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Summary 

There are many existing websites that allow access to databases containing a wealth of 

information on the past performance of academic researchers, including their year by year 

citation counts, publication counts, h-index and many more metrics. However, it can be 

difficult if not impossible for a human being evaluating all of these statistics to predict how a 

researcher will perform in the future. This can make it difficult for universities to decide which 

researchers to hire for certain positions, or for researchers themselves to know where they 

stand in relation to their colleagues. This dissertation investigates different ways of predicting 

how the evolution of different aspects of an academic researcher’s career can evolve over time, 

using machine learning and time series techniques. Using data gathered from a public 

repository, different algorithms and strategies were compared in order to predict the citation 

count, publication count and future universities of academic researchers. For predicting 

metrics, 3 different time periods were analysed using two different prediction strategies. The 

three time periods were predicting their total citation count 10 years after first publishing based 

on data from their first 5 years, predicting citation count at 15 years based on the first 10 and at 

20 years based on the first 15. In one strategy a single prediction was used to attain these 

values, and in the other the values of citation count, publication count and h-index for each 

individual year were predicted one year at a time, with predicted values of previous years used 

to predict the values for the next year. Future universities a researcher may go on to work at are 

predicted based on the order of the universities they have worked at previously 

 

The results of these investigations yield a number of insights into an academic career. The h-

index and publication count were found to greatly increase the ability of an algorithm to predict 

future citation count compared to citation count alone. The compound predictions were found 

to be less accurate than single predictions as the errors compound each year. Despite this, the 

compound h-index predictions were still reliable, demonstrating the strong predictive power of 

the h-index. Training algorithms on data from earlier years of a researchers career was found to 

decrease the performance of algorithms, indicating that they have little to no bearing on a 

researchers future performance. Finally, the order that a researcher attended universities in the 

past was found to have a huge impact on where they may go on to work in the future 
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1 Introduction 

1.1 Background  

A researchers’ performance is something that needs to be assessed in many situations. When 

researchers apply for new positions, research grants or are in consideration for an award, 

several factors are considered. These include total number of publications and citations, the 

reputation of the journals and conferences in which these publications appeared, and some 

newer metrics such as h-index and impact factor [1]. Other metrics that are considered but not 

always formally analysed include previous grants awarded, PhD students supervised, previous 

roles and institutions worked at previously.  

1.2  Research Problem 

These metrics are all focused on the past performance of the researcher in question. They can 

only show how well a researcher has performed up to now, and it is difficult for a human 

analysing them to reliably predict how a researcher’s career will evolve. There is some 

evidence to suggest that the metrics that are predominantly used are ill equipped to enable a 

human analysing them to make this kind of prediction. [1] 

 

Figure 1, Figure 2 and Figure 3 show the citation count, h-index and publication count of 

Researchers A and B over the course of their careers. Researcher A’s h-index has a clear 

positive trend, as does their citation count until the last 2 years. This would seem to indicate a 

healthy future career for them, albeit with a slight risk that their performance may decline. 

However, the future of the researcher’s publication count is a lot less clear, with large increases 

and sharp drop-offs. This inconsistency in publication count may affect this researcher’s future 

citation count and h-index in ways that are difficult to interpret from these graphs alone. 

 

Researcher B has a much slower start to their career than Researcher A, but from 7 years after 

their first publication their productivity increased massively. Both are at the same point in their 

careers, with both having first published 14 years ago. This means that they may be applying 

for similar positions, such as assistant or associate professor. A person in charge of choosing 

which of the 2 researchers to hire would find it difficult if not impossible to decide whether to 

hire Researcher A or Researcher B using only these metrics. Even if such a decision could be 

made based on these metrics alone, there are even more factors to consider such as the 

reputation of the universities and journals that each researcher has published with, which 

further complicates the decision. In order to adequately evaluate these metrics, a more complex 

system or method is required than simply a human inspecting these metrics and making 

instinctual predictions. 



2 
 

 

Figure 1: Citations per year for Researchers A and B 

 

 

Figure 2: h-index each year for Researchers A and B 

 

 

Figure 3: Documents per year for Researchers A and B 
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1.3 Research Goal 

The research goal for this project is to investigate the ability of machine learning and time 

series techniques to predict the evolution of academic careers, with the ultimate aim of creating 

a method that can reliably predict how certain metrics of an academic career will change as 

time passes. For example, a researcher may input their citation count, document count and h-

index for each previous year of their publishing career, as well as the previous universities they 

have worked at. The method would output a prediction for each of these metrics 5 years into 

the future as well as a year by year breakdown of them. It would also output a list of 

universities that the researcher is likely to go on to work at. Multiple machine learning 

algorithms and other types of predictions will be experimented with in order to achieve this 

goal. 

 

One of the main reasons that machine learning techniques have become so popular in recent 

years is their ability to handle multiple different features and combine them into a cohesive 

model that produces predictions that would impractical to calculate by hand or on older 

computers. The multiple features described in Section 1.2 are difficult for a human to analyse 

but are very well suited to assessment by machine learning techniques. 

 

The first step was to create a model for measuring academic performance that is as 

comprehensive as possible. Machine learning algorithms will then be used on a simplified 

version of this model, accounting for only previous work history and citation counts. This first 

iteration will then be expanded to include more features from the original model as possible to 

improve the standard of predictions. 

2 Literature Review 

2.1 Motivations 

Attempting to predict future events is one of humanity’s oldest traits. As early as the 7th 

century BC, Greek citizens would consult the Oracle of Delphi for prophecies about their own 

lives [2]. In modern times, people have begun to use machine learning and other statistical 

methods to attempt a large range of predictions, from diagnosing diseases [3] and predicting 

stock market trends [4] to more personal predictions like recommending articles to users based 

on their past reading history [5]. This has been facilitated by the constant increase in computing 

power available to the public, allowing large datasets to be analysed and predictions made in a 

reasonable amount of time using algorithms that would have taken days or weeks only a 

decade ago. As machine learning techniques increase in popularity, more and more industries 

are attempting to leverage these techniques to improve their decision making.  
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Academia is no exception to this trend of wanting to see into the future. van Dijk et al. [6] used 

linear models to predict how likely a researcher is to be successful in applying for role as 

Principal Investigator, using a dataset with over 500 metrics describing the careers of 25,000 

medical scientists. Daud et al. [7] sought to predict from as early a point as possible whether or 

not a researcher is what they define as a ‘rising star’, using a number of different algorithms to 

see which yield the best results. More generally, machine learning has been used on a wide 

range of topics in academia. Instead of focusing on the researchers themselves, a study by Fu et 

al. [8] describes a model that can predict year by year citation counts for publications in the 

biomedical field up to 10 years after it is first published, using only data available on 

publication. The machine learning methods used make use of both content based and 

bibliometric features. It has also been used to extract the authors and affiliations from a given 

publication and establish relationships between different articles [9]. 

 

The motivations behind being able to reliably make these types of predictions are two-fold. If 

you are attempting to decide between multiple candidates for a job opening, being able to 

reliably predict how they will perform in the future is a huge help in making that decision. The 

same also applies to those attempting to get hired. Seeing which candidates have better 

predicted careers can help inform decisions about their own career and how to give themselves 

the best chance at success.  

2.2 Metric Prediction 

The most popular predictions made in relation to academia are regarding the metrics that 

describe a researcher’s career. One of the most important metrics, both as a tool for predicting 

other metrics and as something to be predicted, is the h-index. Since it was first proposed by 

J.E. Hirsch in 2005 [10] it has been used by many others to predict how it and other metrics 

like citation count and publication count will change over the course of a researcher’s career. 

According to [10], “A scientist has index ℎ if ℎ of his or her 𝑁# papers have at least h citations 

each and the other 	(𝑁# − 	ℎ) papers have ℎ citations each”. Hirsch found that the h-index 

gives a more accurate view of a researcher’s career than citation count alone, which can be 

artificially inflated by a researcher having a small number of successful papers or by having a 

minor role in co-authoring multiple papers. 

 

The h-index has become a very popular metric since it was first introduced, with many studies 

attempting to quantify its ability to represent past performance and predict future performance. 

One of the most important studies in in this area was conducted by Hirsch himself [11].  In this 

paper, he assesses its use at predicting how other metrics will change over time. No machine 

learning techniques are used to carry out these assessments. Instead, the metrics of 50 

physicists who first published between 1978 and 1982 are measured after the first 12 years and 
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first 24 years of their careers. Each combination of these metrics (12-year h-index vs 24-year 

citation count, 12-year publication count vs 24-year publication count etc.) was analysed and 

the correlation between them calculated. Hirsch showed that the h-index had the highest ability 

to predict its own future value of any of the metrics analysed and could predict other metrics 

more accurately than any other single metric. The h-index was also the subject of a study by 

Acuna et al.[12]. This study used a simple linear regression to predict a researcher’s h-index 

for each year up to 10 years in the future, using the number of articles a researcher had written, 

their current h-index, the number of years since they first published, the number of distinct 

journals they had published in and their total number of publications as training features. 

 

The h-index is also used in a paper by Bertsimas et al which seeks to predict publication count 

and citation count 9 and 16 years after a researcher’s first publication [13]. This paper uses a 

random forest model based on citation count, h-index and both A-journal and total publication 

count after 5 years as a baseline model. Predictions from this model are then compared to 

predictions based on a network model based created by the authors of the paper. To create this 

network, the authors first processed 198,310 papers authored by 136,313 authors to create two 

networks. In the citation network, nodes represent papers and directed edges represent one 

paper citing another. In the co-authorship network, nodes represent authors and undirected 

edges represent authors working together on a paper. These networks were combined with 

undirected edges connecting authors to papers they authored. Undirected edges in the co-

authorship network were replaced with a pair of directed edges to facilitate the merging of the 

2 networks. This network was created for each year between 1975 and 2012 to illustrate how 

the researchers’ careers evolved over that time. The authors created a number of metrics based 

on this network to describe the career of individual researchers. Combining these metrics with 

standard metrics such as citation count, h-index and publication count, the authors again used a 

random forest algorithm compare with their baseline. 

 

Another study by Amin Mazloumian disputes the claims made by Hirsch [11] that the h-index 

has the most predictive power of all metrics. It proposes instead that citations per year, not 

included in the original study, is a more effective metric than h-index for predicting future 

citation count, and that using some other metrics in conjunction with these can actually 

decrease predictive power. Mazloumian also proposes the g-index, an alternative to the h-

index, which is the highest value of 𝑔 papers by a researcher that have received 𝑔) citations 

[14]. 

 

It is clear from these papers and others like them that citation count, publication count and h-

index are very popular and usful metrics. This is partly because they are both simple to 

calculate and it is easy to understand what the values of these metrics mean for an academic 
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career. They are both important as values to predict and as data used to make these prediction 

But there are other features that have also been shown to have predictive power. A study of 182 

biologists by Laurance et al. [15] found a strong correlation between pre-PhD publication count 

and overall productivity (defined here by publication frequency) as well as weaker correlations 

between productivity and gender, university prestige and whether or not English was a 

researcher’s native language.  

 

The availability of different metrics played a huge role in choosing which ones to include in 

this project, as it did in the studies described above. 

