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Summary

This dissertation explores the ability of the neural Turing machine to learn an algo-

rithm involving complex data structures. It does this by training an implementation

of the neural Turing machine to solve the shortest path problem from graph theory.

Its ability to perform this task is evaluated both in absolute terms, and relative to a

baseline long short-term memory network. The problem’s constraints are then re-

laxed and a more general view is sought on the model’s ability to reason over graph

structures.

A detailed review of the research underpinning the neural Turing machine is

presented. This review, along with a formal definition and analysis of the shortest

path problem form the foundations of the work detailed in this dissertation.

A method for generating a dataset over which to train the neural Turing machine

and long short-term memory models is defined. This method uses knowledge of the

problem space to efficiently generate a large dataset. Having generated the dataset,

a method is described for the sequencing of its elements for input to the two models.

Two neural networks are implemented using TensorFlow to solve the shortest

path problem: a neural Turing machine network and a long short-term memory

network. These implementations are described in detail. The descriptions look in

particular at the structures built that are specific to solving the shortest path problem.

An iterative method for training and optimising both networks is given. It in-

volves three stages: plotting the networks’ learning curves, hyper-parameter op-

timisation, and final testing. The learning curve determines the networks’ perfor-

mance versus training set size. The optimal training set size for each network is then

used in hyper-parameter optimisation using random search over 60 iterations. The

best-performing hyper-parameter configuration for each network is used to test the

networks on unseen testing sets. Having been trained over a dataset containing only

6-node graphs, the networks are tested on datasets containing 6, 7, 8, 9 and 10-node
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graphs.

The results presented in this dissertation show that neither the neural Turing

machine, nor long short-term memory network learned a reliable solution to the

shortest path problem. Analysis of their performance does indicate that the neural

Turing machine achieved a statistically significantly lower error rate than the long

short-term memory network. This is likely owing to its ability to use its addressable

memory as a lookup table. However, the long short-term memory network gen-

eralised better, out-performing the neural Turing machine on sets containing larger

graphs. Further analysis shows that neural Turing machine was able to reason about

graph structures better than long short-term memory. Furthermore, the gap in per-

formance between the two models on 6-node graphs is widened when a partial so-

lution is considered.

The dissertation concludes with a discussion of improvements that could be

made to the model. A weakness is identified in the description of the problem to

the network and approaches to a solution are outlined, with reference to relevant

research.
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Abstract

Conor SEXTON

Advancing Neural Turing Machines: Learning a Solution to the

Shortest Path Problem

The growth of the internet and advances in processing power have seen the dawn of

a machine learning age. Concepts and models, new and old, are being combined and

reworked to produce interesting and useful results. As we struggle to make sense

of the vast amount of data that we now store, there is a pressing need to develop

models that can make sense of it for us.

One such model is the neural Turing machine. Combining a neural network with

an addressable memory bank, it emulates a human’s ability to maintain a working

memory. Initial research has shown that by using this memory, it can learn its own

algorithms to solve problems, based solely on input and output examples.

This work measures the neural Turing machine’s ability to learn a solution to

a problem more complex than those it has seen before - the shortest path problem

from graph theory. A large number of problems can be expressed using graphs, so

showing that a neural Turing machine can reason over their structure shows that

they can reason over a much larger set of problems.

By analysing the performance of the neural Turing machine against a long short-

term memory network, this work shows that the memory has a positive effect on the

model’s ability to both solve the problem, and understand graph structures.
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Chapter 1

Introduction

In this chapter, the motivation behind this dissertation is introduced. The chapter

then goes on to define the question posed by the research, and derives from this

question the set of goals that were pursued. Lastly, the contents of the dissertation

are outline by chapter.

1.1 Motivation

Machine learning has seen a recent surge in popularity. It has been available in com-

mercial software products since the 1990s, but it is only with the recent growth in the

size and availability of datasets that it has reached widespread utility (Goodfellow,

Bengio, and Courville, 2016, p. 19-20).

Neural networks constitute one machine learning model that stands out from

the rest. From their conception, they have striven to replicate the performance of the

human brain. Recent research has seen them exceeding that goal in tasks at which,

classically, computers could not compete, such as image recognition (He et al., 2015).

Modifications to their structure see them again draw inspiration from human

cognition. The neural Turing machine (NTM) attempts to model the cognitive psy-

chology concept of a "working memory" to allow it to approach problems in the way

that a human would. It couples a neural network with an addressable memory bank

that allows it to store information for processing at different points in computation.

This has had the effect that, by providing the NTM with an input and desired out-

put, it can learn its own basic algorithms for tasks such as copying, sorting, and

associative recall.
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The algorithms already learned by the NTM are fundamental to computer sci-

ence, but basic. The aim of this dissertation is therefore to continue to explore the

reasoning ability of the NTM by applying it to a new and more complex problem.

To that end, it details the training of an NTM network to learn its own algorithm for

solving the shortest path problem from graph theory.

Graph theory is important because it provides a framework on which to model

a large set of concepts, including those in the areas of networking, linguistics, and

computability theory. By showing that the NTM can learn to analyse and reason

about a graph, one is also showing it to be able to reason over a much larger set of

concepts.

1.2 Research Question

This dissertation questions the impact of an addressable memory source on the abil-

ity of neural networks to reason over complex structures such as graphs.

1.3 Aims

Derived from the research question, the aims of this dissertation are to:

1. Survey the research of neural Turing machines, neural networks and other re-

lated theory.

2. Define a method to procedurally generate a dataset containing graph and short-

est path elements.

3. Build neural Turing machine and long short-term memory models to learn to

solve the shortest path problem.

4. Define and follow a methodology for training and optimising these models.

5. Evaluate the models in terms of:

(a) Their outright performance.

(b) The statistical difference in the performance between the two.

(c) Their ability to more generally reason over graph structures.
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1.4 Dissertation Structure

This dissertation is divided into six chapters. This section gives an overview of the

contents of each chapter.

Chapter 2 reviews the research on which this work is based. The deterministic

Turing machine, the classical model from which the neural Turing machine draws

its inspiration, is described in full. A portion of the chapter is devoted to prov-

ing a grounding in the core concepts powering neural networks, before analysing

how these concepts are combined to form more complex models. Finally, a formal

definition of the problem posed to the network is given. Its known solutions and ap-

plication are listed before its complexity is given context with in machine learning.

Chapter 3 outlines design and implementation of the components necessary for

the research. The space occupied by the dataset and the processes involved in its

generation are defined. A description of the construction of the networks looks in

detail at tools and structures used to better solve the problem.

Chapter 4 describes the evaluation of the networks. This chapter is broken into

two sections: a description of the procedures followed in gathering results and a

presentation of the results themselves.

Chapter 5 discusses the results obtained in the context of the research presented

in Chapter 2. It then suggests changes that could be made that could improve the

performance of the networks given the results.

Finally, Chapter 6 summarises the key findings of the research with reference to

the aims described in Section 1.3 and presents some final words on the topic.
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Chapter 2

Foundational Research

The chapter lays the foundations on which this dissertation is built. The chapter

begins by looking at the conceptual ancestor of the neural Turing machine - the de-

terministic Turing machine. Section 2.2 is devoted to giving an overview of neural

networks and the ideas underpinning them, before Section 2.3 explores more com-

plex variations in their design. Section 2.4 concludes the chapter with a formal def-

inition of the shortest path problem and analysis that contextualises the proposal of

this dissertation.

2.1 Deterministic Turing Machines

A one-tape deterministic Turing machine is a mathematical model of computation

often used in complexity theory to formalise the notion of an algorithm (Garey, 1979,

p. 23).

A Turing machine consists of a finite-state machine controller, a read-write head,

and a bidirectional, infinite tape. The tape can be thought of as a list that extends

infinitely in both directions. Each discrete index, or cell, in the list can contain a

symbol. A symbol is an element of some accepted set of symbols specified in the

initial Turing machine definition. The read-write head allows the controller to read

and write symbols from and to cells on the tape. A high-level view of the architecture

of the Turing machine can be seen in Fig. 2.1.

A Turing machine M is formally defined (Hopcroft and Ullman, 1979) by:

M = 〈Q,Γ, b,Σ, δ, q0, F 〉where (2.1)
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• Q is the finite, non-empty set of states.

• Γ is the finite set of allowable tape symbols.

• b ∈ Γ is the blank symbol.

• Σ ⊆ Γ \
{
b
}

is the set of input symbols.

• δ :
(
Q \ F

)
× Γ → Q × Γ ×

{
L,R

}
is the transition function, where L is left

shift, R is right shift. If δ is not defined on the current state and the current tape

symbol, then the machine halts.

• q0 ∈ Q is the start state.

• F ⊆ Q is the set accepting states.

A Turing machine takes as input a string x ∈ Σ*, which it then writes to the tape.

At each subsequent time step, the Turing machine’s controller performs actions and

a state transition based on the transition function. The Turing machine’s actions will

be to either erase or overwrite the current symbol pointed to by the head, and then

move the head one cell to either the left or right along the tape. Execution concludes

when the controller has reached an accepting state.

FIGURE 2.1: The schematic view of a Turing machine.

Turing’s idea was to affix memory to a finite state machine. This difference is a

subtle one, but it makes Turing machines a much more powerful model. For any

computation that can be carried out by mechanical means, a Turing machine can be

constructed that is capable of simulating that computation (Turing, 1937).
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2.2 Neural Networks

This section introduces the concept of a neural networks. It begins with a basic

explanation of their operation followed by a look in greater detail at the concepts

underpinning them.

2.2.1 Overview

A neural network is a computational model that attempts to approximate a function

f(x) = y based on input and output examples. Many types of task can be solved

using neural networks, but two of the most common are classification and regression.

If the output y is of a set of discrete classes, problem is one if classification. An exam-

ple of this type of problem is identifying objects in images (Krizhevsky, Sutskever,

and Hinton, 2012). Regression aims to predict some continuous value based on its

input. A classic example is predicting house prices based on location, size and other

features. What follows is a description of neural networks in term of a classification

problem, although the two only differ in the way that the output is interpreted.

In its simplest form, a neural network is a linear classifier with an input and out-

put layer. It accepts as input features of a data element, and outputs a classification

of that data element. It does this by trying to define a straight line in feature space

that divides elements by class (as illustrated with two classes in two dimensions in

Fig. 2.2). This line is defined by:

y = Wx+ b. (2.2)

A loss function is a function that measures how wrong the network’s output was

and therefore how well the line divides the classes of the set. When the loss over the

entire set is high, it means the classes are poorly divided. When the loss is low, it

means the classes are well divided. Gradient descent is a training process by which the

model’s parameters W (weight) and b (bias) are incrementally changed to minimize

this loss function.

Linear classification works well until what is needed to be classified is not lin-

early separable in its current representation. It is at this point that a hidden layer is
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FIGURE 2.2: Linear classification in two-dimensional feature space.

added. A hidden layer sits between the input and output layers and applies some

function to the representation of the data to make it linearly classifiable. The extent

to which this function is applied, and to what features, is learnable using gradient

descent. A neural network containing a hidden layer is illustrated in Figure 2.3.

FIGURE 2.3: A neural network with input, hidden and output layers.
The number of hidden units of a network refers to the number of nodes

in its hidden layer.

Training neural networks is difficult and can be mathematically unstable. To aid

in this task, a number of training techniques and algorithms have been introduced.

The values that vary how and where these techniques and algorithms are applied

are referred to as the model’s hyper-parameters.

Neural networks constitute a machine learning model that derive power from

the way that they can be configured and tuned using different hidden layers and

functions to suit the task at hand. The coming sections examine how neural net-

works learn using these configurations.
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2.2.2 Gradient Descent

The objective of training a neural network is to minimise some loss function. Gradi-

ent descent is an approach to optimisation that makes use of the function’s deriva-

tives. This section describes the idea behind gradient descent, and how it is modified

to perform well on larger models and datasets.

To gain some intuition on this method, imagine a blind hillwalker. His objective

is to reach the top of a hill but he cannot see where to go. When the slope of the

hill is large, he knows to take long steps because he is still far from the top. As he

approaches the top however, he takes smaller steps to avoid over-shooting the peak.

In this way, the slope of the hill aids in finding the peak.

Suppose we have some function y = f(x), where both x and y are real numbers.

The derivative of this function, which gives the slope of f(x) at point x, is denoted

by f ′(x) = δy
δx . When trying to minimise or maximise the value of f(x) by changing

the value of x, the derivative f ′(x) can be used to scale the changes made: f(x+α) ≈

f(x) + αf ′(x), where α is the size of the unscaled change to be made (Goodfellow,

Bengio, and Courville, 2016).

When training a neural network, the function being minimised is the loss func-

tion, expressed as a function of the model’s parameters. The α term is referred to

as the learning rate, and controls how much the parameters will be changed. In the

hillwalker example, he was trying to reach the peak of the hill - or to maximise his

height. Neural networks aim to minimise some loss function, so the negative slope

is used as a scaling factor.

Batch gradient descent computes the derivative of the loss function Lwith respect

to the model’s parameters θ across the entire training set. The parameters are then

updated according to the function:

θ = θ − α∇θL(θ) (2.3)

This is an iterative process; the derivative is repeatedly found and applied to the

parameters to minimise the loss - thus descending the gradient.

An example of this with just two weights, w1 and w2, and loss as a function of

these weights L(w1, w2) is illustrated in Figure 2.4. The loss starts high, but each step
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of updating the weights with the derivative of the loss with respect to the weights

brings the loss closer to the minimum.

FIGURE 2.4: Gradient descent with two weight parameters.

A problem with batch gradient descent is that it does not scale well. It requires

the loss to be computed over the entire training set for each update. As the number

of training examples and model parameters increases, this becomes infeasibly costly.

Furthermore, this must be done repeatedly to find a minimal loss.

Because of this, stochastic gradient descent (SGD) was developed. Stochastic gra-

dient updates the model’s parameters using a single random sample of the training

set xi and its target yi:

θ = θ − α∇θL(θ;xi; yi) (2.4)

A single pass of SGD over all of the training examples is called an epoch.

