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Summary

The rise of digital collections being made available publicly online has led to a
greater desire to give users the most relevant documents for their needs. These
relevance judgments must be bench-marked to determine how well they satisfy
the needs of the searcher, which involves the use of a test collection. A test
collection provides a set of information needs and the documents which have
been deemed to satisfy this need.

This dissertation uses two digital collections from the Cultura Project, namely
the 1916 and the 1641 collections. These digital collections are a set of witness
testimony documents related to key events in Irish history. The proposed
experiment uses these collections as a means to evaluate an automatically
generated test collection.

In this dissertation, an evaluation of whether extracted binary judgments of
relevance, from transaction logs, are suitable for the automatic generation of a test
collection from the digital libraries transaction logs, has been carried out. Binary
judgments are simple yes or no answers to whether a document is relevant to a
query or not.

To generate the test collection, a three stage experiment is proposed, which
together form an end-to-end pipeline for automatic generation of test collections.
The decision to split this into three parts was based on the stages of transaction
log analysis in literature. The three stages take transaction logs from a source and
bring them to a point where they can be analysed.

The first stage, collection was developed to maximise flexibility and security of
the pipeline. The main functionality of this, is the extraction of the transaction
logs from files using Logstash and the storing of this data into a scalable datastore,
Elasticsearch. This architecture enables the experiment carried out to be applied
to other digital collections in the domain. It also provides a scalable solution for
large datasets.

The preparation stage of the pipeline, was designed to extract the relevant
information needed to build a test collection from transaction logs. Built using
Python, this application enables the extraction of relevance judgments and
information needs from the datastore, and provides the final stage of the pipeline
with the information it needs to perform its role.

The final element of this experiment is the analysis or evaluation of the
generated collection. An application was built to interface with Lucene, which
would allow the document collection to be searched over and to issue queries
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against using a number of ranking functions. The Java based application outputs
the relevance judgments for each query from both the transaction logs and the
ranking functions, which facilitates the automatic generation of their
performance on the collection.

The resulting performance comparison showed that each of the collections,
which this experiment used to evaluate the technique, were quite different to one
another. The 1641 collection resulted in statistically significant differences in the
overall performance of the ranking functions, however they did not conform to
the expectational ranking as set out during the design phase. The test collection
built using the 1916 collection performed as expected, however the differences
between ranking functions were not significant.

It was concluded that the approach of generating test collections from
transaction logs proved ineffective for these sets of collections. Further work is
required to provide a better set of relevancy judgments, however the issues of
each collection could make it unfeasible to deem such a test collection through
an automatic process.
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Evaluation of Test Collections Generated from Transaction
Logs in Digital Humanities

Abstract

Understanding relevance in Information Retrieval is a difficult task. Measuring
the effectiveness of an information retrieval system is predicated on knowing
whether a document is relevant to a search query, or not. However, relevance is
subjective, personal and dynamic. Digital Humanities poses particular challenges
with regards to relevance, due to smaller sized collections and the nature of these
collections, amongst other factors.

This dissertation proposes and evaluates a pipeline which hopes to generate a
test collection, which is used to evaluate these information retrieval systems,
from transaction logs for digital libraries in the domain of Digital Humanities.

The proposed experiment is implemented using methodologies from
transaction log analysis, and the generated test collection is evaluated through a
comparison of this generated collection and expected results, as seen in literature,
for two real-world digital library datasets.

This dissertation concludes that it was not possible to derive a test collection
by using binary judgments of relevance from transaction logs, for the particular
collections examined.
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1
Introduction

1.1 Motivation

Web search has become an increasingly important issue in the area of digital
humanities. With the rise of large collections of historical documents being made
available to the public digitally [Lynch, 2002], making decisions about how to
best deliver the most relevant documents to a user whilst they are searching the
collection is an important issue. These digital collections provide a wealth of
information which can be diverse in nature and thus raise challenges around
search and relevancy. Search in digital humanities is different from web search,
given for example the smaller size of the collection, the nature of documents,
which can be written in an archaic English or being made principally from
images, metadata and other forms.

An information retrieval (IR) system is a system which provides the user with
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CHAPTER 1. INTRODUCTION

documents which are most relevant to their information needs. An information
need is the topic about which the user desires to know more, and is different from
a query, which is what the user conveys to the computer in an attempt to
communicate the information need. A document is deemed to be relevant if the
user perceives the document as containing information of value with respect to
their personal information need, not because it just happens to contain all the
words in the query.

Determining which documents are most relevant to a user is a hard problem,
and studied greatly in literature, [Saracevic, 1976]. How can relevance be
measured in IR systems? Relevance can be approximated by computing the
similarity of a search query to a document. The main problem in relevancy is how
to quantify this score. This dissertation will refer the term relevance to the
“system / algorithmic relevance” that is the indication of the similarity to the
query, whilst relevance as mentioned previously is defined as the “topical
relevance”.

To measure the effectiveness of ad-hoc IR systems which generate these
scores, a test collection is built. A test collection provides a standardised way of
comparing the effectiveness of retrieval systems. Test collections consist of a set
of topics or information need descriptions, a set of information objects to be
searched, and relevance judgments indicating which objects are relevant for
which topics [Scholer et al., 2016].

Building a test collection is a long and expensive process. [Ritchie et al., 2006].
There are a number of different methods for generating test collections, such as
that used by the Text REtrieval Conference (TREC), one of the biggest
conferences that focus on the evaluation of IR systems, in which humans devise
queries specifically for a given set of documents and make relevance judgments
on pooled retrieved documents from that set [Voorhees and Harman, 2005].
These devised queries are created manually, including both a description of the
information need, and a narrative of what classifies a document as being relevant
to that need. This process is then accompanied by a group of human assessors
who are given a set of documents for each information need and provide a
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CHAPTER 1. INTRODUCTION

relevance judgment for each document. This process of generating such a test
collection is unfeasible for smaller (less well funded) archives in the digital
humanities area, due to the resources required, both in terms of cost and time.
This dissertation investigates the suitability of transaction logs to provide this
dedicated test collection where there is none available or it is impractical to build
one, for the domain of digital humanities.

Transaction Logs are a record of pages being requested by a user of the system.
For example, when a user enters a query into the search box of a collection, this
query is placed into the request made to the server for documents to return. This
provides real world interactions with a system and contains key information
about what users are looking for, which pages they visit and which items they
click on, allowing for an unobtrusive method of studying these queries and the
results which appear to satisfy them. These clicks which appear in the transaction
logs could be an indication of relevance. Therefore, if a query is an expression of
an information need and a click could indicate relevance, is it possible to generate
a rough evaluation collection for IR systems using these transaction logs? This
dissertation investigates the building of a test collection to evaluate IR systems
using transaction logs, by segregating and filtering this wealth of interactions to
generate relevancy judgments which can be used as an alternative to a human
generated, dedicated test collection, where resources make this unfeasible.

1.2 ResearchQuestion

Evaluation is highly important for designing, developing and maintaining
effective information retrieval or search systems as it allows the measurement of
how successfully an information retrieval system meets its goal of helping users
fulfil their information needs. IR Systems typically use a user generated test
collection to measure the effectiveness of the system. An approach as used by
TREC in some evaluations, is the notion of giving a binary classification as either
relevant or nonrelevant for an information need with respect to a document in
the test collection. This decision is referred to as the gold standard or ground truth
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judgment of relevance, [Manning et al., 2008]. However for small digital libraries
in the domain of digital humanities, this manual process is expensive or
impractical. I will investigate the effectiveness of using transaction logs to
generate this test collection. These transaction logs are automatically generated,
thus having a large reduced cost over manual generation, although there are still
costs involved such as time to grow the logs and the costs involved with mining
this data. This dissertation aims to evaluate this proposal by addressing the
following question:

Can transaction logs provide a suitable alternative test collection for
evaluating Information Retrieval Systems inDigital Humanities?

Challenges:
There are a number challenges which arise by addressing this question such as the
suitability of binary relevance judgments and segregation of user interactions
with the system using inference based on a limited context. Verifying the
effectiveness of this generated test collection is key to determining the validity of
transaction logs as a means to generate test collections, and finally the ethical
implications involved with analysing real user interactions with a system.

1.3 Use Case - The Cultura Project

This dissertation initially began using the Trinity College Dublin Digital
Collections library as a use case, however after much analysis, was deemed
unsuitable. Chapter 6 discusses the reasons for this and the change to using the
Cultura Project, which became the main focus of the experiment.

The Cultura Project is an EU project, which aims to “pioneer the development
of next generation adaptive systems which will provide new forms of
multi-dimensional adaptivity.”

The following are two collections of historical documents which are made
available by the project, both are available online and have transactional logs on
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their servers. The transactional logs of both of these collections have been kindly
provided in aid of fulfilment of this dissertation.

