
Active Queue Management

Implementation of PI2 Queuing Discipline

for Classic TCP Traffic in ns-3

by

Rohit Prakash Tahiliani, B.E.

Dissertation

Presented to the

University of Dublin, Trinity College

in fulfillment

of the requirements

for the Degree of

Master of Science in Computer Science

University of Dublin, Trinity College

September 2017

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated, is

my own work.

Rohit Prakash Tahiliani

August 29, 2017

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Rohit Prakash Tahiliani

August 29, 2017

Acknowledgments

In my journey towards the completion of my postgraduate thesis, I was assisted and

guided by numerous people.

Words are insufficient to express my sincere gratitude towards my dissertation super-

visor, Prof. Hitesh Tewari, for his constant guidance, support and encouragement. He has

given me a lot of freedom in my research and allowed me to work on the problems of my

interest. His passion for research showed me how academia can be exceedingly rewarding

and great fun. I have learnt a lot and still have plenty to learn from him.

Whatever I am today, is because of the never ending support of my father Dr. Prakash

U. Tahiliani and my mother Mrs. Meena P. Tahiliani. My brother, Dr. Mohit P. Tahil-

iani has been a rock solid support right since my childhood. I dedicate the successful

completion of my post graduate thesis to my family. My brother’s great confidence in my

abilities encouraged me to always go an extra mile and pursue masters.

Rohit Prakash Tahiliani

University of Dublin, Trinity College

September 2017

iv

Active Queue Management

Implementation of PI2 Queuing Discipline

for Classic TCP Traffic in ns-3

Rohit Prakash Tahiliani, M.Sc.

University of Dublin, Trinity College, 2017

Supervisor: Hitesh Tewari

This dissertation presents the implementation and validation of PI2 Active Queue

Management (AQM) algorithm in ns-3 simulator. AQM mechanisms have been exten-

sively studied and deployed in the Internet to monitor and limit the growth of the queue

at routers. These mechanisms avoid congestion by proactively informing the sender about

congestion, either by dropping a packet or by marking a packet. Many algorithms such

as Random Early Detection (RED) and Controlled Delay (CoDel) have been designed

to control the queuing delay and retain high link utilization. The state of the art queue

management algorithms include Proportional Integral controller Enhanced (PIE) and PI2.

PI2 provides an alternate design and implementation to PIE algorithm without affecting

the performance benefits it provides in tackling the problem of bufferbloat.

Bufferbloat is a situation arising due to the presence of large unmanaged buffers in

the network. It results in increased latency and therefore, degrades the performance of

delay-sensitive traffic. PIE algorithm tries to minimize the queuing delay by auto-tuning

v

its control parameters. However, with PI2, this auto-tuning is replaced by just squaring

the packet drop probability. Squaring the drop probability helps PI2 offer a simplified

design and improved performance without risking responsiveness and stability. In this

dissertation, we have implemented a model for PI2 in ns-3 and verified its correctness by

comparing the results obtained from it to those obtained from the PIE model in ns-3.

The results indicate that PI2 offers a simple design and achieves similar or at times better

responsiveness and stability than PIE.

vi

Contents

Acknowledgments iv

Abstract v

List of Tables x

List of Figures xi

Chapter 1 Introduction 1

1.1 Motivation . 3

1.2 Goals of this dissertation . 3

1.3 Outline of the Thesis . 4

Chapter 2 Background 6

2.1 Bufferbloat - The Problem . 6

2.2 Active Queue Management (AQM) . 7

2.2.1 AQM for Congestion Avoidance and Queue Delay Control 7

2.2.2 Motivation for AQM . 8

2.3 AQM Algorithms . 9

2.3.1 Proportional Integral Enhanced (PIE) 10

2.3.2 PI2 . 12

2.3.3 Differences between PIE and PI2 14

vii

Chapter 3 Implementation of PI2 in ns-3 15

3.1 Network Simulator-3 . 15

3.2 Traffic Control Layer in ns-3 . 16

3.2.1 Transmitting Packets . 16

3.2.2 Receiving Packets . 16

3.3 Queue disciplines in ns-3 . 17

3.3.1 Model Description . 17

3.3.2 Model Design . 17

3.3.3 Usage and Helpers . 18

3.4 Implementation of PI2 Queue disc . 19

3.4.1 Dropping Packets Randomly . 20

3.4.2 Drop Probability Calculation . 21

3.4.3 Estimation of Average Departure Rate 22

3.4.4 Other Heuristics . 23

3.4.5 Limitations . 23

Chapter 4 Model Validation 24

4.1 Simulation Setup . 25

4.2 Scenario 1: Light TCP Traffic . 26

4.3 Scenario 2: Heavy TCP Traffic . 28

4.4 Scenario 3: Mix TCP and UDP Traffic . 29

4.5 Scenario 4: CDF of Queuing Delay . 31

4.6 Summary . 32

Chapter 5 Future of Internet Transport 33

5.1 DualQ . 33

5.2 TCP Prague . 34

viii

Chapter 6 Conclusions 36

6.1 Major Contributions . 36

6.2 Future Work . 37

Appendix A Abbreviations 39

Appendix B List of Publications 41

Appendix C Pseudo code for PI2 42

Bibliography 51

ix

List of Tables

1.1 Characteristics of different networks [1] . 2

1.2 Performance Requirements of Internet Applications [1] 2

3.1 PI2 variables to calculate p. 22

3.2 PI2 variables to estimate avg drate. 22

4.1 Simulation setup. 25

C.1 Configurable parameters in PI2 model. 42

C.2 Internal parameters in PI2 model. 43

x

List of Figures

2.1 Replacing PIE with PI2 [2] . 13

2.2 Co-existence of Scalable and Classic Traffic [2] 13

3.1 Class Diagram for PI2 model in ns-3. 20

3.2 Interactions among components of PI2 in ns-3. 21

4.1 Light TCP Traffic Dumbbell Topology. 26

4.2 Queue delay with light TCP traffic. 26

4.3 Link throughput with light TCP traffic. 27

4.4 Heavy TCP Traffic Dumbbell Topology. 28

4.5 Queue delay with heavy TCP traffic. 29

4.6 Link throughput with heavy TCP traffic. 29

4.7 Mix TCP + UDP Traffic Dumbbell Topology. 30

4.8 Queue delay with mix TCP and UDP traffic. 30

4.9 Link throughput with mix TCP and UDP traffic. 31

4.10 CDF of queuing delay with 20 TCP flows. 31

4.11 CDF of queuing delay with 5 TCP and 2 UDP flows. 32

xi

Chapter 1

Introduction

Internet over the past few years has experienced significant growth in terms of the usage

and the diversity of the applications. It has transformed from an experimental system into

a gigantic and decentralized source of information. This success can be partly attributed to

the congestion control mechanisms implemented in Transmission Control Protocol (TCP).

These congestion control mechanisms are widely deployed in host operating systems and

are extensively used by a variety of Internet applications. However, tremendous growth

in the range of bandwidth, increase in Bit-Error Rates (BER) and increased diversity in

applications have challenged the robustness of TCP congestion control mechanisms. These

mechanisms must be able to accommodate and leverage the diversity in the characteristics

of different networks (See Table 1.1), support a variety of application requirements and

different traffic workloads (See Table 1.2). Thus, the need for optimizing these mechanisms

has become extremely important.

