
Attendance Tracking using Bluetooth Low
Energy-Enabled Smartphones

by

Conor Maguire

Supervisor: Dr. Hitesh Tewari

Dissertation

Presented to the University of Dublin,

in partial fulfilment of the requirements

for the degree of

Master in Computer Science

Submitted to the University of Dublin, Trinity College, May, 2018

Declaration

I declare that the work described in this dissertation is, except where otherwise stated,

entirely my own work, and has not been submitted as an exercise for a degree at this

or any other university.

Conor Maguire Date

i

Permission to lend

I agree that the Trinity College Library may lend or copy this dissertation upon request.

Conor Maguire Date

ii

Summary

Low attendance in lectures has become an issue of concern for many colleges and uni-

versities. It has been shown that attendance figures have a strong relationship with final

grade, with students who have higher attendance generally performing better. Colleges

have employed a variety of flawed methods of tracking attendance in an attempt to

tackle this problem.

The aim of this dissertation is to develop a system that combats many of these flaws

by using students’ smartphones and Bluetooth Low Energy (BLE) technology. BLE is

a short range communication protocol released by the Bluetooth Special Interest group

as a subset of Bluetooth. Its low power consumption, flexible network topology support,

and its high rate of adoption among smartphone brands means there is potential to

incorporate this technology into such an attendance tracking system.

A prototype attendance tracking system using these elements is presented in this

dissertation, which attempts to demonstrate its feasibility in a college setting. The

implementation develops an Android application that broadcasts a student’s presence

using Bluetooth Low Energy. A small device in each lecture room communicates with

each smartphone, reading each student’s ID number multiple times during the lecture.

The implementation is evaluated in terms of its speed, power consumption, and

accuracy. Its speed and power consumption are determined to be within acceptable

ranges, however the accuracy of the scanning device is hampered by the hardware

chosen for the implementation. The Raspberry Pi Zero W chosen for this purpose

resulted in inconsistent detection of students. The initial work in this dissertation is

promising and indicates that the chosen system is feasible in a college setting. However,

hardware changes and large scale testing in a trial lecture would required before it can

be conclusively determined.

iii

Attendance Tracking using Bluetooth Low

Energy-Enabled Smartphones

Conor Maguire

University of Dublin, Trinity College, 2018

Supervisor: Dr. Hitesh Tewari

Abstract

Low attendance in lectures has become an issue of concern for many colleges and

universities. It has been shown that attendance figures have a strong relationship

with final grade, with students who have higher attendance generally performing bet-

ter. Colleges have employed a variety of flawed methods of tracking attendance in an

attempt to tackle this problem.

The aim of this dissertation is to develop a system that combats many of these flaws

by using students’ smartphones and Bluetooth Low Energy (BLE) technology. BLE is

a short range communication protocol released by the Bluetooth Special Interest group

as a subset of Bluetooth. Its low power consumption, flexible network topology support,

and its high rate of adoption among smartphone brands means there is potential to

incorporate this technology into such an attendance tracking system.

A prototype attendance tracking system using these elements is presented in this

dissertation, which attempts to demonstrate its feasibility in a college setting. The

implementation develops an Android application that broadcasts a student’s presence

using Bluetooth Low Energy. A small device in each lecture room communicates with

each smartphone, reading each student’s ID number multiple times during the lecture.

The implementation is evaluated in terms of its speed, power consumption, and

accuracy. Its speed and power consumption are determined to be within acceptable

ranges, however the accuracy of the scanning device is hampered by the hardware

chosen for the implementation. The Raspberry Pi Zero W chosen for this purpose

resulted in inconsistent detection of students. The initial work in this dissertation is

promising and indicates that the chosen system is feasible in a college setting. However,

hardware changes and large scale testing in a trial lecture would required before it can

be conclusively determined.

iv

Acknowledgements

I would like to thank Dr. Hitesh Tewari for the initial idea for the topic and for his

help and guidance throughout the entirety of the research.

I would also like to thank Dr. Jonathan Dukes for pointing me in the right direction

towards the beginning of the project.

I would like to thank the lads who have gone through this college journey with me.

Thanks to my brother Ciaran for proof reading my first draft and offering helpful

suggestions.

Finally I would like to express my gratitude to my parents, Nell and Tony, who have

supported me throughout my life and encouraged me through these last five years of

college.

v

Contents

List of Figures ix

List of Tables x

1 Introduction 1

1.1 Motivation . 1

1.2 Research Topic . 2

1.3 Objectives . 2

1.4 Dissertation Overview . 3

2 Background 4

2.1 Existing Attendance Tracking Approaches 4

2.1.1 Sign-in Sheets . 4

2.1.2 Lecture PIN Codes . 5

2.1.3 Card Tapping/Scanning . 5

2.2 Related Work . 6

2.3 Bluetooth Low Energy . 7

2.3.1 BLE Protocol Stack . 7

2.3.2 Advertising and Connections . 10

2.3.3 GAP . 10

2.3.4 GATT . 11

3 Design 14

3.1 System Overview . 14

3.1.1 Communication . 15

3.2 Attendance Tracker . 16

3.3 Attendance & Scheduling API . 17

3.3.1 Data Models . 17

vi

3.4 Mobile Application . 18

4 Implementation 20

4.1 Attendance Tracker . 20

4.1.1 Hardware . 20

4.1.2 Lecture Scheduling . 21

4.1.3 Scanning Process . 23

4.2 Attendance & Scheduling API . 26

4.2.1 Data Storage . 26

4.2.2 API Routes . 27

4.2.3 Configuration and Deployment 31

4.3 Mobile Application . 31

4.3.1 Main Activity . 32

4.3.2 Background Service . 33

5 Evaluation & Results 37

5.1 Experimentation . 37

5.1.1 Recording Speed . 37

5.1.2 Full System Cycle . 39

5.1.3 Advertisement Detection . 41

5.1.4 Power Consumption . 42

5.2 Security Considerations . 43

5.2.1 Secure API Payloads . 43

5.2.2 Client Authentication . 43

5.2.3 API Denial-of-Service . 44

5.2.4 Bluetooth Security . 45

5.3 Summary . 45

6 Conclusion 47

6.1 Overview . 47

6.2 Future Work . 48

6.2.1 Hardware . 48

6.2.2 College Integration and Trial . 48

6.2.3 Bluetooth 5 . 49

vii

A Annotated Dockerfile Example 50

B Android BLE GATT Server Callback 51

Bibliography 53

viii

List of Figures

2.1 BLE protocol stack . 8

2.2 BLE channel arrangement . 11

2.3 GATT Profile Hierarchy . 13

3.1 High level overview of the system design 16

3.2 Data model relationships in scheduling API 18

4.1 A Raspberry Pi Zero W . 21

4.2 Main Activity of the Android application 32

4.3 The attendance tracking notification displayed by the AdvertiserService 34

4.4 Android application state diagram . 36

5.1 Student number read times . 38

5.2 Attendance service log . 40

ix

List of Tables

4.1 Endpoints for the Scheduling API . 29

5.1 Connection times . 38

x

Chapter 1

Introduction

Bluetooth Low Energy (BLE) was introduced by the Bluetooth Special Interest Group

(SIG) as a subset of the Bluetooth specification focused on low power consumption. It

supports devices broadcasting to other nearby devices and is optimised for transmitting

small bursts of data between the two [1]. For these reasons, it has seen particularly

strong adoption in contexts such as home automation, fitness, and healthcare, where

sensors, “wearables”, or other small devices need to transmit data in bursts while

maintaining low power consumption.

With the growing market share of BLE-enabled mobile phones, there exists a potential

to incorporate this technology into a lecture attendance tracking solution using stu-

dent’s smartphones. This research aims to produce such a system capable of combating

the flaws of traditional attendance tracking approaches.

1.1 Motivation

Low attendance figures in lectures are an issue for many colleges and universities.

Studies have been conducted into how low attendance can affect academic performance

and it has been found that there is a strong positive relationship between a student’s

attendance and their final grade [2, 3]. Even in the case of lecture materials being made

available online, attendance still matters as there is no guarantee that the student will

engage with the materials in their own time [4].

Colleges have employed many methods of tracking student attendance such as sign-

in sheets, card scanning, or lecture PIN codes. However many of these methods share

similar flaws of being slow, cumbersome, difficult to use, or distracting. Most methods

1

also fail at actually verifying a student’s attendance due to the ease at which they can

be faked. Furthermore, a smartphone is an item that a student is much less likely to

forget, meaning a smartphone-based system could have a higher potential for ease of

use and student engagement.

1.2 Research Topic

The topic of this dissertation is the design and implementation of a system for recording

student attendance in college lectures using BLE. The goal of the dissertation is to

create a prototype system which could be feasibly implemented in a university setting

and which could also offer improvements over existing methods of taking attendance.

In the proposed system, students sign into a smart phone application using their

college login credentials and open the app at the beginning of the lecture. The app

advertises its presence using BLE Advertising. A Raspberry Pi (or similar BLE-enabled

device) will be present in the lecture hall and will use BLE scanning to detect this

advertisement, connect to the phone via Bluetooth, and read the student number

before disconnecting. The Raspberry Pi will do this for each student it picks up while

scanning, and will do it twice, for example: ten minutes after the beginning of the

lecture, and ten minutes before the end of the lecture. This helps verify that a student

was in close proximity of the Raspberry Pi (i.e. they were actually present in the

lecture), and also that the student was present for the duration of the lecture and not

just outside the lecture hall for the first scan of the tracker.

1.3 Objectives

The primary objective of this research is to create a prototype attendance tracking

solution that could feasibly be employed in a college scenario. The proposed system

should adhere to a number of properties:

• It should have minimal disruption to the lecture. It should seamlessly proceed

in the background so that the lecturer and students may focus on the lecture

materials.

• The system should be easy to use by the students. It should require minimal

interaction so as not to distract them like passing around a sign-in sheet would.

2

• The proposed solution, were it to be implemented by a college, should provide the

college with accurate attendance data that is reasonably resistant to falsification.

It should ideally require more effort to fake one’s attendance than to go the

lecture.

• It is also important that the proposed solution would be scalable, so that it

functions for large lectures and so that a college may roll out the system to all

the rooms on their campus.