1916 Collection
The Bureau of Military History documents the movement for Independence
from November 1913 to July 1921. The bureau contains witness statements, sets
of contemporary documents, photographs, voice recordings, and a collection of
press cuttings. These were largely contributed by participants or witnesses to the
events. This collection has 119 documents.

1641 Collection
The 1641 Depositions are witness testimonies, from all social backgrounds,
concerning their experiences of the 1641 Irish rebellion. The testimonies
document the loss of goods, military activity, the alleged crimes, and the causes
and events surrounding the 1641 rebellion. This collection contains 8129
documents.

1.4 Goal ofDissertation

The goal of this dissertation is to determine whether user clicks can be
interpreted as absolute judgments of relevance, using transaction logs to extract
these judgments. The purpose of test collections is for evaluating how well a
ranking function performs on an IR system. These ranking functions are used to
create a score which attempts to represent the relevance of documents to the
query issued by a searcher. Test collections are widely available for web search,
however this is not the scope of this experiment, which aims to aid small digital
libraries in the evaluation of their IR systems using a more cost-effective method
of generating the test collection.

The first step to achieving this is the extraction of information from transaction
log data, how this is designed and the methodologies used are discussed in the
following chapter. Once this test collection is available, a key component is the

5



CHAPTER 1. INTRODUCTION

evaluation of this generated collection, to determine it’s effectiveness. This
evaluation is a comparison of the performance of a number of ranking functions
on the generated test collection against what has been achieved in literature. This
is not an evaluation of the ranking functions themselves, rather a comparison of
their performance on the test collection. The assumption is that there is an
expected result of how well these functions perform in relation to one another,
and thus if this assumption holds, a reasonable conclusion is that the test
collection reflects the information needs and fulfilment of those needs well.

1.5 Overview ofDissertation

Up to this point, the purpose of test collections in Information Retrieval has been
outlined, alongside the motivation for this dissertation, the research question to
be answered and the challenges involved in answering that question. The
following chapters outline the design and execution of this experiment.

Chapter 2 discusses relevant historical work in the area of log analysis. This is
followed by a discussion of the state-of-the-art work being carried out, and the
performance of similar solutions.

Chapter 3 outlines the design of the proposed experiment, including the
architectural decisions and scalability factors which are accounted for when
performing analysis of large datasets. The methodology of building an automated
test collection is discussed and the evaluation stage design.

Chapter 4 describes the details of the technical aspects of the framework. The
topics discussed in this chapter span from the ingestion of transaction logs, the
development of the application to aggregate and filter the data to generate
relevancy judgments, and finally the Lucene-based application development for
evaluation of the generated test collection.

Chapter 5 presents the results of evaluation, as well as the performance metrics
used to determine the effectiveness of a generated collection. This chapter
critically analyses performance of the various ranking functions in relation to the
test collection, and by extension the feasibility of generating such a test collection
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from transaction logs.
Chapter 6 contains some final thoughts on the dissertation as a whole. This

chapter discusses the achievements of the dissertation, as well as the limitations
and obstacles encountered. Finally, future work to be explored is also discussed.
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“In one word he told me secret of success in mathematics: Pla-
giarize! ... only be sure always to call it please, ‘research’.”

- Tom Lehrer, Lobachevsky

2
Literature Review

At the beginning of this dissertation, both design and methodology choices had
to be made to construct an experiment which could answer the question that this
dissertation poses. The technologies and methodologies chosen for use within
this dissertation were made through contextual research into a number of
domains, such as transaction log analysis, search query segmentation in logs,
evaluation of test collections and data privacy. This chapter aims to discuss the
state-of-the-art approaches to problems similar to those discussed within this
dissertation, alongside a discussion of their methodology and results, and how
these impact on this dissertation.
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2.1 Transactional Log Analysis

The area of transaction log analysis for online public access catalogues has been
widely adopted in literature. Web search engine companies use transaction logs
to research trends and effects of system changes. Transaction logs are an
unobtrusive way of gathering search and interaction data from system users
[Jansen, 2006]. The process of conducting an examination of this collected data
is referred to as transaction log analysis (TLA). In the context of my dissertation,
an analysis of the shortcomings and strengths of using TLA as a methodology to
build a test collection, for evaluating IR on Cultura Heritage datasets, are
highlighted and discussed.

“Using TLA as a methodology, one examines the characteristics of searching
episodes in order to isolate trends and identify typical interactions between
searchers and the system. Interaction has several meanings in information
searching, addressing a variety of transactions including query submission, query
modification, results list viewing, and use of information objects (e.g., Web page,
pdf file, video)” [Jansen, 2006].

Figure 2.1.1: Transaction Log Analysis Pipeline

TLA involves the following three major stages, which are shown in figure 2.1.1:

1. Collection: the process of collecting the interaction data for a given
period in a transaction log.

2. Preparation: the process of cleaning and preparing the transaction log
data for analysis.
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3. Analysis: the process of analysing the prepared data.

Strengths of TLA
TLA provides a method of collecting data from a vast number of users. Given the
scale of the Web, the approach appears to be the most unobtrusive method of
collecting user-system interaction from searchers.

The costs of collecting data is low. The interactions between users and the
system are logged into files, where the cost is storage and maintenance. There are
minimal costs involved in collection / generation of this data, as they are real
interactions which are simply being recorded.

It is important to emphasise that the collection of these user-system
interactions is unobtrusive. Interactions between searchers and the system are
not artificial or for the purpose of experimentation. Transaction logs represent
the unaltered behaviour of searchers, where the searchers are issuing genuine
queries and judging relevancy in the absence of a controlled environment. This
can reduce or eliminate bias which could influence the outcome of experiments.

This is an important consideration for this dissertation, the judgments can be
different or may in fact be more appropriate when generating a test collection in
comparison to a manually generated set of judgments. Manual relevance
judgments are given by a limited number of participants, therefore the potential
for gaining different insights into relevance judgments as deemed by a large
quantity of searchers is quite large and could be the basis of improving judgments
deemed through TLA.

Weaknesses of TLA
Almost from its first use, researchers have critiqued TLA as a research
methodology [Belkin et al., 1995]. It is reported that transaction logs do not
record the users’ perceptions of the search, cannot measure the underlying the
information need of the searchers, and cannot gauge the searchers’ satisfaction with
search results, [Borgman, 1996]. Kurth notes that transaction logs can only deal
with the actions that the user takes, not their perceptions, emotions, or
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background skills [Kurth, 1993].
Kurth further identifies three methodological issues with TLA: execution,

conception, and communication. TLA can be difficult to execute due to collection,
storage, and analysis issues associated with the complexity and quantity of the
data set. With complex data sets, it is difficult to develop a methodology for
analysing the dependent variables. Communication problems occur when
researchers do not define terms and metrics in sufficient detail to allow other
researchers to interpret and verify their results.

However, these are issues with many, if not all, empirical methodologies.
Although the points made by Kurth are still valid today, advances in transaction
logging software, transaction log format standards, and improved data analysis
software and methods have addressed many of these shortcomings. This
dissertation aims to investigate the use of transactional logs as a means to
generate test collections. As transaction logs only provide a limited context as
described by Kurth, techniques inferring information from logs are considered to
be a mechanism for comparing system performance and not designed to give a
‘perfect relevance’ judgment. This is important in the context of this dissertation,
the aim is to build a test collection from limited context and to evaluate how well
it performs. The limitations and expensive process of generating such a collection
manually are significant enough to warrant investigation of such an automated
process through the usage of TLA.

2.2 Extracting Information

There are many ways of extracting information on clicks or queries from a
transaction log to make a topic set and associated relevance judgments. A simple
way would be to treat every query typed by a user as a topic, and every result that
the user clicked on as a positive relevance judgment. However, such an approach
may not lead to a good test set [Arampatzis et al., 2007]. Previous research on
user click behaviour has shown that clicks on search engine results do not directly
correspond to explicit, absolute relevance judgments, but can be considered as
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relative relevance judgments [Susan Dumais, 2003]. For example, if a user skips
result A and clicks on result B, then the user gives preference to result B,
indicating that result B should have a higher relevance judgment to result A. This
was an important consideration for this dissertation, can user clicks be
interpreted as an explicit indication of relevance and if so, can they be used to
generate a test collection? The findings of Dumais are an important factor for this
dissertation. The methodology for building judgments from user interactions
with the system is key to creating a good test collection, therefore careful
consideration of the paper and its findings were accounted for in the design stage
of this dissertation. This dissertation aims to investigate the claim that explicit
judgments may lead to a poor reflection of relevance judgments and to show the
viability of building relevance judgments from transaction logs and as such the
experiment uses a simple click model, however as noted above careful
consideration of the effects of such modelling is taken and will be the focus of
future work.

