
An Empirical Case Study of Technical Debt

Management: A Software Services Provider

Perspective

David O’Keeffe

A dissertation submitted to the University of Dublin

in partial fulfilment of the requirements for the degree of

MSc in Management of Information Systems

1st September 2017

i

Declaration

I declare that the work described in this dissertation is, except where otherwise stated,

entirely my own work, and has not been submitted as an exercise for a degree at this or

any other university. I further declare that this research has been carried out in full

compliance with the ethical research requirements of the School of Computer Science and

Statistics.

Signed: ______________________

David O’Keeffe

1st September 2017

ii

Permission to lend and/or copy

I agree that the School of Computer Science and Statistics, Trinity College may lend or

copy this dissertation upon request.

Signed: ______________________

David O’Keeffe

1st September 2017

iii

Acknowledgements

I would like to specially thank my family and my partner, Nicola, for their patience and words

of encouragement over the past two years.

I would also like to thank my supervisor, Diana Wilson, for her advice and guidance whilst

undertaking this dissertation.

Finally, I would like to thank the participants that took part in this research as without them

this dissertation would not have been possible.

iv

Abstract

Financial debt plays an important and positive role in our economy under normal conditions.

In software development, the “Technical Debt” (TD) metaphor is gaining traction amongst

software practitioners and researchers in recent years. The objective of this study is to

investigate how senior software practitioners with over ten years’ experience understand

TD and explicitly conduct technical debt management (TDM) in the context of an Irish

software services provider. In this qualitative study, one Irish software development provider

is studied to gather empirical evidence on TD understanding and how TDM is conducted.

An exploratory case study method is used for data collection and analysis of the case

organisation by conducting interviews with 14 software practitioners and examining 34 case

organisation documents. The main findings suggest that understanding and attitudes

towards TD and TDM are generally positive. Organisational factors that influence TDM

include risk appetite, culture, client relationship and management commitment. Six main

TDM techniques are used for eight TDM activities. Finally, a framework for TDM is proposed

based on the research findings. There is a requirement for identifying methods to overcome

the identified TDM challenges. TD needs to be managed and controlled effectively to

sustain software development and to ultimately achieve business objectives. Future

studies should incorporate empirical studies to validate TDM techniques in genuine

software development projects for specific industries.

Keywords: Technical Debt Management, Software Engineering, Organisational Factors

Software Debt, Technical Debt Techniques, Technical Debt Challenges

v

Table of Contents

Chapter 1: Introduction ... 1

1.1 Background to the Study ... 1

1.2 Significance and Rationale of the Research .. 3

1.3 Research Question ... 4

1.4 The Scope of the Research ... 4

1.5 Beneficiaries of this research .. 5

1.6 Chapter Structure .. 5

Chapter 2: Literature Review .. 7

2.1 Introduction ... 7

2.2 What is Technical Debt? ... 8

2.3 Technical Debt Management (TDM) .. 12

2.4 Attitudes Towards TDM ... 17

2.5 Organisational Factors and TDM ... 19

2.6 TDM Techniques ... 22

2.7 TDM Challenges ... 26

2.8 Conclusion .. 27

Chapter 3: Research Methodology... 28

3.1 Introduction .. 28

3.2 Research Purpose ... 28

3.3 Research Questions .. 28

3.4 Research Methodologies ... 29

3.5 Data Collection .. 37

3.6 Data coding and analysis .. 41

3.7 Ethical Considerations... 43

3.8 Validity and Reliability ... 43

3.9 Methodology Limitations .. 45

3.10 Lessons learnt ... 46

3.11 Conclusion .. 47

vi

Chapter 4: Findings and Analysis .. 48

4.1 Introduction ... 48

4.2 Profile of the Case Study Organisation .. 48

4.3 Interviews .. 48

4.4 Document & Textual Analysis .. 66

4.7 Conclusion .. 81

Chapter 5: Conclusions and Future Work ... 83

5.1 Introduction ... 83

5.2 Answering the Research Question .. 83

5.3 Research Findings and Discussion ... 83

5.4 Contribution to Research Topic ... 89

5.5 Limitations and Threats to Validity ... 90

5.6 Implications for Future Research ... 91

5.7 Summary... 91

References ... 92

Appendices .. 107

vii

List of Tables

Table 1 – Searched Databases ... 7

Table 2 - TDM activities and the number of related studies ... 14

Table 3 – Criteria for Judging Qualitative Research... 43

Table 4 – Adopted Research Methodology Summary .. 47

Table 5 - Interview Information .. 50

Table 6 - Example of the Data Coding Process ... 52

Table 7 – Document Search Result Categories ... 67

viii

List of Figures

Figure 1 - Search volume for the term “technical debt” since 2004 to present 3

Figure 2 – Conceptual Model of TD ... 9

Figure 3 - Technical Debt Quadrant .. 11

Figure 4 – McConnell’s TD taxonomy .. 11

Figure 5 – Reduce Accidents and Control Essence (RACE) .. 13

Figure 6 - Theoretical Framework of Technical Debt ... 16

Figure 7 - Positive Feedback Loop .. 17

Figure 8 – Cost-Benefit Equation ... 24

Figure 9 – Cost-benefit prioritisation matrix ... 24

FIGURE 10 – TD Prioritization Quadrant ... 25

Figure 11– The Research ‘Onion’ (Saunders at al., 2007) ... 29

Figure 12 – Deductive Process.. 32

Figure 13 - Inductive Process .. 33

Figure 14 - Holistic Case Study (Left) and Embedded Case Study (Right) 35

Figure 15 - Miles and Huberman approach to data coding for data analysis 41

Figure 16 – The Data Analysis Spiral .. 42

Figure 17 - Role and Experience of Participants .. 53

Figure 18 – Participants’ Understanding of TD .. 54

Figure 19 – Participants’ Attitudes Towards TD ... 55

Figure 20 – Classification of TD Examples Offered by Participants 55

Figure 21 – Organisational Factors That Influence TDM ... 56

Figure 22 – Techniques Per TDM Activity ... 59

Figure 23 – Percentage of TDM Activity References by Participants 64

Figure 24 – Document Search ... 66

Figure 25 – Document Filtering Categories ... 67

Figure 26 – Case Study Database ... 68

Figure 27 – Document Meta Data Summary.. 69

Figure 28 – Creation Timeline of Analysed Documents ... 69

Figure 29 – Explicit TD Definition .. 70

Figure 30 – Document Authors’ Attitudes Towards TD .. 71

Figure 31 - Classification of TD Examples Outlined in Documents 72

Figure 32 – Factors That Influence TDM ... 73

Figure 33 – sonorqube report summary ... 75

Figure 34 – System Automated Unit Test Coverage Diagram ... 75

Figure 35 – RAG Status .. 77

Figure 36 – Identified TD ... 78

file:///C:/Users/okeeffed/Google%20Drive/Masters%20Year%202/Dissertation/Dissertation%20Drafts/Submission/Dissertation_David_OKeeffe.docx%23_Toc491803609
file:///C:/Users/okeeffed/Google%20Drive/Masters%20Year%202/Dissertation/Dissertation%20Drafts/Submission/Dissertation_David_OKeeffe.docx%23_Toc491803621

ix

Figure 37 – Percentage of TDM Activity References by Documents 80

Figure 38 – Framework of TDM from Findings .. 82

Figure 39 - Percentage of TDM Activity Reference % Data Source Comparison 88

x

Abbreviations

LEO Lyons Electronic Office

TD Technical Debt

TDM Technical Debt Management

SDLC Software Development Life Cycle

IT Information Technology

ICT Information Communications Technology

XP Extreme Programming

CMM Capability Maturity Model

ASA Automated Static Analysis

CAQDAS Computer-Assisted Qualitative Data Analysis Software

T&M Time and Materials

DSCR Debt Service Coverage Ratio

TDD Test-Driven Development

KT Knowledge Management

VOIP Voice Over Internet Protocol

1
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

1

Chapter 1: Introduction

This research examines the understanding and management of technical debt (TD) in a

real software development setting. It aims to explore how TD is being managed by software

development practitioners, the organisational factors that influence TDM and any

challenges that it presents.

1.1 Background to the Study

The first computer to be used for commercial business applications in 1951 (Lavington et

al., 2009), the “LEO I”, was initially used to calculate the costs of a large catering and food

manufacturers’ weekly bakery distribution run. The functionality of LEO I evolved to include

payroll and inventory calculations shortly after its introduction and eventually progressed to

conducting scientific computations. continue to evolve. The phenomenon of software

evolution has since become an important topic.

Lehman (1980) identified a set of observations in the evolution of proprietary software. The

laws are referred to as Lehman’s Laws. The laws have continued to develop and there are

now eight in total (Lehman, 1996; Liguo et al., 2013). The laws describe a balance between

forces progressing new software developments and those that obstruct progress. Two of

these laws which are particularly relevant to TDM are defined below.

1. The law of continuing change - Any software system used in the real-world must

change or become less and less useful in that environment

2. The law of increasing complexity - As time flows forwards, entropy increases. That

is, as a program evolves, its structure will become more complex. Just as in physics,

this effect can, through great cost, be negated in the short term.

(Lehman, 1980)

Software development and support projects are constrained by skills, budget and deadlines.

Compromises are often made to manage these constraints throughout the software

development lifecycle (SDLC). A shortcut or a workaround can give organisations a benefit

in the short-term with a more expedient software release to the customer and possibly an

advantage over competitors in time-to-market (Kruchten et al., 2012; Yli-Huumo et al.,

2015). These shortcuts incur a “technical debt” in the software that should be repaid to

2
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

2

restore the quality of the software system in the future to avoid “interest” in the form of

decreasing productivity of the development team and maintainability (Seaman et al., 2012).

Competitive markets often force organisations to deliver software to short schedules and

shorter delivery cycles. This continuous pressure creates a cycle of TD accrual which is

often not repaid due to new customer requirements and maintenance and support required

for the existing system. Delivering perfect code is not often achievable due to the above

constraints. Doing so may risk delays and customer dissatisfaction. This could ultimately

have implications for the software service providers’ commercial interests (Yli-Huumo et al.,

2016). Due to this, it is necessary for organisations to develop procedures and processes

to contain and control the TD. Technical Debt Management (TDM) consists of activities,

processes, techniques, and tools that can be used to identify, measure, prevent and reduce

TD in software systems (ibid).

The Information & Communication Technology (ICT) sector in Ireland directly employs over

105,000 people. Computer services are responsible for 22% of our national exports. It is

one of the fastest growing sectors of the Irish economy, with employment up 40% since

2010 (collinsmcnicholas.ie, 2016). Software service providers have been a popular choice

for Irish businesses in recent years. Firms are increasingly choosing to outsource their

Information Technology (IT) support, development and advisory requirements to software

service providers. A recent survey shows 51 percent of Irish companies are increasing

software spending and are now five percent above the global average (Taylor, 2017). In

2016, the Irish government department of public expenditure and reform (Per.gov.ie, 2016)

had purchase orders totalling just under €17 million for shared software services. This figure

consists of purchase orders of €20,000 and over and does not include purchase orders

under this figure. Due to this trend, the role of the software service providers in the

management of TD is an increasingly important one (Babu, 2016).

3
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

3

1.2 Significance and Rationale of the Research

There is an increasing dependence on information systems in both the society and the

economy with software evolution success and maintenance becoming more critical (West,

2015). Central to software evolution success is the controlling and management of TD.

Interest in the TD concept has become more prevalent in recent years as illustrated in

Figure 1. Currently, the term is in peak popularity. However, there is a lack of empirical

evidence about how to manage this TD in real-life software development settings (Li et al.,

2015).

Numbers represent search interest relative to the highest point on the chart for the given region and time. A value of 100 is

the peak popularity for the term. A value of 50 means that the term is half as popular. Likewise, a score of 0 means the term

was less than 1% as popular as the peak (Google Trends, 2017).

FIGURE 1 - Search volume for the term “technical debt” since 2004 to present

The research objective of this work is to investigate the understanding of TD and how TDM

is conducted by senior software practitioners in an Irish software company. This

investigation aims to:

1. Examine the understanding of TD in a real setting

2. Explore the attitudes of senior software practitioners towards TD and its

management

3. Identify the organisational factors that influence the TDM activities

4. Discover the techniques used to conduct TDM activities

5. Identify the challenges of explicit TDM

0

10

20

30

40

50

60

70

80

90

100

P
o

p
u

la
ri

ty

Search volume for “Technical Debt”

1 Jan 2004 1 Jan 2008 1 Jan 2012 1 Jan 2016

4
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

4

It is hoped that this experimental research can bring a deeper insight into the use of explicit

TDM by software practitioners and will ultimately lead to greater efficiencies across software

delivery. This may have an impact on cost of the software development process and may

result in efficiencies and ultimately cost savings for public and private organisations.

1.3 Research Question

The following primary research question will be examined in this study:

 “How do senior software practitioners with over ten years’ experience understand TD and

explicitly conduct TDM in the context of an Irish software services provider?”

Four secondary questions can be derived:

RQ1. How do senior software practitioners view the TD concept and its management?

RQ2. What organisational factors influence the management of Type II TD?

RQ3. What methods and techniques are used for explicit TDM activities?

RQ4. What challenges exist in the management of TD?

1.4 The Scope of the Research

This empirical qualitative research focuses on the exploration of how TDM is perceived and

conducted in a real setting. Senior software practitioners with ten or more years’ software

development experience were chosen for the semi-structured interviews. The reason for

this is due to observation by Taksande (2011) that more concrete and detailed experiences

with TD could be gathered and studied form participants who had more than ten years of

experience in an IT setting. The research also focuses mainly on intentionally accrued

source code TD as opposed to TD which was accrued inadvertently. This will be discussed

further in section 2.2.2.

5
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

5

1.5 Beneficiaries of this research

This investigation provides an insight into how TDM is conducted in an Irish software

services provider across multiple software development and support projects. Thus, the

primary beneficiaries are expected to be software practitioners who work as part of software

development and support teams to deliver software products and services to customers.

Chief information officers would benefit from this research as they are responsible for their

organisations information systems TD. It is also pertinent to researchers investigating the

topic of TD and its related management activities.

1.6 Chapter Structure

The dissertation is structured as follows:

Chapter 1: Introduction

This chapter introduces the context and rationale for choosing the research question. It

outlines the relevant background to the research question and why the chosen focus is

important. It also outlines the scope of the study and who is likely to benefit from the

findings.

Chapter 2: Literature Review

This chapter reviews important and relevant literature relating to the research question

and provides a frame of reference to existing TD literature, stressing the lack of empirical

studies and definitions. The chapter explores the TD definition, the TD phenomenon, TD

taxonomy, factors influencing TDM, techniques for conducting TDM and challenges that it

presents. It also explores the theoretical background to the research question.

Chapter 3: Research Methodology

This chapter provides a brief overview of the research philosophies, methodologies and

strategies available. It explains the reason for the chosen research methodology as well

as the merits and limitations of choosing such an approach.

6
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

6

Chapter 4: Findings and Analysis

This chapter presents the research findings and analyses the data that was collected from

the interviews and documents.

Chapter 5: Conclusions and Future Work

This chapter concludes the dissertation by discussing the findings of the research and

interpreting the findings in the context of the existing literature. It also determines whether

the research findings have answered the research question and contains

recommendations for potential future research areas in the field.

7
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

7

Chapter 2: Literature Review

2.1 Introduction

This chapter presents a comprehensive review of the literature relevant to TD and its

management. This chapter will highlight the key themes and trends to emerge from previous

recent studies on the above areas of TD. The literature review includes journal articles,

conference proceedings, blogs, books and edited volumes. The research goes in-depth to

focus on the TD understanding, organisational factors that impact TDM, techniques for TDM

and challenges that TDM presents. Relevant literature was identified by searching

databases (Table 1) for terms such as “Technical Debt” AND “Management” excluding

articles that were not available in the English language (102 articles for the search string

‘t:(technical debt) (management) l: eng)’.

TABLE 1 – Searched Databases

ID Database Searched Selected

DB1
IEEE Xplore
Digital Library

YES YES

DB3 ScienceDirect YES YES

DB4 Scopus YES YES

DB5 SpringerLink YES YES

DB6
ACM Digital
Library

YES YES

DB7 Web of Science NO NO

This literature review examines the existing research under the following topics:

• What is Technical Debt?

• Technical Debt Management (TDM)

• Attitudes towards TDM

• TDM Organisational factors

• TDM Techniques

• Challenges presented by TDM

8
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

8

2.2 What is Technical Debt?

The purpose of this section is to explain the term “Technical Debt” (TD) through concepts

defined by other authors and through examples in existing literature.

2.2.1 Technical Debt Definition

The definition of TD has been interpreted differently, refined and presented by various

researchers and practitioners (Kruchten et al, 2013). Despite this, there is still no agreed

consensus in both technical (McConnell, 2007; Fowler, 2009; Martin, 2009) and scientific

(Brown et al., 2010; Codabux and Williams, 2013; Izurieta et al., 2012) literature regarding

what could be considered a TD case due to the original metaphors spectrum of

interpretations. Martin (2009) interprets the TD metaphor as trade-offs that the technical

and business teams must consider to be able to meet time constraints and customer

expectations. TD should refer only to cases where poor designs are defined for strategic

reasons but correctly implemented. In contradiction to McConnell (2007), Martin proposed

dirty code should not be considered TD. Siebra et al (2016) agree that TD should be

associated only with intentional decisions happening in the code base, with messy code not

counted as TD (See Figure 2).

Others believe that old technologies in legacy software should also be classified as TD

(Norton, 2009; Fowler, 2009). Guo et al. (2014) hold a broad view of the TD phenomenon,

having defined TD as any immature, incomplete or inappropriate activity that affects the

subsequent development and maintenance of software. Theodoropoulos et al (2011, p.45)

expanded this definition with the inclusion of ‘any gap in the technology infrastructure’. The

TD metaphor has limits however. Rooney (2010) argues that it is not sufficient to describe

TD which is accrued using modern development approaches such as Extreme

Programming (XP). Debt accumulated this way is often paid off shortly after it has been

incurred. The XP approach is rarely used in real software development settings however.

Allman (2012) believes people who decide to accrue TD are usually not the ones who repay

the debt. This may encourage people to take more TD to accelerate software development.

Schmid (2013) points out that there is no standard TD unit of measurement and that the

interest amount needing to be repaid is dependent on the future development that is

effected by the TD.

9
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

9

FIGURE 2 – Conceptual Model of TD

(Siebra, 2016).

In recent literature, researchers are attempting to define TD in software engineering sub-

area contexts. Alves et al (2014; 2016) summarised fifteen identified TD types in a mapping

study findings which include service debt, build debt and process debt. Ernst (2012)

examined TD in software requirements gathering. TD in this area is defined as the distance

between the system implementation and the actual state of the world (ibid). Li et al (2015)

focused on architectural TD. More recently, Maldonado et al (2015) examined self-admitted

TD sub-areas by analysing 33,000 developer comments in genuine source code.

Presently, the metaphor is still developing. Siebra (2016) describes TD as a method to

manage and communicate long-term consequences that some technical decisions may

cause. Heinz (2016) compares working on a technically indebted software system to

running through mud. One consequence is low speed, because the mud has high friction.

The second consequence is that mud is unstable, making injury likely due to falling. These

consequences are metaphors for changing systems that have high TD. Due to TD, nearly

every aspect of the system is more difficult to develop, slower, and more dangerous as

there is a higher failure risk in production and problematic system maintenance.

10
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

10

Although the TD metaphor is intuitive, the differing meaning interpretations enforces the

argument that the term is not well defined at present. Different interpretations and uses of

TD concepts is facilitating over-extension. Schmid (2013) approached TD metaphor limits

and the problems that arise when over-extending its applicability. Schmid (ibid.) proposes

ways of handling this weakness in TD definition, based on his own perspective and

experience, rather than from a formal theory. In a study conducted by Ernst et al (2015), it

was found that TD is commonly understood at an abstract level to convey urgency about

accumulating software costs. However, software practitioners do not agree on what project

elements constitute TD. The most recent annual seminar on managing TD developed the

following working TD definition:

 “In software-intensive systems, technical debt is the collection of design or implementation

constructs that are expedient in the short term, but set up a technical context that can make

future changes more costly or impossible. Technical debt presents an actual or contingent

liability that impacts internal system qualities, primarily maintainability and evolvability.”

(Nord, 2016)

The above TD definition restricts TD to phenomena closely connected to source code, such

as code design and architectural debt. This leaves out other important TD types that are at

least partially comparable to financial debt but are outside the scope of this research, e.g.

People Debt, Process Debt, and Infrastructure Debt (Avgeriou et al., 2016). Overall, current

TD conceptualizations differ. There is no clear and universally accepted definition. This is

highlighted by the varying explicit and implicit TD definitions of in academic literature (Tom

et al., 2013). The TD metaphor interpretations lack clarity, definition and represent a barrier

to efforts to model and conduct TDM. Tom et al (2013) cited a need to rigorously define and

validate the TD concept in both the practitioner community as well as academia. A literature

critique in TD classification is outlined in the Section 2.2.2.

2.2.2 Technical Debt Taxonomy

Early TD research focused on establishing the foundations by conceptualising the

phenomenon and classification (Guo et al, 2014). The literature broadly agrees that there

are two primary TD categories, although the categories naming convention vary. McConnell

(2007) describes them as intentional and unintentional whilst Fowler (2009), positions them

as deliberate versus inadvertent. Most debt categories identified in Fowler’s TD quadrant

(Figure 3) can be mapped to the debt ‘types’ in McConnell’s TD taxonomy (Figure 4). For

example, Fowlers reckless-inadvertent debt is equivalent to McConnell’s unintentional debt

11
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

11

(Type I); similarly, reckless-deliberate

debt is the same as intentional short-

term debt (Type II.A) and deliberate-

prudent debt maps to intentional long-

term debt (Type II.B). However, Fowlers

TD quadrant captures a TD type that

does not appear in McConnell’s

taxonomy: prudent-inadvertent debt.

Prudent-inadvertent debt is TD that a

project accrues when it develops in a

manner that reflects the team’s present

knowledge of the problem, but is

recognized as TD after the team has

acquired more knowledge about the

problem. This categorisation was identified as the most common TD categorisation in one

study and may be explained by agile methodology popularity and the failure to implement it

well around that time (Ernst, 2015). These categories will be referenced throughout this

paper as the TD accrual categories, with this research focusing on deliberate\intentional TD

accrual.

McConnell (2007), in his blog, expanded Cunningham’s metaphor into the following TD

taxonomy:

FIGURE 4 – McConnell’s TD taxonomy

FIGURE 3 - Technical Debt Quadrant

(Fowler, 2009)

i. Unintentional Debt - Debt incurred unintentionally due to low quality work

(Non-strategic)

ii. Intentional Debt - Debt incurred intentionally (strategic)

a. Short-term Intentional Debt - debt usually incurred reactively, for

tactical reasons

i. Focused Short-Term Intentional Debt - Individually identifiable

shortcuts (like a car loan)

ii. Unfocused Short-Term Intentional Debt - Numerous tiny

shortcuts (like credit card debt)

b. Long-term Intentional Debt - Debt usually incurred proactively, for

strategic reasons

12
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

12

TD is often seen as a negative concept in software development (Lim et al., 2012; Yli-

Huumo et al., 2014). However, TD can have both positive and negative impacts on a

software project. TD that is intentionally incurred to achieve short-term benefit, can be

constructive (Allman, 2012a) with the caveat that the TD cost is visible and controlled.

