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Summary

This dissertation explores a solution for automating piano transcription through computer

vision in OpenCV. Transcription of music is here defined as the process of analysing a video

feed so as to write down the musical parameters of the sounds that occur in it.1 The com-

position performed on a piano shall be transcribed to sheet music using computer vision.

The video will be captured by mounting a device with video capability at an angle overhead,

while a pianist performs on the piano below. Computer vision estimation based models are

then used to create an automated piano transcription software. Through computer vision,

the objective of this dissertation is to explore the process of transcription via a different

methodology, thus avoiding the difficulties associated with audio signal processing (where

most contemporary research in transcription is focusing on).

At the beginning of this project, the goal of this dissertation was to design and implement a

prototype automated piano transcription software that could correctly transcribe a piece of

music played on the piano to sheet music from only a video feed. The approach for solving

this goal was achieved through the use of computer vision algorithms on the captured video

feed of the pianist, by placing a stationary camera at an angle from the side of the piano

during their performance. This was a challenging task as at the beginning of the project

there was only one piece of published literature available on the problem, due to most pub-

ii



licly available research concentrating on audio signal processing for piano transcription. A

number of components were developed to achieve the scope of this application. These com-

ponents included location of the keyboard in a scene, identification of the individual keys and

the key values on the piano, a digital reference to the beat of the performance, identifying

the key change events in real-time, and transforming this into a digital representation that

could be rendered into music notation (commonly known as sheet music, or a score).

The lack of research meant no publicly available third party test data-set existed. Hence

the test data-set used had to be recorded and developed from scratch. The testing portion

of the application has been achieved through the creation of an interface. This enabled a

more efficient method of obtaining the ground truth from the videos, rather than visually

writing out each key change event by hand. To get an extensive evaluation of how well the

algorithms perform, this dissertation used the grading system of the Associated Board of

the Royal Schools of Music (ABRSM). The ABRSM grading system provides a structured

framework for progression from beginner to advanced pieces. Using this system, I hypothe-

sised an algorithm which performs well in grade 1 pieces, and steadily decreases as it moves

up the grades to more advanced pieces. However, no clear relationship was identified of the

complexity of the piece to the performance of the application. But, the performance of the

system worked best on an acoustic piano, and when the rhythm of the piece was fast. The av-

erage precision and recall was 78.72% and 93.57% respectively, with two outliers dramatically

affecting precision.
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Current research in the area of automated transcription technology focuses primarily on
audio signal processing. The precision of audio signal processing is significantly below that
of a human expert due to the presence of polyphonic tones (several sounds occurring simul-
taneously), and the difficulties of successfully parsing such signals given current algorithms.
The aim of this paper is to investigate the application of computer vision to piano transcrip-
tion. Transcription of music is here defined as creating a piece of music notation, in this
case by analysing a video feed, so as to extract the musical parameters of the sounds that
occur within the performance.1 The video feed to be analysed shall be captured through a
stationary mounted device that is angled at the side of the piano, while a pianist performs
on the piano below. The transcription shall be accomplished purely through computer vision
techniques, which shall examine key changes at each piano key in real-time. The results
of the computer vision application create an industry standard digital representation of an
instrument’s performance known as a MIDI (Musical Instrument Digital Interface) file. The
MIDI file can then be rendered to written music notation known as sheet music, through
freely available external software. The performance of the system worked best on an acoustic
piano, and when the rhythm of the piece was fast. The average precision and recall were



78.72% and 93.57% respectively, with two outliers dramatically affecting precision.
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CHAPTER 1

Introduction

1.1 Motivation

A trained musician or other music professional tasked with creating sheet music from a

recording transcribes the notes that make up a piece of music to music notation using either

their sense of relative or absolute pitch. With advanced musical training, an individual can

transcribe a piece of music note-for-note purely by ear; some after they have heard the music

only a few times. Mozart, who was known to be a child prodigy, demonstrated this ability

by recreating note for note Miserere after hearing it only once (this was secret sheet music

written by Allegri for Pope Urban VIII for exclusive Tenebrae service in the Sistine Chapel).

Musicians study for years to truly master this ability. What if technology could share this

ability with an amateur musician?

Current research in automating this process through audio signal processing has not yet

reached the necessary precision. The limitations of this process are due to the presence of

polyphony, noise, variations of pitch, and variations of note duration. Consequently, to record

a performance into a computer, currently the most effective technology is to use an electronic

instrument with MIDI (Musical Instrument Digital Interface) capability, or an acoustic in-

strument fitted with infra-red, or other sensors; both have their limitations and weaknesses.

Electronic instruments lack the rich timbre and depth of touch of an acoustic instrument,

and are therefore not preferred by experienced musicians (other than for convenience or for

novel effects and timbres). Infra-red sensors that monitor individual strings at a time are

1



Chapter 1. Introduction 2

expensive and cumbersome to install. However, even with the availability of both of these

technologies they still require some computer device to look after the processing. Hence,

a proposed application that uses only the capabilities of a modern portable device (laptop,

mobile, tablet) gives us an easily accessible solution.

This dissertation explores a solution for automating piano transcription through computer

vision in OpenCV. Transcription of music is here defined as the process of analysing a video

feed so as to write down the musical parameters of the sounds that occur in it.1 The compo-

sition performed on a piano shall be transcribed to sheet music using computer vision. The

video will be captured by mounting a device with video capability at an angle overhead, while

a pianist performs on the piano below. Computer vision estimation based models are used to

create an automated piano transcription software. Through computer vision, the objective

of this dissertation is to explore the process of transcription via a different methodology, thus

avoiding the difficulties associated with audio signal processing, where most current research

focuses on. The ambition is to extend this application to other instruments, giving a variety

of suitable musicians access to sheet music transcription with their portable device. To get an

extensive evaluation of how well the algorithms perform this paper will use the grading sys-

tem in the Associated Board of the Royal Schools of Music (ABRSM). The ABRSM grading

system provides a structured framework for progression from beginner to advanced pieces.

Using this system, I expect an algorithm which performs well in grade 1 pieces, and steadily

decreases as it moves up the grades to more advanced pieces.

During research, there is a need to review the ontology of the field. Through understanding

the various domains relationships to one another, I can better answer the questions I seek and

better question the answers I obtain. The multimedia ontology provides a knowledge infras-

tructure for the computer vision domain, while the musical ontology provides a knowledge

infrastructure for music theory. The domain specific parts support content layer analysis of

the video material. In the video domain, the signal layer is necessary for the representation of

data, before using the music theory domain to model the conversion algorithms to MIDI and

sheet music. These conversion algorithms will be explored in the method of this dissertation.

1.2 Goals

The goal of this dissertation was to design and implement a prototype automated piano

transcription software, to correctly transcribe a piece of music played on the piano captured

only through video. A composition performed on a piano is thus transcribed to sheet music
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using computer vision. The video is captured such as in Figure 1.1 by mounting a device with

video capability at an angle from the side of the piano; a pianist then performs on the piano

below. Computer vision based models are used to create an automated piano transcription

software. Through computer vision the objective is to locate the piano’s keyboard in the

scene, identify the keys that are pressed along with the duration they are held, and render a

piece of sheet music in PDF format. The performer will be able to use this sheet music to

recount what they have played and distribute to other performers. However, while this is the

primary goal, there are endless possibilities for music education and professional composition

for such a technology, which I will shall discuss at the end of this dissertation in my future

works.

Figure 1.1: Capturing the video through a webcam mounted on a stand using a computer
device
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1.3 Dissertation Overview

In Chapter 2, I outline the properties of the piano such as a description of a keyboard in

Section 2.1, techniques that have evolved to play the instrument in Section 2.2, and how the

action of striking keys can produce a collection of tones that make the piano such a diverse

instrument in Section 2.4. Through understanding the ontology of the piano, I have modelled

the computer vision algorithms. For the reader to understand how these ontologies were used

for modelling my algorithm, Chapter 2 gives a broad background on the piano in Section

2.1, music theory in Section 2.3 — 2.4, and a standard for representing musical instruments

digitally within a computer in Section 2.8. To understand the complexity of this research in

audio signal processing, Section 2.9.1 gives a brief overview of how processes within this do-

main are modelled and why multiple concurrent tones negatively affect the algorithms within

this field. Chapter 2 also outlines what research has been carried out in the video domain,

and the faults I have discovered and intend to improve upon within Section 2.9.2.

Given the goal outlined above, a webcam was mounted at an angle from the side of the

piano, to capture the video feed of a pianist while they performed on a piano. For the com-

puter vision to work, the application required the location of the keyboard in the scene so

that it can identify what keys in each frame the pianist has struck. Therefore, the keyboard

of the piano had to be located, this task was achieved using algorithms described in Chapter

4.1. The result is an estimation of where the keyboard lies in the scene, Figure 1.2 outlines

the results of the algorithms in Chapter 4.1; performing the estimation on a captured video

feed.

Figure 1.2: Blue box illustrating the four sides of the piano found using the ”find keyboard”
algorithm.
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Figure 1.3: The geometric transformation of the keyboard using the perspective
transformation matrix found in the ”find keyboard” algorithm

The estimation is used to transform the view of the keyboard into a perspective where

the keyboard is returned to its original rectangular shape with the keys vertically aligned;

Figure 1.3 illustrates the result of this operation known as geometric transformation outlined

in Chapter 4.1. With the keyboard in this perspective, it was analysed to retrieve information

on what sound each key on the piano in the scene represented, so that it could be ported into

a standard that a computer could understand. Section 4.2 describes in full the algorithms

that were used to perform this task. The result of these algorithms extracting the black keys

as features within the image is illustrated as purple blobs within Figure 1.4. The white keys

inferred from these features are illustrated in Figure 6.8 as green lines.

Figure 1.4: Purple ’blobs’ illustrate the result of finding the black keys using the feature
detection algorithm.

Figure 1.5: Result of inferring the line (in green) that segregates two white notes. Only the
top of the white key is required to be explained in Section 4.2

With the keyboard and the location and values of the keys found, the next stage is prepar-

ing for identifying key changes. A potential solution could have been using pose estimation

of the hands and fingers to identify key changes. However, pose estimation is difficult unless
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multiple camera angles or an infra-red camera such as Microsoft Kinect is applied. Moreover,

I wanted a readily available application that can be used on any conventional video camera.

In response to this, I decided to ignore the hands completely and focus only on the key move-

ments on the keyboard. Consequentially, the transcription software completely ignores the

section of the keys where the pianist’s hands are present, Section 5.2 outlines the algorithms

that were used to find the hands within the scene. Figure 1.6 show the hands illustrated in

red to signify the result of the skin detection algorithm used to find the hands.

Figure 1.6: A visual representation of the hands been found labelled in red.

Figure 1.7: A visual representation of the key changes being found labelled in blue.

Given that every key’s location has been identified and the hands have been removed

from the frame, key changes can now be detected using the algorithm outlined in Section

5.3. Figure 1.7 shows an example of the key changes on a frame: the keys coloured in blue

illustrate the result of the key detection algorithm on this particular frame.

The results of the key detection algorithm are passed to an interface presented in Section 5.4

which communicates with an external MIDI library. The interface handles the creation of a

MIDI file that stores a digital representation of the pianist’s performance. This MIDI file is

then used to create sheet music in Section 5.5, at the end of the execution of the program.
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After the application is executed it is worth nothing that the MIDI file created throughout

the run-time is a playable recording of the pianist’s performance, found purely through com-

puter vision.

Evaluations and tests were performed on the results of this transcription system. The feasi-

bility and the functionality of the proposed evaluation frameworks are analysed in Chapter

6.1. The proposed evaluation framework offers two performance metrics: precision and re-

call. These metrics are applied and analysed in Chapter 6.2 where an in-depth review of the

advantages and the limitations of the proposed framework (as well as of the successes of the

project) is presented.



CHAPTER 2

Literature Review of Piano Transcription

Figure 2.1: Location of the keyboard on a piano.

8
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2.1 History of the Piano

”The story of the piano begins in Padua, Italy in 1709, in the shop of a harpsichord maker

named Bartolomeo di Francesco Cristofori (1655-1731). Many other stringed keyboard in-

struments preceded the piano and led to the development of the instrument as we know it

today.”6 It gradually surpassed the popularity of the harpsichord due to its ability to vary

dynamics, and also the clavichord, given its ability to produce more sound pressure level

(particularly as the instrument developed∗). The piano is played via a keyboard that con-

tains rows of black and white keys, with each key representing a different pitch (fundamental

frequency). The action of hitting a key invokes a hammer within the piano to then strike

the strings and produce a note (pitch) of varying volume (depending on the velocity exerted

by the pianist). The piano comes in many different shapes and sizes, however, the keyboard

and pattern that exists is consistent throughout models, with only the number of keys vary-

ing. The modern piano’s keyboard contains 88 keys of which 52 are white keys and 36 are

black keys. Figure 2.2 depicts a modern piano’s keyboard and Figure 2.1 the location of the

keyboard on the piano.

Figure 2.2: Modern piano keyboard with key values

2.2 Keyboard Technique

From Bach to Beethoven, throughout the eighteenth century while exploration were emerging

across the East and Europe, so too was the technique of the keyboard. By the end of that

century a true pianist style had emerged.7 It can be said that the foundations of modern piano

technique had been laid down by the end of the eighteenth and early nineteenth century.7

The principles techniques for playing the piano such as posture, finger-action, hand and

arm movement were used to create empirical methods for modelling the semantics of the

algorithms in this dissertation. For example, with the knowledge of the playing technique

required for the works of the great composer-pianists such as Bach, Beethoven, Chopin, etc.,

I formed empirical methods for identifying key changes in Section 5.3.