Defining Relevance - Sessions
Determining which documents are relevant to a query defines the way that
documents, which appear to satisfy the information needs of a search, are
deemed to be relevant. Transaction logs maintain no notion of a user starting and
ending their information needs. A method for attempting to understand when
this occurs is known as defining user sessions, which is an important consideration
when generating test collections from transaction logs. A session is designed to
include all documents deemed relevant to a query or information need as
required by a system user. Previous research into the area of using transaction
logs for test collections by Arampatzis [Arampatzis et al., 2007], provides a
number of definitions of relevance based on the contents of transaction logs:

• Raw queries: the bag of queries. Every query, along with it’s
corresponding clicked results from one session.

• Unique union: the set of queries. All results clicked by all users for the set

12
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of queries are considered relevant.

• Unique intersection: the set of queries. Unique union set where all users
have clicked on a result.

Arampatzis’s paper showed that ranking based on the Raw Topic set deviates
slightly from ranking based on the Union and Intersection topic sets. The Union
and Intersection topic sets result in exactly the same ranking. This dissertation
looks into the Unique union set of queries and relevance judgments. Future work
for this dissertation would aim to incorporate these other definitions and perhaps
a weighted mixture of relevance judgments, to deem which performed most
consistently.

2.2.1 User Goals and Session Boundaries

Most analysis of web search relevance and performance takes a single query as
the unit of search engine interaction. However a number of studies have shown
that the usage of such units of interaction may be a poor reflection of the users
thoughts and expressions of interest. When studies attempt to group queries
together by task or session, a timeout is typically used to identify the boundary.
However, users query search engines in order to accomplish tasks at a variety of
granularities, issuing multiple queries as they attempt to accomplish tasks
[Jones and Klinkner, 2008]. Jones discusses three methods of defining user goals,
as outlined:

1. A search session is all user activity within a fixed time window.

2. A search goal is an atomic information need, resulting in one or more
queries.

3. A search mission is a related set of information needs, resulting in one or
more goals.

13
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In order to ascertain the viability of the general approach to generating test
collections through the use of transaction logs, this dissertation focuses on the
first method, as defined by Jones. However, the discussion of defining a search
mission is important to the future work and research of this experiment.

The other approaches as described by Jones include the notions of goals and
missions. A goal is a group of related queries to accomplish a single discrete task,
whereas a mission is an extended information need such as finding a number of
restaurants, for a searcher interested in places to eat locally. Figure 2.2.1 below
illustrates an example of a hierarchy which contains goals and missions.

Figure 2.2.1: Sample hierarchy of user missions and goals
[Jones and Klinkner, 2008]

Jones discusses the use of hierarchical tasks, and the usage of boundary
timeouts for sessions and the weaknesses of using a boundary time regardless of
length. As shown in figure 2.2.2 Jones concludes that boundary timeouts are of
limited utility in identifying task boundaries, achieving a maximum precision of
only 70%, and that the choice of timeout is relatively arbitrary.
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Figure 2.2.2: Mission boundaries

Jones concludes that through the usage of goals and milestones, an
improvement on timeout segmentation was achieved, bringing the accuracy up
to 92% for identifying fine-grained task boundaries, and 89-97% for identifying
pairs of queries from the same task when tasks are interleaved hierarchically. This
improvement over timeout based sessions is quite important in the context of
this dissertation, with implications for the success of a generated test collection
from transaction logs.

2.3 Summary

In this chapter various state-of-the-art technologies were discussed alongside the
strengths and weaknesses of the approach as illustrated in literature. Of those
discussed, this project aims to build a TLA based approach to generating test
collections. The modelling approach to session generation is proposed to be
based on timeouts as described by Jones. This is a relatively simple approach to
generating relevance judgments.

Despite the limitations of TLA as a methodology, for the domain of digital
humanities and given the unique nature of the document collections, the usage of
TLA to evaluate IR systems was justified. Analysing the transaction logs and
using them to evaluate IR systems in digital humanities will yield slightly better
quantitative results than existing methods in the area. The flexibility of the
proposed framework design discussed in the following chapter as a means to
generate this test collection, gives a foundation to extend the findings of this

15



CHAPTER 2. LITERATURE REVIEW

dissertation using approaches found in state-of-the-art studies.
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“Design is not just what it looks like and feels like. Design is
how it works.”

- Steve Jobs

3
Design

3.1 Introduction

The main goal of this dissertation is to determine whether user clicks can be
interpreted as absolute judgments of relevance, using transaction logs to extract
these judgments. The design and methodology choices involved in this
experiment focus on the capturing of data available in digital libraries transaction
logs, builds a set of queries and relevance judgments from this data and finally
evaluates the effectiveness of this generated test collection. The main design
aspects of this dissertation are around the methodology of generating a test
collection, the choice of evaluation techniques and finally the technical choices
and architecture of the developed system.

17
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3.2 Test CollectionGeneration

To evaluate a test collection generated via transaction logs, the three components
of a test collection must be available. Outlined below are the three key elements
to a test collection, and the methodology of this dissertation for generating them
via transaction logs.

3.2.1 Document Collection

A document collection is the set of documents which users will query against. In
the case of the Cultura Project, these are historical documents relating to
important events in Ireland and witness testimonies of these events.

The 1641 collection contains 8129 documents, which are transcribed
historical witness statements from the 1641 Irish rebellion. These documents
have been transcribed from paper and are written in an archaic form of English,
which is different from the form of English used now. The 1916 collection is
composed of 119 documents, which are made up of witness statements from the
1916 rising and surrounding events.

3.2.2 Information Needs (Queries)

To evaluate the performance of an IR system, a set of queries are required which
represent information needs of users for the system. A query is a set of one or
more terms (keywords). Through transaction logs, the search queries issued by
users can be discovered. If a transaction log line contains a query, it is added to
the set of all queries issued against the system. Figure 3.2.1 below shows an
excerpt from the transaction logs, showing an example user search query and the
subsequent clicks which they performed to fulfil their information need. In this
example, the user issued the query “Parnell Street”, and subsequently clicked on
two documents - WS0242 and WS1709, within the timeout boundary.

The design of the overall process by which these queries would be extracted
from the transaction logs is discussed in depth in section 3.4.
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Figure 3.2.1: Example query and clicks from transaction log

3.2.3 Relevance Judgments

To evaluate the performance of an IR system, a set of relevance judgments are also
required. For this dissertation, these judgments are simple judgments of whether
a document is relevant or not to a particular query. Building the relevance
judgments is the most important aspect of a test collection and requires most
effort for manually generated collections.

The definition of relevance is a key factor in generating judgments. How does
this experiment define relevance? The topic of sessions has been introduced in
Chapter 2, with different methodologies for defining a session. The following
section details how this experiment deems a click to be relevant to a query as
issued by a user.

SessionDesign
As described previously, a session is a period of time for which a user is pursuing
a particular information need. This dissertation defines a session as being all
clicked documents which occur by a user between the issuing of one query to the
next, with a maximum timeout limit of one hour. As discussed in the Chapter 2,
this session boundary may be relatively arbitrary, however for the purposes of
showing the viability of the approach, a simple boundary-based approach was
taken.

The approach taken in this experiment is that any query issued creates a new
session. This session is concluded when the same user issues another query or
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the boundary of one hour has been reached. Each session can therefore only have
one unit of information need (query). Any clicked documents after the issuing of
a query are added to the session, and deemed relevant to satisfying that query.
Figure 3.2.2 illustrates a flow diagram of the designed session generation process.

Figure 3.2.2: Session Generation Design

Figure 3.2.3 below shows a resulting session from the snippet shown in figure
3.2.1 and it’s associated relevance judgments, as generated by the automated
system, where the maximum boundary time between document ‘WS0242’ and
‘WS1709’ is one hour.

Figure 3.2.3: Sample Session
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3.2.4 Evaluation of the Test Collection

The key question being answered by this question is around the evaluation of a
generated test collection through transaction logs. What is the purpose of
evaluation in this context? Evaluation of a generated test collection involves the
comparison of a number of ranking functions performance. The evaluation stage
of this experiment is not designed to see how well each ranking function
performs, but rather how they do in relation to one another.

The three chosen ranking functions, namely the Vector-Space Model, BM25
and Jelinek-Mercer Smoothing, are expected to perform in this order,
respectfully. BM25 has been shown to work well in literature on content of digital
libraries. A study by Bennet shows that smoothing performs very well when
tuned to the an empirically selected level of smoothing, [Bennett et al., 2007]
and is expected to perform best on the collections.

3.3 Development StackDesign

Theoverall goal of this experiment is to generate a test collection from transaction
logs, and evaluate it’s effectiveness. As outlined in the previous section, the
system must automatically generate a test collection, therefore the design of this
system reflects processes involved in generating each component of a test
collection. The overall, high-level design of the system is shown in Figure 3.3.1.
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Figure 3.3.1: Overall System Design

3.4 Data Extraction& Ingestion

Figure 3.4.1: Logs Extraction

3.4.1 Overview

The first step to undertake is to source logs from a digital collection, with
sufficient data to perform the dissertation. In conjunction with the ADAPT
Centre of Trinity College Dublin, I was able to source two sets of transaction logs
from the Cultura Project. The Cultura Project aims to guide, assist and empower
every users interaction with Europe’s cultural treasures. The Cultura Project
makes available multiple collections; two such collections include the ‘1916
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Rising Collection’ and the ‘1641 Depositions’. By applying the approach outlined
by this dissertation to two sets of collections, I can strengthen the argument that
the approach taken in with dissertation indicates transference over different
collections.