Software developers view creating shortcuts and non-scalable solutions as increasing the

complexity within the code base (Yli-Huumo et al., 2014). When the code base starts to

accumulate too much TD that is not fixed subsequently, the development becomes more

challenging. This is because the shortcuts are not designed to work well with other parts of

the code base. Complexities in the code base can decrease system quality and may result

in reduced productivity when attempting to implement new solutions and features (Yli-

Huumo et al., 2015). Type II and Type II.B are forms of TD usually encountered at the

architectural level. TD is intentional, deliberate and prudent (Fowler, 2009). For example, in

order to overcome some difficulty, market entry or partner release. As stated in the above

section, this research will focus on Type II TD.

2.3 Technical Debt Management (TDM)

2.3.1 What is TDM?

As mentioned in section 1.1, Lehman (1980) adapted the second law of thermodynamics

measure of entropy to software development which generated the software entropy

concept. This is the phenomenon that as a software-reliant system is modified, its disorder,

or entropy, tends to increase. As the software grows, so does TD. One method to measure

this increasing complexity is McCabe’s (1976) Cyclomatic Complexity metric. This metric is

based on the number of linearly independent paths for a source code section. It aims to

quantify the complexity of a method or method in a single number (ibid). Thus, the

management of this code complexity is recognised as being an important task (Agile

Alliance, n.d.). TDM entails identifying the sources of extra costs in software maintenance

and analysing when it is profitable to invest effort into improving a software system (Tom et

al, 2013). TDM is becoming the most influential driver of software engineering advancement

according to Nord (2016). Sustaining innovation pace while ensuring high software quality

therefore involves establishing an explicit TDM strategy as a core software engineering

practice throughout the SDLC (Nord, 2016). Striving for zero TD in an industrial context is

acknowledged as being unrealistic, and maybe detrimental. Investment to reduce TD to

zero would be unproductive (See Figure 5). A balance must be struck between TD an

13
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

13

overengineering (Ebert, 2007). Establishing TDM techniques are therefore necessary to

guide the TD repayment and the refactoring opportunities ranking. These are the provision

of design decisions that will improve the quality of software.

FIGURE 5 – Reduce Accidents and Control Essence (RACE)

Source: Ebert (2007)

The Managing Technical Debt workshop series, which begun in 2011, has been a major

contributor to TDM research. Avgeriou et al. (2016) identified a gap in TDM research in

relation to development and organisational context. They cited the need for studying what

aspects of context affect how TD is best managed. TD maturity was recognised as an area

that required further research. The need for a maturity model that depicts the levels at which

TD could be managed was also cited (ibid). Yli-Huumo et al. (2016) subsequently adapted

the capability maturity model (CMM) (Paulk et al., 1993) to TDM activities.

2.3.1.1 TDM Activities

Eight TDM activities were identified by Li et al (2015) in a systematic mapping study finding

to understand the current state of TDM. This finding was later corroborated by Alves et al

(2016). The TDM activities are the following: (1) TD identification detects TD caused by

intentional or unintentional technical decisions in a software system through specific

techniques, such as static code analysis; (2) TD measurement quantifies the benefit and

14
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

14

known TD cost in a software system through known technique, or estimates the overall TD

level in a system (3) TD prioritization ranks identified TD according to certain predefined

rules to support deciding which TD items should be repaid first and which TD items can be

tolerated until later releases (4) TD monitoring watches the cost changes and unresolved

TD benefit overtime; (5) TD repayment resolves or mitigates TD in a software system by

techniques such as reengineering and refactoring; (6) TD representation / documentation

provides a way to represent and codify TD in a uniform manner addressing the particular

stakeholder concerns; and (7) TD communication makes identified TD visible to

stakeholders so that it can be discussed and further managed. The eighth activity identified,

(8) TD Prevention, aims to prevent potential TD from being incurred. The literature relating

to each TDM activity is outlined in Table 2 (ibid). Alves et al (2016) found that the various

TDM activities received different levels of attention, with TD repayment, identification, and

measurement receiving the most attention. TD representation/documentation received the

least attention.

TABLE 2 - TDM activities and the number of related studies

TDM activity No. of studies %

TD repayment 59 63

TD identification 51 54

TD measurement 49 52

TD monitoring 19 20

TD prioritization 17 18

TD communication 17 18

TD prevention 9 10

TD representation/documentation 4 4

Source: (Li et al., 2015)

TDM approaches address ad-hoc cases or concrete TD types (Codabux, 2013; Letouzey,

2012; 2016). Depending on the TD type, different approaches for management may be

required (Guo, 2014). Few approaches analyse TDM from a holistic perspective.

Fernadez-Sanchez (2015) suggests that a model focused on a single aspect is too

specific to support decision making. In summary, the current TDM understanding includes

some limited techniques for managing TD. There is a requirement for more empirical

evidence from realistic software development settings (Li et al. 2015; Alves et al., 2016).

15
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

15

2.3.2 Current Empirical TDM Research

Li et al (2015) identified that there are many studies on individual TDM activities and various

components. Few empirical studies on the topic and even less that focus on holistic TDM

in a real-life software development setting with (Yli-Hummo et al., 2016; Alves et al., 2016)

being the only empirical studies to-date. Guo et al (2011) proposed a framework to facilitate

TDM in an explicit way from a cost management perspective. The framework centres on a

TD list which contains TD items. Each item represents a task that was left undone, but that

runs a risk of causing future problems if not completed (Seaman et al, 2012). An item has

a defined property set such as the definition, location, interest, principal, responsibility.

There are two issues with this method is that in practice. 1) TD items may not be

independent of each other and 2) TD instances can be described as individual items which

may not always be the case (ibid). It is unknown if this approach is used in real-settings.

A study investigating how TDM decision-making was conducted by Klinger et al (2011).

Although the study was conducted from a software delivery enterprise perspective, a small

sample size of four architects was used. The findings concluded that decisions for TDM

were largely ad-hoc and informal. A significant gap between technical and non-technical

stakeholders exists in terms of TD communication and general discussion regarding TD

(ibid).

There has been a larger number of research studies and development of tools to assist with

TDM. Automated source code analysis tools such as SonorQube and DebtFlag have been

developed to assist with one or more of the requirements for TDM. SonorQube have been

applied in a few studies to both identify and measure TD in source code repositories with

only one study regarding DebtFlag (Holvitie et al., 2013) which is a tool that focuses on

identifying, documenting and tracking TD. Interestingly, the DebtFlag paper has three

citations in total since publication, which are all self-citations by the papers author (IEEE

Xplore Digital Library, 2017). The need for empirical studies investigating how TDM is

conducted in organisations is evident (Li et al., 2015). Recently, the trend has been that

the average TDM study rigor and relevance has increased. The TD research community is

aware of this gap and is working to improve it (Fernadez-Sanchez et al, 2017).

16
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

16

2.3.3 Theoretical Framework for TDM

Tom (2013) rebranded McConnell’s TD types and created a theoretical framework for TD.

The aim was to provide a holistic TD view. The framework illustrated in Figure 6 comprises

a set of TD dimensions, attributes, precedents and outcomes.

FIGURE 6 - Theoretical Framework of Technical Debt

Source: Theoretical framework of technical debt (Tom, 2013).

Tom (2013) found that TD has a negative impact on morale, productivity, quality and risk.

This means that TD is not only a financial metaphor but can also be associated with real

monetary cost. Software developer time and particularly outsourced development time, is

expensive. When this developer time is ineffectively utilised, the development teams’

velocity is slowed as they are forced to spend time fixing regressions rather that developing

17
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

17

new features. This is illustrated as a positive feedback loop of lowered velocity, higher

deadline pressure, and greater TD (Figure 7). This figure should make sense to developer

and client alike (Agile Alliance, n.d.).

FIGURE 7 - Positive Feedback Loop

(Adapted from Agile Alliance, n.d.).

Toms’ study also concluded that common sentiment exists regarding an increased focus on

explicitly associating costs with TD. When a decision is made, either directly or indirectly to

accrue TD, there is an increased focus on recording the debt and the costs can be attributed

to those decisions. It is also conceded that there is an existing challenge in quantifying TD

in any of its forms. There is no way of proving what developers intuitively know to be

significant TD especially with the many confounding variables in place. A developer could

have completed a software development task quicker but would not know if the code would

have had more or less bugs, what those bugs would be, and if they would have high impact.

One of the precedents in Figure 6 is attitudes, which will be discussed in the following

section.

2.4 Attitudes Towards TDM

Organisations differ in their philosophies about TD usefulness like financial debt. Some

endeavour to avoid accruing any debt, while others view debt as something to be leveraged

and use it wisely (Ramakrishnan, 2013).

McConnell (2013) stated that attitudes towards debt can be religious or aesthetic. Business

staff tend to be optimistic about debt whereas technical staff were more inclined to be

pessimistic about debt. This sentiment based on perspective is seconded by Lim et al

(2012). However, he also stated that these attitudes are often “not conscious” (2013, p.7).

Tom et al (2013) found that the practitioners’ attitudes play a significant role in contributing

18
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

18

to TDM. Tom et al. (2013, p.1504) describes the attitudes towards TD as “general apathy”

towards TD issues as a factor in TD accrual. These attitudes influence individual decisions

to create TD and can contribute to carelessness. Carelessness can result in inadvertent TD

which does not provide leverage, unlike TD that is driven by other factors (ibid).

2.4.1 Reification Method

McConnell (2007) hypothesised that the main value of the TD term is reifying a concept that

is otherwise too intangible to be handled well. Einar (2015) states that TD is a symptom of

an underlying lack of appropriate abstractions, which in turn stems from insufficient

modelling of the problem domain. He compares TD to necessary communication that has

not taken place: discussions and decisions to resolve ambiguity and make informed trade-

offs have been swept under the rug. TD is the reification of this lack of code resolution. This

is consistent with Conway’s Law (1968) where it is posited that organisations which design

systems are constrained to produce designs which are copies of the organisations

communication structures.

2.4.2 Inevitability

Research conducted by Tom et al (2013) indicates that the practitioners focus should not

be to repay and avoid all TD but to instead focus on its adequate management. Where there

are limited resources available, some TD is inevitable and that it is possible, and necessary,

to accrue TD (ibid).

2.4.3 Explaining TD

Even though the TD metaphor simplifies the concepts that the term encapsulates, it may

not be sufficient for junior developers to grasp, let alone non-technical stakeholders or

clients (Reddy, 2016). There is also the risk that the TD term is overextended and misused

if clients lack TD understanding. Tom et al (2013) suggests that there is a need for research

to focus on how to translate the TD metaphor into literal facts that are used operationally to

manage TD in the software domain.

2.4.4 Pragmatism in TDM

Creating a minimum viable product in a short timeframe is an example of pragmatism given

by Brazier (2007) who notes that the small companies’ futures in niche markets often rely

on being first to market. TD long term consequences are not visible to the customer until it

is too late. The software company producing the software might not exist for much longer

19
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

19

unless it can deliver to the customer in the short term (ibid). Conversely, Falessi et al (2013)

identified time-to-market as an important consideration. Fernadez-Sanchez et al (2015)

discusses the paradox of how time-to-market is rarely considered by current TDM tools and

methods although it is the most referenced TD cause. In summary, a pragmatic trade-off

between software release characteristics and TD must be made to effectively manage TD

(Ramasubbu et al., 2013).

2.4.5 TDM is increasing in importance

There is support for TD attributes such as amnesty and leverage. When TD is managed,

and controlled, positive outcomes occur. TD accrual allows accomplishment of something

that is otherwise unattainable – a fundamental TD principle (Tom et al, 2013). Ernst et al

(2015) identified TDM as being a reactive activity as it needs to cause significant pain on

multiple fronts before it is addressed and stresses the ongoing explicit TDM importance.

Ramasubbu et al. (2015) recommend introducing a TD policy which is based both on the

organisation business context and the and on the technological environment in which the

firm operates.

2.5 Organisational Factors and TDM

Ramasubbu et al (2015) also highlight influential factors of an operating business

environment on a software team’s TD policy as an area in which the empirical evidence is

suggestive, but significant questions remain unanswered. Questions such as why are more

technically capable software teams more debt adverse and the quality of business

reasoning for accruing TD. TD policy must provide a framework that supports new

behaviours leading to justifying TD accrual (Brenner, 2017).

Organisational dimensions impact on IS success continue to be research from various

perspectives (Miller and Doyle, 1987, Grover, 1993, King et al. 1992; Tallon et al, 2000; Ang

et al, 2001). Snipes et al (2012) describe the decision to fix or defer TD items as dependent

on the amount of TD that has been accumulated as unintentional TD. They found that the

cost factors that influence the TD decision are: severity, existence of a workaround, fix

urgency required by a customer, effort to implement the fix, proposed fix risk, testing scope

required. These factors are listed in decreasing order of importance with severity being the

most influential factor. Other factor categories such as organisational factors need to be

empirically evaluated from a TDM perspective to assess their validity and to gain insights

on how they can be improved. Research use different terminology to describe

organisational dimensions such as contexts, variables and factors. Further examination to

20
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

20

determine how practitioners consider TDM decisions from a software services provider

perspective is also warranted. This study attempts to assess the organisational factors that

influence decision-making for TDM from a practitioner’s standpoint.

2.5.1 Management Commitment

Ward Cunningham (1992) coined the TD term to convey the extent of deterioration in the

software structure in the form of metaphors so that managers from non-technical

backgrounds can relate to the problem (Sharma et al., 2015). Top management support is

theorised as the involvement and top-level management participation in the organisations

IT activities (Jarvenpa et al., 1991). Management commitment to TD repayment is

important (Ramakrishnan, 2013).

2.5.2 Organisational Culture

The American Heritage Dictionary (2015) defines “culture” as “the totality of socially

transmitted behaviour patterns, arts, beliefs, institutions, and all other products of human

work and thought characteristic of a community or population.” Bower (2003) describes it

simply as “the way we do things around here”. Organisational culture is one of the important

determinants of IS success that IS not deeply discussed by researchers. Wiegers (1996)

discusses the essential components of both healthy and unhealthy software engineering

cultures via individual, management and organisational behaviours. There is a void in

empirical evidence as to how organisational culture influences TDM.

2.5.3 Management IT Knowledge

Data collected by Lim et al (2012) revealed that TD often resulted from decisions made by

high-level technical and non-technical managers. Software development knowledge

influences decisions to incur TD. Teams with technical leadership who had “just get stuff

done” attitudes were more likely to incur debt than those with team leaders who focused on

the software purpose (ibid).

2.5.4 Developer Mindset

Yli-Hummo et al (2016) suggested developer mindset is an influential factor for how and

when TDM is conducted. Attitudes towards TDM can sometimes be negative as developers

and managers focus is to deliver new features which leads to quick solution usage. By all

software development team members contributing to TDM it can facilitate the TDM activities

to support each other such as documentation feeding into prioritisation. Additionally, the risk

21
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

21

appetite at an individual, team or organisation level can influence decisions relating to TD

in several ways. Taking the decision to accrue even small amounts of TD can have side-

effects. ‘Broken Windows’ is a theory about crime developed by Wilson et al, (1982). It

states that when low level crimes such as vandalism are ignored, more serious crimes

occur. With software development, a similar pattern can emerge (Lash, 2014). TD can

impact on risk both positively or negatively in the short-term. Therefore, the appetite for risk

could influence the TD creation and impact on project risk (Tom et al, 2013).

2.5.5 Trust and Client Relationship

The literature categories trust in software outsourcing relationships into two parts 1)

achieving trust initially and 2) maintaining trust (Oza et al., 2006; Babar et al., 2007). A

much-cited paper studying the role of trust in outsourced IS developed projects found that

projects proceed through virtuous and vicious cycles involving trust, structure and

performance (Sabherwal, 1999). Heintz (2016) states that while unmanaged TD is a

problem, it can also be a symptom of an imbalance in the enterprise. He argues that

technical approaches to addressing the TD problem are unlikely to achieve a long-term

solution. Cultural transformations are difficult, in part, because even after we successfully

identify what must change, moving an organisation as one toward that goal can be even

more challenging. In this instance, because of a “virtuous cycle,” the effort to manage TD

can provide enterprise leaders the leverage they need. If the enterprise can hold

accountable the organisational elements on whose behalf IT now issues TD, political power

within the enterprise can be rebalanced, which would then facilitate the TD control. IT can

then assume the strategic role so necessary for enterprise success (ibid)

Other research has focused on trust as a dynamic in IS outsourcing relationships

(Heiskanen et al., 2008). An empirical study by Babar et al (2007) identified that cultural

understanding, communication strategies, contract conformance, and timely delivery are

vital factors in maintaining gained client trust. Ova et al (2006) found that the critical factors

identified for maintaining trust in an established outsourcing relationship include

transparency, demonstrability, honesty, processes followed and commitment. The findings

also suggest that trust is fragile in outsourcing relationships. The relationship between

product value and intrinsic software quality is important. Ernst (2012) argues in a position

paper that if the product is not delivering value to the client, then high intrinsic quality (i.e.

low TD) is irrelevant. If intrinsic quality is low (significant amount of debt) then the chances

of delivering valuable software in the future is likewise low.

22
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

22

2.6 TDM Techniques

Literature investigating TDM strategies, methods and techniques was non-existent in 2010

with no papers published in that year. 2011 saw a few papers being published proposing

the use of cost-benefit analysis and the portfolio approach for TDM including Gat and Heinzs

(2011) TD Assessment which uses a combination of crude techniques to formulate a plan

for TD reduction. It was not until 2012, when 16 papers were published exploring TDM

techniques, that the topic became more popular (Alves. et al, 2016). TDM approaches

should be refined significantly, while more empirical studies are needed to show evidence

of different TDM technique usage. Many TDM approaches are only mentioned in the related

primary studies. The authors have not discussed or investigated how to use those

approaches in actual cases. Ernst et al (2015) found that there are few explicit systematic

TDM practices while some TDM occurs in existing processes more often. Thus, these

approaches may not be practical enough to be used in real projects (Li et al, 2015). The

current literature for various TDM techniques discussed in the next section.

There is some overlap between TDM activities and the techniques used to carry out these

activities. Case studies can also be used to explore existing TDM notions of value in practice

(Avgeriou et al., 2016). Exploratory case studies could also be used to identify “grassroots”

approaches to TDM (ibid, p.131). For example, environments without an explicit strategy to

manage TD, but due to necessity, techniques have developed to deal with the most

important TDM issues (ibid.). Alves (2016) summarised the various techniques and

approaches for each TDM activity across fifty-eight studies which mention, propose, or use

one or more TDM approaches, TD types, and publication years. The number of studies on

approaches for different TDM activities vary. The approaches for TD identification,

measurement and repayment were mentioned, used, or proposed the most frequently in

the selected studies. Approaches for TD representation / documentation received the least

attention. The most cited management strategies are the portfolio approach and cost-

benefit analysis. These approaches have not been evaluated in a real-setting and the

number of papers identified is small at ten and eleven respectively (Alves, 2016).

2.6.1 Automated Source Code Analysis

Source code is any collection of computer instructions written using a human-readable

programming language (The Linux Information Project, 2004). Source code analysis is a

specific reverse engineering technique that extracts information from a program from its

23
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

23

source code (Tonella et al., 2007). Automated Static Analysis (ASA) tools scan source code

for violations of recommended programming practices which may decrease software

program quality. These violations should be removed through refactoring to avoid future

problems (Boolgerd et al., 2009). The most referenced tool for conducting ASA are

SonorQube and DebtFlag (See 2.3.2), which are defined as continuous inspection engines

to evaluate and manage TD. SQUALE is a quality and analysis model used in ASA.

Letouzey developed the method for evaluating (2012; 2012a) for managing TD. Fontana et

al (2016) and Guaman et al (2017), conducted research on the use of SQALE and tools for

analysis and code TD identification through static analysis. These, however, were not

empirical studies. The SQALE method has been used to perform software source code

assessments of various sizes in different application domains and programming

languages (ibid).

2.6.2 TD Items and TD List

As mentioned in Section 2.3.2, The technique of communicating TD using TD items has

been proposed by several researchers. A TD item is defined as a unit of TD in a software

system (Guo et al., 2011; 2011a; Holvitie et al., 2013, Zazworka et al., 2013). A TD item

example is a “God class”, which is an object that knows too much or does too much (Riel,

1996, p.80). The literature varies in what information should be captured in a TD item. ID,

location, author, type and description are TD item data components that have been

identified by a least four studies. Date/time, principal and interest amount have been

identified as data components in three studies. Other components are found in two studies

or less, they include interest probability, context and correlation. TD in a software system

comprises of a number of TD items. A TD items group can then be presented in the form of

a TD List. A TD list keeps all identified TD items and makes them visible to stakeholders

(Guo et al., 2011, Holvitie et al., 2013). The TD list can be used in the TD prioritisation

activity.

2.6.3 Cost-Benefit Analysis

This technique evaluates whether the expected interest is high enough to justify the debt

payment. TD items may be prioritised for repayment based on the cost versus benefit

(Figure 9). Snipes et al (2012) proposed a cost-benefit analysis model based on cost factors

with the below variables.

• P – Debt Principal

• Iw – Portion of interest for defining a workaround

24
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

24

• Ic - Portion of interest for customer support for the workaround

• Ip – Patch cost

• Ipr – Probability of customer requesting a patch for the defect

• Ifr – Probability the deferred defect is eventually fixed (principal repaid)

The cost-benefit ratio p is given the following equation (ibid) outlined in Figure 8.

FIGURE 8 – Cost-Benefit Equation

Some special situations must be considered in cost-benefit analysis. When a system is

retired, its TD is removed (McConnell, 2007; Tom et al., 2013) and results in Tom et al

(2013) labels a debt amnesty. Another being the constraint that an organisation does not

have adequate resources to fix all identified TD items (Letouzey et al., 2012a).

FIGURE 9 – Cost-benefit prioritisation matrix

2.6.4 Portfolio Approach

A portfolio management approach for TD prioritisation has been Guo et al (2011) which is

an adaption of the investment portfolio model used in the finance domain. Garnett (2013)

suggests TD portfolio prioritization as a technique. Based on the degree of business value

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

M
o

re
 Im

p
ac

t/
 H

ig
h

er
 In

te
re

st

More Effort / Higher Cost

Cost\Benefiit Prioritisation Matrix of TD Items

25
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

25

that the application currently provides against the degree of business value that the

application fulfils for the future business needs, the TD Prioritization Quadrant was

proposed (Figure 10). The quadrant appears to be an adaption of the Boston box and

McFarlan’s Application Matrix (McFarlan, 1984; Ward, 1987, Kaplan Financial 2012).

Fontana (2015) proposed a Code Smell Intensity Index for TD prioritisation that have been

identified.

FIGURE 10 – TD Prioritization Quadrant

2.6.5 TD Register and Backlog

As seen in Table 4.1, the TDM activity of TD documentation\representation has not been

studied comprehensively. Where it has been studied, TD is being documented and logged

via TD backlogs which usually make up a TD list for review. Documentation can be valued

differently by software practitioners. Developers may only document issues that they

consider important (Lethbridge et al, 2003). Yli-Hummo (2016) found different development

teams documented TD in several different ways. TD items could be documented in a

general product backlog or have their own dedicated backlog or not be documented at all

and remain tacit knowledge amongst the development team. The lack of standard TD

documentation practices brings its own issues in terms of knowledge management

implications and development team velocity (See section 2.7.2). It is important that TD

Documentation is included in the overall TDM Strategy (Klinger et al., 2011). The TD

documentation activity has ramifications for other TDM activities also. This is evident in

creating a systematic repayment strategy where the documentation and storing of all TD

issues is required (Lim et al., 2012). Documentation in software development can also

improve understanding and communication between stakeholders which could be applied

to TD documentation and TD communication (Das et al., 2007; Forward et al., 2002).