Transport protocols with congestion control mechanisms are mainly classified into

three categories: (i) end-to-end protocols (e.g., TCP Newreno [3]) that rely on implicit

congestion signals such as packet loss, (ii) network based protocols (e.g., eXplicit Con-

trol Protocol (XCP) that rely on explicit feedback from the network and (iii) end-to-end

protocols with explicit feedback (e.g., TCP with Active Queue Management/Explicit Con-

gestion Notification) that rely on a few bits of explicit feedback from the network to

1

Table 1.1: Characteristics of different networks [1]

Network Capacity Latency BER
Wired LANs (e.g., Ethernet) 10Mbps - 10Gbps < 1ms ≤ 10−12

Data Centers 1Gbps - 1Tbps 100µs - 1ms 10−12

Wired WANs ≈10Mbps - 14Tbps 10ms - 300ms 10−12

802.11 WLAN/Mesh Networks <1Mbps - 600Mbps 1ms - 200ms >10−5

Cellular Data Networks (e.g., 3G) 384Kbps - 3Mbps ≈ 100ms - 1s 10−5

Satellite Networks 100Kbps - 155Mbps 250ms - 1s 10−10

Table 1.2: Performance Requirements of Internet Applications [1]

Application Examples Requirements
Interactive Voice over IP, Video Con-

ferencing
Minimal latency, small
jitter and less throughput
variations

Short flows (< 100KB) Google Search, Facebook Short response times
Medium sized transfers
(100KB - 5MB)

Picasa, YouTube, Face-
book photos

Low latency

Large transfers (> 5MB) Software updates, Video
On-demand

Consistent high through-
put

aid end-hosts in making congestion control decisions. While end-to-end protocols have

performance limitations, network based protocols have been considered as hard to deploy

because they need to maintain per-flow state at the routers. Since routers are complex

and expensive devices, modifying them is a difficult task. Moreover, network based proto-

cols require more bits for explicit feedback than are available in the IP header [1]. On the

other hand, end-to-end protocols with explicit feedback have lower deployment complexity

than network based protocols since they require modifications mainly at the end-hosts,

with incremental support from the routers (e.g., deployment of AQM/ECN) [1].

The performance of TCP-based applications, apart from the congestion control mech-

anisms, critically depends on the choice of queue management scheme implemented in the

routers. Queue management mechanisms control the length of the queues by dropping

packets when necessary. Passive Queue Management (PQM) (e.g., drop-tail) is the most

widely deployed queue management mechanism in Internet routers [4]. PQM does not

2

employ any preventive packet drop before the router buffer gets full and hence, is easy to

deploy. However, due to the inherent problems of PQM such as global synchronization

[5], lock-out [4], etc, Internet Engineering Task Force (IETF) recommends Active Queue

Management (AQM) for the next generation of Internet routers [4]. Moreover, another

limitation of PQM called persistently full buffer problem (referred to as bufferbloat [6])

has proved the acute need of widespread deployment of AQM. As a consequence, AQM

algorithms are being re-investigated with a focus on controlling the queuing latency.

Unlike Random Early Detection (RED) [5] and its variants that attempt to control

the queue length, new AQM algorithms such as Controlled Delay (CoDel) [7] and Pro-

portional Integral controller Enhanced (PIE) [8] have been designed to minimize queue

delay and retain high link utilization. Along the efforts in same direction, a new AQM

algorithm called PI2 [9] has been recently proposed, which offers similar or at times better

responsiveness and stability than PIE, but has a simpler design and implementation.

1.1 Motivation

• Simulators are widely used for network performance evaluation. To the best of our

knowledge, there does not exist a PI2 implementation in popular network simulators

like ns-2 [10] and ns-3. We believe that our implementation of PI2 in ns-3 would

provide an additional platform to the research community to verify its effectiveness

and usefulness for future AQM architectures.

1.2 Goals of this dissertation

Our goals through this dissertation are twofold.

• First, to propose a new model for PI2 algorithm in ns-3 [11] along with its design and

implementation. The traffic control layer in ns-3 provides a strong support for queue

3

disciplines such as RED[5], ARED[12], CoDel[7], FqCoDel[13] and PIE[14]. Adding

a model for PI2, would add value to the simulator and the research community.

• Second, we plan to validate the implementation of our PI2 model in ns-3 by com-

paring its results to those obtained from PIE model in ns-3 since both are expected

to deliver near similar performance. Moreover, we believe that PI2 would perform

much better than PIE in some scenarios.

1.3 Outline of the Thesis

The rest of the thesis is organized as follows:

Chapter 2 provides insights into the Bufferbloat problem and associated challenges

with Passive Queue Management (PQM). It provides a background into how Active Queue

Management (AQM) algorithms address the problem of Bufferbloat via congestion avoid-

ance and queue delay control. The chapter also discusses the state of the art AQM - PIE

and PI2.

Chapter 3 is a deep dive into the implementation of our PI2 model in ns-3 simulator.

The chapter provides a brief overview about ns-3 and implementation details of Traffic

Control layer in ns-3. Furthermore, it also talks about the design and usage of queue

disciplines present in ns-3. Finally, we propose the design and implementation details of

our PI2 model.

Chapter 4 details on the evaluation of our PI2 model. The chapter describes the

simulation setup and simulation scenarios under which PI2 has been evaluated.The effec-

tiveness of our PI2 model is demonstrated by comparing the results obtained from our

model to those obtained from the PIE model in ns-3.

Chapter 5 provides an overview on the ongoing research in the area of AQM and

Transport Layer. We look into mechanisms such as DualQ[15] and TCP Prague[16]. The

chapter talks about how the ongoing work in these projects align with the work done in

this dissertation.

4

Chapter 6 presents the Conclusions and provides the possible future directions. The

chapter also highlights the major contributions through this dissertation work and the

areas where this work can be extended.

5

Chapter 2

Background

2.1 Bufferbloat - The Problem

With the ever increasing demand for interactive applications on the web such as real time

video streaming, it is imperative for the network to perform well as to meet the require-

ments of latency sensitive applications. The networks today suffer from the problem of

latency as a result of which the application performance is degraded. Bufferbloat is a

situation arising due to the presence of large unmanaged buffers in the Internet. As a

result of storage becoming inexpensive, the vendors were motivated to insert large buffers

into the Internet without any appropriate testing. With large buffers in place, the TCP

throughput is improved as the large buffers can accommodate more packets and thus

allow the TCP sender to increase it’s congestion window quickly. However, this gives rise

to a new problem i.e, latency. With large buffers, the packets at the end of the queue

have to undergo a large queuing delay. This degrades the performance of latency sensi-

tive applications. Having large buffers is not an issue. However, having large unmanaged

buffers is the real problem. Bufferbloat destroys the congestion avoidance mechanisms of

TCP. This is attributed to large delays of Bufferbloat which incorrectly signals network

congestion.

The problems arising due to Bufferbloat can be addressed by making use of Active

6

Queue Management (AQM) algorithms. These AQM actively manage the queue and keep

the latency under control and thus helps to reduce the end-to-end delay. The next section

describes the AQM algorithms in detail.

2.2 Active Queue Management (AQM)

The AQM schemes mitigate the problems arising due to large unmanaged buffers by proac-

tively dropping the packets and explicitly signalling the source about congestion.These

AQM schemes interact with the TCP to manage the amount of data to be kept in the

network. The following sub section details the AQM algorithms and it’s advantages.

2.2.1 AQM for Congestion Avoidance and Queue Delay Control

TCP provides congestion control by four main algorithms namely Slow Start, Additive

Increase/Multiplicative Decrease (AIMD), Fast Retransmit and Fast Recovery. Slow start

and AIMD are used for dynamically changing the size of a congestion window (cwnd).

Slow Start increases the cwnd exponentially to quickly bring a newly started flow to the

desired speed. In steady state, TCP uses AIMD to vary the cwnd in conjunction with

fast retransmit and fast recovery. Fast Retransmit and fast Recovery are triggered in

the event of a packet loss and are used to quickly recover from the state of congestion.

These four algorithms, though modified several times in the recent past, have been the

cornerstones of TCP congestion control research.

Congestion avoidance mechanisms differ from congestion control mechanisms, since

former are proactive while latter are reactive. Though AIMD is also known as Congestion

Avoidance algorithm, it is a misnomer since AIMD does not try to avoid congestion proac-

tively [17]. Henceforth, we consider AIMD algorithms as Congestion Control mechanisms

and AQM mechanisms as Congestion Avoidance mechanisms since AQM mechanisms

proactively inform the sender about network state and avoid congestion.