∗Note that the modern concert grand can compete with an entire orchestra in the hands of an accomplished
player, a cursory listen to a piano concerto by Rachmaninoff would suffice to illustrate.
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2.3 The Basic of Rhythm and Tempo

Throughout this dissertation there will be references to music theory and how through com-

puter vision I have produced rules based on music theory to achieve an automated transcrip-

tion software. The following analogies and figures are either my own, or are taken from The

AB Guide to Music Theory by Eric Taylor. The book is intended to help beginners learn to

read, write, and understand written music. The book is published by the Associated Board of

the Royal Schools of Music (ABRSM); an examinations board and registered charity based

in London. It is an essential book for providing an introduction to the basic elements in

harmony and musical structure for any student carrying out the ABRSM examinations and

is often used in undergraduated music courses. Therefore, it was a suitable text for pinching

analogies to explain the basic musical concepts required for a non-musically trained reader.

2.3.1 Time Values

When soldiers march along to a band, their footsteps are absolutely regular and even.7 The

goal is to the keep the soldiers marching together in the strictest possible synchronicity, and

as an analogy the footstep provides a simple explanation of time values through a single

beat. A single beat in music theory is determined by the time signature, in the case of 2/4

as a crotchet, that is two crotchets (or quarter notes) to a bar. The time signature of LEFT

RIGHT, would thus be 2/4, that is two distinct beats before the pattern repeats. The simple

beat produced for a company of soldiers, LEFT RIGHT LEFT RIGHT, where a beat is struck

on every footstep can be denoted in musical notation as ♩. A double beat is referenced as

a minim, where the beat is struck every second footstep, and would be denoted in musical

notation as 
. Finally, a half beat is referenced as a quaver where two strikes of the drum

equates to a footstep �.

2.3.2 Time Signatures

The analogy used above of the solider marching feet is an example of a succession of equal

beats.7 Although they all carry the same beat. Marching feet, for example naturally make

groups of two beats - LEFT right LEFT right. Which in musical notation would separate

the groups of two beats by vertical lines known as bar lines.



Chapter 2. Literature Review of Piano Transcription 11

Figure 2.3: Musical notation of the marching feet in sheet music with explanation of time
signatures

Each group is called a bar, at the beginning of a piece of music there is a symbol known

as a time signature. In the example above the time signature would be 2
4 , which means that

between each bar there must be a quantity of notes (or rests) that equal two crotchets, and

that the strong beat is the first crotchet of the bar. Fig. 2.8 represents 2 bars with a time

signature of 2
4 where each bar line separates a total note value of two crotchets.

2.3.3 Tempo

Time signatures indicate how many beats are in a bar, while tempo denotes the speed at

which the beats should be played. A funeral march, for instance, would have a slow tempo.

A device used to create or measure tempo is known as a metronome, it works by making a

steady ticking sound that can be adjusted to any speed one wishes. The metronome can be

set at any given number of beats per minute. Therefore, it is often annotated to b.p.m. For

instance, the pieces in my test plan will be played at 80 b.p.m, which indicates that the speed

of the music will equate to 80 beats per minute.

2.3.4 Rhythm

’Rhythm’ refers to the way in which sounds of varying length and accentuation are grouped

into patterns.7 The most simplistic way to understand it is to imagine your favourite song,

you could not play it by tapping on a table but you could tap out the rhythm. While you can

change the tempo by tapping out the beat faster or slower, the rhythm will stay the same.

2.4 Pitch

Striking any key on the piano produces a particular fixed fundamental frequency. The fre-

quency produced is referred to as the pitch I.e. 440Hz is referred to as A, or, specifically, A

above middle C; in scientific notation (Helmholtz pitch notation) it would be signified by a’..
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Each key on the piano produces its own pitch. Fig. 2.4 depicts the key values on the piano

and how it is represented on the stave for sheet music.

Figure 2.4: MIDI number representation of notes

Figure 2.5: Illustration of the distance of an octave on the piano.

2.5 Octave

The distance between any note and the next one of the same key value is known as an octave,

technically this would be when the fundamental frequency of the note is multiplied by two

(e.g. given A=220Hz, A one octave above would be equal to 440Hz). For example, in Fig.

2.5 the distance between the C farthest to the left to the C in the middle is one octave and
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the distance between the C farthest to left and the C farthest to right would be a distance

of two octaves.

Figure 2.6: Symbols of a staccato and fermata on sheet music.

2.6 Staccato

A staccato symbol is a small dot placed beneath (or above a note, depending on the direction

of the stem), that indicates that the note should be shortened in duration, and not connected

to the subsequent note. The degree of shorting is contextual, and is very much dependant

on the tempo of the music. Staccato would be the opposite of legato; legato indicates that a

note should be held for its full metric duration and joined to the subsequent note.

2.7 Fermata

A fermata symbol indicates that one should pause upon a particular note (or series of simul-

taneous notes, as in a chord) for an unspecific period of time. The amount of time one adds

to the written duration is contextual, and will depend on many factors, including tempo, the

written duration, but also the position within the piece of music (i.e. a fermata at the end

of a piece would be held for longer than one that occurs during a piece, even if written over

the exact same note/chord and duration).
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2.8 Musical Instrument Digital Interface

2.8.1 General

Musical Instrument Digital Interface (MIDI) was created as a communication standard for

electronic music equipment. MIDI files are not a music file, but rather a file that describes

music by a series of events - essentially a kind of virtual sheet music. MIDI files are made

up of a header and a sequence of events that describe a song. There are many different

types of events but the most common are note-on and note-off events. Note-on events

describe when a key has been pressed, and note-off events describe when it has been released.

Using these two events one can determine what notes were played and their duration. Time

is measured using ticks. Tick values are symbolic time units, such as durations in music

notation. Each event has a tick value that indicates the number of ticks to wait from the last

event in the track before performing the current event. Tempo and ticks-per-quarter-note

information contained in the header allow the song to be played at the correct speed. Notes

are represented as numbers in the range 0 to 127 (as shown in Figure 2.7).

Figure 2.7: MIDI number representation of notes

2.8.2 Generating Music Notation

A MIDI file can be converted to music notation using postscript based software. However,

integrating MIDI and musical notation is not as simple as it sounds. ”The core of the problem

is that the correlation between music notation and how a piece sounds is very loose and open

to interpretation”,8 while the data sequence in a MIDI file is concrete and how it sounds is
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not open to interpretation. There are many problems that arise when a computer tries to

re-enact the different aspects of a performance. Take following two examples from a book

”MIDI for the Professional” by Paul D. Lehrman.

(a)”A computer cannot readily differentiate between a staccato quarter note and an ordi-

nary eight note.”8

(b)”Or consider the case of a fermata over a whole note. A human musician might in-

terpret this by holding the whole note for one extra beat”. If such a performance were played

into a computer, it would simply be interpreted as a five-beat note. Thus, every subsequent

measure would be off by one beat”. Therefore, converting a MIDI file to sheet music involves

second guessing what the performer intended.8

Furthermore, for a MIDI file to work it requires reference to the tempo the performer is

playing. Most applications use a metronome (or click track) so that they can accurately

transcribe the performance to sheet music. However, to play metronomically is mechanical

and thereby impossible for a human without the aid of a metronome or click track. Only

a concert pianist could even get close to playing at a mechanically perfect tempo, and even

then there would always be a minute variation that would accumulate from bar to bar. These

discrepancies cause a great challenge for manufacturers to automate sheet music transcrip-

tion. Current applications such as Finale, Sibelius and Logic X, some of the biggest players

in industry as of 2017, both leave it to the user to correct these discrepancies through visually

adjusting the MIDI file for the desired sheet music representation. Logic X, however, has an

interesting feature known as Beat Mapping, this allows the user to manually add bar lines

and beat markers to a MIDI recording that was done without a click track. Logic then creates

a tempo map to preserve the flow of the performance. Using this feature one can overcome

the problem mentioned above, however, it is very laborious as one must at the very least add

most bar lines by hand.

The limits of interpreting a performance perfectly into music notation and domain specific

problems have governed how I designed my project while also impairing features and changing

my aspiration for testing from a metric of similarity of music to computer vision performance

metrics.
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Figure 2.8: Modern piano keyboard with associated MIDI values

2.9 Current Approaches

2.9.1 Audio Signal Processing

Audio to score transcription involves utilising audio signal processing to convert an audio

recording of a performance on the piano to sheet music. In monophonic signals, where at

most one note is sounding at a time, audio signal processing for estimating the pitches and

durations occurred by an acoustic piano can be considered solved. ”Automatic transcription

of polyphonic music has been the subject of increasing research interest during the last 10

years”.1 In polyphonic signals, several sounds occur simultaneously within the signal, this

results in a signal that needs to be separated before the estimation can even begin. Sound

separation is extremely complex, especially with signals containing different pitches at similar

levels, it is difficult for an algorithm to determine the exact point at which one pitch begins

and another pitch ends. However, it can be accomplished to a degree through widely used

techniques in audio processing known as multiple F0 estimations and periodicity transforms.9
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In audio processing, the fundamental frequency is known as the lowest wavelength and the

lowest frequency in a periodic waveform.10 Therefore, the fundamental frequency is usually

abbreviated as F0 counting from 0. F0 is the first harmonic of the waveform and is defined as

the inverse of the period. In music, the fundamental frequency is defined as the pitch which

in our case refers to the sound created by a note from the piano. Hence F0 estimation is the

process of identifying the pitch from an audio waveform. As the piano is a polyphonic instru-

ment, it deals with multiple F0 estimations, the process of concurrently identifying multiple

pitches from the waveform. Multiple F0 estimation identifies the pitch produced, however,

another process must also decompose the rhythm from the waveform in a process known as

rhythm parsing. Multiple F0 analysis and rhythm parsing will typically occur separately;

based on what we know about the modularity of music processing in the human brain, this

is justified not only in technical artefacts.1

1) Multiple F0 analysis: Most multiple F0 analysis algorithms operate with only mu-

sical (harmonic complex) tones. Tones produced by a musical instrument consist of the

fundamental and a series of overtones; overtones are frequencies which are higher and often,

but not always, directly related to the fundamental frequency. A sound is harmonic when

the overtones are periodic, i.e., (F 2F 3F ). For example, when we hear the note A4, it is

composed of harmonics with frequencies 440, 880, 1320, etc., continuing up through the har-

monic series. Therefore, if the waveform displays harmonicity, i.e. has harmonic overtones, it

can be said to be periodically oscillating. The human ear uses these harmonics overtones to

differentiate these sounds. The piano is an example of a periodically oscillating instrument.

Therefore, we can use multiple F0 estimation algorithms to decompose the waveform to its

relevant pitches. In 2004, Klapuri describes in ”Automatic Music Transcription as We Know

it Today” the following techniques for decomposing monotonic F0 such as spectral location,

spectral interval and periodicity of the time-domain amplitude envelope. However, the ”aim

of multiple-F0 estimation is to find the F0s of all the component sounds in a mixture of

signals”1 which Klapuri notes increases the complexity significantly and is closely related to

sound separation. Therefore, the problem with music transcription using an audio signal is

it is inherently difficult. Even with this difficulty, multiple F0 estimation only finds the note

value but does not find the duration it is played for. Therefore, the process becomes even

more complicated by the need to incorporate another technique known Rhythm parsing with

Multiple F0 estimation to find the notes duration.

2) Rhythm Parsing: There are many meter estimation systems available for audio input.

The most widely used is periodicity transforms by William A. Sethares and Tom Staley.9
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Periodicity transforms decompose a data sequence into a sum of simple periodic sequences

by projecting onto a set of periodic sub-spaces, leaving residuals whose periodicities have

been removed.2 The decomposition is done directly in periodic sequences and not frequency

or scale; therefore the representation is linear in period. Fig. 2.9 shows two periodic se-

quences added together, one with a period of 13 and the other with a period of 19; there is

approximately 25 percent of noise added.

Figure 2.9: Signal created with a period of 13 and 19, with 25% noise.2

Figure 2.10: Output of M-Best algorithm using M=10.2

Applying the periodicity transform called the ’M-Best algorithm’ one can search for M

largest periodicities. In this example M=10, therefore, the 10 largest periodicities will be

found as in the Fig. 2.10. As you can see the two periods, 13 and 19, are clearly visible with

the other small periods reflecting minor accidental patterns that occur from noise.

The mechanism by which these two process work together can be imagined in a time-frequency

plane where time flows from left to right on a vertical axis with different F0 arranged in an

ascending order. On top of this plane, a multiple-F0 estimator produces horizontal lines

which indicate the probabilities of different notes to be active as a function of time. Rhythm

parsing, in turn, produces a framework of vertical ’grid lines’ which can be used to segment

the note activation curves into discrete note events and to quantize their timing.1

In using this technique, there is still a need to explore the convergence properties of the

algorithms, its robustness to noises, and to the interactions between periodicities; frequencies

and sampling rates further expanding the complexity of the problem. Due to the presence of

polyphony in music, with each concurrent note having harmonic complex tones, the precision
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of recognition has not reached the accuracy required for real-world applications. However,

due to shared problems in speech and audio signal processing, as technology advances and

increasingly sophisticated tools are developed and researched by global multinationals for

speech recognition software like Siri and Google Voice, the future possibilities for audio tran-

scription software are not unforeseeable. ”An important fact about music transcription using

audio signal processing is that it is difficult. The problem is at best comparable to automatic

speech recognition which has been studied for 50 years and is only now becoming practically

applicable”.1 However, with current methods, my proposed solution through computer vision

provides an opportunity for a more feasible solution to automating piano transcription using

a readily available video recording device.