26
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

26

2.6.6 Human Estimation and Expert Opinion

A systematic mapping study by Fernadez-Sanchez (2015) found that most authors suggest

the need to use expert knowledge to add TD information that cannot be estimated in another

way. Cai et al (2014) aim to automate refactoring recommendations to software architects

which can then be analysed and selected based on software architects’ opinion.

2.7 TDM Challenges

TDM has been described as challenging to implement in practice (Yli-Huumo et al., 2016).

The reasons for this are far ranging. For example, managers and developers struggle to

identify and estimate the various TD types present in a software system. Furthermore,

predicting how the TD will change and what impact that will have in the future is difficult (Li

et al., 2015). Power (2015) found seven current challenges for TDM: (1) Agreeing what TD

is; (2) quantifying TD; (3) Visualising TD; (4) Tracking TD over time; (5) Non-repayment of

TD for an extended period; (6) Mapping TD as defect root cause; and (7) Understanding

the delay cost. Yli-Huumo et al (2016) found that a lack of tools is a major challenge. Ernst

et al (2015) found that although a wide range of tools were used, tool usage per percentage

of answers was small. The study conducted by Ernst et al (2015) used the Likert scale which

could be argued is one dimensional and assume that respondents can accurately map their

responses to a question into the options allowed (Jamieson, 2004).

2.7.1 Lack of TDM Tools

Yli-Huumo et al (2016) found that TDM is frequently conducted as a human activity. He

identified that most TDM activities were done with rough estimations and based on hunches.

As well as the excess time consumed by not using automated tools, without tools and

models based on data, there is the risk that the decisions made are not always the correct

ones. However, it is conceded that the development of a complete support tool for TDM

brings practical challenges (Falessi, 2013). Alves (2016) identified 29 tools for managing

TD in some capacity. Four were specifically for TDM whilst the rest were being leveraged

from other areas and process for software development. Furthermore, the identified TDM

tools support two of the TDM activities. A tool not mentioned by Alves et al (2016) is ‘TD-

Manager’ developed by Foganholi et al (2015) which centres around an integrated TD

catalogue for producing a list TD item list.

27
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

27

2.7.2 Knowledge Management

The absence of well-written technical documentation on software systems indicating a high

amount of documentation debt can be challenging for software development teams (Slinker,

2008). A large amount of tacit knowledge retained by individuals in a software development

team is a risk for stakeholders as TDM relies on TD information being documented for

monitoring and communication activities (Tom et al., 2013).

2.7.3 TDM Investment Justification

Practitioners may find difficulty in justifying the real need for TDM and its benefits as TDM

can be time-consuming and can create additional work in the development processes (Yli-

Huumo et al., 2016). More research on TDM is required to produce evidence on TDM

benefits and drawbacks. This will give confidence in development teams to allocate

appropriate time and resources to TDM.

2.7.4 Difficulties in business and economic value transformation

TDM outcomes should be reviewed in terms of its economic consequences (Falessi et al.,

2013). The challenge is that decisions have different consequences depending on when it

is made. For example, refactoring source code cost for the current release is different from

the cost of refactoring for a future release (ibid).

2.8 Conclusion

This chapter has examined and reviewed the existing literature in relation to the research

topic. This chapter has discussed the current definition and TD understanding, what

attitudes exist towards TD and its management, the factors that influence TDM, techniques

for TDM and the TDM challenges that currently exist. The next chapter describes the

research methodology used for this study and the rationale for its selection.

28
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

28

Chapter 3: Research Methodology

3.1 Introduction

This chapter describes the research method that frames the execution of this investigation.

It provides justification as to why this is deemed to be the most appropriate research

methodology to be followed. The chapter contains clarification on the data type being used,

how data was collected and details the steps followed to conduct data analysis.

A detailed explanation of how the research was conducted and the way the data were

collected is provided. In addition, the main strengths and weaknesses associated with the

chosen approach are detailed. Research can be defined as "an activity that involves finding

out in a more or less systematic way, things you did not know" (Walliman, 2011 p. 7).

Methodology can be described as "the philosophical framework within which the research

is conducted or the foundation upon which the research is based" (Brown, 2006). The

chapter concludes with a summary of the research methodology chosen.

3.2 Research Purpose

The research aims to explore how TD is defined and managed in an industrial setting by

attempting to answer the questions outlined in section 3.3. TD impacts on all aspects of IT

project development and has received an increased focus in recent years. This study aims

to examine both the understanding and TD attitudes, organisational factors that influence

TDM and the techniques employed by software practitioners for TDM. Is there a common

TD understanding? Is one organisational factor viewed as more important than others?

What techniques are used to conduct TDM? In addition, challenges that obstruct effective

TDM are also studied.

3.3 Research Questions

The research questions (RQ) below will be addressed through the methodology outlined in

Section 3.4 based on the collected data interpretation which is detailed in Section 3.5.

RQ1. How do senior software practitioners view the TD concept and its management?

RQ2. What organisational factors influence the management of Type II TD?

RQ3. What methods and techniques are used for explicit TDM activities?

RQ4. What challenges exist in the management of TD?

29
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

29

3.4 Research Methodologies

Research methodology has been described as the overall approach to a problem which

could be put into practice in a research process, from the theoretical underpinning to the

collection and analysis of data (Remenyi et al., 2003). Collis and Hussey (2014) simply

defined methodology as the overall approach to the entire process of the research study.

Based on these definitions, research methodology focuses on the problems that are the

subject of investigation in the research study and varies depending on the subjects being

studied. Saunders et al (2007) illustrates the research methodology components in the form

of a “Research Onion” (Figure 11). This onion depicts the research methodology stages

that need to be developed as layers. These layers are Research philosophy, approach,

strategy, choice, time horizon, and techniques. Each layer describes a more detailed

research process stage. The below illustration provides a framework for which a research

methodology can be designed. The framework success is primarily based on its adaptability

for most research methodologies and contexts (Bryman, 2012). Other definitions and layer

classifications exist but those identified by Saunders et al (2009) are preferred for the

purposes of this research as it provides an unambiguous overall framework for the complete

research process.

Figure 11– The Research ‘Onion’

(Saunders at al., 2007)

30
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

30

3.4.1 Philosophies

A research philosophy refers to the set of beliefs concerning the nature of the reality being

investigated (Bryman, 2012). Yin (2003) describes a research philosophy as how the data

within the research study is collected, analysed, interpreted and presented. It is the

underlying definition of the nature of knowledge. Assumptions created by a research

philosophy produce assumptions about the researcher’s world view and the justification for

how the research will be approached (Flick, 2011; Saunders, 2007). Depending on the

research goals and the method used to achieve these goals, research philosophies can

vary (Goddard et al., 2004). The research philosophy choice should be defined by the

knowledge type being researched (May, 2011). Comprehension of the available research

philosophies and the philosophy used for this study, can therefore assist in explaining the

assumptions present in the research process and how this fits with the chosen research

methodology. No philosophy is inherently better than another but instead is dependent on

researchers’ preferences (Podsakoff et al., 2012). The philosophy serves as the justification

for the research methodology. The research methodology should be informed by the nature

of the phenomena being investigated. The below paragraphs discuss the four most common

philosophies that are used amongst IS researchers along with their applicability to this

research study.

3..4.1.1 Positivism

The positivist philosophy believes that reality is stable and can be observed and described

from an objective perspective (Levin, 1988), i.e. without interfering with the phenomena

under investigation. The philosophy has had a successful association with the physical and

natural sciences. Positivism is commonly related with observations and experiments to

collect numeric data (Easter-by-Smith et al, 2006). Researchers are interested in collecting

general information and data from a large sample instead of focusing on research details.

There has been much discourse on the positivist philosophy suitability for social science

research (Hirschheim, 1985) with many researchers preferring a more pluralistic attitude

towards IS research methodologies (Kuhn, 1970; Bjørn-Andersen, 1985; Remenyi et al.,

2003). This study is focused on IS and therefore, people and technology interaction. The

social sciences as opposed to the physical sciences. For this reason, positivism was

discounted as a possible philosophy to be applied for this research,

31
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

31

3..4.1.2 Interpretivism

The interpretivist perspective is appropriate for business and management research such

as organisational behaviour. Business situations are complex whilst also being unique to a

set of circumstances and group of individuals. Although this unique perspective raises the

research findings generalisability issue which aims to capture the complexity of social

situations. However, interpretivism does not view generalisability as insignificant due to

the evolving nature of business organisations. Present organisational circumstances may

not be applicable in the near future. Due to this aim of this study to explore subjective

meanings expressed by the TD phenomenon and the way that it is conducted,

interpretivism was chosen for this study (Saunders et al., 2007).

3..4.1.3 Realism

The realism philosophy relies on the idea that there is a reality which may not correspond

to the human mind, independent of an individuals’ worldly perceptions (Saunders et al,

2007; Bryman et al, 2015). Realism shares many similarities with Positivism whilst differing

on the idea that humans are influenced by social factors and therefore cannot be treated

the same way as natural sciences. Realism can be further broken down into direct and

critical realism which are not relevant to this study.

3..4.1.4 Pragmatism

Core to the pragmatic philosophy is the research question itself and the therefore the

research may apply multiple approaches to answer the question (Creswell, 2003). Another

key pragmatism characteristic is the assumption that no other traditional philosophy meets

the research requirements and these other philosophies may constrain the research

process. Pragmatists recognise that research methods have limitations and often use a

mixed method approach and work with both quantitative and qualitative data collection,

using complementary analysis techniques (Saunders et al. 2007). A pragmatist might begin

to collect data by conducting face-to-face interviews and use the findings to inform the

questions of a survey.

32
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

32

3.4.2 Research Approach

Mingers (2001) states there are three available approaches to research; deductive,

inductive and abductive. Deduction is when instances are deduced to follow from general

laws or assumed premises. Induction, is an approach where general laws are induced from

certain instances. Abduction, is where evidence is used to alter the probabilities associated

with a hypothesis and therefore confirm or disprove it.

3.4.2.1 Deduction

Cooper et al (2013) describe deduction as the process by which we test whether the

hypothesis can explain the fact (Figure 12). The deductive approach involves theory

development. The theory is then tested through specifically designed research strategies.

Deductive reasoning starts general and finishes more specific (top-down approach).

Definitions, interpretations and the initial statement originations often limit the usefulness of

deductive reasoning in research (ibid).

FIGURE 12 – Deductive Process

3.4.2.2 Induction

Cooper et al (2013) describe induction as asking “Why is this?” when observing a fact. A

tentative explanation or hypothesis is proposed to answer this question. The hypothesis

goal is to explain the event of condition which prompted the question. The inductive

research process is illustrated in Figure 13. The inductive approach begins with specific

observations and progresses to wider generalisations and theories (bottom-up approach).

Due to the exploratory nature of this research (Robson, 2002), data collection, organisation

and analysis will be guided by an inductive approach. The collection, analysis and continual

data re-examination process will determine the research findings.

33
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

33

The inductive approach can provide valuable insights but has limitations as it is based on

incomplete observations. Therefore, it is unknown if a TDM technique has not been

experienced because it does not exist or because it does exist but it has not been witnessed.

FIGURE 13 - Inductive Process

3.4.3 Methodological Choice

In general, there are three research methods. They are quantitative, qualitative, and the

mixed-methods approach (Creswell, 2003). The qualitative research method is framed in

terms of using words while the quantitative research method is framed using numbers.

Hence, the mixed research method incorporates elements of both the qualitative and the

quantitative methods. Quantitative and qualitative research represent different strategies

which are distinct in terms of the role of theory, epistemological issues and ontological

concerns (Bryman, 2015). The debate regarding the respective benefits of quantitative

versus qualitative research has been the focus of a much dispute over the past several

decades (e.g., Bryman, 1984; Hammersley, 1992; Tashakkori et al., 1998; Kelle, 2001;

Creswell, 2003; Johnson et al., 2004)

Case studies do not imply evidence usage and they can be done using three approaches

mentioned previously (Eisenhardt, 1989; Yin, 1989). While quantitative data often appears

in case studies, qualitative data usually predominates (Patton et al., 2003). For the above

reasons, a qualitative research method will be used in this study.

34
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

34

3.4.4 Research Strategy

Saunders et al. (2012) outline several strategies that are available when conducting

business and management research. The following strategies were considered regarding

its suitability in addressing the research questions.

• Ethnography

• Action Research

• Case Study

• Archival Research

• Experiment

• Survey

• Grounded Theory

• Narrative Enquiry

Empirical and theoretical research are the two main academic research categories

(Remenyi et al., 2003). Theoretical research involves finding a result predicted by a theory,

while empirical research focuses on data gathering and analysis. This research paper will

apply an empirical research method.

The chosen research strategy used for this research is a case study. A case study is ‘an

empirical inquiry that investigates a contemporary phenomenon with its real-life context,

especially when the boundaries between phenomenon and context are not clear’ and it

‘relies on multiple sources of evidence’ (Yin., 2003, p. 13). Case study research investigates

pre-defined phenomena but does not involve explicit control or variables manipulation. The

focus is on in-depth phenomenon understanding and its context (Cavaye, 1996). A case

study is used to contribute to individual, group and organisational knowledge and has been

a common research strategy in social sciences. Case studies as a research methodology

are becoming popular in software engineering (Runeson et al., 2009). As software

development is carried out by individuals, groups and organisations within a social context

it is a multidisciplinary area where the case study strategy is relevant. Case studies typically

combine data collection techniques such as interviews, observation, questionnaires, and

document analysis (Yin, 2003).

The case study is ideal for exploring new processes or behaviours or ones that are little

understood (Hartley, 1994) such as the subject of TD and TDM. The major difference

between the case study and other qualitative designs such as grounded theory and

ethnography (Glaser et al.,1967; Corbin et al., 2008) is that the case study is applicable to

35
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

35

the use of theory or conceptual categories that guide the research and data analysis. In

contrast, grounded theory or ethnography presupposes that theoretical perspectives are

grounded in and emerge from first hand data.

As this study’s objective is to study TD and its management in-depth in a real software

development setting, a single-case study approach was selected. Case studies can be

categorised as holistic case studies or embedded cases studies (Yin, 2003) (Figure 14).

This research studies the case as a whole, making it a holistic case study.

FIGURE 14 - Holistic Case Study (Left) and Embedded Case Study (Right)

(Benbasat et al., 1987).

The rationale for this is that this study aims to study software practitioners from one

organisation together. An embedded case study would have studied multiple units of

analysis within a single case study. There are several case studies types; explanatory,

exploratory, or descriptive. The case study type selected for this research was guided by

the overall study purpose. As this research aims to explore what is currently happening and

seek insights into a case, the exploratory type was selected. Previous similar influential

studies such as (Tom et al., 2013; Yli-Huumo et al., 2016) have also followed this case

study type.

There is a severe danger that without a theoretical framework, the researcher may provide

description without meaning (Hartley, 1994). Gummesson (1988) says that a lack of

preunderstanding will cause the researcher to spend considerable time gathering basic

information. This preunderstanding may arise from general knowledge such as theories,

models, and concepts or from specific knowledge of institutional conditions and social

patterns. The key is not to require researchers to have split but dual personalities: ‘Those

who are able to balance on a razor’s edge using their pre-understanding without being its

slave’ (ibid., p. 58). Yin (2003) and Stake (1995) use different terms to describe a variety of

case studies. Yin (2003) categorizes case studies as explanatory, exploratory, or

descriptive and differentiates between single, holistic case studies and multiple-case

studies. Stake (1995) identifies case studies as intrinsic, instrumental, or collective. The

distinction between intrinsic and instrumental case studies is the degree to which the focus

36
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

36

is on the unique or the generalizable aspects of the researched case (Hartley, 2004). A

case study cannot be defined through its research methods, but in terms of its theoretical

orientation and interest in individual cases (Stake, 1995; Hartley, 2004).

Yin (2003) suggest that case study design should be considered when:

• The focus of the study is to answer ‘how and ‘why’ questions;

• You cannot manipulate the behaviour of those involved in the study;

• You want to cover contextual conditions because you believe they are relevant to

the phenomenon under study; or

• The boundaries are not clear between the phenomenon and context.

The single case study method was chosen for this study to understand TD phenomenon

aspects in-depth. Although this eventual understanding will encompass important

contextual conditions because they are pertinent to the phenomenon being studied (Yin,

2009). The case study strategy follows an in-depth look at one organisation, community or

person (Bryman, 2004). This study endeavours to capture the local situation in greater detail

and with respect to more variables than is possible with surveys. In this instance, the case

is an IT consultancy and software services company based in Dublin. Case study research

is associated with description and with theory development. As such, TDM exploration is an

area where existing knowledge is limited and is well suited to this strategy (Cavaye, 1996).

Another reason for the case study strategy selection was that the research topic was TDM

but the case could not be considered without the context, the consultancy business format,

and more specifically the software development and support settings. It was in this setting

where the TDM activities were developed and conducted. It would have not been feasible

for this research to elicit accurate software practitioners’ accounts of conducting TDM

without considering the context where it occurred.

3.4.5 Time Horizons

The Time Horizon is the time framework within which the project is intended for completion

(Saunders et al., 2007; Bryman, 2012). Two time horizons type are specified within the

research onion (Figure 11), the cross sectional and the longitudinal (Bryman, 2012).

37
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

37

3.4.5.1 Cross-sectional

Cross-sectional studies are a snapshot where data is collected at a certain point in time

(Flick, 2011). This time-horizon is used when the investigation is concerned with certain

phenomenon research at a specific time. As this research is concerned with how TDM is

conducted for a case organisation during the summer of 2017, this time horizon was chosen.

3.4.5.2 Longitudinal

A longitudinal time horizon refers to the repeated observations of the same variables over

an extended period. This time horizon is used where change over time is being examined

(Goddard, 2004). Thus, the researcher gains some control over the variables being

investigated. Due to research time constraints, a longitudinal time horizon was not selected

for this study. However, an interesting opportunity for future research would be to

investigate how TDM maturity is evolving over an extended time frame.

3.5 Data Collection

Two data types that can be collected in research are primary and secondary data. As this

research is using a case study research strategy, appropriate data collection methods were

considered. Yin (2003, pp. 83-96) states that there are six possible data collection methods

for case studies. They are archival records, documents, direct observation, interviews,

physical artefacts and participant-observation.

The steps that were taken for conduction this case study were identified by Yin (2003) and

are as follows:

1. Determine and define the research questions.

2. Select the cases and determine data gathering and analysis techniques.

3. Prepare to collect the data.

4. Collect data in the field.

5. Evaluate and analyse the data.

6. Prepare the report.

To select the data collection technique, several considerations were taken into account such

as population, sampling, questions, content, bias and administration. This study uses a

combination of semi-structured interviews and document data sources. Saunders (2012)

outlined three interview types; (1) Structured or Intensive which is an interview with a

standardised question set; (2) Unstructured is an informal conversation in which participants

38
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

38

speak freely and; (3) Semi-Structured interview which contains a combination of open-

ended and specific questions, with the latter used to guide the conversations. The use of

semi-structured interviews can allow for unexpected information types. Further evidence

was gathered using the documentation and textual analysis. These research instruments

are described in more detail in Section 3.5.3.

Depending on the methodological approach used both the data collected and the analysis

technique applied can vary (Bryman, 2012). The process used at the data collection and

analysis stage has a significant contribution to the reliability and validity of this study,

outlined in Section 3.8 (Saunders et al., 2007).

3.5.1 Population

A sample represents a segment of a larger population (Bryman, 2012). This case study

uses a single population of four hundred software practitioners based in Ireland and

employed by the studied organisation to provide software services to its clients. The

population makes no differentiation between sub-contracted and permanent staff and

excludes staff who deal primarily with computer hardware as the focus of this study relates

to software.

3.5.2 Sampling

Sampling is the process of selecting units from the population. Studying the sample may

allow for results generalisation to be applied to the larger population from which they were

selected (Trochim, 2006). For quantitative research, the samples size and how it is selected

can be used to verify research results reliability. With qualitative research, sample

characteristics are also important and smaller samples are typically used. This is due to

phenomena only needing to be noticed once to be registered on the analytical map (Ritchie

et al., 2003). There is a point of decreasing return when increasing the sample size no

longer contributes to new evidence. Guest et al (2006) suggest that data saturation can

occur within the first twelve interviews and subsequent interviews are unlikely to uncover

many more new phenomena.

For this study, 15 software practitioners were approached to participate in the study. Non-

probability sampling is more frequently used when adopting a case study strategy

(Saunders et al., 2012) and was therefore selected for this study. Within this sampling

approach, the purposeful sampling technique was chosen to select cases that will best

enable to answer the research question (Neuman, 2000; Creswell, 2003) but availability

and willingness to participate were also factors (Spradley, 1979; Bernard, 2002). Purposeful

39
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

39

sampling involves identifying and selecting individuals that are knowledgeable or

experienced in the research area (Creswell, 2003). This research requires the participation

of individuals directly involved with conducting TDM activities. The sample for this research

is limited and therefore random sampling was not an option.

Semi-structured Interviews: n= 14

Documents: n= 34

3.5.3 Research Instruments

3.5.3.1 Semi-structured Interviews

Semi-structured interviews were selected for data collection for this study as this is the most

popular primary data collection method with exploratory case studies (Brown, 2006). A

semi-structured interview is a qualitative interview that is defined by a pre-set question guide

that aims to provide in-depth findings through informal discussions with participants (Collis

and Hussey, 2003). Semi-structured interviews allow for probing responses further and to

identify deeper patterns and meanings. Additionally, the data are expected to provide broad

results. The interview method will allow for further insight into potential considerations

methods and techniques, which would be difficult using surveys or other quantitative

analysis methods. Silverman (2007) points out that the way the interviewer interacts with

the interviewed person impacts the collected data. Therefore, special precautions were

taken during the interview to avoid influencing interviewees, they were:

• Conducting overt encouragement to not imply approval or disapproval of what the

participant said as that could bias the research findings.

• Asking the same questions in different ways to compare the responses so to avoid

the participant giving answers that they think the researcher would prefer to hear.

Interview questions were developed and based on questions from previous research case

studies conducted by Yli-Huumo et al (2016) and Snipes et al (2012) and have been

adapted for the purposes of this study. The entire interview questionnaire was refined

several times, e.g. merging or separating questions and adjusting question order, before

conducting the first interview.

40
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

40

3.5.3.2 Document and Texts

Document analysis is a systematic procedure for reviewing or evaluating both printed and

electronic document material. Document analysis, like other investigative methods in

qualitative research, requires that data be examined and interpreted to extract meaning,

gain understanding, and develop empirical knowledge (Rapley, 2007; Corbin, 2008).

Documents contain text, tables and figures that have been recorded without a researcher’s

intervention. Atkinson et al (1997 p. 47) refer to documents as ‘social facts’ which are

produced, shared, and used in socially organised ways. The analytic procedure involves

finding, selecting, appraising and synthesising document data. Document analysis

produces data such as text excerpts or quotations which are organised into major themes,

categories, and case examples specifically through content analysis (Labuschagne, 2003).

A detailed document analysis process was planned and adhered to throughout the study

(See Appendix H).

Document analysis is often combined with other qualitative research methods for

triangulation purposes - ‘the combination of methodologies in the study of the same

phenomenon’ (Denzin, 1970, p. 291). The qualitative researcher is expected to draw upon

multiple sources of evidence; that is, to seek convergence and corroboration using different

data sources and methods. Apart from documents, such sources include participant or non-

participant observation, physical artefacts and as seen in this study, interviews (Yin, 1989).