2.3 Employment Prediction 

Much of the efforts to predict future employment for researchers have focused on what 

positions or accolades a researcher is likely to receive, rather than the universities they may go 

on to work in. As mentioned above, van Dijk et al. [6] attempted to predict whether a 

researcher would be successful in applying for a Principal Investigator position based on the 

number of papers published by a researcher and the impact factor of the journals in which they 

were published. Bertsimas et al. [13] used their network model to predict which researchers 

would be selected for tenure positions. It’s possible that the actual universities offering these 

positions may not be of interest to many academics, hence the lack of research in this area. 

Nonetheless, I believe predicting a future place of employment reliably to be a good 

demonstration of the power of machine learning techniques. 

2.4 Time Series Analysis 

As mentioned previously, machine learning techniques have been applied to a wide range of 

areas. Experiments carried out in one area may contain solutions to problems in others. Time 

series analysis has long been an area where people have sought accurate predictions. A time 

series is a list of measurements of the same value at regular intervals. These measurements 

could be anything from air pollution levels in a city to the amount of people queueing at a 

bank. A researcher’s citation count, publication count and h-index each year can all be viewed 

as time series and so popular time series algorithms can be used to make predictions about 

them. One of the most popular time series prediction algorithms is the Autoregressive 

Integrated Moving Average (ARIMA) model [16, 17]. This model analyses just one time series 

at a time and so cannot be used on multivariate inputs, which may put it at a disadvantage to 

other algorithms that can make use of multivariate input.  

 

There have been successful attempts at applying machine learning techniques, in particular 

Artificial Neural Networks, to multivariate time series problems as varied as the availability of 
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water resources [18] and flour prices [19]. These approaches could prove useful for predicting 

the future values of various metrics.  

 

Neural networks are not the only machine learning algorithms that can be applied to time 

series. Sinn M et al. [20] used several versions of a K Nearest Neighbours style algorithm to 

predict when a bus will arrive at a certain stop based on its journey so far. The cumulative 

number of metres the bus had travelled each minute were used as features to calculate the 

Euclidean distance between different journeys on the same route. The times taken for buses to 

reach future stops on similar journeys were used to predict how long a bus mid-way through a 

journey would take to reach those stops. The team behind this paper went on to implement this 

technique with Dublin Bus. 

 

Predicting academic success is rarely considered as a time series problem, so these methods 

may yield different results to the studies referenced in Sections 2.2 and 2.3. 

3 Methodology 

To achieve the stated research goal, a plan was created  

1. Create model containing all factors that may contribute to researcher performance. 

2. Develop a method of parsing the publicly available data from websites like Google 

Scholar, Microsoft Academic or Scopus, either through a pre-existing API or HTML 

parsing. In the end only Scopus was used for reasons detailed below. 

3. Based on which features are most readily available and most commonly used in 

relevant literature, create a dataset using the methods created in step 2. 

4. Create first iteration of the method which makes predictions based on single 

variables. These predictions will be used as baseline results. 

5. Create second iteration which makes predictions based on multiple variables 

6. Refine this iteration as much as possible, including as many relevant features as 

possible before the deadline. 

3.1 Creating the Initial Model 

After consulting the relevant literature, citation count, publication count and h-index were 

identified as being the most important metrics. Other metrics that could possibly affect career 

development were included as well. The model, as can be seen in Figure 4 is split into 2 

sections, personal details and academia. The academia section is further split into research, 

publication and teaching. These divisions would have no bearing on a machine learning 

algorithm but make it easier for someone seeking to understand the selection of features what 

they mean and why they are important. 
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Figure 4: Complete Model of an Academic Career 

3.2 Gathering the Data 

Many of the metrics in the ideal model cannot be used to compare researchers in different 

fields. A h-index that might represent an impressive career for a biologist may represent an 

average career for a mathematician. The first step therefore was to create a list of researchers 

from the same discipline whose career histories could be used as training data. The discipline 

itself was not important so long as it was the same for all researchers, so computer science was 

chosen. The list was created by simply searching for ‘Computer Science’ in Harzing’s Publish 

or Perish [21] tool, exporting the results to a CSV file and extracting the author names. This 

resulted in a list of 2788 Computer Science researchers whose career histories could be used to 

train and test machine learning algorithms.  

 

After compiling this list, the next step was to create a dataset containing the career histories of 

these researchers. A list of online databases that could potentially be used was compiled from 

my own research and from suggestions by my supervisor. The databases, while free of charge 

and very useful for both this use case and for other people all over the world, rely on PDF 

parsing to collate their statistics. These parsers can be error prone and so the figures generated 

based on them may not be entirely accurate [22-25]. As well as this, some of the sources that 

they publication data from are publicly maintained and therefore can be prone to manipulation 

[26]. Despite these flaws, the ease of access to these online databases outweighed possible risks 

of inaccurate data.  

 

The databases initially identified as being potentially suitable were Google Scholar, Research 

Gate, Mendeley, Orcid, Semantic Scholar, Microsoft Academic, Academia.edu and Scopus. Of 

these, only Scopus, Semantic Scholar, Mendeley and Orcid offered an API. If the other 
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websites were to be searched then a HTML parser would have to be developed on top of the 

rest of the project, which would consume a lot of time that could be used working on the 

machine learning aspect of the project. Of the four websites that offered an API, only Scopus 

maintains its own database. The other websites rely on researchers signing up and entering 

their own details and were more like social networks than pure databases. This means that 

Scopus has information on much more researchers, with the trade-off that in cases where a 

researcher had taken the time to fill out their details on another website, the other website 

would have a much more detailed history for that researcher. Indeed, when searching each 

website for the researchers on the list, 87% of them could be found on Scopus, with the next 

highest being 54% on Mendeley. There are always arguments to be made for quality vs 

quantity of data but in this scenario the difference in quantity was too steep, especially 

considering that the core metrics of citation count, document count and h-index were all 

available for every author on Scopus. Another factor to consider is that Scopus does not 

discriminate regarding which researchers it collects information on. For information to appear 

on other websites, a researcher would have to make the conscious decision to sign up to that 

website, which could be an indication of some other factor in their careers that could not be 

accounted for in the scope of this project. For these reasons, Scopus was chosen as the database 

from which the information for this project would be gathered.1 

 

The list of names was then fed into 4 separate scripts, one to search for the employment history 

of each researcher and 3 to search for the year by year citation count, document count and h-

index for each year between the publication of their first document and 2017 (The year 2018 

was incomplete at the time of retrieval so any metrics for that year would not have been 

representative). These were the metrics most commonly available and the ones most often used 

in the papers discussed in Section 2, so they were deemed good enough for initial predictions at 

least. 

3.3 The Dataset 

The scripts for downloading citation counts, document count and h-index created three CSV 

files, one for each metric.  Any duplicate entries (i.e. entries with identical features and similar 

or identical names) were removed. This is a very simple workaround for the name 

disambiguation problem that previous efforts at predicting these metrics have encountered [7, 

13]. Each of these 3 files has the same basic structure. The first column contains the name of 

                                                   
1 The data was downloaded from Scopus API between January 29th and April 18th, 2018 via 

http://api.elsevier.com and http://www.scopus.com. 
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the researcher, and the rest contain the citation count, document count or h-index for each year 

since the year that their first document was published. For example, this line in the citations file 

Serena Villata,4,25,14,25,52,68,106,95,113,120 

represents the researcher Serena Villata, who received 4 citations in the year that her first 

document was published, 25 the year after that, 14 the year after that etc.  

 

The employment history dataset is structured in a similar way to the other datasets. Each line 

contains the name of a researcher and the universities that they have worked at, identified by 

their Scopus identification number. For example, the line 

Andrew W Fitzgibbon,60027272,60026851,60022148 

represents the researcher Andrew W Fitzgibbon, who worked at the University of Edinburgh, 

University of Oxford and University College London. The dataset contains 1738 different 

universities, attended by 1878 researchers The average number of universities worked at be 

researchers in the dataset is 4.1, with a wide standard deviation of 7.3. Both datasets are further 

analysed in Section 5.1. 

3.4 Making Predictions 

3.4.1 Metric Predictions 

3.4.1.1 Baseline Predictions 

The first step was to create a baseline of predictions based on a simple method that later 

predictions could be compared to. This baseline consisted of training various machine learning 

formulas to make 3 predictions: A researcher’s total citation count 10 years since their first 

publication based on the citation counts of their first 5 years, their citation count after 15 years 

based on the first 10 years and their citation count after 20 years based on their first 15 years. 

These 3 predictions cover a large portion of a researcher’s career and the results inform what 

the algorithm could be used for. If predictions are accurate at predicting 10 year citation count 

but not 15 year citation count then it would be useful for assessing the careers of prospective 

assistant professors but not someone applying for a full professor position. As these predictions 

were only intended to be used as a baseline, the algorithms were only trained on citation 

counts. Further predictions, described in Section 3.4.1.2, make use of multivariate features. 

 

To facilitate these predictions, 3 separate files were created based on the citation dataset. One 

file had the first 5 years of each researcher’s citation data followed by their total citation count 

after 10 years. The second has data for 10 years plus the 15 year total and the last has data for 

15 years plus the 20 year total. This line in the file containing the first 5 years of citation data  

Andrew W Fitzgibbon,0,0,1,1,24,652 
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represents Andrew W Fitzgibbon, who received 0 citations in his first and second years of 

publishing, 1 in his third and fourth, 24 in his fifth year and had received 652 citations in total 

after 10 years since first publishing.  

 

Three algorithms were used to make these baseline predictions: Random Forest, K-Nearest 

Neighbours and Linear Regression. Each of these algorithms used the 10, 15 or 20 year total as 

their target variable and the other years specified in the dataset as the feature vector. The 

algorithms were implemented using the Scikit-learn[27] Python library, and their performance 

was measured by calculating the Root Mean Square Error (RMSE) and Mean Average 

Percentage Error (MAPE) of the predictions made. Due to the relatively small size of the 

datasets, K-Folds cross validation was used to help to ensure that these results aren’t skewed 

heavily by outliers or by randomly selected test and training data that happen to provide better 

results. Two different result aggregating schemes are provided by Sci-kit Learn and both were 

compared. One returns the uniformly weighted average of the value of the target variable from 

each of the k-nearest neighbours, and another returns the weighted average of this variable 

based on the distance between the neighbour and the researcher being analysed. These machine 

learning techniques and concepts described in detail in Section 4. 

 

3.4.1.2 Multivariate Predictions 

The baseline predictions are fundamentally limited by only using citation data to train the 

algorithms. As is the case with many machine learning and time series problems, future values 

are often dependent on the previous values of multiple variable and not just their own. The 

multivariate predictions makes use of citation count, publication count and h-index to train the 

algorithms. Two sets of predictions are made in this second iteration. Predictions were made 

using the same three algorithms as were used for the baseline predictions as well as three 

others: An Autoregressive Integrated Moving Average (ARIMA) model, a standard neural 

network model based on a multi-layer perceptron and a recurrent neural network based on long 

short-term memory units (LSTMs). Both of these algorithms are described in further detail in 

Section 4. 

 

The first set of predictions is the same as the baseline predictions from the previous section. 