Drop Tail queues have served the Internet for a very long time. With drop tail queues,

7

the packet gets dropped when the queue buffer is completely used. This approach has

potential problems as described below.

• Lock Out Problem - the tail drop mechanism allows a single flow or a set of flows to

occupy the entire queue. This situation can result in starvation for some connections.

• Full Queues Problem - the tail drop mechanism allows the queue to be full or almost

full and signals the congestion only via packet drop. This leaves no room for the

bursty traffic. Therefore, when the bursty traffic arrives, all the packets get dropped

resulting in a problem of global synchronization.

• Global Synchronization - Traditional tail-drop gateways do not provide an early

congestion notification. This leads to global synchronization, a phenomenon in

which all senders sharing the bottleneck gateway reduce their sending rate at the

same time, thereby under-utilizing the network resources.

• Bufferbloat - Since memory costs have reduced in the recent past, modern Internet

routers are designed with extremely large buffers. As a result, today’s Internet suf-

fers from poor network performance because TCP variants implemented in modern

operating systems are end-to-end protocols and hence, do not reduce the sending

rate unless a packet drop is encountered. Since the packet drop occurs only when

these large buffers overflow, queuing delay experienced by each packet increases

drastically, thereby degrading the Quality of Service for delay sensitive applications

such as DNS queries, Voice over IP (VoIP)VoIPVoice over Internet Protocol and

other multimedia applications. This problem has been termed as Bufferbloat.

2.2.2 Motivation for AQM

AQM provides preventive measures to manage a queue and eliminates the limitations

associated with PQM. AQM mechanisms have been extensively studied to monitor and

8

limit the growth of the queue at routers. These mechanisms avoid congestion by proac-

tively informing the sender about congestion, either by dropping a packet or by marking

a packet. The goals of AQM are specified as follows:

• Reduce the number of packets dropped in the network - by proactively dropping the

packets the idea is to avoid full queues so as to accommodate the bursty traffic.

• Reduce the end-to-end delay for the interactive applications - by keeping the average

queue size small, the end-to-end delay is reduced and this improves the performance

of delay sensitive applications such as interactive video-audio sessions and other

short lived web transfers.

• Avoiding the problem of lock out - AQM can avoid the problem of lock out by

ensuring that there is buffer always available for the incoming packets.

Deployment of AQMs in the Internet can significantly improve the performance of the

network. Today, AQM algorithms are being widely deployed in the Internet with a focus

on controlling the queuing delay. In the context of AQM, it is important to understand

that there are two classes of algorithms i.e, queue management algorithms and scheduling

algorithms. The queue management algorithms manage the queue length by marking or

dropping the packets. On the other hand, the scheduling algorithms are used to decide

on which packet should be sent next so as to maintain fairness of bandwidth among the

flows. Both the classes of algorithms can be used together. In this dissertation, we keep

our discussion limited to the queue management algorithms. The next section describes

the popular queue management algorithms.

2.3 AQM Algorithms

The AQM Working Group in the Internet Engineering Task Force (IETF) has set some

general guidelines which must be followed by any AQM scheme. These guidelines are:

9

• Queue management algorithm must directly control the queuing latency rather than

controlling the queue length. This is attributed to the queue drain rate which may

vary with the flows.

• Queue management algorithm must maintain a right balance between latency and

throughput. In an effort to achieve low latency, the algorithm must not degrade

the link utilization. Similarly, in order to ensure high link utilization, the algorithm

must not introduce high latency. A good AQM scheme is the one which provides

low latency without affecting the link utilization.

• Queue management algorithm must be easy to implement, scale and deploy in both

hardware and software.

2.3.1 Proportional Integral Enhanced (PIE)

PIE is now an Experimental RFC (RFC 8033) and also a recommended AQM algorithm

for Data Over Cable Service Interface Specification (DOCSIS) cable modems (RFC 8034).

It uses the Proportional Integral (PI) [18] controller to keep the queuing delay to a spec-

ified target value by updating the drop probability at regular intervals. Like RED, the

deployment of PIE is simple. Moreover, PIE like CoDel uses queuing delay as the mea-

sure of congestion. Therefore, PIE combines the benifits of both RED and CoDel. PIE

observes the trends in latency samples and determines the level of congestion. Following

are the four major components of PIE:

Random Dropping: On packet arrival, PIE enqueues or drops the packet based on

the drop probability, p which is obtained from drop probability calculation component. p

is compared with a uniform random variable u. The packet is enqueued if p < u, otherwise

dropped.

Random dropping is bypassed in PIE in the below conditions:

• When the old queuing delay is less than half of the target/reference delay.

10

• When the drop probability is not too high i.e, is less than 0.2.

• When the queue has less than a couple of packets.

Drop Probability Calculation: PIE updates the drop probability based on the

trends in the latency samples. It observes if the latency is increasing or decreasing and

accordingly updates the drop probability. This happens at every tupdate interval. It is

calculated as [2]:

p = α ∗ (qdelay − target) + β ∗ (qdelay − qdelay old)

where:

• qdelay: queuing delay during the current sample.

• qdelay old: queuing delay during the previous sample.

• target: desired queuing delay.

• α and β: auto-tuning factors in PIE

PIE makes use of the Proportional Integral controller in order to control the queuing

latency. The difference between the queuing delay during the current sample and the

queuing delay during the previous sample helps understand whether the queuing delay is

increasing or decreasing. α is the scaling factor which decides on how much it impacts

the drop probability.

Moreover, the difference between the queuing delay during the current sample and the

desired queuing delay helps determine whether the drop probability has stabilized. β is

the scaling factor which decides on the adjustments should be made in order to stabilize

the drop probability.

Queuing delay estimate: PIE uses Little's law [19] to estimate the current queuing

delay.One of the other approach to measure the queuing delay is to make use of the time

11

stamp at packet enqueue and use the time stamp at packet dequeue.

Burst Tolerance: PIE allows the short term packet bursts to pass through for a

specified interval. By default, the burst allowance is set to 150ms. Burst allowance is user

configurable and can be set to a desired value.

Apart from the components listed above, PIE has several other enhancements such as

ECN which helps to improve performance of PIE. Further details on this can be found in

[14]

2.3.2 PI2

Like PIE, PI2 uses PI controller to keep the queuing delay within a specified target

value. However, unlike PIE, it removes the auto-tuning feature from PIE and makes the

drop decision by applying the squared drop probability. Furthermore, it extends PIE to

support both Classic (e.g., Reno) and Scalable (e.g., Data Center TCP [20]) congestion

controls. PI2 performs packet classification and operates accordingly so as to support the

coexistence of both Classic and Scalable congestion controls in the Internet.

Scalable TCP such as Data Centre TCP (DCTCP) can help to keep the queuing delay

low without compromising other factors. DCTCP is being referred as Scalable because as

the flow rate scales, the saw tooth variations in the rate grow with TCP friendly variants

such as Reno and Cubic but not with DCTCP. Therefore, controls such as DCTCP are

referred to as Scalable and controls such as Reno and Cubic are referred to as Classic [2].

DCTCP is too aggressive to exist alongside Classic TCP. The Classic traffic starves

whem co-existing along with DCTCP. Therefore, till date DCTCP has only been deployed

in controlled environments such as private data centers. However, DCTCP can be mod-

ified to make it deployable on the Internet. PI2 authors while performing their research

on making the family of Scalable controls deployable on the Internet, discovered that PI

12

controller is inherently linear when controlling Scalable congestion controls. However, this

is not the case with Classic controls [2].

In the figure below, we can observe that for Classic controls such as TCP Reno p is

encoded as a square of p ’. We make the Classic drop probability proportional to the

square of the Scalable marking probability.This is because we need to make the Reno flow

rate equal the DCTCP [15].

Figure 2.1: Replacing PIE with PI2 [2]

On the other hand, for Scalable congestion controls such as DCTCP, the output p’

can be used directly; no encoding is needed here.