2.9.2 Computer Vision

In the field of computer vision, research into automated music transcription is in its pre-

liminary stage. There is currently one paper available ”claVision: Visual Automatic Piano

Music Transcription” by Akbari and Cheng which claims a very high accuracy (over 95%)

using conventional computer vision principles. The algorithms explored do not cover the

requirements of having a reference to the beat that the performer is intending to play. There-

fore, it seems that a reference to the beat of the music may be hard-coded in the solution as a

default value. The aim of my solution is to incorporate the requirement of the transcription

software to have this reference to the beat of the music and have it adjustable by the user,

this is presented in Section 4.3.

In addition, I would like to explore a more extensive evaluation of my algorithms. The

test plan within11 only considers varying tempos on a simplistic piece: the nursery rhyme

”Twinkle Twinkle Little Star”. Upon evaluation of the piece used I observed the presence of

no black keys in the piece. While the paper does discuss methods used to identify black key

changes; the evaluation gives no indication into whether it, in fact, does take into account

black key changes. Evaluation problems as such constantly arise in the field of computer

vision due to the lack of external ground truth. Too often, the researchers are both the

creator and the user of the new technology and do not use any external data, or known

theories to show their technology conforms to some underlying model or requirement.12 In

recognising these errors, my evaluation will use a known theory of evaluation in piano studies

for assessing the difficulty of a piece. I will use the grading system in the Associated Board

of the Royal Schools of Music (ABRSM). Using this grading system, I can have a performer
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play a piece randomly from each grade and then evaluate the precision of the solution using

performance metrics. Given that the difficulty of the grades increase reasonably linearly: the

complexity of the piece, its covering/range of the keyboard, the variety of finger work and

hand movements etc., should provide a concrete linear progression for revealing the latent

use of my solution across different standards of musicians.



CHAPTER 3

Overview of the Approach

3.1 Approach

To rid my research of ambiguity, opinion, and undelineated work, I have chosen to construct

my scientific method on the four precepts of French philosopher Rene Descartes. In his work

”Discourse on the Method”, Descartes said ”fewer rules are more strictly observed”13 there-

fore I have chosen to adhere to his four precepts:

1. ”Avoid haste and prejudice.”

2. ”Divide up each of the difficulties.”

3. ”Commence with objects that are the most simple.”

4. ”In all cases make enumerations so complete and reviews so general that I should be

certain of having omitted nothing.”

Following these precepts, initially, I doubted how plausible this research could be. To ac-

cept nothing as true, I ensured every output of the project was possible. Due to the presence

of only one research paper available on the video processing of piano transcription: this was

the most ambiguous output of the project. Therefore, it was necessary to investigate the

21
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amount of information that could be found on a conventional camera with no depth percep-

tion. To get a quantitative result of the amount of observable note changes, an experiment

using a video of a musician was analysed. The experiment sequentially compared each frame

to its predecessor analysing the pixel changes that occurred during key presses and releases.

The results were assuring enough to advocate further research using the proposed technique

of computer vision. The video for these experiments was captured as shown in Fig. 3.1. The

same procedure was be used in the final application.

Figure 3.1: Capturing the video through a webcam mounted on a stand using a computer
device
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3.2 Method Overview

During research I used advice from Descartes’ second precept to divide up each task. I di-

vided the work into tasks and subdivided the states in each task to ensure that the product

is a defensible dissertation within the time limit. I divided my method into the following two

tasks and states:

A. Location of the Keyboard and Keys:

(1) Find the keyboard in the scene.

(2) Classify the keys on the keyboard to their relevant key value.

(3) Identify a reference to the beat of performance.

B. Converting the Video Feed to Sheet Music:

(1) Identify and remove the hands from the scene.

(2) Find the key changes as they occur in the video feed.

(3) Convert the key changes to a MIDI file.

(4) Convert the MIDI file to sheet music.

Before the transcription can begin, the system requires three attributes to be defined

in what has been named the initial setup. Upon execution of the application, the video

that is fed to the system will contain a pianist and a single piano within a relatively static

background. There are no limitations within the algorithm that specify any non-permitted

objects in the scene, unless they resemble a piano or they are blocking the camera’s view

of the piano in question. Once the initial setup has completed, the pianist will be notified

by the application that they may begin performing (approximately 5 seconds). The first

step of this setup is the location of the piano’s keyboard within the scene. A keyboard is a

rectangular shape when it is viewed face-on from above. But the required position and angle

of the camera for my application results in a perspective where the keyboard looks like an

irregular quadrilateral that is not rectangular. The aim of my first initial setup algorithm is

to find the perspective matrix that transforms this non-rectangular object back to its original

rectangular shape. Transforming it to its original shape allows simpler classification of key

values and key changes, however, placing the camera in a face-on position from the beginning

would negatively affect the precision of key changes for this system—this shall be discussed

later.
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This perspective matrix only needs to be found once, due to the specifications of my ap-

plication the camera should not be moved after the initial setup has completed (hence every

consecutive frame can make use of the same matrix). After the first perspective transforma-

tion has occurred, the resulting image will be used for finding the individual key locations

and key values, i.e., where they are in the scene and what MIDI number they represent.

Likewise, the algorithm used to find the key’s location and value shall not change within

the run-time of the application and therefore only needs to be found once. The last and

final attribute required in the initial setup is a reference to the beat of the music that the

pianist intends for their performance. As mentioned in 2.3.4, the rhythm of a piece of music

is invariant to the tempo chosen for the performance. In theory, if two pianists play the exact

same piece of music, the resulting sheet music should be equivalent, regardless of whether one

pianist’s performance was at a faster or slower tempo. This can be perceived by imagining

your favourite song, think of the rhythm of that song and imagine yourself tapping it out on

a table. Now, if you increase the tempo at which you tap out that song on the table, the

rhythm of the song does not change, only the tempo at which you tapped it.

For my application to be able to interpret and transcribe the performance of a pianist cor-

rectly, it requires a reference to the tempo at which the pianist intends to play. A possible

solution which most MIDI applications utilise is having a metronome (or click track) which a

performer can configure and play along to during the performance. In these applications, the

performer can hear when the beat is supposed to occur, and the application which is creating

the sound of the beat can document when it occurs. However, the sound of the metronome

can be off-putting for a musician during a performance. Therefore, my application allows the

pianist to ’count themselves in’ which alleviates the distraction of a ticking sound. ’Counting

yourself in’ indicates that the musician has to strike the middle C key at the same intervals

as they would set a metronome. The application can then interpret the beat of the music to

be used throughout the performance, by counting the interval of these strikes as a duration

of frames. Hence, in the initialisation setup, after locating the keyboard and its keys, the

application will instruct the pianist to count themselves in. The result of this calculation is

what will be used in the transcription to represent the duration of a single beat. If we recall

from Chapter 4.3 a single beat is represented as a ♩, by having a reference to the number of

frames that equal this note, all other note values can easily be inferred from this; e.g., twice

the frame count would result in a transcription duration of 
, half the frame count would

result in a transcription duration of �, etc., etc.

Figure 3.2 outlines a visual representation of this initial setup for my application.
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Figure 3.2: Architecture for the initial setup required before my application can begin
converting video feed to sheet music

Upon completion of the initial setup, the transcription begins. Three attributes have

been defined at this point: the perspective matrix, the location and value of the keys, and

the reference beat of the performance. All of these attributes are vital for the transcription

algorithms to work. Every frame that is fed into the application at this point is geometrically

transformed using the perspective matrix. The resulting image of this geometric transforma-

tion is used in every component until a key change is found: the background model, removal

of the hands, and identifying key changes.

The process by which I identify key changes is through the use of background subtraction.

Background subtraction is the process of subtracting a foreground image from a background

image, to create a foreground mask of a moving object in the scene. The moving object in my

application is the key changes that are to be found. A model is required for this background

image so that it can adjust to rapid changes of lightening, and the introduction of shad-

ows of hands into the scene by the pianist. The model is created and periodically updated

from the resulting image of the geometric transformation of the keyboard from the video feed.

The hands pose a problem for my background subtraction as they will be included in the

mask. However, the only moving objects that should be present in the foreground mask are

the keys that are being pressed and released. Therefore, the hands are ignored and conse-

quently removed from the difference image, this is achieved by identifying skin pixels that

are within either the background or foreground image, and removing the location of those

pixels from the foreground mask.
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Finally, with key change events being the only moving objects in the mask, the difference

image is analysed and the criteria by which a key can be classified as pressed or released is

applied. With the results of the key change events, which includes the MIDI number and the

pressed and released frame number, the reference beat is used to convert the events stored

in memory to a MIDI file.

The final step of this algorithm is through the use of an open source library known as

Musescore. Through Musescore, a PDF version of the sheet music can be rendered via a

scripting tool that passes the MIDI file created by my application as input to Musescore,

where it is processed and outputs the final product of my application. With all components

of the transcription software completed, the pianist can now view the sheet music of their

performance in PDF format and distribute it as they please. Figure 3.3 outlines a visual

representation of the architecture for converting the video to sheet music.

Figure 3.3: Architecture for converting the piano video feed to sheet music.



CHAPTER 4

Location of the Keyboard and Keys

4.1 Finding the Keyboard

As mentioned in Chapter 3, the first step of the initial setup is to establish the location

of the piano’s keyboard within the scene. Recall that a keyboard is a rectangular shape

when it is viewed face-on from above. But, the angle and position that the camera needs to

be in for my application results in a perspective where the keyboard looks like an irregular

quadrilateral that’s not rectangular. The aim of the first initial setup algorithm is to find the

perspective matrix that transforms this non-rectangular object back to its original rectangular

shape. This perspective matrix needs to be found only once, due to the specifications of my

application; the camera should not be moved after the initial setup has completed, hence

every consecutive frame can make use of the same matrix. After the keyboard has been

found the resulting geometric transform will produce a keyboard where the keys are vertically

aligned. The geometric transformation used for this object is a perspective transformation.

A perspective transformation is a linear transformation that is required when the planar

surface is not parallel to the image, in this case, for example, an affine transformation would

not properly correct the view of the planar. To perform a perspective transformation I require

four observations. The problem is to determine eight coefficients p for the transformation

based on these four observations.3 Fig. 4.1 depicts the matrix used to perform perspective

transformations.

27
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Figure 4.1: Perspective transformation model.3

The four observations of this technique are the four corner points of the piano; top left

(A), top right (B), bottom right (C), and bottom left (D) as illustrated in Fig. 4.2. As can

be seen in Fig. 4.2, for my application, the piano ends at the last black note, while this is a

design choice to find the pose of the keyboard using the orientation of the black keys, it is

not a significant limitation. Very few composers use the far reaches of the piano, and even

fewer the last three white keys that are lost. Even when these notes are used they are nearly

always a result of doubling at the octave∗ in which case we would have the upper or lower

note within our recognition zone. For instance, at the time of Beethoven, the piano only

contained 6 octaves, recall from Chapter 2.5 the synopsis of an octave, while a modern piano

like this contain 8 octaves. Therefore, there are an extra 12 keys on each side of this piano

that would never be used while playing any of Beethoven’s works.

Figure 4.2: The corners top left (A), top right (B), bottom right (C), and bottom left (D)
to be found by the algorithm as the four observations.

The outline of the algorithm to find the corners is discussed below, each step in the outline

will be explained in detail thereafter.

∗Doubling at the octave occurs frequently in piano music, this is when a pianist plays the same note an
octave apart often with the same hand; often a melody or bass-line is ”doubled” as such to add texture and
emphasis.
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Algorithm to find the corners of the piano:

A. Find lines in the scene using the Hough Line Transform.

B. Separate the lines into two categories based on their slope.

C. Order the lines using the vector cross product.

D. Match parallel lines into bins.

E. Find a quadrilateral object that satisfies the predefined property using the lines.

F. Verify the object by searching for black keys within it.

G. Analysis if an improved representation of the piano can be found.

H. Find the pose of the keyboard using the orientation of the black keys

I. Confirm that the corners are suitable using a verification function and finally create

and return the perspective transformation matrix.

4.1.1 Algorithm for Finding the Keyboard

A) Find lines in the scene using the Hough Line Transform.

A piano’s keyboard is a recognisable object, it has black keys on the upper 2
3rd’s and white

keys on the lower 1
3rd. This criterion means the upper 2

3rds contain a mixture of black and

white keys, and the lower 1
3rd contains only white keys, therefore, the upper average pixels

value will be darker than the lower. Using this property, a quadrilateral object located in

the scene with the upper 2
3rd’s pixels darker than the lower 1

3rd, can be be concluded to be a

piano’s keyboard. To find a quadrilateral object the top and bottom lines of the piano which

are parallel are found to form this shape by joining the edge of the lines through geometry.

An algorithm for finding straight lines in an image is used to find these lines.

The Hough line transform is used to detect straight lines. The transform works on an

image that has been pre-processed using an edge detection algorithm such as Canny edge

detector to create a binary edge image; Fig 4.3 depicts this binary edge image where the

threshold was found using Otsu’s thresholding†. The Hough line transform works by finding

an edge point in this binary image, and increments the cells in the Hough space such that it

corresponds to every possible line through that edge point. Interpretation of the accumulator

†Otsu’s thresholding is an algorithm that calculates every possible threshold value in order to find a value
where the spread of the pixel values on each side of the threshold is minimised.
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in the Hough space yields lines of infinite length. The interpretation is done by thresholding

and conversion of infinite lines to finite lines. Figure 4.4 shows the result of the Hough on

this binary edge image in Figure 4.3.