The desired outcome is to a have a demonstrable implementation of a system that

meets these requirements and would improve upon existing sign-in methods.

1.4 Dissertation Overview

Chapter 2 of this dissertation presents discussion of background information and state-

of-the-art research relevant to the problem domain. With this underlying context

in mind, Chapter 3 details the high-level design of the attendance tracking system,

along with its individual components. Chapter 4 discusses the implementation of the

proof of concept, describing hardware and software implementations of the various

components of the system. An evaluation of the system is provided in Chapter 5,

assessing the system in its current implementation, as well as presenting some security

considerations. Finally, Chapter 6 summarizes the research and identifies potential

areas for future work.

3

Chapter 2

Background

This chapter reviews background information and state of the art relevant to the chosen

topic. Firstly, several existing solutions for attendance tracking are examined and their

shortcomings are outlined. Then, a discussion of related research of Bluetooth LE at-

tendance systems is presented. Finally, some technical details of the BLE specification

are explained so as to provide relevant context for the rest of the dissertation.

2.1 Existing Attendance Tracking Approaches

Colleges and universities have attempted to tackle the issue of low attendance using a

variety of methods. Usually this involves a combination of some grade-based incentive

for attending lectures, as well as a method of recording the attendance. None of these

existing approaches to attendance tracking are ideal solutions and each suffer from a

variety of shortcomings.

2.1.1 Sign-in Sheets

Perhaps the most popular traditional method of taking attendance is a sign-in sheet

that is passed around from student to student for them to sign their name on. It is a

simple solution, however its accuracy is not verifiable as it can be easily faked by stu-

dents signing in their fellow classmates. Furthermore, it can be slow and cumbersome

in a large class and produces a minor distraction for students and the lecturer.

4

2.1.2 Lecture PIN Codes

An alternative solution which the author has experienced during their studies is a

lecture PIN-based sign-in system. This involves the lecturer creating some web page

with a HTML form which the students fill out at the beginning of the lecture. The form

contains fields for the students’ name and student number, as well as some randomised

PIN that the lecture invents and writes on the blackboard at the beginning of the

lecture. In practice, this random PIN does little to prove a student was actually

present in a lecture as the PIN could be shared around between classmates through

methods such as social media. It also disrupts the beginning of the lecture as the

students are all focused on signing themselves in and the lecturer must remember to

display the URL and PIN for the students.

2.1.3 Card Tapping/Scanning

In the case of Trinity College, student identification cards are equipped with bar codes

as well as a MIFARE Classic 4K contactless chip1. For this reason, some considera-

tion was initially given to developing an attendance system based on either bar code

scanning or Near Field Communication (NFC). This solution would have a device near

the entrance of each lecture room which would allow students to tap (with NFC) or

scan (with the bar code) their student ID card to record their attendance. The device

could be the lecturer’s NFC-enabled mobile phone or a small device installed in the

lecture room. The device would record the student number of each tapped card and

send the results to the college. An advantage of such an approach is that the NFC

chips are already integrated into Trinity College’s “TCards”. The student would also

be required to have the student card in their possession. However, it is clear that this

solution would not feasibly scale in the case of large sized lectures as it would result in

students queueing to tap their card and blocking the lecture hall entrance. This reason,

as well as the risks of a student potentially forgetting their card or giving their student

card to a fellow student to tap in also means that this approach has few benefits over

a traditional sign-in sheet solution.

1https://www.nxp.com/products/identification-and-security/mifare-ics/

mifare-classic:MC_41863

5

https://www.nxp.com/products/identification-and-security/mifare-ics/mifare-classic:MC_41863
https://www.nxp.com/products/identification-and-security/mifare-ics/mifare-classic:MC_41863

2.2 Related Work

There has been some research into applying Bluetooth Low Energy-based approaches

to the issue of student attendance, with varying degrees of success:

A system using BLE beacons was designed and implemented by Dr. Dwight Deugo

of Carleton University, Ottawa in order to combat the limitations of their existing

card swiping and QR code scanning system [5]. Bluetooth SIG succinctly describes

beacons as “small devices, strategically placed throughout a location, that transmit

a continuous signal to any mobile device in range” [6]. These Bluetooth-compatible

devices allow actions to be triggered automatically or performed by a nearby mobile

device. An important distinction regarding beacon-based BLE communication is that

the communication is one-way (from the beacon to the mobile device); that is to say

it is not bi-directional.

This attendance tracking system consists of a mobile application reading a Uni-

versally Unique Identifier (UUID) from the nearby beacon and sending it to a server

to record their attendance. However, this process involves some effort on the part of

the student. The student must input their personal details and optionally configure

the server’s IP upon first time use. Then they are required to scan for all beacons

in the area and select the correct beacon corresponding to the lecture they are at-

tending. One of this dissertation’s desired objectives outlined in Section 1.3 is for the

attendance tracking solution to be easy to use and seamless for the students so as to

eliminate distraction. This beacon system has too many manual steps of user inter-

action/configuration to satisfy this goal. Furthermore, it requires the student to have

WiFi connectivity as well as BLE in order to sign in.

There also exists some research into a collaborative attendance tracking protocol using

BLE [7]. This research designed a protocol which used a mesh network topology

between BLE devices to take attendance. A mesh network is a decentralized network

where all nodes communicate directly to each other rather than with a central node.

This design used micro-controllers which would be embedded in an ID card. Some

promising results were shown in this mesh network approach, with a best recorded

node discovery rate of 1.34 nodes (ID cards) recorded per second. However, the research

viewed attendance tracking through lens of creating collaborative attendance tracking

protocols, rather than a complete system design that could be employed by a college.

6

Furthermore, students are more likely to forget an ID card than they are to forget their

smartphone.

2.3 Bluetooth Low Energy

Bluetooth Low Energy was introduced alongside the Bluetooth 4.0 specification, as a

subset specification with a focus on low power communication. BLE, which started out

as a Nokia research project named “Wibree”, is aimed at ultra-low power devices which

are designed to run for years on a coin cell battery. With the emergence of the Internet

of Things, these devices are being embedded and integrated into everyday contexts

such as health, fitness, home automation, and smart grids. The goal of BLE was to

create the lowest-power short-range wireless technology possible, with each layer of its

stack being optimised to reduce the power consumption needed to perform its task [8].

Unlike “Bluetooth Classic” (also known as Bluetooth Basic Rate/Enhanced Data

Rate (BR/EDR)), Bluetooth Low Energy is optimised for short burst transmission of

data (e.g. temperature readings) instead of continuous streaming of data (e.g. audio

streaming via Bluetooth headphones). While Bluetooth Classic only supports a one-

to-one network topology known as “Point-to-Point”, BLE supports Point-to-Point,

Broadcast (one-to-many), and mesh network (many-to-many) topologies. This makes

it a very flexible technology for use in applications involving power-constrained devices.

2.3.1 BLE Protocol Stack

The BLE protocol stack consists of three primary building blocks (“layers”): Applica-

tion, Host, and Controller. These layers, along with an intermediary layer named the

“Host Controller Interface”, can be seen in Figure 2.1.

1. Application Layer

As the topmost layer of the stack, the Application layer houses the logic, data handling,

and UI of the user application. It is highly use-case dependant.

2. Host layer

The Host layer is responsible for implementing and exposing APIs that allow applica-

tions to make use of the physical Bluetooth radio. It consists of several layers:

7

Figure 2.1: The layers of the BLE protocol stack[9]

• Generic Access Profile (GAP): GAP defines roles and procedures for device

discovery and connection establishment in order to ensure interoperability be-

tween BLE-enabled devices. Section 2.3.3 examines this in further detail as it is

relevant to the project implementation.

• Generic Attribute Profile (GATT): GATT builds upon the ATT and defines

a hierarchical data model that is used to structure the data transferred between

devices. As with GAP, this is discussed in more depth in Section 2.3.4.

• Logical Link Control and Adaptation Protocol (L2CAP): The L2CAP

multiplexes the data from several of the upper layers and encapsulates them into

the standard BLE packet format. It is also responsible for fragmentation and

recombination. It breaks up large packets from the upper layers into 27 byte

payloads and passes them to the lower layers, and vice versa from lower layers to

upper layers.

• Attribute Protocol (ATT): The ATT protocol employs a simple client/server

architecture that stores and serves data in the form of “Attributes”. It also

handles responding to client requests for this data. Attributes are defined as

8

having a 16-bit handle (used by clients to address the attribute), a UUID denoting

its type, permissions, and a value.

• Security Manager (SM): The Security Manager is responsible for implement-

ing the security procedures and cryptographic algorithms that allow devices to

communicate with each other over an encrypted link. It defines two roles in the

context of a connection: the Initiator of the connection (GAP Central role), and

the Responder (GAP Peripheral role). The SM provides bonding, pairing, and

connection re-establishment needed for these two roles to communicate securely.

Host Controller Interface (HCI)

As indicated by its name, the HCI is an interface between the Host and Controller that

sends commands and events between the two layers. It is an intermediary building

block between these layers that allows a BLE device to be controlled over a serial

interface such as UART or USB.

3. Controller layer

• Link Layer (LL): The Link layer is the layer of the protocol that directly

interacts with the PHY and manages the physical link. It is responsible for ad-

vertising, scanning, and creating/maintaining connections. It is also responsible

for complying with the timing requirements of the specification. The link layer

defines four roles:

– Advertiser: A device emitting advertising packets.

– Scanner: A device scanning for advertising packets.

– Master: A device that establishes a BLE connection controls and manages

its timing.

– Slave: A device that accepts a BLE connection initiated by the Master and

follows its timing.

• Physical Layer (PHY): The Physical layer contains the analogue communica-

tions circuitry that modulates and demodulates analogue signals and turns them

into digital symbols [9]. This modulation uses Gaussian Frequency Shift Keying

(GFSK). As explained in Section 2.3.2, this radio operates on the 2.4 GHz band,

hopping between one of 40 communication channels.

9

2.3.2 Advertising and Connections

Bluetooth Low Energy communicates on the 2.4 GHz ISM band over one of 40 channels,

each 2 MHz apart. As shown in Figure 2.2, 37 of these channels are data channels and

3 are advertising channels. The protocol uses the Frequency-Hopping Spread Spectrum

(FHSS) technique to “hop” between these channels in a pre-agreed sequence in order

to facilitate connections during interference.