Triangulation was used in this study is described in section 3.5.4.

The advantages of documents are that they can be reviewed repeatedly, they are

unobtrusive, not created for the case study, broad in coverage (long span of time) and cover

many events and sub-settings. There are disadvantages, however. Documents may contain

insufficient detail as they are created for some purpose other than research and are

therefore created independent of a research agenda. In addition, there can be biased

selectivity if collection is incomplete, retrievability can be low, there may be reporting bias

via reflection of researcher bias and access to documents may be blocked (Bowen, 2009).

3.5.4 Triangulation

Having its origin in navigation and military strategy, the term ‘triangulation’ is used to refer

to the observation of the research issue from at least two different points (Flick, 2011).

Triangulation can allow for greater accuracy as researchers ‘can improve the accuracy of

their judgments by collecting different kinds of data bearing on the same phenomenon’ (Jick

et al., 1979, p.602). Denzin (1988) proposes four triangulation types: multiple methods,

41
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

41

multiple data sources, multiple investigators, or multiple theories to confirm emerging

findings. Multiple methods of data collection were used for triangulation in this research:

interviews and documents. Participant interview responses were checked against data

documents relevant to the research questions (Merriam et al., 2015). In addition, selected

participants had distinct perspectives. For example, different teams, practices and roles,

working with differing technologies, methodologies and in different areas of the SDLC.

Documents were also gathered and analysed. These included source code analysis reports,

project initiation documents, IT strategy documents support knowledge wikis. This was used

as another data source to complement and cross check the findings from the interviews.

Overall, the combination of documents and qualitative interviewing in a single study may

help researchers to understand participants’ diverse experiences, deep insight, differing

perspectives and actual behaviours through triangulation and thus increase credibility in the

research findings (Atkinson et al., 2002).

3.6 Data coding and analysis

Following the data collection from the semi-structured interviews and organisational

documentation, the final step of the process was to interpret the data. This research used

the Miles and Huberman (1994) approach to data coding for data analysis. This approach

is based on a framework which is applicable to a variety of qualitative studies (Figure 15).

All data was analysed using a coding system. This research used QDA Miner Lite, a

computer-assisted qualitative data analysis software (CAQDAS), for data analysis included

data coding, sorting and retrieval (Provalis Research, 2016).

A code is a term that represents a theme, theory, idea, characteristic, or data dimension.

Codes are used to ‘pull together

and categorize a series of

otherwise discrete events,

statements, and observation

which they identify in the data’

(Charmaz, 1983, p.112). Coding

is the action of identifying text in a

document that exemplifies ideas

or concepts and connecting it to a

node that represents that idea or

concept (Basit, 2003). Codes

should be precise, enable a large part of the data material to be consumed under it and

 FIGURE 15 - Miles and Huberman approach to
data coding for data analysis

42
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

42

relevant to the research question (Kelle, 2001). Multiple codes can be assigned to the

same text segment in a document. As the coding took place, coding categories were

revised. During coding, memos were taken which were used to suggest new

interpretations, as well as connections with other data. Creswell (2007) describes the data

analysis spiral which is applicable to a variety of qualitative studies. The procedures

illustrated in Figure 16 were also used by this study.

FIGURE 16 – The Data Analysis Spiral

Case study findings are significant since they present the participants’ perspectives without

any complicated statistical procedures and as such the results are more comprehensible

for the intended readers, that is, software practitioners. The first step in deciding how to

analyse the collected data is to define a unit of analysis (Trochim, 2006). The unit of analysis

is the major entity that is being analysed in the study (Kenny, 1996). In case studies, there

is holistic or embedded design (Yin, 1989) as mentioned in section 3.4.4. A holistic design

examines the global nature of the phenomenon, whereas an embedded design also pays

attention to subunit(s). This study used a holistic design to analyse the units. The unit of

analysis chosen for this study is an organisation. The group consisting of individuals that

have experience with conducting TDM in the organisation being studied.

43
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

43

3.7 Ethical Considerations

Data collected for academic research will have ethical implications. Issues can arise in

relation to informed consent, confidentiality, privacy, copyright, intellectual property rights

and corporate permission. Ethical approval is required before any studies involving human

participants can commence. An application for ethics approval was submitted to the School

of Computer Science and Statistics (SCSS) Research and Ethics Committee on the 19th of

April 2017 for approval to carry out the research. Following the research supervisor review

and submission approval, permission to proceed with gathering data was received on the

8th June 2017 from the Ethics Committee. The ethical application included a research

proposal form outlining the details of the research and ensured any conflicts of interests

were identified. Each interview participant was provided with access to all relevant

documentation (See Appendix F).

3.8 Validity and Reliability

Quality is an important issue in research. Validity refers to the quality of the conclusions that

this researched has reached based on the data collected. It is the ‘best available

approximation to the truth of a given proposition, inference, or conclusion’ (Trochim, 2006).

In quantitative research, validity can be subdivided into four types. They are conclusion,

internal, construct and external. Each type addresses a specific methodological question.

Validity questions are cumulative, the question that each validity type addresses assumes

a positive answer to the former one. The terms ‘Reliability’ and ‘Validity’ are essential

criterion for quality in quantitative studies. However, as this is a qualitative research study,

a different set of standards will be used for judging the research quality. The terms

credibility, confirmability, dependability and transferability were used as an alternative to the

more traditional quantitatively-oriented criteria for quality (Lincoln et al., 1985).

TABLE 3 – Criteria for Judging Qualitative Research

Traditional Criteria for

Judging Quantitative

Research

Alternative Criteria for Judging

Qualitative Research

Internal Validity Credibility

External Validity Transferability (aka. Applicability)

Reliability Dependability (aka. Consistency)

Objectivity Confirmability (aka. Neutrality)

44
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

44

Lincoln et al (1985, p. 300) use ‘dependability’, which corresponds to ‘reliability’ notion in

quantitative research (Table 3). Clont (1992) and Seale (1999) endorse the concept of

dependability with consistency or reliability in qualitative research. Data consistency is

achieved when the research steps are verified through interrogation of raw data, products

of data reduction products, and memos (Campbell, 1996). When judging qualitative work,

Strauss et al (1990 p. 250) suggest that the ‘usual canons of ‘good science’…require

redefinition in order to fit the realities of qualitative research’.

3.8.1 Credibility

Credibility involves establishing that the research results are credible from the perspective

research participants. This research aims to understand the TD phenomena and its

management from software practitioner’s perspective, the participants are the only ones

who can legitimately judge the results credibility (Trochim, 2006)

3.8.2 Transferability

Transferability refers to the extent to which the study’s results can be generalized or

transferred to other contexts or settings. This study has attempted to enhance transferability

by describing the research context and the assumptions that were central to the research.

Despite this, transferability is predominantly the responsibility of the one doing the

generalising. Therefore, the person who wishes to transfer this study’s results to a different

context is responsible for judging the sensibility of the transfer (Trochim, 2006).

3.8.3 Dependability

There is a need for this research to account for the ever-changing context within which

research occurred. This study was responsible for describing any changes that occurred in

the studied setting and how these changes affected the method the research approached

the study (Trochim, 2006).

3.8.4 Conformability

Several strategies were adopted during this research for enhancing confirmability.

• The procedures for checking and rechecking the data throughout the study were

documented.

• Negative instances that contradict prior observations were searched for and

described.

45
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

45

• A post-study audit was conducted by examining the data collection and analysis

procedures with the purpose of identifying research bias or distortion.

Some qualitative researchers have argued that validity is not applicable to qualitative

research. However, there is agreement that there is a need for some qualifying check on

their research. Creswell (2003) suggests that a study’s validity is affected by the

researcher’s perception of validity in the study and their paradigm assumption choice

(Lincoln et al., 1985; Seale, 1999; Mishler, 2000; Stenbacka, 2001; Davies et al., 2002).

Maxwell (2005) posits that the degree to which an account is believed to be generalisable

is a factor that distinguishes qualitative and quantitative research approaches.

3.9 Methodology Limitations

Every study has limitations (Leedy et al., 2005) or ‘potential weaknesses or problems with

the study identified by the researcher’ (Creswell, 2007, p.198). A limitation is an

uncontrollable threat to the study’s internal validity.

3.9.1 Researcher Bias

Although measures were taken to remove bias, the researchers influence cannot be

eliminated in a case study. This could affect the collected data reliability (Robson, 2002).

As this study used a single case study strategy at a single software services organisation,

the research findings applicability is limited to other software service providers. The

research findings may not be applicable to organisations who do not outsource their

software implementation and support services in any capacity, although this is becoming

more uncommon.

3.9.2 The Hawthorne Effect

As this research gathered data via participant interviews, the Hawthorne Effect is a

limitation. The effect concerns research participation, the consequence is observation

awareness and thus, possible impact on behaviour (Chiesa et al., 2008). This has the

potential to impact the research results, particularly during the face-to-face interviews. The

researcher should acknowledge and understands the influence they may have on the

interviewee. The research should monitor their actions, reactions and bias to be a reflective

researcher (McCormick et al., 1988).

46
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

46

3.9.3 Ecological Fallacy

Measures were taken to avoid researcher fallacies such as the ecological fallacy where by

the conclusions drawn from an analysis conducted at a group level may not apply at the

individual level (Robinson, 1950). The exception fallacy was avoided by analyses at the

individual level not being applied unconditionally to the organisation level. The analysis

conducted for this study was done at the organisational level and at which generalizations

should be made.

3.10 Lessons learnt

The research process poses several obstacles which overcome.

3.10.1 Geographical Constraints

One of the semi-structured interviews could not be conducted face-to-face as the participant

was in South America during the interviewing period. For this participant, the voice-over-

internet tool ‘Skype for Business’ was used to carry out this interview. The advantage of this

was the clarity of the audio recording and the similarity of the conversation to normal skype

conversations that the participant was used to conducting daily. This allowed the participant

to be comfortable with their responses which resulted in detailed descriptions of their

experiences with TD and TDM.

3.10.2 Interview Scheduling and Transcribing

As interviews were mostly conducted on-site in the studied organisations offices, there was

difficulty in securing time slots to conduct the interview with participants due to participants’

busy schedules. Often, interviews were rescheduled and delayed to facilitate a suitable time

for participants. To simplify the interview administration, participants were sent the relevant

ethical forms to review with the interview invite. Transcribing interviews was time-

consuming. After transcribing three participant interviews without an assisting software tool,

a transcribing tool was sued to assist with the transcribing of audio files (Provalis Research,

2016).

47
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

47

3.11 Conclusion

In summary, this study can be defined as an interpretive exploratory case study, as the

study’s objective is to discover the TD understanding and how TDM is conducted without a

prior hypothesis (Robson, 2002).

TABLE 4 – Adopted Research Methodology Summary

Philosophy Interpretivism

Approach \

Epistemology
Induction

Methodological

Choice

Multi-method

qualitative

Research Strategy
Exploratory Case

Study

Time Horizon Cross-sectional

Data Collection

Method

Semi-structured

Interviews & Document

Analysis

The following chapter graphically presents the data collected and outlined in the context of

each research question. Data analysis is conducted with the goal of building a basis for

conclusions to be drawn.

48
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

48

Chapter 4: Findings and Analysis

4.1 Introduction

This chapter describes findings pertaining to each research question after data collected

from semi-structured interviews and organisation documentation was analysed within the

context of the TD topic. The first section of this chapter presents some background

information on the data collection and analysis procedures and the profile of the research

participants. In the second section, semi-structured research results are presented. This is

followed by results of the document and textual analysis. Both groups of data are analysed

and presented in individual sections corresponding the relevant research question.

4.2 Profile of the Case Study Organisation

The semi-structured interviews and document and textual analysis were conducted on an

Irish IT consulting organisation, headquartered in Dublin. The organisation provides

software services to clients predominately based in Ireland and the U.K.

4.3 Interviews

4.3.1 Data collection

4.3.1.1 Selection of prospective participants

The prospective participants were experienced in software development in a software

services provider capacity. Participants were actively dealing with issues of TD and had

recognition and knowledge of the TD concept. The prospective participants were recruited

through enquiries to various team leads as to the use of TDM within their respective teams

and other referrals from these team leads. This increased confidence in the opportunity to

collect high quality and rich information from the interviews. It was also recommended by a

previous study conducted by Taksande (2011) that the quality of results would be better

served if participants had over ten years’ experience. Therefore, as part of the selection

criteria, all participants were required to have at least ten years software development

experience to participate in the study.

49
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

49

4.3.1.2 Interview Requests and Scheduling

On receipt of ethical approval and after appropriate participants had been identified, 15

invites were sent out via the organisations email system to the selected consultants. Both

the prospective participant information sheet and the informed consent form were included

in the invitation to participant along with some main important points to note. The

participants were asked to read this material prior to the interview date and informed that

they would be required to sign the informed consent form before the interview could

commence. 14 of the invites were accepted with the remaining invite going unanswered as

the consultant had subsequently left the organisation. Interviews were then scheduled with

each of the participants separately. The interviews were conducted over the course of

approximately one month. The first interview took place on the 12th June 2017 and the last

on the 7th July 2017. The participants came from 11 different teams across the organisation

with 15 different projects being covered. The summary of interview information is displayed

in Table 5 below with more detailed participant attributes detailed in Appendix A and B.

50
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

50

 TABLE 5 - Interview Information

Participant

ID

Interview

Medium

Interview Date and

Time

Interview

Length

(Minutes)

Interview

Location

P1 Face-to-face 12th June 2017 14:00 24.09 Client Site

P2 Face-to-face 16th June 2017 10:00 33.59 Dublin Office

P3 Face-to-face 16th June 2017 14:00 29.52 Dublin Office

P4 Face-to-face 16th June 2017 17:00 56.42 Dublin Office

P5 Face-to-face 28th June 2017 09:30 37.07 Dublin Office

P6 Face-to-face 28th June 2017 13:00 34.1 Dublin Office

P7 Face-to-face 28th June 2017 13:45 27.57 Dublin Office

P8 Face-to-face 28th June 2017 14:30 26.23 Dublin Office

P9 Face-to-face 28th June 2017 15:30 27.12 Dublin Office

P10 Face-to-face 5th July 2017 15:00 36.14 Client Site

P11
Skype for

Business *
5th July 2017 18:00 52.56 Off-Site

P12 Face-to-face 6th July 2017 15:30 36.23 Client Site

P13 Face-to-face 7th July 2017 13:45 26.3 Dublin Office

P14 Face-to-face 7th July 2017 14:30 34.07 Dublin Office

Total

481.01

Average

34.4

* One interview was carried out via the “Skype for Business” application, the Microsoft voice

over internet protocol application (VOIP), due to geographical constraints.

51
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

51

4.3.1.3 Interview procedures conducted

All participants signed a printed copy of the informed consent form before the interview

commenced. Interview audio was recorded electronically on an encrypted laptop for all

interviews. The electronic audio recordings were stored on the same laptop. The semi-

structured interviews covered the participant background, TD understanding and their

perceived attitudes towards TD and its management, influencing factors for TDM and TDM

techniques and challenges faced. All participants were allowed the opportunity to share any

other information that they felt was appropriate. All interviews except one were conducted

face-to-face. One interview was conducted via a Skype call due to geographical separation

between the researcher and the interviewee. A total of 481 minutes of audio recorded data

were collected. Interviews had an average duration of approx. 34 minutes.

4.3.2 Interview Data Analysis

Interview audio recordings were transcribed to text documents as soon as possible

individually after completion. An online transcription software tool was used to assist

transcription of the audio recording (Transcribe, n.d.). The audio transcriptions resulted in

a total of 66,891 clear text words (66,383 after obfuscation of personal and client data were

complete) (See Appendix E). As soon as the transcription was completed a copy of the

transcribed interview was provided to the participant to review. All interview information was

stored in the case study database. This was used to record how and when evidence was

collected and any other surrounding circumstances. A chain of evidence was maintained

throughout the case study. This was done to increase reliability of the information in the

case study, to allow an external observer to follow the derivation of any evidence and to

trace the steps in either direction. Interview transcripts were coded using the qualitative

analysis using the Miles and Huberman (1994) method with the assistance of the free

qualitative analysis software tool, ‘QDA Miner Lite’ (Provalis Research, 2016). Codes were

assigned inductively. Coding was conducted iteratively and constant comparison took place

by existing codes to be testing against the unanalysed dataset (Silverman, 2000). The code

book was saved in drafts on completion of each iteration of coding. Codes were then

assigned to the relevant research question (See Table 6).

52
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

52

TABLE 6 - Example of the Data Coding Process

Interview Transcript Text Categories

“Developers' mindset and then an organisational culture. A developer's

mind-set is important”

Developer Mindset,

Organisational Culture

“You know how committed they are to doing the right thing. Do they want

to get just throw something in. The same for scaling up to the company

wide mentality of just throwing something in. You see some companies that

don't bother with unit testing. That is obviously going to impact on how a

team performs”.

Developer Mindset,

Organisational Culture

“They want to get things done properly and get things done in the right way

and I think most developers that I have met and worked with down the years

and are worth half their salt are like that. They want to do the right thing

and they want to do it the right way, they don't want to just throw

something together and not be bothered. I'd imagine that most people

working with [the studied organisation] are like that. You really need that

mindset to be good in IT anyway”. Developer Mindset

“Developers need for self-actualisation through perfect code.” Developer Mindset

“I have worked with people who would have almost a sort of a rain man

type approach with their code. Indenting obsessed for example”. Developer Mindset

The classification of the participants provides the context for the analysis of the interviews.

The responses of each participant might be affected by their personal circumstances,

knowledge or experience. Therefore, the below participant classification illustrated in Figure

17 aims to provide a base for comparison among the different participants (See Appendix

A).

53
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

53

FIGURE 17 - Role and Experience of Participants

AM – Account Manager

SA – Solution Architect

BA – IT Business Analyst

PM – Project Manager

NOTE: One participant (P2) identified as being both a technical team lead and a solution

architect. Technical Team Lead was chosen as the role title for data analysis purposes.

4.3.3 Interview Findings

4.3.3.1 TD Understanding and Attitudes towards TDM (RQ1)

4.3.3.1.1 TD Understanding

All participants were asked the following interview question: How would you describe the

term technical debt? The responses are summarised in Figure 18 and the complete table

of descriptions can be found in Appendix C.

1 - 2

Male

AM

10 - 12

3 - 5

Female

Technical Team Lead

13 - 15

6 - 10

SA

16 - 20

> 10

BA

> 20

PM Developer

0 10 20 30 40 50 60 70 80 90 100

Yrs experience in studied org.

Gender

Job Title

Yrs experience in IT industry

Percent %

P
a
rt

ic
ip

a
n
t

In
fo

rm
a
ti
o
n

Role and Experience of Participants

54
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

54

FIGURE 18 – Participants’ Understanding of TD

50% of participants offered an analogy to describe the TD phenomenon. The full list can be

found in Appendix D.

• “It is like buying a load of things on your credit card and just letting the interest

accrue. You got to come back and fix it up. You can't just let it get out of control”.

• “It's like trying to change a tyre on a car when it's driving down the motorway at

150km!”.

• “If you were running oil rigs and things like that you would be obliged to tell the

shareholders about the upkeep and maintenance and the various risks and

everything”.

• “If somebody said I'm going to throw junk on to the roof of Harrods and I'm going to

keep doing that and one day the roof falls in and Harrods must close for a few

months, they would lose millions and millions. They would never do that because

that is not a sensible thing to do. Software is abstract and intangible even though it’s

something that runs businesses and people just look at the surface”.

• “It's like the ‘Buy cheap, buy twice advice”.

• “Carrying additional time and effort forward from one sprint to the other which is a

wall of debt”.

• “It’s like students taking out student loans so that they can go to college and maybe

earn more in the future”.

0 5 10 15 20 25 30 35 40

Conscious and explicit decision

Balance between features and maintenance

Measure of the effort required to fix the current
code

Future Consequence of known issues and
expired short-term solutions

Laden weight of a system

Recognition of sub-optimal code

Percent %

T
D

 D
e
s
c
ri
p
ti
o
n

Participant Understanding of TD

55
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

55

4.3.3.1.2 Attitudes

The attitudes of the interview participants are summarised in Figure 19.

FIGURE 19 – Participants’ Attitudes Towards TD

In addition to the above, 93% of participants indicated that they believed that attitude

impacted on the management of TD and influenced the consultant’s decisions to either

personally make the decision or advise the client to accrue new TD.

FIGURE 20 – Classification of TD Examples Offered by Participants

100

78

64

42

36

36

28

21

0 10 20 30 40 50 60 70 80 90 100

Some TD is inevitable

TDM is becoming more important

TD is a method of reification

Difficulty in TD Explanation

Need for Pragmatism in TDM

TD is purely a communication tool

Need for TD policy

Differing Perspectives

Percent %

A
tt

it
u

d
e

s

Participants Attitudes Towards TD and TDM

50%

28%

22%

TD Example Classification Summary

Tactical Incremental Strategic

56
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

56

4.3.3.2 Organisational Factors that Influence TDM (RQ2)

While risk, impact, urgency and budget were mentioned by all participants as quantitative

factors that influence TDM. The organisational factors are outlined below:

FIGURE 21 – Organisational Factors That Influence TDM

4.3.3.2.1 Risk Appetite

93% of participants viewed the risk appetite of the organisation as influencing TDM. In one

example, P1 stated that the organisations appetite to risk influenced how it managed TDM

decisions - “The developers are being extra cautious with what they are doing and there

may be some room for them to take a decision to accrue some technical debt, but they

haven't because I think they're too afraid of the consequences downstream”.

4.3.3.2.2 Organisational Culture

93% of participants perceived organisational culture as a factor in TDM decisions. The set

of core values to which studied organisation’s culture is focused was mentioned by most

participants. P10 states “Culture is a huge factor in technical debt management”. P11 felt

that “Having a culture that promotes integrity and honesty and being clear with the

57
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

57

customers is going to be good in terms of minimising technical debt”. P1 mentions “The

honesty and integrity and customer first values I think do have a big impact because you

are actually think about it”. P12 says that “we have an obligation to manage our client's

technical debt as much as we can” and “technical debt occurs as we agreed and at that

point it comes down to an integrity thing”. P9 admits that “We don't hide problems and we

go to the client when necessary” with another participant corroborated this by reporting that

“You just can't have a culture where you have poorly implemented solutions, poor coding

standards and poor design” P9 stressed that “There must be a culture where everybody

has to try to follow best practise and meet coding standards and code reviews, those kinds

of things are very important”. Although difficulty arises when assessing the trade-off

between organisational culture and the ability to win new business - “You need to find a

balance there when you are responding to a tender between your honesty and integrity,

your excellence etc. They are important, plus your ability to win the tender or win any piece

of business and that's a really hard trade off to make”.

4.3.3.2.3 Management IT Knowledge

72% of participants cited that the extent of managements IT knowledge is an influencing

factor for TDM decisions. There was a general appreciation by participants for

managements understanding of TD issues. P4 recounts an example of a new product

manager for a project they were involved in – “I raised a TD issue with [the manager] and

they were able to understand the predicament for the project straight away and was

ultimately able to make a more informed decision based on their experience in software

development”. The opposite experience was encountered by P13 when trying to articulate

the reduction in the software development team velocity due to TD incurred for previous

releases – “They could not understand why changes and new functionality was taking so

long, they just did not have the IT knowledge to understand the consequences of incurring

TD”.