Figure 4.3: Result of binary edge image from Canny Edge Detector using threshold from
Otsu’s thresholding algorithm.

Figure 4.4: Line responses from the Hough line tranform. Each line has been labelled in a
different colour for visualisation purposes.

The problem with the Hough transform is that it is a computationally expensive operation.

Therefore, I often try to apply methods to reduce the computational cost. The following

restrictions are applied by my specification to reduce the cost, and also create a restriction

on the responses given by the Hough space:

• Image sampling is changed for the input image to this algorithm to reduce the number
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of pixels. This is due to the resolution from the Logictech HD webcam being far higher

than is required for this operation, therefore, having a full resolution would significantly

slow down the process. The resolution is reduced by a factor of 3 from 960 × 1280 to

320× 426.

• The minimum number of points that can form a line is set to 50 points. This will avoid

small objects from being interpreted as lines, such as the black keys seen in Fig. 4.3.

• To reduce the amount responses of the Hough Space, only lines with the greatest peak

are further processed.

Figure 4.5: Peak line responses from the Hough line transform. Each line has been labelled
in a different colour for visualisation purposes.

Fig.4.5 depicts the set of lines with greatest peak ‡from the Hough. As seen from Fig. 4.4

the amount of responses have significantly been reduced, while not removing the line at the

top of the piano. However, the weak responses at the end of the white keys have been lost,

but, as the bottom of the piano will always be parallel with the bottom of the white keys,

this will not effect my application based on its requirements.

B) Separate the lines into two categories based on their slope. The two categories

are a slope of greater than 90 degrees and a slope of less than 90 degrees. Depending on the

camera view, the keyboard will be in one of the categories, but not both. By separating

the lines into two categories, the category with the most lines can be processed first and the

second category can be ignored if the piano is found, thereby reducing the complexity.

‡local maxima in the accumulator space of the Hough Line Transform
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C) Order the lines using the vector cross product. To interpret if a line is po-

tentially the top or bottom of the piano, some ordering is required for the lines. Lines are

ordered by sorting them based on if they are above or below one another. This ordering is

achieved using the vector cross product. First, lines are converted to their vector representa-

tions, and then using the property of the vector cross product as shown in Figure 4.6 it can

be determined if a is above b or vice verse.

Figure 4.6: Vector cross product for a line ’a’ and ’b’.

D) Match parallel lines into bins. After the lines have been sorted they are matched

into bins based on their slope, allowing for a small deviation of the slope; this deviation is due

to lines rarely being perfectly parallel. To eliminate lines that have more than one response,

the lines in each bin are iterated through and it is calculated if their perpendicular distance

from each other is at least the minimum perpendicular distance. This removes peak lines

that have multiple responses.

If two lines do not meet the minimum perpendicular distance, the shorter line is removed.

Figure 4.7 depicts the result of this process: in this example three lines have been matched

based on their slope where the perpendicular distance is greater than the minimum require-

ment. Comparing Figure 4.7 to Figure 4.5, the minimum perpendicular distance has removed

the small pink line as it was a repeat response of the blue line at the bottom of the piano’s

keyboard.
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Figure 4.7: Pair of lines matched based on their slope, with minimum distance enforced to
remove repeated responses. Lines labelled in the same colour for visualisation purposes.

E) Find a quadrilateral object that satisfies the predefined property using the

lines.

Next, the bins of matching slopes are iterated through, ignoring bins with less than two

lines present. Pairs of lines that are above and below one another are geometrically trans-

formed. Geometrically transforming simplifies the implementation by not having to deal with

a rotated quadrilateral when calculating pixels values. Following the geometric transforma-

tion the average pixel value is computed in the upper 2
3rds and the lower 1

3rd of image. If the

average of the upper 2
3rd is darker than the average of the lower 1

3rd the image is processed

further. This criterion is used due to the structure of a piano, the upper 2
3rds contains a

mixture of black and white keys, and the lower 1
3rd contains only white keys; therefore, the

upper average pixels value will be darker than the lower.

F) Verify the object by searching for black keys within it. To eliminate false pos-

itives, black keys are tested for within the geometrically transformed image. This ensures

the wrong quadrilateral object has not been found in the scene who has the same property

as the piano, i.e., the upper 2
3rd is darker than the lower 1

3rd. Since the keyboard contains

black keys within a white background (white keys), there is a high contrast between them.

Therefore, the separation between each black key is well defined due to this high contrast.

For white keys, this is not the case, as there is only a small region of separation which may

not be evident under bright lighting conditions. Therefore, finding the black key through

applying region labelling to the inverse of the binary threshold image is the easier approach.

An inverse of the binary threshold image is applied to focus on the black features rather than
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the white features. Note that if the line found at the top of the piano from the Hough Line

Transform has any errors that cause it to include some of the piano outside of the keyboard,

then the black keys can become one single connected component if the colour of the piano

beyond the keyboard is dark. If this is the case, then these failures need to be removed by

excluding a portion of rows from the top of the image to adjust the line properly to the top

of the keyboard. Then the following algorithm is reapplied for finding black keys.

First the inverse threshold of the image is found using an Otsu’s thresholding algorithm.

The inverse binary threshold image focuses on the black keys for feature detection. By per-

forming feature detection for blobs with a similar area, individual black keys are identified.

If the number of black keys (blobs) found is greater than or equal to half the number of black

keys on a standard piano: the lines of the top and bottom of the piano keyboard have been

found, and the next stage of the algorithm begins. An in-depth discussion of the algorithm

for finding the black keys is outlined in Chapter 4.2, when this same algorithm is applied in

part for retrieving the location and values of the keys (within the geometrically transformed

image that can be found upon completion of this component).

G) Analysis: if an improved representation of the piano can be found. Depending

on the performance of the Hough Line Transform, a portion of the keyboard in view may

still not be found. To find the missing keyboard, I extend both sides of the piano separately.

Each side is incrementally extended, and the new portion of the keyboard must match the

criterion that the average of the upper 2
3rd is darker than the average of the lower 1

3rd. This

process is repeated until the test fails, at which point the new portion is thrown away, as the

end of the keyboard has been found on that side in the previous increment.

H) Find the pose of the keyboard using the orientation of the black keys. The

piano’s keyboard will be distorted at this point if the video feed is not taken face-on. To

remove this distortion, the angle of a number of black keys are found. By finding the slope

of a number of black keys on either side of the piano’s keyboard, the orientation of the black

keys can be found, allowing us to retrieve the pose of the keyboard in the image, which

ensures the perspective transformation matrix vertically aligns the keys.

I) Confirm that the corners are suitable using a verification function and fi-

nally create and return the perspective transformation matrix. At this point the

four corners of the keyboard have been found. Using these four observations the perspective

transformation matrix is created, and it is performed on the video feed image. The final step
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is a verification function that tests the perspective transformation: a), the pose estimation

is correct (i.e, the black keys orientation is 90 degrees), and b), the number of black keys

is greater than the last pass of this whole algorithm. These two properties ensure that the

keyboard representation has the correct pose, and that the current representation of the key-

board has got a better result than is previously known for the keyboard in the scene. Both of

these properties must be true or else the perspective transformation matrix is thrown away

for this frame, and the perspective transformation matrix in the previous frame will be used

instead.

As mentioned in (I) this algorithm is given a couple of passes with different video frames

before the perspective matrix is finalised. The reason for this is to ensure that the best pos-

sible representation of the piano’s keyboard is found. As mentioned the criteria for choosing

the best matrices is through choosing the result that spans the largest portion of the keyboard.

Using the four observations (corners) (ix, jx) where x=1..4, the coefficients can be deter-

mined p by multiplying both sides by the inverse of the square matrix as depicted in Fig.

4.8.3

Figure 4.8: Using the four observations p, to determine coefficients p, to then create the
perspective transformation matrix.3

Now that the perspective transformation matrix has been solved it can be used throughout

the rest of the run-time of the application. The next step of the initial setup is finding the

keys location and associating the MIDI number values to each of key’s locations.
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4.2 Finding the Keys

After the perspective transformation matrix has been found from Chapter 4.1, the resulting

image of the geometric transformation using this matrix will be analysed for individual key

locations and key values, i.e., where the keys are in the image and what MIDI number they

represent. Likewise, with the perspective matrix due to the specification that the camera

is stationary throughout the run-time of the application; once the key’s location and value

have been found it shall not change within the run-time of the application and therefore only

needs to be found once.

Figure 4.9: Modern piano keyboard with key values.

Fig. 4.11 shows an example of the classification of the keys of an 88-key piano. The

standard piano has 88 keys with 52 white keys and 36 black keys. The black keys have a

reoccurring pattern throughout the piano; two blacks followed by three blacks. The only ex-

ception to this pattern which can be seen in Fig. 4.11 is at the beginning where there is only

one single black key. These exceptions only occur at the start of the keyboard. Therefore,

the algorithm could be adjusted to handle this. However, to make the application available

for non-standard pianos§, and some keyboards and synthesizers which typically contain less

than 88 keys, I need an algorithm that does not rely on only a standard piano’s keyboard. In

Chapter 4.1 I located the black keys in an object to confirm that the object found was intend

the keyboard. The same algorithm for finding black keys will be used on the geometrically

transformed keyboard image, found using the matrix from Chapter 4.1.

4.2.1 Locating the Black Keys.

Since the keyboard contains black keys within a white background (white keys), there is a

high contrast between them. Therefore, the separation between each black kes is well defined

due to this high contrast. For white keys, this is not the case, as there is only a small region

§Some upright pianos, particularly from the early 20th-century, have only 85 keys, in this case there would
be an exception at the top of the piano
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of separation which may not be evident under bright lighting conditions. Therefore, finding

the black keys is the easier approach through applying region labelling to the inverse of the

binary threshold image. An inverse of the binary threshold image is applied to focus on the

black features rather than the white features.

First the inverse threshold of the image is found using an Otsu thresholding algorithm. The

inverse binary threshold image focuses on the black keys for feature detection. By performing

feature detection for blobs with a similar area, individual black keys are identified. Algorithm

1 is used to return an object of the black keys. Figure 4.12 shows the result of the algorithm

1

Algorithm 1 Find the Black Keys

1: procedure Black Keys(InputImage)
2: src← Input Image Mat
3: lowThres, highThres← otzuInvThres(src) int
4: maxBlackno← 0 int
5: optimalThres← 0 int
6: blackkeys← NULL Object
7: while highThres > lowThres do
8: dst← InvThreshold(src,highThres) Mat
9: blackkeys← findContoursSimilarArea(blackkeys)

10: if sizeOf(blackkeys) > maxBlackno then
11: maxBlackno← sizeOf(blackkeys)
12: optimalThres← highThres
13: end if
14: highThres=highThres-1
15: end while
16: dst← InvThreshold(src,optimalThres)
17: blackkeys← findContoursSimilarArea(blackkeys) return blackkeys
18: end procedure

Figure 4.10: Black keys in purple ’blobs’ depicting the result of algorithm 1.
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4.2.2 Locating the White Keys.

With the black keys locations found, the location of white keys can be inferred. At this

point, an empirical observation is taken from studying the keyboard technique in Section 2:

a pianist striking a white key will at least be covering the bottom half of the key. Therefore,

this has led me to ignore the bottom half the key entirely.

Examining Figure 4.11, a pattern of the piano’s keyboard arises, there is always at least

one white key between two black keys. The exceptions across the keyboard are between

A]/B[ and C]/D[, where there are two whites keys B and C, and between D]/E[ and F]/G[

in each octave (recall Chapter 2.5), where there are two white keys E and F as can be seen

in Figure 4.11.

Figure 4.11: Modern piano keyboard with key values.

To find where these exceptions exist I find the median distance between all black keys

found. Then iterating from left to right, if the distance between the current black key and the

next black key is greater than the median distance, then two white keys are present between

these black keys. To find the line that segregates these two white keys, the midpoint between

the current black key and the next black key is found using the midpoint formula:

midpoint = (
x1 + x2

2
,
y1 + y2

2
) (4.1)

A vertical line at the midpoint is used to segregate these two white keys. This process is

repeated until the end of the keyboard is reached.

Figure 4.12: Result of using midpoint to infer the line (labelled in green) that segregates
two white keys.
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4.2.3 Associating the Keys to their Respective MIDI Values.

Figure 4.13: Modern piano kyboard with its MIDI values.

Once all the keys have been located, they are associated with their respective MIDI value.

To determine the MIDI value of each key, there needs to be one single MIDI reference that

the rest of keys can be worked out from. If my solution was limited to a modern piano I

could start from the left of the keyboard with the first MIDI number (see figure 4.13) and

increment while moving up to each subsequent key. However, as my solution has not been

limited to just a modern keyboard, the following process is applied.

Through the studying of music theory, it was discovered that a pianist usually takes their

bearings from middle C, note that middle C is also the note that generally divides the treble

and bass staves in written music¶. Middle C can be found any keyboard by counting the

number of C’s and locating the ”middle” c. Therefore, to automate this process, I created an

¶The subject is significantly more complicated than this, as the dispersion of notes on the staves is also
used to differentiate which hand plays what and also to clarify the movement of polyphony in complex part
writing; however, in simple written music, notes that are below middle C are written in the bass clef and
notes that are above middle C are written in the treble clef; all transcription software automatically divides
amongst the staves according to this general principal.
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algorithm to locate each C in the keyboard by searching for the following pattern among my

keyboard’s representation: wwbwbww where w is a white key and b is a black key; Figure

4.14 shows this unique pattern that can be used to find middle C.

Figure 4.14: Unique pattern of the C key on the piano. This pattern is used to find C on a
keyboard.