Figure 2.2: Co-existence of Scalable and Classic Traffic [2]

In this dissertation, we limit our discussion to implementing PI2 for Classic TCP traffic

in ns-3 because the differentiation between Classic TCP traffic and Scalable TCP traffic is

achieved by using Explicit Congestion Notification (ECN) [21] which is not yet completely

supported in the main line of ns-3.

13

2.3.3 Differences between PIE and PI2

Drop decision: PIE drops the packets by comparing the drop probability, p with the

uniform random variable, u. On the other hand, PI2 drops the packets by comparing p2

with u. Squaring the drop probability helps PI2 offer a simple design and eliminate the

corrective heuristics of PIE without the risking responsiveness and stability [9].

Burst allowance: PI2 disables the burst allowance as to avoid an impact on the Data

Center TCP fairness [9].

Other heuristics: PI2 chooses to remove a few more heuristics which are a part of

Linux Implementation of PIE. Details and justifications on removing these heuristics have

been provided in [9].

14

Chapter 3

Implementation of PI2 in ns-3

3.1 Network Simulator-3

ns-3 is a popular open source discrete-event network simulator used primarily for research

and educational purposes. It maintains an open environment for the researchers to con-

tribute their code to the community and provides a simulation engine to the users to

conduct simulation experiments. The key advantage of ns-3 is that it can be used to

perform large scale studies which would be impossible or very tedious to perform with

real time systems. Users can perform large scale simulations in a highly controlled and

reproducible environment and learn about how the networks operate.

While there are a number of network simulation tools available on the Internet, the

good feature of ns-3 lies in it’s modular design. ns-3 has been designed as a set of libraries

which can work in conjuction with external software libraries. Though most of the work

with ns-3 is on the command line using C++ or Python, ns-3 also works well with several

animators and visualization tools.

It is important to note that ns-3 is not backward compatible with ns-2. ns-3 is a

completely new simulator and most of the models from ns-2 have been ported on to ns-3.

Considering the open nature, popularity, support on technical forums and the ongoing

development in ns-3, it makes a great choice for this dissertation work.

15

3.2 Traffic Control Layer in ns-3

Similar to the Linux Traffic Control infrastructure, ns-3 introduces a Traffic Control layer

which sits in between the network layer and the net device. It intercepts the outgoing

packets flowing downwards from the network layer to the network device and the incom-

ing packets flowing upwards from the network device to the network layer. Currently, the

ns-3 Traffic Control module processes only the outgoing packets. The outgoing packets

are enqueued into a queuing discipline where appropriate actions can be performed such

as marking, scheduling, dropping or policing the packets.

3.2.1 Transmitting Packets

Both IPv4 and IPv6 interfaces make use of the TrafficControlLayer object to send

the packets down to the Traffic Control layer for appropriate action. Once the packet

processing is done and a suitable action is taken, the Traffic Control layer invokes the

NetDevice::Send () to send it on to the right net device.

3.2.2 Receiving Packets

Whenever an IPv4 or IPv6 interface is added to the L3 protocol, the callback chain is

configured for the packet exchange as shown below.

NetDevice -> Node -> TrafficControlLayer -> IPv4,6 L3 Protocol

In ns-3, a node can send or receive the packets with the help of classes from L2 and L3

helpers. L2 helpers consist of the classes from the NetDevice side and L3 helpers consist

of the classes from the Internet module. A detailed description of these classes can be

16

found in the official ns-3 documentation 1.

3.3 Queue disciplines in ns-3

3.3.1 Model Description

The Traffic Control layer receives the packets to be sent to the net device. Traffic Control

layer on receiving the packets sends it to the queuing discipline a.k.a queue disc for

scheduling and policing. Usually every net device has a root queue disc installed on it.

However, this is not mandatory and in such cases the Traffic Control layer sends the

packets directly to the net device. The queue disc can be a simple queue or even some

complex hierarchical structure. Some of the elements that the queue disc may contan are:

• Queue - where the packets are actually stored for transmission.

• Class - where suitable treatment can be given to the packets based on the type of

traffic.

• Filter - which determine the queue or class that applies to the packets.

The interaction between the queue disc and the traffic control layer is simple. After

the packet is enqueued, the traffic control layer requests the queue disc to dequeue the

packets till the threshold is reached. A netdevice may also request the queue disc to

dequeue the packet when the transmission queue is empty and can even tell the queue

disc to stop dequeuing when the transmission queue is almost full.

3.3.2 Model Design

Every queue disc in ns-3 extends from the QueueDisc class and must implement the

following methods.

1https://www.nsnam.org/documentation/

17

• bool DoEnqueue (Ptr<QueueDiscItem> item): To enqueue a packet in queue.

• Ptr<QueueDiscItem> DoDequeue (void): To Dequeue a packet from the queue.

• Ptr<const QueueDiscItem> DoPeek (void) const: Peek a packet in the queue.

• bool CheckConfig (void) const: Check if the queue configuration is right.

• void InitializeParams (void): Initialize parameters of queue disc.

QueueDisc base class implements the following functionalities.

• Provides methods to get or add queues, classes or filters.

• Provides a Classify method which helps to classify the packet by processing the

list of filters.

• Provides methods to extract multiple packets from queue disc.

3.3.3 Usage and Helpers

The InternetStackHelper creates a TrafficControlLayer object attached to every

node by default. When the IP address allocation is done for the node, the IPv4,6AddressHelper

assigns the IP address to the interface and even installs a default queue disc, Pfifo-

FastQueueDisc on the device. Now, let us look at how we can configure the type and

attributes of the queue disc.

TrafficControlHelper tch;

uint16 t handle = tch.SetRootQueueDisc ("ns3::PfifoFastQueueDisc");

tch.AddInternalQueues (handle, 3, "ns3::DropTailQueue",

"MaxPackets", UintegerValue (1000));

QueueDiscContainer qdiscs = tch.Install (devices);

18

The code above will add three internal queues to root queue disc which is of type

PfifoFastQueueDisc.

3.4 Implementation of PI2 Queue disc

This section provides insights into the implementation of PI2 algorithm in ns-3. PI2

algorithm has been implemented in a new class named PiSquareQueueDisc which is

inherited from QueueDisc. QueueDisc is an abstract base class provided by the traffic

control layer and has been subclassed to implement queuing disciplines such as Random

Early Detection (RED) [5], PIE and CoDel. The following virtual methods provided in

QueueDisc should be implemented in the respective classes of every queuing discipline:

• bool DoEnqueue (Ptr<QueueDiscItem> item): enqueues or drops the incoming

packet.

• Ptr<QueueDiscItem> DoDequeue (void): dequeues the packet.

• Ptr<const QueueDiscItem> DoPeek (void) const: peeks into the first item of

the queue.

• bool CheckConfig (void) const: checks the configuration of the queue disc.

• void InitializeParams (void): initializes the parameters of the queue disc.

Figure 3.1 shows the relation between the parent class QueueDisc and the derived class

PiSquareQueueDisc. In addition to the methods mentioned above, PiSquareQueueDisc

implements the following two methods: CalculateP and DropEarly. These are specific

to the PI2 algorithm. Figure 3.2 depicts the interactions among the core components of

PI2.

On packet arrival, DoEnqueue is invoked which thereafter invokes DropEarly to check

if the incoming packet should be dropped or enqueued. CalculateP calculates the drop

19

Figure 3.1: Class Diagram for PI2 model in ns-3.

probability at regular intervals (tupdate). DoDequeue is invoked on packet departure and

estimates the average drain rate.

3.4.1 Dropping Packets Randomly

This functionality is implemented in DoEnqueue method in PiSquareQueueDisc. Like

PIE, PI2 drops the packets randomly based on the drop probability, p obtained from

CalculateP. PI2 applies the squared drop probability. The squaring is implemented

by multiplying p by itself. DropEarly therefore, makes the drop decision based on the

comparison between the squared drop probability and a random value u obtained from

UniformRandomVariable class in ns-3. On packet arrival, DoEnqueue invokes DropEarly.

The packet is enqueued if DropEarly returns false, otherwise dropped.