One of the aspects of the BLE protocol that sets it apart from Bluetooth Classic

is its use of Advertisements. Advertising packets are one of the two types of packets

used by the protocol; the other being data packets. Advertising packets allow mas-

ters to identify slaves that are ready to accept a connection. Alternatively, they can

be used to broadcast, in a one-way fashion, small amounts data that don’t require

a full connection. Advertising packets generally contain the broadcaster’s MAC ad-

dress, an optional payload (31 bytes), and an indicator stating whether or not they’re

connectable.

Advertisements are broadcasted on one or more of the 3 advertising channels: 37,

38, and 39. They are sent by the advertiser at a fixed interval known as the advertising

interval. Similarly, a device scanning for these packets will scan at a fixed scan interval

for a specified length of time known as the scan window, meaning the advertisement

will be detected when these two randomly overlap.

The scanner may passively scan these packets and not establish a connection. Al-

ternatively, if these advertisements indicate that the sender is connectable, the scanner

may assume the role of master and establish a Bluetooth Low Energy connection with

this device. The two devices determine timings of the hops required in the connection,

and may negotiate an encryption scheme and key sharing protocol to communicate

securely. During this connection, the two devices can communicate on a one-to-one

basis over one of the 37 data channels.

2.3.3 GAP

The Generic Access Profile (GAP) is an interface that defines device roles, modes and

procedures for the discovery of devices and services, the management of connection

establishment and security [11]. It provides an agreed-upon framework for BLE-enabled

devices to implement that determines how they identify and communicate with each

other. The four roles it defines are Broadcaster, Observer, Peripheral, and Central.

10

Figure 2.2: BLE channel arrangement on the 2.4 GHz ISM band [10]

• The Broadcaster transmits data through the advertisement process and does

not support connections. It broadcasts its data periodically to any other devices

in advertising packets instead of data packets.

• An Observer can be viewed as the complement to the Broadcaster as it monitors

for data transmitted by Broadcasters in its general proximity. It does so via BLE

scanning, which scans for advertising packets emitted by the Broadcaster. It only

passively collects the advertised data and does not create connections.

• The Peripheral is similar to the Broadcaster role in that it sends out advertising

packets. Unlike the Broadcaster, the Peripheral is connectable and emits these

advertisements for the purpose of scanning devices to identify it and establish

a connection with it. Its equivalent role in the Link Layer is the “Slave” role.

These are usually power-constrained devices like sensors or heart rate monitors

which communicate their data back to a Central device.

• A device in the Central role scans for advertisements from Peripheral devices

in order to identify devices which are available for connection. The Central

device creates the connection in this scenario and is equivalent to the Link Layer

“Master”. Devices in the Central role are generally more powerful devices such

as computers or mobile phones which collect data from multiple less powerful

Peripheral devices.

2.3.4 GATT

The Generic Attribute Profile (GATT) provides a way to encapsulate the use case of

transferring data between a central and peripheral. It can be considered “the backbone

of BLE data transfer because it defines how data is organized and exchanged between

11

applications” [9]. GATT uses the concepts of Services and Characteristics for

structuring the data that is exchanged once a BLE connection has been established

between two devices.

GATT Services

A GATT Service is a logical collection of related characteristics which are grouped

together for the purposes of describing a certain use case. For example, a temperature

sensor may define a Thermometer Service, which may contain relevant Character-

istics such as Current Temperature, Sensor Battery Level, etc. Services are

identified by a Universally Unique Identifier (UUID), which other connected devices

can use to query for the service. For official Bluetooth SIG services, this is a 16-bit

UUID, whereas custom developer-created services must use 128-bit UUIDs.

GATT Characteristics

GATT Characteristics are the lowest level concept in GATT transactions and are used

to encapsulate user data [12]. Like a Service, a Characteristic is identified by UUID

which denotes its type. It also contains a value field which holds the actual data of the

characteristic and properties which specify the read/write permissions allowed on the

characteristic. The value may be accessed by querying a Service for the UUID of the

relevant Characteristic. Characteristics may also have optional descriptors associated

with them. These are metadata or configuration flags relating to the characteristic [13].

GATT Client & Server

• A GATT Server is a device that stores data about one or more services and

their associated characteristics. It responds to read or write requests for this

data made by the GATT Client, as well as optionally sending notifications to the

client about this data.

• The GATT Client is the device that sends requests to the server regarding

GATT data. It initiates connections and requests to this server and queries for

services by UUID lookup. It may also optionally receive updates, in the form of

notifications or indications, from the server when values are updated.

Generally, a peripheral will act as the GATT Server and a central will take the role of

12

Figure 2.3: An illustration of the nested structure of a GATT Profile [13]

GATT Client. However, this is not always the case and they may reverse roles.

13

Chapter 3

Design

This chapter presents a high-level overview of the designed attendance tracking system.

The functionality of each of each of the three primary system components is outlined.

A brief description of the communication that occurs between the components is given

to provide a synopsis of how the system works.

3.1 System Overview

The system is comprised of three core components: the Attendance Tracker, the

Scheduling API, and the Mobile Application.

• The attendance tracker/scanner is the program running on the device in-

stalled in each lecture room and is responsible for recording the presence of each

student in a lecture. Lecture schedules are pulled from the scheduling API and

attendance tracking sessions are scheduled accordingly. It scans for each student

using BLE scanning and then uploads the results to the API for storage.

• The scheduling API is a web service that stores schedules for each room and

enables each Raspberry Pi to update its schedules automatically, without manual

configuration. It also acts as a recipient for the attendance data recorded by the

attendance tracker, all of which is stored in a database.

• Each student will use the mobile application in order to sign in to a lecture.

The application signs the student into the lecture by transmitting their student

number to the attendance tracker twice - near the beginning of the lecture and

towards the end of the lecture. The rationale for this is that it proves that a

14

student was in the lecture for entire duration, rather than using the application

from outside the lecture at the beginning.

A network diagram showing a high-level overview of the designed attendance system

may be seen in Figure 3.1.

3.1.1 Communication

Initially, there were two variations of the design: a connectionless approach, and a

connection-based approach.

With a connectionless design, the student number is transmitted in the advertising

packet itself as advertising data. When the tracker is scanning for advertising packets, it

simply records the student number in the packet and does not initiate a BLE connection

with the device. This approach has the advantage of being simple and quick as the

tracker can sign students in as fast as it can scan for packets. However the broadcaster

(the student) has no way of verifying the successful receipt of their student number

and thus no way of knowing if they’ve been signed in successfully. Due to this lack of

feedback, the application cannot know when to stop broadcasting and would need to

be stopped manually or after a period of time.

The chosen design is a connection-based design, which takes a more structured ap-

proach by communicating the student number in a short-lived BLE connection with

the scanner. The student number is defined as a characteristic of a BLE GATT ser-

vice named “Student Number Service”. The student broadcasts their presence as

before, but without their student number in the advertising packet’s data. The at-

tendance tracker then creates a connection with the phone and retrieves the student

number before terminating the connection.

While slightly more complex than the connectionless approach, this design gives the

mobile application feedback that the student number has been sent, meaning that the

app may then stop advertising and sleep until the second scanning pass that will occur

at the end of the lecture. This has the added benefit of not consuming excess battery

by indefinitely sending out BLE advertisements. BLE-enabled devices generally have

a simultaneous connection limit, meaning the attendance tracker will not be able to

record all the students at once and the advertisers will have to wait. However, as the

phones cease broadcasting and sleep one by one, the network congestion will decrease

15

gradually and they will be more likely to successfully connect. The confirmation of

their successful attendance and reduced power consumption provided by this approach

made these trade-offs worthwhile. For these reasons, the connection-based design was

chosen and can be seen in Figure 3.1.

Attendance startup
service (python)

Attendance
Tracker

Scheduling &
Attendance API

Pull
schedules

Upload
attendance data

Schedule

2 scans

BLE Scanning BLE Advertising

Student

Student ID: 1234

Raspberry Pi

Figure 3.1: High level overview of the system design

3.2 Attendance Tracker

The attendance tracker component is made up of the physical device installed in the

lecture room as well as a program for tracking attendance. This program acts as

an infinitely running daemon, which is automatically started in the background at

boot time. It schedules attendance tracking sessions based on the lecture schedules

it requests from the scheduling API via HTTP, meaning the device can be configured

remotely and doesn’t require manual interaction from the lecturer. During one of

these sessions, the attendance tracker will scan for BLE advertising packets emitted

by the mobile application. A BLE connection is initiated by the attendance tracker

after which it queries the mobile phone for the GATT service containing the student

number. This GATT service is outlined in further detail in Section 3.4. Issuing a

read request for the GATT characteristic containing the student number allows it to

record the student’s ID and then terminate the Bluetooth connection. This process is

repeated for each student detected by the tracker within a certain window of time. It

16

then sleeps before repeating this for a second pass, recording each student number a

second time. As mentioned in Section 3.1, this is to avoid spoofing one’s attendance

at a lecture by simply performing the sign in once from outside the lecture room and

then not attending.

By the end of the lecture, the attendance tracker will have obtained a list of student

numbers, as well as the number of times it recorded each student number (either once

or twice). This data is sent to the scheduling API by sending a HTTP POST request

to /lectures/:id, where :id is the unique ID for lecture as returned by the scheduling

API. The student numbers list is serialized in JSON format and attached as the body

of the POST request.

3.3 Attendance & Scheduling API

The attendance and scheduling API is responsible for persisting and making available

all lecture schedules and student attendance data. The goal of this web service is to

provide a way for a Raspberry Pi to update its lecture schedule remotely, as well as

publish its attendance data for a lecture once it has been recorded. The intention is

that this particular component would act as a proxy between the Raspberry Pi and the

college’s existing scheduling and attendance recording systems. This has the advantage

of providing one central API for each Raspberry Pi to communicate with rather than

multiple disjoint systems.

This communication is performed via HTTP GET requests in the case of retrieving

lecture schedules, and HTTP POST requests when uploading student attendance data

to the API. All data sent to and from the API is serialized in JavaScript Object

Notation (JSON) format. An SQL database stores all lectures and displays them in a

schedule for a specified room when requested.