The derivative of the loss for an individual example is not likely to be repre-

sentative of entire training set, meaning that the updates might not step the loss in

the right direction. This is compensated for by performing many more, smaller up-

dates. These updates are much cheaper to compute than the updates over the entire

dataset, so more of them can be performed and, over time, they will tend towards the

minimum. Neural networks optimised with SGD have been shown to perform well

on large-scale problems (Bottou, 2010), but algorithm requires a number of modifi-

cations to make it more effective.
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SGD performs badly when the optimum sits at the end of a long ravine (Sutton,

1986). A ravine is an area where the gradient is much steeper in one dimension than

another. This is because the gradient at any point along either of the walls of the

ravine will point across to the other wall, causing the loss to oscillate between the

two.

Momentum (Qian, 1999) is one method for pushing the update along the ravine

towards the minimum to prevent oscillation. Its effects are illustrated in Figure 2.5.

An analogy for how it works is to imagine pushing a ball down a hill (Ruder, 2016).

As the ball travels down the hill it gathers momentum until it reaches some terminal

velocity. This is reflected in the parameter updates. A new momentum term γ is

introduced that increases for dimensions whose gradients point in the same direc-

tion and reduces for updates whose gradients change directions. An update vector v

keeps track of this momentum, and the update term at time t becomes:

vt = γvt−1 + α∇θL(θ) (2.5)

θ = θ − vt (2.6)

FIGURE 2.5: The effect of momentum on stochastic gradient descent
(Ruder, 2016).

Some parameters will have more of an effect on the loss than others. To reflect

this, many SGD-based optimisers use adaptive learning rates. Adaptive learning rate

optimisers use different learning rates for each model parameter, slowly adjusting

the rate using the consistency of the parameter’s gradient. For example, RMSProp

(Hinton, 2014) divides the learning rate of each parameter by an exponentially de-

caying average of its squared gradient. For gradient g, learning rateα and smoothing
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term ε, the running average E[g2]t and resulting update function are defined as:

E[g2]t = βE[g2]t−1 + (1− β)g2
t (2.7)

θt+1 = θt −
α√

E[g2]t + ε
gt (2.8)

The β term above is the weight decay, another model hyper-parameter that can be

tuned.

Gradient descent is a method for training neural networks by minimising a loss

value expressed as a function of the model’s parameters. Batch gradient descent

does not scale well with size of dataset or model. Instead stochastic gradient descent

is done to provide a cheap approximation. In an attempt to make this approximation

more accurate, momentum and adaptive learning rates are used.

2.2.3 Hidden Layers

Hidden layers are used in neural networks to transform the representation of the

data into one that is linearly classifiable. Different functions introduce non-linearity

to achieve this. Hidden layers can then be combined to produce networks suited to

the problem.

Hidden layers apply some function to the input from the previous layer to pro-

duce an output. A common approach is to first apply a linear transformation to the

incoming data, followed by some non-linear squashing function. An example of a

common hidden layer is a tanh layer tanh(Wx+ b). This layer consists of:

1. A linear transformation by the weight matrix W .

2. A translation by the bias vector b

3. A point-wise application of tanh.

The effects of this layer on the data’s representation can be seen in Figure 2.6.
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FIGURE 2.6: The effect of a tanh layer on the representation of data
(Olah, 2016).

Each layer has its own set of parameters that can tuned using gradient descent.

The tanh layer is one example of many different types of layer, which can be com-

bined in different ways. It then becomes network’s job to learn to find the param-

eters for these layers that produce a representation in which the data are linearly

separable. The number of layers a network has is referred to as its depth.

In Fig. 2.7 it can be seen on the left that a straight line is not sufficient to separate

two classes (represented by two curved lines) that are closely mixed. But by chang-

ing the representation of the data using a combination of hidden layers, the classes

become easily separable using linear classification.

FIGURE 2.7: How multiple hidden layers change data’s representa-
tion to make them linearly classifiable (Olah, 2016).

Combining layers in this way to produce deep networks has proven to be a pow-

erful method. Networks constructed in this way have dramatically improved the

state-of-the-art in speech recognition, visual object recognition and many other do-

mains (Lecun, Bengio, and Hinton, 2015).
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2.2.4 Training Techniques

As the depth of a network increases, so too does the difficulty of training it (Srivas-

tava, Greff, and Schmidhuber, 2015). This section describes some of techniques and

algorithms used to help a network to learn.

Curriculum Learning

Humans and animals learn much better when examples are presented to them in

some meaningful order, rather than randomly. Using curriculum learning (Bengio

et al., 2009)., training data for a task is structured as if being taught to a human. It

breaks the data into discrete lessons that gradually introduce more complex concepts

to the network. This has been shown to both increase the speed of convergence in

training, and also find better local minima in non-convex loss space.

Regularisation

Regularisation is the concept of applying artificial constraints on the network to pre-

vent what is known as overfitting. Overfitting occurs when the approximate function

found by the network is excessively complex. This is signalled by lowering of the

loss seen in training, with no corresponding reduction in the error rate in validation.

One common form of regularisation is known as `2 regularisation. `2 regularisa-

tion encourages the parameters to not take large values by updating the loss value

with the `2-norm of the model’s weight parameters. The new loss L′ is defined as:

L′ = L+ β
1

2
‖θ‖22, (2.9)

where

‖θ‖22 =

k∑
i=1

θ2
i (2.10)

W represents the model’s parameters, of which there are k. The β is a tunable hyper-

parameters governing how much regularisation is applied.



Chapter 2. Foundational Research 14

Gradient Clipping

Gradient clipping is a technique used to prevent the problems of vanishing and explod-

ing gradients.

These problems are apparent in deep and recurrent (discussed in section 2.3)

networks when the model’s gradients are repeatedly multiplied by numbers less-

than or more-than 1. There is a limit to the accuracy of floating point numbers in

computers, so if the gradient becomes too small it will "vanish" - or become zero.

Similarly, if the gradients become too large, they can become infinite.

Without meaningful gradients, the model cannot learn. To prevent this, the gra-

dients are clipped to maximum and minimum values, ensuring that they never get

too large or too small

2.3 Types of Neural Network

The previous section discussed the mechanics of standard neural networks. This

section introduces three variations on the original design: recurrent neural networls,

long short-term memory, and the neural Turing machine. Their core structure is

still that of a neural network, but they have been engineered to be better solvers

of specific problems. Also discussed is a trend in neural network design, and the

significance it has in the field as a whole.

2.3.1 Recurrent Neural Networks and Long Short-Term Memory

Traditional neural networks have proven to have good performance for many prac-

tical classification problems (Zhang, 2000), but they have limitations. This section

discusses these limitations and describes the models created to remove them.

Traditional neural networks are only capable of classifying a fixed-length input,

which makes them very rigid. If the data are sequential, we must concatenate them

into a single vector for them to be accepted as input by the network. This concatena-

tion is wasteful, as there may be statistical invariants through time that will be lost

if the sequence is treated as a whole.

For example, if training a traditional neural network to count the number of 1s

in a sequence of bits, the network can only work on a sequence with a fixed length.
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Here, identifying if a bit is 1 or 0 is a statistical invariant between each length se-

quence - that is, it does not change with the length of sequence. But this insight is

being lost as the network must be trained for each length of bit sequence indepen-

dently. A network that has trained to count bits in a sequence of length 5 will not

work on a sequence of length 30.

The more that is known about the data, the better the classifier can be made. If

the data is known to be sequential, the classifier should capture this. It is with this

in mind that recurrent neural networks (RNNs) were developed. The addition of a

feedback loop from the network to itself makes RNNs particularly suited to handle

sequences of input. In Fig. 2.8 we can see the difference between traditional and

recurrent neural networks.

FIGURE 2.8: A neural network (A) and recurrent neural network (B).

By unrolling the RNN through time, we can see more clearly how it is the same as

a sequence of connected networks performing the same task on a sequence of inputs

while taking into account what has come before (see Fig. 2.9). This feedback loop

gives RNNs greater power in the solving of problems, even making then Turing-

complete (Siegelmann and Sontag, 1995).

In the bit-counting example, it allows the network to learn to identify if a single

bit is 0 or 1. A sequence of arbitrary length can be fed to the network and it can

reuse this ability for each successive bit. Then, it can use its recursive connection to

maintain a count of bits for the entire sequence, outputting when necessary.

In more complex sequences, dependencies can exist. For example, in an English

sentence the use of the pronouns "he" or "she" will depend on the person to whom

the speaker is referring.
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FIGURE 2.9: Unrolling a recurrent neural network through time.

A problem with RNNs is that they are bad at dealing with long-term dependen-

cies (Bengio, Simard, and Frasconi, 1994). As dependencies get further away from

each other in the input sequence, it becomes less likely that the network will account

for them.

This tendency led to the development of long short-term memory (LSTM) (Hochre-

iter and Schmidhuber, 1997). An external view of LSTM can be seen in Figure 2.10.

LSTM is similar to RNNs in that information from the previous input is fed back

into the network. The difference, however, is that LSTM allows this information to

be selectively modified based on the new input before being passed on to the next

input. This modification happens to a varying degree. Furthermore, the degree to

which this information, known as cell state, is modified is itself differentiable (able

to be mathematically differentiated), allowing it to be learned using gradient de-

scent. This mechanism allows LSTM to learn to hold information for longer when

long-term dependencies do occur.

FIGURE 2.10: An external view of an LSTM Network.
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Internally, LSTM contains three gates. Gates are ways to filter information, and

are the mechanism by which the cell state is modified. The three gates are:

1. Forget gate - this is used to determine what parts of the cell state will be forgot-

ten. It is implemented using a sigmoid layer and looks at the previous output

and the current input to produce a number between 1 and 0 for each number

in the cell state. A 1 indicates a number should completely retained, a 0 indi-

cates a number should be completely forgotten. The resulting vector is then

multiplied into the cell state. For previous output ht−1 and current input xt,

the output of the forget gate is described by:

ft = σ(Wf [ht−1, xt] + bf ) (2.11)

2. Input Gate - this gate decides what information will be stored in the cell state.

In is made up of two parts: a sigmoid layer and a tanh layer. The sigmoid layer

decides what values will be added to the cell state, the tanh layer prepares the

input for storing in the cell, and the output of the two are multiplied together

to produce the update vector which is itself added to the cell state. The output

of the sigmoid layer it, and the output of the tanh layer C̄t and update vector

Ut are described by:

it = σ(Wi[ht−1, xt] + bi) (2.12)

C̄t = tanh(WC [ht−1, xt] + bC) (2.13)

Ut = it × C̄t (2.14)

3. Output Gate - this gate decides what is output by the network. This is again

made up of two parts: a sigmoid layer and a tanh layer. In this case the sigmoid

layer decides what part of the cell state to output, and the tanh layer prepares

the cell state for output. With cell state Ct, the output of the sigmoid layer ot,

and output of the network ht are described by:

ot = σ(Wo[ht−1, xt] + bo) (2.15)
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ht = ot × tanh(Ct) (2.16)

The weight parameters Wf , Wi, WC , Wo and bias parameters bf , bi, bC , bo can all

be trained, meaning LSTM can learn how to manage its cell state. These gates are

illustrated in Figure 2.11.

FIGURE 2.11: An internal view an LSTM Network. Each coloured
area represents a different gate.

Neural networks are a powerful machine learning model. By adding new con-

nections and layers, such as those present in RNNs and LSTM, they become adept

at handling sequential, variable-length input.

2.3.2 Neural Turing Machines

This chapter has already discussed how enriching deterministic finite state machines

with a memory tape increases their power, and how augmentations to neural net-

works have allowed them to learn to solve problems involving sequences of vari-

able length. The neural Turing machine (NTM) (Graves, Wayne, and Danihelka,

2014) combines these augmentations to push even further the capabilities of machine

learning. This section discusses the theory behind the NTM, gives an overview of its

architecture and fully defines its operation.

"Working memory" is a concept in human cognition that describes holding in-

formation in the mind and mentally manipulating it, such as when working out a
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mathematical problem or interpreting language. It is critical to our ability to see

connections between seemingly unrelated things and to pull apart elements from an

integrated whole - and hence to creativity because creativity involves disassembling

and recombining elements in new ways (Diamond, 2013). It is often measured by

the number of "chunks" of information in a single dimension that can be readily re-

called (Miller, 1965). The NTM aims to give neural networks a working memory -

some space separate to the core computation where they can manipulate and reorder

information to solve problems.

The NTM is made up of two basic components: an LSTM controller and a re-

writable, addressable memory bank. The controller interacts with the outside world

via input and output vectors, as a standard neural network would, and interacts

with its memory bank using read and write heads, similar to the deterministic Turing

machine, described in Section 2.1. A high-level view of the NTM’s architecture is

illustrated in Fig. 2.12.

FIGURE 2.12: A schematic view of the neural Turing Machine
(Graves, Wayne, and Danihelka, 2014).

For each input, the NTM considers the controller’s cell state and the contents of

memory. For each output, the NTM updates the cell state and write to memory. This

is illustrated in Fig. 2.13 with a controller network C accessing a memory bank M .

What is important is that every component is differentiable - meaning that every

operation is learnable through gradient descent. Reading, writing and specifying a

location in memory are all learnable by the controller.

The memory bank Mt is a matrix with N vectors of length M at time t. The sizes
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FIGURE 2.13: The neural Turing machine unrolled through time
(Olah and Carter, 2016).

of N and M are fixed and defined during creation. When reading from Mt instead

of reading from one single location, a normalised weight vector wt emitted by the

read head specifies how much we care about each location in memory:

rt ←
∑
i

wt(i)Mt(i), (2.17)

where rt is the read vector obtained from memory. As such it can specify where to

read from and by how much, and is differentiable with respect to both the weight

and the memory bank.