The number of times this pattern is found is calculated, and the pattern that contains

middle C is deduced as follows:

If no. of patterns k is even:

Then location of Middle C is at pattern =
k

2

If no. of patterns k is odd:

Then location of Middle C is at pattern =
⌈k

2

⌉
(4.2)

Figure 4.15 shows the result of this algorithm on keyboards of various sizes, i.e., to prove this

choice of pattern works on all keyboard sizes.



Chapter 4. Location of the Keyboard and Keys 41

Figure 4.15: Unique pattern to find C applied in blue/green: the location of middle C is in
green found using equation 4.2.

The second w within the resulting pattern w(w)bwbww is the C key labelled in red in

Figure 4.15. To find the MIDI numbers that represent each key in the scene, I use the rules of

MIDI. In MIDI, middle C is given the value of 60, using middle C as a reference I increment

the value of each key that is to the right of middle C, and decrement the value for each key

that is to the left of middle C. Fig. 4.13 illustrates the output of the algorithm for a modern

keyboard with its associated MIDI numbers.

As with the perspective matrix, once the key’s location and value have been found, it shall

not change within the run-time of the application and therefore only needs to be found once.

A representation of the keyboard which includes the location of each key within the geomet-

rically transformed image and its associated MIDI number will be utilised during converting

the video feed to sheet music. However, before the transcription can begin one more initial

setup attribute needs to be found, the reference beat. This last and final attribute required

in the initial setup is a reference to the beat of the music that the pianist intends for the

performance used in Section 5.4 for creating the MIDI file.
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4.3 Reference Beat of the Music

The last and final attribute required in the initial set up is a reference to the beat of the

music that the pianist intends for the performance. As mentioned in 2.3.4, the rhythm of

the music is invariant to the tempo the pianist plays at. Remember that in theory, if two

pianists play the same performance the resulting sheet music should be equivalent, regard-

less of whether or not one pianist’s performance was at a faster or slower tempo than the other.

As discussed, it requires a reference to the tempo at which the pianist intends to play to

be able to interpret and transcribe the performance of a pianist in any meaningful way.

Therefore, my application allows the pianist to ’count themselves in’. ’Counting yourself

in’ indicates that the musician has to strike the middle C key at the same intervals as they

would set a metronome‖. The application can then interpret the beat of the music to be used

throughout the performance, by counting the interval of these strikes as a duration of frames.

Hence, in the initialisation setup, after locating the keyboard and its keys, the application

will instruct the pianist to count themselves in.

The process by which the strikes of middle C are recorded is through using a simplified

version of Chapter 5. The same procedure is followed, however, rather than converting the

strikes of middle C to a MIDI file, the sum of the intervals is averaged to be used in the

following circumstances:

• The result of this calculation is what will be used in the transcription to represent the

duration of a single beat. If we recall again from Chapter 4.3 a single beat is represented

as a ♩, by having a reference to the number of frames that equal this note, all other

note values can easily be inferred from this; e.g., twice the frame count would result

in a transcription duration of 
, half the frame count would result in a transcription

duration of �, etc., etc.

• The resulting single beat is the period by which the median background model will be

updated. I.e. if the reference beat was ten frames then the background model would

be updated every tenth frame. The reason for this will be discussed in Chapter 5.1.

‖Modern digital metronomes have a similar tap-tempo feature that allows the user to input a tempo by
tapping a button or key four times. This feature is also found on most contemporary digital audio workstations
(DAWs such as Logic X or Ableton) and transcription software.
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4.4 Conclusion

The initialisation of my application is now complete. During the run-time, the user will be

notified that they can begin their performance on the piano.

To recap, in this Chapter I have:

• In Section 4.1, presented the algorithm for finding the perspective matrix which is used

to transform every consecutive frame within the application thereafter.

• In Section 4.2, located the position and value of the keys within the transformed im-

age, which will be used for identifying what key has changed and what MIDI value it

represents.

• In Section 4.3, the reference beat of the music was found, for providing a means of

interpreting the tempo of a pianist’s performance. This will be used when creating the

MIDI file and defines the interval for updating the background model.

Upon the completion of the initialisation step, Chapter 5 describes the algorithms used

to convert the video feed to sheet music.



CHAPTER 5

Converting Video Feed to Sheet Music

Upon completion of the initial setup, the transcription begins. Three attributes have been

defined at this point: the perspective matrix, the location and value of the keys, and the

reference beat of the performance. All of these attributes are vital for the transcription

algorithms to work. Every frame that is fed into the application from this point on is geo-

metrically transformed using the perspective matrix. The resulting image of this geometric

transformation is used in every component, ’the background model, removal of the hands,

and identifying key changes’, until a key change is found.

The process by which I identify key changes is through the use of background subtraction

(outlined in Section 5.1 of this Chapter). Background subtraction is the process of subtract-

ing a foreground image from a background image, to create a foreground mask of a moving

object in the scene. The moving object in my application is the key changes that are to be

found. A model is required for this background image so it can adjust to rapid changes of

lightening, and the introduction of shadows of hands into the scene by the pianist. The image

by which my model is created and periodically updated is the geometrically transformed im-

age from each frame of the video feed. The frequency it is updated is defined by the reference

beat, which I have just discussed in Chapter 4.3.

The next stage within transcription is removing the hands from the scene, which will be

outlined in Section 5.2 of this Chapter. The hands pose a problem for background subtrac-

tion as they will be included in the foreground mask. However, the only moving objects that

44
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should be presented in the foreground mask are the keys. Therefore, the hands are ignored

and consequently removed from the difference image.

The next stage within transcription is identifying the key changes which are outlined in

Section 5.3 of this Chapter. Using the reference to the location and value of the keys from

Chapter 4.2, and with the key change events being the only moving objects in the foreground

mask, I can analyse and apply my criteria by which a key can be classified as pressed or

released. The results of the key change events are converted to MIDI events using the algo-

rithms in Section 5.4.

The final step of this algorithm is through the use of an open-source library known as Mus-

escore, outlined in Section 5.5 of this Chapter. Through Musescore a PDF version of the

sheet music is rendered through a scripting tool that passes the MIDI file created.

By the end of this chapter, all components of the transcription software will be completed.

At that stage within the application, the pianist is directed to the sheet music of their per-

formance.

5.1 Median Background Model

The aim of the background model is to be used to perform background subtraction for fore-

ground segmentation of the key changes. As this application was designed with a stationary

camera, this problem was suitable for solving with a background model based method. This

involved initialising a background model over the first few frames using just the background

(keyboard with no hands) in the scene. Therefore, the performer is asked to wait approxi-

mately 5 seconds before they should begin playing the piano after executing the application.

Many different background models were tested against the ground truth to find the model

that yielded the best results. During this testing phase the model that outperformed the rest

was the median background. The median background model provided an adequate back-

ground model which immediately reflects sudden scene changes,14 and offers acceptable ac-

curacy while achieving a high frame rate with limited memory requirements.15 In research,

these properties have made the median background extremely popular in background sub-

traction16.17

The median background model is computed by taking the median pixel value of last n frames.

However, this would be an extremely costly operation with an extensive memory management



Chapter 5. Converting Video Feed to Sheet Music 46

requirement by storing the last n frames. Therefore, the median background can be signifi-

cantly sped up by keeping a histogram of the sum of last n frames for each pixel, updating

it using an ageing rate.

Problems do arise with the median background, specifically due to its ability to react to

sudden scene change.14 This sudden reaction means that when identifying prolonged key

presses, i.e., the key is held for some beats, the pressed key can become part of the back-

ground model resulting in a loss of the intended duration of the note. To solve this problem,

I periodically update the background model based on the reference beat, i.e., for a reference

beat of 10 frames, the model is updated on every 10th frame.

Another problem which is inheritable to all background models is static objects becoming

part of the model. This problem can occur when sections of the hands (usually the front of

the hand) become relatively static due to the piece performed spending an extended period

at a particular section of the keyboard.

While a potential solution to this problem could be restriciting skin pixels from the

background model, for simplicity, a skin pixel mask of the background model is found to

remove it when identifying key changes.
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5.2 Create a Mask of the Hands

The next stage within transcription is removing the hands from the scene. The hands pose

a problem for background subtraction as they will be a moving object that is not used

for identifying key changes, besides for narrowing the area on the keyboard where they are

possible during that frame. Consequentially, the algorithm for identifying changes completely

ignores the section of the keys where the pianist’s hands are present. Therefore, every frame

from the video feed and the background model passes through the remove hands component.

A union of the masks from each image is created so that no skin pixels are present within

the foreground mask found in Section 5.3 of this Chapter.

An overview of the algorithm for finding skin pixels:

A. Identify skin pixels as a mask through explicitly defined skin region rules in RGB colour

model.

B. Improve algorithm using hue and saturation in HSV colour model.

C. Use morphological transformations to clean up binary image.

D. Morphological operations to include outline of the hand.
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Figure 5.1: The mask of the hand found at each stage of the algorithm overlaid on the
frame it is analysing for illustration.

A) Identify skin pixels as a mask through explicitly defined skin region rules

in RGB colour model. To remove the hands from the scene, I have explicitly defined a

skin region in the RGB colour model. The first of the rules is taken from:18

(R,G,B) is classified as skin if:

R > 95 and G > 40 and B > 20

max{R,G,B}-min{R,G,B} > 15 and

|R−G| > 15 and R > G and R > B

(5.1)

B) Improve algorithm using hue and saturation in HSV colour model.

After (A) the piano’s white keys are incorrectly identified as within this skin region due to

their colour. To omit the white keys from being identified the second condition is added so
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that before a pixel can give a response in the mask, it must have a low saturation. Saturation

is the degree of strength of colour in an image and ranges from 0 to 1. Having a low saturation

implies the pixel has no colour and is thus white. Therefore, true skin pixels will have a higher

degree of saturation than the white key’s pixels. Also, a third condition using hue is added

to improve the algorithm further. Hue describes colour in an image and ranges from 0 to

360. Before a pixel can give a response in the mask, it must adhere to the following rule:

(H,S, V ) is classified as skin if:

( Hue < 25 || Hue > 230 ) && (Saturation > 0.1)
(5.2)

The hue component is selected as there should be a strong contrast between the skin and

the white and black keyboard.19 The results of these two rules being applied can be seen in

Figure 5.1 part (B). Adding these conditions has caused less non-skin pixels to be identified.

However, still, these rules alone will not purely solve removing the hands, as some small

regions are still identified as skin pixels due to lightening. Therefore, the binary image is

’cleaned up’ using a morphological transformation to remove the small region of errors.

C) Use morphological transformations to clean up binary image.

A morphological operation is a mathematical operation using nonlinear algebra to logically

test every possible position within an image against a structuring element. Therefore, it can

be thought of as a transformation of a structuring element in every possible location within

the image.

The two most basic operations are erosion and dilation. Dilation adds pixels to the bound-

aries of the image, while erosion removes pixels from the boundaries of the image. Selecting

the right structuring element for the task is the most important aspect of erosion and dilation.

The structuring element that worked best for this application was a rectangular structuring

element of size 11 X 11 by retaining large objects and removing small objects.

To remove the small non-skin pixel errors, a closing followed opening was performed on

the binary image using the structuring element above. These are combinations of these op-

erations above, a closing is an erosion followed by a dilation, and an opening is a dilation

followed by erosion. Figure 5.1 (C) shows the removal of false positive skin pixels using the

morphological transformations above.

However, there is still one final problem that needs to be addressed: the presence of shadows
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on the sides of the pianist’s fingers.

D) Morphological operations to include outline of the hand.

Shadows cause the skin to darken and therefore are not identified by the explicit skin region-

based method. To include these pixels, the hands are dilated to include the outline of the

hand using the same rectangular structuring element as in step C.

At this point, a mask of the hand has been found. This process is carried out for both

the foreground and background image. The two resulting masks are OR’d together to create

a single mask that can be used to remove the hands from the difference image in the next

stage of the algorithm, identifying key changes.
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5.3 Finding the Key Changes

Finding the key changes is the most significant component of this transcription software.

There has been a substantial amount of pre-processing before this stage of the system could

be performed. At this stage, the perspective transformation matrix to find the keyboard

has been calculated and applied, the location and value of every key have been classified,

the background model created, and a mask of the hands obtained. The final stage before

creating the MIDI file of the pianist’s performance is identifying the key changes in the video

feed as they occur. Given that key change events occur as moving objects in the scene, a

well-defined process for identifying moving objects in a scene is applied known as background

subtraction. Recall in Chapter 4.2.2, when finding the white keys only the top of the keys

were found. This empirical method was applied due to the bottom of the white key being

predominantly covered by the finger striking it. Therefore, only the top of the keyboard is

examined for key changes illustrated in green in Figure 5.2.

Figure 5.2: Zone of the keyboard where the key changes are classified.