20

Figure 3.2: Interactions among components of PI2 in ns-3.

3.4.2 Drop Probability Calculation

This functionality is implemented in CalculateP method in PiSquareQueueDisc class.

PI2 periodically calculates the drop probability based on the average dequeue rate (m avqDqRate)

and updates the old queuing delay (m qDelayOld). Table 3.2 provides a list of parameters

used in the calculation of drop probability. Variables used in PI2 Linux implementation

are mapped onto corresponding variables used in ns-3 model.

21

Table 3.1: PI2 variables to calculate p.

PI2 variable ns-3 variable

tupdate m tUpdate

qdelay m qDelay

qdelay old m qDelayOld

target m qDelayRef

alpha m a

beta m b

avg dq rate m avqDqRate

3.4.3 Estimation of Average Departure Rate

This functionality is implemented in DoDequeue method in PiSquareQueueDisc class.

On packet departure, DoDequeue calculates the average departure rate (m avqDqRate) if

the queue is in the measurement cycle. Table 3.2 provides a list of parameters required

to calculate m avqDqRate. Variables used in PI2 Linux implementation are mapped onto

corresponding variables used in ns-3 model.

Table 3.2: PI2 variables to estimate avg drate.

PI2 variable ns-3 variable

qlen m packets / m bytesInQueue

QUEUE THRESHOLD m dqThreshold

dq count m dqCount

dq tstamp m dqStart

dtime tmp

ε fixed to 0.5

All the variables are set internally and updated by PI2. The only configurable param-

eter provided by the user is m qDelayRef.

22

3.4.4 Other Heuristics

PI2 implementation of Linux removes scaling heuristics and many other heuristics as com-

pared to Linux implementation of PIE. This is because the basis on which these heuristics

were chosen is not documented anywhere. In line with the PI2 Linux implementation, our

PI2 model in ns-3 removes the following heuristics when compared to PIE ns-3 model.

• In PIE, when the probability is below 0.2 and the queue delay is below half of the

target delay, no marking or dropping is applied. This has been removed from PI2.

If enabled, the threshold for the probability should be 0.45[2].

• In PIE, when the probability is higher than 0.1, ∆ p is set to 0.02. This has been

disabled. According to the PI2 authors, further investigation is required before it is

enabled.

• In PIE, when the queue delay is greater than 250ms the ∆ p is set to 0.02. This

too has been removed from the PI2 model of ns-3.

PI2 chooses to remove a few more heuristics which are a part of Linux Implementation

of PIE. Details and justifications on removing these heuristics have been provided in [9].

3.4.5 Limitations

• The current PI2 model in ns-3 is implemented to work only with Classic TCP traffic

and without ECN. This is because ECN and Scalable TCP such as DCTCP are

currently not available in the mainline of ns-3.

23

Chapter 4

Model Validation

We have designed a test suite with unit tests for verifying the implementation of PI2 model

in ns-3, which is a mandatory step in the process of merging new models into ns-3-dev.

Our implementation of PI2 model along with test suite is currently under review.1

To further verify the correctness of our implementation, we compare the results ob-

tained from our model of PI2 to those obtained from the PIE model in ns-3. The simulation

scenarios considered for comparison are:

• Light TCP traffic, 5 TCP Sources.

• Heavy TCP traffic, 50 TCP Sources.

• Mix TCP and UDP traffic, 5 TCP + 2 UDP.

• CDF of Queuing Delay.

These scenarios are in line with the ones used by the authors of PI2 [9]. However, due

to the unavailability of CUBIC [22] and ECN models in ns-3, we have used TCP NewReno

[3] without ECN for the evaluation. Our aim is to ensure that our implementation exhibits

the key characteristics of the PI2 algorithm. The performance parameters used for com-

parison are throughput and queue delay. Table 4.1 presents the details of simulation setup.

1https://codereview.appspot.com/314290043/

24

4.1 Simulation Setup

Table 4.1: Simulation setup.

Parameter Value

Topology Dumbbell

Bottleneck RTT 76ms

Bottleneck buffer size 200KB

Bottleneck bandwidth 10Mbps

Bottleneck queue PI2

Non-bottleneck RTT 2ms

Non-bottleneck bandwidth 10Mbps

Non-bottleneck queue DropTail

Mean packet size 1000B

TCP NewReno

target 20ms

tupdate 30ms

alpha PIE - 0.125, PI2 - 0.3125

beta PIE - 1.25, PI2 - 3.125

dq threshold 10KB

Application start time 0s

Application stop time 99s

Simulation stop time 100s

It must be noted that PI2 makes use of higher values for α and β as compared to PIE. The

values are 2.5 times higher than PIE. This makes PI2 much more responsive in comparison

to PIE. The total base RTT is kept to 100ms. (i.e, 76 ms of Bottleneck RTT, 2ms + 2ms

of Non-bottleneck RTT, 20ms of target delay). This is because the values of α and β

25

derived from the theoretical analysis are stable only up to the base RTT of 100ms.

4.2 Scenario 1: Light TCP Traffic

Figure 4.1: Light TCP Traffic Dumbbell Topology.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 10 20 30 40 50 60 70 80 90 100

Q
ue

ue
 D

el
ay

 (
in

 M
ill

is
ec

on
ds

)

Time (in Seconds)

ns-3 PIE model
20 ms

(a) ns-3 PIE

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 10 20 30 40 50 60 70 80 90 100

Q
ue

ue
 D

el
ay

 (
in

 M
ill

is
ec

on
ds

)

Time (in Seconds)

ns-3 PI2 model
20 ms

(b) ns-3 PI2

Figure 4.2: Queue delay with light TCP traffic.

In this scenario, a dumbbell topology is used to simulate 5 TCP flows that start at

the same time and pass through the same bottleneck link. Other simulation parameters

26

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100

T
hr

ou
gh

pu
t (

in
 M

bp
s)

Time (in Seconds)

ns-3 PIE model

(a) ns-3 PIE

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100

T
hr

ou
gh

pu
t (

in
 M

bp
s)

Time (in Seconds)

ns-3 PI2 model

(b) ns-3 PI2

Figure 4.3: Link throughput with light TCP traffic.

are set as shown in Table 4.1. Figure 4.2 shows the variations in queuing delay over time.

We can observe the initial peak in the instantaneous queuing delay for both PI2 and PIE

results. This is attributed to the burst traffic generated due to all 5 TCP sources starting

at the same time. Moreover, it can be observed that PI2 to some extent provides better

control on the queuing delay. The initial peak in PIE goes to 160ms. However, PI2 keeps

it under 120ms. Both PI2 and PIE bring down the queuing delay quickly and maintain

it around the reference delay for the rest of the simulation. We can infer that both PI2

and PIE produce similar results and control the queuing delay to a desired target value.

However, during the burst it can be observed that PI2 offers better control in comparison

to PIE.

Figure 4.3 shows the instantaneous throughput. Initially the throughput degrades due

to packets being dropped by PI2 and PIE in an effort to control the queuing delay and

maintain it around the desired target delay. It can be noted that throughput degradation

with PI2 is slightly more because of its tighter control on the queue delay. Nevertheless,

both algorithms yield similar performance for the rest of the simulation.

27

4.3 Scenario 2: Heavy TCP Traffic

This scenario is same as Scenario 1, but configures 50 TCP flows instead of 5 TCP flows.

All TCP sources start transmission at the same time. Figure 4.5 shows the variations

in queuing delay over time. Similar to previous scenario, the initial peak in PIE goes

to 160ms. However, PI2 keeps it under 120ms.Moreover, we can observe that PI2, like

PIE, quickly brings down the queuing delay and keeps it around the desired target value

despite heavy TCP traffic. It can also be noted that the oscillations in the queue delay

are much more in PIE as compared to PI2.

Figure 4.4: Heavy TCP Traffic Dumbbell Topology.

The results are similar to those obtained for Scenario 1. Although the amount of burst

in this scenario is much larger than that in Scenario 1, PI2 continues to perform better

than PIE in controlling the queue delay.

