Far left: variable line thickness. Centre left: illustration of vertex colours.
Centre right: quantised shading (toon shading) over inverted hull. Far right: depth
test disabled for inverted hull.

3.2.0.1 ​ Practical and aesthetic benefits

Extruding vertices along their normal effectively ​deforms ​the mesh. Larger extrusions

will naturally deform the mesh more. Likewise, more intricately detailed features of

the mesh (like eye sockets, toes, creases etc) will suffer more from deformation than

broader, smoother areas (like shoulders and the outer silhouette). By painting low

red values around detailed areas and higher red values around broad shapes, the

technique can produce delicate lines around the details without sacrificing boldness

in other areas.

34

Figure 18 ​Left: constant vertex extrusion. Right: variable vertex extrusion

As can be seen in figure 18, the variable line thickness afforded by vertex attributes

can reduce deformation in sensitive areas like the face and hands, without sacrificing

the bold lines on the robes.Figure 19 shows how vertex attributes can be used to

add an artistic edge to the render, giving the fingers and folds of fabric a delicate

quality. Figure 20 and figure 23 show how vertex attributes might help depict the

weight of the lion’s forelegs with respect to the snake’s head.

Figure 19 ​Left: constant vertex extrusion. Centre: variable vertex extrusion. Right:
illustration of vertex colours.

35

Figure 20​ Left: constant vertex extrusion. Centre: variable vertex extrusion. Right:
illustration of vertex colours. This model was obtained from
https://sketchfab.com/models/d5e6b6a11da646f68a5fcba661dcae99

3.2.0.2 ​ Different distances

Since outline thickness is calculated in object space, the inverted hull algorithm

naturally produces narrower outlines for distant objects. Figure 21 shows how this

property can be removed by multiplying thickness by distance. When distance is

nullified, the only factor affecting line thickness is the vertex colour.

Figure 21​ Left: Distance affects line thickness. Right: thickness is multiplied by
distance to keep lines uniform. The skull model was obtained from
https://sketchfab.com/models/1a9db900738d44298b0bc59f68123393

36

Figure 22​ Left: view from below. Top right: view from above. Bottom right: illustration
of vertex colours from above.

Figure 23 ​Left: alternate view of the lion model. Right: illustration of vertex colours.

3.2.0.3 ​ Different viewing angles

Since the colour of a vertex only affects its outline when viewed (roughly)

orthogonally, there may be some concern about whether certain viewing angles

produce poor results. Indeed, a vertex-attribute may influence an edge when viewed

from anywhere along the tangent plane. In practice, this did not prove to be much of

a problem - due in part to the broad, low detail vertex colour paint job on the models.

Figure 22 and figure 23 show how unusual angles have little effect on image quality.

If the vertices were painted very finely (for example, red on one side of a nose or

37

finger and black on the other), then this issue may be worth considering. Without an

interactive paint tool, such fine painting would be impractical anyway, due to the long

wait for feedback.

38

4 ​ Painterly Rendering

This chapter describes a technique to render a 3D model using a set of ‘strokes’

where vertex attributes determine the level of detail. The technique generates

strokes each frame such that high-detail areas have more densely packed strokes.

4.1 ​ Implementation

Before the program is run, vertex colours must be painted on to the 3D model.

Each frame, a target image is rendered to a texture. The corresponding vertex

colours from that image are rendered to a second texture. A set of strokes are

generated with poisson disk distribution across screen space. Stroke size and

density varies according to vertex colour texture.

4.1.1 ​ Painting vertex attributes for level-of-detail

This was accomplished using the vertex paint tool in Autodesk Maya (see Painting

Vertex Attributes). The process of painting vertex attributes to mark levels of detail

was more intuitive than for line thickness. As mentioned in (Painting Vertex

Attributes), the inverted hull painting process involved a disconnect where the vertex

attributes were applied to the ​surface​ of the model during painting, but these

attributes only affected the render when the surface faces ​orthogonally​ to the viewer.

Painting for level-of-detail does not suffer from this disconnect. Thus, less knowledge

of the algorithm is necessary to apply a good vertex paint job.

39

As with the inverted hull algorithm, this stroke-based rendering algorithm only uses

the red channel from the vertex colours. Vertices with a high value in the red channel

are considered ​high detail​.