4.3.3.2.4 Trust & Client Relationship

64% of participants gave trust and the relationship with the client as factors which influenced

TDM decisions. Additionally, the contractual agreement and terms with the client were also

influential. P7 stated “we would hopefully already have a reasonable working relationship

with the client”. P14 revealed that “When we talk about the conditions for success. A fixed

price situation has more risk in it and therefore is more likely to come under pressure. A

T&M will have less pressure and you're more likely to make the right decisions”. P8 agrees

58
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

58

with P14 and said in relation to a fixed price contractual agreement “we are supporting the

development of the system then the cost comes back on us if we incur debt then maybe I

would make a decision differently”. P8 said “The risk is with the client in the sense of the

functionality is broken under these circumstances but actually that decision was a short

term one on our part which we are now paying to put right. So, that is why the contractual

relationship comes into it”. P9 admitted that “We went to the customer and we needed to

have a difficult conversation to say 'Look this was not done in the proper way and this needs

to be fixed or we will have problems in the future”. P6 disclosed that “Whatever about

implementing a quick fix that has detrimental effects on the scalability, decisions that will

actually give you more work then that's where you would hold up your hands and say this

is not the right thing to do”.

4.3.3.2.5 Developer Mindset

50% of participants cited developer mindset as a factor that positively influences TDM

decisions. Regarding software developers, P12 believes that “They want to do the right

thing and they want to do it the right way, they don't want to just throw something together

and not be bothered… You really need that mindset to be good in IT anyway”. Other

participants note that developer mindset can also influence TDM decisions negatively [P12,

P7 and P4]. They mentioned that they have experienced working in teams where colleagues

sought “self-actualisation through perfect code” and unnecessary perfectionism - “they take

it as an element of pride to have the stuff squeaky clean”, “quest for purity in a code” and,

“to satisfy some demand for purity”.

4.3.3.2.6 Management Commitment

36% of participants viewed both the studied organisation and the client organisations

management commitment or “Buy-in” as an important factor in TDM decisions. In reference

to TDM as a component of tender evaluation, P14 mentioned that “When you're trying to

win a project it can be how much does the customer value those things” with P12 attesting

to the impact management commitment made on a particular project -“We got that from

management and it made a massive difference” The timing of attaining management

commitment was referenced by P10 - “You need to say 'I know you want to ship it now and

we will go and ship it now'. Next week it becomes more difficult. Even though you have

done what you expected to do it is more difficult to get that buy-in after the fact”. P4 cited

the motivation of management in to TDM commitment - “If there is an IT director who again

59
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

59

buys into TDM as a legitimate concern, they can use it themselves to get additional

resources as well”.

4.3.3.2.7 Future Maintenance

21% of participants viewed the prospect of future maintenance as a factor in TDM decision-

making. The future velocity of the development team was considered by P13 - “A lot of

clients will appreciate that if something is more maintainable it means that we are working

more quickly, so therefore we are able to do things more quickly for them”. The negative

aspects of future maintenance were mentioned “it is something that has been dragged from

previous design”. P2 went as far to say that the future maintenance might be beneficial

“you're trying to keep the show on the road and it gets to a point where you have all this

technical debt it which causes you to re-visit the design of some fundamental system as

well and then gives you an opportunity to find new benefits”. Some short-sighted thinking

was frustrating for some participants as P10 says the following: “we could of had a finished

fully working solution in place and instead it's just been shelved again until the next

emergency”.

4.3.3.3 TDM Techniques & Approaches (RQ3)

There were six main techniques used for TDM activities by the studied participants (See

Figure 22).

FIGURE 22 – Techniques Per TDM Activity

0
10
20
30
40
50
60
70
80
90

100

P
e
rc

e
n
t

%

TDM Activity

Technique per TDM Activity

Automated Source Code Analysis TD Items and TD List

Cost-Benefit Analysis Portfolio Approach

TD Register and Backlog Human Estimation and Expert Opinion

60
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

60

4.3.3.3.1 TD Register and Backlog

(TD Documentation, TD Communication)

Most participants (93%) used a TD register or backlog of TD issues for documentation or

communication activities. P7 admitted aversion to incurring TD intentionally but views the

TD register as valuable for tracking purposes - “You don't want to be filling that up but you

do need to keep track of the decisions that you've made and your reasons for making it”.

The adoption of agile was cited by many participants as the rationale for registering TD and

creating a backlog of TD issues. P10 mentions “a complete JIRA board that was just

dedicated to project clean up tasks” and P2 says that “they have adopted agile practices

and on their board, they have a technical debt backlog”. Even though the TD was being

documented via a TD register in most cases, participants indicated there was little appetite

by clients to repay the TD that was documented in the register – “They are not very willing

to tackle the debt backlog” and “We accrue technical debt but we don't actually tackle it

most of the time. There is no appetite there to actually fix the issues”. Another participant

describes the TD registration motivation with the following - “we will make a [user] story in

the technical debt backlog and this could be put into a sprint if we could somehow convince

the product owner to reserve a percentage of their sprint for fixing things”. The same

participant goes on to reveal that although repayment is the intention, the TD Register is

“basically a graveyard”. P5 states similar experiences with TD registration – “An awful lot of

the debt is obsoleted, it's probably not an issue any more”.

An issue ranking visualisation in the context of all other issues was the only technique used

for TD Prioritization and TD communication to reach a common understanding with clients

and other stakeholders on the importance they place on each TD Item being repaid. “We

work with the customer to prioritise the work. Generally, we will highlight like technical debt

at that stage and improvements we would like to make in terms of must haves, should haves

and nice to haves”.

“If it's something that causes that individual to be less productive because they cannot do a

task and it is a must have for the business, either it gets prioritised because it's a legitimate

concern or maybe it's handled by some other business function because it is not crucial”.

61
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

61

4.3.3.3.2 Human Estimation and Expert Opinion

(TD Measurement, TD Prioritisation, TD Repayment, TD Prevention)

Human estimation and expert opinion featured highly for the above TDM activities amongst

most participants (between 79%-93%). P10 describes the difficulty in estimating the risk in

accruing TD as “It generally comes to interpretation of the issue” with P11 echoing the TD

research community’s sentiment – “I don't know of any methodology for calculating the

severity of the technical debt”. P13 describes the estimation of TD in their team – “These

are the TD issues and for some of them we gave a very high level rough estimate to give

them a sense of the improvement effort”. P14 reiterates the estimation difficulty for TD issue

translation to a monetary figure - “When you try to dig into it in terms of monetary values

it's very finger in the air and it's very difficult to nail down and quantify so there might be a

better way of doing it”.

4.3.3.3.3 Automated Source Code Analysis

(TD Measurement, TD Identification)

79% of participants used automated source code analysis for TD measurement and TD

identification activities. The majority combined this technique with manual review of the

code base by the team’s software architect or senior developer. The SonorQube source

code analysis tool was the only tool mentioned for the measurement and identification

activities. Participants who had used SonorQube were generally pleased with the

functionality it offered –“It gives you the opportunity to actually analyse the things that you

have developed”. On further investigation, the participants admitted the manual code

reviews were conducted largely due to failings of the SonorQube tool. For example,

integration and dependency of the system on third party code and\or architectural

considerations that SonorQube did not account for. Additionally, P14 noted that the

monetary amount that SonorQube estimated for TD should be “taken with a pinch of salt”.

They continue to argue that “It’s very useful but I think that if you handed those estimations

over to an accountant they would say 'the are a lot of ifs and buts here”.

Another participant weighs up the pros and cons of static code analysis in general - “You

must cost all those things as best as you can and you have to use tools like SonorQube to

quantify the cost at a high level to say this is the technical debt that we're carrying and it is

X figure according to this tool. Big strong caveats on the tool and the number that it gives

62
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

62

you in both directions. It could be under or over estimating the debt. It's only looking at the

Java code”.

14% of participants who primarily supported existing systems for clients where the nature

of the project was primarily small to medium change requests and incident management

cited Debt Service Coverage Ratio (DSCR) as a means of TD measurement, although not

using the specific DSCR term.

4.3.3.3.4 TD Items and TD List

(TD Documentation)

50% of participants advised that TD Items which arose during the development or support

of a system were logged in a TD Backlog via the agile focused issue management system,

‘JIRA’. Of these participants, approximately 30% said that TD decisions are documented in

a proposal format, uploaded to SharePoint and sent to the customer as well so that they

can agree with the decision that was reached: “We also have the incident tool and TD

decisions are documented there so that everything is traceable so we always send it directly

to this tool and to our clients to document the decision process between us”. The TD

documentation artefacts took different formats for 57% of participants depending on the

audience. An example offered by one participant is the following: “Documentation for the

technical people, for a business person, for the management team, to make sure that we

are going to deliver or what was going to be built is what they are expecting. We have had

to change things during the development phase in the past precisely because of a

misunderstanding from documentation.”

86% of participants cited a lack of TD item prioritization and misjudged focus on solutions

and problems by client organisations. 21% of participants recounted instances where they

put the systems TD items in perspective by consolidating all the current development

requirements, changes and initiatives (product backlog) and asking the list to be ranked in

order of importance. This allowed the prioritisation of the TD items which were associated

with the ranked tasks.

63
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

63

4.3.3.3.5 Cost-Benefit Analysis

 (TD Repayment)

71% of participants indicated that they use cost-benefit analysis for to assist with TD

repayment decisions. P12 stressed that “you have to weigh up the cost benefit of things at

times” when contemplating repaying an incurred TD item. P12 also added that caution

should be taken when conducting cost-benefit analysis to ensure that too much time is not

being spent on it - “you have to be careful that you don't go too overboard on that like I said

before about the whole costs benefit”. Another participant, P5, echoed this cautious

sentiment by stating that “the opposite extreme means that you’re also sinking an awful lot

of time that's not actually an issue”. The return on investment was the upmost concern and

ultimate outcome of the cost-benefit analysis. For example, two participants [P1 and P9]

said that “Return on the investment should be factored into the decision” and “ROI always

should be factored in the decisions because in a commercial setting that is important”. The

consequences of the decision to strategically incur TD was summarized by P3 with the

following statement - “The cost benefit is that whatever savings we make now we will lose

and possibly make a massive loss down the line if we don't go back and address them”.

4.3.3.3.6 Portfolio Approach

 (TD Prioritisation)

The portfolio technique was in use for TD prioritisation in 23% of the cases where TD items

were being recorded by participants. An application, module or function would be classified

according to its value to the organisation in order to prioritise TD items. Release Planning

was another technique that featured in 36% of the participant interviews. Planning for new

features that were being scheduled in a release would help to prioritise TD items.

64
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

64

FIGURE 23 – Percentage of TDM Activity References by Participants

Total TD activity references by all participants was 250.

4.3.3.4 Challenges for TDM (RQ4)

Most of the TDM challenge themes emerged from the final question in the interview which

was “Do you have any other thoughts on Technical Debt Management?”.

4.3.3.4.1 Justification of TDM Investment

93% of participants referenced a current challenge of TDM being the justification of

investment in processes and initiatives to implement all TDM activities properly. The initial

intangibility of TDM were too much to overcome for participants to convince clients to invest

in. “It would be a very hard sell to go into a business and say we are not going to deliver

any business functionality but your codes got to be really good. It's like selling someone

snake oil. They're not going to see anything”. The consensus amongst participants was that

although TDM is important it was difficult to justify to a non-technical audience - “It’s a hard

sell. Managing technical debt is extremely important but no one is going to notice any

difference initially. It's difficult to quantify.” One participant gave the example of justification

of writing automated unit tests for new development. “Development takes a bit longer, but

it avoids some nasty surprises”. P8 expressed their main concerns – “how to really make

clients value technical debt and to make them understand the importance of improving their

code and maybe finding a way of quantifying the savings and the gains over time. You

0

5

10

15

20

25
TD Identification

TD Measurement

TD Prevention

TD Documentation

TD Monitoring

TD Repayment

TD Prioritisation

TD Communication

Percentage of TDM Activity References by Participants

TD Activity Reference %

65
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

65

know you keep seeing the same issues cropping up again and again and having to fix them

repeatedly”. The challenge was reiterated by P7 – “I don't think there is anything to be lost

from making the client aware of issues but it is really how do you make them appreciate

that they should be fixed”.

4.3.3.4.2 Difficulties in business and economic value transformation

86% of participants viewed the economic value transformation of TD to be one of their main

challenges for TDM. For example, P8 says that “It is very hard for us to write business cases

which directors will sign off to say 'Yes, it is worth me spending half a million pounds on this'

because they don't see that risk as being costly enough to justify the investment”.

4.3.3.4.3 Lack of TDM Tools

TDM activities were viewed by 50% of participants as time-consuming. Tools that could be

used to assist with a TDM framework were desired to decrease the amount of time

consumed by TDM activities. This requirement was articulated by P1 as “We need to do our

technical debt piece and we need a tool that you take out of the box almost. Almost the

same way that you would say OK we are going to implement agile, here is our agile

processes”. Participant 10 cites deficiencies with existing tools and their single focus nature:

“Some, like SonorQube, help with recording your technical debt but it is a little bit of a crude

tool it only works with certain types of debt”. P10 notes that existing tools don’t cater for the

entire technology stack – “It is much broader right now than it was a decade ago for example

when you had only one technology. Right now, we handle at least 10 technologies that I am

aware of” and “When you use a large range of technologies, it’s harder to use a tool like

that”.

4.3.3.4.4 Knowledge Management

Knowledge Management (KT) for TDM was viewed as a challenge by 29% of participants

especially during stages of organisational growth – “I think that we are pumping out high

quality stuff but I think as we scale it's going to become harder to guarantee that level of

quality across the organisation”. KT sessions and system support transition processes are

important - “Because in our department we are usually inheriting [code bases], we are

supporting applications that you actually don't know exactly how they are working in some

cases due to code complexity”. Participants also mentioned that KT in a collaborating

software service provider setting was also a challenge for TDM as due to commercial

66
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

66

sensitivities, pertinent TDM information was not always shared “it means that maybe some

information is not shared between those teams”.

4.4 Document & Textual Analysis

Semi-structured interviews provided the research with the relevant information to

contextualise the project. However, that analysis by itself does not provide enough

information on influential organisational factors on TDM and TDM techniques that are in use

for the studied organisation. Data source triangulation was required to test the validity of the

interview findings. The purpose of triangulating is to provide a confluence of evidence that

breeds credibility (Bowen, 2009). Before document analysis takes place, a detailed planning

process was outlined to ensure reliable results (See Appendix H).

4.4.1 Data collection

4.3.1.1 Document Search

The studied organisations’ online document repository, was searched on the 15th June 2017

for any document with the phrase ‘Technical Debt’ included in its in-text content ("technical

debt" (DetectedLanguage="en")) (See Figure 24). 83 results were returned. The same

repository was searched again on the 26th July 2017 but did not return any additional

relevant documents.

FIGURE 24 – Document Search

67
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

67

4.4.2 Document Data Analysis Procedures

4.4.2.1 Document Filtering

34 of the 83 returned documents were selected for analysis (55 megabytes (MB) of

documents). The remaining documents were discarded due to one or more of the following

reasons; not relevant, duplicated, or the file was missing at the time of download. The

collected documents formatting consisted of the following: .docx,, .xls, .csv, .pptx, .pdf and

.txt. The documentation format and filtering breakdown are illustrated in Table 7 and Figure

25 respectively (See Appendix I).

TABLE 7 – Document Search Result Categories

Document Search Result Category Total

Relevant to research question 34

Duplicate 8

False Positive - Not relevant to research
question

32

Not written for purposes of studied
organisation purposes

8

No longer available 1

Total 83

FIGURE 25 – Document Filtering Categories

8

32

8

1

34

0 5 10 15 20 25 30 35 40

Duplicate

False Positive - Not relevant

Not developed for studied organisation
purposes

No longer available

Relevant

Number of Documents

D
is

c
a

rd
 R

e
a
s
o

n

Document Filtering Categories

68
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

68

4.2.2.2 Document Analysis Process

After the documents were gathered, an organisation and management scheme was put in

place to create a case study database (See Figure 26). The original documents were

copied for annotation and authenticity assessed. The documents agenda was assessed

and any bias documented. Each of the selected documents title\name, document type,

creation purpose and target audience were recorded in a Microsoft Excel file. The

“unwitting” evidence, or latent content, of the documents were analysed. Latent content

refers to the style, tone, agenda, facts or opinions that exist in the document. To do this,

the use of particular words, phrases and concepts were quantified (O’Leary, 2014). The

selected documents were then explored via thematic analysis for references to TD and

TDM. The number of references and the frequency and number of occurrences within the

document were extracted and categorised per the Miles and Huberman (1994) method.

The information was then organised into what was related to central questions of the

research (Bowen, 2009, p. 32). The purpose of this activity was to “integrate data

gathered by different methods” (ibid.) to complement the semi-structured interview

method. The filtered useable data were then obfuscated to remove personal information

and client references. A summary of the document meta data is illustrated in Figure 27

and 28 below.

FIGURE 26 – Case Study Database

69
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

69

FIGURE 27 – Document Meta Data Summary

FIGURE 28 – Creation Timeline of Analysed Documents

0 20 40 60 80 100

Document Type

Word Count by type

Document size by type

Percent %

D
o
c
u
m

e
n
ts

Document Meta Data Summary

PDF

Rich Text

Plain Text

Spreadsheet

Presentation

Intranet Web Page

6

15

7

2
3

1
0

2

4

6

8

10

12

14

16

18

2009 2011 2013 2015 2017

N
u
m

b
e
r

C
re

a
te

d

Created Year

Creation Timeline of Analysed Documents

70
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

70

4.4.3 Document Findings

4.4.3.1 TD Understanding and Attitudes towards TDM (RQ1)

4.4.3.1.1 TD Understanding

All documents were searched for definitions of TD. The findings are outlined below.

1. “Functionality in existing systems includes redundant code and some ad-hoc

implementations of core features”

2. “It is best described as a situation in software development where a shortcut or

workaround is used in a technical decision. Things that save time and money today

but can cost you down the road”.

3. “A recently coined metaphor used to refer to the eventual consequences of sub-

optimal software development within a code base. The debt refers to the work that

needs to be done in order for a particular task to be considered complete”.

4. “Another Moving Part/Extra Schedule (technical debt)”

The 34 documents analysed contained 112 specific references to the term “Technical Debt”.

4 (12%) documents offered an explicit definition of TD (Figure 29).

FIGURE 29 – Explicit TD Definition

12%

88%

Explicit TD Definition

Explcit TD Definition

No Explicit TD Definition

71
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

71

Two (6%) documents offered an additional analogy to describe the TD phenomenon.

1. “When you think of unintentional technical debt – picture it as an iceberg – mostly

hidden and out of sight – until you crash into it. From an IT point of view, it’s

everything that the client … and the user, won’t see, ever”

2. “The words “Big Snowball” was used to describe the large amount of ad-hoc

programming changes implemented over the years in existing systems”.

4.4.3.1.2 Attitudes

FIGURE 30 – Document Authors’ Attitudes Towards TD

• TD was described by P14 as “always to be expected and accepted in software

projects”.

• Documents such as DOC29 and DOC30 state that striving for zero TD was not

productive – “Attempting to tackle the entire technical debt of a project would be

prohibitively expensive and not required” and “Technical debt is a common, and

often acceptable, side-effect of new projects, particularly in a fast-paced innovative

environment”.

• DOC34 advocates embracing TD and describes it as “an essential part of

sustainable software development”.

26

21

15

12

9

9

6

0 5 10 15 20 25 30 35 40

Embrace TD

Frustration

TDM is becoming more important

Should be used for leverage

Some TD is inevitable

TDM Responsibility

Differing Perspectives

Percent %

A
tt

it
u

d
e

s

Perceived Document Authors Attitude Towards TD and
TDM

72
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

72

4.4.3.1.3 TD Classification

FIGURE 31 - Classification of TD Examples Outlined in Documents

• DOC28 stipulates that “many of the [source code analysis] findings should be

considered as long term areas for improvement within wider development efforts

rather than immediate areas of concern”

• Another document states that an “[Application] needs to be transitioned to the

strategic platform (technical debt)”.

44%

18%

23%

15%

TD Classification

Tactical

Incremental

Strategic

No Classification

73
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

73

4.4.3.2 Organisational Factors that influence TDM (RQ2)

35% of documents analysed contained influencing factors for TDM decisions.

FIGURE 32 – Factors That Influence TDM

4.4.3.2.1 Organisational Culture

Organisational culture featured the least as an explicit factor for influencing TDM decisions.

One document states that a core value of the studied organisation is fostering the correct

mentality in various teams - “The [organisations core values] thinking is helping to change

attitudes regarding managing technical debt and forcing other teams to do likewise,

improving quality across the board”.

4.4.3.2.2 Risk Appetite

60% of the documents cited risk as a factor in TDM decision. Below are some text extracts

from these documents which highlight risk appetite as an influencing factor.

• “To accrue some debt with low-risk releases, you can quickly adapt to business

requirements and user needs”.

• "[Release 10] de-risks the programme delivery but leaves some technical debt from

an integration perspective (i.e. not all interfaces using the e-Business Suite)”.

0

10

20

30

40

50

60

70

80

Organisational
Culture

Risk Appetite Quality and
Standards

Developer
Mindset

Future
Maintenance

P
e
rc

e
n
t

%

Factor

Factors that Influence TDM

Organisational Culture Risk Appetite Quality and Standards

Developer Mindset Future Maintenance

74
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

74

• “Top risk and issues for integration: RISK: Potential risk of Introducing not easily

repayable TD in [chosen solution]”.

• “By specifically analysing and identifying where such debts will be introduced in

advance, they can be planned for and managed. Risk and long-term costs are

reduced, and change confidence increased”.

• “Any decision to proceed with the deployment on the existing stack must be treated

as high-risk and the resulting residual debt clearly defined and documented”.

• “Stability in the current system is a very important consideration”.

With regards to the code complexity and area of the system that was at risk, DOC30 states

that “Some methods have a large number of independent routes through which logic can

flow (referred to as ‘Cyclomatic Complexity’ when over 10 routes). These are difficult to

debug and modify, especially as there are no unit tests, which also creates more risk”.

In addition to the above, DOC29 noted that by accruing TD there was “Increased risk in:

• Determining the ‘fitness’ of modifications to code

• Assessing the knock-on effects of code changes

• Assuring that the expected behaviour of code is understood by the developer”

The lack of test coverage in applications was a risk for TDM decisions as shown in the

following extract from DOC17 and DOC03 respectively (See Figures 33 and 34).

• “Straight forward development decisions are hampered by the lack of any test

coverage outside of manual developer and user testing. Less than 1% of the code

base is covered by unit tests, there are no automated smoke, integration or

acceptance tests nor is there any evidence that thorough performance testing has

been performed in the past”.

• “Automated testing and applying software development best practices to reduce

technical debt and improve technical debt management, maintainability and

extensibility of the platform. The technologies are used as a matter of course for all

new development”

75
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

75

An extract of the SonorQube code base analysis document, DOC28, reiterates the above

sentiment risk assessment and test coverage.

FIGURE 33 – SONORQUBE REPORT SUMMARY

FIGURE 34 – System Automated Unit Test Coverage Diagram

The documents author states the following: “At less than 10% the test coverage rating is

quite low (only 5.1% for unit tests). The graph above indicates a number of opportunities for

improvement. Given that the applications have been successfully deployed in production,

the positive impact of improving test coverage must be judged against the risk, effort and

cost required to retrospectively increase test coverage”.

4.4.3.2.3 Future Maintenance

Future maintenance, re-work and refactoring were identified as factors in TDM decisions

with consideration given to increased effort and consequences predicted based on the

decision to intentionally accrue TD.

