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Over the last few years, Trinity College Dublin and Ordnance Survey Ireland have been

collaborating to publish Irelands geospatial information as Linked Data on the web. How-

ever, how to efficiently consume such rich data is considered a big problem in the industry.

The most recommended way to solve this problem is to take advantage of the Triple Pat-

tern Fragment approach which simply retrieves the triples that match a given triple pat-

tern and then it is up to the client to decide how to efficiently execute the rest of the query

specified. In this dissertation, we extend the Triple Pattern Fragment client to support

GeoSPARQL, which is an OGC standard for representation and querying geospatial linked

data. We also evaluated our implementation using the Geographica benchmark to assess

the overall performance of the implementation. Finally, we applied the insights gathered

from this evaluation to make recommendations as to how to best formulate GeoSPARQL

queries to achieve efficient execution of queries when using the Triple Pattern Fragment

implementation.
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Chapter 1

Introduction

1.1 Motivation

The ADAPT Centre at Trinity College Dublin and Ordnance Survey Ireland (OSi), Ire-

lands national mapping agency, are collaborating to publish Irelands geospatial informa-

tion as Linked Data [17] on the Web[40][31]. Linked Data requires the use of the Resource

Description Framework (RDF) [24], a W3C Recommendation to describe and represent

that information on the Web. RDF is a common and flexible data model that serves to

capture and represent information on the Web. With the help of RDF, spatial information

can be easily exchanged among applications.

To query RDF data, SPARQL[52], also a W3C Recommendation, is the de facto stan-

dard query language. In 2008, SPARQL 1.0 was published as the fundamental version of

SPARQL specification. In 2013, W3C SPARQL working group extended several aspects

of SPARQL 1.0 and published SPARQL 1.1[35].SPARQL, however, is a query language

for RDF triples and provides no support for geospatial information.

To support geospatial information, GeoSPARQL standard working group developed OGC

GeoSPARQL that is called the Geographic Query Language for RDF Data 1.0 standard[50].

1
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GeoSPARQL is not only an extension of SPARQL for querying geospatial data, GeoSPARQL

also defines a vocabulary for representing geospatial data in RDF. The former was achieved

by extending the set of filter functions and has some query rewriting rules for RDF in

terms of the GeoSPARQL vocabulary.

To date, a couple of bespoke triplestores have been developed for the purpose of supporting

the GeoSPARQL standard. Strabon [45] is a popular open source semantic spatiotemporal

RDF store that supports both stSPARQL[44] and GeoSPARQL standard. Parliament[6]

is another well-known high performance triplestore, which makes use of Apache Jena[41].

Unfortunately, no engine on the market was found to fully implement the recent standard

for GeoSPARQL. A market research conducted by GeoKnow project[14] revealed this dif-

ference by making a qualitative comparison between different triplestores on geospatial

support.

In addition to the compliance-to-standard challenge, another serious problem is the ”low

availability”[20]of queryable knowledge graphs on the Web, which seems to be caused by

the observations (1) majority of knowledge graphs are not published in queryable form

and (2) a large amount of public SPARQL endpoints suffer from frequent downtime.

To reduce the complexity of hosting a queryable public SPARQL endpoint and to im-

prove availability, the Triple Pattern Fragments (TPF) [60] approach was proposed as

a trade-off solution. TPF has been chosen as the basis for this dissertation research.

Generally, a TPF server only returns the result set for a simple triple pattern <subject,

predicate, object >, where each element is either a variable, a URI, or a literal. A TPF

client is responsible for breaking down a complex SPARQL query into simple queries and

to compute the overall result, only relying on the TPF server for the result sets of those

triple patterns.
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However, current implementations of TPF do not support GeoSPARQL, leading to the

research objectives of this dissertation.

1.2 Research Objectives

Objectives of the research reported in this dissertation are:

• Extend a TPF client to support GeoSPARQL standard.