Algorithms are trained on the first 5, 10 or 15 years of a researcher’s career and make 

predictions for their total citation count 5 years later. The difference here is that the algorithms 

are now trained on the h-index, publication count and citation count for each year of a 

researcher’s career and not just citation counts. To facilitate these predictions, 4 datasets 

similar to the ones used for the baseline predictions were created. Each line of each dataset 

represented a researchers h-index, document count and citation count for the first 5, 10 or 15 

years since their first publication, with the target variable being either their total citations in 
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years 10, 15 or 20 or the difference between these values and the researcher’s total citation 

count in years 5, 10 or 15. Predicting differences is common in time series analysis and the 

motivations behind it are explained below. Two versions of these datasets were created, 

containing the individual values for each metric per year and the other containing cumulative 

values, to see if different representations of the same data would perform differently. This line 

from the 5-year version of the individual values file 

Dragos Niculescu,0,2,5,7,12,1,6,4,1,2,0,30,95,225,284,3075. 

represents Dragos Niculescu whose h-index for the first 5 years of his career were 0, 2, 5, 7 and 

12, who published 1, 6, 4, 1 and 2 publications and received 0, 30, 95, 225 and 284 citations 

and by his 10th year of publication he had received 3075 citations. The same researcher is 

represented in the differenced version of the file by the line 

Dragos Niculescu,0,2,5,7,12,1,6,4,1,2,0,30,95,225,284,634,3075,2441 

which shows the same data but also includes the researcher’s total citation count after 5 and 10 

years and the difference between them. The cumulative versions of these lines are  

Dragos Niculescu,0,2,5,7,12,1,7,11,12,14,0,30,125,350,634,3075 

and 

Dragos Niculescu,0,2,5,7,12,1,7,11,12,14,0,30,125,350,634,634,3075,2441 

respectively. The values for the h-index were kept as the values for individual years as the 

concept of a cumulative h-index does not translate in the same way as a cumulative publication 

or citation count. The h-index is a measure of a researcher’s performance over their whole 

career, not just one year, so adding multiple years together provides no additional information. 

 

The second set of predictions takes the same inputs as the other set for training but instead of 

predicting citation count 5 years in the future, it attempts to predict all three metrics one year 

into the future. These predicted values are then combined with the original training data to 

predict these values two years after the original cut-off point. The process is repeated to gather 

predictions for the first 5 years after the cut-off point. For all of these predictions, different 

numbers of previous years were used as input and the results were compared to find the 

optimal number for each algorithm.  

 

3.4.2 Employment Prediction 

3.4.2.1 Baseline Predictions 

As with the metric predictions, a baseline is required for the attempts to predict future 

employment. To create this baseline, the employment history dataset was analysed with 

multiple variants of a k-nearest neighbours style algorithm. These baseline predictions do not 

take into account the order in which each researcher joined each institution, so each instance in 

the dataset is modified to create multiple versions of that instance, each with a different 

institution as the target. For example, if a researcher has worked at 5 institutions, 5 variants 
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would be created, each with a different institution as the target and the remaining four as the 

features for that instance. Only researchers with 5 or more previous employers were regarded 

for this analysis, as smaller numbers would lead to almost random guessing which would mask 

the true performance of the algorithm. As K-Nearest Neighbours trains on the whole dataset for 

each prediction, K-Folds cross validation was not used. 

 

Usually the similarity between feature vectors for k-nearest neighbours is calculated using 

Euclidean distance. This was not appropriate for the employment dataset as although each 

institution is represented by a numeric ID, these numbers are not derived from any feature of 

the institution. An implementation was considered where instead of representing employment 

history as a set, it could be represented as a binary vector where each column indicates whether 

a researcher has worked at that institution or not. The Euclidean distance between these vectors 

would then be used to determine the k-nearest neighbours and their weights. This was not 

attempted as the resulting matrix would be too sparse and the distances would take too long to 

compute. The Jaccard index, a common way of examining the similarity between mathematical 

sets, is therefore used instead of Euclidean distance in order to calculate similarity. The Jaccard 

index of 2 sets A and B is defined as |Α ∩ Β| ÷ |A ∪ B|.  

 

After the k-nearest neighbours are identified, a list of all the institutions those researchers had 

worked at is compiled and weights were assigned to each institution. Multiple ways of 

assigning these weights are implemented and compared. One variant simply assigns the weight 

as the number of the 𝑘 nearest researchers in who had worked at that institution. In another, 

this simple weight was modified using Term Frequency-Inverse Document Frequency (TF-

IDF) to increase the weights of rarer institutions and decrease the weight of more popular ones. 

TF-IDF was originally designed as a way of assigning documents to categories based on the 

frequency of terms in those documents. The formula for TF-IDF is 𝑡𝑓5𝑑7, 𝑡9: × 	log	(
?

@ABC@
) 

where 𝑡𝑓5𝑑7, 𝑡9: is the frequency of term 𝑗 in document 𝑖, 𝑛 is the number of total documents 

and |𝑑GC| is the number of documents that contain term 𝑗. When applied to this use case, the 

term frequency is the weight assigned to the institution and each authors employment history is 

a document. A third strategy was tested where the weight was the sum of the Jaccard indices 

between the researcher being analysed and the k-nearest neighbours, and a fourth applied TF-

IDF to this weight. Any list which had the target institution as one of its top 10 weighted 

entries was considered a success.  

 

3.4.2.2 Sophisticated  Predictions 

After the baseline predictions were produced, the algorithm was modified to take the order in 

which each researcher joined each university into account. These modifications involved 
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replacing the Jaccard index with a different measure of how similar two researchers are. The 

first of these measures is the number of universities for which two researchers had an identical 

career progression. For example, if researcher A attended Stanford, Trinity College, N.Y.U. 

and M.I.T. in that order, while researcher B attended Stanford, Trinity College, University of 

Paris and M.I.T. in that order, then the similarity score between them would be 2 because the 

first and second universities they attended were the same but the third breaks the streak, even 

though the fourth is also the same. A second measure takes order into account but less strictly. 

If researcher C attended Stanford, University of Paris and M.I.T. in that order then the 

similarity between them and researcher B would be 3 as they attended 3 universities in the 

same order, even though there is an extra university in the middle. Both of these measured 

were compared, again using a k-nearest neighbours algorithm. For each researcher the first 𝑥 

universities they attended were used as training data, to assess their similarities to other 

researchers. Different values of 𝑥 were tested to evaluate the trade-off between having more 

training data versus having less future universities that can potentially show up in the list of 10. 

Then once the k nearest neighbours were found and the list of the 10 most popular universities 

among them was created, the list was assessed under three metrics: Did the list contain any of 

the universities that the researcher would go on to work at, how many of them were contained 

in the list and what percentage of all of that researcher’s future universities are contained in 

that list. For example, if a researcher will go on to work at 5 more universities and 2 are in the 

list of 10 possible future universities then the values of the previous metrics are yes, 2 and 40% 

respectively. Normally classification problems such as this are assessed using values such as 

accuracy, precision or recall. These metrics could be applied to this problem, but the metrics 

described above better describe the usefulness of the predictions made. 

4 Machine Learning and Time Series Background 

This section explains machine learning and time series techniques references in Section 3. If 

you are familiar with these techniques, there is no need for you to read this section. 

4.1 Linear Regression  

Linear regression is one of the most common machine learning algorithms. As its name 

suggests, it seeks to find a linear relationship between a set of features and a target variable. 

The equation representing this relationship is ℎI(𝑥) =	 𝜃L𝑥, where 𝑥 represents the vector of 

inputs, 𝜃 represents the vector of coefficients and ℎI(𝑥) represents the prediction based on 

these inputs. To find the optimal values for the 𝜃 vector, it is first initialized with random 

values. These values are changed in each iteration to a value that makes the result of the cost 

function 𝐽(𝜃) = 	 N
O
∑ 5ℎI5𝑥7: − 𝑦7:

)O
7RN  smaller. To decide how much to modify these values, 

a gradient descent algorithm is used. For each value of the coefficient vector 𝜃9 , the differential 
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of the cost function is calculated and subtracted from 𝜃9 . This is described by the equations 

𝛼 T
TIC

𝐽(𝜃), where 𝛼 is a pre-defined learning rate. When 𝛼 is high, the values in 𝜃 change 

quickly but may skip over the optimal value which can increase the time taken to train the 

algorithm. It is important to note that gradient descent will converge to a local minimum, 

which may not be the same as the global optimal values for 𝜃.  

4.2 Random Forest 

Random Forest is another machine learning algorithm. It makes use of multiple decision trees 

to form a hypothesis. Decision trees are one of the simplest machine learning methods but are 

prone to overfitting (fitting data too close to outlier instances) when they grow too deep. The 

Random Forest algorithm seeks to reduce this tendency to overfit data by implementing a 

modified form of bootstrap aggregation. This process involves training multiple decision trees 

on random subsets of the training data. These random subsets are extracted with replacement, 

meaning that multiple trees may be trained on subsets containing the same instances. To train a 

decision tree, for each node in the tree a condition is chosen that ‘best’ splits the dataset being 

used to train the tree. There are multiple algorithms for deciding the best split but all of them 

try to find a condition which is true for half of the data and false for the other half. When 

making predictions, a prediction is taken from each of the decision trees. These individual 

predictions are combined to form the final prediction, usually by averaging them for regression 

problems or returning the prediction that appears most often for classification problems. In 

addition to this standard bootstrap aggregation, Random Forest also only trains each decision 

tree using a random subset of features. This modification of the original bootstrap aggregation 

algorithm helps to avoid correlation of the decision trees where some of the features being 

trained on are much stronger predictors than the others.  

4.3 K-Nearest Neighbours 

K-Nearest Neighbours compares the features of the input feature vector to the features of every 

other instance in order to find the 𝑘 most similar instances to that instance. Usually Euclidean 

distance is used to calculate the similarity between instances, with more similar instances 

having lower distances, but other measures can be used. Similar to random forest, the 

prediction from k-nearest neighbours is a combination of the target variables from the 𝑘 most 

similar instances, usually using either the average of the values or the most common value. To 

test how well Linear Regression and Random Forest perform on different datasets, the dataset 

is split into 2 sections, training and test data. The algorithms are trained using the processes 

described above, and then predictions are made using the test data. These predictions are then 

assessed using a metric appropriate to the problem. For K-Nearest Neighbours, there is no 
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separation of training and test data, unlike the previous 2 algorithms, as each instance is 

compared to every other instance in the dataset.  

 

Scikit-learn provides multiple versions of the k-nearest neighbours implementation: Ball Tree, 

K-Dimensional (KD) tree and brute force. All three of them were compared for these initial 

baseline tests. Brute force simply implements the algorithm as described above, attempting to 

find the k nearest neighbours based on the Minkowski distance between each feature vector. 

Minkowski distance is a hybrid between Euclidean and Manhattan distance measures. The 

other 2 variants make use of the training and test data split described above to improve the run 

time of the algorithm. The KD tree algorithm takes all the instances in the training dataset and 

orders them based on the feature that has the highest variance. It splits this list on the median 

instance for that feature. The two sub-lists are then sorted split on the median of the feature of 

highest variance that has not yet been used. This process is repeated until a set depth is reached 

or the lists are of length k. If the algorithm runs out of features to sort by, it will repeat the 

same order as before. The algorithm then goes through the training dataset, assigning each 

point an appropriate leaf node and making a prediction based on the instances from the training 

set contained in that sub-list. The ball tree algorithm optimises k-nearest neighbours by 

creating a binary tree where each node defines a multidimensional hypersphere or ball. To 

create this tree, instances in the training dataset are split into two initial balls, with no point 

appearing in both balls. Both balls are split again and this process is repeated until the leaf 

nodes of the tree are balls containing k points, or a certain depth is reached. Once this process 

is completed, the algorithm uses the same process as the KD tree algorithm to make predictions 

for the training dataset. 