3.3.1 Data Models

There are two primary data models in the API - Lecture and AttendanceRecord. A

Lecture represents a single lecture slot in a room at a certain time, identified by a unique

ID. A schedule for room is simply an aggregated chronological view of all Lecture objects

with that particular room code. This is returned as JSON when a schedule is requested

for a room. An AttendanceRecord confirms that a student (identified by their student

17

number) was successfully recorded as having attended a certain lecture. As seen in

Figure 3.2, each record is uniquely associated with a lecture through a foreign key.

This easily allows for finding a list of all students who attended a particular lecture,

which is discussed in further detail in Section 4.2.

Figure 3.2: Data model relationships in scheduling API

3.4 Mobile Application

Each student records their attendance at a lecture through the mobile application on

their phone. On the first boot of the app, the student will log in using their college

credentials so that the application can save their student number. In the context of

Trinity College, the intention is that this process would use the student’s existing ”My

TCD” portal login. For the purposes of this dissertation, the student simply enters

their student number into a text box as the application is not integrated with the

college’s existing login system.

At the beginning of the lecture, the student starts the application. As mentioned

in Section 3.2, this will begin broadcasting their presence by transmitting BLE adver-

tising packets. The Attendance Tracker can use these to initiate a BLE connection

to the phone. Once connected, the tracker may read the student’s ID by reading the

appropriate GATT characteristic.

The application defines a custom GATT profile named “Student Attendance

Profile” for the purpose of transferring the student number to the attendance tracker.

A GATT profile may have one or more GATT Services, each of which can define a

number of GATT Characteristics, i.e. values to be either read or written. Only one

Service is needed, the “Student Number Service”, which contains one read-only

18

Characteristic, the “Student Number”. Each Service and Characteristic is assigned

its own Universally Unique Identifier (UUID) for which the attendance tracker queries

when it connects to the phone.

After the tracker scans the student number for the first time, the mobile applica-

tion will stop advertising and the app will sleep. The app reawakens in time for the

attendance tracker’s second scan of the student number, after which the advertising

process will terminate itself again and the attendance tracking will be complete.

19

Chapter 4

Implementation

The following chapter describes technical details of the prototype implementation of

the attendance tracking system. It follows a similar structure to the previous chapter,

discussing the hardware and software used in each component of the implementation,

as well as the description of important algorithms or processes. Some justification

is also given to hardware and software choices where relevant. This chapter aims to

provide a more in-depth technical understanding of the system implementation.

4.1 Attendance Tracker

4.1.1 Hardware

A small, Bluetooth LE-enabled hardware device is required in each lecture room to

run the attendance tracking software. A Raspberry Pi Zero W was chosen for this

purpose as it is a very small, affordable computer that can run Linux. It is smaller

in size than a debit card (Figure 4.1) and can be purchased for roughly 10 Euro.

Raspbian (based on Debian) is the default Linux distribution for Raspberry Pi models

and can be installed via a flashed MicroSD card. The Zero W also has built in WiFi

and Bluetooth Low Energy support. A combination of this device’s small form factor,

ease of configuration, and connectivity capabilities are the primary reasons why it was

chosen as the hardware for the Attendance Tracker.

An important point to note is that the Raspbian uses Bluez1, the official Linux

Bluetooth stack, to provide access to Bluetooth (LE) protocols and functionality. The

Python implementation of the Attendance Tracker makes use of Bluez through a li-

1http://www.bluez.org/about/

20

http://www.bluez.org/about/

brary, meaning that the implementation is not restricted to the Raspberry Pi Zero W.

The attendance tracker implementation can run on any other Linux device which uses

Bluez. This would grant a college the freedom to upgrade to more powerful devices or

interchange between different hardware solutions as they see fit.

Figure 4.1: A Raspberry Pi Zero W2

4.1.2 Lecture Scheduling

Each attendance tracker is assigned to a lecture room so it requires a schedule of the

lectures for the room in which it will be located. It must also have the ability to enable

itself automatically in accordance with this schedule. This schedule is provided by the

Scheduling API which is explained in further detail in the next section.

The implementation achieves this automatic scheduling by defining a startup service

using systemd. Systemd is a Linux startup manager that, among other things, allows

programs and daemons to be started up automatically at boot time. This startup

service is described in a service file and then enabled and set to autostart using sys-

temd’s command line interface. The service below simply starts the Python attendance

tracking software once all networking interfaces are up and running:

[Unit]

Description=Attendance Tracker Service

2https://www.raspberrypi.org/app/uploads/2017/05/PI-Zero-W-1-1620x1080.jpg

21

https://www.raspberrypi.org/app/uploads/2017/05/PI-Zero-W-1-1620x1080.jpg

[Service]

Type=idle

ExecStart=/usr/bin/python3 /home/conor/attendance/scan.py

[Install]

WantedBy=multi-user.target

As previously mentioned, the attendance tracking software itself is implemented in

the Python programming language (specifically, Python 3). This program acts as a

daemon that, once started by systemd, runs infinitely until the system is shut down.

This behaviour is intended so that the device can run autonomously and persist across

power cycles. The program will be restarted upon every boot and will not require the

institution or lecturer to manually enable it. The program executes in an infinite loop

which can be seen in pseudocode form below:

while True:

lectures = pull_lecture_timetable()

for lecture in lectures:

schedule(lecture)

sleep(SLEEP_TIME_SECONDS)

The lecture schedules must be updated on start-up by querying the API with a GET

request. A simple Python API wrapper was created for sending HTTP GET/POST

requests using the Requests library and parsing the returned JSON response. An

advantage of the Python language is that its “dictionary” data structure (akin to a

hash map/associative array) has a virtually one-to-one mapping to JSON. This makes

JSON (de)serialization trivial.

Once the schedule has been retrieved, each individual lecture is scheduled. They

are scheduled by using “Timer” objects, which are part of Python’s built-in threading

library [14]. A timer can be used to schedule an action to occur on a thread after a

certain amount of time. This amount of time is simply the delta between the current

time and the lecture start time. After this delay has elapsed, a thread will be assigned

to perform the action specified in its creation. In this case, that action is to carry out

the scanning for student numbers.

22

When all lectures have been scheduled, the main thread may sleep for an appropriate

amount of time. This amount of time will differ depending on how often the lecture

schedule should be updated and how far in advance the college would like to schedule

them. It should also be noted that Python’s sleep functions may be affected by other

factors like the operating system’s scheduler. For this reason, perhaps a long sleep time

should not be relied upon to be accurate and a shorter one should be used instead.

4.1.3 Scanning Process

When the Timer wakes, it begins the process of scanning for students. An Atten-

danceTracker Python class was created to carry out this process. This class provides

a simplified, generalised interface for handling all behaviour related to the attendance

tracking process. By simply passing in a parameter for the lecture name, this work can

be offloaded to the object on a different thread and the results returned to the main

thread upon completion:

tracker = AttendanceTracker(lecture="Security & Privacy")

students_attended = tracker.record()

First Scanning Pass

As mentioned in Section 3.2, student numbers are scanned twice: one pass near the

beginning of the lecture (e.g. 9:10), and one pass before the students leave (e.g. 9:45).

The AttendanceTracker itself begins scanning for devices in the room that are

emitting BLE advertising packets. It makes use of the Bluepy library which provides a

collection of classes and methods for interacting with the Bluez stack via Python code.

A Bluepy Scanner object is instantiated which scans for a duration and returns a

list of all nearby broadcasting devices. Since there may be other devices broadcasting

in the general vicinity, the devices are filtered to identify which devices are students

advertising their student number and which devices are irrelevant. Students’ devices

will be advertising the 128-bit UUID that identifies the Student Number Service -

the BLE data structure which will contain each student’s identification number.

As these particular advertisement packets indicate that the student’s device is con-

nectable, the AttendanceTracker creates a BLE connection with the device using the

hardware address detected during the scanning process. Using the appropriate UUIDs,

it queries the device for the “Student Number” Service and its “Student Number”

23

Characteristic before disconnecting. The tracker repeats this process for each device

scanned, recording student numbers one by one and storing them in a dictionary. The

dictionary is a Key-Value data structure which allows for simple look-ups of how many

times a particular student number has been recorded. An outline of this scanning pass

it presented in pseudocode form below:

class AttendanceTracker(object):

def scan_for_students(duration):

devices = Bluepy.Scanner.scan(duration)

for device in devices:

service = device.get_service(service_UUID)

student_number = service.get_characteristic(characteristic_UUID)

register_student(student_number)

In a final implementation, this tracker may need to carry out each pass in a “Scan-

Connect” cycle for the duration of the pass. For example, if the first pass lasts for 10

minutes, it may be wise to alternate between scanning for devices for 30 seconds or so,

then connecting to each device to record the student numbers. This has the advan-

tage that those devices will then sleep once they have been recorded in the first pass,

reducing the number of devices that are advertising. The reduced network congestion

means that the AttendanceTracker will then have a new set of devices in the second

Scan-Connect cycle instead of repeatedly detecting the same devices. For debugging

purposes, this implementation uses one Scan-Connect cycle since the scan duration was

generally kept short during testing.

Second Scanning Pass

After the first pass has completed, the AttendanceTracker sleeps until it is time for the

second pass. This is almost identical to the first instance but the program has already

stored the ID numbers of all the students who have been recorded once. When they

are recorded for the second time, the count for the number of times they have been

recorded is simply incremented to 2. Once this second round of scanning has concluded,

24

the attendance tracking process for that lecture is complete. The AttendanceTracker

terminates and returns its list of results to the main program.

Recording of Results

When the attendance tracker records a list of the students who attended a lecture, it

must persist that data somewhere. It does so by uploading it to the Attendance and

Scheduling API to store it in its database. As previously illustrated in the data models

diagram in Figure 3.2, each lecture contains a unique ID field. The tracker stored the

ID of each lecture it scheduled when it retrieved the lecture schedule from the API.

To upload attendance data for a lecture, the attendance tracker sends a HTTP POST

request to /lectures/:id. The list of student numbers are serialized into JSON format

and attached to the body of the request:

{

"student_numbers": [

"12345678",

"45678912",

"etc",

"etc"

]

}

Once this upload is complete, the thread’s actions are terminated and the program

returns back to its infinite loop.