4.1.2 ​ The Stroke-Based Rendering Algorithm

4.1.2.1​ Rendering to the textures

Each frame, an image is rendered to a texture. We will call this the ​target image​.

This image can be rendered using any arbitrary rendering technique. A second

texture contains the vertex colour information from the image, the ​vertex colour

image​. In my implementation, this texture was in full RGB format, although I only

made use of the red channel.

4.1.2.2 ​ Generating Stroke Positions with Poisson Disk Distribution

Stroke positions are generated with poisson disk distribution over a weighted random

distribution for several reasons. The primary reason to use Poisson disk distribution

is that random strokes are naturally unpredictable and do not provide consistent

coverage. This is a very important trait for strokes, especially those whose size is not

cleverly adapted to fill empty space. Poisson disk distribution reliably provides good

coverage and it can guarantee no two strokes will be closer than a given radius; this

is very important when we want low detail areas.

Another important reason is that poisson disk distribution is better suited to adapting

for temporal coherence. (Vanderhaeghe, 2007) describes a method to achieve

40

temporal coherence of strokes using Poisson disk criteria. Unfortunately

implementing this method was out of the scope of this paper.

 The Poisson disk distribution method used in this paper is based on the algorithm

introduced by (Bridson, 2007).

Bridson’s algorithm takes as input the dimensions of the sample domain (screen size

in our case), the minimum distance ​r​ between samples, and a constant ​k​ - the

number of attempts each point has at generating a new sample. The contribution of

this paper is the sampling of the vertex colour image to change the value of ​r​,

thereby varying the sample density across the image. So instead of one value ​r​, this

algorithm takes a ​minimum distance​ and ​maximum distance​.

Begin with one random point in a list of active points.

While active points is not empty:

Choose a random point p from active points.

For k iterations:

Choose a nearby point at random.

If the nearby point is not too close to any other:

Add it to active points.

Remove p from active points.

A 2-dimensional grid is created to store samples and localise the search space. The

cell size is so that each cell contains at most one sample. In other√2
minimum distance

words, the grid contains cells. Each point in screen space mapscell size
screen width × cell size

screen height

to a cell in the grid. The items in the grid will be the locations of sample points that

have been placed already.

41

A list is created to store ‘active points’ - these are points who have not been given

the chance to reproduce yet. A starting point is chosen at random and added to this

list - and to the grid.

While the list of active points is not empty, a point ​p​ is chosen at random from the

list. ​The novel aspect of this paper​ is in sampling the vertex colour image at this

point using the screen-space coordinates of ​p​. The red value of the vertex colour

image at this sample is used to interpolate between ​minimum distance​ and

maximum distance​, giving us the new value ​r’​. For ​k ​iterations, a new point is

generated randomly between radius ​r’​ and ​2r’​ from ​p​. If the new point is within the

bounds of the image and not too close to any other point, then it is added to the list

of active points and to the grid. After ​k​ iterations pass, ​p​ is removed from the list of

active points.

The grid enables the search space for nearby points to be hugely reduced. Normally,

2 squares in each direction is enough to find any sample close enough to violate the

distance condition. However, when ​r’​ increases beyond ​minimum distance​ (recall

that we used this value to calculate cell size), the amount of grid squares containing

potential violators increases. When there is a great difference between ​minimum

distance​ and ​maximum distance​, it is necessary to calculate how many cells to

search. The search radius in number-of-cells is given by the expression

 to ensure all possible violations are found (Dunbar, 2006).r)(′ ÷ √2
minimum distance + 1

42

4.1.2.3 ​ Rendering Strokes

Strokes are rendered in a similar way to (Collomosse, 2002), with the parameters

length​, ​width​, ​size​, ​angle​, and ​depth​. Instead of taking the form of superquadratic

cones like(Collomosse, 2002), I used texture mapped quads. This is because I

expect to have much larger strokes in the final images than (Collomosse, 2002).

 At the location for each stroke, the gradient of the target image is calculated. The

magnitude of the gradient determines the ​length​ of the stroke. As the stroke gets

longer, it must get thinner, so ​width​ is calculated as . ​length ​is keptength1 − l

between 0.5 and 1 so that strokes in 0 gradient areas are not stretched laterally.

These ​length ​and ​width ​values are used to stretch the quad upon which the stroke

texture is rendered.

The gradient is used again to calculate the ​angle ​for the stroke. The ​angle ​is used to

rotate the stroke in alignment with the gradient line it lies on. If it is not on a gradient

line, then the stroke will be shorter, and its orientation less important.