4.4 ARIMA Models 

An ARIMA model is a generalised version of an autoregressive moving average (ARMA) 

model. Both models can be fitted to timeseries data and used to predict future values. 

“Autoregressive” indicates that the predictions for are made based on previous values of that 

timeseries only. Similar to a linear regression, autoregressive models model future values of a 

variable 𝑦G as a linear combination of past values of that variable of the form 𝑐 + 𝜙N𝑦GXN +

𝜙)𝑦GX) +⋯+ 𝜙#𝑦GX# + 𝑒G where 𝑦G is the value of 𝑦 at year 𝑡, 𝜙# is the coefficient by which 

𝑦GX# will be multiplied, 𝑐 is a constant, 𝑒G is white noise and 𝑝 is the number of previous 

timesteps analysed by the model. This is different to the algorithms explained previously, 

which are fitted to observations from multiple instances and their target outputs. For each 

prediction made by an ARIMA model, the model is only fit to the available data of that specific 

timeseries. This means that to predict citation counts for this project, ARIMA models will only 

be fitted to the citation count timeseries, ignoring the publication count and h-index. The 

“Moving Average” part of the name indicates that once a model is fitted, future predictions are 
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based on the error between the model and the actual observed values rather than the values 

themselves. The above formula then becomes 𝑐 + 𝑒G + 𝜃N𝑒GXN + 𝜃)𝑒GX) +⋯+ 𝑒#𝑦GX#, where 

𝑒G is the error between the model value and the observed value for year 𝑡 combined with white 

noise.  

 

Before combining these models to create an ARMA or ARIMA model, one must understand 

three central concepts regarding timeseries: stationarity, seasonality and differencing. A 

stationary timeseries is one where the value of the variable being measured is not dependent on 

the time at which it was measured and contains no overarching trends. A timeseries describing 

temperature in a specific location every 30 minutes for example would not be stationary 

because temperature will often peak around noon and then steadily decrease. A seasonal 

timeseries is one where patterns are consistently repeated independently of any trend in the 

data. A time series describing monthly sales of bicycles in a children’s toy store may have 

sharp increases at the beginning of summer and in December even if the larger trend is 

decreasing. ARMA and ARIMA models can only be fitted to and make predictions on a 

stationary, non-seasonal time series. 

 

Figure 5: Graphs showing the daily value of the Dow Jones index (top left), monthly 
Australian beer production (top right), monthly Australian electricity production (bottom left) 
and the daily change in Dow Jones index (bottom right) [17] 

 

Figure 5 shows four examples of time series. The daily Dow Jones index is not stationary 

because of the trends that appear in the timeseries. Monthly Australian beer production is 

seasonal due to its regular spikes. Monthly Australian electricity production is both seasonal 

and non-stationary due to the regular spikes and the overall upwards trend. The last graph, 

daily change in Dow Jones index, is both stationary and non-seasonal. It was created by 

substituting each value 𝑦G in the original Dow Jones graph with 𝑦G − 𝑦GXN. This technique is 
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known as differencing and is often used to convert non-stationary or seasonal timeseries into 

stationary ones. If the difference from one day to the next can be predicted, then it is simple to 

add this predicted difference to the last observed value to produce a predicted value. 

Occasionally models will have to be differenced twice but differencing three or more times 

often distorts the data too much to create accurate predictions. Automatic differencing is the 

difference between ARIMA and ARMA algorithms. This is necessary as differencing can 

remove seasonality and trends from timeseries which is necessary to fit ARIMA models to 

them. The Statsmodels [28] library was used to implement ARIMA models for this project. 

4.5 Multi-Layer Perceptron 

A multi-layer perceptron is the simplest form of neural network. Inspired by the neural 

networks that exist in the human brain, a multi-layer perceptron consists of at least three layers 

of nodes: one input layer, one output layer and at least one hidden layer that sits between them. 

The input layer has one node for each feature that the network will be trained on, the output 

layer has as many nodes as there are target variables, and each hidden layer can have any 

number of nodes. Each node in the input layer is connected to every node in the first hidden 

layer, which are in turn connected to every node in the next hidden layer etc. The nodes in the 

input layer pass the inputted values to the next layer. Each node in the hidden layer then passes 

a value on to the nodes in the next layer. This value is determined by the value of the activation 

function of the neural network applied to the sum of all inputs into the node. Popular activation 

functions include Sigmoid and the Rectified Linear Unit function (ReLU). The formula for 

Sigmoid is  𝜎(𝑧) = N
N^_`a

  which approximates biological neurons. The formula for ReLU is 

simply ReLU(𝑧) = max(0, 𝑧). To train a neural network, the weights assigned to each link are 

changed based on the error between the output value of the output layer and the observed value 

that corresponds to the provided inputs. This is done through backpropagation. Similar to the 

linear regression algorithm, the backpropagation process involves using a gradient descent to 

minimise the cost function 𝜀(𝑛) = N
)
∑ 𝑒9)(𝑛)9  where 𝑒(𝑛) is the target value minus the 

predicted value. Each link is updated by the amount determined by the differential of this cost 

function, −𝛼 Th(?)
TiC,j	

, where 𝑤9,7 is the previous link weight between nodes 𝑗 and 𝑖. This process 

is iterated until the weights of the links converge to a local minimum or a set number of 

iterations is reached. The Scikit-Learn library [27] was used to implement the multi-layer 

perceptron for this project. 

4.6 LSTM 

The final algorithm, a recurrent neural network (RNN), is a more complex type of neural 

network based on long short-term memory blocks (LSTMs). An LSTM is so named because it 

specialises in short term memory that is stored for a long time. In other words, it can remember 
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short patterns in a time series that may not be relevant to predictions until much further on in 

the time series. This makes it especially useful for predictive text models and speech 

recognition. Timeseries do not have to be stationary to be analysed by LSTMs but some non-

stationary timeseries can much larger amounts of time and space to train than other machine 

learning algorithms. The LSTM based RNN for this project was implemented using the Keras 

[29] library. 

4.7 K-Folds Cross Validation 

K-folds cross validation is a way of evaluating the performance of machine learning 

algorithms. First the dataset is split into 𝑘 sections or ‘folds’. These instances assigned to each 

fold can be random or sequential. The machine learning algorithm is then trained on 𝑘 − 1 

folds, with the remaining fold used as test data, with its performance assessed by a relevant 

metric such as RMSE etc. This process is repeated 𝑘 times, ensuring each fold is used as test 

data once. The performance of the algorithm on each combination of folds is averaged to return 

the final value, similar to the bootstrap aggregating process used in the random forest 

algorithm. This averaging of multiple values helps to reduce the impact of outliers in the 

dataset worsening performance, or coincidental combinations of training and test data giving 

better predictions than the algorithm would normally. The effects of both of these conditions 

can also be decreased by increasing the size of the dataset, and for that reason K-folds cross 

validation is usually only used on smaller datasets. 10 fold cross validation was used with the 

algorithms described above. 

4.8 RMSE and MAPE 

The two metrics used to analyse the performance of many algorithms in this project are Root 

Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). RMSE is one of 

the most common metrics used for analysing machine learning algorithms because it returns 

the sample standard deviation of the differences between predicted values and observed values. 

This gives an easily intuitable measure of how good or bad a range of predictions are. For 

example, if an algorithm was designed to predict the rating that a person would give a movie 

out of 10, and it made 100 predictions for 100 different person-movie combinations with an 

RMSE of 1.7, that means that any future predictions are likely to be within 1.7 of the actual 

rating. This also holds for predicting citation counts. As the name suggests, RMSE returns the 

square root of the sum of the squares of the absolute difference between the predicted values 

and observed values. The formula for RMSE is RMSE 5𝜃m: = 	n∑(5𝜃m − 𝜃:
)
) where 𝜃m is the 

vector of predicted values and 𝜃 is the vector of observed values. 
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RMSE is most useful when all observed values fall within a relatively narrow range as in the 

example above. For citation counts, where the observed values for citations received in a year 

can range from 0 to over a thousand, a single RMSE value may not necessarily be 

representative of the true performance of the algorithm being tested. For example, consider 6 

hypothetical researchers who in their 10th year received 15, 23, 36, 204, 453, and 572 citations. 

An algorithm that returned predicted values of 65, 73, 86, 154, 403, 522 would have an RMSE 

of 50 as all predictions were off by 50. While these predictions may be within the acceptable 

margin of error for the larger observed values, they are not for the smaller ones. To help 

account for this lack of nuance in the RMSE results, MAPE is also used to assess the 

performance of the algorithms tested. MAPE returns the average of the percentage errors 

between predicted and observed values, using the formula MAPE (𝜃m) = (N
o
∑ |IXIp|

|I|
) 	× 	100 

where 𝜃 and 𝜃m again represent. To return the previous example, both have an absolute error of 

40, but the former has a percentage error of 6.5% while the latter has a percentage error of 

67%. This ability to make use of percentage error in place of absolute error has both 

advantages and disadvantages. As demonstrated, percentage error can show details that may be 

missed by absolute error, but it can also hide others. For problems like citation count with a 

hard-minimum value of 0 citations for any given year, an algorithm that consistently outputs 

predicted values less than the observed values will have a maximum MAPE of 100, whereas 

algorithms that over predict have no limit on how high the MAPE can grow. In addition, poor 

performance on low observed values may negatively affect the MAPE. A predicted value of 8 

citations when the observed value is 2 will have a percentage error of 400%, even though the 

prediction is relatively good. Additionally, observed values of 0 will lead to division by 0 in the 

standard MAPE formula, so for these predictions a modified formula was used where MAPE 

(𝜃m) = 	 (N
o
∑ |IXIp|
|qrs(I,			N)|

) 	× 	100, a modification which was also used by Bertsimas et al. [13].  

 

Neither of these metrics are perfect, but when combined they provide a much more complete 

picture than they do alone. Using both MAPE and RMSE in conjunction with each other can 

cause some problems in assessing the performance of different algorithms, especially in cases 

where performance improves as measured by one metrics but stays the same or worsens as 

measured by another. Possible explanations for these scenarios are explained in Section 5.2. 

5 Results and Discussion 

This section is split into four parts. The first provides some details about the metric and 

employment history datasets that were assembled. The second deals with the results of 

predicting citation count 5 years after the first 5, 10 and 15 years. The third deals with the 

compound predictions over the same time periods, predicting citation count, publication count 

and h-index. The fourth and final section deals with the results of employment predictions. The 
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second and third parts are further split into three sections, one for each of the three time-frames 

examined (The first 5, first 10 and first 15 years of a researcher’s career). Each section 

compares the baseline results for each time-frame with the results from the more sophisticated 

algorithms, as well as presenting an argument as to which algorithm and dataset variant 

provides the best predictions for that time period. All confidence intervals shown in the 

following tables and graphs represent 90% of values.  