The Cultura Project transaction logs contain over 1.2 million transactions,
with 500 thousand entries related to 1916 and 460 thousand entries related to
1641. The contents of the logs spans a total of 4 years from June 2013 to March
2017. The 1641 collection has a total of 1324 queries issued, with 498 unique
queries. The 1916 collection has a total of

Before these transaction logs can be used, the information must be extracted
into a filterable format. Logstash 1 is an open-source file parser which will index
and separate the logs into query-able and filterable entities. This is an automated
process, and means that no extra work is required to define these.

3.4.2 Predefined Terminology

Log files are a standard tool for computer systems developers and administrators.
They record the transactions of the system, such as what resource was accessed
and by whom. This information can record faults and help their diagnosis. It can
identify security breaches and other computer misuse, auditing and can also be
used as a means to gather statistical information on, for example, the frequency of
access of resources.

The information stored is only available for later analysis if it is stored in a form
that can be analysed. This data can be structured in many ways for analysis. For
example, storing it in a relational database would force the data into a query-able
format. However, it would also make it more difficult to retrieve if the computer
crashed, and logging would not be available unless the database was available. A
plain text format minimises dependencies on other system processes, and assists
logging at all phases of computer operation, including start-up and shut-down,
where such processes might be unavailable.

1https://www.elastic.co/products/logstash
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For the Cultura Project collections, logs are in an Apache server format,
known as ‘The Common Log Format’, which is a standardised text file format
used by web servers when generating server log files. Because the format is
standardised, the files can be readily analysed by a variety of web analysis
programs. The following are the main components of the Apache format:

• Client IP: IP address of user accessing the resource.

• Date-Time: Date and time of access.

• Resource: The webpage / document accessed.

• Status: Status of request, standard HTTP response code.

• Referral Uri: If applicable, the uri of the resource which brought the user
to this page.

• Device: Browser / Computer type used to access the collection.

An example of the format is given below:

1.1.1.1 - - [01/Jan/2016:01:01:01 +0100]
"GET / HTTP/1.1" 200 8024 "http://lib.xyz.com/?id=abc"
"Mozilla/5.0 (iPad; CPU OS 9_3_2 like Mac OS X)
AppleWebKit/601.1 (KHTML,like Gecko) Version/9.0
Mobile/13F69 Safari/601.1"

Listing 1: Example Apache Formatted Log Excerpt

3.4.3 Extraction Methodology and Design

To create the pipeline for extraction and filtering of the transaction logs into a
format which is understood by the data-store, a number of pre-processing steps
must be taken, as outlined as follows:
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1. The Logs are sourced from a collection.

2. Each line of the logs must be filtered, so each component of the
transaction is separated.

3. Each extracted entity is stored in the data-store, for further analysis.

The pre-processing stage of the pipeline is automated, requiring no user input.
To generate a test collection, I wanted to introduce the minimal effort for a
current system to integrate the approach taken by this dissertation. As the
transaction logs are in the standardised format, simple filtering can be applied to
extract the information, again requiring minimal configuration. To be a real
alternative to manually generated test collections, the amount of effort required
to generate relevancy judgments must be less than that of a manually created
collection. This was an important factor in the design choice, with automation
and minimal configuration a key aspect of the decisions made.

Each line of the transaction logs is translated into a format understood by the
data-store. As shown in listing 2, each line of the transaction log is translated into
a document structure, made up of many fields. Each field corresponds to a part of
the transaction line or meta information about it. I made the decision to
deconstruct the transaction logs into the following format as it allows for filtering
and extraction of detailed information without manual transformation at a stage
further along the pipeline.

An important field when extracting information is the timestamp field. This
identifies the time at which a resource was accessed, as it is important when
generating sessions. This timestamp includes a time zone offset which accounts
for the time zone where the server resides. To simplify querying and filtering of
transaction logs into sessions, a time zone should be chosen which will
standardise the transaction logs timestamps. This is an important design decision
for flexibility of the pipeline, and for transferability of the approach taken in this
dissertation to other digital libraries.
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1 "_source" : {
2 "message" : "1.2.3.4 - - [17/Jul/2013:15:19:57 +0000] \"POST

/1641/?q=deposition/809001r001 HTTP/1.1\" 302 778
\"http://cultura-project.eu/1641/?q=deposition/809001r001\"
\"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/28.0.1500.72 Safari/537.36\"",

↪→

↪→

↪→

↪→

3 "@version" : "1",
4 "@timestamp" : "2013-07-17T15:19:57.000Z",
5 "path" : "/logs",
6 "clientip" : "1.2.3.4",
7 ...
8 "timestamp" : "17/Jul/2013:15:19:57 +0000",
9 "verb" : "POST",

10 "request" : "/1641/?q=deposition/809001r001",
11 "httpversion" : "1.1",
12 "response" : 302,
13 "bytes" : 778,
14 "referrer" :

"http://cultura-project.eu/1641/?q=deposition/809001r001",↪→

15 "agent" : "\"Mozilla/5.0 (Windows NT 6.1; WOW64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/28.0.1500.72
Safari/537.36\""

↪→

↪→

16 }

Listing 2: Sample Extracted Document

As shown in Listing 2, each transaction appearing in the log is filtered and split
into named fields. A brief explanation of fields I am most interested in is detailed
below:

• @timestamp: This timestamp is a GMT representation of the time this
transaction occured. This converts the timestamp to GMT if it is in
another time zone.

• clientip: The client IP is assumed to be the user who accessed the
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resource, I assume that all requests from an ip are from the same person,
however this may not always be the case and is a limitation of TLA.

• request: The request field contains information about the accessed
resource, i.e the ID of the resource in the system.

Why Elasticsearch and Logstash?
For development and deployment purposes, a distributed data-store was chosen.
This provides the ability to scale the TLA process to large volumes of data.
Elasticsearch 2 is a document storage system which exposes it’s operations and
extraction via a HTTP Application Programming Interface. This provides an
implementation agnostic approach to data extraction, as discussed in section 3.5.

3.4.4 Design Ethics

Usage of real-world system interactions, including identifying information raised
a number of privacy issues which needed to be addressed:

1. Identification of Users
Interactions between users and the digital library are recorded, and as such
some identifying characteristics are recorded i.e. IP addresses. To mitigate
this privacy implication, this dissertation looks at relevancy judgments
made by all users of the system, and not individual results. This uses an
amalgamation of user interactions to generate relevancy judgments, thus
reducing scope for privacy concerns.

2. Security
Another important consideration when designing an automated system is
the security underpinning it, especially where user data is being recorded
and analysed. It was important that information being used by the
automated test collection generation system was stored securely and not
available publicly. The technical implementation of this dissertation uses

2https://www.elastic.co/products/elasticsearch
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the latest security standards with role based access to the system. Security
and integrity of user based data is a highly important risk factor to consider
for both reputational and regulatory reasons.

3.5 SessionGeneration

3.5.1 Overview

The extraction of relevant information from the transaction logs is important to
generating different test collections. As outlined in section 3.5.3, there are a
number of extraction techniques as defined by Arampatzis to extract relevance
information from data available in the transaction logs.

3.5.2 Predefined Terminology

Outlined below is the set of terminology underpinning transactional log research,
each identifying an important element to consider for generating relevance
judgments.

• User: the client accessing the collection as identified by their ip-address.

• Transaction: any exchange between client (user) and server (system),
corresponding to a line in the transaction log.

• Session: a sequence of transactions by the same user, where the
maximum interval between transaction n and n + 1 is 1 hour.

• Query: the string typed by the user as it appears in the transaction log.

• Identifier: the identifier of the digital library item, used to retrieve the
object data from the object database.
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3.5.3 Extraction Methods

Arampatzis used a number of standard extraction methods,
[Arampatzis et al., 2007], which were used to extract details about user sessions
and what a user found to be relevant whilst searching:

• Raw queries: the bag of queries. Every query, along with it’s
corresponding clicked results from one session.

• Unique union: the set of queries. The same query addressed by different
users is aggregated into a single one, i.e. the relevance judgments are
accumulated across all users searching with the same query.

• Unique intersection: the set of queries. The same query addressed by all
users is aggregated into a single one, i.e. a result is relevant only if all users
who typed the query, clicked on that result.

The decision was made to generate sessions using the Unique Union set as
described above, with the implication that future work would involve extending
to other methodologies.