DOC29 for example describes “Increased effort in:

• Analysing and reproducing issues;

• Testing changed code, as this must be done manually;

• Determining where to find and place new code;

76
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

76

• Finding relevant documentation; and

• Conducting code releases.”

Another document, DOC27, states that the potential rework necessary was an influencing

factor in TDM: “For Technical Debt, the estimates for remedial work were felt, at the time,

to err on the side of caution”.

Future maintenance due to TDM decisions to incur tactical TD was outlined in DOC10: “For

tactical solutions, the business value must cover the cost of creating and removing any

technical debt”.

4.4.3.2.4 Quality and Standards

25% of documents indicated that commitment to code quality was an TDM decision factor

- “Failure to change old habits leads to technical debt and eventual design death” and is

reiterated in DOC24 which states that “Strong commitment to Code Quality – A focus on

doing the right thing and reducing Technical Debt by creating common reusable libraries

which other teams can reuse and share”.

4.3.3.3 TDM Techniques & Approaches (RQ3)

There were seven techniques used for TDM activities according to the analysed documents.

4.4.3.3.1 TD Items & Lists

(TD Documentation, TD Prioritisation)

DOC34 identifies a TD List as a method for prioritisation. The document describes the TD

list a “living document” which is the result of the following TDM activities “TD Identification,

TD Estimation and TD Decision making”.

4.4.3.3.2 Continuous Integration & Test Driven Development

(TD Prevention)

Strategies identified for TD Prevention were continuous integration and test-driven

development (TDD), with one document including a well-defined product-wide definition of

done as a prevention approach. The team “Has a product-wide definition of done to prevent

technical debt. The Scrum Master can inspire the team to learn engineering practices

77
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

77

associated with XP: Continuous Integration (continuous automated testing), TDD, constant

merciless refactoring, pair programming, frequent check-ins, etc. Informed application of

these practices prevents technical debt” (DOC25). The change request process was also

defined as an area where un-focused TD could be prevented – “Change Request process

should explicitly include consultation with Solution Architect” (DOC30). DOC01 describes

the continuous integration technique for TD prevention, “By adopting both Continuous

Integration and Continuous Deployment, you not only reduce risks and catch bugs quickly,

but also move rapidly to working software”. DOC23 included the recommendation to

“Embrace Test-Driven Development and design in code production”.

4.4.3.3.3 Portfolio Approach

(TD Prioritisation)

DOC30 outlines a classification approach and states that each system component

(technology and application) is given a Red, Amber, Green (RAG) status (Figure 35). The

stated justification for this classification approach was that it would “serve to manage and

control technical debt”.

FIGURE 35 – RAG Status

4.4.3.3.4 Debt Service Coverage Ratio

(TD Measurement)

DSCR was defined as the main method in 2 documents. One TD interest measurement

technique was described as the following, “One simple way would be to ask the

development team the time it has taken them to develop some functionality (say 5 days)

and then ask them the time it would have taken them if working with a clean system (say 3

days). The difference is the interest paid on your technical debt which in this case, is 2

days”.

78
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

78

4.4.3.3.5 Source code analysis

(TD Identification, TD Monitoring, TD Communication)

In a source code analysis report (DOC28), TD is being monitored at the release stage.

“From the figures, it can be seen that recent development work has reduced the level of

technical debt by 3 hrs 52 mins. Further, with the addition of some integration tests, overall

code coverage, though still below 10%, has improved”.

The only source code analysis tool mentioned by all documents was SonorQube. For

example, DOC29 states that “The tool can be used to target particularly problematic areas

for rework” another highlighting that “SonarQube provides extremely useful metrics on code

quality and can highlight critical areas of weakness”. DOC30 justifies the use of TD

identification tools with the following - “By specifically analysing and identifying where such

debts will be introduced in advance, they can be planned for and managed. Risk and long-

term costs are reduced, and change confidence increased”. DOC28 (Fig 36) shows an

example of the identification of TD in a system.

FIGURE 36 – Identified TD

79
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

79

Expert opinion was commonly coupled with the source code analysis tool SonorQube to

make TD accrual decisions – “The analysis provided by SonarQube is highly informative

and can positively influence future development decisions”.

4.4.3.3.6 TD Register

(TD Documentation)

Integration of TD aspects to existing technical artefacts and use of TD Registers were

referenced as being in use. DOC30 suggests that the TD documentation should be

integrated as part of existing technical artefacts – “An extra page of the Project Appraisal

Document (PAD) deliverable should document the approach defined to manage technical

debt introduced by this project” and in another section of the same document, repeats this

initiative to “Include specific coverage of management of technical/legacy debt”. DOC22

highlights another technique used for TD decision documentation in the form of a TD

register - “the resulting residual debt clearly defined and documented in the register”.

DOC23 advocates the use of a TD Register to document TD – “Maintain a technical debt

register which ensures awareness and helps plan how TD this can be removed” and

suggests TD should be “included as consideration for a line item on PID document”.

4.4.3.3.7 Continuous Service Improvement

(TD Communication)

A continuous customer service improvement initiative, retrospectives and lessons learned

in agile and waterfall methodologies respectively were strategies used for TD

communication.

“[Studied Organisation] introduced each of these technologies and processes as part of our

commitment to Continuous Service Improvement, instrumenting inherited legacy

applications with automated testing and applying software development best practices to

reduce technical debt and improve maintainability and extensibility of the platform. The

technologies are used as a matter of course for all new development” (DOC03).

“Retrospectives after each milestone and understanding technical debt helped eliminate

waste in future iterations” (DOC12).

80
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

80

FIGURE 37 – Percentage of TDM Activity References by Documents

4.4.3.4 Challenges for TDM (RQ4)

4.4.3.4.1 Knowledge Management

DOC30 mentions that knowledge management is a challenge for TDM in one system due

the requirement for significant business domain knowledge and complexity of the code

base: “The key challenges to performing adequate technical debt management for [the

system] are the domain knowledge requirement, the existing technologies and the

complexity of the code base”.

4.4.3.4.2 Lack of TDM Tools

Inaccuracy of existing TDM tools was cited: “Many of [the SonorQube Tool] findings do

relate to best practices in code style which can be subjective and not necessarily indicative

of issues warranting urgent action”.

1

6

11

16

21

26

TD Identification

TD Measurement

TD Prevention

TD Documentation

TD Monitoring

TD Repayment

TD Prioritisation

TD Communication

Percentage of TDM Activity References by Documents

TDM Activity Reference %

81
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

81

4.7 Conclusion

This chapter presented the analysis from the data collected as part of the research. The

data sources used in this study were 14 semi-structured interviews. The participants were

asked questions in relation to their understanding of TD, their attitudes towards TDM as well

as what techniques they use to conduct TDM and what challenges TDM activities posed.

Documents were also collected from the studied organisations document repository. The

data collected were analysed, and initial themes and observations were noted. Finally, the

emergent themes show the understanding and attitudes towards TDM, techniques for

conducting TDM and the challenges it presents. Figure 38 below presents an illustrated

summary of the research findings. The findings are discussed in the next chapter.

82
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

82

FIGURE 38 – Framework of TDM from Findings

83
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

83

Chapter 5: Conclusions and Future Work

5.1 Introduction

This chapter discusses how the findings of the study answered the research questions. It

highlights the key findings and interesting new findings, and discusses the contribution of

this research to the existing body of knowledge. Subsequent sections discuss the limitations

of the research and outlines recommendations for future research in this area.

5.2 Answering the Research Question

The literature review shows that there is a lack of empirical studies on how TD is managed

by software service providers in Ireland. This qualitative research focuses on analysis of

how current senior software practitioners conduct TDM. To answer this question, analysis

was conducted to investigate the understanding and attitudes towards TDM, factors that

influence TDM, the techniques for TDM activities and the challenges that TDM poses.

Answers to research questions were obtained through the analysis of interview transcripts

collected via semi-structured interviews with senior software practitioners having ten or

more years of experience in software development and support projects. The findings were

triangulated through analysis of documents collected from the studied organisation.

This dissertation’s findings are discussed in more detail in the next section.

5.3 Research Findings and Discussion

5.3.1 RQ1. How do senior software practitioners view the concept of technical debt and its

management?

Participants had differing understandings and interpretations of the TD metaphor as was

originally suggested by the systematic mapping conducted by Tom et al (2013). Some

participants viewed TD as a conscious and explicit decisions only whilst other participants

viewed TD as being legacy issues. Others understood TD to be a quantified measurement

of effort to refracture the source code. Interestingly, the reference by participants to TD as

a “laden weight” or something that was “dragging” the system down has not been referenced

before in the literature. TD was also understood to be a consequence of a short-term

solution to achieve something that was otherwise unattainable which Tom et al (2013)

describes as fundamental to the TD concept. The most common understanding of the TD

84
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

84

term was the recognition of sub-optimal code. This is important as recognition implies

conscious and explicit identification and measurement of TD issues.

93% of participants indicated that they believed attitude impacted on TDM and influenced

the consultant’s decisions to either personally make the decision or advise the client to

accrue new TD. This corresponds with the findings of Tom et al (2013). Developers tended

to be more pessimistic about the accrual of TD whereas technical team leads or non-

developers were more optimistic towards intentional TD accrual. The findings suggest that

TD understanding forms the basis for attitudes towards TD described next.

Generally, participants were empathetic towards the issue of TD, the need for its

management and the necessity of accruing TD tactically and strategically. This finding is

similar the finding by Tom et al (2013) but differs from McConnell’s (2007) statement that

technical staff are generally pessimistic about incurring all TD. Some participants viewed

TD simply as a means to articulate a wide variety of sub-optimal code issues which does

correspond to McConnell’s (2007) TD suggestion that the TD term is a reifying a concept

that is otherwise too intangible to be handled well.

An attitude prominent amongst participants and documents alike is the inevitability of TD

and the need to focus on its adequate management as opposed to striving for zero TD. This

correlates to the document analysis findings in section 4.4.3.1.2 and to the literature (Ebert,

2007; and Tom et al., 2013). The difficulty in explaining TD may be due to the participant’s

lack of full understanding of the concept discussed above. The need for pragmatism in

accruing TD was mentioned less by participants (36%). The explanation of this finding may

be due to the characteristics of the clients that the studied organisation works with. As

identified by Brazier (2007), time-to-market is more important for the futures of small

companies in niche markets that rely on being the first to market. This is not the case for

most of the studied organisations clients which are either public sector departments or

larger private organisations. Frustration towards TD issues featured prominently in the

analysed documents and did not appear as evident from data collected from participants.

This may be due to participants’ unwillingness to disclose their frustration with TD issues

during the interviews.

The perceived usefulness (or lack thereof) of explicit TDM also hinders the application of

the TDM approach. Most participants (78%) believed that TDM is becoming more of an

important topic in recent years. Some participants (28%) desired a more structured

approach to TDM and suggested it should be manifested in the form of a TD policy as

recommended by Ramasubbu et al (2015). This agrees with the view that TD should be

embraced as discovered during document analysis.

85
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

85

The attitudes of software practitioners appear to influence the TDM challenges that are

discussed next.

5.3.2 RQ2. What organisational factors influence the management of Type II TD?

Several external, internal and mixed organisational factors were presented in section

4.3.3.2 and illustrated in the TDM Framework proposed by this study (Figure 38). Risk

appetite and organisational culture were the deemed the most influential organisational

factors for TDM. This corresponds with the finding by Tom et al (2013) that risk appetite

could influence the creation of TD and ultimately impact on project risk. It is expected that

the organisations appetite for risk would influence how TD is managed. It is however, a

different dynamic when one or more of an organisations software systems are being

managed by a third party. Both the software system owner and the software service provider

may have differing appetites for risk and levels of risk acceptance creating a potential

problem for TDM. The reason for risk appetite featuring more prominently in the documents

may be caused by the requirement to explicitly state risk in official documentation. The

mindset of developers can influence TDM positively or negatively. This finding agrees with

the findings by Yli-Hummo et al (2016).

Organisational culture and its influence on TDM decision making appears to stem mostly

from the core values that are stated as the guiding principles of the studied organisation.

Participants regularly cited these core values as being a consideration when conducting

TDM activities and decisions. The documentation analysis corroborated this finding. The

explanation for this finding may be the level of commitment of the studied organisations

management to these core values or could equally indicate individual’s justification for

attempting to make quality TDM decisions.

The extent of managements IT knowledge also featured commonly in both data sources.

The finding corresponds with the finding by Lim et al (2012) that software development

knowledge strongly influenced decisions to incur TD. This finding may be linked to the

understanding of TD outlined in sections 4.3.3.1 and 4.4.4.1. The finding that trust and the

relationship with the client influences TDM corresponds with previous findings by Babar et

al (2007) and Heiskanen et al 2008. The critical factors identified by Ova et al (2006) for

maintaining trust in an established outsourcing relationship tie in with the studied

organisations core values. Management IT Knowledge may influence TDM buy-in and

commitment to controlling TD responsibly.

The perceived level of commitment that the management of IT exhibited influenced TDM

decisions for accruing and repayment TD items in the experience of 36% of participants. As

86
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

86

this factor was considered a factor by only 36% of interview participants, it is unclear if this

factor has a significant impact on TDM. The much-cited lack of approaches and techniques

for visualising TD may be linked to a difficulty in obtaining management buy-in (Fernadez-

Sanchez, 2015).

The challenges that TDM poses may have a significant impact on software practitioners

ability to effectively implement TDM techniques and conduct them successfully.

5.3.3 RQ3 What methods and techniques are used for explicit TDM?

Generally, participants had no pre-defined and standard TDM practice. While there was no

standard accepted approach for managing TD, there were TDM activities evident within

existing processes for all participants. As presented in section 4.3.3.3, there were six main

techniques used for TDM activities. Most of these techniques such as source code analysis,

expert opinion and TD Registration were used for multiple TDM activities. The use of one

technique for multiple activities links with findings by Alves (2016).

The most commonly used techniques were for TD documentation and TD communication

activities. The method of documenting TD in a TD register was mainly evident in projects

where an agile methodology was being used. This suggests that the use of agile lends itself

more effectively than waterfall to the continuous documentation of TD. Although TD was

documented, it was not always documented as TD Items with the properties suggested by

the literature (Guo et al,, 2011; 2011a; Holvitie et al., 2013, Zazworka et al., 2013). The

finding that TD items are used for TD documentation less than TD Backlogs adds credence

to this finding.

TD was mainly logged as “issues” and kept in the product backlog using the JIRA tool.

Various participants mentioned that the TD Backlog was not regularly updated after the TD

had been documented initially. This suggests an inaccurate representation of unaddressed

TD issues. This finding is consistent with the suggestion by Lethbridge et al (2003) that

developers’ documentation of TD may be subjective.

The popularity of expert opinion for the TD estimation and measurement activities backs up

the lack of sophisticated and trusted techniques for TD measurement techniques. The

results exhibited in 4.3.3.3 suggest that expert opinion is commonly used for TDM activities

in collaboration with other techniques. This finding agrees with the literature (Fernadez-

Sanchez, 2015) which suggests there is a need to use expert knowledge to add TD

information that cannot be estimated in another way currently.

87
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

87

Source code analysis was the most widely used technique for TD identification and TD

Measurement. The evidence that source code analysis is being actively used for TDM

matches findings by Letouzey (2012; 2012a). Although the findings show that source code

analysis is being used for TDM, it is recognised as being in a relatively new addition in most

instances and is used in an ad-hoc manner. Where source code analysis was being used

for TD identification or TD measurement, the data showed that there were plans to integrate

the technique fully with release management.

Cost-benefit analysis was commonly used by participants to assist in TD repayment

decisions. Although cost-benefit analysis was used, how it was used varied greatly amongst

the usage instances. Mostly, the analysis used for cost-benefit was based on a rough RAG

rating with not much effort being given to accurate attempts at interest and principal

calculation. This finding is in line with the theory by Seaman et al (2012) that a crude

estimation is still the most common one. The special considerations for cost-benefit analysis

as found by (McConnell, 2007; Tom et al., 2013; Tom et al 2013) were evident. Applications

that were identified by management as candidates for decommission were often in use for

longer than was anticipated.

The use of a portfolio for prioritising TD was less common with 23% of participants using

this technique. The literature cites the portfolio approach as one of the most cited

management strategies however this study finds that it is not commonly used in practice

(Alves, 2016). It is possible that the reason for this is the lack of the techniques evaluation

in a real-setting. It could also be attributed to to the lack of strategic application portfolio

planning within the client organisations.

Finally, attention to TDM activities between both data sources were somewhat similar with

some more obvious variations (Figure 39). TD identification and TD monitoring was

referenced more in the documentation than was mentioned by participants during

interviews. Instances of TD communication were mentioned considerably more during

interviews. The reasoning for these discrepancies may be that the semi-structured interview

allowed for deeper and more verbose descriptions of TDM activities than the documents. In

contrast to findings by Alves et al (2016) referenced in Table 2 of Chapter 2, TD

communication was a commonly referenced activity.

88
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

88

Figure 39 - Percentage of TDM Activity Reference % Data Source Comparison

5.3.4 RQ4 What challenges exist in the management of technical debt?

As presented in Section 4.3.3.4 and 4.4.3.4, this research found several current challenges

to conducting effective TDM. The greatest challenge for interview participants is the

justification of TDM investment. The explanation for this challenge appears to be the lack

of visible results to project stakeholders which increases the difficulty in arguing its

importance. The reasons offered for this challenge agree with literature which posits that

TDM is time-consuming and can create additional work in the development processes (Yli-

Huumo et al., 2016). There seems to be a correlation between organisational factors and

the difficulty in software service providers receiving investment (time and resources) in TDM

activates. The level of client management IT knowledge appears to impact on the difficulty

in overcoming this challenge. This challenge was not apparent from the document analysis

results. Again, the reason for this may be due to an adversity to document challenge

explicitly.

The lack of available tools for TDM as a current challenge agrees with findings by Yli-Huumo

et al (2016). Participants outlined the constraints of TD identification and measurement tools

such as SonorQube which they claimed did not give the full picture of all technologies used

by client systems such as those mentioned by Falessi et al (2013).

Organisational growth, support transitions and vendor collaboration were areas identified

by participants where KT for TD was considered a challenge. As the studied organisation

1
6

11
16
21
26

TD Identification

TD Measurement

TD Prevention

TD Documentation

TD Monitoring

TD Repayment

TD Prioritisation

TD Communication

Percentage of TDM Activity Reference % Data Source
Comparison

TDM Activity Reference % from Documents

TDM Activity Reference % from Interviews

89
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

89

is in a growth phase and mostly expanding by acquisition, there is the risk that this changing

and fluxing will cause valuable TD knowledge to get lost. The low use of quality TD

documentation may be a contribution to this TDM challenge as found by Slinker (2008). It

seems that the difficulty in overcoming developers’ aversion to document TD items

contributes to a large amount of tacit knowledge being retained by individuals as concluded

by (Tom et al., 2013).

The results show that the there is considerable difficulty in proving business and economic

value of TDM. This may be due to TD being a somewhat abstract concept. The results

suggest that it is also difficult to review TDM in terms of its economic consequences as

originally suggested by Falessi et al (2013) as cost of TD repayment changes depending

on software release scenarios. This finding may be explained by the lack of underlying

theory and models in TDM which results in challenges in real-settings.

5.4 Contribution to Research Topic

The focus of this dissertation is TD and its management in the context of an Irish software

service provider. This perspective has not been explored before, along with the combination

of document analysis of a studied organisation.

In addition, most of the studies analysed the TD subject through systematic literature

reviews from an in-house software development team perspective and focused on aspects

of TDM such as the use of a single technique for TDM. This research takes a holistic

approach to the study of how TDM is conducted in a real setting.

This dissertation adds to the existing body of knowledge by investigating how TD is

perceived and how it is managed by a software service provider operating in Ireland. This

study proposes to fill gaps in the literature by exploring attitudes to TD, techniques used in

industry for TDM and the challenges that TDM presents software practitioners.

The results found in this investigation provide an insight into how TDM is conducted in a

real setting. Therefore, it may be of interest to software development and support teams

within software service providers that wish to ascertain what considerations are necessary

when creating a TDM strategy. It might also be useful to IT managers who are searching

for techniques to manage specific TDM activities. Equally, this research could serve

academics and researchers investigating the studied topic.

90
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

90

5.5 Limitations and Threats to Validity

This section addresses potential research validity threats and actions taken to minimize the

effects. This research has at least four limitations which are outlined in the below sections.

5.5.1 External Validity – Transferability

The main limitation of this study shares the limitation of all case studies. The generalisation

or external validity (Yin, 1994), of the study is restricted by the case selected. The findings

outlined in chapter 4 reflect experiences in one organisation with the aim of transferability,

not generalisability. Specific findings of this study may not apply in other contexts such as

in-house software development teams. There is a chance that the findings of largely positive

attitudes to conducting TDM may be a Hawthorne effect of the studied organisation being

a provider of software services. However, none of the open-ended interview questions (see

Appendix G) suggest that TDM is a worthwhile activity. The results reflect the views of

software practitioners who had an interest in the issue of TDM. The study attracted

participation across many teams and departments in the studied organisation.

5.5.2 Internal Validity – Credibility

There is the risk that the phenomenon described by TD might be described with different

terminology that is not covered by search terms of the literature review described in Chapter

2, section 2.1. This risk was mitigated by searching the main digital libraries and conducting

an initial scoping review but remains as an acknowledged validity threat.

5.5.3 Reliability – Dependability

Runeson et al (2008, p.154) describe reliability as being concerned with ‘to what extent the

data and the analysis are dependent on the specific researchers’. A limitation of this study

is the semi-structured interview data collection method. The reason for this is that oftentimes

the questions are open-ended which results in participants’ responses varying and also

generating a considerable amount of data to reduce and categorise. The results from

another researcher conducting this study may produce somewhat different findings based

on the data collected. The reliability of this study was improved by describing the data

collection, analysis and coding processes in detail which increases repeatability for other

researchers (Yin, 1994). Another limitation of this study is that only one human coder was

used for content analysis (Neuendorf, 2002). The reliability of human coding which is often

measured using statistical measure of intercoder reliability or ‘the amount of agreement or

91
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

91

correspondence among two or more coders’ (ibid). The reliability of this study was improved

by ensuring that the classification procedures for the document analysis was consistent so

as other researchers could make valid inferences from the text (Weber, 2005).

5.6 Implications for Future Research

This paper has offered an insight into how TDM is conducted. It is important to note that the

research results do not show the impact of techniques used for TDM activities and what

combination of techniques work most effectively. Future research in this area could lead to

interesting findings on how best TDM could be implemented in organisations that develop

and support software systems.

Although this research did not identify any additional TDM activities than those identified by

Li et al (2015), future research which investigates these activities at a more detailed level

could produce sub-activities or entirely new activities for TDM.

Finally, even though the research participants and studied documents came from a variety

of software development teams operating in different industries, the relationship between

particular industries and TDM were not explored. The further analysis of particular TDM

techniques within a specific industry could present interesting results.

5.7 Summary

Information systems and their application to business purposes have progressed

significantly since the LEO I. To counteract the first law of software evolution and at least

minimise the deterioration of a systems usefulness, TDM should be practiced to control the

systems decay. TDM can also help to reduce the inevitable increasing complexity of a used

software system described by Lehman (1980).

This qualitative research focused on current views of TD and its management, influential

TDM factors, techniques for conducting TDM activities and challenges it presents.

Findings suggest that TDM is a necessary task to control technical imperfections and where

necessary leverage TD. TDM practices are ad-hoc and is being conducted in various ways

and via different techniques.