Asynchronous Connections

Initially, it was intended that during the scanning process, the AttendanceTracker

would connect to multiple devices simultaneously to record their student numbers. This

was attempted using Bluepy’s DefaultDelegate class which allows BLE messages to

be received by the scanner asynchronously [15]. In theory, this should have allowed

the Scanner to process multiple connections at once, up to a limit imposed by the

manufacturer of the Bluetooth chip. In practice, this method resulted in the scanner

disconnecting intermittently and the student number never being recorded. After some

25

research, it appears to be a bug/limitation in the BLE Host Controller Interface3, 4.

This bug resulted in active connections being disconnected when a second connection

was pending. For this reason, this approach was abandoned in favour of the “Scan-

Connect” cycling approach using sequential connections described above.

4.2 Attendance & Scheduling API

The Attendance and Scheduling API is the web service that enables each Attendance

Tracker to update their lecture schedules remotely and additionally serves as a recipient

for the attendance data they have recorded. An implementation of this API was

developed using Flask, which is a “microframework” for writing web services in Python.

It is a lightweight framework that allows for the mapping of URL routes to Python

functions in order to display dynamic content from a database. It also ships with a

built-in web server.

4.2.1 Data Storage

An overview of the data models designed for the API was presented in Section 3.3.

An SQLite database is used for storing these records. This is a lightweight, embedded

SQL database that does not have a separate server process and instead reads and

writes directly to disk files [16]. It is Flask’s default database and is the most popular

database in the world according to its website.

Rather than creating an manipulating the data records directly through SQL state-

ments, SQLAlchemy was used. This is an Object Relational Mapper (ORM) that

allows SQL records to be defined as Python objects. Here is an example of the Lecture

model defined using SQLAlchemy:

class Lecture(Model):

__tablename__ = "lectures"

id = Column(Integer, primary_key=True, nullable=False)

room = Column(String(128), nullable=False)

subject = Column(String(128), nullable=False)

3https://github.com/IanHarvey/bluepy/issues/126
4https://github.com/IanHarvey/bluepy/issues/57

26

https://github.com/IanHarvey/bluepy/issues/126
https://github.com/IanHarvey/bluepy/issues/57

start_time = Column(DateTime(timezone=True), nullable=False)

end_time = Column(DateTime(timezone=True), nullable=False)

lecturer = Column(db.String(128))

students = relationship('AttendanceRecord', backref='lecture', lazy='dynamic')

SQLAlchemy provides an intermediary layer which removes the need for writing

SQL queries, greatly simplifying database related code. Foreign key relationships and

associations are also greatly simplified in SQLAlchemy as these associations are pre-

loaded and accessible through attributes on the Python object. This can be seen in

the above code listing in which a students attribute is defined. This is defined as

a relationship, which can be viewed as a virtual database column containing all the

AttendanceRecord objects referring to this Lecture object via foreign key. For

example, accessing a lecture and all the students who attended that lecture can be

easily done:

lecture = Lecture.query.get(id) # Lecture object

students = lecture.students # List of AttendanceRecord objects

4.2.2 API Routes

The API exposes a number of URL routes (or “endpoints”) which are accessible over

HTTP. Flask uses a pattern called the Decorator pattern to define these routes. This

uses Python decorators to annotate a function, mapping a HTTP URL to this function

call. The function returns a response JSON response object which Flask ensures is

returned to the client as a HTTP Response (along with a status code) by Flask’s web

server. Flask makes any query parameters or headers available as Python variables.

From these functions, the database can be queried or modified using the SQLAlchemy

definitions of the data models. As is typical with a web application or API, each

function performs one of the Create, Read, Update or Delete (CRUD) operations on

the database records. The following function handles a request for the schedule for a

room, triggered by a GET request to /schedules/:room where :room is the unique

room code (e.g. ”LB04”).

@app.route('/schedules/<room>', methods=['GET'])

def get_schedule(room):

27

room_schedule = Lecture.query.filter_by(room=room).all()

response = {

'room': room,

'schedule': room_schedule

}

return jsonify(response), 200

Scheduling

As can be seen in the endpoints in Table 4.1, the API exposes a URL for accessing the

schedule for a particular lecture room. The API does not create a Schedule model, as

a schedule in this context is simply an aggregated list of all of the lectures in a room.

The code listing above shows the function that returns said schedule. The function is

decorated with its corresponding route and the room variable is passed in as a function

argument. The list of the room’s lectures are queried and parsed into JSON. Below is

an example of the JSON response that this function would return when retrieving the

schedule for “LB04”:

{

"room": "LB04",

"schedule": [

{

"id": 1,

"subject": "Advanced Telecommunications",

"lecturer": "Dr. Joe Bloggs",

"room": "LB04",

"start_time": "Mon, 09 Apr 2018 10:00:00 GMT",

"end_time": "Mon, 09 Apr 2018 11:00:00 GMT",

"status": "FINISHED"

},

{

"id": 4,

"subject": "Security & Privacy",

"lecturer": "Dr. Joe Bloggs",

"room": "LB04",

28

"start_time": "Wed, 11 Apr 2018 16:00:00 GMT",

"end_time": "Wed, 11 Apr 2018 18:00:00 GMT",

"status": "FINISHED"

}

]

}

Note that the JSON response also contains a status field, indicating whether the

lecture is yet to occur, in progress, or finished at the time of the request. This field

is generated at request time instead of storing it in the database. A utility method in

the Lecture object returns the status based on if the current request time is before,

during, or after the lecture start and end time.

HTTP Verb Endpoint URL Description

GET /schedules Get all lectures in the database (debugging pur-

poses)

GET /schedules/:room Get lecture schedule for :room

GET /lectures/:id Get lecture summary and attendance information

for a lecture by id

POST /lectures/:id Upload recorded list of students who attended lec-

ture :id

Table 4.1: Endpoints for the Scheduling API

Attendance

The API supplies an endpoint for AttendanceTrackers to upload the students who

attended a lecture via HTTP POST. Flask allows for convenient parsing of the at-

tached JSON body into a Python dictionary. The dictionary will have a key named

“studentnumbers” which contains the list of students. For each student in the list, a

new AttendanceRecord object is created containing the student number and the lec-

ture id. At this point, these objects are just Python objects and the database remains

unchanged.

Using SQLAlchemy, changes to the database are done in the context of a session

[17]. The new AttendanceRecord object is added to the session. To persist this data,

the data is “committed” atomically so that either all session changes are put into

29

effect, or none are (in the case of a failure). If this operation fails, the database is

automatically rolled back. An outline of this process is shown below.

lecture = Lecture.query.get(id)

student_numbers = params.get('student_numbers')

for number in student_numbers:

record = AttendanceRecord(student_number=number, lecture=lecture)

db.session.add(record)

db.session.commit()

The above occurs upon a POST request to /lectures/:id. A GET request to the

same URL defines a different endpoint for viewing detailed information about a lecture.

If the lecture has finished, then the attendance data for that lecture will be returned in

the response. While this implementation simply returns them in the JSON body, this

could be exported to a spreadsheet or uploaded to the college’s servers now that the

data has been stored. Another potential use case for this data is to make it available to

a separate dashboard web application where students may view their own attendance

figures.

An example of this recorded attendance data is presented in the following JSON

snippet, with the lecture information shortened for brevity:

{

"status": "success",

"lecture": {

"id": 1,

"etc": "etc",

"status": "FINISHED"

},

"students": [

"1234",

"5678",

"9012"

]

}

30

4.2.3 Configuration and Deployment

In the case of a college or university implementing this system, it is likely that they

would deploy the API on their own servers within their network. This would allow them

to integrate it with any of their own timetabling and attendance storage software, as

well as enabling them to restrict traffic to the API. For the purposes of this research,

this implementation was deployed using Amazon Web Services (AWS). AWS delivers

a cloud hosting service for provisioning virtual private servers in the cloud. The API

was hosted on a single Elastic Compute Cloud (EC2) instance.

Docker and Pip are responsible for the configuration and dependency management

of the project. Docker is a containerisation platform that runs configured Linux con-

tainers on a host machine. Pip is a popular package manager for Python, used to

install the external libraries used by the project.

Using Docker, the process for configuring and installing the API can be entirely au-

tomated and scripted with a “Dockerfile”. If the API is installed onto a fresh machine,

Docker will install Python and Pip, install any dependencies with Pip, and start the

server and database. An annotated Dockerfile can be seen in Appendix A.

4.3 Mobile Application

The mobile application is the component of the system that students directly interact

with using their smartphones. This implementation of the mobile application was

developed in Android, using the Java programming language. The application was

physically deployed and tested on a Samsung Galaxy S6, running Android 7.0 Nougat

(API Level 24). An iOS application will likely need to be developed for Apple iPhone

users. However, this Android application is sufficient for the purposes of demonstrating

how a student will sign in during a lecture.

Both Android and iOS support BLE - Android from version 4.3 (API Level 18)5, and

iOS from version 5.0 (and iPhones 4S and above)6.

5https://developer.android.com/guide/topics/connectivity/bluetooth-le
6https://developer.apple.com/library/content/documentation/DeviceInformation/

Reference/iOSDeviceCompatibility

31

https://developer.android.com/guide/topics/connectivity/bluetooth-le
https://developer.apple.com/library/content/documentation/DeviceInformation/Reference/iOSDeviceCompatibility
https://developer.apple.com/library/content/documentation/DeviceInformation/Reference/iOSDeviceCompatibility

Figure 4.2: The Main Activity of the Android application.

4.3.1 Main Activity

The entry point to the application is the Main Activity, which can be seen in Figure

4.2. An activity can be thought of as a screen in the application with a user interface.

Activities are developed using a combination of Java and XML. XML is used to define

the UI layout and its various components (buttons, text boxes, images, etc.). A Java

class controls the behaviour and lifecycle of the activity.

Since the aim of this application is to be seamless and easy to use, only one Ac-

tivity is needed. The objective was to keep the UI minimal, with an EditText box

for the student to enter their student number, and a button for beginning the atten-

dance broadcasting process. This implementation has both a start and stop button for

debugging purposes, but in practice a student would have just a start button as the

application controls starting and stopping itself dynamically. If a college were to inte-

grate this attendance tracking system, then the student number EditText box would

be replaced with a login form. No such integration currently exists so the ”login” is in

the form of this simple text field.