3.5.4 Application Design

An important aspect of generating a test collection are user clicks. Clicked pages
within a user session are deemed as relevant, however I make no particular claims
on the interpretation of clicks. I assume that the searcher found these pages
interesting enough to look more closely at, and that a more effective ranking
algorithm will tend to rank such pages higher than those that do not receive
clicks. In this dissertation I am interested in the potential of log-based evaluation,
and thus a relatively naive click model is sufficient for that purpose. More
complex models of interaction will likely generate an improved test collection.

Sessions File Format
This dissertation aims to build a pipeline for automatic generation of test
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collections which can be used across any digital library which has transactional
logs available. The choice was made to output the session data into a standardised
format as shown in listing 3 below. This format provides all the information
required to change extraction methodologies easily. The file is a JSON formatted
file, which is a common data-based exchange file format and is not application
specific. This facilitates interoperability between the analysis and generation
stages of the pipeline, meaning that the languages of implementation could be
easily changed. This is highly important in the area of digital humanities as the
architecture and technology choices made across the domain are both wide and
varied.

1 {
2 clientip: [
3 {
4 "clicks": {
5 click_id: {
6 "artefact": url,
7 "timestamp": timestamp
8 },
9 ...

10 },
11 "queries": [ query ],
12 "start_time": timestamp,
13 "user": clientip
14 },
15
16 ...
17 ],
18
19 ...
20 }

Listing 3: Basic Structure of Sessions JSON File
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3.6 Analysis

3.6.1 Overview

The next step in the TLA pipeline is the analysis stage. The purpose of this stage
is to evaluate the performance of the transactional log generated test collection
against what is expected. Each query from the set of queries will be issued against
the document collection and the top k documents are returned from each
ranking algorithm, where k is chosen to be 20 for this dissertation. By comparing
the overall performance of the ranking algorithm to each other, this dissertation
aims to ascertain if their trend follow what is given in literature.

Outlined in section 3.6.3 below are the ranking algorithms which have been
chosen. These well known ranking algorithms include both state of the art and
classical algorithms. The purpose of these ranking algorithms is for comparison,
to determine that the test collection performs as expected on each of these
algorithms. A number of performance metrics are used to determine the
effectiveness of each algorithm on the test collection, and are described in
Chapter 5.

How to search across documents?
Now that we have relevancy judgments and queries, the document collection
upon which the test collection is generated must be indexed. By indexing the
documents, they can be searched across using various ranking algorithms. I
decided that a suitable application which could provide this functionality is
Apache Lucene. The following section discusses Lucene and why I chose it.

3.6.2 Lucene Application Design

Lucene provides an interface for both indexing and searching across documents.
The design decision was made to interact with Lucene directly, instead of using a
wrapper application such as Apache Solr. Apache Solr abstracts away the details
of Lucene over a HTTP API interface. Although this was appealing, it did not
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allow for manipulation of the similarity ranking algorithms. With Lucene I was
able to search across the indexed document collection using different ranking
algorithms, as outlined in section 3.6.3. This decision led to a lower-level of
interaction with the Lucene Java API, however it’s benefits outweighed the costs
as outlined above.

Outlined in figure 3.6.1 is the process by which Lucene indexes and searches
across documents. A query is provided to the Lucene searching mechanism,
which then uses the built index of documents to compute relevancy scores. This
relates back to the foundation of Information Retrieval, where a document is
given a relevancy score based on some criteria.

Figure 3.6.1: Lucene Search Process
https://www.tutorialspoint.com/lucene/images/searching_process.jpg

3.6.3 Ranking Algorithms

Outlined in this section are the three ranking algorithms selected for evaluation
of the test collection. These algorithms are available for usage in the Lucene
environment and are implemented slightly differently from the theoretical
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formulae outlined below, however the differences are minimal and do not detract
from the general purpose of the algorithms.

These algorithms were chosen as a means to evaluate the effectiveness of the
test collection against what is expected. A baseline ranking algorithm, namely the
Vector Space Model will be benchmarked against other ranking algorithms such
as BM25, which is a state-of-the-art ranking algorithm.

Vector SpaceModel

tf − idft,d = (1+ log tft,d) · log
N
dft

(3.1)

The Vector Space Model is a classic ranking algorithm when it comes to
information retrieval, it was the default in lucene search for many years and has
only recently been replaced by BM25, which is discussed later.

How does it work?
The Vector Space Model is based on Term Frequency - Inverse Document
Frequency (TF-IDF). TF-IDF weights values based on the product of the
occurrence of words in text and the inverse of the occurrence of these words
across documents.

Term frequency tf(t, d) is the frequency of a term in a document, which is the
number of times that term t occurs in document d.

The inverse document frequency (IDF) component is a measure of whether
the term is common or rare across all documents. It is the logarithmically scaled
inverse fraction of the documents that contain the word, obtained by dividing the
total number of documents by the number of documents containing the term,
and then taking the logarithm of that quotient.

Combining these two components gives term frequency inverse document
frequency (TF-IDF). A high value of TF-IDF is reached by a high term frequency
and a low document frequency of the term in the whole collection of documents.
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Jelinek-Mercer Smoothing

pλ(w|d) = (1− λ)pml(w|d) + λp(w|C)) (3.2)

Jelinek-Mercer smoothing is a language model, which has a single parameter, λ,
which affects the influence of each model. The optimal value depends on both
the collection and the query. The optimal value is around 0.1 for title queries and
0.7 for long queries.

How does it work?
A language model is a probability distribution over strings P(s) that attempts to
reflect the frequency with which each string s occurs as a sentence in natural text.
Documents are ranked by the probability that the query text could be generated
by the document language model. In other words, we calculate the probability
that we could pull the query words out of the bucket of words representing the
document. This is a model of topical relevance, in the sense that the probability
of query generation is the measure of how likely it is that a document is about the
same topic as the query.

The major problem with this estimate is that if any of the query words are
missing from the document, the score given by the query likelihood model for
P(w|d)will be zero. Smoothing is a technique for avoiding this estimation
problem. Typically there does not exist large amounts of text to use for the
language model probability estimates. The general approach to smoothing is to
lower (or discount) the probability estimates for words that are seen in the
document text, and assign the leftover probability to the estimates for the words
that are not seen in the text. This dissertation uses the smoothing model
‘Jelinek-Mercer’ as described by Zhai, [Zhai and Lafferty, 2001].
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BM25

score(D,Q) =
n∑

i=1

IDF(qi) ·
f(qi,D) · (k1 + 1)

f(qi,D) + k1 · (1− b + b · |D|
avgdl)

(3.3)

where f(qi,D) is qi’s term frequency in the document D, |D| is the length of the
document D in words, and avgdl is the average document length in the text
collection from which documents are drawn. k1 and b are free parameters.

How does it work?
BM25 is based on a bag-of-words approach. The score of a document D given a
query Q which contains the words q1, ..., qn is given above. BM25 that ranks a set
of documents based on the query terms appearing in each document, regardless
of the inter-relationship between the query terms within a document. It is not a
single function, but actually a whole family of scoring functions, with slightly
different components and parameters, [Robertson and Zaragoza, 2009].

3.7 Summary

This chapter discussed the main design methodologies of this dissertation,
relating closely to the TLA pipeline.

• Overview of a Test Collection - Methodology for generating a test
collection via transaction logs.

In this section an introduction to what a test collection is comprised of and
the design methodology of this dissertation in generating such a collection
through the usage of transaction logs, was discussed. A discussion around
the design of the development stack was given, and how this dissertation
was designed to extract the required information and evaluate its
performance.

• Data Extraction& Ingestion - Collection of transaction logs from the
1916 and 1641 collections from the Cultura Project, and ingestion of the
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transaction logs into a data-store.

In this section the motivation behind the design decision to aggregate and
filter the transaction logs, was discussed. The approach of using a
real-world information retrieval system, namely the Cultura Project was
discussed and the main properties of transaction logs. Finally, the ethical
implications around security and privacy were highlighted and discussed.

• SessionGeneration - Extraction of the relevant information for building
a test collection.

This section discussed the design behind generation of sessions for
creating relevance judgments and the usage of a standardised sessions file
and how this format facilitates interchange of different extraction
methodologies.

• Analysis - Running multiple ranking algorithms over the indexed
collection.

Outlined in this section were the chosen ranking algorithms and a brief
outline of their behaviours. This included a discussion on the design of the
Lucene-based application, and why Lucene was chosen to evaluate the
generated test collection.
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4
Implementation

4.1 Data Extraction& Ingestion

Chapter 3 discusses the motivation behind the choice of Elasticsearch and
Logstash to extract and store the transaction log data. It’s scalability and platform
independence were significant factors for the large datasets used by this
dissertation.

In the final version of the system the following requirements, set out during
the design phase, were implemented:

1. The system should be sufficiently flexible to allow different log formats.

2. The system should account for time zone differences in transaction logs, to
simplify the querying process and make the approach transferable to
transaction logs in other timezones.
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3. The data stored should be easily queryable and require minimal support
on a client.