• Evaluate the developed extension with the Geographica benchmark[30] to test if the

related functions are correctly implemented and working as expected.

• Collect and analysis the query run-time data to explore the best practice query

pattern and based on the indications found, make recommendations for how to

design queries to enhance performance of query execution.

1.3 Outline

This dissertation is organized as follows:

• Chapter 2 - Describe the key standards and technologies in the area of Semantic

Web and elaborates the core concept behind them.

• Chapter 3 - Presents a literature review of current research with regards to Triple

Pattern Fragments, including the research code base and some cutting-edge opti-

mization research.

• Chapter 4 - Illustrates the structure of Triple Pattern Fragments client as well as

the general query work-flow. It also presents the overall design for extending Triple

Pattern Fragments to support spatial predicates filter functions and spatial analysis

functions.
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• Chapter 5 - Describes the implementation detail of GeoSPARQL spatial predicates

filter functions and non-topological functions (spatial analysis functions).

• Chapter 6 - Introduces the methodology adopted to evaluate overall performance

and explores the best practice query patterns with an aim of providing insights for

query optimization.

• Chapter 7 - Give a conclusion of the entire dissertation.



Chapter 2

Background

This chapter first presents the background knowledge of the key technologies and stan-

dards related to this dissertation, in particular the GeoSPARQL standards which were

proposed in order to provide uniform geographical support.

2.1 Semantic Web

World Wide Web has become the most far-reaching and widely-used media in influencing

the ways that human gather information. Which is also known as the impetus of next

generation technologies [28], Berners-Lee [16] purposed the methodology of Semantic Web

that aims to ”bring structure to the meaningful content” of Web pages, dealing with the

unreliability of computers semantics processing and vesting the software a more flexible,

integrated, automatic and self-adapting Web.

In short, the motivation of the Semantic Web is to create a more accessible data web

for computers [48]. From users’ perspective, it should provides more interactive and di-

versified experience in using the Web. Current Web is functioning in a manner that merely

index the data and transmit it from the target server to the client. All the intelligent

work like information classifying and filtering are conduct by the end user. In contrast,

5
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Semantic Web was designed to link isolated data, merge the knowledge graph from dif-

ferent industries and organize the data in a more machine-readable way to accelerates

the data flow in a global scope [39]. As a result, computers would be capable of taking

up more intelligent work. For example, searching will no longer be limited to simple key

words matching. Instead, it will bring in more semantic such as finding synonyms to

help generate a more accurate result. In addition to this, automatically integrating the

information across different sites could also become feasible.

However, building up a such more ”semantic” web has raised a debate across the in-

dustry. Halevy et al. [34] purposed to constitute an ”enormous Google” to find out the

proper connections among vocabularies, terms and circumstances, which mainly relies

on the efficacy of data. However, recent performance standstill of search engines implies

the deficiency of this approach: no search engines can find a better way to represent the

search result instead of the lists with scattered pages. Consequently, academia acknowl-

edges that the design of Semantic Web should follows the below principles [13]: 1). ensure

the structured and partly-structured data be accessible in World Wide Web in standard-

ized formats; 2). create data set and readable meta data with its connections; and 3).

utilize formal model to describe the underlying meanings of the data to make it accessible

by computers.

In fact, the current World Wide Web remains large quantities of both structured and

semi-structured data. But, principle part of the World Wide Web is generated from the

content management system with only structured data set or database. However, even

the rich structures in these data set are almost lost after the process of transferring struc-

tured data into human readable Hyper-text Markup Language(HTML). Therefore, if all

the structured data set on the Web could be released and interlinked with each other, the

idea of a more ”semantic” Web would make sense.
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To this respect, Berners-Lee developed [48] a layered architecture for Semantic Web,

which is shown in Figure 2.1, which describes the basic technology stacks and entire

framework. The following part explains main technology stacks of each layer. 1). Uni-

Figure 2.1: Semantic Web Layered Architecture [13]

code and URIs: Unicode is the standard of computer character representation and URI