To begin tracking their attendance, a student will open the app, enter their student

32

number and tap the start button. At this point the Main Activity will create a Service

object.

4.3.2 Background Service

A Service is used to keep a long running operation executing in the background. If the

attendance tracking behaviour were implemented in the Main Activity, then it would

be stopped or interrupted when the student opened a different app, returned to their

home screen, or locked their phone’s screen. Since the app must be as unobtrusive

as possible, a Service must be used. The Advertiser Service was created for this

purpose.

When initially started by the MainActivity, the AdvertiserService calls an initiali-

sation method, which performs three primary actions:

• Read the value of the student number from the MainActivity. It retrieves this

through an “Intent Extra” message created by the MainActivity. Extras are

string messages that an Activity can pass to other Activities or Services.

• Start a GATT server containing the Student Number Service that will respond

to requests about this service during a BLE connection.

• Begin advertising its presence via BLE, indicating that the device is connectable

and that there is a GATT server running.

Once this initialisation method returns, the service is considered started, so any

set-up or configuration code should be called here.

public int onStartCommand(Intent intent, int flags, int startId) {

String intentExtra = intent.getStringExtra(MainActivity.STUDENT_NUMBER);

if (intentExtra != null)

studentNumber = intentExtra;

advertise();

startGATTServer();

return START_NOT_STICKY;

}

33

(a) Home screen (b) Lock screen

Figure 4.3: The attendance tracking notification displayed by the AdvertiserService

Advertising

As this service will be running in the background and services do not have a UI attached

to them, it is helpful for the student to have some indication or visual feedback that

their attendance is being recorded. Hence, when the Service begins advertising, a

notification is displayed on the student’s smartphone. This notification also has the

benefit of moving the service to the foreground, so that Android will not kill the

application while performing memory management. This means that the attendance

tracking process can be guaranteed to run in its entirety, while still allowing the service

to run without a UI and while the screen is locked. This is displayed in Figure 4.3.

When the service begins advertising, a number of parameters must be set:

Advertise Mode - If the advertising mode should be low power, low latency (and

high power), or balanced. This affects the visibility range of the advertising packet and

the power consumption.

Tx Power Level - If the transmission power level should be ultra-low, low, medium,

or high. This also affects the visibility range of the advertising packet.

34

Connectable - Whether or not the device is connectable to other devices who scan

the advertisement.

Timeout - An optional timeout delay after which advertising will terminate.

The parameters are set to Balanced mode, High Power, Connectable. The range needs

to be maximised but it attempts to strike a balance between range and power con-

sumption.

Finally, the data in the packet itself is set. This data simply includes the UUID for the

Student Number Service, along with the random device address that Android generates

itself. This randomised address is to avoid privacy issues where a user can be tracked

via their device’s physical address. This is explained in further detail in the security

considerations in Section 5.2. The AdvertiserService obtains a reference to the device’s

Bluetooth adapter and then calls a method of Android’s BluetoothLeAdvertiser

class to start transmitting advertising packets in the vicinity.

GATT Server

The mobile application acts as a GATT server which responds to the Attendance-

Tracker’s requests for the student number once a BLE connection has been established.

Section 3.4 describes the Student Number Service - the GATT Service implemented

by this GATT server. A callback is supplied to this GATT server during its instantia-

tion. This callback is a Java class that contains methods for responding to requests by

the remote client (the tracker) about this device’s GATT services during a connection

with that client.

The two trigger events implemented in the callback are when a remote client con-

nects/disconnects via a one-to-one BLE connection, and when a remote client issues a

read request for a GATT characteristic during a connection. The former simply logs

the connection state change and device address for debugging purposes, while the latter

is how the application communicates the student number to the AttendanceTracker.

The behaviour for this method is as follows (the full callback handler can be seen in

Appendix B):

• The app checks if the UUID in the request matches the UUID of the Student

Number characteristic. If not, it responds with an error.

35

AdvertiserService
scanNum = 1

startAdvertising()
startGattServer()

onReadReq(studentNum)

Scan
number?

stopAdvertising()
stopGattServer()

pauseAdvertising()
pauseGattServer()

sleep()
scanNum = 2

1st Scan

2nd Scan

Return to MainActivity (End)

Started by MainActivity

Display Notification

Remove Notification

Figure 4.4: The flow of state implemented by the Android application.

• If the UUID is correct, the application responds with the student’s student num-

ber stored in the characteristic’s value field, along with a success status code.

• If this is the first time that the student number has been read by the tracker, the

app then sleeps until the second scanning pass, stopping the GATT server and

the BLE advertising to conserve battery.

• However if this read request is the second time the student number has been

recorded, both advertising and the GATT server are stopped and the service

terminates.

A state diagram is presented in Figure 4.4 to further illustrate the control flow of

the Android application during the attendance tracking process.

36

Chapter 5

Evaluation & Results

This chapter investigates the performance and functionality of the implementation

through a combination of experimentation and further research. Some possible security

considerations are also outlined, along with any relevant countermeasures that could be

taken to combat them. Finally, a summary of the findings is provided which analyses

the results.

5.1 Experimentation

5.1.1 Recording Speed

Due to time constraints, the system performance was untested in a lecture scenario

with a large number of smartphones. In lieu of this, the aim of this experiment is to

determine the average length of time it takes to record one student number, with a

view to extrapolating that result to give a rough estimate of the time needed to track

all students in one pass. The test was performed using a Samsung Galaxy S6 running

the mobile application and the Raspberry Pi Zero W implementation of the attendance

tracker.

37

Figure 5.1: Student number read times (in seconds). The mean time (1.51 seconds) is

shown in red.

A chart of all the recorded times is presented in Figure 5.1. Table 5.1 provides a

summary of the results, with the mean read time (in seconds) of 1.51 ± 0.03 (95%

CI). These numbers can be used to estimate how long it would take to scan each

student’s number in a large class. In a class size of 200 it would take on average

1.51 ∗ 200 = 302 seconds (roughly 5 minutes) to read each student number in sequence

(with no concurrent connections). This number is an extrapolation and will likely

increase in a room with increased interference and range. However, it still gives a

useful indication of how long each scanning pass must last to ensure all students can

be recorded in time.

Number of connections 50

Shortest time (s) 1.36

Longest time (s) 1.79

Standard Deviation 0.1

Mean time (s) 1.51

95% Confidence Interval ± 0.03

Table 5.1: Connection times

38

5.1.2 Full System Cycle

Without integration of the Attendance Tracker, Scheduling API, and Mobile Applica-

tion, this implementation would exist as a series of disjoint components rather than a

proof of concept. The aim of this experiment is to test the integration of the compo-

nents in the implementation by performing a full end-to-end cycle.

In order to assist with this experiment, a test endpoint was created in the API for

creating temporary lectures on demand. A GET request to this endpoint returns

a temporary dummy lecture that is scheduled to start 30 seconds from the request

time. This response contains some fake lecture information, but a valid lecture ID

associated with a lecture in the database. This means that the start time of a lecture

can be dynamically configured for evaluation purposes without needing to create a

new lecture for each test. When the Attendance Tracker is automatically started at

boot time using the systemd startup service, it queries this test endpoint to update its

timetable and schedules this temporary lecture with an ID of 1. The response returned

by the API is as follows:

{

"schedule": [

{

"end_time": "Tue, 15 May 2018 20:36:48",

"id": 1,

"lecturer": "Dr. Test Testington",

"room": "LB08",

"start_time": "Tue, 15 May 2018 20:36:18",

"subject": "TEST LECTURE"

}

],

"status": "success"

}

The student number “12345678” is entered in the mobile application and it begins

broadcasting. The attendance tracker then proceeds with the attendance tracking

process described in Section 4.1, scanning for two passes with each scan lasting 45

seconds. The full log from the attendance tracker can be seen in 5.2. These logs show

39

the lecture being scheduled, the two rounds of scanning, and the student numbers that

were detected.

Figure 5.2: Logs from attendance service full cycle

When the student number is successfully read from the mobile application for the

second time, it stops all BLE communication and displays a notification indicating

that the student’s attendance has been recorded successfully. The attendance tracker

sends a POST request to the API at /lectures/1 containing a JSON body with the

list of recorded students. In this evaluation, the list contains a single student number

(12345678). The success of this upload is confirmed by the API’s response, which is

presented below. This JSON response shows a completed lecture with 12345678 as the

only student in the database with their attendance recorded for the lecture.

{

"lecture": {

"id": 1,

"end_time": "Mon, 09 Apr 2018 11:00:00 GMT",

"lecturer": "Dr. Joe Bloggs",

"room": "LB04",

"start_time": "Mon, 09 Apr 2018 10:00:00 GMT",

"status": "FINISHED",

"subject": "TEST LECTURE"

},

"status": "success",

"students": [

40

"12345678"

]

}

5.1.3 Advertisement Detection

While evaluating the research, an observation was made that the Raspberry Pi im-

plementation had a relatively poor detection rate of advertising packets. After some

investigation it was noted that just over 50% were detected on average. This was tested

three times with scan durations of 15, 30, and 45 seconds. Out of 30 advertising pack-

ets, 14-17 (46-56%) were successfully scanned by the attendance tracker during each

test. For comparison, the same test was performed on a 2015 Macbook Pro running the

attendance tracker in a Debian virtual machine. The Macbook successfully scanned

over 93% of advertisements, meaning the poor result is not related to the attendance

tracking software but to the hardware chosen to run the implementation. There are

likely a number of contributing factors to the Raspberry Pi’s poor detection rate:

• The most likely factor is hardware limitations such as the Bluetooth card model,

RAM, or CPU not being sufficiently powerful to consistently detect advertise-

ments consistently. This means that the Raspberry Pi Zero W is simply not a

capable enough choice of hardware for consistent advertisement detection.

• The Raspberry Pi supports an older version of Bluetooth Low Energy (4.1),

compared to BLE 4.2 in the Macbook pro. While 4.2 is backwards compatible, it

introduced some improvements to packet capacity and data transfer speeds that

the Raspberry Pi is unable to take advantage of.

• Another potential factor is the advertising interval of the mobile application.