The first requirement is the extraction of data from raw transaction log files
and a requirement for the system to be flexible enough to work on different log
formats. This involves using Logstash, an open source, server-side data processing
pipeline that ingests data from a multitude of sources simultaneously, transforms
it, and then sends it to a datastore, namely Elasticsearch in this dissertation.

Logstash uses regular expressions to parse files and extract information from
them. Regular expressions allow the design of such a solution to change the way
that information is extracted from a file. Shown in listing 4 is the regular
expression defined for extracting standard Apache log format files. This looks for
patterns which match the expression, and assigns a field name to the matching
section. For example IPORHOST:clientip, looks for a pattern matching a standard
IPv4 address, extracts it and assigns the field name ‘clientip’.

1 COMMONAPACHELOG %{IPORHOST:clientip} %{USER:ident} %{USER:auth}
2 \[%{HTTPDATE:timestamp}\] "(?:%{WORD:verb} %{NOTSPACE:request}
3 (?:HTTP/%{NUMBER:httpversion})?|%{DATA:rawrequest})"
4 %{NUMBER:response} (?:%{NUMBER:bytes}|-)
5
6 COMBINEDAPACHELOG %{COMMONAPACHELOG} %{QS:referrer} %{QS:agent}

Listing 4: Regex Pattern for Apache Logs

With Logstash’s pattern recognition defined, the next step is to account for
time zone differences in transaction logs. Outlined in Listing 5 is the
configuration file which provides Logstash with information it needs to find the
logs, the pattern to match and finally where to output the results. As can be seen
in this example, a transformation is defined from lines 11-13. The time stamp
given by the logs can be from any time zone, and therefore needs to be changed
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to a standardised zone, allowing for querying across the dataset. This means that
timestamps which occur at the same time, but in different time zones are
converted to GMT, allowing any query to correctly assume these times are the
same.

1 input {
2 ...
3 }
4
5 filter {
6 grok {
7 patterns_dir => ["/etc/logstash/conf.d/patterns"]
8 match => { "message" => "%{COMBINEDAPACHELOG}" }
9 }

10 date {
11 match => ["timestamp", "dd/MMM/YYYY:HH:mm:ss Z"]
12 locale => "en"
13 target => "@timestamp"
14 }
15 }
16
17 output {
18 elasticsearch {
19 hosts => ["localhost:9200"]
20 index => "cultura"
21 }
22 }

Listing 5: Configuration file - Logstash

With Logstash now setup and transforming the transaction logs into a usable
format, the next step is to setup the Elasticsearch node which will store this
information. A service is defined which will setup and run Elasticsearch.

With the Elasticsearch instance running and with data now available for usage,
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how do we access the data? Of key importance in the design of the system was
the data being easily accessible. Elasticsearch provides a HTTP based API which
allows for standard HTTP requests to be issued against it. This means that the
implementation of any client accessing the resources are language independent
and only require being able to issue HTTP requests. Elasticsearch also has it’s
own query language which provides a means to declare powerful and expressive
queries across an index. An example of the implemented system is shown in
figure 4.1.1, with a simple query asking for all documents where the accessed
resource contains the word 1641.

Figure 4.1.1: Elasticsearch Query

This concludes all the necessary implementation to provide the next stage of
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the pipeline with the information necessary to generate sessions. The solution
outlined is both flexible and scalable, key factors in the choice of Elasticsearch
and Logstash over using other solutions such as SQL. SQL provides the ability to
query the dataset, however it’s performance degrades dramatically when issuing
queries over large datasets. The system designed achieved all of the requirements
set out at the design stage.

4.2 SessionGeneration

The next step in the designed solution was to generate sessions from the
transaction logs. This requires the development of an application which will
provide this functionality.

The motivation behind generating sessions is that it would provide the
relevance judgments which are required to create a test collection. Therefore the
application needed to be able to carry out some specific functionalities for this
purpose:

1. Provide a means to query Elasticsearch and import the data as returned by
it’s API.

2. Generate sessions according to the methodology defined in the design
process.

3. Export the data into the defined JSON format structure.

It was chosen to create this application using the Python programming
language. Python provides a number of libraries which manipulate timestamps
along with built-in JSON parsing and export functionality. Python also allows
querying over the dataset using generators. Generators are a feature of python
which reduces the memory usage footprint of the application by bringing data
into memory as needed. Bringing such large datasets into memory is not feasible,
therefore the usage of generators is important.
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In order to achieve the first requirement of this application, the official python
library for Elasticsearch, elasticsearch-py1, was added. This library provides
functionality around connecting to and querying against an Elasticsearch cluster.
Once added, a connection is then made to the Elasticsearch cluster containing
the transaction log data, as shown on line 3 of listing 7 below.

1 from elasticsearch import Elasticsearch, helpers
2
3 class ESHelper():
4 def search_es(self, index="", body={}):
5 return helpers.scan(self.es, index=index, scroll='2m',

query=body)↪→

Listing 6: ESHelper.py

1 from es_helper import ESHelper
2
3 es = Elasticsearch([{'host': 'localhost', 'port': 9200}])
4
5 def search_all_queries(choice=""):
6 return es_helper.search_es("cultura", {"query": { "bool": {

"must": [↪→

7 { "match": { "request": choice } },
8 { "match": { "request": "searchQuery" } }]}}
9 })

Listing 7: Extract for Querying Elasticsearch

The excerpt above requests all data containing a search query. The resulting
dataset is now available, however this is not brought into memory by the

1https://elasticsearch-py.readthedocs.io/en/master/
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application, as the data is quite sizeable. A generator is used to iterate over this,
bringing the data into memory when needed.

The next step in the implementation of this experiment is to generate the
sessions using my language of choice, python. During the design phase of this
experiment, the definition of a session and how this experiment represents it is
shown in Chapter 3, section 3.2.3. Outlined in Listing 8 below is the
implementation of the designed session-based segregation of data from the
transaction logs.

1 data = search_all_queries(choice)
2
3 for entry in data:
4 ...
5
6 if query:
7 startTimestamp = parse(timestamp)
8 endTimestamp = startTimestamp + timedelta(hours=1)
9

10 # check for other queries by the same user, within an hour
11 is_other_queries = check_other_queries(startTimestamp,

endTimestamp, client_ip, choice)↪→

12 ...
13
14 click_data = search_clicks(startTimestamp, endTimestamp,

client_ip, choice)↪→

15 new_session = start_new_session(startTimestamp, query,
client_ip, click_data=click_data)↪→

16
17 sessions[client_ip].append(new_session)

Listing 8: Implementation of a Session

Listing 9 below shows the implementation of the defined function
check_other_queries, which provides the functionality of retrieving all clicks by a
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particular user within an hour of some query. This illustrates an example of the
query language as used by Elasticsearch, which provides powerful, complex
filtering on the Elasticsearch cluster.

1 def check_other_queries(timestamp1, timestamp2, clientip, indx):
2 return es_helper.search_es("cultura",
3 {
4 "query": {
5 "bool" : {
6 "must": [
7 {"range" : {
8 "@timestamp" : {
9 "gte": timestamp1_str,

10 "lt": timestamp2_str,
11 "format": "dd/MMM/YYYY:HH:mm:ss"
12 }
13 }},
14 {"match": {
15 "clientip": clientip
16 }},
17 {"match_phrase": {
18 "request": "? q = artefact"
19 }},
20 {"match": {"request": indx}}
21 ],
22 }
23 }
24 })

Listing 9: Elasticsearch Query for Session Generation

The final stage in the pipeline stage of generating sessions is to output the
result of this process to a file, so the final analysis stage of the TLA pipeline can be
achieved. Included in the python basic libraries exists the functionality to export
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data structures to JSON formatted files. This process is shown in Listing 10
below. The structure of this file is described in Chapter 3, and the reason why this
format was chosen.

1 with open('all_queries.json'.format(choice), 'w+') as f:
2 json.dump(set_of_queries, f, sort_keys=True,
3 indent=4, separators=(',',': '))
4 f.write('\n')

Listing 10: JSON export from Python

Overall, the application was implemented using the python programming
language, as it provided all the functionality required to generate sessions using a
minimal number of extra dependencies (libraries). The application achieved all
of the requirements as set out at the design stage, and is easily extended to other
session design models as set out for future work.

4.3 Analysis

The final step in the designed solution was to index the document collection, and
to take each query from the transaction logs and run it against this indexed
collection to deem the top 20 relevant documents as per the ranking functions
described during the design phase of this experiment. This requires the
development of an application which will provide this functionality.

The motivation behind this stage of the implementation is to complete the last
step towards creation of the test collection itself, provide all the relevant data
which is needed to evaluate a test collection, and to reason about the performance
of the generated test collection against what is expected. The comparison of the
ranking functions and the relevance judgments as generated from the previous
section is detailed in the following chapter. This application therefore needed to
be able to carry out some specific functionalities for this purpose:
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1. Index the document collection, so it can be searched over.