Similarly, when writing to memory, the NTM writes everywhere at once, just to

different extents - controlled by the weight vector. The process is split into two parts:

erasure and addition. Initially an erasure vector et of length M is emitted by the read

head and applied to the memory bank:

M̄t ←Mt−1(i)[1− wt(i)et]. (2.18)

Next, the addition vector at also of length M is added to our erased memory bank:

Mt ← M̄t(i) + wt(i)at. (2.19)
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Notice that, in both cases, where the operation’s attention is being focused is

controlled by a weight vector being emitted by each head. This weight vector is

defined by the NTM’s addressing mechanism. There are two ways by which an NTM

can address its memory:

1. Content-based addressing: The head compares (using cosine similarity) each vec-

tor in memory,Mt(i), to a lengthM key vector kt emitted by the controller. The

weight vector wct is the normalised result of this comparison. A key strength

value βt is used to increase or decrease the precision of focus on the memory

location:

wct ←
exp(βtK[kt,Mt(i)])∑
j exp(βtK[kt,Mt(j)])

, (2.20)

where

K[u, v] =
u · v

‖ u ‖ · ‖ v ‖
. (2.21)

2. Location-based addressing: This addressing mechanism is designed to allow iter-

ation through memory locations, or random jumps. Location-based address-

ing can be used in two ways: it can specify an offset from the last memory

address accessed, or it can specify that offset relative to a content-based ad-

dress. It does this using an interpolation gate gt in the range (0, 1):

wgt ← gtw
c
t + (1− gt)wt−1. (2.22)

Whichever one is selected is then used in the equation to move the head. The

shift weighting st is a normalised vector emitted by the head that defines the

degree to which an offset in either direction is performed:

w̄t(i)←
N−1∑
j=0

wgt (j)st(i− j). (2.23)

The result from above is then sharpened using the scalar γt ≥ 1 to prevent

dispersion of weightings over time:

wt(i)←
w̄t(i)

γt∑
j w̄t(j)

γt
(2.24)
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A complete view of the memory addressing used by the NTM is illustrated in Fig.

2.14.

FIGURE 2.14: A flow diagram of the addressing mechanism of the
neural Turing machine (Graves, Wayne, and Danihelka, 2014).

By combining concepts from automata theory, machine learning, and psychol-

ogy, researchers have created a new model for machine learning. Using the read,

write and addressing mechanisms described above, the NTM can learn how to store,

re-read and manipulate input and intermediate data throughout the course of its

computation using gradient descent. These new abilities were shown by the orig-

inal paper (Graves, Wayne, and Danihelka, 2014) to allow the NTM to infer basic

algorithms more effectively than LSTM.

2.3.3 Attention

As discussed in this chapter, augmentations to neural networks aim to reduce their

limitations and increase their problem-solving power. These augmentations come in

several different forms, of which the NTM is one example. A new group of neural

networks is emerging that relies on the same underlying concept - that of attention.

Attention-based models have shown near-human levels of ability on certain tasks

using mechanisms inspired by human cognition.

When translating a sentence, a person will focus more on the word that they are

reading at any one point in time than any other in the text. When describing their

surroundings in a room, a person will look at each object that they list as they speak.

When copying text, a person will remember several words at a time and copy them
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sequentially from memory. Neural networks can behave in the same way using

attention. Attention allows them to focus in different amounts on different points

in input or memory to aid in completing a task. Attention is also differentiable,

allowing the neural network to learn where it needs to focus.

This chapter has discussed attention implemented as memory addressing in the

NTM - being able to read and write vectors in different amounts to different points

in a memory bank. Other neural network augmentations exist that implement atten-

tion also. For example, Attentional Interfaces allow RNNs to focus on different sec-

tions of their input, Adaptive Computation Time (Graves, 2016) allows computation

to performed to varying degrees at each step, and Neural Programmers (Neelakan-

tan, Le, and Sutskever, 2015) build programs by learning where to call functions.

These models are at the cutting edge of machine learning research.

These new, attention-based models have produced accurate solutions to prob-

lems at which humans have typically bested computers. These include problems

such as automatically describing images (Xu et al., 2015) and language translation

(Bahdanau, Cho, and Bengio, 2014). Furthermore, as discussed, the models have al-

lowed computers to infer their own algorithms for solving problems (Graves, Wayne,

and Danihelka, 2014).

Very often, the most effective forms of intelligence involve the interaction be-

tween some exact medium and the heuristic intuition of humans. For example, a

human will use a pen and paper to solve a mathematical problem. Part of the com-

putation is offloaded to the equations on the page, and the human uses their intu-

ition to reason and decide what next step to take.

Classically, computers have been one such exact medium used by humans. At-

tention and neural networks are exciting because they allow computers to use exact

media the way a human would - they model human intuition in a way executable

by computers. They allow computers to have fuzzy interaction with exact media,

where fractions of actions can be taken simultaneously and combined to varying

extents.

The emergence of attention-based models has allowed machines to learn to solve

problems with accuracy previously only possible by humans, in a way that emulates

humans.
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2.4 Shortest Path Problem

Among the aims of this dissertation is to train neural networks to solve the shortest

path problem. This section first formally defines the problem and gives examples

of its application. Following this, a known solution is analysed and the problem’s

complexity is discussed within the context of machine learning.

2.4.1 Definition

In graph theory, the shortest path problem is the problem of finding a path between

two vertices in a graph such that the sum of the weights of the constituent edges of

the path is minimized. A formal definition of the problem with given graph G is:

G = 〈V,E〉 (2.25)

P = 〈v1, v2, ..., vn〉 ∈ V × V × ...× V (2.26)

w(P ) =

k∑
i=1

w(vi, vi+1) (2.27)

φ(u, v) = min {w(P ) : P is path from u to v} (2.28)

• V is the set of vertices.

• E is the set of edges.

• P ⊂ V such that (vi, vi+1) ∈ E, ∀v ∈ P

• w(P ) is the weight of a path (note that in an unweighted graph we treat the

weight of each edge as 1).

• φ is the shortest path between two vertices.

For example, applying the above formulae to the graph illustrated in Figure 2.15

gives:

φ(D,F ) = P (2.29)
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P = {D,B,E, F}. (2.30)

w(P ) = 3 (2.31)

FIGURE 2.15: An unweighted graph.

The networks used in this dissertation are trained to produce a shortest path,

as defined above, between two vertices of an unweighted, undirected, connected

graph.

2.4.2 Applications

A large number of problems can be modelled using graph theory. This section illus-

trates some examples of problems being represented as graphs, and the meaning the

shortest path has in these examples.

A common example of a graph structure is seen in subway maps. Illustrated

in Figure 2.16 is a subsection of the London underground. In this illustration, we

can consider the stations to be vertices of a graph, and the train lines to be edges.

Finding the shortest route between two subways stations then becomes an instance

of the shortest path problem.

Non-deterministic abstract machines can be modelled as graphs in which ver-

tices represent states and edges represent transitions between those states. Finding

the sequence of transitions that lead to some goal state for the machine is thus an-

other instance of the shortest path problem.
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FIGURE 2.16: A subsection of a map of the London underground.

An example of this the Rubik’s cube. It can be modelled as a graph by making

each vertex a different configuration of its faces. Each edge in this case represents a

single turn of one of the cube’s faces that connects two configurations. The process of

solving the Rubik’s cube is another instance of the shortest path problem. The start

node is the initial jumbled configuration, the end node is the configuration with one

colour on each face, and the solution is the shortest path between the two.

Relationships between entities can also be modelled using graphs. An exam-

ple of this is a family tree. The relationship between any two people in the tree is

described by the shortest path between them. This is illustrated in Figure 2.17.

FIGURE 2.17: A relationship described as the shortest path in a family
tree.

The foregoing are just a few examples of how problems can be modelled as

graphs.
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2.4.3 Dijkstra’s Algorithm

The shortest path problem is an extensively-studied problem. There are a number

of known solutions, depending on the type of graph, but they can broken down

into two categories: single source and all-pairs. Single-source algorithms find the

shortest path between a single vertex in the graph and all other vertices. All-pairs

algorithms find the shortest path between every pair of vertices in a graph. This

section describes Dijkstra’s algorithm - a solution to the single-source shortest path

problem - and analyses its complexity.

Dijkstra’s algorithm (Dijkstra, 1959) works by gradually exploring vertices out-

wards from the source, prioritising those that are closer. The pseudocode for Dijk-

stra’s algorithm is given in Algorithm 1 below.

Algorithm 1 Dijkstra’s algorithm for the single-source shortest path problem.

1: function DIJKSTRA(Graph, source)
2: for vertex v in Graph do . Initialise all distances to infinity
3: dist[v] =∞
4: previous[v] = undefined
5: dist[source] = 0
6: Q = the set of all vertices in the Graph
7: while Q is not empty do . Main loop
8: u = vertex in Q with smallest dist
9: remove u from Q

10: for each neightbour v of u do . Where v is still in Q
11: alt = dist[u] + dist_between(u, v)
12: if alt < dist[v] then
13: dist[v] = alt
14: previous[v] = u

return previous

In an undirected, weighted graph G = 〈V,E〉, the time complexity of Dijkstra’s

algorithm is O(V 2). This is not optimal, as this problem has been shown to be solv-

able in linear time (Thorup, 1999). However, in the special case of unweighted

graphs, Dijkstra’s algorithm adopts the complexity of breadth-first search, solving

the problem optimally in linear time O(V + E).

2.4.4 Complexity

The shortest path problem may appear to be a trivial one given that there are many

algorithms already developed to solve it. However, it is important to make the
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distinction between providing an algorithm to find a solution to the shortest path

problem, and teaching a machine to infer its own algorithm based on examples.

The shortest path problem is of a higher order of complexity than any other prob-

lem solved by the NTM in its original presentation (Graves, Wayne, and Danihelka,

2014), based on structural complexity.

The choice of structural complexity may seem arbitrary, but that is not the case.

The core aim of the NTM is to be able to learn to store and maintain data structures

over the course of the computation. Therefore the complexity of the data structures

that the NTM is capable of storing is indicative of the success of this aim. The speed

and space requirements of the solution obtained are secondary, and so a measure of

time or space complexity in the context of this dissertation are irrelevant.

The NTM has so far applied algorithms to simple, linear data structures such as

lists and tables. These structures include up to one level of indirection - a elements

pointing to at most one other element. The shortest path problem is much more

complex in this regard as it involves a non-linear data structure in the form of a

graph. Furthermore, in a connected graph, every element points to at least one other

element or, more often, more than one element.

Therefore it can be seen that the shortest path problem is more complex than any

problem faced by the NTM in its original definition.
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Chapter 3

Design & Implementation

This chapter describes the design and implementation of systems necessary to ex-

amine the Research Question (Section 1.2). Section 3.1 outlines the tools used in the

implementation. Section 3.2 defines the problem space and presents a method for

efficiently generating a subset of this space, and a method for encoding this subset

for input to a neural network. Sections 3.3 and 3.4 give detailed accounts of the

implementation of the NTM and LSTM models.

3.1 Tools

3.1.1 TensorFlow

TensorFlow is a powerful open-source software library for machine learning devel-

oped by Google. It provides a number of pre-built functions to ease the task of con-

structing neural networks, and it is optimised to run across multiple processors and

machines. The models used in this dissertation are implemented using TensorFlow’s

Python API. This section gives an overview of the concepts necessary in understand

the models’ design.

The two fundamental concepts in TensorFlow are tensors and the computation

graph. Tensors can be thought of as a n-dimensional arrays or lists. A single scalar,

such as the number 4, is known as a rank-0 tensor. A list of scalars, such as [1, 2,

3], has a rank of 1. Rank, therefore, describes the dimensionality of a tensor. The

shape of a tensor describes the size of each dimension. Examples of tensors with

corresponding ranks and shapes can be seen in Table 3.1.
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Rank Tensor Shape
0 4 []
1 [1, 2, 3] [3]
2 [[1, 2, 3], [4, 5, 6]] [2, 3]
3 [[[1, 2], [3, 4]], [[5, 6], [7, 8]]] [2, 2, 2]

TABLE 3.1: Examples of tensors ordered by rank.

The computation graph is a schematic that describes the operation of a model.

Nodes in the graph represent mathematical operations and tensors. Edges in the

graph represent the connections between operations and tensors.

The programming of a TensorFlow neural network happens in two steps: build-

ing the computation graph and running the computation graph. When building the

computation graph, the programmer specifies the entry points to the graph, called

placeholders, the mathematical operations to be used and how those operations are

connected using tensors. When running the computation graph, the graph is ini-

tialised, data is passed to the placeholders in a feed dictionary and then specific nodes

are selected for evaluation.

Figure 3.1 shows a simple example of running a computation graph. Firstly,

TensorFlow session is created. The session is responsible for allocating resources on

whatever machine or group of machines the graph is to be executed on. All variables

in the graph are then assigned their initial values using the init function. A feed

dictionary mapping the value 10 to the placeholder ginput is passed to the graph

and the value of output1 is requested, with the result being stored in answer (in this

case the value 20). Because the value of output2 is never asked for, TensorFlow will

optimise the graph by pruning the output2 and division nodes during compilation.

This is because neither node affects any result asked for.

Section 3.3 describes how these concepts are combined to implement NTM and

LSTM models to learn a solution to the shortest path problem.

3.1.2 NTM-TensorFlow

The implementation described in this chapter is based upon an existing TensorFlow

implementation of the NTM (Kim, 2015). In its original design, it successfully re-

produced the results of the copy task presented in the original NTM paper (Graves,
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FIGURE 3.1: An example of a TensorFlow computation graph. The
code on the right runs the computation graph and requests the value

of output1, given an input of 10.

Wayne, and Danihelka, 2014). This implementation was chosen for adaptation as

it was directly referenced by members of the Google Brain team (Olah and Carter,

2016).

The program consists of a main module that instantiates an NTM Container with

an NTM Cell using various support modules. Task modules are used to describe

training and testing procedures run with the NTM Container.

As is described in Section 3.3, new NTM Container and Task modules, as well

as others, are defined within the existing structure of the program to better suit the

shortest path problem.

3.1.3 Pickle

To store and load datasets and results, the application uses the Python Pickle mod-

ule. This implements binary protocols for serialising and de-serialising Python ob-

ject structures.

Pickling is the process by which a Python object hierarchy is converted to a byte

stream and written to the disk. Unpickling is this operation in reverse.