The outline of the background subtraction based method:

A. Compute difference image from background and foreground image.

B. Find connected components using a contours based method within the binary image.

C. Identify key changes using the connected components.

D. Transfer results of the key change events to the MIDI interface.

A) Compute difference image from background and foreground image: To identify

moving keys in the scene I perform a background subtraction. Background subtraction is the

most widely used method for identifying moving objects in a scene; this basic method is used

in numerous research papers, e.g. (Horprasert,1999),20 and particularly popular in motion
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detection in surveillance research used in (Singla, 2014)21 (Sakaida, 2002).22 The segmenta-

tion process is usually based on greyscale intensity, colour, shape, or texture,23 in this case

it will be dealing with greyscale∗ intensities by converting the video feed which is in RGB

colour to greyscale. The subtraction is performed on a background image and a foreground

image to produce a foreground mask. In Section 5.1 of this Chapter, I described how my

background is modelled. This background model will be used for extracting a background

image at each frame, to segment a foreground mask by getting the difference image of the

background and the foreground (current frame). The current frame in my case is the frame

from the video feed at which I am trying to find potential key changes. The difference image

produced will contain both the key changes and the hands, therefore, to remove the hands,

the hands mask of both foreground, and the background, are found as described in Section

5.2 as a single mask. This mask is exclusive OR’d with the resulting difference image of the

background subtraction method to remove the hands. Once the hands have been removed,

the positive values and negatives values in the difference image are separated into different

binary images. Separating into two different ”difference images” based on their sign, allows

the analysis of black and white key changes in isolation.11 For the conversion of the greyscale

image to binary, a threshold of 10 is used. Therefore, for the greyscale image with a range

0-255, anything above 10 is given the value one within the binary image. The threshold is

set low to lose as little information as possible, while also removing noise. However, as I

am splitting the negative and positive values of the difference image, the difference between

the two images is calculated pixel by pixel with the negative values going to one image and

the positive values to another; the absolute value of the pixel difference must still be greater

than 10. The negative and positive values are split to allow each key type to be analysed in

isolation. The following outlines which key type is processed in which difference image:

• Positive Difference Image: When a white key change occurs, pixels of the neighbouring

black key become exposed due to the action of pushing the white key down. Therefore,

the greyscale values will change from bright to dark. Hence, there will be a positive

difference in the difference image. I.e., only white keys will be examined in this image

while black keys are ignored.

• Negative Difference Image: When a black key change occurs, pixels of the neighbouring

white key become exposed due to the action of pushing the black key down. Therefore,

the greyscale values will change from dark to bright. Hence, there will be a negative

difference in the difference image. I.e., only black keys will be examined in this image

while white keys are ignored.

∗Grayscale is a single-channel image that carries only the intensity/illuminance value of an image.
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Of course, this operation is not symmetric, therefore, the order of the pixel-wise differ-

ence, background frame minus the current frame, is imperative otherwise the rules governed

in the positive and negative images would need to be swapped.

By splitting the key change events into separate testing sets, I reduce the occurrences of

false positive key changes. These false positive changes occur due to keys exposing pixels of

neighbouring keys. Although this is process by which my algorithms identify key changes

when they are all contained in one difference image they can overlap among keys. For ex-

ample, imagine a white key event exposing more black of its neighbouring black key when

pressed. Had the key changes not been separated, a black key event could also be observed

during this white key’s event. But, with the current method, as the black key has gone from

dark to dark there will be no information on this event in the negative difference image where

the black key events are examined. Only in the black key region of the positive difference

image and only white keys are examined in this image.

Figure 5.3 illustrates an overview of process of background subtraction based method that

has been discussed.

Figure 5.3: Illustration of the background subtraction based method applied on the
background and foreground image to create the two difference images.

B) Find contours in binary image and identify key changes:

The resulting positive and negative binary image contain the moving key objects within the

scene. Figure 5.4 illustrates the action of the key within an acoustic piano (similar action is

simulated in a digital keyboard). The importance of this image is the orientation of the key.

The action of striking this key forces the whole key to move in a vertical direction, but it
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remains horizontal throughout. Therefore, when a key is struck by a pianist’s finger a change

of the height of the key should be found in the difference images. Hence, to test if an object

approximately the size of the key has changed within the difference image, the connected

components within the binary image are found.

Figure 5.4: Anatomy of a key within a piano used for illustrating the action of a key when
it is struck by a finger.4

Connected-component labelling involves labelling pixels of the same object with a sin-

gle reference. In OpenCV, a common function for allowing connected-components labelling

is a technique known as contours. In the contours technique, only boundary points of the

connected-components are labelled in the binary regions; this is a more efficient approach

than also labelling the body points.

Once the connected-components labelling has completed the algorithm searches for keys that

are within the proximity of the hands. The proximity of the hands is illustrated in Figure 5.6,

where every key within one extra white note (illustrated in blue) on either side of the hand

is taken into account, including if a black note exists between that extra white note. This

rule is based on studying the technique of the keyboard discussed in Chapter 2.2 due to for
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instance when a pianist strikes an octave or chord† the finger may only enter a small region

of the note; study Figure 5.5. Therefore, if there was any failure in the skin detection due to

shadowing or lightening conditions this note could be excluded completely thus I include all

key changes within one white note of the each side of hands masks.

Figure 5.5: Octaves are played normally at the edge of the keys which leaves only a small
region of skin that can be found

Figure 5.6: The box in green illustrates the zone of the keyboard that is examined for key
changes by using the hand’s proximity to exclude impossible note change. This zone is

found by moving one key(blue) from the hands(red) on each side

Finally, after finding the keys within the proximity of the hands, connected components

are searched for that are within these keys; the positive of contours for white keys and neg-

ative image of contours for black keys. If a connected component exists that is within the

boundaries of a key and is at least half of keys original height, a key change has occurred.

During development, half of key’s height worked as an optimal criterion for a key change

due to the omission of sections of the key changes being viewed due to the hands. Recall in

Chapter 4.2.2, that when I looked for white keys only the top of the keys was found. This

empirical observation was used as the bottom of the white key is always covered by the finger

striking it. Therefore, when looking for key changes, the original height of the white key is

the same as the black key. Examining Figure 5.2 at the start of this Section you can see key

change zone for white and black keys is the same height.

†A chord is several keys played together.
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C) Transfer results to MIDI interface:

There is two events on a key: the ”pressed” and the ”released” event. The ”pressed” event

occurs when the key is pressed down by the pianist, and the ”released” event occurs when

the same key is released some frames later. The case of this key change is created into an

object containing its note value and the frame number it was pressed and released.

The process by which this object is created is a follows. If a key change event is observed,

the MIDI number of that key is searched for in a list of key change events in memory. If the

MIDI number does not exist in that list of key change events it is added to the list along

with the frame event it occurred; This is the pressed event. If the MIDI number does exist

in a list of the key change events, then the last observed frame for this key event within the

list and the current frame are compared. If the current frame is only greater than the last

observed frame by one frame, then the current frame is added to the list with this key as an

observed key change within the duration of the pressed event. If the current frame is greater

than last observed frame in the list by more than one frame, then a ”released” event for the

key in the list has occurred, and it is sent to the MIDI file. The current event is then added

to the list as a new pressed event and waits for is subsequently released event.

With the results of the key changes ready to be transferred to the MIDI interface. The

final step before the rendering of the sheet music can occur to this MIDI interface.



Chapter 5. Converting Video Feed to Sheet Music 57

5.4 Convert the Key Changes to MIDI

During the final stages of execution of my program, the application parses the results of the

key changes found to a MIDI file.

To create and write the MIDI file, I made use of a C++ library called Midifile. This provides

an interface for importing header information and events into a MIDI file. As mentioned in

Chapter 2.8.1 the events stored in a MIDI file identify information on how the song is played

through note-on and note-off events attributed by ticks (duration, measured in quarter notes

♩). The events store the pitch of the key as a MIDI number. The relationship between

pressing and releasing a key on the piano is associated in MIDI with a note-on and a note-off

event respectively. Figure 5.7 gives brief structure of the MIDI file

Figure 5.7: Simplified structure of the MIDI file that is created using header information
and MIDI events

5.4.1 Method

As discussed in Section 5.3 of this Chapter. Key changes are stored as objects in the applica-

tion using MIDI numbers with their pressed frame and released frame numbers before being

transferred to the MIDI file. The pressed frame and released frame numbers are converted

to MIDI note-on and note-off events respectively. A note-on event is calculated in ticks using

the following equation using a default ticks per quarter of 80 b.p.m (this is the intended
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tempo of my testing videos to be disclosed in Chapter 6.2).

Number of ticks = (Pressed frame / Reference beat)× Ticks per quarter (5.3)

The process by which note-off is found is more complex than a note-on. As mention in

Chapter 2.8.2 a pianist cannot play metronomically as there is always some discrepancies. In

MIDI applications such as Logic X, they use a process known as beat mapping to visualises

the beat so that the user can alter their MIDI file to fix their imperfectionst.

In my application, I attempt to automate this process by rounding the number of frames

to the nearest duration based on the reference beat found in Section 4.3. The following

equation shows how the duration is calculated:

Duration = (Released frame− Pressed Frame) / Reference beat (5.4)

Using the result from the above equation, the number of ticks can be found using that

table at Figure 5.8. This table illustrates the relationship between rounding and calculating

the number of ticks for the MIDI file.

Figure 5.8: Relationship from musical theory to duration to MIDI ticks

For example, if I have a frame length of 15 frames for a key change and a reference beat

of 5 then dividing by the reference beat equals a duration of 3. This duration searches for the
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range closest to it, in this case the second category of between 1.75 <= D < 2.25. Taking the

larger number away from the duration allows the remaining duration to be found, therefore,

3 − 2.25 leaves 0.75. The remaining 0.75 duration closest range is to the third category of

between 0.75 <= D < 1.25 with nothing remaining. Therefore, the final result for this key

change in ticks would then be 2×TPQ for the second category of between 1.75 <= D < 2.25

plus 1×TPQ for the third category of between 0.75 <= D < 1.25. Hence the final result for

ticks for the note off event in the MIDI file for this frame length of 15 is 3× TPQ. This can

be applied for any duration by starting from the top of the table, finding the most suitable

range, and always taking the greatest value in the category away from the duration until

there is no (positive) remaining duration to be found.

At the current stage, the MIDI file has been created through C++ library Midifile with

the header information and events parsed from the results of Section 5.3. This marks the

end of the transcription, the resulting MIDI file is transferred to an open source application

to render the sheet music.
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5.5 Convert the MIDI to Sheet Music

Figure 5.9: Transferring of the MIDI file to the Musescore application

After the pianist performance, the MIDI file created is converted to sheet music through an

open source application known as MuseScore. The application allows you to create, play,

and print sheet music from a MIDI file. At the end of the execution of my application, the

MIDI file created is sent as a command line argument to MuseScore. This file is then read

and pertinent track information is extracted to render the sheet music as a PDF. The sheet

music is then displayed to the user within my application.

5.6 Conclusion

The transcription is now complete. The user will have notified the application that they are

finished with their performance. The application has been transcribing their performance in

real-time. Therefore, upon notifying the application that the performance is over their sheet

music will be rendered and available to view/share.

To recap in this Chapter, I have

• In Section 5.1, introduced the median background model.

• In Section 5.2, created a mask of the hands for removal from the difference image in

Section 5.3.

• In Section 5.3, classified key changes through background subtraction based-method.

• In Section 5.4, parsed the results of Section 5.3 to a MIDI file.
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• In Section 5.5, rendered the sheet music through Musescore using the MIDI created in

Section 5.4.

Upon the completion of the development of this piano transcription software begins Chap-

ter 6.1 to discuss the evaluation and results of the system I have created.



CHAPTER 6

Evaluation and Results of the System

6.1 System Evaluation

In ”Experimental Models for Validating Technology”, Zelkowitz and Wallace discuss the need

for a concise taxonomy of experimentation and validation for technology that is present in

other academic fields such as physics and mathematics. In software development, it is too

often the case that researchers explaining a new technology perform the experiments them-

selves to show the effectiveness of their technology. The researchers are both the creator and

the user of the new technology and do not use any external data, or known theories to show

their technology conforms to some underlying model or requirement.12 Taking guidance from

Zelkowitz and Wallace, I will use a known theory of evaluation in piano studies for evaluating

the difficulty of a piece. I will use the grading system in the Associated Board of the Royal

Schools of Music (ABRSM). Using this grading system, I can have a performer play a piece

randomly from each grade and then evaluate the precision and recall of my solution for each

piece. Given that the grades difficulty increases reasonably linearly, I hypothesise that the

performance of my application will reduce reasonably linearly with the grades, i.e., as the

pieces become more complex the performance of the algorithm will decrease.

To retrieve meaningful results from my test dataset I had to explore a number of differ-

ent methods of evaluation, each revealing unique issues, before I was able to determine my

proposed evaluation.

62
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6.1.1 Apparent Evaluation

An apparent evaluation given the goal of my application would be to merely compare the

resulting sheet music of my application to the originally scored sheet music e.g., when the

performer plays Bach Prelude 1 in C Major the resulting sheet music ”should” look the same

as an original score of Bach’s Prelude. But as discussed in Chapter 2.8.2 due to minor perfor-

mance discrepancies, some interpretive others unintended, to play a ”perfect” performance

of the piece’s score is impossible, and only a concert pianist could get close. Therefore, eval-

uating in this way would be ineffective for assessing the performance of this application. Due

to the very nature of the application, it can only capture the pianist genuine performance.

6.1.2 Intended Evaluation

Given that this application evaluates their actual performance perhaps using a well-defined

transcription solution such as a MIDI keyboard as ground truth would give the best possible

evaluation. This evaluation could work by asking a performer to play the test dataset on a

MIDI keyboard that is connected to a computer device enabled with transcription software.

A video would be captured while the pianist is playing on this MIDI keyboard. Therefore,

two transcriptions could be found concurrently. Hence they could be compared using the

well-defined MIDI results as ground truth. This would be useful as a musician using this

application would not only be concerned with whether a note was found or missed but to

what degree the application had failed. Often in musical theory, equivalence is not as im-

portant as similarities. Although there are exact transformations in musical theory such

as transposition. Often repetition of the motif (a dominant or recurring idea in a musical

work) is through resemblance in some informal way. In my application, there may be a loss

of pitches, durations, dynamics, etc., which such an evaluation solution could explore using

the following technique. By comparing two musical piece similarities to some degree, i.e.,

a similarity metric of the ground truth MIDI recorded from a keyboard and the resulting

MIDI file created from the computer vision processing I could produce metrics that evaluate

all these attributes. In computer science and related fields, a similarity is often measured by

the inverse of some distance formula, Appendix A outlines an overview of how this similarity

metric would have been implemented. However, the very nature of a MIDI keyboard is a

digital device that transfers data, therefore, it has latency issues. Latency problems occur

all over computer science particularly in fields such as networking and distributed system.