The size of the stroke is obtained by sampling the vertex colour image’s red value at

the stroke location, and using that to interpolate between ​minimum size​ and

maximum size​ variables which must be defined beforehand.

The ​depth ​of the stroke is equal to the depth of the pixel it lies on. (Collomosse,

2002) had the most salient strokes rise to the fore. I attempted to adapt this by

having the stroke depth tied to the vertex colour image value, but with poor results.

43

Smaller, middleground strokes could overlap large strokes depicting low-detail

foreground items. This ruined the illusion of depth in the image.

44

4.2 ​ Results

Figure 24​ Clockwise from top left: (a) Target image; (b) Final stroke-based render;
(c) Gradient magnitude of the target image; (d) Vertex colours;

Figure 24 shows the rendering process at different stages. The stroke size and

density in (b) correlates to the colour in (c). Strokes are rotated to align with gradient

lines, which is illustrated in (d). This effect can be seen more explicitly in figure 30.

The gradient magnitude (d) elongates the strokes.

Different areas of the model can be emphasised by the vertex colour layout. This is

shown in figure 25, where on one side, the rear fin is detailed, and on the other, the

top and side fins are. Figure 29 compares uniform stroke density with varied stroke

density.

45

Figure 25​ Two different vertex colour configurations on the same model. Source
image on top; Left column shows one vertex colour configuration, stroke placement,
and an example rendered image; Right column shows the same with another vertex
colour configuration.

46

Figure 26​ From left to right: Target image; Final render; Vertex colours.

4.2.0.1 ​ Aesthetics

The images can be quite pleasing. As shown in figure 26, the high-detail areas are

clearly a focal point of the images, while the sky and robes melt into the background.

Figure 27 shows how high-detail areas can be in the middle-ground of the image as

well. figure 28 shows how an arbitrary shader can be used to produce the target

image.

Figure 27​ From left to right: Target image; Final render; Vertex colours

Figure 28 ​From left to right: Glass-like shader; Basic lambertian shader; Vertex
colours.

47

Figure 29​ Showing the difference between a uniform minimum distance and the
varied minimum distance offered by this technique. Top left is the source, beside it is
the vertex colour image. Middle row shows uniform minimum distance vs varied
minimum distance. Bottom row shows example renders with each.

4.2.0.2 ​ Tuning the stroke parameters for full stroke coverage

As shown in figure 30, the stroke parameters can make or break the quality of the

image. The stroke size range and stroke coverage must be configured separately for

full coverage, even though they are codependent.

48

Figure 30​ Clockwise from top-left: (a) Stroke size is too small with respect to stroke
density; (b) Strokes are too large and sparse to convey details; (c) Stroke
parameters tuned for full coverage and better detail; (d) Image gradient magnitude.

4.2.0.3 ​ Real time poisson disk distribution

Generating the set of strokes is the main performance bottleneck. Figure 31 shows

how frame times vary with different stroke generation parameters. Notice how the

image is quite hard to decipher with just ~1000 strokes. The implemented algorithm

does not limit the number of strokes, so it can be difficult to tune the parameters for

performance. Furthermore, the amount of strokes generated depends largely on the

amount of red in the vertex colour image. Figure 32 shows how different viewing

positions can have vastly different rendering times, even when using the same

stroke parameters.

49

Mean stroke
count per
frame

Mean frame
time
(milliseconds)

Sample image

1013 66.669

2031 119.745

4347 270.814

50

16086 974.877

Figure 31​ Same target image rendered with different stroke generation parameters.
Times were recorded on Intel Core i7-7700K CPU @ 4.20 GHz and NVIDIA GeForce
GTX 1080 Ti.

Stroke
count

Time
(ms)

Rendered image Vertex colours

2453 155.149

4082 247.81

Figure 32​ Different target images rendered with exactly the same parameters.
Notice the effect of large red areas on performance. Again, times were recorded on
Intel Core i7-7700K CPU @ 4.20 GHz and NVIDIA GeForce GTX 1080 Ti.