Pickle is part of Python’s standard library and can store arbitrarily complex

Python data structures. Also, it is fast as it is mainly written in C. This makes Pickle

the logical choice for storing objects generated by this application.
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3.2 The Dataset

This section describes the method used to generate the dataset used for training and

testing the models. It begins with a definition of the contents of the dataset elements

and the space they occupy. It then describes how each element is generated individ-

ually, and how these elements are combined to form the dataset as a whole. Lastly,

it describes how these elements are encoded for the network and the structures in

place for marshalling sets of encoded input for training and testing.

3.2.1 The Problem Space

This section defines the contents of an element of the dataset used for training the

LSTM and NTM models. It then calculates the absolute size of the problem space -

i.e. the number of possible unique elements given their structure.

Each element of the dataset is made up of four parts:

1. Graph data - an object containing the description of the graph’s topology. Each

node in the graph is assigned a label from 0-9.

2. Start node - the start of the path.

3. End node - the end of the path.

4. Shortest path - the shortest path between the terminal nodes, stored as an edge

list (there may multiple, but only 1 is used).

Every graph in the dataset contains 6 nodes and is connected, undirected and un-

weighted. A connected graph G = 〈V,E〉 is a graph such that for any two vertices

vi, vj ∈ V where i 6= j, there exists a path from vi to vj . Making all of the graphs

connected guarantees that there will be a solution, assuming the terminal nodes are

contained in the graph. Edges in undirected, unweighted graphs can be traversed in

either direction and with uniform cost.

With 6 nodes, the topology of the graphs and associated shortest paths can vary

significantly. The number of possible edges in an n-node graph ranges from n − 1

to (n)(n−1)
2 . Therefore every graph in the dataset has from 5 to 15 edges. The length

of shortest paths will then range from 1 to 5. Example elements from the dataset are

illustrated in Figure 3.2.
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FIGURE 3.2: Two example elements from the dataset made up of a
graph, start and end nodes and the shortest path between them.

Graph enumeration describes a class of problems in combinatorics that involve

counting the number of a graphs that meet some set of criteria, typically as a function

of the number of vertices of the graph. The number of different possible connected,

labelled graphs with n-nodes satisfies the recurrence relation (Harary and Palmer,

1973):

Cn = 2(n2) − 1

n

n−1∑
k=1

k

(
n

k

)
2(n−k

2 )Ck

Using this equation, the number of unique possible elements in the dataset can be

calculated. For any single n-node graph, the number of possible terminal pairs is the

number of possible combinations of 2 labels, multiplied by 2 as both directions are

valid. Cn is evaluated for n labelled nodes, but the models accepts labels from 0-9.

Therefore the space is expanded by the number of different possible combinations

of n labels from a set of 10. The final equation for the number of possible unique

elements for a graph size n is then:

Pn = 2Cn

(
n

2

)(
10

n

)

Table 3.2 shows this function evaluated for up to 10 nodes.

Using 6 nodes per graph, there are approximately 168 million possible elements

to sample from. Enumerating the problem space in this way gives context to the size

of dataset used in Chapter 4.
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n Cn Pn
2 1 90
3 4 2880
4 38 95,760
5 728 3,669,120
6 26,704 168,235,200
7 1,866,256 9,405,930,240
8 215,548,592 ≈ 6.339025× 1011

9 66,296,291,072 ≈ 4.773333× 1013

10 34,496,488,594,816 ≈ 3.104684× 1015

TABLE 3.2: The number of unique connected, labelled graphs Cn and
corresponding number of elements Pn per number of nodes n.

3.2.2 Graph Element Generation

This section describes the method used in generating each individual element of the

dataset. Firstly, a graph is generated and then, from it, the rest of the element.

The approach to graph generation described adheres to the method of admissible

choice (MAC) (Rodionov and Choo, 2004). In this method, at each step, a choice is

made that 1) keeps the graph in the given class and 2) does not break a limitation. In

the case of the dataset used in this work, each choice of edge should keep the graph

within the class of undirected connected graphs, and there should only be 6 nodes.

Wherever possible, choices are randomised. Randomisation is important - if patterns

are introduced into the dataset it can unintentionally affect how the network learns.

Graphs are generated in the Graph class. Using the method described above, the

class’s initialisation function can be broken into two parts: generation of the mini-

mum spanning tree and allocation of the remaining edges. The minimum spanning

tree of a graph is a subset of edges that connect all vertices without any cycles and

with the minimum possible total edge weight. All connected graphs will contain at

least one minimum spanning tree, so this can be done first. Then, a random number

of remaining edges can be added to the graph, up to the maximum number possible.

The pseudocode for generating the edge list of a Graph in this way can be seen in

Algorithm 2 below.

Having generated the Graph, the rest of the element can now be constructed.

Two nodes are selected at random from Graph’s node list. These nodes, together

with the graph, are given to a function to compute the shortest path between the

two nodes in the form of a edge list. A version of Dijkstra’s algorithm (described in
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Algorithm 2 Generating random connected n-node graphs.

1: function GRAPH(n)
2: edgeNum = sample(1, range(n− 1, n(n−1)

2 + 1))
3: V = sample(n, range(0, 10))
4: P = V × V
5: E = []
6: unvisited = V
7: root = remove(1, unvisited)
8: Add root to visited
9: count = 0

10: while unvisited is not empty do . Build the spanning tree
11: v1 = remove(1, unvisited)
12: v2 = sample(1, visited)
13: Add (v1, v2) to E
14: Add (v1, v2) to visited
15: Remove (v1, v2) from P
16: count++
17: while count <= edgeNum do . Add any remaining edges
18: e = remove(1, P )
19: Add e to E

Chapter 2) is implemented to achieve this.

The method described in the section generates individual dataset elements. The

next section describes how these elements are combined as a whole.

3.2.3 Dataset Generation

Dataset generation is handled by the dataset_util module. Research work encoun-

tered a number of challenges involving the generation of the dataset. Firstly, every

element needed to be unique, but also randomly generated to ensure an even distri-

bution. Secondly, curriculum learning should be supported, to enable better learn-

ing. Finally, the process should be as fast and memory efficient as possible. This

section presents an approach that addresses each of these challenges.

As described in the previous section, the element generation process involves a

lot of randomisation. This is necessary, but it means that there is no guarantee that a

newly generated element is different to any of the previously generated elements.

To solve this, every time the program generates a new element, it checks to see

if that same element has been generated previously. When generating hundreds

of thousands of elements, this can become quite costly, as every previous element

must be checked at each step. To make this faster, a hash table is used. Python’s
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dictionary data structure allows values to be keyed by any immutable type. So,

when an element is generated, the graph and terminal nodes of the element are

converted into a tuple (immutable in Python) and used as a the key into the hash

map, setting its value to 1. Then, when subsequent elements are generated, the

same procedure is followed and if there is a collision it is known that this element

has already been created. Hash table lookups and insertions take an expected O(1)

time, which makes this a fast solution.

The same graphs can be represented by differently-ordered edge lists. To ensure

collisions in cases such as this, each graph also contains a reference to its own adja-

cency matrix. An adjacency matrix contains a row and column for each node label. If

there exists an edge between node i and node j, then in adjacency matrix A, Ai,j = 1

and Aj,i = 1. The adjacency matrix is used in place of the edge list in the hashing

operation.

Curriculum learning is implemented in this dissertation. Each successive lesson

contains solutions with increasingly-long shortest paths. To begin with, the network

is shown examples in which the solution shortest path is of length one. Next, it is

shown examples in which the solution shortest path is of length two, and so on until

it reaches n − 1 for graph size n. Furthermore, within each lesson, the graphs are

ordered by number of edges, starting with the lowest.

Implementing curriculum learning in this way raised the question of how to di-

vide the dataset between each lesson. When comparing the elements in terms of

shortest path length, the data are intrinsically imbalanced. Any dataset that exhibits

unequal distribution between its classes is considered imbalanced, it is intrinsic if

that imbalance is a direct result of the nature of the dataspace. If we consider the

path length to be the data’s class, the number of elements of class 1 will be signif-

icantly higher than of class 5, using 6-node graphs. Training over imbalanced data

can significantly compromise the performance of most standard learning algorithms

(He and Garcia, 2009).

To solve this, random undersampling is used. In this method, random elements of

the majority class are discarded so that the number of elements of each class is equal.

Therefore the dataset contains an equal number of elements with each possible path

length.
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Generating the very large dataset required to train and test the network requires

a lot of memory. To minimize this, the generation function exploits the fact that cur-

riculum learning is used to create a memory and time-efficient algorithm. It begins

by creating three sets, each represented as lists: a training set, a validation set and

a test set. Each set is then made-up of 5 bins - one for each path length - that are

lists of elements. As each unique element is generated, it is distributed into its cor-

responding bin. Firstly, the training set bins are filled, then the validation set bins

and then the test set bins. As each bin becomes full (according to overall size of the

set divided by the number of bins), it is written to the disk using Pickle. The bin is

then deleted from memory and the garbage collector is manually called. It proceeds

in this way until there are no bins left and the entire dataset has been generated and

stored on the disk. This process is illustrated in Figure 3.3.

FIGURE 3.3: The dataset generation process with paths lengths up to
2. A unique dataset element is first generated and then distributed to
the correct bin. The first bin in the training set has become full and
has been deleted, as indicated by the cross appearing over it. As a
result, the first bin of the validation set has begun to be filled. The
second bin of the validation set will not begin to be filled until the
second bin of the training set has been filled. This process continues

until all bins have been deleted.

This method is efficient in time and space, within the bounds of its stochastic
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nature. This method has both the feature that no element will be unnecessarily

discarded, making it efficient in time, and that bins are deleted as quickly as pos-

sible, making it efficient in space. Because the path length distribution is skewed,

the lower path length bins will fill up faster. By making the bins independent,

this method uses the fact that some elements occur more frequently to free mem-

ory faster. Furthermore, because each set is given a priority, no more than five bins

will ever be active at any one time, keeping average memory usage low.

Using this method, a balanced dataset that supports curriculum learning can be

created efficiently.

3.2.4 Sequencing the Shortest Path Problem

Because both the NTM and LSTM models are forms of recurrent neural network,

they require their input in the form of a sequence. The shortest path problem is

sequenced similarly to how graph tasks were sequenced for processing by a differ-

entiable neural computer (Graves et al., 2016). This section first defines how a graph

is represented as a sequence, and then problem as a whole.

Vertices in the graph are represented by a label from 0-9. Edges in the graph are

represented by pairs of labels. The entire graph is then represented by a sequence of

edges. Because undirected graphs are used, edges will not be duplicated in the edge

sequence - i.e.

(1, 4) = (4, 1), (3.1)

so either one or the other can be present, but not both. The shortest path solution is

also represented as an edge list in this way.

Labelling the digits from 0-9 is convenient for people because we understand

how to interpret them as just labels, but a network learning to interpret graphs does

not have this intuition. By giving the nodes ordinal values, it is open to be inter-

preted that a node labelled 9 is somehow greater than a node labelled 4. To remove

this possibility, the digits of each label are represented by a 10-way one-hot encoding.

One-hot encodings transform categorical features to a format that works better with

machine learning algorithms. Each class is given a column in a boolean vector. If

an element is of a particular class, the corresponding column in its one-hot encoding
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vector contains a 1, and all other values are 0. In the case of node labels for this prob-

lem, each label value 0-9 corresponds to an index in a 10-bit vector. For example, a

node labelled 6 would be encoded as [0000001000] (note, this uses vector notation

so indexes are counted left to right). Each edge is therefore represented by a 20-bit

vector

Each dataset element produces two distinct sequences: an input sequence and

a target sequence. The input sequence is broken down into four phases: a graph

description phase, a query phase, a planning phase and an answer phase. During

the graph description phase the input vectors (containing one-hot encoded edges)

are fed to the network in a random order. In the query phase, two vertices (the start

and end of the path sought) are given to the network in a single 20-bit vector. During

the 10-step planning phase, no input is given to the network and it is given time to

perform computation and attempt to determine the shortest path. Then, during the

answer phase, the network is asked for its solution.

The target sequence only contains the sequenced shortest path solution and is

padded with zeros at the beginning so that it lines up with the answer phase of

the input. This is so that the output of the output of the network can be directly

compared with the target output.

Each label requires 10 inputs to the graph, and each edge requires 20. Two addi-

tional bits are required to indicate the current phase of input. So in total the input

vectors are of size 22 for each step. The target vectors are then of size 20.

The input sequence’s overall length will be dependent on both the number of

edges in the graph, and the length of the shortest path. For a graph with n nodes,

the maximum length of input sequence Lmax can be calculated by summing the

maximum size of each phase:

Lmax =
n(n− 1)

2
+ 1 + 10 + (n− 1)

=
n2 + n+ 20

2

(3.2)

Using this method, elements of the dataset can be converted into sequences suit-

able for processing by both the neural Turing machine and long short-term memory



Chapter 3. Design & Implementation 40

networks.

3.2.5 Generating Input

When training and testing the networks, the dataset is represented using the Dataset

class. This class is responsible for loading pickled datasets, encoding their elements,

and marshalling them for input to the networks.

The Dataset is initialised with a directory containing pickled dataset files. The

Dataset object then provides three functions:

1. get_train_data

2. get_val_data

3. get_test_data

Each function takes a size argument that specifies the number of examples to be

included in the returned sets. They load the corresponding pickled dataset bins

(either train, test or validation bins) and extract an equal number of elements from

each, summing to the size of set asked for. The elements are then ordered by number

of edges in the graph. These two steps are done as part of curriculum learning. Each

element is then sequenced using the method described in Section 3.2.4, and a list of

input sequences and a corresponding list of target sequences are returned.

As is discussed in Section 3.3.3, the Dataset object is used to easily gather inputs

for training and testing the network.

3.3 Neural Turing Machine Model

The three core modules in the application are the NTM Cell, the NTM Container

and the shortest path Task. The NTM Cell and the NTM Container build the model’s

computation graph and the Task module is used for running the computation graph.

Neural Turing machines are types of recurrent neural network. If we consider

them, as we did in Section 2.3.2, as rolled out through time, then describing their Ten-

sorFlow computation graph involves first describing each discrete time-step. This is

done in the NTM Cell. How these time-steps are connected to input, output and
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each other is described by the NTM Container. This section describes first the small-

est building block, the NTM Cell, and then use it to gradually build up a view of

the entire computation graph. Lastly, how the Task makes use of this computation

graph in training for and solving the problem is described.