MIDI devices are no expectation to latency, due to

a) Non-deterministic delays from transferring MIDI signals from the keyboard via the MIDI
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cable.

b) Non-deterministic delays from the receiving computer due to it using an audio buffer

that delays playback and disrupts MIDI timing24

Therefore, there is no easy way to calibrate the frame rate of the video feed with the beats per

quarter notes of the MIDI file. The procedure required to develop such a complex modelling

of the two domains was too time-consuming even to consider and may not have even yielded

worthwhile results. Therefore, the intended evaluation had to be replaced with two conven-

tional computer vision metrics; precision and recall, frequently used in pattern recognition

as a binary classification.

6.1.3 Proposed Evaluation

The proposed method of evaluation involves using precision and recall for the performance

of my application. As discussed in Chapter 2.9.2, computer vision technique’s for music

transcription is in its preliminary stages. Therefore, there are no external video datasets of

piano transcription containing ground truth that could be used as a baseline for evaluation.

Hence, I had to create my own ground truth from the videos I captured of these selected

pieces from the ABRSM grading system. There are intrinsic issues with creating your own

ground truth due to the inevitable bias of modelling your test data to your result data. But

by being aware of this prejudice, I tried to be as unbias as possible when creating the ground

truth dataset.

Interface for Creating Ground Truth

Creating your own ground truth is a time-consuming process. To ease the process, I developed

a user-friendly interface. The interface has a comparable initialisation to the transcription

application, bar determining the reference beat, as shown in the initial setup section within

Figure 6.1. After the setup is complete, the user is prompted with an interface for inputting

the ground truth on a controlled feed of the testing videos. A short illustration of three

different snapshots of this interface occurring over the course of identifying a single key

change is shown within Figure 6.1 (Note no key change actually occurs in these snapshot as

it is merely for illustration purposes). The user interacts with the interface using a selection

of keyboard and mouse events.

• A user can move between frame using a keyboard entry of letter lowercase ’n’ for next

frame and using a keyboard entry of letter lowercase ’p’ for the previous frame.
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• A user can indict a key press by hovering over the key in question and clicking the

LEFT mouse button. The key will turn blue when it has been selected, seen within the

interface in Figure 6.1. The MIDI number of the key selected and the frame number

the event occurred are stored in memory.

• A user can indict a release of this key in future frames by hovering over the key in

question and clicking the RIGHT mouse button. The key will return to its original

colour when it has been selected, as seen within the interface in Figure 6.1. The MIDI

number of the key selected and the frame number the key release event occurred are

matched with the previous key press event within memory and written to a ground

truth file.

Figure 6.1: Architecture and brief illustration of the interface for creating ground truth
from the videos captured.
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6.2 System Results

As outlined in Section 6.1 the framework that provides a progressive difficulty of pieces for

testing of my hypothesis was a known theory of evaluation in piano studies; the Associated

Board of the Royal Schools of Music (ABRSM) grading system. To avoid bias selection, an

experiment was performed by directing a pianist to choose one piece from each of the first six

grades of the ABRSM examinations. Six videos were captured using a Logitech webcam (HD

C270 ) of a pianist playing each of these pieces at a steady tempo of 80 beats per minute. For

the test dataset, a steady tempo was assisted through the use of a metronome and guaranteed

only to the best of the ability of the performing pianist.

Given the proposed evaluation of precision and recall discussed in Section 6.1.3, I had to

create my own ground truth of these videos. Utilising the interface presented in Chapter

6.1.3 I created the ground truth and exported it to a text file. Similarly, the results of my

transcription were also ported to a text file. An algorithm was developed to determine the

true positive, false positive, and false negative values by comparing the ground truth and the

result text files. These values were used for calculating the precision and recall metrics.

The following diagram and list explains the parameters and the equations used for calcu-

lating the performance metric in relation to properties of this application.
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Figure 6.2: Visual explanation of precision and recall5

• True positive: Number of key changes correctly identified

• False positive: Number of key changes incorrectly identified

• False negative: Number of non-key changes incorrectly identified

• Precision: How many selected key changes are relevant key changes

• Recall: How many relevant key changes are selected key changes

Table 6.1 depicts the precision and recall of each video in the test dataset. The first three

grades were shot on a standard digital keyboard while the last three grades were shot on a

concert grand piano for testing diversity.



Chapter 6. Evaluation and Results of the System 68

Table 6.1: Performance Metrics

Grade Name Precision Recall

1 Dance (Elena Malycheva) 65.51 86.36

2 Twinkle, Twinkle Little Star, Nursery Rhymes (Mozart) 86.51 97.64

3 Bagatelle No. 25 in A minor, Fur Elise (Beethoven) 83.69 99.48

4 Prelude in C major, BWV 846 (Bach, Johann Sebastian) 84.61 93.07

5 Solfeggio in C minor, H.220 (Bach, Carl Philipp Emanuel) 84.67 90.20

6 Prelude, Op. 28, No. 20 (Chopin) 67.34 94.82

Average 78.72 93.57

Median 84.15 93.95

6.2.1 Precision and Recall

Figure 6.3: Performance metric of precision graphed with recall. Results from the six
dataset videos with the sheet music taken from the first six grades of ABRSM

The results of the performance metric do not align with the hypothesised result I proposed

at the start of this Chapter as there is no clear relationship between the difficulties of the

piece and the precision of my algorithms. I hypothesised that the precision would decline in

a relatively linear fashion, but there is no linear relationship to this affect. Instead, graphing
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the results of the precision against recall yielded two outliers within the performance of my

system. The two outliers occurred when the precision deviated dramatically from the median

precision at Grade 1 and at Grade 6 with a deviation from the median of 18.63% and 16.80%

percent respectively. The following discussion outlines the reason for these outliers.

Discussion of the Precision Results

Grade 1

Figure 6.4: Key value and amount of occurrences off the false positive key changes within
the grade 1 video

The Grade 1 piece deviated so far from the median due to the keys required to play the piece.

The simplicity of the piece meant that it concentrated on a limited and a repetitive set of the

keys, C and F∗. These keys can cause particular problems from certain angles, as they have

only one neighbouring black key. Given the angle of the camera during this performance,

shown in Figure 6.5 it affected the keys due to the following reasons.

∗In music theory the piece would be defined as having a limited pitch class.
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Figure 6.5: Position of the camera relative to the keyboard for the recording of the Grade 1
piece.

Figure 6.5 shows the position of the camera relative to the keyboard within the perfor-

mance. The labels in red show that for key F and C there is no black key to be exposed when

they are pressed. This negatively affects my algorithms, recalling from Section 5.3 that a

white key change is identified through the action of it being pressed down revealing the black

pixels of its neighbouring black key. However, for F and C at this angle, the only revealed

pixels are the slightly darker pixels of the wood at the side of the neighbouring white key

which can be seen in Figure 6.6 on the left for an acoustic piano. However, this particular

video was shot on an electronic keyboard, where the keys are made of plastic, meaning the

neighbouring white keys are also white as shown in Figure 6.6. Therefore, during this video,

this resulted in repeated responses due to the algorithm relying only on the contrast between

the white key and the revealed plastic of the neighbour white key, which was dependant

purely on the difference in lightening. Hence this concludes that my algorithms are best

suited for an acoustic piano, where the keys are usually made of wood and not plastic as was

not the case in the Grade 1 video.

Note that had the performance been taken from the other side of the piano these keys would

not have caused a problem, and instead the B and E keys would have been affected. But

B and E were not as prevalent within this piece, and therefore this change would increase

the performance of this particular piece. Of course, this still would not be a solution to the

problem, and merely would have only solved this case.
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Figure 6.6: Difference of the neighbouring exposed note for a C and F for an acoustic piano
(wood keys) and digital piano (plastic).

Grade 6

After the preliminary grade (Grade 1) the pieces introduce chords and long sustained note

values, some known as a fermata (a hold or pause of the note that exceeds its notated dura-

tion). These chords or sustained notes can result in false positive key change events due to

the foreground key changes becoming a part of the background model. This happens when

a long-pressed key exceeds the learning rate of the background model and becomes a part of

it. When this happens, it results in (a) an early release event for the key in question (b) false

positive key change events at a neighbouring key.

The reason for (a): due to the released key becoming part of the background the foreground

key change and model are the same. Therefore, the algorithm believes the key change has

stopped as there is no difference noticed.

The reason for (b): due to the algorithm now believing that the key has released another

key event is going to occur when the key is actually released. In Section 5.3, I discussed the

design of my algorithm for key changes. In that discussion, I outlined that white key changes

and black key changes were dealt with in separate difference images; positive and negative.
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Recall from Section 5.3:

• Positive Image: When a white key change occurs pixels of the neighbouring black

key become exposed due to the action of pushing the white key down. Therefore,

the greyscale values will change from bright to dark. Hence, there will be a positive

difference in the difference image.

• Negative Image: When a black key change occurs pixels of the neighbouring white

key become exposed due to the action of pushing the black key down. Therefore,

the greyscale values will change from dark to bright. Hence, there will be a negative

difference in the difference image.

In this scenario, because the released key is a part of the background model when the

foreground released event occurs, the difference noticed if the scenario was a white key is

now from dark to bright which is the criteria for a black key change. Likewise, the difference

noticed if the scenario was a black key is now from bright to dark which is the criteria for

a white key change. This does not cause a problem when the separation between a white

key and a black key is well defined, i.e., when the keyboard is near the location of the sta-

tionary camera. However, when this separation becomes a lot smaller, i.e., the section of

the keyboard, that is farthest away from the stationary camera, e.g., Figure 6.7 shows the

distinction between black and white notes diminishing as they get further from the camera.

Due to the angle and distance of the camera from the end of the keyboard, the separation

between a white key and the black key becomes extremely narrow. This causes the scenario

described above, resulting in producing false positive key change events not for the key that

has become part of the background model but for their neighbouring keys.
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Figure 6.7: Purple ’blobs’ illustrate the result of finding the black keys using the feature
detection algorithm. Notice the distance between black notes decreases as you get farther

from the camera (Notice this camera was positioned on the left)

Figure 6.8: Result of inferring the line (in green) that segregates two white notes.Notice the
distance between black notes decreases as you get farther from the camera (Notice this

camera was positioned on the left of the piano)

The Grade 6 piece consists entirely of advanced long sustained chords progressions at

the farthest end of the keyboard, which explains why it also sways so far from the other

test datasets. Had time permitted a solution for this could have been individual background

models for every individual key. Each keys background model could then not update during its

pressed frames, solving foreground-pressed events becoming part of the background model.

However, with this new model not updating during key presses, it could result in more

problems that the current model solves such as rapid lighting changes and shadows of the

hands. Therefore, there would need to be some significant investigation of the merits and

demerits such an approach.

6.2.2 Recall

The recall is affected when omission occurs in the video feed. Omission is a major problem in

computer vision specifically in surveillance. An example of omission is an object that is being

tracked disappears in the scene due to another object in the scene blocking it from the sight

of the camera. Omission occurs in two cases in my application. Figure 6.9 left represents the

omission case 1 and Figure 6.9 right represent omission case 2.
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Figure 6.9: Omission cases 1 on the left and case 2 on the right

• Case 1: If the performer presses the key at the top, the finger will cover the key change

detection area completely. (This goes against my empirical method that a pianist only

strikes the bottom of the key)

• Case 2: If the performer crosses hands, the arm and/or hand could cover the key change

detection area completely. Figure 6.9 shows hand A is covering hands B’s key changes

from being classified

Discussion of the Recall Results

Unfortunately, I cannot transcribe key changes that the camera cannot see. However, if I

cannot see it, maybe I can hear it. As will be discussed in future work for refining and

improving my classification of key changes, I could combine the capabilities of audio signal

processing. Using the audio that is captured with the video feed I could apply the refinement

of the classification of the video processing and potentially find omission cases when they

appear.

There is no clear relationship between the difficulties of the pieces and recall in these ex-

periments. Recall is affected purely by the style of the musician, whether they tend towards

certain movements throughout the performance of a piece. However, while there is no clear

relationship, if the test data-set was to be performed on a more advanced piece such as the
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final two grades of ABRSM, Grade 7 and 8. I hypothesis that it would result in the enormous

amount of omission in selected pieces due to the need to constantly cross hands and exercise

the full breath of the keyboard to accomplish some of the more technological demanding

pieces. This would be particularly evident in a piece that is of the level of a concert pianist.

For example, Beethoven Symphonies, a set of nine piano piece by Franz Liszt of Ludwig van

Beethoven’s symphonies 19 which are considered the most technically demanding piano music

ever written would result in an enormous amount of omission. If omission could be solved in

these pieces of music due to their recognised technological difficulties among the whole clas-

sical community, the argument for computer vision solving piano music transcription could

not be denied.

6.2.3 Success of the Project

The performance metrics revealed some limitations in the background model, but also some

specifications that a user should abide by for the best possible performance of this application.