Figure 6 shows the instantaneous throughput. Unlike previous scenario, we observe

that the link throughput is not penalized in either PIE or PI2 in this experiment, mainly

due to a large number of TCP flows sharing the link capacity.

28

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 10 20 30 40 50 60 70 80 90 100

Q
ue

ue
 D

el
ay

 (
in

 M
ill

is
ec

on
ds

)

Time (in Seconds)

ns-3 PIE model
20 ms

(a) ns-3 PIE

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 10 20 30 40 50 60 70 80 90 100

Q
ue

ue
 D

el
ay

 (
in

 M
ill

is
ec

on
ds

)

Time (in Seconds)

ns-3 PI2 model
20 ms

(b) ns-3 PI2

Figure 4.5: Queue delay with heavy TCP traffic.

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100

T
hr

ou
gh

pu
t (

in
 M

bp
s)

Time (in Seconds)

ns-3 PIE model

(a) ns-3 PIE

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100

T
hr

ou
gh

pu
t (

in
 M

bp
s)

Time (in Seconds)

ns-3 PI2 model

(b) ns-3 PI2

Figure 4.6: Link throughput with heavy TCP traffic.

4.4 Scenario 3: Mix TCP and UDP Traffic

This simulation scenario is to determine whether PI2 can function normally with unre-

sponsive UDP traffic. We use dumbbell topology and simulate 5 TCP and 2 UDP flows

passing through the same bottleneck link. All TCP and UDP flows begin transmission at

the same time. UDP sources transmit at a rate of 10 Mbps. Other simulation parameters

are same as mentioned in Table 4.1.

We observe that the results obtained for PI2 and PIE are similar. Figure 4.8 shows that

PI2 and PIE control the queuing delay successfully even in the presence of unresponsive

29

UDP traffic.

Figure 4.7: Mix TCP + UDP Traffic Dumbbell Topology.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 10 20 30 40 50 60 70 80 90 100

Q
ue

ue
 D

el
ay

 (
in

 M
ill

is
ec

on
ds

)

Time (in Seconds)

ns-3 PIE model
20 ms

(a) ns-3 PIE

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 10 20 30 40 50 60 70 80 90 100

Q
ue

ue
 D

el
ay

 (
in

 M
ill

is
ec

on
ds

)

Time (in Seconds)

ns-3 PI2 model
20 ms

(b) ns-3 PI2

Figure 4.8: Queue delay with mix TCP and UDP traffic.

Moreover, in Figure 4.9 we can observe that the bottleneck bandwidth is completely

utilized with both the algorithms.

30

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100

T
hr

ou
gh

pu
t (

in
 M

bp
s)

Time (in Seconds)

ns-3 PIE model

(a) ns-3 PIE

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100

T
hr

ou
gh

pu
t (

in
 M

bp
s)

Time (in Seconds)

ns-3 PI2 model

(b) ns-3 PI2

Figure 4.9: Link throughput with mix TCP and UDP traffic.

4.5 Scenario 4: CDF of Queuing Delay

In this scenario, we compare the CDF of queuing delay obtained for PI2 and PIE. We

conduct two experiments using different traffic loads as done in [9]. First, we use 20 TCP

flows with target delay of 5ms and 20ms. Next, we use a mix traffic consisting of 5 TCP

and 2 UDP flows with target delay of 5ms and 20ms. Rest of the simulation parameters

are same as listed in Table 4.1.

Queue delay (Milliseconds)

0 10 20 30 40 50 60 70 80 90 100

P
ro

b
a
b
il
it
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ns-3 PIE model

ns-3 PI2 model

(a) 20 TCP Flows and target delay = 5ms

Queue delay (Milliseconds)

0 10 20 30 40 50 60 70 80 90 100

P
ro

b
a
b
il
it
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ns-3 PIE model

ns-3 PI2 model

(b) 20 TCP Flows and target delay = 20ms

Figure 4.10: CDF of queuing delay with 20 TCP flows.

Figure 4.10 and 4.11 show the CDF plots comparing the queuing delay of PI2 and PIE.

31

Queue delay (Milliseconds)

0 10 20 30 40 50 60 70 80 90 100

P
ro

b
a
b
il
it
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ns-3 PIE model

ns-3 PI2 model

(a) 5 TCP + 2 UDP Flows and target delay =
5ms

Queue delay (Milliseconds)

0 10 20 30 40 50 60 70 80 90 100

P
ro

b
a
b
il
it
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ns-3 PIE model

ns-3 PI2 model

(b) 5 TCP + 2 UDP Flows and target delay =
20ms

Figure 4.11: CDF of queuing delay with 5 TCP and 2 UDP flows.

In line with the observations made by the authors of PI2, we observe that PI2 performs

no worse and infact, offers notable improvement over PIE in some cases. We note that

PI2 clearly outperforms PIE when the traffic is TCP-only. The margin of improvement

slightly reduces when TCP and UDP traffic coexist.

4.6 Summary

To summarize, it can be observed that PI2 with its simple design can deliver similar

or in some cases better performance in comparison to PIE. From the aforementioned

experiments, we can observe that the performance of PI2 is better than PIE when the

traffic is TCP only. Moreover, in presence of unresponsive traffic such as UDP, PI2 still

manages to deliver similar performance as PIE.

Results from the simulation study confirm the correctness of our PI2 model implemen-

tation in ns-3. Moreover, it can be noted that the results are inline with the authors of

PI2 [2].

32

Chapter 5

Future of Internet Transport

The services offered by the Transport protocols such as TCP and UDP are inadequate to

meet the emerging demands of applications. Latency is a critical performance factor to

most of the applications today. Much has been done in order to reduce the propagation

time by using Content Delivery Networks (CDN) and placing servers closer to the users.

However, queuing latency remains a major issue.

AQM helps to control the queue delay and avoid congestion. However, even with the

perfectly tuned AQM, the sawtoothing rate of TCP will either cause queuing delay to

vary or cause the link to be under-utilized. Protocols such as DCTCP have shown that

small changes to the TCP can help eliminate the sawtooth varying rate of TCP. DCTCP

is Scalable TCP as it keeps the queuing delay low without affecting or compromising the

link utilization. Unfortunately, these Scalable TCP cannot co-exist with Classic TCP such

as TCP Reno and Cubic. This is attributed to aggressive congestion control in Scalable

TCP which starves the Classic TCP flows.

5.1 DualQ

The DualQ Coupled AQM architecture solves the problem of coexistence of the Scalable

and Classic traffic. The Coupled AQM ensures that a flow runs at the same rate whether

33

it uses DCTCP or TCP friendly controls such as Reno or Cubic and it does so without

inspecting transport layer flow identifiers. The AQM exploits the behaviour of scalable

congestion controls like DCTCP so that every packet in every flow sharing the queue for

Scalable TCP traffic can be served with very low latency [15].

DualQ algorithm has 2 main aspects:

• Coupled AQM that addresses throughput fairness between Classic and Scalable

flows.

• DualQ structure provides latency separation for Scalable flows so that they do not

undergo the queuing delay due to Classic flows.

In order to make Scalable flows run at around the same rate as Classic flows, the Cou-

pled AQM applies the approach adopted in PI2 AQM. Therefore, the DualQ Framework

implementation in ns-3 in future can make use of our PI2 queuing discipline.

5.2 TCP Prague

tcpPrague is an effort to coordinate the implementation and standardization of TCP

Prague across all platforms. TCP Prague is considered to be an evolution of DCTCP and

is expected to function along with other TCP variants. DCTCP so far has only been used

in privately controlled environments such as data centers. This is attributed to aggressive

congestion control of DCTCP as compared to TCP friendly variants such as Reno and

Cubic. TCP Prague is expected to:

• Take the full advantage of ECN in the network.

• Marking Frequency never changing with flow rate.

TCP Prague is still a work in progess. However, modules such as DualQ have been

finalised and briefly experimented. Both TCP Prague and DualQ AQM framework im-

plementation in ns-3 would make use of our PI2 queuing discipline.