Since advertising depends on the scanner and advertiser randomly overlapping,

there are instances where advertisements won’t be detected. Android does not

permit changing this advertising interval manually, other than through the “Ad-

vertising Mode” variables discussed in Section 4.3. After inspecting Android’s

source code, it seems that the minimum available interval available to the de-

veloper is 100 ms. For reference, Apple’s Bluetooth accessory design guidelines

[18] recommend an initial advertising interval of 20 ms for the first 30 seconds,

with an interval increase in specific steps if the advertisement is not detected.

41

However, as the change in scanning hardware resulted in a 93% detection rate,

the advertising interval is unlikely to be the most significant factor affecting these

results.

5.1.4 Power Consumption

The power consumption of the mobile application was also investigated through a com-

bination of research and experimentation in order to assess the impact it would have on

a student’s battery. An experiment was carried out on the test device (Samsung Galaxy

S6) that measured the battery drain of the application while constantly advertising on

the least power efficient settings (100 ms advertising interval, high transmission power,

no time out period).

Experiment

All background apps and processes were closed, WiFi and mobile data were disabled,

and the screen remained off with the attendance application running. During this

test, the application drained an average of 1.5% of the phone’s battery per hour. For

comparison, with no applications running the phone’s normal battery drain under the

same circumstances was 1% per hour on average, meaning the application drained an

extra 0.5% while advertising constantly. While testing on a wider range of hardware is

needed to say conclusively, these results are promising and indicate that excess energy

consumption by the smartphone application is of minimal concern.

Related research

Some further research was conducted to investigate the authenticity of Bluetooth Low

Energy’s claims regarding low power consumption. For the most part, it does indeed

seem to be quite energy efficient which aligns with the results of this experiment. A

study that tested BLE’s power consumption using an nRF51 System-On-Chip reported

current consumption in an hour of between 0.038 mA and 0.461 mA depending on

advertising interval and duration [19]. This would drain a 230 mAh battery in roughly

between 6000 and 500 hours respectively. A similar study using a Texas Instruments

CC2541 tested power consumption while in a continuous BLE connection and found

the average current to be 0.024 mA [20]. This would drain the same 230 mAh battery

in approximately 9583 hours. While these tests use power-constrained devices, their

42

results as well as the results of the experiment on the Android test device indicate that

BLE is a suitable choice of technology for this dissertation’s use case in terms of energy

efficiency.

5.2 Security Considerations

5.2.1 Secure API Payloads

Each Raspberry Pi communicates with a central API when pulling the lecture sched-

ules for its room and when uploading the attendance figures it has recorded. If this

communication were to happen over HTTP, the system would be vulnerable to a Man-

In-The-Middle-Attack. This attack could be an active attack or a passive attack. A

passive attack could mean an attacker would eavesdrop on the student numbers being

sent to the API and be able to tell which students attended which lectures. An active

attack could involve an attacker substituting their own messages to and from the API,

falsifying attendance information or lecture schedules. Using HTTPS will prevent these

attacks and ensure that (i) - the Raspberry Pi is communicating securely and privately

with the API server, and (ii) - the payloads sent between the Raspberry Pi and the

server have not been altered. This will also require the Raspberry Pi to verify that the

TLS certificate provided to it by the server is valid and signed by a trusted Certifi-

cate Authority. The project prototype implementation uses the Requests package for

Python which verifies TLS certificates for HTTPS requests by default [21]. However,

the API implementation was not deployed with HTTPS.

5.2.2 Client Authentication

While HTTPS would provide payload encryption and integrity, an attacker could still

send their own HTTP POST requests to the API containing false student numbers.

The attendance system requires that only the Raspberry Pis in each lecture room may

communicate with the API, so an additional layer of security is necessary. TLS offers

a possible solution to this issue in the form of client certificates. This provides a way

for the API server to authenticate the client (the Raspberry Pi) and assure that only

clients with a valid certificate can access the API. As these Raspberry Pis will be

installed manually by the college, it is safe to assume that a client certificate may be

loaded onto each one.

43

However, this solution is not optimal as it would require the certificate of each

device to be updated manually when it expires or if it is revoked. In a college setting,

where there may be a device in each one of possibly hundreds of lecture rooms, this

solution will not scale efficiently. A more appropriate client authentication system may

be a login-based system whereby each device would authenticate with the API using

a unique login. This login could be configured once upon setup of the Raspberry Pi

through some registration interface and could be managed remotely by the college with

an administrator login. This would have the added benefit that if one device’s login

needed to be revoked or altered, it would not affect the rest of the devices. A full

implementation of such a system (including roles, login management, etc.) is beyond

the scope of this dissertation topic. However it is nonetheless an important aspect to

consider in the design of the system.

5.2.3 API Denial-of-Service

The central API is a vital component of the attendance tracking system in order for

it to function as intended. As a result, a successful “Denial-of-service” (DoS) attack

or “distributed DoS” (DDoS) attack would impact the system as a whole. If the API

were brought down, then the Raspberry Pis would be unable to update their schedules

or to upload any attendance data they have recorded. The impact of such an attack

could be reduced by a number of factors.

• Assuming that both the API server and each Raspberry Pi are located inside

the college, the college could configure their network and firewall to restrict API

access exclusively to traffic originating from inside the college. This will mitigate

the effectiveness of an external DDoS attack.

• The attendance tracking software can be implemented with this as a considera-

tion. Due to the repetitive nature of lecture schedules, the lecture schedule may

be pulled infrequently, meaning the device does not need constant communica-

tion with the API in the event that it does go down. Similarly, any attendance

data unable to be uploaded to the API could be stored locally and re-uploaded

when the Raspberry Pi next detects that the API is functional.

• In extreme cases, a third party DDoS protection service such as Cloudflare [22]

may be employed. However, if the aforementioned measures were implemented,

44

it may be unlikely that the setup and cost of Cloudflare will be warranted, given

the reduced probability of such an attack.

5.2.4 Bluetooth Security

As the successful recording of student numbers via BLE is the core function of this

system, it is important that this process is also secure and private. Similarly to the

API communication portion of the system, this Bluetooth communication between the

phone and the Raspberry Pi should be encrypted to prevent MITM attacks and for

the student’s identity to remain private.

BLE encrypts communication between two devices by exchanging a Temporary

Key (TK) which both sides use to generate the actual encryption key called the Short

Term Key (STK) [9]. The method with which the STK is generated is called the

“pairing method”, with each pairing method offering varying levels of security. The

“Just Works” and “Passkey” pairing methods are both susceptible to MITM attacks

where the attacker can brute force the TK and derive the STK. The “Out of Band”

method uses another communication medium such as NFC in order to exchange the

keys, which is MITM-resistant as long as the other band is. From BLE 4.2 onwards,

the TK and STK are replaced with a Long Term Key (LTK) which is used to encrypt

the connection. Elliptic-curve Diffie-Hellman was introduced in order to generate the

LTK, providing added protection against MITM attacks [23]. Such an attack has a low

probability of occurring in the context of this topic as it would require an attacker to

be present in the lecture room and for the communication to be using one of the older,

insecure pairing methods.

Recent versions of Android (6.0 onwards) also randomize the hardware address of

the phone by default when using any of their Bluetooth APIs such as BLE advertising

or scanning [24]. This ensures a student cannot be tracked from location to location

based on their Bluetooth device address by making it appear as a different device each

time the scanner is turned on.

5.3 Summary

This chapter presented an evaluation of the prototype implementation of the atten-

dance tracking system. The system was not evaluated under a trial lecture scenario

45

due to time constraints so single device testing was performed to try and give an

indication of its feasibility.

The system was shown to take an average of 1.51 seconds to read each student number.

When extrapolated to estimate the time taken to record an entire class, the resulting

ranges were acceptable. The individual system components were deployed and tested

in an end-to-end evaluation of a full system cycle, with the components interoperating

successfully. Upon experimentation, the system was found to have a poor detection rate

of advertisement packets (roughly 50%). The most likely factor for this was deemed

to be hardware limitations of the Raspberry Pi as the system performed significantly

better using a more capable machine.

Some investigation into the smartphone application’s power consumption was also car-

ried out to assess how suitable BLE technology is for this use case. It was found to

consume a relatively small amount of excess battery, due mainly to the implementa-

tion’s ability to run without UI and with the screen disabled. Finally, some security

considerations of the design were discussed, with particular attention being paid to

their probability, potential impact, and mitigation techniques.

46

Chapter 6

Conclusion

6.1 Overview

This dissertation aimed to create a system for lecture attendance tracking that allevi-

ated the flaws of existing systems by being seamless, easy to use, accurate, and scalable.

A prototype was developed using an Android application capable of communicating

with a small device in the lecture room using Bluetooth Low Energy. This system uses

a combination of Bluetooth Low Energy Advertisements and Connections to record

the student’s ID number multiple times over the course of a lecture.

Through use of Android services, the attendance process occurs entirely in the

background and does not distract the student by requiring manual interaction once

started. This allows the system to meet the desired objectives of being seamless and

easy to use, with minimal disruption to the student’s learning.

The range of Bluetooth and the process of recording a student’s presence multiple

times during the lecture helps to improve upon accuracy flaws of existing systems both

by verifying that a student was (a) in close proximity to the attendance device, and

(b) present for the full duration of the lecture. In the current prototype, this could

be circumvented by a student typing another student’s number into the application.

However, the intention is that the application would be integrated with a college’s

own student login systems so that a student may only log in once using their own

credentials.

Due to time constraints, the system was not tested in a lecture scenario with large

numbers of smartphones. While considerations were made (remote schedule configu-

ration, sleeping to reduce congestion) to ensure the system could be scaled to perform

47

in such a scenario, it cannot be said definitively if the goal of system scalability was

met. The system’s performance was evaluated and its speed and power consumption

were found to be acceptable. Detection of advertisement packets was found to be

inconsistent on the chosen hardware but its potential was demonstrated on a more

capable device. While some future work is needed, the initial work presented in this

dissertation achieved most of its objectives and the resulting system demonstrates the

feasibility of such an attendance tracking solution with some promising results.

6.2 Future Work

6.2.1 Hardware

Due to its detection of roughly 50% of advertisements, the Raspberry Pi Zero W is too

inconsistent to be chosen as the hardware for the implementation of the Attendance

Tracker component. More capable hardware will reduce the possibility of a student’s

attendance being missed by the system. A possible alternative could be its more

powerful counterpart, the Raspberry Pi 3 b+, which also includes support for BLE 4.2.