5.1 Dataset Analysis 

To provide context for the following results, the datasets for each predicted value are described 

below. Figure 6, Figure 7 and Figure 8 describe the publication count, citation count and h-

index datasets respectively, showing the mean value and the standard deviation of each metric 

in each year. In  Figure 6, a trend can be seen where a researcher’s yearly publication count 

increases for the first 10 years, then plateaus for the next 20 years before beginning a 

downward trend late in their career. However, the large standard deviations in all 3 graphs 

imply that there is no typical career, with a wide range of values represented at all stages of an 

academic career. Each graph also shows the percentage of researchers in the dataset whose 

careers are longer than a certain year. For example, 80% of researchers in the dataset published 

their first document at least 11 years ago, while 40% first published at least 19 years ago. The 

decrease in sample size towards later years leads to some erratic behaviour in the graphs. For 

example, the sharp spike in citation count in year 38 of Figure 7, or the decrease and following 

increase in h-index after year 41 of Figure 8. This lack of researchers in later years also leads to 

the phenomenon of the average h-index decreasing at points, even though a researcher’s 

individual h-index can never decrease. A researcher may have a relatively high h-index, 

increasing the average, but for years where there is no data for that researcher (because those 

years have not yet happened), the average h-index can decrease if the h-indexes of other 

researchers do not increase by enough to compensate for this loss. 

 

The functionality of the Scopus API meant that while year by year document and citation count 

could be found for each researcher using only 1 API request per researcher, h-index required 1 

API request per document. The limit of 20,000 requests per week imposed by Scopus made it 

impossible to acquire year by year h-index figures for every researcher in the list. The figures 

below are only based on the 451 researchers for whom all 3 metrics are available, although the 

baseline predictions described in Section 3.4 make use of the larger citations dataset which 

includes the details of up to 2417 researchers.  The average, maximum and minimum values 

and the standard deviation for each value predicted in the following Section 5.2 are shown in 

the following figures and tables. 
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Figure 6: The publication count dataset 

 

Figure 7: The citation count dataset 

 

 

Figure 8: The h-index dataset 
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Table 1: Average, maximum and minimum values and standard deviation of publication counts 
in years 6 through 20 

 

Table 2: Average, maximum and minimum values and standard deviation of citation counts in 
years 6 through 20 

Publication Count Average Minimum Maximum Standard Deviation 

Year 6 3.5 0 67 5.1 

Year 7 3.8 0 71 7 

Year 8 4.3 0 118 7.7 

Year 9 4.7 0 128 8.4 

Year 10 5.1 0 138 9.9 

Year 11 5.1 0 161 10.3 

Year 12 5 0 146 7.1 

Year 13 5.1 0 61 7.5 

Year 14 5.2 0 87 6.3 

Year 15 5.6 0 72 7.6 

Year 16 5.9 0 118 7.2 

Year 17 5.7 0 145 7.2 

Year 18 6.2 0 179 8.4 

Year 19 5.9 0 223 7.2 

Year 20 6.6 0 274 7.3 

Citation Count Average Minimum Maximum Standard Deviation 

Year 6 134 0 3222 306 

Year 7 156 0 4486 334 

Year 8 197 0 5631 410 

Year 9 216 0 6249 435 

Year 10 256 0 7058 507 

Year 11 254 0 2924 379 

Year 12 296 0 3545 438 

Year 13 305 0 4217 448 

Year 14 344 0 4927 505 

Year 15 364 0 5421 542 

Year 16 385 0 5870 577 

Year 17 397 0 6396 615 

Year 18 440 0 6512 645 

Year 19 422 0 6455 570 

Year 20 469 0 6794 625 
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Table 3: Average, maximum and minimum values and standard deviation of publication counts 
in years 6 through 20 

 

Figure 9 shows the frequency distribution of the universities in the employment dataset. 49% 

of the universities appear just once in the dataset, with over 80% appearing 5 or less times. 

This implies that there is a wide range of universities represented. This wide spread is also 

indicated in Figure 10, which shows the frequency of the 25 most common universities. The 

most attended university in the dataset, Stanford, appears 192 times, whereas the 25th most 

attended, Tsinghua University, appears only 38 times, an 80% drop. Figure 11 shows the 

frequency of the number of universities a researcher has worked at. The orange line shows the 

percentage of researchers who have worked at more universities than the value on the x axis. 

25% of the researchers in the dataset have worked at only 1 university, while 81% have worked 

at 5 or less. The mean number of universities worked at is 4.1, with a standard deviation of 7.4. 

h-index Average Minimum Maximum Standard Deviation 

Year 6 4.6 0 26 3.5 

Year 7 5.6 0 34 4.3 

Year 8 6.6 0 37 5 

Year 9 7.6 0 42 5.8 

Year 10 8.7 0 45 6.6 

Year 11 9.7 0 48 7.4 

Year 12 10.9 0 50 8.3 

Year 13 11.8 0 53 9.1 

Year 14 13 0 56 9.9 

Year 15 14.1 0 57 10.7 

Year 16 15.2 0 65 11.5 

Year 17 15.7 0 72 11.9 

Year 18 17.2 0 75 12.8 

Year 19 17.3 0 61 11.9 

Year 20 18.7 0 64 12.9 
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Figure 9: University Frequency Distribution 

 

 

Figure 10: Frequency of the 25 most common universities 

 

 

Figure 11: Frequency of number of universities worked at 
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5.2 Single Metric Prediction 

While gathering these results, two algorithms were ruled out as they were found to be 

unsuitable for the stated research problem. ARIMA models could not be fit to 37% of citation 

histories as even after differencing them twice, they were still found to be non-stationary. The 

Recurrent Neural Network based on LSTMs consistently failed to converge when trained on 

the multivariate datasets. This is likely because LSTMs are designed to identify sequences 

based on the historical context of inputs, while the results below show that many other 

algorithms attain the best results when only looking at more recent input years. While results 

for some researchers could be produced by both models, the high failure rates meant that they 

were fundamentally unsuited to the problem. Even if MAPE and RMSE values were generated 

based on their predictions, they would not be comparable to those of other algorithms due to 

these failure rates. 

 

5.2.1 Predictions from 5 to 10 years 

Table 4 and  Figure 12 show the MAPE and RMSE values for the baseline predictions of total 

citation count in the 10th year of a researcher’s career based on the citations attained in each of 

their first five years. K-Nearest Neighbours outperforms both Random Forest and Linear 

Regression, with the ball tree optimisation providing the best results. This weighted average 

provided the best results of all algorithms tested. Its MAPE and RMSE of 199 and 1325 are 

both better than the 211 and 1338 attained by the uniform weighting variant. They are also 

better than the distance weighting variant of the KD tree algorithm, which attained scores of 

206 and 1334 for MAPE and RMSE respectively. As illustrated in Figure 12, all predictions 

have very wide confidence intervals, a trend that appears in most results.  

 

Table 4: MAPE and RMSE values for baseline predictions of citation count in year 10 based on 
citation count of first 5 years 

 

Baseline Predictions MAPE Confidence Interval RMSE Confidence Interval 

KNN ball tree/distance 199 ±116 1325 ±590 

KNN ball tree/uniform 212 ±151 1339 ±529 

KNN brute/distance 254 ±181 1332 ±522 

KNN brute/uniform 256 ±175 1340 ±556 

KNN KD tree/distance 207 ±126 1335 ±546 

KNN KD tree/uniform 218 ±128 1342 ±570 

Random Forest 267 ±143 1400 ±525 

Linear regression 1496 ±795 1460 ±548 
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 Figure 12: MAPE and RMSE values for baseline predictions of citation count in year 10 based 
on citation count of first 5 years (Linear Regression not included as MAPE was over 5 times 
larger than next highest MAPE, making comparisons between other algorithms difficult). 

 

Table 5 and Figure 13 compares the best performing algorithms from each version of the 

datasets described in Section 3.4.1.2 with the best performing algorithm from the baseline 

predictions. These results show that some of the algorithms perform well as measured by 

MAPE and poorly as measured by RMSE or vice versa. The best algorithms were therefore 

chosen were not because they had the lowest value for MAPE or RMSE, but rather because 

they achieved relatively good scores in both compared to other algorithms tested on the same 

dataset. All algorithms except one are an improvement over the best baseline prediction as 

measured by MAPE. The multi-layer perceptron algorithm with a one year lag predicting the 

difference between a researchers 5 and 10 year total citation count has the best MAPE, 119, an 

improvement of 40% compared to the MAPE of the baseline, 199. However, this algorithm is 

the worst of those using the multivariate dataset as measured by RMSE. Its RMSE of 876 is 

20% higher than the best RMSE of 721, achieved by a multi-layer perceptron with a 4 year lag 

running on the cumulative version of the dataset and again predicting the difference between a 

researcher’s 5 and 10 year citation count. Despite this, when assessing algorithms by both 

metrics it is one of the best performing thanks to its low MAPE. It and the K-Nearest 

Neighbours algorithm running on the individual years dataset are the two standout algorithms, 

but their contradictory values for MAPE and RMSE make it difficult to choose the best 

algorithm. The average number of citations attained by a researcher by year 10 in this dataset is 

1045, with a standard deviation of 2172. These values indicate that even the lowest RMSE 

attained by these algorithms of 721 is not a very good value, and these predictions would have 

to be improved before they could be said to be accurate.  
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Table 5: The MAPE and RMSE of the best performing algorithms and their best performing lag 
sizes for each dataset 

 

 

Figure 13: The MAPE and RMSE of the best performing algorithms and their best performing 
lag sizes for each dataset  

 

5.2.2 Predictions from 10 to 15 years 

Table 6 and Figure 14 show the MAPE and RMSE scores of the baseline predictions for a 

researcher’s total citation count after 15 years based on the citations they received in the first 

10 years of their career. Comparing these results to the corresponding results for predicting 

citation count in the 10th year reveals several insights. The scores received by the K-Nearest 

Neighbours variants for these predictions are much closer than for the previous set. These 

predictions have MAPE values between 78 and 80, an increase of just over 1% from lowest to 

highest, whereas the previous set ranged from 199 to 256, an increase of 29%. The RMSE 

values are similarly close, ranging from 1957 to 2053, also a 1% increase. These close values 

coupled with the large confidence intervals indicate that the variant used does not significantly 

affect the results. These MAPE values are also significantly lower than those of the 10 year 

predictions. This makes sense as there are twice as many years to train each algorithm on, 

allowing for potentially more accurate predictions. The RMSE values are much higher but this 
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too can be expected as the average total citation count of researcher’s in the 10th year of their 

career is 1045, while in their 15th year this number almost doubles to 2079. That the RMSE 

values for all baseline algorithms are near this point means that the predictions are not much 

better than random guessing centred on the average value. 

 

 

Table 6: MAPE and RMSE values for baseline predictions of citation count in year 15 based on 
citation count of first 10 years 

 

 

Figure 14: MAPE and RMSE values for baseline predictions of citation count in year 15 based 
on citation count of first 10 years (Linear Regression not included as MAPE was almost 9 
times larger than next highest MAPE, making comparisons between other algorithms 
difficult). 

Even though there were multiple algorithms with very similar scores, K-Nearest Neighbours 

with the KD tree optimisation was chosen to be compared with the multivariate algorithms as it 
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KNN ball tree/uniform 79 ±31 2017 ±1382 
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KNN KD tree/distance 78 ±29 1957 ±1449 

KNN KD tree/uniform 80 ±27 2006 ±1387 

Random Forest 94 ±39 2147 ±1516 
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variant compared to the K-Nearest Neighbours algorithm with this algorithm. The MAPE 

values of the multivariate algorithms, while a large improvement over their 10 year 

counterparts, perform similarly to the best baseline algorithm. Conversely, huge improvements 

can be seen as measured by RMSE, indicating again that the use of multiple input features 

improves performance. The best MAPE, achieved by a Multi-Layer Perceptron with a seven 

year lag predicting the difference between a researchers 10 and 15 year citation count based on 

the citations achieved in each individual year, is only a 4% improvement over the baseline 

algorithm, 78 to 76, and has a much wider confidence interval. The best RMSE however, 

achieved by the same algorithm, is 682, a 65% decrease over the baseline RMSE of 1957. A 

correlation between more input years and lower MAPE values was noted in the previous 

paragraph, but the best performing algorithms in fact operate on relatively small lag sizes, even 

though the lowest MAPE is produced by a Multi-Layer Perceptron running on a 7 year lag. 