This evidence from the studied organisation in isolation may reflect the growing interest in

the TD phenomenon and the importance of its management for organisations which are

increasingly embracing digital transformations.

92
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

92

References

Agile Alliance. n.d. Technical Debt is a Systemic Problem. [online] Available at:

https://www.agilealliance.org/technical-debt-systemic-problem/#_ftn3 [Accessed 7 August

2017].

Allman, E. 2012. Managing technical debt shortcuts that save money and time today can

cost you down the road, Communications of the ACM 55(5) 50–55.

Allman, E. 2012. Managing technical debt: shortcuts that save money and time today can

cost you down the road/ ACM Queue. [e-journal] 10(3) Available at:

http://queue.acm.org/detail.cfm?id=2168798 [Accessed 9 July 2017].

Alves, N., Mendes, T., de Mendonça, M., Spínola, R., Shull, F. and Seaman, C. 2016.

Identification and management of technical debt: A systematic mapping study. Information

and Software Technology, 70 (C), pp.100-121.

Alves, N., Ribeiro, L., Caires, V., Mendes, T. and Spinola, R. 2014. Towards an Ontology

of Terms on Technical Debt. 2014 Sixth International Workshop on Managing Technical

Debt.

American Heritage Dictionaries. 2015. American heritage dictionary of the English

language. 5th ed. s.l.: Houghton Mifflin Harcourt.

Atkinson P., and Coffey A., 2002. Revisiting the relationship between participant

observation and interviewing, in J F Gubrium and J A Holstein (eds) Handbook of Interview

Research Thousand Oaks CA: Sage pp.801-14.

Avgeriou, P., Kruchten, P., Ozkaya, I. and Seaman, C. 2016. Managing Technical Debt in

Software Engineering [pdf] Available at:

http://drops.dagstuhl.de/opus/volltexte/2016/6693/pdf/dagrep_v006_i004_p110_s16162.p

df [Accessed 1 Aug. 2017].

Babar A., Verner, J. and Nguyen, P. 2007. Establishing and maintaining trust in software

outsourcing relationships: An empirical investigation. Journal of Systems and Software,

80(9), pp.1438-1449.

Babu, M. 2016. Vendor-Driven Technical Debt: Why It Matters and What to Do About It.

Cutter IT Journal: The Journal of Information Technology Management, 29(3), pp.33-40.

https://www.agilealliance.org/technical-debt-systemic-problem/#_ftn3
http://queue.acm.org/detail.cfm?id=2168798
http://drops.dagstuhl.de/opus/volltexte/2016/6693/pdf/dagrep_v006_i004_p110_s16162.pdf
http://drops.dagstuhl.de/opus/volltexte/2016/6693/pdf/dagrep_v006_i004_p110_s16162.pdf

93
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

93

Basit, T. 2003. Manual or electronic? The role of coding in qualitative data analysis.

Educational Research. 45(2) pp.143–54.

Bernard, H. Research methods in anthropology: Qualitative and quantitative

approaches. 3rd Alta Mira Press; Walnut Creek, CA: 2002.

Bjørn-Andersen, N. 1985. Conference Review: IS Research – A Doubtful Science, In:

Mumford, E, Hirschheim, RA, Fitzgerald F and Wood-Harper AT (Eds) . Research Methods

in Information Systems, Proceedings of the IFIP WG 8.2 Colloquium, September 1-3 1985,

Manchester Business School, Elsevier: Amsterdam

Boogerd, C. and Moonen, L. 2009. Evaluating the relation between coding standard

violations and faults within and across software versions. In: 6th IEEE International

Working Conference on Mining Software Repositories. Vancouver: IEEE.

Bowen, G. A. 2009. Document analysis as a qualitative research method. Qualitative

Research Journal [e-journal] 9(2), 27-40. http://dx.doi.org/10.3316/QRJ0902027 [Accessed

13 July 2017].

Bower, M. (2003). Company philosophy: The way we do things around here'. [online]

McKinsey & Company. Available at: http://www.mckinsey.com/global-

themes/leadership/company-philosophy-the-way-we-do-things-around-here [Accessed 19

August 2017].

Brazier, T. 2007. Managing Technical Debt. Overload Journal, [e-journal] 15(77). Available

at: https://accu.org/index.php/articles/1301 [Accessed 20 August 2017].

Brenner, R. 2017. Managing Technical Debt: Nine Policy Recommendations. [online]

Available at: https://www.cutter.com/article/managing-technical-debt-nine-policy-

recommendations-495281 [Accessed 20 May 2017].

Brown, N, Cai, Y, Guo, Y, Kazman, R, Kim, M, Kruchten, P, Lim, E, MacCormack, A, Nord,

R, Ozkaya, I, Sangwan, R, Seaman, C, Sullivan, K, and Zazworka, N., 2010. Managing

technical debt in software-reliant systems, Proceedings of the FSE/SDP Workshop: Future

of Software Engineering Research, p. 47-54 http://dx.doi.org/10.1145/1882362.1882373.

Brown, R., 2006. Doing your dissertation in business and management: the reality of

researching and writing, Sage.

Bryman, A. 1984. The debate about quantitative and qualitative research: a question of

method or epistemology? The British Journal of Sociology, 35, 75-9

http://dx.doi.org/10.3316/QRJ0902027
http://www.mckinsey.com/global-themes/leadership/company-philosophy-the-way-we-do-things-around-here
http://www.mckinsey.com/global-themes/leadership/company-philosophy-the-way-we-do-things-around-here
https://accu.org/index.php/articles/1301
https://www.cutter.com/article/managing-technical-debt-nine-policy-recommendations-495281
https://www.cutter.com/article/managing-technical-debt-nine-policy-recommendations-495281
http://dx.doi.org/10.1145/1882362.1882373

94
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

94

Bryman, A. 2012. Social research methods 5th ed. Oxford: Oxford University Press.

Bryman, A. and Bell, E. 2015. Business research methods. USA: Oxford University Press.

Cai, Y, R. Kazman, C. V. Silva, L. Xiao, and H.-M. Chen. 2014. Chapter 6 – a decision-

support system approach to economics-driven modularity evaluation. In Economics-Driven

Software Architecture, I. Mistrik, R. Bahsoon, R. Kazman, and Y. Zhang, Eds. Boston:

Morgan Kaufmann, 2014, pp. 105 – 128.

Campbell, T. 1996. Technology, multimedia, and qualitative research in education. Journal

of Research on Computing in Education, 30(9), 122-133.

Cavaye, A. 1996. Case Study Research: A Multi-Faceted Research Approach for IS,

Information Systems Journal, 6(3), pp. 227-242. http://dx.doi.org/10.1111/j.1365-

2575.1996.tb00015.x.

Charmaz, K. 1983. The grounded theory method: An explication and interpretation. In

Contemporary Field Research: A Collection of Readings, Robert M. Emerson, ed., Boston:

Little, Brown and Company, 109-128.

Chiesa, M and Hobbs, S. 2008. Making sense of social research: how useful is the

Hawthorne Effect? European Journal of Social Psychology,38(1) 67-74

http://dx.doi.org/10.1002/ejsp.401.

Clont, J. 1992. The concept of reliability as it pertains to data from qualitative studies. Paper

Presented at the annual meeting of the South West Educational Research Association.

Houston, TX.

Codabux, Z, and Williams, B. 2013. Managing technical debt: An industrial case study. 4th

International Workshop On Managing Technical Debt (MTD), p. 8

Collinsmcnicholas.ie. 2016. The ICT Industry in Ireland 2016. [pdf] Available at:

http://www.collinsmcnicholas.ie/wp-content/uploads/2016/07/The-ICT-Industry-in-Ireland-

2016.pdf [Accessed 15 Aug. 2017].

Collis, J. and Hussey, R. 2014. Business research. 4th ed. Basingstoke, Hampshire:

Palgrave Macmillan.

Conway, M. 1968. How do committees invent [pdf[Datamation. 14(4). pp. 28-31 Available

at: http://www.melconway.com/Home/pdf/committees.pdf [Accessed 5th August 2017]

Cooper, D. and Schindler, P. 2013. Business research methods. 12th ed. McGraw-Hill

Education.

http://dx.doi.org/10.1111/j.1365-2575.1996.tb00015.x
http://dx.doi.org/10.1111/j.1365-2575.1996.tb00015.x
http://www.collinsmcnicholas.ie/wp-content/uploads/2016/07/The-ICT-Industry-in-Ireland-2016.pdf
http://www.collinsmcnicholas.ie/wp-content/uploads/2016/07/The-ICT-Industry-in-Ireland-2016.pdf
http://www.melconway.com/Home/pdf/committees.pdf

95
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

95

Corbin, J. and Strauss, A. 2008. Basics of qualitative research: Techniques and procedures

for developing grounded theory. 3rd ed. Thousand Oaks, CA: Sage

Creswell, J. 2003. Research design: Qualitative, quantitative, and mixed methods

approaches. 2nd ed. London: SAGE Publications.

Creswell, J. 2007. Qualitative inquiry and research design: Choosing Among Five

Approaches. 2nd ed. Thousand Oaks, CA: Sage

Cunningham, W. 1992. The WyCash portfolio management system. [online] OOPSLA

Experience Report; Available at: http://c2.com/doc/oopsla92.html [Accessed 6th June 2017]

Das, S., Lutters, W., Seaman, C., 2007. Understanding documentation value in software

maintenance. In: Proceedings of the 2007 Symposium on Computer Human Interaction for

the Management of Information Technology http://dx.doi.org/10.1145/1234772.1234790.

Davies, D. and Dodd, J. 2002. Qualitative Research and the Question of Rigor. Qualitative

Health Research, 12(2), pp. 279-289.

Denzin, N. 1988. The research act: A theoretical introduction to sociological methods. 3rd

ed. United Kingdom: Prentice Hall.

Easterby-Smith, M, Thorpe, R and Lowe, A. 2006. Management Research: An introduction,

2nd Edition, Sage Publications.

Ebert, C. 2007. Managing Technical Debt: Practical Decision-making and its business

relevance. [pdf] Available at:

https://vector.com/portal/medien/vector_consulting/publications/Ebert_TechnicalDebt.pdf

[Accessed 12 August 2017]

Einar, Ample Code. 2015. Technical debt isn’t technical. [online] Available at:

https://einarwh.wordpress.com/2015/12/05/technical-debt-isnt-technical/ [Accessed 5

August 2017].

Eisenhardt, K. 1989. Building theories from case study research. Academy of Management

Review, 14(4), 532-55.

Ernst, N. 2012. On the role of requirements in understanding and managing TD. In:

Proceedings of the 3rd International Worksop on Managing Technical Debt, pp. 61-64.

Ernst, N., Bellomo, S., Ozkaya, I., Nord, R. L., and Gorton, I. 2015 Measure It? Manage It?

Ignore It? Software Practitioners and Technical Debt. In: Proceedings of the 10th Joint

http://c2.com/doc/oopsla92.html
http://dx.doi.org/10.1145/1234772.1234790
https://vector.com/portal/medien/vector_consulting/publications/Ebert_TechnicalDebt.pdf
https://einarwh.wordpress.com/2015/12/05/technical-debt-isnt-technical/

96
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

96

Meeting of the European Software Engineering Conference and the ACM SIGSOFT

Symposium on the Foundations of Software Engineering, 50−60. ACM, 2015.

Falessi, D, Shaw, M, Shull, F, Mullen, K, and Keymind, M. 2013, Practical considerations,

challenges, and requirements of tool-support for managing technical debt. 4th International

Workshop On Managing Technical Debt (MTD), p. 16.

Fernández-Sánchez, C, Garbajosa, J, and Yague, A. 2015. A framework to aid in decision

making for technical debt management, IEEE 7Th International Workshop On Managing

Technical Debt (MTD), p. 69.

Fernández-Sánchez, C, Garbajosa, J, Vidal, C, and Yague, A. 2015., An Analysis of

Techniques and Methods for Technical Debt Management: A Reflection from the

Architecture Perspective, IEEE/ACM 2nd International Workshop on Software Architecture

& Metrics, p. 22. http://dx.doi.org/10.1109/SAM.2015.11.

Fernández-Sánchez, C, Garbajosa, J, Yagüe, A, and Perez, J. 2017. Identification and

analysis of the elements required to manage technical debt by means of a systematic

mapping study, The Journal Of Systems & Software, 124, pp. 22-38.

Flick, U. 2011. Introducing research methodology: A beginner's guide to doing a research

project. London: Sage.

Foganholi, L., Garcia, R., Eler, D., Correia, R. and Olivete, C. 2015. TD-Manager: a tool for

managing technical debt through integrated catalog. [pdf] Available at: http://worldcomp-

proceedings.com/proc/p2015/SER2890.pdf [Accessed 7 August 2017].

Fontana, F., Roveda, R. and Zanoni, M. 2016. Technical Debt Indexes Provided by Tools:

A Preliminary Discussion. IEEE 8th International Workshop on Managing Technical Debt

(MTD)

Forward, A., Lethbridge, T., 2002. The relevance of software documentation, tools and

technologies: a survey. In: Proceedings of the 2002 ACM Symposium on Document

Engineering, DocEng ’02. New York, USA. ACM, pp. 26–33.

Fowler, M. 2009. bliki: TechnicalDebtQuadrant. [online] Available at:

https://martinfowler.com/bliki/TechnicalDebtQuadrant.html [Accessed 21 February 2017].

Garnett, S. 2013. Technical Debt: Strategies & Tactics for Avoiding & Removing it. [Blog]

Our Blogs. Available at: http://blogs.ripple-

http://worldcomp-proceedings.com/proc/p2015/SER2890.pdf
http://worldcomp-proceedings.com/proc/p2015/SER2890.pdf
https://martinfowler.com/bliki/TechnicalDebtQuadrant.html
http://blogs.ripple-rock.com/SteveGarnett/2013/03/05/TechnicalDebtStrategiesTacticsForAvoidingRemovingIt.aspx

97
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

97

rock.com/SteveGarnett/2013/03/05/TechnicalDebtStrategiesTacticsForAvoidingRemoving

It.aspx [Accessed 20 Aug. 2017].

Garnett, S. 2013. Technical Debt: Strategies & Tactics for Avoiding & Removing it. [Blog]

Our Blogs. Available at: http://blogs.ripple-

rock.com/SteveGarnett/2013/03/05/TechnicalDebtStrategiesTacticsForAvoidingRemoving

It.aspx [Accessed 20 Aug. 2017].

Gat, I. 2011. Technical Debt: Technical Debt: Assessment and Reduction. [pdf] Available

at: https://agilealliance.org/wp-

content/uploads/2016/01/Technical_Debt_Workshop_Gat.pdf [Accessed 18 May 2017].

Glaser, B. and Strauss, A. 1967. The discovery of grounded theory: strategies for qualitative

research. Chicago: Aldine Publishing Company.

Goddard, W. and Melville, S. 2004. Research Methodology: An Introduction, 2nd ed. Oxford:

Blackwell Publishing.

Golafshani, N. 2003. Understanding Reliability and Validity in Qualitative Research. The

Qualitative Report, 8(4), 597-606.

Google Trends. 2017. Google Trends. [online] Available at:

https://trends.google.com/trends/explore?date=all&q=technical%20debt [Accessed 5 Jul.

2017].

Guaman, D., Quezada-Sarmiento, P., Barba-Guaman, L. and Enciso, L. 2017. Use of

SQALE and tools for analysis and identification of code technical debt through static

analysis. 12th Iberian Conference on Information Systems and Technologies.

Guest, G., Bunce, A. and Johnson, L. 2006. How Many Interviews Are Enough?. Field

Methods, 18(1), pp. 59-82.

Gummesson, E. 1988. Qualitative methods in management research. Lund, Norway:

Studentlitteratur, Chartwell-Bratt.

Guo Y. and Seaman, C. 2011. Measuring and Monitoring Technical Debt, Proceedings of

the 4th International Doctoral Symposium on Empirical Software Engineering, pp. 25–46.

Guo, Y, and Seaman, C. 2011. A portfolio approach to technical debt management In:

International Conference On Software Engineering, p. 31.

http://blogs.ripple-rock.com/SteveGarnett/2013/03/05/TechnicalDebtStrategiesTacticsForAvoidingRemovingIt.aspx
http://blogs.ripple-rock.com/SteveGarnett/2013/03/05/TechnicalDebtStrategiesTacticsForAvoidingRemovingIt.aspx
http://blogs.ripple-rock.com/SteveGarnett/2013/03/05/TechnicalDebtStrategiesTacticsForAvoidingRemovingIt.aspx
http://blogs.ripple-rock.com/SteveGarnett/2013/03/05/TechnicalDebtStrategiesTacticsForAvoidingRemovingIt.aspx
http://blogs.ripple-rock.com/SteveGarnett/2013/03/05/TechnicalDebtStrategiesTacticsForAvoidingRemovingIt.aspx
https://agilealliance.org/wp-content/uploads/2016/01/Technical_Debt_Workshop_Gat.pdf
https://agilealliance.org/wp-content/uploads/2016/01/Technical_Debt_Workshop_Gat.pdf
https://trends.google.com/trends/explore?date=all&q=technical%20debt

98
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

98

Guo, Y., Spínola, R. and Seaman, C. 2014. Exploring the costs of technical debt

management – a case study. Empirical Software Engineering, 21(1), pp. 159-182.

Hammersley, Martyn. 1992. Deconstructing the qualitative-quantitative divide. In Julia

Brannen (Ed.), Mixing methods: qualitative and quantitative research. pp.39-55. Brookfield:

Avebury.

Hartley, J. 1994. Case studies in organizational research. In: Qualitative methods in

organizational research: A practical guide, edited by C. Cassell and G. Symon, 209–29.

London: Sage.

Heintz, J. 2016. Using Technical Debt to Make Good Decisions. Cutter IT Journal, 29(3),

p.11.

Heinz, J. 2011 From assessment to reduction: How Cutter consortium helps rein in millions

of dollars in technical debt , In: MTD Workshop 2011.

Heiskanen, A., Newman, M. and Eklin, M. 2008. Control, trust, power, and the dynamics of

information system outsourcing relationships: A process study of contractual software

development. The Journal of Strategic Information Systems, 17(4), pp. 268-286.

Hirschheim, R. 1985. Information Systems Epistemology: An Historical Perspective. In:

Research Methods in Information Systems (IFIP 8.2 Proceedings), Mumford,

E.;Hirschheim, R.; Fitzgerald, G. & Wood-Harper, T. (eds), North-Holland, Amsterdam,

pp.13 - 36

Holvitie, J. and Leppanen, V. 2013. DebtFlag: Technical debt management with a

development environment integrated tool In: 4th International Workshop on Managing

Technical Debt (MTD).

IEEE Xplore Digital Library. 2017. DebtFlag: Technical debt management with a

development environment integrated tool [online] Available at:

http://ieeexplore.ieee.org/document/6608674/citations [Accessed 2nd August 2017].

Izurieta, C., Vetro, A., Zazworka, N., Cai, Y., Seaman, C. and Shull, F. 2012. Organizing

the technical debt landscape. 2012 Third International Workshop on Managing Technical

Debt (MTD).

Jamieson, S. 2004. Likert scales: how to (ab)use them. Medical Education, 38(12),

pp.1217-1218.

http://ieeexplore.ieee.org/document/6608674/citations

99
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

99

Jarvenpa, S., Ives, B. 1991. Executive Involvement and Participation in Progressive Use of

IT. MIS Quarterly 15(1). pp. 33-49.

Jick, T. 1979. Mixing qualitative and quantitative methods: Triangulation in

action. Administrative Science Quarterly, 24(December), pp. 602-61

Johnson, R., and Onwuegbuzie, A. 2004. Mixed methods research: A research paradigm

whose time has come. Educational Researcher, 33(7), 14-26.

Kaplan Financial. 2012. The Boston Consulting Group (BCG) growth share matrix. [online]

Available at:

http://kfknowledgebank.kaplan.co.uk/KFKB/Wiki%20Pages/Portfolio%20analysis%20tools

.aspx [Accessed 12 January 2017].

Kelle, U. 2001. Sociological Explanations between Micro and Macro and the Integration of

Qualitative and Quantitative Methods. Qualitative Social Research [e-journal], 2(1).

Available at: http://www.qualitative-research.net/fqs-texte/1-01/1-01kelle-e.htm [Accessed

8th May 2017].

Kenny, D. 1996. The design and analysis of social-interaction research. Annual Review

of Psychology, 47, 59-86.

Klinger T., Tarr P., Wagstrom P and Williams C. 2011. An Enterprise Perspective on

Technical Debt., Proceedings of the 2nd International Workshop on Managing Technical

Debt.

Kruchten, P., Nord, R. and Ozkaya, I., 2012. Technical Debt: From Metaphor To Theory

And Practice. IEEE Software 29(6), pp. 18-21.

Kruchten, P., Nord, R., Ozkaya, I. and Falessi, D. 2013. Technical debt. ACM SIGSOFT

Software Engineering Notes, 38(5), p.51.

Labuschagne, A. 2003. Qualitative research: Airy fairy or fundamental? The Qualitative

Report, 8(1), Article 7. Available from: http://www.nova.edu/ssss/QR/QR8-

1/labuschagne.html [Accessed 18 August 2017].

Lash, F. 2014. The Broken Windows Theory of Technical Debt. [Blog] On Technical Debt.

Available at: http://www.ontechnicaldebt.com/blog/the-broken-windows-theory-of-

technical-debt/ [Accessed 20 Aug. 2017].

http://kfknowledgebank.kaplan.co.uk/KFKB/Wiki%20Pages/Portfolio%20analysis%20tools.aspx
http://kfknowledgebank.kaplan.co.uk/KFKB/Wiki%20Pages/Portfolio%20analysis%20tools.aspx
http://www.qualitative-research.net/fqs-texte/1-01/1-01kelle-e.htm
http://www.nova.edu/ssss/QR/QR8-1/labuschagne.html
http://www.nova.edu/ssss/QR/QR8-1/labuschagne.html
http://www.ontechnicaldebt.com/blog/the-broken-windows-theory-of-technical-debt/
http://www.ontechnicaldebt.com/blog/the-broken-windows-theory-of-technical-debt/

100
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

100

Lavington, S. 2009. A brief history of British computers: the first 25 years (1948–1973).

[online]. British Computer Society. Available at

http://www.bcs.org/content/conWebDoc/24070 [Accessed 20 August 2017].

Leedy, P. and Ormrod, J. 2005. Practical research: Planning and design. 8th ed. Upper

Saddle River, NJ: Prentice Hall.

Lehman M., Laws of software evolution revisited. 1996. Proc. of the 5th European Workshop

on Software Process Technology, EWSPT'96, Nancy, Fr, LNCS 1149, Springer-Verlag,

pp.108-124.

Lehman, M.1980. ‘On Understanding Laws, Evolution, and Conservation in the Large-

Program Life Cycle’. Journal of Systems and Software. 1: 213–221.

https://doi.org/10.1016/0164-1212(79)90022-0.

Lethbridge, T., Singer, J. and Forward, A., 2003. How software engineers use

documentation: the state of the practice. IEEE Software. 20, 35–39.

Letouzey, J. 2012. The SQALE method for evaluating Technical Debt In: Third International

Workshop on Managing Technical Debt (MTD).

Letouzey, J. and Ilkiewicz, M. 2012. Managing Technical Debt with the SQALE Method.

IEEE Software, 29(6), pp.44-51.

Levin, D. M. 1988. The opening of vision: Nihilism and the postmodern situation. London:

Routledge

Li, Z., Avgeriou, P. and Liang, P. 2015. A systematic mapping study on technical debt and

its management. Journal of Systems and Software, 101, pp.193-220.