Firstly, the user should perform on an acoustic piano due to reason disclosed in precision in

Section 6.2.1. The goal of this dissertation was to create a readily available device, but it

was also to allow transcription on an acoustic piano which is not possible without expensive

infra-red sensors installed on the strings. Therefore, abiding by this specification adheres to

the motivation of this application. The application performs best with pieces that have a

fast rhythm. As discussed in recall in Section 6.2.1 long sustained note caused a problem

by becoming part of the background model. In conclusion, this application performs to a

satisfactory performance for videos shot on an acoustic for pieces or compositions with a fast

rhythm.

6.2.4 Limitations in the Proposed Framework

Due to the time-consuming process of creating ground truth I was limited in the number of

videos I could use for my evaluation. As the difficulties of the pieces progress so too did the

challenge in creating their ground truth. But had the time granted, for instance, I would

have liked to have extended the data-set up as far as Grade 8; the final ABRSM grade.

I also recognised the fact that faster tempos may affect the precision of my computer vi-

sion algorithms and would have liked to explore this theory, particularly if the tempo got

close to the frame rate. Although, pieces played at such a prestissimo (as fast a possible)

tempo would be more common among pieces that go beyond the standard ABRSM exami-

nation to their senior certificate and diploma level. Therefore, experimentation would have
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had to extend beyond my grading system to explore this theory.

In addition, had time permitted I would have tested the other three major components:

locating the keyboard, locating the keys, and identifying skin pixels against some ground

truth; which could have yielded more insight into the results of the evaluation. However,

recalling that the goal of this dissertation was to design and implement an automated piano

transcription software that would transcribe a piece of music played on the piano that was

captured on video. Therefore, the results of the final output of the whole application were the

most important aspect that needed to be evaluated for this system. Evaluating these other

components without any available ground truth would have been a huge workload. Also, sim-

ilar problems would arise when creating the necessary ground truth by the researcher (me)

explaining a new technology also creating the test data to show the effectiveness of their (my)

technology. Therefore, to create good ground truth for these components, it would require a

series of strict experimentation regulated by an independent third party.



CHAPTER 7

Conclusion and Future Work

7.1 Conclusion

At the beginning of this dissertation, the goal was to design and implement a prototype au-

tomated piano transcription software that could correctly transcribe a piece of music played

on the piano to sheet music from only a video feed. The approach for solving this goal was

achieved to a degree through the use of computer vision algorithms on the captured video

feed. This was a challenging task as at the beginning of the project there was only one

piece of published literature available on the problem, due to all publicly available research

concentrating on audio signal processing for piano transcription. The lack of research meant

no publicly available third-party test data-set existed. Hence the test data-set used had to

be recorded and developed from scratch. The testing portion of the application has been

achieved through the creation of an interface that enabled a more efficient method of obtain-

ing ground truth results from the recorded videos than visually writing out each key change

event by hand.

No clear relationship was identified between the complexity of the piece to the precision

of the application. The performance of the system worked best on an acoustic piano, and

when the rhythm of the piece was fast. The average precision and recall were 78.72% and

93.57% respectively, with two outliers dramatically affecting precision.
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7.2 Time Spent

The goal proposed in this dissertation represents a vast system, with a considerable amount

of complex components that were required to build a system of this magnitude. Particularly

in the need to possess an understanding of the ontology of the music domain to a minimum

standard of an ABRSM diploma. Without this knowledge, the conversion algorithms used

to create the semantics of this dissertation would not have been possible.

But the single component that took the most considerable amount of time was finding the

keyboard in Chapter 4.1. The reason the development of this component exceeded the others

was due to the keyboard being in a relatively unpredictable environment. After the keyboard

is found and transformed almost everything besides lightening can be anticipated. But for

finding the keyboard, the webcam is placed in an entirely new environment each time, with

the only specification being that only one piano can be present within the frames. This cre-

ated a lot of difficulties in fine tuning the algorithm in particular, as its success affected the

rest of the application.

Also, a significant amount of geometry was required in the algorithms within this compo-

nent, particularly when estimating the sides of the keyboard in Section 4.1.1. In C++, the

maths libraries available did not provide any of the specific functionality that was required.

Therefore, all the geometry functions were developed from the ground up.

7.3 Future work

7.3.1 Investigate Different Background Model

As discussed in Section 6.2.1, difficulties occur within the background model when a key

is sustained for a long period: the key press becomes a part of the model. The result

affects the precision of my application by introducing false positive key changes. Had time

permitted I could have investigated the following solution: individual background models for

every key. Each keys background model could then not update during its pressed frames,

solving foreground-pressed events becoming part of the background model. However, with

this new model not updating during key presses, it could result in more problems that the

current model solves, such as rapid lighting changes and shadows of the hands. Therefore,

this approach has been left as further work to increase the precision of this transcription

software.
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7.3.2 Refine Classification with Audio Processing for a Greater Precision

In the early stages of development of this dissertation, there was an intention of using both

the video and audio signals captured by the device. By fusing the two domains together,

I believed I could significantly increase the precision of transcribing; one domains weakness

potentially being the other domains strength. For example, in section 6.2.1 on omission I

could not transcribe notes that I could not see. However, if I cannot see it, maybe I can hear it.

Using the audio feed, a refinement of my classification of the key changes could be have been

found by combining the capabilities of audio signal processing. The audio transcription could

be accomplished through multiple F0 estimations and periodicity transforms. As discussed

in Chapter 2 the problem with music transcription using an audio signal is it is inherently

difficult. However, as audio signal processing would not be my only means of transcription,

it would have been an extra layer of refinement. The hope of the using audio processing for

multiple F0 analysis would be to help cases such as omission and increase the precision of the

events I can not detect in the computer vision domain. Using the audio that is captured in

the video feed, I could apply the refinement of the classification of the video processing. But

due to the large scope of the project, time did not allow for the development of the audio

processing domain.

7.3.3 Neural Networks to Predict Key Changes

Through machine learning, a neural network could be fed with tonnes of examples of melodies

and progressions within music. Over time, the neural network would be able to build a fuzzy

relationship between these progressions and build a map of these relationships. Using this

map, when a pianist is performing I could feed in the previous melody already found within

the performance and use it to predict what keys to focus on in the next frames, thereby pre-

dicting where the key changes will occur before they even happen. This process could work

particularly well in a genre specific performance. For instance, if a user told the application

it will be playing a classical piece, then I could feed the neural networks with only classical

melodies and progressions and the many rules of counterpoint and harmony that govern the

unfolding of a piece of classical music. Why this would work well is because in classical

music there are quite strict musical rules where some progressions which may be evident in

other genres like jazz would never be present in a classical piece of a given period. With the

application being aware of keys that can not or would be unlikely to be in the next frame, it

can narrow down the set of keys it has to check.

If neural networks can learn melodies and progressions, it could also learn entire pieces.
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The neural network could learn every classical piece written by each of the most influential

composers, e.g., Beethoven, Bach, Mozart, etc. If the user decided to play one of Beethoven’s

Piano Sonatas with all of Beethoven works already been fed into the neural network the

application could recognise the piece after a few bars. With the piece recognised that ap-

plications transcription becomes significantly easier as it expects where the next key change

will be before it happens.

7.3.4 Augmented Reality MIDI-to-Piano Learning Assistant

Augmented reality is becoming more end-user accessible than ever before. Numerous head-

sets such as Microsoft’s HoloLens and the Meta 2 are already shipping to developers and will

be available to customers in the near future. These developers are trying to find new and

exciting ways to harness the technology and make it useful to end-users.

There are many barriers to learning how to play the piano. One such barrier is learning

how to read the sheet music. This requires time and effort, and the ability to mentally trans-

late notes on a page into key presses with your hands. Without being able to read sheet

music, it is difficult to learn new songs, and even once you have learned, it can take time to

perform the translation that allows you to actually play the song correctly.

Augmented reality could remove this barrier through creating a learning assistant that can

take any MIDI file and augment the notes with the correct timing over a piano using an

AR headset. MIDI files are available for almost every sheet music that has been produced.

Therefore, this would allow students of any level to learn to play almost any song on the

piano, in perfect time and without having to be able to read sheet music.

It could achieve this through creating a 3D representation of the song from the MIDI file.

Then tracking the piano itself using a computer vision algorithm presented in Section 4.1.

Finally, after the piano is found, the 3D representation would be augmented over the piano

to give the appearance of the notes lining up with the piano keys.

The algorithms of this dissertation could then be used for identifying if their intended key

changes actually occurred. Using this systems algorithm, the application could give feedback

to the user through colouring the keys green when keys were pressed correctly and red when

they were missed. Thereby completely virtualizing a piano teacher using the algorithms of

this dissertation and expanding them into augmented reality.
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7.4 An Improved Skin Detection Algorithm

Although the skin detection algorithm performance was satisfactory, explicit skin defined

regions can be problematic for different races due to varying skin types. For instance, in the

test videos used in this dissertation, the skin type was caucasian.

A more appropriate solution to include these skin type would be to learn user’s skin colour

in the initial setup. This could be achieved in a number of ways for example: asking the

user to play their hands in a certain position and calculating their skin pixels, or calculating

the pixel values of moving objects in the skin that are not keys, i.e., hands. Using this skin

sample space, an algorithm such as back-projection would identify skin pixels like in Section

5.2. Using a technique known as Back-projection, a histogram of the sample space could be

created, normalise the sample space so that the maximum number is 1, and back-project the

normalised histogram onto each frame. The result is a probability image that indicates the

probability for each pixel in the frame belonging to that sample space. However, due to time

this approach could not be developed and therefore has been left as future work.
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APPENDIX A

Metric for similarity in music

A musician using this application will not only be concerned whether a note is found or

missed, but to what degree the application has failed. There may be a loss of pitches, dura-

tions, dynamics, etc. Often in musical theory, equivalence is not as important as similarities.

Although there are exact transformations in musical theory such as transposition. Often rep-

etition of the motif (a dominant or recurring idea in a musical work) is through resemblance

in some informal way. Therefore, there is a need to compare two musical piece similarities

to some degree. In computer science and related fields, a similarity is often measured by

the inverse of some distance formula. In 1992, Keith S. Orpen and David Huron wrote a

paper on the ”Measurements of the Similarities of Music” through a quantitative approach

for non-parametric representations. The paper discusses the use of the Damerau-Levenshtein

metric otherwise known as the edit distance.

The edit distance algorithm is defined as the minimum edit distance between two strings

known as the source and target. The algorithm defines three operations: insertion, deletion,

and substitution. A dissimilar substitution is defined as the replacement of a letter in the

source that is different from the current source letter. Each operation can be assigned a

numeric penalty based on the magnitude of the operation. For example, each insertion could

have a penalty of +1, deletion a penalty of +1, and substitution a penalty of +1. However,

a similar substitution can be thought of as an insertion and a deletion, if a substitution were

assigned a penalty of +2 it would make it redundant.25

1
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The following equation (1) is taken from26 and describes the algorithm. To express the

edit distance of string a to b by da,b(i, j) I define an index i of a and an index j for b such

that a recursive function is defined as

da,b(i, j) =



max(i, j) ∗1

min



da,b(i− 1, j) + 1

da,b(i, j − 1) + 1

da,b(i− 1, j − 1) + 1(ai 6=bj)

da,b(i− 2, j − 2) + 1

∗2

min


da,b(i− 1, j) + 1

da,b(i, j − 1) + 1

da,b(i− 1, j − 1) + 1(ai 6=bj)

∗3

(A.1)

*1 : if min(i, j) = 0,

∗ 2 : if i, j > 1 and ai = bj−1 and ai−1 = bj

∗ 3 : otherwise.

where 1(ai 6=bj) is the indicator function equal to 0 when ai = bj and equal to 1 otherwise.

Each recursive call matches one of the cases covered by the Damerau–Levenshtein dis-

tance:

• da,b(i− 1, j) + 1 corresponds to a deletion (from a to b).

• da,b(i, j − 1) + 1 corresponds to an insertion (from a to b).

• da,b(i− 1, j − 1) + 1(ai 6=bj) corresponds to a match or mismatch, depending on whether

the respective symbols are the same.

• da,b(i− 2, j − 2) + 1 corresponds to a transposition between two successive symbols.

The Damerau–Levenshtein distance between is then given by the function value for full

strings: da,b(|a|, |b|) where i = |a| denotes the length of string a and j = |b| is the length of
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b. As proved by.26

The performance of the algorithm is:

• Time: O(ab)

• Space: O(ab)

• Backtrace: O(a + b)

Figure A.1: Input and output of the edit distance algorithm

Using this algorithm, I can compute the similarities of my application’s sheet music and

the real sheet music. The target file will be a ground truth MIDI file recorded from an elec-

tronic piano that supports MIDI transcription. The source which will be the output MIDI

file from my application of that same recording. The edit distance will be performed on the

source to calculate the minimum distance to transform it into the target. The two inputs

for this algorithm will be the source and target MIDI files after they have been converted

to humdrum files as shown in Fig. A.1. Depending on the information extracted from the

MIDI, Keith S. Orpen and David Huron showed that similarity could be computed for relative

pitches, semitone intervals, diatonic intervals, harmonies, dynamics, etc. Using the humdrum

application designed by Orpen and Huron, I can convert all note value data tokens into inte-

gers. By not limiting yourself to the ASCII table a note represented as C# can correspond

to an integer value rather than two separate ASCII values 0x43 and 0x23. In my case I will

use the humdrum application to compare a note’s value and their duration. For example the
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following passage: C#, D, F, D, A, C# can be represented as 1, 2, 3, 2, 4, 1 and can be

compared to another passage that uses the same data token conversion to find the similarity

based on the edit distance. The result of this edit distance will be a closed interval [0, 1]. 1

indicating equivalence and 0 indicating no degree of similarity.
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