This would indicate that the number of input years does not matter as much as how late in a 

researcher’s career these years are, with data from more recent years being a much stronger 

predictor than data from earlier years. 

Table 7: The MAPE and RMSE with confidence intervals of the best performing algorithms 
and their best performing lag sizes for each dataset 

 

 

Figure 15: The MAPE and RMSE with confidence intervals of the best performing algorithms 
and their best performing lag sizes for each dataset 
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While it is difficult to compare RMSE scores from the 10 and 15 year predictions directly, 

some comparison is possible. The best RMSE for the 15 year predictions of 682 is 32% of the 

average total citation count of 2079 in year 15, while the best RMSE of the 10 year predictions, 

721, is 68% of the average total citation count in year 10, 1045. This relative decrease indicates 

better performance, something that is echoed by the improvement in MAPE scores from 119 

for year 10 predictions to 76 for year 15 predictions. Another trend from the 10 year results that 

is seen here is the strong performance of the Multi-Layer Perceptron algorithm. It was the best 

performing algorithm on each dataset variant for the 15 year predictions, as it was for three out 

of the four variants of the 10 year predictions.  

 

5.2.3 Predictions from 15 to 20 years 

Table 8 and Figure 16 show the baseline predictions for a researcher’s total citation count in 

the 20th year of their career based on the citations received in each of the first 15 years. Similar 

trends to the previous two sets of baseline predictions can be seen again here. The K-Nearest 

Neighbours algorithms perform better than Random Forest and Linear Regression, with the 

distance weighted variants outperforming their uniformly weighted counterparts. The best 

performing algorithm is the brute force, distance weighted K-Nearest Neighbours algorithm 

with an MAPE and RMSE of 59 and 2642 respectively. This is the best value of RMSE by 114, 

a margin which makes up for having an MAPE 3 higher than the lowest. The decrease in 

MAPE from all algorithms again shows a correlation between more training years and lower 

MAPE scores. Wide confidence intervals are also a feature of these results, as they have been 

in both sets of previous baseline predictions. 

 

 

Table 8: MAPE and RMSE values for baseline predictions of citation count in year 20 based on 
citation count of first 15 years 

Baseline Predictions MAPE Confidence Interval RMSE Confidence Interval 

KNN ball tree/distance 56. ±22 2756 ±1870 

KNN ball tree/uniform 59 ±23 2727 ±1553 

KNN brute/distance 59 ±27 2642 ±1716 

KNN brute/uniform 60 ±26 2713 ±1753 

KNN KD tree/distance 60 ±26 2681 ±1739 

KNN KD tree/uniform 60 ±25 2710 ±1852 

Random Forest 108 ±118 2692 ±1225 

Linear regression 693 ±724 2684 ±1443 
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Figure 16: MAPE and RMSE values for baseline predictions of citation count in year 15 based 
on citation count of first 10 years (Linear Regression not included as MAPE was almost 9 
times larger than next highest MAPE, making comparisons between other algorithms 
difficult). 

 

Table 9 and Figure 17 show the MAPE and RMSE values of the best performing algorithms for 

each dataset variant. In contrast to the other two time periods examined, Linear Regression is 

the best performing algorithm in three out of four variants, indicating that the relationship 

between the first 15 years of a researcher’s career and their total citation count in their 20th year 

can be much easier defined by a linear model than earlier time periods. This implies that after 

15 years a researcher’s career has become very well defined, and the number of citations they 

achieve per year is unlikely to change significantly. The MAPE of all algorithms is better than 

the best performing algorithm for the 15 year predictions, and most of the multivariate 

algorithms outperform the best baseline algorithm. The trend of small lag sizes receiving better 

MAPE scores as seen in the 15 year predictions is again seen here, with all the best performing 

algorithms running on lags of less than 4 years even though all sizes up to 15 were tested. The 

Linear Regression algorithm, like the best performing algorithms of the other two time periods, 

is running on the individual years dataset and predicting the difference between the total 

citation count at the cut-off point and the total citation count 5 year later. It has the lowest 

RMSE score, 934, and the second lowest MAPE score, 50. Only the Multi-Layer Perceptron, 

running on the same dataset but predicting just the total citation count and not the difference, 

received a lower MAPE score, 39.  The average total citations achieved by a researcher in their 

20th year is 3495, with a standard deviation of 5733. This makes the best RMSE of 934 a 

relatively good prediction, only 26% of this average. This coupled with the relatively low 
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MAPE of 50% makes this the time period with the best results, although further improvement 

is obviously still possible. 

Table 9: The MAPE and RMSE with confidence intervals of the best performing algorithms 
and their best performing lag sizes for each dataset 

 

 

Figure 17: The MAPE and RMSE of the best performing algorithms and their best performing 
lag sizes for each dataset 

 

Many of these results show that the introduction of new features improves performance and 
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conclusively decide which algorithm has the best performance. One explanation for this 

phenomenon comes from the problems with MAPE described in Section 4.8. An algorithm 

could artificially improve its MAPE by making better predictions for low numbers but worse 

predictions for high numbers, while keeping its RMSE the same or worsening it. Another 

explanation is that an algorithm that is biased towards predicting values less than the observed 

value can also increase MAPE when there is a natural floor on predictions, as there is for 

citation counts. A negative bias in scenarios like this means that MAPE cannot exceed 100, 

while a positive bias has no such limit. For example, if the observed values for similar input 
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100, 250, 370, 390, 580 and 200, clustered around the midpoint of these observed values, the 

MAPE would be 729 and the RMSE would be 128. However, if the observed values had a 

negative bias, for example 20, 50, 70, 80, 200 and 140 then the MAPE would decrease to 227 

and the RMSE would increase to 252. The occurrence of this phenomenon may indicate that 

some algorithms are better suited for making predictions for researchers with low citation 

counts and other algorithms can better predict those with high citation counts. A combination 

of the results of different algorithms may then be useful to create more useful predictions.  

5.3 Compound Metric Predictions 

5.3.1 5 to 10 Years 

The same four algorithms were used to initially predict the values of h-index, publication count 

and citation count one year into the future. These predicted values were then used as training 

data and used to predict the same values two years into the future, and the process was repeated 

for five years in total. Table 9 and Figure 18 show the RMSE values for the predicted h-index 

values of each year with the confidence intervals. MAPE is neither used here nor when 

assessing publication count prediction, as the small values make percentage errors difficult to 

interpret (A predicted value of 3 for an observed value of 2 results in a 50% percentage error). 

Interestingly, the algorithms that performed worse on the 5 to 10 year citation count single 

predictions perform better in the year by year h-index predictions. Table 9 and Figure 18 

clearly show Linear Regression and Random Forest outperforming the Multi-Layer Perceptron 

and K-Nearest Neighbours algorithms to predict a researcher’s h-index, with Random Forest’s 

RMSE of 2.83 in year 10 a 46% improvement over the Multi-Layer Perceptron’s score of 

5.261. With an average of 8.7 a standard deviation of 6.6 in year 10, Random Forest’s RMSE 

of 2.83 makes it a useful algorithm for predicting h-index. 

 

Table 9: RMSE values with confidence intervals for predicting the values of a researcher’s h-
index in each of the 5 years after their first 5 years. 

 

h-index Year 6 Year 7 Year 8 Year 9 Year 10 

Multi-Layer Perceptron 

Confidence Interval 

1.1 

0.0; 2.0 

1.8 

0.0; 3.0 

2.7 

0.0; 4.0 

4.3 

0.3; 7.0 

5.3 

0.8; 8.0 

K-Nearest Neighbours 

Confidence Interval 

1.5 

0.0; 3.0 

2.7 

0.0; 4.9 

3.7 

0.0; 6.0 

4.5 

0.0; 7.0 

5.0 

0.0; 8.0 

Linear Regression 

Confidence Interval 

0.9 

0.0; 1.0 

1.3 

0.0; 2.0 

1.8 

0.0; 3.0 

2.4 

0.0; 4.0 

3.3 

1.0; 6.0 

Random Forest 

Confidence Interval 

0.8 

0.0; 1.0 

1.2 

0.0; 2.0 

1.8 

0.0; 3.0 

2.3 

0.0; 4.0 

2.8 

0.0; 5.0 
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Figure 18: RMSE values for predicting the values of a researcher’s h-index in each of the 5 
years after their first 5 years. 

 

Table 10 and Figure 19 show the RMSE values for predicting publication count in a similar 

manner. The Multi-Layer Perceptron algorithm performs much better in these predictions than 

it did for h-index, while K-Nearest Neighbours remains the worst performing algorithm. 

Random Forest has the lowest RMSE in each year with 4.8 in year 10 but after taking the wide 

confidence intervals into account it is impossible to say from this data alone which algorithm 

performs best at this task. In any case, with an average of 5.1 and standard deviation of 9.9 in 

year 10, none of the results can be said to accurately predict publication count. 

Table 10: RMSE values with confidence intervals for predicting the values of a researcher’s 
publication count in each of the 5 years after their first 5 years. 
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Figure 19: RMSE values for predicting the values of a researcher’s publication count in each of 
the 5 years after their first 5 years. 

 

Figure 20, Figure 21, Table 11 and  

Table 12 show the RMSE and MAPE values for predicting year by year citation counts. As can 

be clearly seen, the four algorithms perform in essentially reverse order when measured by 

MAPE and RMSE, making it difficult to say conclusively which performs best. What is clear is 

that none of these algorithms can accurately predict citation count very well, with a best RMSE 

of 327 in year 10 when the average number of citations received in this year is 256 with a 

standard deviation of 507. 

Table 11: MAPE values with confidence intervals for predicting the values of a researcher’s 
citation count in each of the 5 years after their first 5 years. 
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Table 12: RMSE values with confidence intervals for predicting the values of a researcher’s 
citation count in each of the 5 years after their first 5 years. 

 

Figure 20: MAPE values for predicting the values of a researcher’s citation count in each of the 
5 years after their first 5 years. 

  

Figure 21: RMSE values for predicting the values of a researcher’s citation count in each of the 
5 years after their first 5 years. 
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These results show that the prediction of the citation count of a researcher in their 10th year is 

much better made in one prediction rather than making 5 compound predictions. The errors 

from each smaller prediction compound and skew the final results much more than in a single 

prediction. To get the total citations in year 10 from these year by year predictions, the results 

from each year would have to be summed, which would compound the errors of each 

individual year. One of best performing algorithms from the single predictions had an RMSE 

of 876 when predicting the total citation count in year 10. The best RMSE for predicting only 

the citations received in year 10 is 327, 37% of that. While it’s possible that the errors from 

other years may be both positive and negative and cancel each other out, it is far more likely 

that they will compound and produce a worse prediction than the single predictions described 

in Section 5.2. 