3.3.1 NTM Cell

This dissertation makes use of a pre-existing implementation of an NTM Cell (Kim,

2015). This section gives a general overview of the NTM Cell’s construction includ-

ing initialisation, input and output, construction of its components and interaction

with other cells. Section 3.3.2 goes into more depth about how the NTM Cell is used

in the construction of the models in this dissertation.

Within the NTM Cell are contained the controller, memory, and read and write

heads of the NTM. Initialising an NTM Cell involves defining the number of con-

troller layers, number of controller hidden units and dimensions of the NTM’s mem-

ory. At this point, no operations have been added to the computation graph.

The NTM Cell’s call function simulates one time-step in the network. Therefore,

it accepts a single element of the sequence input to the network, and returns the

corresponding element of the output sequence for that input. It also accepts a state

input, received from the previous time-step, and returns an updated state, to be

passed to the next time-step. The input and output are represented by tensors. The

state is represented by a dictionary of tensors, made up of:

• Memory - a tensor representation of the NTM’s addressable memory bank,

with the dimensions given in initialisation of the cell.

• Read weights - the weights governing how much and what parts of a memory

address will be read.

• Write weights - the weights governing how much and what parts of a memory

address will written to or erased.

• Read list - the list of all tensors read from the NTM’s memory at each time-step.

• Output list - the list of all outputs of the network at each time-step.
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• Hidden states - a list of tensors containing the hidden states of the LSTM con-

troller at each time-step.

The first call to the NTM Cell should contain a reserved start symbol. This initialises

the memory and creates a the starting state dictionary.

The call function constructs the NTM Cell’s computation graph. Firstly, the LSTM

controller is defined. It contains the input, forget and output gates defined in Section

2.3.1. These gates are created using the current input and the last element of the read

list. The outputs of these gates are then combined to produce an updated hidden

state and a new controller output. Both are added to their respective lists, and these

list are added to a new state dictionary.

Next, the read and write heads used to interact with the memory are constructed.

These contain the gates described in Section 2.3.2 necessary for addressing the mem-

ory. The read head uses the read weights to read from the position defined by the

addressing gates. The value obtained is appended to the read list and new read

weights are derived. The write head uses the write weights, addressing gates, and

last output to construct the add and erase gates. Also, it derives new write weights.

The outputs of the add and erase gates are applied to the memory. Then, the updated

memory and weights are added to the new state dictionary.

The output returned by the NTM Cell is the last output in the output list, with a

linear transformation applied. Therefor, the output of the NTM Cell is in the form of

logits. Logits are the unscaled outputs of linear neural network layers.

For every gate defined in the NTM Cell, and its output, a linear transformation

is applied. The weights and biases used in these linear transformations are known

as the model’s parameters. It is these parameters that are changed as part of learning

using gradient descent.

Every time the NTM Cell is called, a new computation graph as described above

is created. However, each set of gates contained in each new computation graph

needs to use the same set of model parameters in its operation as the last. If it does

not, each individual time-step in the sequence will have its own set of parameters

to be trained. To solve this, the NTM Cell uses TensorFlow’s get_variable function.

When called, this function can be passed a name string. If a variable has already been
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created with this name in the entire computation graph, it is returned. Otherwise,

a new variable with that name is created and returned. With this in mind, each

gate is given its own name and a single linear transformation function is defined.

Every time the function is used, a name is given to it and it finds the weights and

biases corresponding to that name. In this way, the cell can be called multiple times,

with multiple controllers, read and write heads and gates constructed, but the same

weights and biases will always be used all of them.

The NTM Cell forms the heart of the model. It defines the computation graph of

a single time-step, where a single input and state are passed through the controller

and memory of the NTM to produce a new output and updated state. This layer

of abstraction then allows one to arrange and combine these time-steps to create a

larger computation graph for solving the shortest problem.

3.3.2 NTM Container

If the NTM Cell is the heart of the model, the NTM Container is the body. It defines

how input data are accepted, how those data flow through the model, and how the

output data are used to test and train the model. This section steps through the

construction of the various components of the NTM Container and describes their

operation in detail.

Initial Connections

When initialised, the NTM Container is given an NTM Cell, relevant hyper-parameter

settings, the length of the sequence to be input and the maximum size of graph to be

accepted.

Once initialised, the build_model function creates the computation graph using

the NTM Cell and other parameters given during initialization. Firstly, a reserved

start symbol is input to the cell. The start symbol initialises the cell’s memory bank

and returns the dictionary containing its initial state. Then, for every element in the

sequence up to the answer phase, the function:
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1. Creates placeholder tensors for the input and target vectors. The input ten-

sor is of shape [22] and the target tensor is of shape [20]. The input tensor is

appended to a list of inputs, and the target tensor to a list of targets.

2. Passes the input placeholder and state dictionary to the cell, which returns a

tensor and a dictionary containing its output and its updated state respectively.

The output tensor is of shape [20].

For the first vector in the sequence, the state input to the cell is the initial state re-

ceived after passing the cell the start symbol. For each subsequent step, the state

passed to cell is the output state generated from the previous input. The model, as

described up to this point, is illustrated in Figure 3.4.

FIGURE 3.4: A partial view of the NTM model. The green circles la-
belled input and target are placeholder tensors. The target placehold-

ers are not yet connected to anything.

Answer Phase

A constraint on the solution to the shortest path problem is that the output of each

time-step is dependent on the output of the previous time-step. That is, the correct

choice of next edge to take is dependent on what node you are currently at, which is

decided by what edges you have previously taken.

Consider the example illustrated in Figure 3.5. The shortest path from node 0 to

node 2 is sought. In its answer phase, the model has already output the edge [0, 1],



Chapter 3. Design & Implementation 45

indicating it is now at node 1. When deciding the next edge to select, knowing that

it is currently at node 1 is useful information as it indicates what edges are available

for selection - i.e. [1, 2] or [1, 5].

FIGURE 3.5: A network with its output highlighted on a graph. The
start and end nodes of the path sought are illustrated by the double

circles in the graph.

This constraint is reflected in the structure of the connections in the answer phase

of the network. The answer phase is the portion of the end of the input sequence

when the network is asked for its response to the query. When training the model,

the input for a time-step t in the answer phase is the target tensor for time-step t− 1.

This is tells the network the correct answer to the last step, so that it can make an

informed prediction about its current step. Then, during testing, instead of using

the target, the output tensor of time-step t − 1 is given as input to time-step t. The

first step in the answer phase is given an input containing only the phase bits, as

there is no previous path edge from which to draw. Constructing the connections

in this way, differently for training and testing, allows the network to learn to trust

the input during training, and only be concerned with outputting the correct cur-

rent prediction. Then, during testing, its own correct predictions should propagate

through the time-steps.

However, as discussed in the previous section, the output of the NTM cell is a

tensor of logits. This raw output can have a wide range of values, but the network

only accepts correctly encoded node label pairs. Therefore, an extra step is required

before feeding it back into the network. Firstly, the output logits are split into two

separate shape [10] tensors and passed through individual softmax layers. The soft-

max function is a logistic function that accepts and n-dimensional vector containing

arbitrary real values and squashes them into an n-dimensional vector in which the
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values sum to 1. It is described by the equation (Goodfellow, Bengio, and Courville,

2016):

softmax(x)i =
expxi∑n
j=1 expxj

(3.3)

The results of the softmax functions can be thought of as the probability distribution

of for each possible label for each node of an edge. From there, the argmax function

is used to return the index with the highest probability - the most probable label - in

each shape [10] tensor. Each index returned by argmax is then one-hot encoded and

they are recombined into a shape [20] tensor - representing the predicted edge.

Finally, both the target tensor and newly-refined answer from time-step t−1 must

be prepended with [1,1] to indicate the input is in the answer phase. The answer

phase as described is illustrated in Figure 3.6.

FIGURE 3.6: A partial view of the NTM computation graph, showing
the structure of the connections in the answer phase. The converter
node contains within it the softmax, argmax and one-hot encoding
functions necessary to convert the network’s output into an accept-

able input. The + node prepends phase bits to the tensors.
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Loss and Error Functions

Structuring the answer phase as described creates two distinct lists of output place-

holders: testing output placeholders and training output placeholders. Where A is

the length of the answer phase and T is the length of the input sequence, the first

T − A elements in each of these lists will be the same. The training output is used

in the model’s loss function, whereas the testing output is used in the model’s error

function.

The loss function of a network is a measure of how wrong it was. The loss func-

tion used in this model is described as the log-probability of predicting an edge, and

therefore the sum of the log-probability of correctly predicting each digit. For an

input sequence x, with output sequence y and target sequence z (both of length T ),

the loss function is:

L(x, z) = −
T∑
t=1

{
A(t)

1∑
d=0

log[Pr(zdt | ydt )]
}

(3.4)

where zdt is the target at time t for digit d, ydt is the softmax distribution over digit

d returned by the network at time t, and A(t) is an indicator function whose value

was 1 during the answer phase and 0 otherwise (so that output returned when not

needed is ignored).

To calculate the loss, the model’s training answer must be extracted from the list

of training output placeholders. This is so that the loss is only calculated over the

answer phase of the output. This is done by first using the TensorFlow stack function

to transform the outputs from a list of rank-1 tensors, to a rank-2 tensor. This new

tensor is of shape [T , 20], where T is the length of the sequence and 20 dimension

of the output. The target list is transformed in the same way, and then reduced to

a rank-1 tensor of shape [65] using reduce_max along its second axis. This is now a

tensor that contains a 1 in all of the positions where an answer is expected, and a 0

everywhere else. Using tile and reshape function, this is then expanded back out to a

rank-2 tensor that contains a shape [20] tensor of all 1s in all of the positions where an

answer is expected. This can now be used to mask the output tensor by multiplying

the two together, element-wise. The generation of the mask is illustrated in Figure

3.7.
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FIGURE 3.7: The process of creating the output mask. The target ten-
sor on the left is reduced along its second axis with a max function.
Then, the result is tiled and reshaped to match the dimensions of the

output. T represents the length of the input sequence.

Once the answer has been extracted, the sequence_loss function is used to calculate

the loss over the entire sequence. This function accepts a list of output tensors, a list

of target tensors and a reference to a loss function. It applies the given loss function

to every pair of elements from the output and target lists and returns the sum of

the results. The loss function passed to the sequence_loss function should therefore

calculates the inner terms of the overall loss functions defined in Equation 3.4 above:

−A(t)
1∑
d=0

log[Pr(zdt | ydt )] (3.5)

The negative log-likelihood of one distribution given another is also known as

the cross-entropy between those two distributions. As such, TensorFlow’s softmax_cross-

_entropy_with_logits function is used to calculate the inner terms. This built-in func-

tion first applies a softmax layer to the given logits and then calculates the cross-

entropy between the result and the given target. These two calculations being per-

formed in tandem is common in neural network design, but there exist numerically

unstable corner cases in doing its calculation. The softmax_cross_entropy_with_logits

function handles these corner cases in a mathematically sound way while also opti-

mising the two functions. The indicator function A(t) is handled by the mask that

has been applied to the output.
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As the cross-entropy is to be calculated over each digit, the output logits and tar-

get tensors are first split into two shape [10] tensors each. Then, softmax_cross_entropy-

_with_logits is called twice and results are summed. The resulting value is then re-

turned to the sequence_loss function, which sums it with the other loss values calcu-

lated at each time-step in the sequence. This process is illustrated in Figure 3.8. This

implementation also makes use of `2 regularization, which is applied at this point.

It is calculated using the output layer’s weights with the l2_loss function, multiplied

by a tunable β value and added to the final loss.

FIGURE 3.8: The partial view of the NTM computation graph show-
ing the sequence loss calculation.

Having defined the connections necessary to calculate the loss with the list of

training outputs, the list of testing outputs is used to define the error function. The

two values returned from the error function are:

1. Error position - a tensor of shape [n − 1], where n is the number of nodes in

the graph. Each index corresponds to an output in the answer phase. A 1 is

contained at every index for which the output was wrong, a 0 otherwise.
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2. Final output - a tensor of shape [P , 2], where A is the length of the solution

path.

Obtaining these values involves performing a series of operations over the test

output and target tensors. Firstly, the output is split, is passed through a softmax

layer and has argmax applied in the same method used during the answer phase. It

is important to note, however, that this operation was being performed over rank-

1 tensors during the answer phase, but it is now being performed over the entire

output sequence. This adds a dimension to each of the operations as both the test

output and target tensors are of shape [T , 20]. The result of these three operations

is two tensors of shape [T ], where the value at index i corresponds to a node label

output by the network at time-step i.

Copies of these tensors are made, and they are combined using the stack function

in the first dimension. This leaves a single tensor of shape [T , 2] where the pair of

values at index i correspond to the network’s edge prediction of time-step i. The

leading and following zeros are stripped to produce the final output.

Having isolated the network’s predicted node labels, the target labels are found

using the same splitting and argmax procedure. The softmax layer is not necessary,

as the target distribution is already known to be in the correct range. The predicted

label and target label tensors are now combined using an element-wise not_equal

function. This leaves two shape [T ] tensors containing a 1 at the indices where the

network’s node label prediction was incorrect.

Finally, the two node-error tensors are combined using and element-wise logi-

cal_or function. This gives a single shape [T ] tensor containing a 1 at the indices

where the network’s edge prediction was incorrect. This is stripped of its leading

zeros to give the error position output.

Optimiser

There are three components that go intro training a model: the model parameters,

the loss function, and the optimiser. The model’s parameters and loss function have

already been defined, and here they are combined with an optimiser to allow the

model to be trained.
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Firstly, the model parameters defined in the NTM Cell must be gathered. Ten-

sorFlow has a feature that, when creating a variable, allows you to set a trainable

boolean. Any variables for which this boolean is marked "true" can then be easily

gathered into a single tenor with the get_variables function. This functionality is de-

signed exactly for this purpose: so that model parameters can be defined in different

parts of the code and easily gathered when defining the optimisation function.