34

Recent developments such as DualQ and TCP Prague reflect the active interest of the

research community in Active Queue Management (AQM).Therefore, availability of PI2

queuing discipline in network simulators like ns-3 is crucial to aid this future development.

35

Chapter 6

Conclusions

In this dissertation, we have discussed about the challenges imposed due to Bufferbloat

and the problems associated with PQM. We have seen how AQM deployed at the routers

can help mitigate the excess queuing latency introduced due to Bufferbloat. Moreover,

we have looked into state of the art AQM - PI2 and PIE. Furthermore, we have designed,

implemented and tested a model in ns-3 for PI2 AQM which provides a simple design and

implementation in contrast to PIE. Finally, we have discussed on how the Transport layer

in the Internet is evolving and how our work fits into the ongoing research.

6.1 Major Contributions

To summarize, our major contributions in this dissertation work are as outlined below.

• Designed and Implemented a model for PI2 AQM in the Traffic Control layer in ns-3.

In our opinion, implementation of PI2 in ns-3 would provide an additional platform

to the research community to verify its effectiveness and usefulness for future AQM

architectures. Our proposed model is based on the Linux code of the authors of

PI2.1

1https://github.com/olgabo/dualpi2/blob/master/sch pi2/sch pi2.c

36

• Designed a test suite for evaluating the working of PI2 algorithm. The test suite

covers all the basic functionality such as verifying the attribute settings of PI2

algorithm and performing basic enqueue / dequeue of packets.

• Evaluated the effectiveness of our implementation by comparing the results obtained

from PI2 model of ns-3 to those obtained from the PIE model of ns-3. The results

indicate that PI2 offers a simple design and achieves similar or at times better

responsiveness and stability than PIE.

• Designed and Implemented model of PI2 has been submitted to the ns-3 developers

and is currently under review. The same can be accessed here. 2

Moreover, we have published a research paper at 1st International Workshop on

Future of Internet Transport co-located with IFIP Networking 2017 at KTH Royal

Institute of Technology, Stockholm, Sweden. The paper will appear in the sympo-

sium proceedings published by IFIP and will be submitted to IEEE Xplore Digital

Library [23].

6.2 Future Work

Some of the major areas where this work can be extended is outlined below.

• At the time of writing this dissertation, ECN is currently not supported in the main

line of ns-3. PI2 uses ECN in order to distinguish between the Classic and Scalable

TCP flows. Therefore, on the availability of ECN in ns-3, we can extend our PI2

implementation to work with ECN.

• Similarly, Scalable Congestion Controls such as DCTCP are currently in develop-

ment and haven’t been merged to mainline of ns-3. Therefore, on availability of

Scalable TCPs such as DCTCP, we can extend our implementation of PI2 to work

with Scalable Congestion Controls.

2https://codereview.appspot.com/314290043/

37

• Direct Code Execution (DCE) feature of ns-3 allows ns-3 to make use of the underly-

ing Linux stack for our experimentation. Currently, DCE supports only older Linux

kernels. On the availability of support for newer Linux kernels, we can compare PI2

model in ns-3 with PI2 model implemented in the Linux kernel.

38

Appendix A

39

Abbreviations

Short Term Expanded Term

TCP Transmission Control Protocol

BER Bit Error Rates

XCP eXplicit Control Protocol

AQM Active Queue Management

ECN Explicit Congestion Notification

IETF Internet Engineering Task Force

PQM Passive Queue Management

CoDel Controlled Delay

PIE Proportional Integral Enhanced

PI Proportional Integral

RED Random Early Detection

ARED Adaptive Random Early Detection

FqCoDel FlowQueue Controlled Delay

UDP User Datagram Protocol

DCTCP Data Center Transmission Control Protocol

DOCSIS Data Over Cable Service Interface Specification

RTT Round Trip Time

CDF Cumulative Distribution Function

AIMD Additive Increase Multiplicative Decrease

CDN Content Delivery Network

40

Appendix B

List of Publications

The following paper was presented at 1st International Workshop on Future of Internet

Transport co-located with IFIP Networking 2017 at KTH Royal Institute of Technology,

Stockholm, Sweden. The paper will appear in the symposium proceedings published by

IFIP and will be submitted to IEEE Xplore Digital Library.

• Tahiliani, R. P., & Tewari, H. Implementation of PI2 Queuing Discipline for Classic

TCP Traffic in ns-3.

41

Appendix C

Pseudo code for PI2

This section details the major components of PI2 along with their pseudo code. Following

are the major components of PI2 in ns-3:

• DoEnqueue - invoked at every packet arrival.

• DropEarly - apply the squared drop probability and compare with random variable

to make a decision.

• CalculateP - calculates drop probability at every tupdate interval.

• DoDequeue - invoked at every packet departure.

Table C.1: Configurable parameters in PI2 model.

PI2 parameter Description

m qDelayRef Reference Queuing Delay

42

Table C.2: Internal parameters in PI2 model.

PI2 parameter Description

m Alpha set to 0.3125 Weight in the drop probability calculation.

m Beta set to 3.125 Weight in the drop probability calculation.

m tUpdate Interval to calculate the drop probability.

m qDelayOld set to 0 Previous queuing delay.

m dropProb Packet drop probability.

===

DoEnqueue function: invoked on every packet enqueue.DoEnqueue checks if the cur-

rent queue length is greater than the set threshold. If yes, it drops the packet. If not,

DoEnqueue invokes DropEarly to check if the packet should be dropped or enqueued.

===

DoEnqueue (Ptr<QueueDiscItem> item)

{

u i n t 3 2 t nQueued = GetQueueSize () ;

i f ((GetMode () == Queue : :QUEUE MODE PACKETS &&

nQueued >= m queueLimit)

| | (GetMode () == Queue : :QUEUE MODE BYTES

&& nQueued + item−>GetPacketSize () > m queueLimit))

{

// Drops due to queue l i m i t : r e a c t i v e

Drop (item) ;

r e turn f a l s e ;

}

e l s e i f (DropEarly (item , nQueued))

43

{

// Early p r o b a b i l i t y drop : p roac t i v e

Drop (item) ;

r e turn f a l s e ;

}

===

DropEarly function: makes the drop decision based on the comparison between the

squared drop probability and a random value, u obtained from UniformRandomVariable

class in ns-3. If u is greater than the squared drop probability, then the packet is enqueued.

Otherwise, the packet is dropped.

The squaring of drop probability can be implemented in two ways. First, the drop

probability p can be multiplied by itself. Second, is to compare p with a maximum of

two random variables during the drop decision.We adopt the first approach as it’s easier

to perform in a software implementation. The latter can be preferred for a hardware

implementation [2].

===

DropEarly (Ptr<QueueDiscItem> item , u i n t 3 2 t qS ize)

{

double p = m dropProb ;

u i n t 3 2 t packe tS i ze = item−>GetPacketSize () ;

i f (GetMode () == Queue : :QUEUE MODE BYTES)

{

p = p ∗ packetS i ze / m meanPktSize ;

}

bool earlyDrop = true ;

double u = m uv−>GetValue () ;

44

i f (GetMode () == Queue : :QUEUE MODE BYTES

&& qSize <= 2 ∗ m meanPktSize)

{

r e turn f a l s e ;

}

e l s e i f (GetMode () == Queue : :QUEUE MODE PACKETS

&& qSize <= 2)

{

r e turn f a l s e ;

}

// Apply the squared drop p r o b a b i l i t y

i f (u > p ∗ p)

{

earlyDrop = f a l s e ;

}

i f (! ear lyDrop)

{

r e turn f a l s e ;

}

r e turn true ;

}

===

CalculateP: Calculates the drop probability at every tupdate interval. CalculateP is

responsible for estimating the current queuing delay based on Little’s law, auto-tuning

the scaling factors, calculating the drop probability and updating the old queuing delay.

The drop probability is updated at tupdate interval based on how far the current

45

latency is away from the target and whether the queuing latency is currently increasing

or decreasing.