 

5.3.2 10 to 15 Years 

Table 13 and Figure 22 show the RMSE scores for different algorithms predicting the value of 

a researcher’s h-index each year between the 10th and 15th year of their publishing career. As 

was the case in for predicting the results between the 5th and 10th year, the Linear Regression 

and Random Forest algorithms perform the best of the four, but while they performed similarly 

in the previous set of predictions, here Random Forest performs significantly better than Linear 

regression, with an RMSE of 3.9 and a confidence interval of 0 to 6 in year 15 compared to an 

RMSE of 5.9 and confidence interval of 0 to 11.3 for Linear Regression. The average h-index 

of a researcher 15 years after they first publish is 14.1 with a standard deviation of 10.6, 

making an RMSE of 3.9 a reasonably good score. 

Table 13: RMSE values with confidence intervals for predicting the values of a researcher’s h-
index in each of the 5 years after their first 10 years. 
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Figure 22: RMSE values for predicting the values of a researcher’s h-index in each of the 5 
years after their first 10 years. 

 

Table 14 and Figure 23 show the RMSE values for predicting the number of documents a 

researcher will publish between the 10th and 15th years of their career. The performance of the 

K-Nearest Neighbours algorithm is improved relative to the other algorithms compared to the 

same predictions for between the 5th and 10th year where it was a clear outlier. In this set of 

predictions, it is the Linear Regression that performs poorly, with an RMSE of 15.1 in year 15 

while the next worse performing algorithm, the Multi-Layer Perceptron, has a score of 8.7, a 

42% improvement. The Multi-Layer Perceptron, Random Forest and K-Nearest Neighbours 

algorithms all perform differently in different years, indicating that no one algorithm is better 

suited than others for this task. The best RMSE in year 15 of 6.7 is larger than the average 

number of publications in the same year, 5.6, but it is worth noting that this is less than the 

standard deviation for publications in the 15th year, 7.6. 

Table 14: RMSE values with confidence intervals for predicting the values of a researcher’s 
publication count in each of the 5 years after their first 10 years. 
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Figure 23: RMSE values predicting the values of a researcher’s publication count in each of the 
5 years after their first 10 years. 

 

Table 15, Table 16, Figure 24 and Figure 25 show the MAPE and RMSE values of predicting 

the number of citations a researcher will attain between the 10th and 15th years of their career. 

The graphs show the same trend as was seen in the same predictions for between years 5 and 

10, albeit less extremely. The best algorithm as measured by MAPE, K-Nearest Neighbours, is 

the worst algorithm as measured by RMSE, and the worst as measured by MAPE, Linear 

Regression, performs similarly to the Multi-Layer Perceptron and Random Forest algorithms as 

measured by RMSE. 

 

These results tell mostly the same story as their counterparts for predicting between 5 and 10 

years. Reusing predictions as training values will only serve to compound errors. The best 

prediction for citation count as measured by RMSE, the Multi-Layer Perceptron, has a score of  

 

Table 15: MAPE values with confidence intervals for predicting the values of a researcher’s 
citation count in each of the 5 years after their first 10 years. 
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Figure 24: MAPE values for predicting the values of a researcher’s citation count in each of the 
5 years after their first 10 years. 

 

Table 16: RMSE values with confidence intervals for predicting the values of a researcher’s 
citation count in each of the 5 years after their first 10 years. 

 

 

Figure 25: RMSE values with confidence intervals for predicting the values of a researcher’s 
citation count in each of the 5 years after their first 10 years. 
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258, 40% of the best RMSE for predicting the total citation count in year 15, 652. These results 

would indicate that 5 separate predictions based on the first 10 years of data would provide 

better results than including predicted values in the training data. Even without comparing to 

the other predictions, the RMSE of 258 achieved by the Multi-Layer Perceptron is only an 

average score when the average citation count in year 15 is 369 and the standard deviation is 

593. 

 

5.3.3 15 to 20 Years 

Table 17 and Figure 26 show the RMSE scores attained by each algorithm predicting the h-

index of a researcher for each year between the 15th and 20th years of their career. The same 

trends as were seen in the same results for the previous two time periods are also seen here, 

with Linear Regression and Random Forest performing the best of the four algorithms. Both 

have very similar scores and confidence intervals. Linear Regression’s RMSE of 2.9 in year 20 

is only 0.3 less than Random Forest’s score of 3.2, and there is only 0.1 between the lower 

bound of their confidence intervals. These scores are particularly good given the mean of 18.7 

and standard deviation of 12.9 for researchers’ h-indexes in their 20th year.  

 

Table 17: RMSE values with confidence intervals for predicting the values of a researcher’s            
h-index in each of the 5 years after their first 15 years. 
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Figure 26: RMSE values for predicting the values of a researcher’s h-index in each of the 5 
years after their first 15 years. 

 

Table 18 and Figure 27 show the RMSE scores attained by each algorithm predicting the 

publication count of a researcher for each year between the 15th and 20th years of their career. 

Compared to their performances on the 10 to 15 year time period, the Multi-Layer Perceptron 

and Linear Regression algorithms have swapped place, with Linear Regression performing the 

best with a score of 4.7 in year 20 and the Multi-Layer Perceptron performing the worst with a 

score of 13.4. This fits with the theory that a linear model is more suited to predicting values 

for late in a researcher’s career than earlier, as a researcher becomes less likely to see a sudden 

increase or decrease in popularity or productivity. Linear Regression’s RMSE of 4.7 in year 20, 

when the average researcher publishes 6.6 documents with a standard deviation of 7.3, makes it 

a somewhat reliable algorithm. 

Table 18: RMSE values with confidence intervals for predicting the values of a researcher’s 
publication count in each of the 5 years after their first 15 years. 
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Figure 27: RMSE values for predicting the values of a researcher’s publication count in each of 
the 5 years after their first 15 years. 

 

Table 19, Table 20, Figure 28 and Figure 29 show the MAPE and RMSE values for predicting 

a researchers citation count in each year between the 15th and 20th year of their career. The 

pattern of performance measured by MAPE reversing when measured by RMSE, as seen in 

previous time periods, is not continued here. Random Forest is the worst performing algorithm 

as measured by both metrics, while the other three perform similarly. The difference between 

the best MAPE score in year 20, K-Nearest Neighbours with 86 and the second worst, the 

Multi-Layer Perceptron with 117 is only 31, while the difference between the best RMSE score 

in year 20, the Multi-Layer Perceptron with a score of 330 and the third worst, 390, is only 60. 

These close scores coupled with the wide confidence intervals mean that it is difficult to 

definitively decide which algorithm performs best overall. The mean value for citations 

received in a researcher’s 20th year is 486, with a standard deviation of 760.4. Even the best 

performing RMSE values are near this mean, indicating that the results are not accurate, which 

is also supported by the high MAPE values. This further reinforces the findings from the 

previous two time periods analysed, that compound predictions are less accurate than single 

predictions. 
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Table 19: MAPE values with confidence intervals for predicting the values of a researcher’s 
citation count in each of the 5 years after their first 15 years. 

 

Table 20: RMSE values with confidence intervals for predicting the values of a researcher’s 
citation count in each of the 5 years after their first 15 years. 

 

Figure 28: MAPE values for predicting the values of a researcher’s citation count in each of the 
5 years after their first 15 years. 
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Figure 29: RMSE values for predicting the values of a researcher’s citation count in each of the 
5 years after their first 15 years. 

5.4 Employment Prediction 

The following sections show the performance of different K-Nearest Neighbours style 

algorithms on the employment dataset, in an attempt to predict where a researcher might work 

in the future. The algorithms are described in Section 3.4.2.   

 

5.4.1 Baseline Predictions 

Table 21 and Figure 30 show the performance of the baseline algorithms. Using the Jaccard 

similarity between different instances as a weighting scheme provided much improved results 

over a uniform weighting scheme, increasing the number of predictions containing at least one 

future university to 19.5% from 12%. The use of TF-IDF universally decreased performance, 

decreasing to 16.1% percent from 19.5% when used with the Jaccard weight and to 11% from 

12% using the uniform weighting. Of the four variants tested here, The Jaccard weighting 

scheme is the best performing variant. 

 

Weighting 

Scheme 

Jaccard 

Weight 

Uniform 

Weight 

TF-IDF(Jaccard 

Weight) 

TF-IDF(Uniform 

Weight 

Percentage 19.5% 12.0% 16.1% 11.0% 

Table 21: Percentage of predictions with at least one future university, using the Jaccard 
similarity between researchers as the distance metric 
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Figure 30: Percentage of predictions with at least one future university, using the Jaccard 
similarity between researchers as the distance metric 

 

5.4.2 Predictions Using Order 

More sophisticated algorithms that consider the order of the universities a researcher has 

attended were developed to improve these results, as described in Section 3.4.2. The results of 

the first set of these algorithms, which make use of both the strict and loose order distance 

metric and use the first 2 universities a researcher attended as training data are displayed in 

Table 22 and Figure 31. This table and graph compare the percentage of predictions from these 

algorithms which contain at least one university that a researcher will attend with the best 

algorithm from the baseline predictions. It is clear from the graph and the table that making use 

of the order provides a huge boost to the predictive power. The highest percentage, achieved by 

using the loose order distance metric and a uniform weighting scheme, is 60.3%, 40.8 

percentage points higher than the best performing algorithm from the baseline algorithms. 

Interestingly, the new algorithms see a decrease in performance when distance weighting is 

used, the opposite to the effect seen on the baseline algorithms. The loose order algorithm 

drops from 60.3% to 56.3% when a distance weighting scheme replaces the uniform weighting. 

 

Algorithm Variant Percentage 

Unordered, Jaccard Distance, Jaccard Weight 19.5% 

Strict Order, Split at 2, Uniform Weight 55.5% 

Loose  Order, Split at 2, Uniform Weight 60.3% 

Strict Order, Split at 2, Distance Weight 43.1% 

Loose  Order, Split at 2, Distance Weight 56.3% 

Table 22: Percentage of predictions with at least one future university for different weighting 
and ordering schemes 
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Figure 31: Percentage of predictions with at least one future university for different weighting 
and ordering schemes 

 

While these results show that uniform weighting produces superior results to distance 

weighting, the amount of universities to use as training data is another variable that may affect 

performance. The algorithms were run again using the first 3 universities attended by a 

researcher as training data and assessed under two new metrics as well as the same one used 

previously. The results are shown in Table 23 and Figure 32. Increasing the number of training 

universities worsens performance as measured by every metric. This is not usually the case 

with machine learning algorithms, where more training data often leads to better results, but the 

nature of these predictions means that the more universities are used for training, the less are 

available to appear in the list of 10 possible future universities. 