Next, the loss function and gathered model parameters are given to the gradients

function. This function calculates the partial derivatives of the loss with respect to

each of the model’s parameters. It is at this point that gradient clipping is applied.

The clip_by_value function clips the tensors’ values to the specified maximum and

minimum values - in this case 10 and -10.

TensorFlow provides support for a number of optimisers that implement the var-

ious different types of gradient descent algorithm. The NTM makes use of the RM-

SProp optimiser, which is initialised with values for starting learning rate, weight

decay, and momentum. Then, the optimisation function for the model is defined as

the RMSProp optimiser’s apply_gradients function. For each input during training,

this optimisation function is evaluated causing gradients to be applied to the model

parameters, thus training the model.

Evaluation

At this point, the entire computation graph has been defined. During training and

testing, different values and functions can be selected for evaluation.

For example, during training the optimisation function will be called. This, in

turn, will cause the gradients to be evaluated, which will cause the loss to be eval-

uated, which will cause the output to be evaluated and so on, back through the

computation graph to the entry points (placeholders or constants).

Importantly, only nodes depended upon by the function evaluated will be eval-

uated themselves. When testing the model, the model will not be optimised. There-

fore, the loss, gradient, optimisation and other nodes will be pruned from the com-

putation graph as it is initialised. Similarly, the error function and associated nodes

will be evaluated, where this was not the case during training.

What functions are evaluated and when is defined in the shortest path Task.
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3.3.3 Shortest Path Task

The shortest path Task is responsible for running the computation graph. It receives

as input a fully-constructed network and the current session and performs one of

two actions: training or testing.

Training involves passing inputs and target outputs to the network and training

its parameters using its optimisation function. It operates as follows:

1. Initialise all variables - call TensorFlow’s init_all_variables function.

2. Create a Dataset object - specify a file location from which to load the dataset.

3. Get training data - the Dataset object is asked for and returns input and target

sets of the specified size. Each element of the input set contains a fully-encoded

input sequence for the network, with each element of the target containing the

corresponding target output sequence.

4. For input sequence element of the input set:

(a) Create a feed dictionary - this maps each element of the input sequence

and corresponding target sequence to the relevant placeholders in the net-

work.

(b) Evaluate - The network’s optimisation and loss functions are run within

the session using the feed dictionary.

(c) Save - the network’s loss is recorded. Additionally, the models parame-

ters are saved to a checkpoint file every ten thousand iterations. Tensor-

Flow checkpoint files allow you to store information, including model

parameters or the computation graph itself, to an external file that can

then be reloaded.

In this way the network is trained over each element of the training set and the

training loss is recorded.

Testing the network follows a similar procedure, although using different data

and evaluating different functions:

1. Load - the model’s parameters are loaded from a checkpoint file.
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2. Initialise all variables - call TensorFlow’s init_all_variables function.

3. Create a Dataset object - specify a file location from which to load the dataset.

4. Get testing data - input and target sets are return, similarly to training, except

they have either been drawn from the validation set or the test set, depending

on the stage of experimentation (as discussed in Chapter 4).

5. For each input sequence element of the input set:

(a) Create a feed dictionary - this maps each element of the input sequence

and corresponding target sequence to the relevant placeholders in the net-

work.

(b) Evaluate - The network’s error function is evaluated.

(c) Save - the output of the error function is appended to a list of outputs

6. Store results - the list of outputs is pickled.

Storing raw results in this way allowed for greater flexibility for analysis later in the

project.

With the network’s computation graph fully defined, the shortest path Task is

used to first train the network using a training set generated by the Dataset object,

and store its parameters to a checkpoint file. Having trained the network, its param-

eter can be loaded from a checkpoint file and tested on either a validation or test set

obtained from the Dataset object.

3.3.4 Padding

Section 3.3.2 described passing output and target vectors as input to the network

during the answer phase to improve its performance. One requirement of this ap-

proach is knowing where the answer phase is going to be at the point of constructing

the graph so that the necessary connections can be made. However, as described in

Section 3.2.4, the sequence length will vary based on the number of edges in the

graph.

One solution to this requirement is to build a model for each possible sequence

length, and pass the input sequence to the corresponding model based on its size.
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This method is wasteful, however. Instead, a method is used that is similar to the

one seen in the TensorFlow module implementing sequence-to-sequence models,

introduced in (Cho et al., 2014). By this method, the description phase of the input

sequence is padded using zero vectors to be the length of the longest possible edge

list. Similarly, the answer phase itself is padded to the length of the longest possible

shortest path, which will be of length n− 1.

The answer phase is now static across all input sequences, ensuring the connec-

tions described in Section 3.3.2 work as intended.

3.4 Long Short-Term Memory Model

As part of this dissertation, an LSTM model is implemented to use as a baseline.

Rather than implement a complete network from scratch, the similarities between

the LSTM and NTM models are exploited. The only difference between the two is

that the NTM has an addressable memory bank, whereas the LSTM does not. The

controller of the NTM is itself an LSTM network.

Section 3.3.1 describes the construction of the NTM Cell. To implement the LSTM

model, an "LSTM mode" is added to the NTM Cell that, when active, does not cre-

ate the connections between the controller and the memory. Without the memory

attached, the network is now a standard LSTM network. Thus the construction and

execution of the LSTM network is the exact same as that of the NTM, except that the

cell passed to the Container has LSTM mode activated.

Implementing the LSTM network like this has the benefit that it is guarantees

that all aspects of the networks are identical, except for the difference under test -

the memory.
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Chapter 4

Evaluation

This chapter details the evaluation of the work performed as part of the research for

this dissertation. The aim of the evaluation undertaken is to firstly optimise the NTM

model to achieve best-possible performance in solving the shortest path problem

and, secondly, to assess this performance after optimisation. This evaluation is given

context by a comparison to an LSTM network trained on the same problem. The

chapter begins with an outline of the procedure followed in achieving these aims,

followed by a presentation of the results of this procedure.

4.1 Procedure

Evaluation is performed in three stages. This section outlines each of these stages,

their purpose, and the methodology observed in their execution. The networks are

trained using stochastic gradient descent trained for a single epoch. The evaluation

described in Sections 4.1.1 and 4.1.2 are carried out using a validation set of size

40,000. The evaluation described in Section 4.1.2 is carried out on five separate test

sets of size 70,000. A detailed specification of the hardware and software used in

these evaluations is given in Appendix A.

4.1.1 Learning Curve

The first stage of evaluation determines what size of training set to use when training

the models. Learning curves show the model performance as function of the training

sample size and can be used to help determine the sample size need to train a good

model (Beleites et al., 2013).
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Each model is first trained using training sets of increasing size with a common

default set of hyper-parameters. The smallest set used contains 10,000 examples,

and the largest set used contains 50,000 examples. Each model is trained five times,

at intervals of 10,000 from the smallest set through the largest set.

The performance of the model at each training set size is evaluated using the

validation set. The results are compared and the best training set size for each model

selected.

4.1.2 Hyper-Parameter Optimisation

Having found the best training set size for each model, the hyper-paramters of each

must be optimised. In this process, different values for each of the models’ hyper-

parameters are chosen and trained over. Their performance is then measured us-

ing the validation set. Tuning the hyper-parameters of a neural network is a time-

consuming process. A typical approach is to take pairs of hyper-parameters and

exhaustively test each possible combination over a certain discrete range of values

for each. This is referred to as grid search, and is often combined with a manual

search, in which hyper-parameters are individually changed by the researcher. This

is computationally expensive, however, as the number of pairs of values increases

exponentially with each additional hyper-parameter.

Instead, the NTM and LSTM models’ hyper-parameters are optimised using ran-

dom search. In this process, settings for each hyper-parameter are chosen at random

from a range of possible values. Research has shown (Bergstra and Bengio, 2012)

that a random search involving 60 hyper-parameter samples performs as well and,

in some cases, better than a combination of grid search and manual search. There is

a probabilistic explanation for this: for any distribution over a sample space with a

finite maximum, the maximum of 60 random observations lies within the top 5% of

the true maximum, with 95% probability (Zheng, 2015). Furthermore, as each hyper-

parameter sample is completely independent, this becomes an embarrassingly parallel

problem. This is the set of problems that can be easily divided into components that

can be executed concurrently (Herlihy and Shavit, 2012). Using this method greatly

decreased time spent training.
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Thus, the hyper-parameters are given by sampling from the following distribu-

tions:

1. The number of layers in the NTM controller/LSTM network is chosen from 1,

2 or 3 with equal probability.

2. The learning rate is chosen log-uniformly from 0.00001 to 1.

3. The RMSProp momentum is chosen uniformly from 0.001 to 1.

4. The RMSProp weight decay is chosen uniformly from 0.001 to 1.

5. The number of hidden units in the NTM controller/LSTM network is chosen

log-uniformly from 100 to 600.

6. The `2 regularization of the output weight matrices of the final layer is chosen

to be 0 (with probability 0.5), or chosen log-uniformly from 10−7 to 10−4

Sampling log-uniformly involves drawing uniformly from the log domain be-

tween log(A) and log(B), where A and B are the range limits, and exponentiating to

get a number between A and B. This gives a higher probability for lower values, as

is favourable with some hyper-parameters such as learning rate. This is illustrated in

Figure 4.1. The ranges used are adapted from (Bergstra and Bengio, 2012) with some

changes made. For example, the upper limit of hidden units is lowered from 4000 to

600. This is because training neural networks with a large number of hidden units

has high memory demands, and the hardware used to evaluate this dissertation was

limited in that regard.

Optimising the hyper-parameters in this way afforded a high confidence that an

optimum solution had been found.

4.1.3 Final and Generalisation Testing

In the last stage of evaluation, optimum hyper-parameter settings are used to deter-

mine the models’ final error rate and their ability to generalise.

Up until this point, the models have been trained using the training set, and had

their performance measured against a validation set. In the final testing stage, the

models’ performance is evaluated against the test set.
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FIGURE 4.1: On the left is the uniform distribution between the log of
the range limits 0.001 and 1 after 100,000 samples. On the right is the

distribution of the exponentiation.

The fundamental goal of any machine learning model is to generalise to prob-

lems unseen (Domingos, 2012). The dataset used to train the models in this project

contained only graphs with 6 nodes. To test the models’ ability to generalise even

beyond unseen graphs of the same size, their performance when shown graphs with

7, 8, 9 and 10 nodes is also measured.

The results of this final stage of evaluation are thus the ultimate measure of the

models’ performance in solving the shortest path problem.

4.1.4 Comparing Results

The method used to compare results across different training conditions is the paired

t-test. Letting x and y be two sets of results from running the model over the same

validation or test set having been trained under different conditions, the procedure

is as follows:

1. Calculate the difference di = xi − yi between each two outputs given the same

input.

2. Calculate the mean difference d̄.

3. Calculate the standard deviation of the difference, sd, and use it to calculate

the standard error of the mean difference, SE(d̄) = sd√
n

, where n is the number

of samples.

4. Calculate the t-statistic, given by T = d̄
SE(d̄)

.
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5. Calculate the degrees of freedom df = n− 1.

6. Using tables of t-distribution, obtain a p-value using T and df .

The null hypothesis in the case of these tests is that there is no difference, in ei-

ther direction, between the performance of two models. The alternative hypothesis

is then that there is a difference. The P-value is the probability that the results ob-

served would be at least as inconsistent with the alternative hypothesis, assuming

the alternative hypothesis is true.

Using paired t-tests, it can be determined whether or not changes to the training

of a model result in statistically significant changes in validation or test set perfor-

mance.

4.2 Results

This section presents the results obtained in each stage of experimentation described

in Section 4.1.

4.2.1 Learning Curve

Figure 4.2 shows the plotting of the learning curves from both the NTM and LSTM

models, corresponding to the values shown in Table 4.1. The hyper-parameters used

for these test were unchanged from the original paper (Graves, Wayne, and Dani-

helka, 2014) and are shown in Table 4.2. These hyper-parameters are not optimised

but should provide a valid starting point for this test.

As can be seen from Table 4.1, the NTM model achieved the lowest error rate

when trained using 40,000 examples. To test if this result was significant, a paired

t-test was performed between the results of the model when trained over 40,000 ex-

amples and every other training set size using the method described in Section 4.1.4.

The resulting t-statistics and corresponding p-values are shown in Table 4.3. As can

be seen from these calculations, the NTM model performs with a statistically signif-

icantly lower error rate when trained over 40,000 examples than any other training

set size.



Chapter 4. Evaluation 60

FIGURE 4.2: The learning curves for the NTM (a) and LSTM (b) mod-
els.

Model 10k 20k 30k 40k 50k
NTM 99.72 99.55 99.72 99.16 99.98
LSTM 99.99 100 100 100 100

TABLE 4.1: The performance of each model (%) on the validation set,
having been trained on differently sized training sets.

Layers Hidden Units Memory Dimension Learning Rate Momentum Decay `2

1 100 128 0.0001 0.9 0.95 0

TABLE 4.2: The hyper-parameter settings used for determining the
models’ learning curves. The number of layers refers to the controller
in the case of the NTM, and the network itself in the case of the LSTM.

The memory size is only applicable to the NTM model.

Value 10k 20k 30k 50k
T -10.5030 -6.8474 -10.6827 -17.8064
p <0.0001 <0.0001 <0.0001 <0.0001

TABLE 4.3: The t-statistics and corresponding p-values obtain from
performing a paired t-test between the results of training over 40,000

examples and every other training set size.

Performing the same calculations on the LSTM learning curve results showed

no statistical significance in the difference between performance of the model with

10,000 examples and any other training set size. Therefore to determine the size of

training set to use, a second error rate is defined that afforded greater granularity

in the results. This second error rate, the edge error rate, is defined as the percentage

of incorrect edges returned by the network, per path length. The best performing

model is then defined as the model that has the outright lowest error rate in the
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largest number of path lengths. The results of this measurement are shown in Table

4.4.