Liguo, Y and Mishra, A. 2013. An Empirical Study of Lehman’s Laws on Software Quality

Evolution. International Journal of Software and Informatics, 7(3) pp. 469-481.

Lim, E., Taksande, N., Seaman, C., 2012. A balancing act: what software practitioners have

to say about technical debt. IEEE Software. 29, 22–27.

Lincoln, Y. and Guba, E. G. 1985. Naturalistic inquiry. Beverly Hills, CA: Sage.

Maldonado, E. and Shihab, E. 2015. Detecting and quantifying different types of self-

admitted technical Debt. IEEE 7th International Workshop on Managing Technical Debt

(MTD).

http://www.bcs.org/content/conWebDoc/24070
https://doi.org/10.1016/0164-1212(79)90022-0

101
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

101

Martin, R. 2009. A Mess is not a Technical Debt. - Clean Coder. [online] Available at:

https://sites.google.com/site/unclebobconsultingllc/a-mess-is-not-a-technical-debt

[Accessed 5 Mar. 2017].

Maxwell, J. 2005. Qualitative research design: An interactive approach. 2nd ed. Thousand

Oaks, CA: Sage Publication.

May, T. 2011. Social research: Issues, methods and research. London: McGraw-Hill

International.

McCabe, T. 1976. A Complexity Measure. [pdf] Available at:

http://www.literateprogramming.com/mccabe.pdf [Accessed 5 August 2017].

McConnell, S. 2007. Technical Debt. [blog] Available at:

http://www.construx.com/10x_Software_Development/Technical_Debt/ [Accessed on 4

April 2017].

McConnell, S. 2013. Managing Technical Debt. [pdf] Available at: http://2013.icse-

conferences.org/documents/publicity/MTD-WS-McConnell-slides.pdf [Accessed 5 April

2017].

McCormick, R. and James, M. 1988. Curriculum evaluation in schools. 2nd ed. London:

Routledge.

McFarlan F. 1984. Information Technology changes the way you compete. Harvard

Business Review, May-June, pp. 99-103.

Merriam, S. and Tisdell, E. 2015. Qualitative research: A guide to design and

implementation. United States: John Wiley & Sons

Miles, M., and Huberman, A. 1994. Qualitative data analysis. 2nd ed. London: Sage

Mingers, J. 2001. “Combining IS Research Methods: Towards a Pluralist Methodology,”

Information Systems Research (12:3), pp. 240-259

Mishler, E. 2000. Validation in inquiry-guided research: The role of exemplars in narrative

studies. In: B. M. Brizuela, J. P. Stewart, R. G. Carrillo, & J. G. Berger (Eds.), Acts of inquiry

in qualitative research. pp.119-146. Cambridge, MA: Harvard Educational Review.

Neuendorf, A. 2002. The Content Analysis Guidebook. Thousand Oaks, CA: Sage. p. 10.

Neuman, L.W. 2000. Social research methods: Qualitative and quantitative approaches.

Harlow: Pearson

https://sites.google.com/site/unclebobconsultingllc/a-mess-is-not-a-technical-debt
http://www.literateprogramming.com/mccabe.pdf
http://www.construx.com/10x_Software_Development/Technical_Debt/
http://2013.icse-conferences.org/documents/publicity/MTD-WS-McConnell-slides.pdf
http://2013.icse-conferences.org/documents/publicity/MTD-WS-McConnell-slides.pdf

102
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

102

Nord, R. 2016. The Future of Managing Technical Debt. [online] Software Engineering

Institute. Available at: https://insights.sei.cmu.edu/sei_blog/2016/08/the-future-of-

managing-technical-debt.html [Accessed 21 Feb. 2017].

Norton, M. 2009. Doc on Dev: Messy Code is not Technical Debt. [online] Available at

http://docondev.com/blog/2009/08/messy-code-is-not-technical-debt [Accessed 12 July

2017].

O’Leary, Z. (2014). The essential guide to doing your research project. 2nd ed. SAGE

Publications Ltd

Oza, N., Hall, T., Rainer, A. and Grey, S. 2006. Trust in software outsourcing relationships:

An empirical investigation of Indian software companies. Information and Software

Technology, 48(5), pp. 345-354.

Patton, Eric, and Appelbaum, S. 2003. The case for case studies in management research.

Management Research News, 26(5), pp. 60-71.

Paulk, M., Curtis, B., Chrissis, M. and Weber, C. 1993. Capability maturity model, version

1.1. IEEE Software, 10(4), pp. 18-27.

Per.gov.ie. (2016). The Department of Social Expenditure and Reform [online] Available at:

http://www.per.gov.ie/en/ [Accessed 17 January 2017].

Podsakoff, P., MacKenzie, S., Lee, Y. 2003. Common methods biases in behavioural

research. Journal of Applied Psychology, 88: pp. 879-903

Power, K. 2013. Understanding the impact of technical debt on the capacity and velocity of

teams and organizations: viewing team and organization capacity as a portfolio of real

options. In: 4th International Workshop on Managing Technical Debt (MTD), pp. 28–31.

Provalis Research (2016). Montreal: QDA Miner Lite.

Ramakrishnan, S. 2013. Managing Technical Debt. [online] Available at:

https://www.scrumalliance.org/community/articles/2013/july/managing-technical-debt

[Accessed 20 August 2017].

Ramasubbu, N, Kemerer, C, and Woodard, C. 2015. Managing Technical Debt: Insights

from Recent Empirical Evidence, IEEE Software. 32(2). pp. 22-25.

https://insights.sei.cmu.edu/sei_blog/2016/08/the-future-of-managing-technical-debt.html
https://insights.sei.cmu.edu/sei_blog/2016/08/the-future-of-managing-technical-debt.html
http://docondev.com/blog/2009/08/messy-code-is-not-technical-debt
https://www.scrumalliance.org/community/articles/2013/july/managing-technical-debt

103
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

103

Ramasubbu, N. and Kemerer, C. 2013. Towards a model for optimizing technical debt in

software products. 4th International Workshop on Managing Technical Debt (MTD).

Rapley, T. 2007. Doing conversation, discourse and document analysis. London: Sage

Reddy, R. 2016. Addressing the Hidden Obstacles to Innovation and Digital Disruption,

Cutter IT Journal. 29(3), p. 28.

Remenyi, D., Williams,B., Money, A. and Swartz, E. 2003. Doing Research in Business

and Management: An Introduction to Process and Method, London: Sage publications

Riel, Arthur J. 1996. Chapter 3: Topologies of Action-Oriented Vs. Object-Oriented

Applications. Object-Oriented Design Heuristics. Boston, Massachusetts: Addison-Wesley.

Ritchie, J. and Lewis, J. 2003. Qualitative research practice: A guide for social science

students and researchers; Ed. By Jane Ritchie. London: Sage Publications.

Robinson, W. S. 1950. Ecological correlations and the behaviour of individuals. American

Sociological Review, 15, 351-357.

Robson, C. 2002. Real World Research: A Resource for Social Scientists and Practitioner-

Researchers, Second Edition, Oxford: Blackwell.

Rooney, D. 2010. Technical debt : challenging the metaphor, Cutter IT Journal 23(10), pp.

16–18.

Runeson, P. and Höst, M. 2009. Empire Software Eng. [e-journal] 14(131).

https://doi.org/10.1007/s10664-008-9102-8.

Sabherwal, R. 1999. The role of trust in outsourced IS development projects.

Communications of the ACM, 42(2), pp .80-86.

Saunders, M., Lewis, P. and Thornhill, A. 2007. Research methods for business students.

Harlow, England: Financial Times/Prentice Hall.

Saunders, M., Lewis, P. and Thornhill, A. 2012. Research Methods for Business Students

6th edition, Pearson Education Limited.

Schmid, K. 2013. On the limits of the technical debt metaphor some guidance on going

beyond, in : Proceedings of the 4th International Workshop on Managing Technical Debt

(MTD’13), IEEE, San Francisco, CA, USA, 2013, pp.63–66.

https://doi.org/10.1007/s10664-008-9102-8

104
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

104

Seale, C. 1999. Quality in qualitative research. Qualitative Inquiry, 5(4), pp. 465-478.

Seaman, C., Guo, Y., Zazworka, N., Shull, F., Izurieta, C., Cai, Y. and Vetro, A. 2012. Using

technical debt data in decision making: Potential decision approaches In: 3rd International

Workshop On Managing Technical Debt (MTD), p. 45

Sharma, T., Suryanarayana, G. and Samarthyam, G. 2015. Refactoring for Software Design

Smells: Managing Technical Debt. Morgan Kaufmann Publishers, pp.207-208.

Siebra, C., Oliveira, R., Seaman, C., Silva, F. and Santos, A. 2016. Theoretical

conceptualization of TD: A practical perspective. The Journal of Systems & Software, 120,

pp. 219-237.

Silverman, D. 2007. Reply to Charles Briggs: Anthropology, interviewing and

communicability. Current Anthropology 48(4) pp. 572–573.

Snipes, W, Robinson, B, Guo, Y, & Seaman, C (2012), 'Defining the decision factors for

managing defects: A technical debt perspective', 2012 Third International Workshop On

Managing Technical Debt (MTD), p. 54, Publisher Provided Full Text Searching File,

EBSCOhost, viewed 4 March 2017

Spradley J. 1979. The ethnographic interview. Holt, Rinehart & Winston; New York.

Stake, R. E. 1995. The art of case study research. Thousand Oaks, CA: Sage

Stenbacka, C. 2001. Qualitative research requires quality concepts of its own. Management

Decision, 39(7), pp. 551-555.

Strauss, A. and Corbin, J. 1990. Basics of qualitative research: Grounded theory

procedures and techniques. Newbury Park, CA: Sage Publications, Inc.

Taksande, N. 2011. Empirical Study on Technical Debt as viewed by Software Practitioners.

Masters. University of Maryland.

Tashakkori, A. and Teddlie, C. 1998. Mixed methodology: Combining qualitative and

quantitative approaches. Thousand Oaks: Sage.

Taylor, C. 2017. Irish businesses rank highly for tech spend, survey shows. [online] The

Irish Times. Available at: https://www.irishtimes.com/business/technology/irish-businesses-

rank-highly-for-tech-spend-survey-shows-1.3141008 [Accessed 15 August 2017].

https://www.irishtimes.com/business/technology/irish-businesses-rank-highly-for-tech-spend-survey-shows-1.3141008
https://www.irishtimes.com/business/technology/irish-businesses-rank-highly-for-tech-spend-survey-shows-1.3141008

105
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

105

The Linux Information Project. 2004. Source code definition by The Linux Information

Project. [online] Available at: http://www.linfo.org/source_code.html [Accessed 13 Aug.

2017].

Theodoropoulos, T., Hofberg M., Kern, D. 2011, TD From the Stakeholder Perspective, 2nd

International Workshop On Managing Technical Debt (MTD), p. 8, Publisher Provided Full

Text Searching File, EBSCOhost, viewed 5th March 2017.

Tom, E., Aurum, A. and Vidgen, R. 2013. An exploration of technical debt, The Journal Of

Systems & Software, 86, pp. 1498-1516.

Tonella, P., Torchiano, M., Du Bois, B. and Systa, T. 2007, Empirical studies in reverse

engineering: state of the art and future trends, Empirical Software Engineering, 12(5), pp.

551-571.

Transcribe. (n.d.). Mixpanel Mobile Analytics [Software]. Available from

https://transcribe.wreally.com/.

Trochim, W. 2006. Introduction to Validity. [online] Available at:

https://www.socialresearchmethods.net/kb/introval.php [Accessed 14 May 2017].

Walliman, N. 2011. Your research project: Designing and planning your work. Sage

Publications.

Ward, J. 1987. Information Systems & Technology Application Portfolio Management - An

assessment of matrix based analyses. Cranfield [Report] / Cranfield school of Management,

Cranfield University.

Weber, R. (2005). Basic content analysis. 2nd ed. Newbury Park [etc.]: Sage Publications,

p.12.

West, D. 2015 What happens if robots take the jobs? The impact of emerging technologies

on employment and public policy [pdf] Available at: https://www.brookings.edu/wp-

content/uploads/2016/06/robotwork.pdf [Accessed 20 August 2017].

Wiegers, K. 1996. Creating a software engineering culture. S.l.: Dorset House Publishing

C.

Wilson, J. and Kelling, G. 1982, Broken Windows: The police and neighbourhood safety,

The Atlantic, (Manhattan institute).

http://www.linfo.org/source_code.html
https://www.socialresearchmethods.net/kb/introval.php
https://www.brookings.edu/wp-content/uploads/2016/06/robotwork.pdf
https://www.brookings.edu/wp-content/uploads/2016/06/robotwork.pdf

106
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

106

Yin, R. 1989. Case study research: Design and methods. Applied Social Research Series,

Vol. 5. London: Sage.

Yin, R. 2003. Case Study Research: Design and Methods, Sage Publications , Thousand

Oaks, California.

Yin, R. 2009. Case Study Research, Design and Methods. Sage Publications, Newbury,

CA.

Yli-Huumo, J, Maglyas, A and Smolander, K. 2014. The Sources and Approaches to

Management of Technical Debt: A Case Study of Two Product Lines in a Middle-Size

Finnish Software Company, Product-Focused Software Process Improvement: 15th

International Conference, PROFES 2014, Helsinki, Finland, December 10-12, 2014.

Proceedings, p. 93. Available from: 10.1007/978-3-319-13835-0_7. [Accessed: 20 August

2017].

Yli-Huumo, J., Maglyas, A. and Smolander, K. 2016. How do software development teams

manage technical debt? – An empirical study. Journal of Systems and Software, 120,

pp.195-218. https://doi.org/10.1016/j.jss.2016.05.018.

Yli-Huumo, J., Maglyas, A., and Smolander, K. 2015. The Benefits and Consequences of

Workarounds in Software Development Projects, Software Business: 6th International

Conference. ICSOB 2015, Braga, Portugal, June 10-12, 2015, Proceedings, p. 1.

https://doi.org/10.1007/978-3-319-19593-3_1.

Zazworka N., Spinola. R., Vetro, A., Shull, F., Seaman., C. A case study one effectively

identifying technical debt, In: Proceedings of the 17th International Conference on

Evaluation and Assessment in Software Engineering (EASE’13), ACM, Portode Galinhas,

Brazil, 2013, pp. 42–47.

https://doi.org/10.1016/j.jss.2016.05.018
https://doi.org/10.1007/978-3-319-19593-3_1

107
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

107

Appendices

Appendix A - Role and experience of interview participants

Interviewee

ID Role(s)

Experience in the

organisation

Total

Experience in

IT

P1 IT Business Analyst 1 year 12 years

P2
Software Architect & Team

Technical Lead
2 years 16 years

P3
Java Developer & Functional

Consultant
2 years 10 years

P4 Infrastructure Project Manager 6 years 13 years

P5 Senior Systems Analyst 3 years 18 years

P6 ERP Support Consultant 2 years 13 years

P7 Technical Team Lead 7 years 10 years

P8 Technical Team Lead 4 years 14 years

P9 Technical Team Lead 2 years 12 years

P10 Java Solution Architect 12 years 12 years

P11 Senior Java Developer 5 years 12 years

P12 Senior Database Developer 3 years 21 years

P13 Technical Team Lead 5 years 14 years

P14 Account Manager 7 years 12 years

108
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

108

Appendix B - Interview participants across roles and years’ experience

Role
Total Experience in IT

Total

10 11 - 15 16 +

Senior IT Business Analyst - 1 - 1

Java Solution Architect & Technical Team Lead - 1 1 2

Project Manager - 1 - 1

Senior Systems Analyst\Developer 1 1 2 4

ERP Support Consultant 1 - - 1

Technical Team Lead 1 3 - 4

Account Manager - 1 - 1

Total 3 8 3 14

109
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

109

Appendix C - Participants Full TD Description

Participant

ID Technical Debt Definition

P1 "It’s a decision to make not such a good technical choice, that may impact,

or, probably will impact the end user or the application further down the

line and will kind of involve some rework in getting that back up to scratch."

P2 "Technical debt is like a measure of the effort that you need to undertake

to fix the code as it is right now. It is something that you have been

dragging along by all the different bad decisions or design decisions that

you have taken at first and how those decisions are actually dragged out

and bring issues in the future."

P3 "Technical debt is known issues that are kind of sitting in the back log

waiting to be dealt with and haven’t been assigned to someone and they

haven’t been looked at yet or if they have been looked at they haven’t

been resolved."

P4 "It's a balance between developing new functionality and keeping

everything else working so in order to, so you are making pragmatic

decisions sometimes to deliver within very tight deadlines and you do

something that might not be proper project standards."

P5 "It's where you can't move ahead with something because of the amount

of resources necessary to build a longer lasting solution. Where you end

up hacking something to make it work or allowing it to work and quite often

that's fine and oftentimes that's fine as the system is coming to the end of

it's life anyway and there is no point investing further time in it when

something is working, there is no point in rewriting it completely."

P6 "Technical debt is making a change now for a customer to get them

through a problem or an issue but in the long term it is not the best

approach and it may cost the customer more money in the long run if they

don’t actually fix the issue properly."

P7 "Technical debt is when you recognise that something in an application is

not as good as it could be - it is not causing any business critical issues

or it is causing some issues the business is willing to accept the risk and

you agree with the business that you are not going to make the changes

right now but that you agree that at some time in the future that those

issues are going to have to be addressed”.

110
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

110

P8 "Technical debt comes out of shortcuts that you take where you need to

get something done or usually on a timeline or because of technical

difficulties with the right way of doing something you take a shortcut and

go a different way. So, with taking a shortcut it might even be a deliberate

design decision up front where someone says ‘I want you to do it like this’

and you know that is not the right way to do it and you stick it on a list of

things you would like to do in an ideal world”.

P9 "It is what makes an exact science un-exact”.

P10 "Technical debt is the short-term decision that a team takes that

eventually accumulates in additional complexity in software systems."

P11 "It is a concept that happens when due to poor requirements or a lack of

an understanding in the process as well as business pressures especially

in IT teams that you have to make a decision to do the easiest way, the

fastest way without taking into account the implications of that and what

will happen in the future if you do this or it will probably be good for the

short term but in the long run this type of decision will take a toll on the

project”.

P12 "It is anything that affects the quality of our code"

P13 "It is technology, or aspects of what you’re working on that are not quite

right and maybe they are holding you back or holding the systems

evolution back ... things that probably should be improved on but often

aren't”.

P14 "It is the culmination of the decisions that developers make to do less than

optimal practices as they are developing that then affects your ability to

enhance or extend a system or maintain the system at a later date”.

111
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

111

Appendix D - Analogy to describe technical debt

Participant Text

P1

‘Carrying additional time and effort forward from one sprint to the other

which is a wall of debt’.

P12

‘It is like buying a load of things on your credit card and just letting the

interest accrue. You got to come back and fix it up. You can't just let it get

out of control’.

P14

‘It's like trying to change a tyre on a car when it's driving down the

motorway at 150km!’.

P3 ‘It's like the ‘Buy cheap, buy twice advice’.

P4

‘If you were running oil rigs and things like that you would be obliged to tell

the shareholders about the upkeep and maintenance and the various risks

and everything’.

P8

‘If somebody said I'm going to throw junk on to the roof of Harrods and I'm

going to keep doing that and one day the roof falls in and Harrods must

close for a few months they use millions and millions, they would never do

that! Because that is not a sensible thing to do and yet businesses

because software is abstract and intangible it’s something that runs and

people just look at the surface’.

P9

‘Students taking out student loans so that they can go to college and

maybe earn more in the future’.

112
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

112

Appendix E – Transcribed word count by participant

Participant

Transcribed

Word Count

Obfuscated

Word Count

P1 3151 3065

P2 3459 3404

P3 3819 3761

P4 7265 7215

P5 4819 4798

P6 5517 5484

P7 3910 3879

P8 5953 5933

P9 5975 5962

P10 5436 5412

P11 5445 5402

P12 6251 6223

P13 2076 2054

P14 3815 3791

Total 66891 66383

Average 4778 4742

113
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

113

Appendix F - Ethics Application and Supporting Documentation

114
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

114

115
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

115

Appendix G – Interview Questions

Introduction

• What is your current position or role?

• How many years’ experience do you have in the IT Industry? How long have you

been with [studied organisation]?

• What have been the types of responsibilities of the positions you’ve held that relate

to software development and\or support?

• Could you briefly describe your project experiences related to industry including the

types of software development methodologies used?

• What has been the largest release or project in terms of duration or effort that you

have been involved in?

Main Interview

• How would you define technical debt?

• Have you experienced situations where you had to take shortcuts in your projects

for some reason and decided to fix them later?

o If yes, could you give any examples of intentional technical debt in your

current project?

▪ Why was the intentional technical debt incurred in the mentioned

instance?

• What factors do you normally consider when you decide to incur technical debt?

o How are these factors weighted? Are there any factors more important to the

team or the client than others? If so, why is this?

• Has the decision to defer a piece of maintenance ever had any positive or negative

impact?

o Did you learn anything from these examples? Would you take the same

shortcuts again? Why or why not?

• Is there anything that impacts on fixing the TD later?

• Have you ever taken shortcuts in development because of pressure from business

people or a customer due to dead- lines? Or from other external third parties?

• Have you ever been “forced” to take shortcuts in a situation where business people

did not necessarily understand the concept of technical debt and its effects on the

project, and you thought it was a bad idea?

• Does the software development methodology being used have an impact on

technical debt decisions? Agile or waterfall etc.

116
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

116

• Do you think third party software services providers play a part in technical debt

management?

o How?

• How do you\your team make decisions regarding taking on technical debt in

projects?

• How would prospect of future maintenance\support impact your decisions when you

are working on a software change?

• Do you have any strategies for managing or reducing the impact of TD?

• Do you use any methods\techniques for technical debt management?

• What, if any, are the estimation techniques you\your team use for technical debt?

• Would the technical debt risk be assessed and normally be assessed up front? If

so, how?

• Is the risk of the technical debt an important factor for you?

• How do you manage the gap between technical and non-technical stakeholders

when communicating the impact of explicitly contracting technical debt?

• Who is responsible for TDM?

• How do you communicate the technical debt to a business decision maker?

o How do you represent it?

• Does TDM present any challenges for you?

o What are they?

Conclusion

• Do you have any ideas on how organisations should approach TDM?

• Do you have any other thoughts, comments, suggestions of what you have learned

about technical debt / taking shortcuts in development what you would like to share?

117
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

117

Appendix H – Document Analysis Planning

118
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

118

Appendix I – Document Analysis Statistics

12.091

20.599

0.002

0.334

23.089

0.006

Size by File Type (MB)

PDF

Rich Text

Plain Text

Spreadsheet

Presentation

Intranet Web Page

29312

93445

195

12914

24419
672

Word Count by Document Type

PDF

Rich Text

Plain Text

Spreadsheet

Presentation

Intranet Web Page

119
An Empirical Case Study of Technical Debt Management: A Software Services Provider Perspective

September 2017

119

File Type

Doc

Count Pages Rows Slides Size Words

PDF 6 128 - - 12.091 29312

Rich Text 14 384 - - 20.599 93445

Plain Text 1 1 - - 0.002 195

Spreadsheet 3 - 314 - 0.334 12914

Presentation 7 - - 211 23.089 24419

Intranet Web Page 3 3 - - 0.006 672

Total 34 516 314 211 56.121 160957

Year Count

2017 6

2016 15

2015 7

2014 2

2013 3

2012 1

Total 34