 

The best algorithm of these results is still the loose order variant, using two universities as 

training data and a uniform weighting scheme. 60.3% of predictions made by this algorithm 

contain at least one university where the researcher would go on to work. The average 

prediction of 10 universities contains 1 future university, although there is a wide confidence 

interval on this value, between 0 and 3. Each set of 10 universities contained an average of 

15.1% of the universities a researcher would go on to work at, again with a wide confidence 

interval of between 0% and 40%. 
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Algorithm Variant 

Strict Order 

Split at 2 

Loose Order 

Split at 2 

Strict Order 

Split at 3 

Loose Order 

Split at 3 

Percentage of Predictions 

that Contain At Least One 

Future University 

55.5% 60.3% 50.8% 52.6% 

Percentage of Future 

Universities Contained in 

Each Prediction 

12.9% 

0%; 33.33% 

15.1% 

0%; 40% 

12.9% 

0%; 40% 

14.0% 

0%; 40% 

Number of Future 

Universities Contained in 

Each Prediction 

0.9 

0; 2 

1.1 

0; 3 

0.8 

0; 2 

0.9 

0; 2 

Table 23: Scores for different distance metrics and split points with confidence intervals 

 

 

Figure 32: Scores for different distance metrics and split points with confidence intervals 

6 Limitations and Future Work 

The biggest limitation on these predictions is the amount of data that was available to be 

analysed. The request limit imposed by the Scopus API limited the number of researchers that 

could be analysed for citation metrics, and many of the features identified in the ideal model 

were not available at all. Future work would then first and foremost focus on running these 
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It’s possible that while ARIMA models and Recurrent Neural Networks were unable to be fit 

to citation histories in this project, other time series algorithms may be found that can work 

with them. If the same predictions outlined in these results can be improved, then the next step 

is to expand on the number of features predicted. Publication count, h-index and any new 

features that are incorporated as training data can be predicted at 5 year intervals similar to how 

citation count is in this project. 

 

Aside from the possible uses detailed in Section 1 of this dissertation, more advanced versions 

of this method could be used to make a wide range of predictions. Improvements could be 

made to existing research paper recommender systems [30-33]. This would allow papers to be 

recommended based on the projected career of the authors, amplifying the publications of 

authors who have not had a long publication career but have a high potential. The ability to 

predict future career metrics could also be used proactively rather than reactively. A system 

could be created where predictions are made on many researchers at once, allowing universities 

to identify potential candidates for different positions. Similarly, making predictions for the 

researchers already working in a university would allow the identification of promising 

researchers who could be potentially awarded more funding or resources before they have 

proven themselves traditionally.  

 

One thing that is important to bear in mind regarding any future applications, like many 

predictive systems, is that their predictions are not the only possible version of events. Any 

implementation of systems as described above would have to be done with the understanding 

that researcher’s predicted to have good careers may not, and that those predicted to have poor 

careers may become successful. It will always be important to have a human analyse the 

predictions made when they can affect important aspects of a person’s life like their job or in 

the case of academic researchers, the funding or resources allocated to them. 

7 Conclusions 

The stated research goal for this project was to “investigate the ability of machine learning and 

time series techniques to predict academic careers, with the ultimate aim of creating a method 

that can reliably predict how certain metrics of an academic career will change as time 

passes.”. This dissertation has thoroughly investigated multiple algorithms and 

implementations that certainly make steps towards this goal, although none of them can be 

described as a complete model of academic career prediction. 

 

The most extensive work was done in predicting a researcher’s citation count 5 years after the 

5th, 10th and 15th years of their publishing career. The results of this work are shown in Figure 

33 and Table 24 below. 
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Figure 33: Comparison of RMSE and MAPE scores of best performing algorithms for different 
time periods 

 5 to 10 Years 10 to 15 Years 15 To 20 Years 

Best Algorithm Multi-Layer Perceptron Multi-Layer Perceptron Linear Regression 

Lag size 1 Year Lag 7 Year Lag 3 Year Lag 

Dataset Variant Individual Years 
Individual Years - 

Difference 

Individual Years - 

Difference 

MAPE 119 76 50 

Confidence 

Interval 
52; 56 40; 128 30; 66 

RMSE 876 682 934 

Confidence 

Interval 
287; 429 516; 811 487; 1108 

Table 24: Comparison of RMSE and MAPE scores of best performing algorithms for different 
time periods 

 

Figure 33 shows a clear decreasing trend in MAPE as a researcher’s career progresses. The 

small lag sizes used to produce the optimal results imply that it is not the additional training 

years that improve predictions, but in fact that the opposite holds: less recent years introduce 

noise into the dataset which can interfere with results. One possible explanation for this 

downward trend is that a researcher’s career becomes more predictable as they continue to 

publish. The longer their career goes on, the less likely they are to receive a sudden or 

unexpected surge or drop in citations per year. The RMSE figures are more difficult to interpret 
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but when compared to the mean and standard deviation of the variables being predicted the 

same trend of increasing predictability with time becomes apparent again. Another trend shown 

in Table 24 is the good performance of the individual years and the difference datasets. It is 

worth noting that the second-best algorithms for each time period, not shown in the previous 

sections, also ran one of these dataset variants, showing that encoding data with the cumulative 

values for each metric does not improve performance. 

 

As well as predicting citation counts between these intervals, work was done to predict the 

evolution of individual metrics in each of 5 successive years, using each predicted value as 

training data to predict the next years values. Aside from the h-index, which was predicted 

reasonably accurately, attempts to predict other metrics were average at best. The 

compounding errors for each year were too much to overcome, leading to large errors by the 5th 

year. The ability to accurately predict h-index is especially remarkable given that the values 

were predicted based on the predicted values of citation and publication count, which had very 

high RMSE and MAPE scores. 

 

The final set of predictions aimed to predict which universities a researcher would work at 

based on the universities they had worked at previously. The K-Nearest Neighbours Style 

model created returns a list of 10 possible future universities, with 60% of predicted lists from 

the best algorithm containing at least one university that the researcher would go on to work at. 

This algorithm was a huge improvement over the baseline algorithms which did not consider 

the order in which the universities were worked at, indicating that this order is an important 

indicator of a researcher’s career trajectory. 

 

Of the three types of predictions, these future employment predictions were by far the most 

successful. While the ultimate research goal of creating a method to predict a complete model 

of an academic career was not fulfilled, there are solid foundations here to build on in the 

future. Citation count, h-index and publication count have all been confirmed as features that 

improve predictions compared to predicting based on only one variable. Compound predictions 

were found to be far less accurate than single predictions over the same time period. It was 

demonstrated that recent years are the most important when attempting to predict future 

citation count and that years from far in the past can actually act as noise. Later stages of a 

researcher’s career were found to be more predictable than early stages. Despite being unable 

to fit citation counts into a stationary model, the common time series analysis technique of 

differencing was applied to predicting citation counts and improved performance. In terms of 

predicting future employment, the order of previous universities attended was shown to make a 

huge impact on a researcher’s future career. It is unfortunate that the citation results were not 

better, largely due to limitations placed on the size of the dataset and the features available for 
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training, but the results of these experiments show that predicting these values is indeed 

possible. 

8 Appendix I 

The following tables show the results of the best performing time lag for each algorithm on 

each dataset variant for each of the three time periods examined for the single predictions. 

 

5 to 10 Individual MAPE RMSE 

Linear Regression 

2 Year Lag 

212 

93; 449 

750 

372; 1233 

K-Nearest Neighbours 

5 Year Lag 

140 

75; 220 

828 

434; 1129 

Random Forest 

2 Year Lag 

211 

116; 296 

937 

428; 1830 

Multi-Layer Perceptron 

1 Year Lag 

140 

79; 199 

788 

410; 1507 

 

5 to 10 Cumulative MAPE RMSE 

Linear Regression 

3 Year Lag 

215 

131; 338 

784 

448; 1022 

K-Nearest Neighbours 

4 Year Lag 

158 

92; 234 

873 

392; 1141 

Random Forest 

4 Year Lag 

180 

85; 258 

1047 

600; 1817 

Multi-Layer Perceptron 

2 Year Lag 

166 

93; 238 

769 

439; 1322 

 

5 to 10 Individual Difference MAPE RMSE 

Linear Regression 

2 Year Lag 

199 

138; 275 

715 

326; 1011 

K-Nearest Neighbours 

3 Year Lag 

131 

73; 190 

819 

390; 1162 

Random Forest 

3 Year Lag 

186 

76; 337 

1016 

432; 2329 

Multi-Layer Perceptron 

1 Year Lag 

119 

67; 175 

876 

589; 1304 
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5 to 10 Cumulative Difference MAPE RMSE 

Linear Regression 

3 Year Lag 

297 

144; 568 

699 

423; 925 

K-Nearest Neighbours 

4 Year Lag 

193 

101; 302 

822 

381; 1216 

Random Forest 

4 Year Lag 

241 

98; 384 

902 

474; 1325 

Multi-Layer Perceptron 

4 Year Lag 

202 

130; 298 

722 

297; 948 

 

10 to 15 Individual MAPE RMSE 

Linear Regression 

6 Year Lag 

137 

49; 213 

71 

595; 844 

K-Nearest Neighbours 

5 Year Lag 

57 

37; 79 

903 

627; 1161 

Random Forest 

7 Year Lag 

68 

44; 85 

935 

502; 1225 

Multi-Layer Perceptron 

6 Year Lag 

84 

51; 123 

683 

448; 861 

 

10 to 15 Cumulative MAPE RMSE 

Linear Regression 

6 Year Lag 

134 

74; 196 

706 

553; 838 

K-Nearest Neighbours 

2 Year Lag 

75 

52; 113 

1176 

633; 1901 

Random Forest 

5 Year Lag 

75 

49; 101 

869 

458; 1167 

Multi-Layer Perceptron 

4 Year Lag 

80 

45; 124 

827 

549; 1305 
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10 to 15 Individual Difference MAPE RMSE 

Linear Regression 

6 Year Lag 

127 

48; 235 

707 

568; 901 

K-Nearest Neighbours 

8 Year Lag 

61 

46; 80 

889 

536; 1338 

Random Forest 

2 Year Lag 

66 

43; 106 

958 

523; 1397 

Multi-Layer Perceptron 

7 Year Lag 

76 

39; 128 

682 

516; 811 

 

10 to 15 Cumulative Difference MAPE RMSE 

Linear Regression 

7 Year Lag 

137 

64; 223 

73 

45; 116 

K-Nearest Neighbours 

3 Year Lag 

73 

45; 116 

1079 

614; 1716 

Random Forest 

7 Year Lag 

83 

42; 142 

1168 

752; 1398 

Multi-Layer Perceptron 

3 Year Lag 

77 

53; 122 

734 

550; 964 

 

15 to 20 Individual MAPE RMSE 

Linear Regression 

7 Year Lag 

66 

41; 103 

1016 

660; 1346 

K-Nearest Neighbours 

2 Year Lag 

41 

32; 53 

1785 

645; 2481 

Random Forest 

2 Year Lag 

46 

36; 60 

1616 

690; 2312 

Multi-Layer Perceptron 

2 Year Lag 

39 

21; 657 

1012 

793; 1450 

 

 

 

 

 

 

 

 



56 
 

15 to 20 Cumulative MAPE RMSE 

Linear Regression 

3 Year Lag 

61 

34; 76 

1090 

745; 1340 

K-Nearest Neighbours 

3 Year Lag 

68 

34; 151 

2061 

626; 3641 

Random Forest 

2 Year Lag 

69 

55; 85 

2237 

1108; 2629 

Multi-Layer Perceptron 

1 Year Lag 

39 

28; 46 

1512 

718; 2269 

 

15 to 20 Individual Difference MAPE RMSE 

Linear Regression 

3 Year Lag 

50 

30; 66 

934 

487; 1108 

K-Nearest Neighbours 

6 Year Lag 

46 

33; 58 

1489 

850; 2400 

Random Forest 

7 Year Lag 

47 

26; 80 

1451 

737; 1862 

Multi-Layer Perceptron 

1 Year Lag 

35 

21; 65 

1072 

702; 1384 
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