As can be seen in the results, the model trained using 10,000 examples had the

lowest error rate in three of the five path lengths. To test the whether these differ-

ences are statistically significant, again paired t-tests were performed using the these

results and the results after every other training set size in the same path length. The

results of this analysis, listed in Table 4.5, show that 2 of the three error rates were

statistically significantly lower than every other training set size.

Through training both models using different training set sizes, and analysing

the results for statistical significance the optimum training set size has been found

for each model. Moving forward to the next stage of experimentation, the NTM

model is trained using 40,000 examples, while the LSTM model is trained using

10,000 examples.

Path Length 10k 20k 30k 40k 50k
1 100 100 100 100 100
2 99.81 99.86 99.88 100 100
3 98.54 99.34 99.32 99.26 99.29
4 96,43 96.12 95.96 95.77 96.21
5 98.8 99.22 99.3 99.29 99.28

TABLE 4.4: The edge error rate, per path length, for each training set
size. In bold are the best results for each path length.

Value Path Length 10k 20k 30k 40k
T 2 -1.11 -1.57 -5.49 -5.49
p 2 0.27 0.12 <0.0001 <0.0001
T 3 -5.42 -5.15 -4.38 -4.78
p 3 <0.0001 <0.0001 <0.0001 <0.0001
T 5 -5.67 -6.78 -6.57 -6.49
p 5 <0.0001 <0.0001 <0.0001 <0.0001

TABLE 4.5: T-statistics and corresponding p-values obtained from
comparing the LSTM network’s edge error rate (for path lengths 2,
3 and 5) having been trained with 10,000 examples, with that of every

other training set size.
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4.2.2 Hyper-Parameter Optimisation

Tables 4.6 and 4.7 show the five best-performing hyper-parameter configurations for

the NTM and LSTM respectively. A full list of all configurations and resulting error

rates over all 60 runs is available in Appendix B.

The lowest error rate achieved by the NTM network was 96.48%. This is statis-

tically significantly better than the next-best performance (p = <0.0001). The lowest

error rate achieved by the LSTM network was 98.2%. This too is statistically signifi-

cantly better than the next-best performance (p = 0.0034).

Rank Layers Hidden Memory Dimension LR Momentum Decay `2 Error Rate (%)
1 3 222 128 1.6e-5 0.2582 0.9247 0 96.48
2 3 138 128 1.0e-5 0.3068 0.8409 0 97.15
3 2 114 128 0.002505 0.0111 0.0727 4.94e-6 97.88
4 3 154 128 0.000431 0.0806 0.4295 3.554e-5 98.21
5 2 309 256 0.002525 0.0826 0.0258 1.209e-5 99.29

TABLE 4.6: Top 5 NTM hyper-parameter settings.

Rank Layers Hidden LR Momentum Decay `2 Error Rate
1 2 163 0.002961 0.4594 0.2516 1.29e-6 98.2
2 2 411 0.001428 0.017 0.5667 0 98.47
3 3 170 0.000914 0.2541 0.3717 3.392e-5 99.38
4 2 150 0.0033 0.0021 0.0093 1.4e-7 99.39
5 1 122 0.002267 0.4257 0.1471 0 99.51

TABLE 4.7: Top 5 NTM hyper-parameter settings.

The best-performing hyper-parameter settings of each network after 60 iterations

of random search have been found. The networks trained using these settings are

used in the final stage of evaluation.

4.2.3 Final and Generalisation Testing

The performance of the networks on the 6-node test set, and the test sets containing

graphs with more nodes, are shown in Table 4.8.

One thing to note is that the test sets containing graphs with more than 6 nodes

are not balanced. This is because there are only 10 possible labels for a node and as

the number of nodes in the graph increases, the number of possible graph elements

with longer paths decrease. It decreases to the point where there are not enough n−1

and n − 2 length graphs to be able to balance the set. As a result, the performance

of then networks on the 6-node set is not directly comparable with that on the test
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sets. The performances of the networks on the 7, 8, 9 and 10-node test sets can be

meaningfully compared.

Network 6-node 7-node 8-node 9-node 10-node
NTM 96.44 93.47 96.14 97.58 98.14
LSTM 98.23 94.62 94.87 94.81 95.41

TABLE 4.8: The test set error rates (%).

As the results show, the NTM network out-performed the LSTM network on

graphs with 6 and 7 nodes. The LSTM network did generalise better than the NTM

network, achieving a lower error rate on the 8, 9 and 10-node test sets. All differences

are statistically significant to a very high confidence (p = <0.00001). The next section

analyses these results and give them context within the problem as a whole.
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Chapter 5

Discussion

This chapter discusses the results of the dissertation work. It begins with an analysis

of the results presented in Chapter 4. Following this, it includes suggestions as to

how the models’ performance could be improved in light of these results.

5.1 Analysis of Results

This chapter analyses in greater depth the performance of the two networks on the

6-node test set. By breaking down the results further, it aims to show more clearly

how the network performed in the context of the theory discussed in Chapter 2.

The results are first broken down by length of solution path, and the resulting dis-

tribution is analysed in the context of the entire problem. The requirements of the

problem are then relaxed and a more general view of how each network was able to

reason about graph structures is given. This analysis is then used to show how each

network performed at a partial solution.

As shown in Section 4.2.3, the NTM network achieved an error rate of 96.44% on

the 6-node set, where the LSTM network achieved an error rate of 98.23%. Within

this set are elements with shortest path lengths of 1 through 5, Figure 5.1 shows the

networks’ performance broken down by length of solution path.

In the cases where the solution path is a single edge, the correct shortest path

output is actually the query itself. This is illustrated in Figure 5.2. In these cases,

to know that the query is the answer requires the network to know that the query

is contained in the graph that was describe to it. This is a perfect example of the

content-based addressing of which the NTM is capable. It could write the entire

graph description to its memory bank as it receives it. Then, it could use the query
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FIGURE 5.1: The number of correct solutions per path length.

it receives as a key into its memory, addressing based on content. If that query is

present in the graph it has stored, it knows that it is the solution.

For the LSTM network, this is a much more difficult task. It has only its cell

state in which to store information and has less sophisticated means of accessing

this information. This could explain why the NTM correctly identifies roughly twice

as many length-one shortest paths as the LSTM.

FIGURE 5.2: An example of an element in which the solution path is
of length 1.

However, this approach to finding a solution does not work for any other path

length. This is evident in the plots of the networks’ losses shown in Figure 5.3. As

the first curriculum learning lesson ends, the networks are introduced to training

examples in which the solution shortest paths are of length 2. At this point, both

loss values jump considerably as very little of what was learned in the first lesson
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FIGURE 5.3: The training loss of the optimal hyper-parameter set-
tings for the NTM (a) and LSTM (b). SGD loss has a lot of fluctuation
between examples so the plot has been smoothed to highlight trends.

can be transferred to the second lesson. The loss still jumps with each subsequent

lesson, but less so, indicating that the later lessons have more in common.

For training examples with solution paths longer the 1 edge, the training loss of

the LSTM network appears to remain lower than that of the NTM. However, this

does not translate to better outputs. Figure 5.4 shows the average fraction of the

output path that was correct (given as a percentage), per path length. From this it can

be seen that for elements with longer solution path lengths, the LSTM network still

outputs fewer correct edges on average than the NTM. This could be explained by

overfitting - a concept describe in Section 2.2.4. The use of `2 regularisation attempts

to curb overfitting in the networks, but additional techniques such as cross-validation

(Ng, 1997) could be used to reduce it further.

FIGURE 5.4: The average percentage of output path that was correct,
per length of solution path.
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One of the aims of this research was to see if NTMs could learn to reason about

graph data. Beyond looking at how well the network was able to solve the problem,

it is also relevant how sensible its answers were in the context of graph structures.

For this reason, the number of outputs from the network that were valid walks. A

valid walk in this case is defined as a sequence of edges output by the network in

which each edge is contained in the graph given to the network, and each edge is

connected to the previous edge in the sequence by a node. Examples of valid walks

given a graph are illustrated in Figure 5.5. As can be seen from the results shown in

Figure 5.6, the NTM network output significantly more valid walks than the LSTM

network. This indicates some ability on the NTM’s part to reason about a graph

structure.

FIGURE 5.5: Walks (a), (b) and (c) are all valid given the graph shown
on the left.

FIGURE 5.6: The percentage of paths returned by the NTM (a) and
LSTM (b) that were valid.
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Some of these walks will be solutions to the problem, and some will be com-

pletely unrelated. To make sense of this, four classes of walk are defined:

1. Complete - these are the solutions to the problem. They are the shortest path

between the start and end nodes.

2. Deviations - these are walks that started from the correct node, but did not

finish at the end node. These had the potential to be correct answers, but made

a wrong decision at some point along the way.

3. False Starts - these are walks that did not start from the correct node, but fin-

ished at the end node.

4. Lost - these are walks the neither started from the correct node, nor finished at

the end node.

Figure 5.7 shows how the valid walks are divided among these classes. An in-

teresting statistic to note is that of the valid walks output by the NTM, 16.9% ended

at the correct node, having start from an incorrect start node. This means that, of all

the valid paths that did not start at the correct node, slightly less than half finished

at the correct end node. In a 6-node graph, this is more than can be expected by

chance. As the graphs are undirected, a shortest path from v1 to v2 is the reverse of

the shortest path from v2 to v1. A high number of paths ending at the correct node

could indicate the network is solving the problem by travelling from the end node

to the start node in some cases.

FIGURE 5.7: The division of valid walks among the defined classes
for the NTM (a) and LSTM (b) networks.
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Consider the subway example from Chapter 2. A solution that brings us to

within one or two stations of our final destination is better than none at all. Using

the complete and deviation paths, the distribution of paths over their distance to the

end node is calculated. This describes how close the network got to the end node,

given that it output a valid path that started from the correct node. This distribution

is shown in Figure 5.8.

FIGURE 5.8: The distance of each valid walk output to the end node.

Using this information it is determine how often the network can find the short-

est path to a node within one edge from the specified end node. This is done by

summing the number of complete paths, with the number of deviations that fin-

ished at node one edge from the correct end node. The results of this calculation are

in are in Figure 5.9. This metric shows that the NTM network has more potential for

immediate improvement than the LSTM network, with a higher percentage of paths

getting to within one node of correct end node.

The results of the evaluation performed show that the NTM network can find

the shortest path between two nodes in a graph with a lower error rate than the

LSTM network. Having broken down the results, it appears that the NTM network

is using its memory as an aid in simple solutions, but does not learn to find more

complicated paths with great success. Analysing the output in the context of the

graph shows that the NTM network has learned to give more reasonable answers
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than the LSTM network. In some cases these answers are partial solutions - paths

that lead to within one edge of the full solution.

FIGURE 5.9: Shortest paths to within 1 edge of the specified end node.

5.2 Model Improvements

As seen in the previous section, the NTM network does outperform the LSTM net-

work at both finding shortest paths, and reasoning over graph structures. Neither

network, however, performs well in absolute terms - the error rate on the 6-node test

set was over 95% for both networks. This section discusses a possible reason for this

performance, and suggests changes that could be made to the network that would

improve it.

Every learner must embody some knowledge or assumptions beyond the data

it’s given in order to generalise beyond the data (Domingos, 2012). One weakness in

the implementation described in this work is that not enough is done to convey to

the network what the problem is it is trying to solve. As seen in Chapter 4, the NTM

network had limited success in finding shortest paths, but was much more capable

of returning sensible output in the context of the graph. This disconnect shows that

the network can learn to reason about graphs, but maybe that it did not understand

the problem that was asked of it.

Chapter 3 described how the answer phase is structured to try and embody

knowledge about the problem in the networks, but other architectures take this con-

cept further. Pointer networks (Vinyals, Fortunato, and Jaitly, 2015) output discrete

tokens corresponding to positions in the input sequence. They have been shown to
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be able to approximate solutions to other problems from graph theory, such as the

Travelling Salesman Problem. One approach that could be taken to better convey

the problem to the networks could be to more closely model their structure to the

problem.

The loss function used by the networks is a generic sequence loss that measures

the distance between the output and target vectors. There is scope to tailor this loss

function to more specifically describe the problem to the network.

Recent research involving similar networks (Graves et al., 2016) borrows tech-

niques from reinforcement learning to give more context to the network’s output

and loss when dealing with graphs. Edge choices are described as actions, and the

network’s output as a policy. For each choice of action, the network’s output is

renormalised over the available actions and the most probable is chosen. The loss

then becomes a function over the networks policy and a target optimal policy. For

some tasks, a second network that learns to predict an expected value for each action

is introduced, adding even greater context to the loss.

The results presented in this dissertation indicate that the NTM network has the

potential to do better at the task of finding the shortest path in graph if the task

more clearly conveyed to it. Other neural network models introduce more relevant

structure or more context-sensitive loss functions to better convey task objectives,

and the networks described in this work could benefit from these approaches. De-

pending on the degree to which each approach was adopted, they could result in

significant changes to the model structure, taking it further away from its original

definition. For this reason, they are not explored in this dissertation, but they offer a

clear avenue for improvement for future work.
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Chapter 6

Conclusion

Chapter 6 concludes this dissertation. It opens with an assessment and summary

of the work performed, with reference to the original objectives of the research, and

closes with some final thoughts on the topic.

6.1 Objective Assessment

Having defined a research question and set of objectives in Chapter 1, this section

aims to contextualise the work described in this dissertation with respect to these

definitions.

This dissertation opens with a survey of the the research surrounding the NTM.

This section describes the concepts necessary to understand the NTM, from those

underpinning it all the way up to those defining its context in the world of machine

learning as whole. This information, along with a problem definition, lays the foun-

dations of the work done as part of this dissertation.

Chapter 3 describes the successful implementation of a method for procedurally

generating a dataset necessary to learn a solution to the shortest path problem. It

does so efficiently in time and space and with guarantees of uniqueness.

Chapter 3 goes on to detail a method for implementing both NTM and LSTM

models using TensorFlow. These implementations incorporate ideas introduced in

Chapter 2, and are designed with structures to specifically handle problem posed to

them.

Chapter 4 defines a comprehensive method for training and optimising neural

networks, informed by current research. This method iteratively refines different set-

tings that affect neural networks’ performance. The chapter then goes on to present
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the results achieved when following this method.