As discussed in section 4.1, the software of the Attendance Tracker will run on any

Linux machine that supports BLE (including with a Bluetooth dongle), so this could

broaden the hardware possibilities even further. It would allow a college to swap out

or upgrade hardware as they see fit and also allow the lecturer to run the system on

their own laptop if desired.

6.2.2 College Integration and Trial

A vital piece of future work would be to trial the system in a college lecture scenario.

While the evaluation performed in the previous chapter can give an indication into

the system’s functionality, this is not a substitute for a larger scale test in a trial

lecture. This will give more accurate insights into the system’s speed, range, and

overall performance when placed under the type of load that cannot be emulated by

single device testing. Such a trial would be the only way conclusively determine the

current implementation’s scalability, making it perhaps the most important area of

future work.

48

6.2.3 Bluetooth 5

Bluetooth 5 was released by the Bluetooth SIG in late 2016. This iteration of the

wireless standard boasts a number of features which could vastly improve the Bluetooth

LE communication portion of this dissertation. It introduces improved bandwidth,

increased range, and larger advertising payloads. The new specification offers choices

to developers to sacrifice some of these features in favour of large improvements to the

features most relevant to their application. In the context of this system, the increased

range seems an attractive feature for future work. Using the new “LE Coded” version

of the PHY, the bit rate can be reduced to 125 kb/s in exchange for a 4x increase in

range [25]. This would be a useful trade-off for the attendance tracking system as the

amount of data transmitted is very small but with a large potential range required.

Hardware support for Bluetooth 5 is still relatively uncommon, but current iterations

of flagship Android phones such as the Samsung Galaxy S9 and OnePlus 6 are currently

being released with support for the specification.

49

Appendix A

Annotated Dockerfile Example

The Dockerfile used to by the AWS EC2 instance to configure and install the Atten-

dance and Scheduling API. The general process is as follows, with each line explained

with a comment. The result is a Docker container running a publicly accessible instance

of the API.

use a pre-configured Linux image with Python 3.6.1 installed

FROM python:3.6.1

set working directory of the application

RUN mkdir -p /usr/src/app

WORKDIR /usr/src/app

add Pip requirements (to leverage Docker cache)

ADD ./requirements.txt /usr/src/app/requirements.txt

install requirements/dependencies using Pip

RUN pip install -r requirements.txt

add app to working directory

ADD . /usr/src/app

run server and start app

CMD python -u manage.py runserver -h 0.0.0.0

50

Appendix B

Android BLE GATT Server

Callback

The Bluetooth GATT Server callback implemented by the Android application. This

abstract class handles read requests from the AttendanceTracker during a BLE Con-

nection.

private BluetoothGattServerCallback gattServerCallback = new BluetoothGattServerCallback() {

@Override

public void onCharacteristicReadRequest(BluetoothDevice device, int requestId, int offset,

BluetoothGattCharacteristic characteristic) {

// Attendance tracker has requested the Student Number characteristic

if (characteristic.getUuid().equals(StudentAttendanceProfile.STUDENT_NUMBER)) {

boolean success = gattServer.sendResponse(device,

requestId,

BluetoothGatt.GATT_SUCCESS,

0,

studentNumber.getBytes());

// Student number has been successfully read by the scanner

if (success && numberOfReads < 2) {

numberOfReads++;

if (numberOfReads == 1)

sleepService();

else if (numberOfReads == 2)

stopSelf();

51

}

} else {

Log.d(LOG_TAG, "Invalid characteristic");

gattServer.sendResponse(device,

requestId,

BluetoothGatt.GATT_FAILURE,

0,

null);

}

}

};

52

Bibliography

[1] Bluetooth SIG. Radio versions: The right radio, for the right job. https://www.

bluetooth.com/bluetooth-technology/radio-versions.

[2] Bolivar A. Senior. Correlation between absences and final grades in a college

course. In International Proceedings of the 44th Annual Conference. Associated

Schools of Construction, 2008.

[3] Anna Lukkarinen, Paula Koivukangas, and Tomi Seppl. Relationship between

class attendance and student performance. Procedia - Social and Behavioral Sci-

ences, 2016.

[4] H. Paul LeBlanc III. The relationship between attendance and grades in the

college classroom. 17th Annual Meeting of the International Academy of Business

Disciplines, 2005.

[5] D. Deugo. Using beacons for attendance tracking. In FECS’16 - The 12th Inter-

national Conference on Frontiers in Education: Computer Science and Computer

Engineering. Worldcomp, 2016.

[6] Bluetooth SIG. The rise of beacon technology, 2017. https://blog.bluetooth.

com/the-rise-of-beacon-technology.

[7] Ben Lynch. Collaborative attendance tracking using bluetooth low energy. Mas-

ter’s thesis, University of Dublin, Trinity College, 2017.

[8] Robin Heydon. Bluetooth Low Energy: The Developer’s Handbook. Prentice Hall,

2012.

[9] Kevin Townsend, Carles Cufi, Akiba, and David Robertson. Getting Started with

Bluetooth Low Energy: Tools and Techniques for Low-Power Networking. O’Reilly,

2014.

53

https://www.bluetooth.com/bluetooth-technology/radio-versions
https://www.bluetooth.com/bluetooth-technology/radio-versions
https://blog.bluetooth.com/the-rise-of-beacon-technology
https://blog.bluetooth.com/the-rise-of-beacon-technology

[10] Microchip Technology Technical Training Group. Bluetooth low energy physical

layer. http://microchipdeveloper.com/wireless:ble-phy-layer.

[11] Carles Gomez, Joaquim Oller, and Josep Paradells. Overview and evaluation of

bluetooth low energy: An emerging low-power wireless technology. Sensors, 2012.

[12] Kevin Townsend. Introduction to bluetooth low energy, 2015. https://learn.

adafruit.com/introduction-to-bluetooth-low-energy.

[13] Bluetooth SIG. Gatt overview. https://www.bluetooth.com/specifications/

gatt/generic-attributes-overview.

[14] Python Software Foundation. 17.1. threading thread-based parallelism, 2018.

https://docs.python.org/3/library/threading.html#timer-objects.

[15] Ian Harvey. The defaultdelegate class - bluepy 0.9.11 documentation, 2014. http:

//ianharvey.github.io/bluepy-doc/delegate.html.

[16] SQLite. About sqlite. https://www.sqlite.org/about.html.

[17] Miguel Grinberg. The New And Improved Flask Mega-Tutorial. Independently

Published, 2017.

[18] Apple Inc. Accessory Design Guidelines for Apple Devices, Release R5, 2018.

[19] Bikash Shrestha. Measurement of power consumption of ble (bluetooth low en-

ergy). Master’s thesis, Helsinki Metropolia University of Applied Sciences, 2016.

[20] Sandeep Kamath and Joakim Lindh. Measuring Bluetooth Low Energy Power

Consumption. Texas Instruments.

[21] Kenneth Reitz. Advanced usage: Ssl cert verification - requests documenta-

tion, 2018. http://docs.python-requests.org/en/master/user/advanced/

#ssl-cert-verification [Accessed: 24th April 2018].

[22] Cloudflare. Protect against ddos attack, 2018. https://www.cloudflare.com/

ddos/ [Accessed: 24th April 2018].

[23] Matthew Bon. A Basic Introduction to BLE Security - EEWiki,

2018. https://eewiki.net/display/Wireless/A+Basic+Introduction+to+

BLE+Security [Accessed: 26th April 2018].

54

http://microchipdeveloper.com/wireless:ble-phy-layer
https://learn.adafruit.com/introduction-to-bluetooth-low-energy
https://learn.adafruit.com/introduction-to-bluetooth-low-energy
https://www.bluetooth.com/specifications/gatt/generic-attributes-overview
https://www.bluetooth.com/specifications/gatt/generic-attributes-overview
https://docs.python.org/3/library/threading.html#timer-objects
http://ianharvey.github.io/bluepy-doc/delegate.html
http://ianharvey.github.io/bluepy-doc/delegate.html
https://www.sqlite.org/about.html
http://docs.python-requests.org/en/master/user/advanced/#ssl-cert-verification
http://docs.python-requests.org/en/master/user/advanced/#ssl-cert-verification
https://www.cloudflare.com/ddos/
https://www.cloudflare.com/ddos/
https://eewiki.net/display/Wireless/A+Basic+Introduction+to+BLE+Security
https://eewiki.net/display/Wireless/A+Basic+Introduction+to+BLE+Security

[24] Google. Android 6.0 changes - android developers, 2018. https:

//developer.android.com/about/versions/marshmallow/android-6.

0-changes.html#behavior-hardware-id [Accessed: 25th April 2018].

[25] Bluetooth SIG. Bluetooth Core Specification - v5.0, 2016.

55

https://developer.android.com/about/versions/marshmallow/android-6.0-changes.html#behavior-hardware-id
https://developer.android.com/about/versions/marshmallow/android-6.0-changes.html#behavior-hardware-id
https://developer.android.com/about/versions/marshmallow/android-6.0-changes.html#behavior-hardware-id

	List of Figures
	List of Tables
	Introduction
	Motivation
	Research Topic
	Objectives
	Dissertation Overview

	Background
	Existing Attendance Tracking Approaches
	Sign-in Sheets
	Lecture PIN Codes
	Card Tapping/Scanning

	Related Work
	Bluetooth Low Energy
	BLE Protocol Stack
	Advertising and Connections
	GAP
	GATT

	Design
	System Overview
	Communication

	Attendance Tracker
	Attendance & Scheduling API
	Data Models

	Mobile Application

	Implementation
	Attendance Tracker
	Hardware
	Lecture Scheduling
	Scanning Process

	Attendance & Scheduling API
	Data Storage
	API Routes
	Configuration and Deployment

	Mobile Application
	Main Activity
	Background Service

	Evaluation & Results
	Experimentation
	Recording Speed
	Full System Cycle
	Advertisement Detection
	Power Consumption

	Security Considerations
	Secure API Payloads
	Client Authentication
	API Denial-of-Service
	Bluetooth Security

	Summary

	Conclusion
	Overview
	Future Work
	Hardware
	College Integration and Trial
	Bluetooth 5

	Annotated Dockerfile Example
	Android BLE GATT Server Callback
	Bibliography