2. Parse the sessions file and extract information from the sessions as per the
methodology described during the design phase.

3. The automatically generated relevance judgments and the ranked
documents according to each of the ranking functions for each query are
formatted into the TREC format, which will provide automatic generation
of performance metrics. Performance metrics provide an evaluation using
various techniques, as described in Chapter 6, of how well a set of
relevance judgments perform in relation to a ranked set of judgments
generated by a ranking function. As discussed previously, the metrics for
the context of this dissertations are used to assess the rank between
different IR models against those reported in literature.

The programming language of choice was Java for this stage of the
implementation. Lucene 2 is a java-based application and provides its libraries in
Java. These libraries provide the low-level interaction with the lucene API which
is required by this experiment, so the ranking functions can be changed. Listing
11 below shows the functionality of the application which changes the ranking
function to one of those as described during the design phase in Chapter 3.
Note: the ClassicSimilarity class which is shown on line 11 refers to the Vector
Space Model.

2https://lucene.apache.org/
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1 switch(query_type) {
2 case BM25:
3 config.setSimilarity(new BM25Similarity());
4 break;
5 case SMOOTH:
6 config.setSimilarity(
7 new LMJelinekMercerSimilarity(SMOOTH_FACTOR)
8 );
9 break;

10 case CLASSIC:
11 config.setSimilarity(new ClassicSimilarity());
12 break;
13 default:
14 break;
15 }

Listing 11: Lucene Similarity Configuration

The second requirement for this stage of the implementation is parsing of the
sessions file which was generated, and to create the Union Unique set of
relevance judgments as described in the design phase.

Indexing is a process whereby a document is represented in a way which allows
it be searched across. The process by which this happens is not the focus of this
experiment, merely a way to search over the documents. Once the document
collection has been indexed, each query must be issued against it using each
ranking function. The process of searching is described in Chapter 3, and is
implemented in this application, as shown in Listing 12. Each query from the set
of queries is parsed using a Standard Analyzer, which provides grammar based
tokenisation and works well for most languages. The query is also escaped,
whereby it reduces ambiguity in quotes (and other characters) used in that string.
An example of an analysed piece of text is given as follows:

”The 2 QUICK Brown-Foxes jumped over the lazy dog’s bone.”
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which creates a number of terms:
[ the, 2, quick, brown, foxes, jumped, over, the, lazy, dog’s, bone ]

1 Directory directory = FSDirectory.open(Paths.get(INDEX_DIRECTORY));
2 DirectoryReader ireader = DirectoryReader.open(directory);
3 IndexSearcher isearcher = new IndexSearcher(ireader);
4 Analyzer analyzer = new StandardAnalyzer();
5
6 QueryParser queryParser = new QueryParser(FIELD_CONTENTS, analyzer);
7 Query query;
8 try {
9 query = queryParser.parse(QueryParser.escape(searchString));

10 }
11 catch (ParseException p) {
12 // nothing we can do if we cant even parse the query
13 return;
14 }

Listing 12: Excerpt of Query Parsing in Lucene

Figure 4.3.1: Console Output of Relevance Judgments

The final stage of analysis is to export the relevance judgments from the
transaction logs and those from the ranking functions, into a the format required

48



CHAPTER 4. IMPLEMENTATION

by TREC’s automatic performance evaluation software (trec_eval) 3. This is the
standard tool used by the TREC community for evaluating ad-hoc retrieval
experiments, given the results file and a standard set of judged result from the
experiment carried out in this dissertation. In this experiment, the results file is
the output from each ranking function, and the judged result set is the binary
relevance judgments as generated by the transaction logs through the automatic
process described in this dissertation. This evaluation software requires the
judgments to be formatted as shown below.

TOPIC ITERATION DOCUMENT# RELEVANCY

• Topic is the topic number, or query number, which identifies the query.

• Iteration is the feedback iteration (almost always zero and not used).

• Document # is the identifier of a document.

• Relevancy is a binary code of 0 for not relevant and 1 for relevant.

Figure 4.3.2 below shows the resulting file which is generated by this
application for the Cultura Project 1641 collection.

Figure 4.3.2: TREC formatted output - Binary Relevances
3http://trec.nist.gov/trec_eval/
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The pipeline for automatic generation of a test collection as described
previously, uses TREC software for generating the comparison of performance.
Various performance metrics are used to determine how well the relevance
judgments compare to the ranking functions’ results.

4.4 Summary

Throughout this chapter the implementation of the components which were
involved in the TLA pipeline for this experiment, were discussed. This included
the development of a number of applications which encompassed the collection,
preparation and analysis of the resulting test collection. Each of the developed
applications were structured according to the requirements as set out in Chapter
3. The following is a brief summary of the implementations described within this
chapter:

1. Data Extraction& Ingestion
The ingestion of transaction logs into the Elasticsearch datastore was first
to be implemented. This was developed, using Elasticsearch and Logstash.
The purpose of which was to collect and split the content of the logs into
queryable entities. Privacy and security were two concerns which were
addressed in the design of the system, along with the scalability of the
proposed infrastructure.

2. SessionGeneration
This application was developed using Python, with the purposes of
generating sessions from the transaction logs stored in Elasticsearch. The
key aspect of this stage was to provide the analysis stage of the TLA
pipeline with the required information needed to model the relevancy
judgments and queries to evaluate the proposed methodology of
generating a test collection from transaction logs.

3. Analysis
The final application developed was the Lucene, Java based
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implementation which would provide the functionality of indexing the
document collection and formatting both the generated relevancy
judgments from the sessions and the documents which each ranking
function deemed relevant to each query. This was implemented in Lucene
to interface with the Java API, which allowed the ranking function to be
changed.
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“Do something. Get results. Decide if it’s worth repeating. If
the results don’t scream: ‘Do this again!’ Try something new.”

- Tony Robbins

5
Evaluation

The following sections are an evaluation of the automatically generated test
collection from transaction logs. The purpose of the evaluation is to compare the
overall performance of the ranking algorithms to each other, with the aim to
ascertain if their trend follows what is given in literature. The following sections
outline the methodology / procedure for evaluating the generated test collection,
and a discussion of the results of the experiment.

5.1 Method

Jelinek-Mercer Smoothing > BM25 > Vector-Space Model

Figure 5.1.1: Ordered Ranking of the Ranking Functions
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The method for evaluating the generated test collection using the TLA pipeline
as discussed in the previous chapters, was to compare the performance of the
ranking functions against each other to determine if they conform to my
expectations, as above in figure 5.1.1. This shows the expected performance
ranking of the chosen ranking functions as described in Chapter 3. This requires
the following steps:

1. Take each query from the generated set of queries, and search across the
document collection, using each of the ranking functions chosen. This will
return the top 20 documents as deemed relevant by the ranking function
for that query.

2. For each query, compare (step 3) the automatically generated binary
relevance judgments to the output of these ranking functions from step 1
above.

3. A number of performance metrics are selected and used to compare the
results. Section 5.2 below outlines the metrics chosen and their usage in
evaluating relevancy judgments.

5.2 Procedure

The procedure for evaluating the performance of a set of relevancy judgments,
involves using appropriate performance metrics to measure their effectiveness.

This dissertation uses common, popular amongst the TREC community,
performance metrics. These are outlined as follows:

1. Mean Average Precision

MAP (Q) =
1
|Q|

|Q|∑
j=1

1
Mj

Mj∑
k=1

Precision(Rjk) (5.1)

Where the set of relevant documents for an information need qj ∈ Q is
{d1, . . . dmj}, Mj is the mean for query j, |Q| is the total number of queries
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and Rjk is the set of ranked retrieval results from the top result until you get
to document dk.

2. MeanReciprocal Rank

MRR (Q) =
1
|Q|

|Q|∑
j=1

1
ranki

(5.2)

Where rank(j) is the position of the relevant result in the j’th query and
|Q| is the total number of queries.

3. NormalisedDiscounted Cumulative Gain

NDCG (Q, k) =
1
|Q|

|Q|∑
j=1

Zkj

k∑
m=1

2R(j,m) − 1
log2(1+ m)′

(5.3)

Where Zkj is a normalisation factor calculated to make it so that a perfect
ranking’s NDCG at k for query j is 1, and R(j,m) is the relevant document
at (m, j). For queries for which k′ < k documents are retrieved, the last
summation is done up to k′.

4. Precision@ 10

precision =
|{relevant documents} ∩ {retrieved documents}|

|{retrieved documents}|
(5.4)

Precision is the fraction of the documents retrieved that are relevant to the
user’s information need. Precision @ k defines a cut-off whereby the top k
results, where k is 10 in this case, are used instead of all results.