Chapter 5 evaluates these results, in terms of outright performance, relative dif-

ference, and the models’ abilities to understand graph structures. Neither the NTM’s

nor the LSTM’s performance proved significant in absolute terms - neither model ap-

peared able to learn an algorithm to reliably find the shortest path in a given graph.

The results, however, a statistically significant difference between the perfor-

mance of the two models. In this case, the NTM’s memory and addressing mecha-

nism appear to have given it the upper hand by allowing it to use its memory as a

lookup in cases where the solution paths were of length one. However, the LSTM

proved better at generalising to examples with a greater number of nodes, outper-

forming the NTM on test sets with 8, 9 and 10-node graphs.

Beyond solving the problem, this dissertation also explores the networks’ abil-

ities to reason over graph structures. In this regard, the NTM again outperformed

the LSTM, and with a wider margin than in any other measure. More often than the

LSTM, the NTM was able to produce answers that, if not right, had a chance of being

sensible given the graph.

6.2 Final Words

Machine learning is an exciting field of research. It is not a new field, but the recent

growth in size of available datasets has made it more relevant than ever before.

Neural networks constitute a model at the centre of machine learning. Config-

urable in a myriad of different ways, new neural networks, and their capabilities,

are constantly being explored.

This dissertation serves as another such exploration. It defines a system and

method for exploring the ability of the neural Turing machine to use its addressable

memory to reason over graph structures. The results of this dissertation showed

that the neural Turing machine could not do this reliably, but that it performed bet-

ter than long short-term memory. Furthermore, the results show some ability for

the neural Turing machine to comprehend graph structures, indicating potential for

future research.
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Appendix A

Production Environment

This appendix describes the software versions and hardware used in the develop-

ment and evaluation of the this dissertation.

The models were programmed initially using TensorFlow r0.11, but were later

updated to support version r1.0. All development and testing was performed using

Ubuntu 16.04 and Python 3.5.

A local machine was used for writing code and testing smaller models. A set of

eight separate servers instances was used for training and testing the full models,

which required more memory than the local machine contained. Two of the eight

instances were provided by Trinity College Dublin’s OpenNebula system. The re-

maining six instances were m3.2xlarge instances provided by Amazon Web Services

(AWS). The hardware specifications of the local machine and each group of instances

are given in Table A.1.

Provider Architecture CPU Clock Speed RAM vCPU/CPU Cores
TCD Intel Xeon CPU X5650 2.67GHz 32GB 4
AWS Intel Xeon E5-2670 v2 (Ivy Bridge) 2.5GHz 30GB 8
Personal Intel Core i7 i7-3630QM 2.4GHz 8GB 4

TABLE A.1: The hardware specifications of the instances used for
training and testing.

As described in Section 4.1.2, the hyper-parameter optimisation process used is

highly parallelisable. To take advantage of this, training was executed in batches

concurrently on all eight servers. Code was distributed to the servers using a Git

repository, pushed to only by the local development machine.
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Appendix B

Hyper-Parameter Search Results

This appendix presents the full set of results and corresponding hyper-parameter

settings from the 60 iterations of random hyper-parameter search performed. Table

B.1 shows the results of the neural Turing machine hyper-parameter search. Table

B.2 shows the results of the long short-term memory hyper-parameter search. The

results are ordered by ascending error rate.

There is a known issue with the neural Turing machine TensorFlow implementa-

tion that the work in this dissertation uses. This causes the loss value for the network

to go to NaN (Python syntax for not a number) for some hyper-parameter configura-

tions. The results marked with "n" in the error rate column are configurations that

resulted in NaN loss.
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Error Rate (%) `2 LR Momentum Decay Hidden Units Layers Memory Dimension
96.48 0 1.6e-05 0.2582 0.9246 222.0 3 128
97.15 0 1.0e-5 0.3068 0.8409 138.0 3 128
97.88 4.93e-06 0.002504 0.011 0.0727 114.0 2 128
98.21 3.553e-05 0.000431 0.0806 0.4295 154.0 3 128
99.29 1.208e-05 0.002525 0.0825 0.0258 309.0 2 256
99.3 4.815e-05 0.001133 0.0925 0.6823 116.0 1 128
99.32 1.62e-06 0.001014 0.0031 0.0171 363.0 3 128
99.48 0 1.617676 0.2057 0.4159 307.0 3 128
99.61 8.684e-05 0.001043 0.7640 0.0039 264.0 3 128
99.66 0 0.003189 0.0012 0.0782 271.0 3 128
99.73 0 0.009569 0.0041 0.1883 111.0 2 128
99.74 1.515e-05 0.007087 0.0012 0.7477 181.0 2 128
99.76 0 0.613627 0.4184 0.0521 460.0 1 128
99.76 2.4e-07 0.001290 0.9554 0.1622 207.0 1 128
99.77 0 0.002783 0.8543 0.0013 121.0 3 128
99.77 1.5e-07 0.485567 0.0135 0.0029 548.0 3 128
99.78 0 0.001284 0.7552 0.01701 183.0 3 128
99.78 0 0.003758 0.0128 0.02015 388.0 3 128
99.78 2.225e-05 0.001360 0.0162 0.992 242.0 3 128
99.79 3.4e-07 0.229341 0.0075 0.01663 104.0 3 128
99.79 0 0.163570 0.027 0.0141 289.0 2 128
99.79 0 0.171580 0.0045 0.0075 149.0 2 128
99.79 0 0.052307 0.0063 0.123 177.0 3 128
99.80 0 0.095483 0.0185 0.3049 168.0 3 128
99.80 0 0.038765 0.0251 0.0515 496.0 3 128
99.80 2.63e-06 0.074532 0.1223 0.0028 129.0 3 128
99.80 1.213e-05 0.005220 0.7647 0.574 367.0 2 128
99.80 0 0.035474 0.0072 0.2096 469.0 2 128
99.80 8.55e-06 0.008163 0.4446 0.0251 508.0 2 128
99.81 3e-07 0.010164 0.6344 0.0451 300.0 3 128
99.83 5.953e-05 0.000177 0.5634 0.5534 132.0 1 256
99.84 7.638e-05 0.000688 0.0069 0.0091 147.0 1 128
99.86 0 0.378308 0.0945 0.0099 234.0 3 128
100 0 0.233577 0.0488 0.3156 413.0 3 128
100 0 0.695759 0.0034 0.0051 105.0 3 128
100 0 0.000219 0.964 0.005 370.0 3 128
n 3.297e-05 0.020638 0.7576 0.1961 305.0 1 256
n 0 0.237963 0.9383 0.0969 203.0 1 256
n 1.213e-05 0.005220 0.7647 0.5740 367.0 2 128
n 1.85e-06 0.030341 0.0545 0.0896 206.0 1 128
n 0 0.025219 0.0036 0.0049 418.0 2 256
n 9.7e-07 0.207107 0.0874 0.7650 164.0 1 128
n 5.50e-06 0.015848 0.0086 0.0023 307.0 2 128
n 3.57e-06 0.002161 0.0045 0.0017 226.0 1 256
n 0 0.009015 0.2088 0.0024 116.0 2 128
n 0 0.002480 0.0021 0.0305 566.0 1 128
n 7.592e-05 0.016454 0.0052 0.1209 107.0 2 256
n 1.4e-07 0.136737 0.0843 0.0761 451.0 2 256
n 4.2e-07 0.026760 0.0251 0.0266 209.0 1 256
n 8.9e-07 0.048027 0.0213 0.0024 134.0 2 128
n 0 0.010874 0.0086 0.0117 252.0 1 128
n 1.5e-07 0.000262 0.0161 0.0016 281.0 1 128
n 4.548e-05 0.000378 0.0067 0.2481 324.0 3 128
n 0 1.024091 0.3068 0.8409 138.0 3 128
n 9.688e-05 0.000527 0.1278 0.0152 449.0 1 128
n 3.053e-05 0.000144 0.3489 0.8387 228.0 2 256
n 2.7e-07 0.000951 0.5397 0.6813 225.0 2 256
n 2.9e-07 0.000375 0.0571 0.6026 109.0 2 256
n 1.128e-05 0.000191 0.6144 0.7518 301.0 1 256
n 3.6e-07 0.014120 0.2281 0.021 103.0 1 256

TABLE B.1: Neural Turing machine hyper-parameter search results.
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Error Rate (%) `2 LR Momentum Decay Hidden Layers
98.2 1.29e-06 0.002961 0.4594 0.2516 163.0 2
98.47 0 0.001428 0.017 0.5667 411.0 2
99.38 3.392e-05 0.000914 0.2541 0.3717 170.0 3
99.39 1.4e-07 0.0033 0.0021 0.0093 150.0 2
99.51 0 0.002267 0.4257 0.1471 122.0 1
99.51 0 0.000493 0.0995 0.5090 101.0 3
99.51 0 0.000494 0.8567 0.2798 160.0 3
99.57 0 0.007783 0.0017 0.0043 167.0 1
99.66 0 0.008507 0.0085 0.1183 108.0 3
99.69 0 0.002712 0.3652 0.3023 142.0 2
99.71 1.0e-07 0.008508 0.1071 0.2114 289.0 1
99.73 0 0.000871 0.8311 0.5009 289.0 3
99.73 1.1e-07 1.1e-05 0.0953 0.4795 104.0 2
99.73 9.630e-05 0.004599 0.2267 0.1855 294.0 2
99.74 0 0.063860 0.0659 0.0015 103.0 2
99.74 0 0.001425 0.0462 0.3153 344.0 1
99.74 1.22e-06 3.9e-05 0.1599 0.0897 297.0 3
99.76 3.14e-06 0.045055 0.0315 0.6191 551.0 3
99.76 0 0.246500 0.4421 0.0068 359.0 3
99.76 0 0.055512 0.4611 0.0059 436.0 2
99.76 1.09e-05 0.693108 0.0392 0.6101 209.0 2
99.76 0 0.132101 0.6338 0.0383 115.0 2
99.76 0 0.402081 0.0073 0.1764 384.0 2
99.76 0 0.333717 0.0341 0.0036 442.0 2
99.76 0 0.012658 0.0023 0.0017 221.0 1
99.76 0 0.005906 0.1831 0.0903 433.0 3
99.76 1.45e-06 0.892879 0.4716 0.3604 364.0 3
99.77 3.1e-07 0.600767 0.0168 0.2209 159.0 1
99.77 0 0.000208 0.9361 0.9697 282.0 3
99.77 0 0.020555 0.0806 0.2704 328.0 3
99.77 0 0.172471 0.3899 0.1668 412.0 2
99.77 1.568e-05 0.006719 0.0268 0.0038 231.0 2
99.77 1.4e-07 0.019442 0.0238 0.0018 337.0 2
99.77 1.19e-06 0.016317 0.0132 0.1291 110.0 3
99.77 1.4e-07 0.912625 0.0073 0.0037 503.0 3
99.77 0 0.011477 0.0152 0.3812 382.0 3
99.78 0 0.023196 0.0435 0.0107 391.0 2
99.78 0 0.006998 0.2413 0.0105 202.0 3
99.79 9.2e-07 0.073483 0.1070 0.0051 106.0 1
99.79 0 0.337348 0.0033 0.0018 107.0 2
99.79 1.85e-06 0.004208 0.8881 0.0333 100.0 2
99.79 0 0.009819 0.0358 0.0023 210.0 2
99.8 1.403e-05 0.005758 0.0012 0.0021 237.0 3
99.8 0 0.346232 0.0022 0.1319 122.0 1
99.8 0 0.003622 0.0434 0.6474 381.0 3
99.8 5.2e-07 0.006756 0.0154 0.0047 142.0 2
99.81 3.1e-07 0.051436 0.1203 0.5355 579.0 1
99.82 1.0e-07 0.000388 0.0525 0.3085 523.0 1
99.88 0 0.000378 0.3007 0.0477 406.0 3
99.89 0 3.0e-05 0.4631 0.4924 556.0 2
99.89 1.79e-06 7.5e-05 0.0412 0.6536 573.0 2
99.91 3.0e-07 8.1e-05 0.8149 0.7902 188.0 3
99.94 0 2.0e-05 0.5832 0.4997 473.0 1
99.94 0 1.6e-05 0.9003 0.3825 317.0 1
99.98 0 0.000215 0.8860 0.1574 262.0 2
99.99 5.51e-06 3.2e-05 0.2524 0.3894 203.0 1
99.99 0 0.000452 0.8267 0.9071 234.0 1
100 0 2.3e-05 0.9479 0.8934 359.0 2
100 1.5e-07 6.0e-05 0.4294 0.7570 217.0 2
100 0 0.000351 0.4709 0.4190 348.0 2

TABLE B.2: Long short-term memory hyper-parameter search results.


	Declaration of Authorship
	Summary
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Research Question
	Aims
	Dissertation Structure

	Foundational Research
	Deterministic Turing Machines
	Neural Networks
	Overview
	Gradient Descent
	Hidden Layers
	Training Techniques
	Curriculum Learning
	Regularisation
	Gradient Clipping


	Types of Neural Network
	Recurrent Neural Networks and Long Short-Term Memory
	Neural Turing Machines
	Attention

	Shortest Path Problem
	Definition
	Applications
	Dijkstra's Algorithm
	Complexity


	Design & Implementation
	Tools
	TensorFlow
	NTM-TensorFlow
	Pickle

	The Dataset
	The Problem Space
	Graph Element Generation
	Dataset Generation
	Sequencing the Shortest Path Problem
	Generating Input

	Neural Turing Machine Model
	NTM Cell
	NTM Container
	Initial Connections
	Answer Phase
	Loss and Error Functions
	Optimiser
	Evaluation

	Shortest Path Task
	Padding

	Long Short-Term Memory Model

	Evaluation
	Procedure
	Learning Curve
	Hyper-Parameter Optimisation
	Final and Generalisation Testing
	Comparing Results

	Results
	Learning Curve
	Hyper-Parameter Optimisation
	Final and Generalisation Testing


	Discussion
	Analysis of Results
	Model Improvements

	Conclusion
	Objective Assessment
	Final Words

	Production Environment
	Hyper-Parameter Search Results