51

5​ Conclusions and Future Work

In this paper we introduced a painterly rendering technique that uses vertex

attributes to control level of detail. We also examined the use of vertex attributes in

an old line drawing technique. In general, the vertex attributes were intuitive to apply

using available tools. The varying of line thickness in the Inverted Hull algorithm is

aesthetically pleasing and helps to overcome the deformation side-effect. The

painterly rendering technique produces some aesthetically pleasing images with

controlled detail. It was possible to emphasize the focal points of a 3D model by

using a deliberate vertex colour configuration. Perhaps more importantly, it allows

the less important elements of the image - which may be just as detailed - to be

abstracted away by large, sparse strokes.

There are many ways vertex attributes can be exploited in future. First of all, an

interactive paint tool wouldn’t go amiss, since the delay between painting vertex

colours and seeing the results is not conducive to experimentation with different

layouts.

As for line drawing, the inverted hull rendering algorithm is primitive. The lines it

draws are not the most efficient for rendering the shape of a 3D model alone. It is

best used as a silhouette shader, with another algorithm handling the interior. An

obvious step would be to use vertex attribute influenced variable stroke thickness

with one of the more sophisticated algorithms like (DeCarlo, 2004) or (Judd, 2007) -

52

but this would be in direct competition with (Goodwin, 2007) which does a good job

of varying line thickness already. Instead, I think a good way to proceed would be to

take the approach of detail painting used in section ​4.1.1​ and use the vertex

attributes to cause or prevent stroke culling. Both (DeCarlo, 2004) and (Judd, 2007)

use thresholds which could be changed per vertex.

The is no limit to what could be done with painterly rendering. The first might be to

implement temporal coherency as described in (Vanderhaeghe, 2007). This would

greatly improve the suitability of the technique for use in animation.

Some small improvements to the technique presented could include better

abstraction of low detail areas - perhaps using a gaussian blur on the source image

with the vertex colour image as mask.

There are many painterly rendering techniques (both image-based and 3D) that

could be adapted to use vertex attributes. Since the 3D models can be rendered to

2D images, 2D techniques would work just as well. In my opinion, the best step

forward for 2D based painterly rendering would be to adapt (Hays, 2004) to use an

image rendered from 3D data with accompanying vertex colour image as a detail

mask, since it addresses temporal coherency.

As for making the technique realtime, it would be a dramatic pivot, but adapting an

approach like (Meier, 1996) and pre-attaching strokes of varying density to a 3D

model might be worthwhile.

53

References

Bando, Y., Kuratate, T. and Nishita, T., 2002. ​A simple method for modeling wrinkles

on human skin.​ In Computer Graphics and Applications, 2002. Proceedings. 10th

Pacific Conference on (pp. 166-175). IEEE.

Bridson, R., 2007, August. ​Fast Poisson disk sampling in arbitrary dimensions​. In

SIGGRAPH sketches (p. 22).

Bénard, P., Lu, J., Cole, F., Finkelstein, A. and Thollot, J., 2012, June. ​Active

strokes: coherent line stylization for animated 3D models​. In Proceedings of the

symposium on non-photorealistic animation and rendering (pp. 37-46). Eurographics

Association.

Cole, F., Golovinskiy, A., Limpaecher, A., Barros, H.S., Finkelstein, A., Funkhouser,

T. and Rusinkiewicz, S., 2008, August. ​Where do people draw lines?​. In ACM

Transactions on Graphics (TOG) (Vol. 27, No. 3, p. 88). ACM.

Collomosse, J.P. and Hall, P.M., 2002. ​Painterly rendering using image salience​. In

Eurographics UK Conference, 2002. Proceedings. The 20th (pp. 122-128). IEEE.

54

DeCarlo, D., Finkelstein, A., Rusinkiewicz, S. and Santella, A., 2003. ​Suggestive

contours for conveying shape​. ACM Transactions on Graphics (TOG), 22(3),

pp.848-855.

DeCarlo, D., Finkelstein, A. and Rusinkiewicz, S., 2004, June. ​Interactive rendering

of suggestive contours with temporal coherence​. In Proceedings of the 3rd

international symposium on Non-photorealistic animation and rendering (pp. 15-145).

ACM.

Dunbar, D. and Humphreys, G., 2006, July.​ A spatial data structure for fast

Poisson-disk sample generation​. In ACM Transactions on Graphics (TOG) (Vol. 25,

No. 3, pp. 503-508). ACM.

Goodwin, T., Vollick, I. and Hertzmann, A., 2007, August. ​Isophote distance: a

shading approach to artistic stroke thickness​. In Proceedings of the 5th international

symposium on Non-photorealistic animation and rendering (pp. 53-62). ACM.