===

CalculateP ()

{

Time qDelay ;

double p = 0 . 0 ;

bool m i s s i n g I n i t F l a g = f a l s e ;

i f (m avgDqRate > 0)

{

qDelay = Time (Seconds (GetInternalQueue (0)−>

GetNBytes () / m avgDqRate)) ;

}

e l s e

{

qDelay = Time (Seconds (0)) ;

m i s s i n g I n i t F l a g = true ;

}

m qDelay = qDelay ;

// Ca l cu la te the drop p r o b a b i l i t y

p = m a ∗ (qDelay . GetSeconds () − m qDelayRef . GetSeconds ())

+ m b ∗ (qDelay . GetSeconds () − m qDelayOld . GetSeconds ()) ;

p += m dropProb ;

// For non−l i n e a r drop in prob

i f (qDelay . GetSeconds () == 0 && m qDelayOld . GetSeconds () == 0)

{

46

p ∗= 0 . 9 8 ;

}

m dropProb = (p > 0) ? p : 0 ;

i f ((qDelay . GetSeconds () < 0 .5 ∗ m qDelayRef . GetSeconds ()) &&

(m qDelayOld . GetSeconds () < (0 . 5 ∗ m qDelayRef . GetSeconds ())) &&

(m dropProb == 0) && ! m i s s i n g I n i t F l a g)

{

m dqCount = −1;

m avgDqRate = 0 . 0 ;

}

m qDelayOld = qDelay ;

m rtrsEvent = Simulator : : Schedule (m tUpdate ,

&PiSquareQueueDisc : : CalculateP , t h i s) ;

}

===

DoDequeue: is invoked on every packet departure and estimates the average de-

parture rate. The average departure rate is estimated only when the queue is in the

measurement cycle.

===

PiSquareQueueDisc : : DoDequeue ()

{

i f (GetInternalQueue (0)−>IsEmpty ())

{

NS LOG LOGIC (” Queue empty ”) ;

47

r e turn 0 ;

}

Ptr<QueueDiscItem> item = Stat icCast<QueueDiscItem>

(GetInternalQueue (0)−>Dequeue ()) ;

double now = Simulator : : Now () . GetSeconds () ;

u i n t 3 2 t pktS i ze = item−>GetPacketSize () ;

// i f not in a measurement c y c l e and the queue has b u i l t

// up to dq thresho ld , s t a r t the measurement c y c l e

i f ((GetInternalQueue (0)−>GetNBytes () >=

m dqThreshold) && (! m inMeasurement))

{

m dqStart = now ;

m dqCount = 0 ;

m inMeasurement = true ;

}

i f (m inMeasurement)

{

m dqCount += pktS ize ;

// done with a measurement c y c l e

i f (m dqCount >= m dqThreshold)

{

double tmp = now − m dqStart ;

48

i f (tmp > 0)

{

i f (m avgDqRate == 0)

{

m avgDqRate = m dqCount / tmp ;

}

e l s e

{

m avgDqRate = (0 . 5 ∗ m avgDqRate) +

(0 . 5 ∗ (m dqCount / tmp)) ;

}

}

// r e s t a r t a measurement c y c l e i f the r e i s enough data

i f (GetInternalQueue (0)−>GetNBytes () > m dqThreshold)

{

m dqStart = now ;

m dqCount = 0 ;

m inMeasurement = true ;

}

e l s e

{

m dqCount = 0 ;

m inMeasurement = f a l s e ;

}

}

49

}

r e turn item ;

}

===

50

Bibliography

[1] Ihsan Ayyub Qazi. An efficient framework of congestion control for next-generation

networks. University of Pittsburgh, 2010.

[2] Koen De Schepper, Olga Bondarenko, Jyh Tsang, and Bob Briscoe. PI2 AQM for

Classic and Scalable Congestion Control. Sept. 2016.

[3] Tom Henderson, Sally Floyd, Andrei Gurtov, and Yoshifumi Nishida. The NewReno

Modification to TCP’s Fast Recovery Algorithm. Technical report, 2012.

[4] M. Hassan and R. Jain. High Performance TCP/IP Networking, volume 29. Prentice

Hall, 2003.

[5] S. Floyd and V. Jacobson. Random Early Detection Gateways for Congestion Avoid-

ance. Networking, IEEE/ACM Transactions on, 1:397–413, 1993.

[6] J. Gettys and K. Nichols. Bufferbloat: Dark buffers in the internet. Communications

of the ACM, 55(1):57–65, 2012.

[7] K. Nichols and V. Jacobson. Controlling Queue Delay. Communications of the ACM,

55(7):42–50, 2012.

[8] R. Pan, P. Natarajan, C. Piglione, M. S. Prabhu, V. Subramanian, F. Baker, and

B. VerSteeg. PIE: A Lightweight Control Scheme to Address the Bufferbloat Problem.

In High Performance Switching and Routing (HPSR), 2013 IEEE 14th International

Conference on, pages 148–155. IEEE, 2013.

51

[9] Koen De Schepper, Olga Bondarenko, Jyh Tsang, and Bob Briscoe. PI2: A Linearized

AQM for both Classic and Scalable TCP. In Proceedings of the 12th International on

Conference on emerging Networking EXperiments and Technologies, pages 105–119.

ACM, 2016.

[10] Network Simulator 2. http://www.isi.edu/nsnam/ns, 1995.

[11] Network Simulator 3. https://www.nsnam.org, 2011.

[12] S. Floyd, R. Gummadi, S. Shenker, et al. Adaptive RED: An algorithm for increasing

the robustness of RED’s active queue management, 2001.

[13] Toke Hoeiland-Joergensen, Paul McKenney, Dave Taht, Jim Gettys, and Eric Du-

mazet. Flowqueue-codel. IETF ID draft-ietf-aqm-fq-codel-00, 2014.

[14] F. Baker G. White B. Ver Steeg M. Prabhu C. Piglione R. Pan, P. Natarajan and

V. Subramanian. PIE: A Lightweight Control Scheme To Address the Bufferbloat

Problem. internet draft draft-ietf-aqm-pie-10, internet engineering task force. Sept.

2016.

[15] K De Schepper, B Briscoe, O Bondarenko, and IJ Tsang. Dualq coupled aqm for

low latency, low loss and scalable throughput. Technical report, Internet Draft draft-

briscoe-aqm-dualq-coupled-00, IETF, 2015.

[16] Tcp prague. https://www.ietf.org/mailman/listinfo/tcpprague, 2017.

[17] Sumitha Bhandarkar, AL Reddy, Yueping Zhang, and Dimitri Loguinov. Emulat-

ing aqm from end hosts. In ACM SIGCOMM Computer Communication Review,

volume 37, pages 349–360. ACM, 2007.

[18] C. V. Hollot, V. Misra, D. Towsley, and W. Gong. On designing improved controllers

for AQM routers supporting TCP flows. In INFOCOM 2001. Twentieth Annual

Joint Conference of the IEEE Computer and Communications Societies. Proceedings.

IEEE, volume 3, pages 1726–1734. IEEE, 2001.

52

[19] J. D. C. Little and S. C. Graves. Little’s law. In Building intuition, pages 81–100.

Springer, 2008.

[20] Mohammad Alizadeh, Albert Greenberg, David A Maltz, Jitendra Padhye, Parveen

Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. Data Center TCP

(DCTCP). In ACM SIGCOMM computer communication review, volume 40, pages

63–74. ACM, 2010.

[21] K. Ramakrishnan, S. Floyd, D. Black, et al. The addition of Explicit Congestion

Notification (ECN) to IP, 2001.

[22] Sangtae Ha, Injong Rhee, and Lisong Xu. CUBIC: a new TCP-Friendly High-Speed

TCP Variant. ACM SIGOPS Operating Systems Review, 42(5):64–74, 2008.

[23] Rohit P Tahiliani and Hitesh Tewari. Implementation of pi 2 queuing discipline for

classic tcp traffic in ns-3.

53