5. Success@ 10
Success @ 10 is a simple metric, defined as the proportion of queries
where the correct answer appears in the top k, where k is 10 in this case,
[Craswell and Hawking, 2005].
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Success@ 10 Precision@ 10 MRR MAP NDCG
BM25 0.7183 0.1018 0.5512 0.4384 0.5063
Smoothing (0.9) 0.7218 0.1014 0.5645 0.445 0.5137
Vector SpaceModel (baseline) 0.7465 0.1056 0.5809 0.459 0.5285
Smoothing (0.5) 0.7394 0.1042 0.5867 0.4586 0.5284
Smoothing (0.1) 0.7535 0.107 0.5914 0.4626 0.5323

Table 5.3.1: 1641 Collection Results

Success@ 10 Precision@ 10 MRR MAP NDCG
Smoothing (0.9) 0.2948 0.0675 0.1505 0.0477 0.0995
Vector SpaceModel (baseline) 0.2976 0.0686 0.1508 0.0483 0.1
Smoothing (0.5) 0.2955 0.068 0.1516 0.0485 0.1003
Smoothing (0.1) 0.2989 0.0687 0.1516 0.0486 0.1006
BM25 0.2991 0.0696 0.1528 0.0486 0.1007

Table 5.3.2: 1916 Collection Results

5.3 Results &Observations

Tables 5.3.1 and 5.3.2 report the results of the evaluation conducted with
trec-eval on both the 1916 and 1641 collections.

1641 Collection
The 1641 collection did not perform as expected, with BM25 performing worst,
followed by the vector space model and a low valued smoothing performing best,
across the metrics.

Looking at the MRR metric, it is noted that the differences between BM25 to
Smoothing (0.1) are modest, but these differences are significant (one-tailed)
using the Paired Samples T-test. This is true for BM25 against both the Vector
Space Model and Smoothing (0.1) on a 99% confidence level for the MRR score.
This signifies that there is an underlying reason why the algorithms performed
different on the collection, and that the results are not noise or randomly
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achieved.
The content of the 1641 collection is transcribed from witness statements, and

this translation could be a contributing factor for the performance of the ranking
functions on this collection. Transcribing documents is a process whereby a
human / machine will attempt to read the text of a hand written document and
digitise it. It has been the subject of much research, [Siegler and Withrock, 1999],
with the main issue of transcribed documents being that there exists a rate of
error on the spelling of words from text to machine. This error can in fact result in
the words being searched for by a user to be incorrectly labelled as (non) existent
for a document. In the case of 1641, the spelling errors are not just transcription
errors, but also artefacts of the form of English used at the time of writing. Some
of these errors are intentional, and so this poses a problem for relevancy using
ranking functions. The issued queries by users will be in modern English andmay
receive no resulting documents due to this language difference. Although there
are techniques to reduce this, such as stemming and lemmatization
[Manning et al., 2008], the problem is quite severe in the 1641 collection.

The results achieved for the 1641 collection are similar to those by Kamps
[Arampatzis et al., 2007]. The values are slightly lower than those of Kamps for
the Union Set, however the ranking in this experiment was not as expected.

1916 Collection
The 1916 collection performed as expected with the vector space model
performing worse than BM25, and smoothing performing slightly better than the
Vector Space Model, however Smoothing did not surpass BM25. As can be seen
from table 5.3.2 above, the differences were very small between the values for
each metric. Across all metrics BM25 performed best.

Looking at the MRR metric, it is noted that the differences between
Smoothing (0.9) to BM25 are very small, and that these differences are not
significant. This signifies that the resulting rankings were relatively random, and
that there does not appear to be an underlying difference in their performance.
This suggests that the 1916 collection is not an ideal candidate for the approach
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taken in this experiment.
The 1916 collection contains a large number of queries for a small amount of

documents. This could be a factor in the resulting low precision values as shown
in the table above. It has been observed that precision increases with collection
size. One explanation could be that the redundancy of information increases,
making it easier to find multiple documents conveying the same information,
[Koolen and Kamps, 2010].

5.4 Summary

In summary, the results for 1916 are mostly in line with expectations set
beforehand, namely that Vector Space Model would be the worst-performing
system, with both Smoothing and BM25 improving over the Vector Space
Model, however there does not exist a significant difference between the ranking
function, showing that the users expectation is different to the reality of the
collections content.

The 1641 collection results were not as expected, with BM25 performing the
worst, and Smoothing performing the best. The differences are modest but
significant, which is very interesting. This could potentially be due to the nature
of the collection contents, the document length of the 1641 collection is quite
large and this generally leads to poorer performance of BM25,
[Lv and Zhai, 2011].
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6
Conclusion

The goal of this dissertation is to determine whether user clicks can be
interpreted as absolute judgments of relevance, using transaction logs to extract
these judgments, for the domain of Digital Humanities. By extension, whether or
not these clicks can be used to generate an evaluation dataset. The proposed
experiment involved the implementation of a transaction log analysis approach
for extracting relevance judgments from transaction logs. The purpose and goal
of this dissertation was set out in Chapter 1, and the conclusions on completion
are as follows:

1. Collection
In order to evaluate the feasibility of the generated test collection, it was
necessary to acquire a dataset of real-world transaction logs from an active
digital collection. As discussed in section 6.1 below, this led to the use of
transaction logs from the Cultura Project.
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These transaction logs needed to be made useful, by filtering each line and
making it available for analysis through a datastore. For this purpose, an
Elasticsearch and Logstash architecture was developed to filter and store
this data. The designed architecture performed well in practice, catering
for the large quantity of transaction logs. It also fulfilled the security
expectations of an application storing user interactions. Great care was
given to the extensibility of the architecture, which could cater for
different log formats and timezone transference. A flaw in this design
however is the setup costs associated with it. Although the architecture is
built on open-source software and is operating system independent, it
requires knowledge to setup and maintain. Another potential criticism is
that Elasticsearch by default provides no security. A large number of
Elasticsearch clusters are setup on the public facing web, with no security
at all which can lead to vulnerabilities, [Connoly, 2017]. This is an
inherent flaw in the system itself, but one which is quite important to
consider whilst transferring the approach to other collections.

2. Preparation
The most important aspect of a test collection is the relevance judgment
set. In order to generate relevance judgments (from transaction logs) for a
query, an approach of separating each user interaction with the system into
sessions was taken. Each session represents a users information need and
the documents they clicked which appear to satisfy that need. The
designed representation of a session was quite simple, and could be a
factor in the lack of statistical significance between the ranking functions
for the 1916 collection.

Themain critique around the generation of relevance judgments is that the
usage of session boundaries may not lead to a good test collection. Future
work should extend the session design beyond using timeout boundaries.
This may lead to a better performing test collection, as the resulting
judgments of relevance may be more appropriate than using a simple one
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hour boundary.

3. Analysis
To ascertain the viability of the approach of using transaction logs to
generate a test collection, the performance of a number of ranking
functions is evaluated, with respect to one another. This evaluation is not
an evaluation of the ranking functions themselves, rather a comparison of
their performance on the test collection.

The evaluation was performed on multiple collections, to ascertain the
transferability to some extent of the approach. The performance metrics as
described in Chapter 5, were used to compare the two collections. A
round of statistical significance testing was carried out which shows
whether the difference in performance of each ranking function is
significant. The results of the 1641 collection are statistically significant,
however the ranking functions did not perform in the order as expected.
This could be due to the nature of the 1641 collection itself, and is the
focus for future work. This discrepancy in the expected results is very
interesting and illustrates the challenges of building such a dedicated
collection which performs well on various collections. The 1916 collection
performed as expected, however the results were not statistically
significant. As mentioned in Chapter 5, this could be due to the nature of
the collection, being such a small amount of documents for a large number
of queries. Future work aims to use techniques such as random sampling
as outlined by Zhang, [Zhang and Kamps, 2010].

6.1 Challenges of Digital Collections

This dissertation set out to investigate the suitability of binary relevance’s deemed
from transaction logs using the Trinity College Dublin Digital Collection as a use
case. This digital collection provides historical documents including
manuscripts, early printed books, and a number of general collections.
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This digital collection however proved impossible to apply the techniques
outlined in this dissertation for generating a test collection. The transaction logs
and user interface naming conventions proved inconsistent, with document
identification unreliable via transaction logs. This illustrates the difficulties
involved in the area of information retrieval within digital humanities, showing
that archives and collections vary greatly depending on the implementation and
infrastructure under-pining their usage.

6.2 Final Thoughts

Overall, this dissertation has looked at three sets of transaction logs, and found
the results to be unsatisfactory in each case. For the initial Trinity College Dublin
Digital Collection, the log files were too noisy and unsuitable, the 1641
depositions did not perform not as expected and finally the 1916 collection
resulted in a statistically insignificant ranking.

The techniques used for generating a test collection from transaction logs have
been described and evaluated throughout the experiment, alongside a set of
alternative approaches used in state-of-the-art. Further work and areas of
improvement have been discussed to improve the effectiveness of the
automatically generated test collection.

The results of this experiment should not be interpreted as a claim that the
general approach of using TLA is not viable, rather that the collections used by
this experiment proved unsuitable for the approach.
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