Grabli, S., Turquin, E., Durand, F. and Sillion, F.X., 2004. ​Programmable style for

NPR line drawing​. In Rendering Techniques 2004 (Eurographics Symposium on

Rendering). ACM Press.

Haeberli, P., 1990, September. ​Paint by numbers​: Abstract image representations. In

ACM SIGGRAPH computer graphics (Vol. 24, No. 4, pp. 207-214). ACM.

55

Hausner, A., 2001, August. ​Simulating decorative mosaics​. In Proceedings of the

28th annual conference on Computer graphics and interactive techniques (pp.

573-580). ACM.

Hays, J. and Essa, I., 2004, June. ​Image and video based painterly animation​. In

Proceedings of the 3rd international symposium on Non-photorealistic animation and

rendering (pp. 113-120). ACM.

Hegde, S., Gatzidis, C. and Tian, F., 2013. ​Painterly rendering techniques: a

state-of-the-art review of current approaches​. Computer Animation and Virtual

Worlds, 24(1), pp.43-64.

Hertzmann, A., 2001.​ Paint by relaxation​. In Computer Graphics International 2001.

Proceedings (pp. 47-54). IEEE.

Hertzmann, A., 2003, July. ​A survey of stroke-based rendering​. Institute of Electrical

and Electronics Engineers.

Isenberg, T., Freudenberg, B., Halper, N., Schlechtweg, S. and Strothotte, T., 2003.

A developer's guide to silhouette algorithms for polygonal models.​ IEEE Computer

Graphics and Applications, 23(4), pp.28-37.

Judd, T., Durand, F. and Adelson, E., 2007, August. ​Apparent ridges for line

drawing.​ In ACM Transactions on Graphics (TOG) (Vol. 26, No. 3, p. 19). ACM.

56

Kalnins, R.D., Markosian, L., Meier, B.J., Kowalski, M.A., Lee, J.C., Davidson, P.L.,

Webb, M., Hughes, J.F. and Finkelstein, A., 2002. ​WYSIWYG NPR: Drawing strokes

directly on 3D models​. ACM Transactions on Graphics (TOG), 21(3), pp.755-762.

Kalnins, R.D., 2004, June. ​WYSIWYG NPR: Interactive Stylization for Stroke-Based

Rendering of 3D Animation.​ PhD Thesis, Princeton University.

Kaplan, M., Gooch, B. and Cohen, E., 2000, June. ​Interactive artistic rendering​. In

Proceedings of the 1st international symposium on Non-photorealistic animation and

rendering (pp. 67-74). ACM.

Lagae, A. and Dutré, P., 2008, March.​ A comparison of methods for generating

Poisson disk distributions​. In Computer Graphics Forum (Vol. 27, No. 1, pp.

114-129). Blackwell Publishing Ltd.

Lou, L., Wang, L. and Meng, X., 2015. ​Stylized strokes for coherent line drawings.

Computational Visual Media, 1(1), pp.79-89.

McCool, M. and Fiume, E., 1992, September. ​Hierarchical Poisson disk sampling

distributions​. In Proceedings of the conference on Graphics interface (Vol. 92, pp.

94-105).

57

Meier, B.J., 1996, August. ​Painterly rendering for animation​. In Proceedings of the

23rd annual conference on Computer graphics and interactive techniques (pp.

477-484). ACM.

Santella, A. and DeCarlo, D., 2002, June. ​Abstracted painterly renderings using

eye-tracking data.​ In Proceedings of the 2nd international symposium on

Non-photorealistic animation and rendering (pp. 75-ff). ACM.

Strothotte, T. and Schlechtweg, S., 2002. ​Non-photorealistic computer graphics:

modeling, rendering, and animation.​ Morgan Kaufmann.

Vanderhaeghe, D., Barla, P., Thollot, J. and Sillion, F.X., 2007, June. ​Dynamic point

distribution for stroke-based rendering​. In Proceedings of the 18th Eurographics

conference on Rendering Techniques (pp. 139-146). Eurographics Association.

Winkenbach, G. and Salesin, D.H., 1994, July. ​Computer-generated pen-and-ink

illustration​. In Proceedings of the 21st annual conference on Computer graphics and

interactive techniques (pp. 91-100). ACM.

58