(Uniform Resource Identifier) is a string of characters used to identify a resource on the

Web, which are known as the baselines to represent characters and resources in different

formats. 2). XML: XML stands for Extensible Markup Language, which is designed

to store and transport data. It allows users to design their own markup languages for

limitless different types of documents. 3). RDF: The concept of Resource Description

Framework (RDF) was purposed to express this labeled graph. RDF is a simple meta-

data representation framework, which is also known as a standard data model, providing

semantics that can be processed by a machine. 4). RDF Schema: RDF schema a simple

type modeling language based on RDF for describing classes of resources and properties

between them. 5). Ontologies: ”An ontology is an explicit and formal specification of a

conceptualization” [33], which is considered as a richer language to provide more abun-

dant representations of object and its properties. 6). Logic and Proof: Normally, logic

provides formal language to represent knowledge and well-understood formal semantics.

Proof includes the real deductive procedure and use languages in low levels to show the
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evidential process.

2.2 RDF

RDF stands for Resource Description Framework, which is a common data model for

representing information and resources published on the Web. Compared to traditional

approaches, RDF aims to organize the information in a machine-accessible manner [24] to

facilitate data integration among different knowledge graphs. Briefly, A RDF description

Figure 2.2: A RDF description with three triples and its labeled graph

consists of three triples of objects (entities), attributes (properties) and corresponding

values [42].This allows RDF to represent simple statements about resources as a graph

of nodes and arcs representing the resources, and their properties and values. The basic

structure of RDF utilizes labelled graph as the data model of object and its connec-

tions. In the graph, the object is known as node while the connections among objects

are presented as edges. For example, figure 2.2 shows the three triples necessary to state

that a specific project was released by someone with a name ”John Doe” and an email

address ”johnDoe@tcd.ie”. A directed labeled graph that is depicted from the previous

RDF model is also shown in figure 2.2, which is defined as a collection of RDF triples.The
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actual RDF data requires a more strict representation. It is also made up of set of subject-

predicate-object triples, But, subject and predicate are URIs, and the object is URIs or

literals[51] which can help uniquely identify the entity for ontology reasoning .

2.3 RDF Schema

RDF is a common language to provide ways for users to describe resources using their own

statements. However, in order for those triples to be meaningful, RDF users are required

to define the vocabularies on top of these statements [55]. These vocabularies represent a

specific type restriction to describes the resource as well as the attributes. According to

the definition of RDF, it neither presume to be related to specific application fields nor

define semantics of any fields. Therefore, the concept of RDF vocabulary was proposed

to describe classes, properties and their relationships by applying extensions to RDF in

RDF Schema(RDFS), a set of reserved words.

RDF Schema defines three parts of constructions: core classes, relationships and restric-

tions [11]. A class in RDFS can be understood as a set of resources and the resources

belonging to this class are called instance, which is defined as rdfs:Class. Likewise, a

property in RDFS can be understood as the descriptions of instances, which is conducted

by rdf:Property. Additionally, the rdfs:Resource, the rdf: Literal and the rdf: State-

ment are also the core classes in RDFS. When talking about defining relationships, the

rdf:type shows the category of an instance. The rdfs:subClassOf can be used to imple-

ment a hierarchical structure. In order to define the property hierarchies, RDFS provides

the rdfs:subPropertyOf. Two constructs are used as the core restrictions in RDFS: the

rdfs:domain and the rdfs:range.
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2.4 SPARQL

After transferring information to be the format of RDF, we need to store and utilize the

existing RDF data to meet the requirements of reasoning and application development.

Consequently, A query language called SPARQL provides the ability to gather specific

content from the knowledge graph in the format of RDF, using selecting and filtering

operations[13]. SPARQL is designed specifically for RDF, which has many similarities

with the queries in SQL and is also a W3C Candidate Recommendation[49].

SPARQL selects information by utilizing graph pattern matching, as well as providing

filtering mechanism based on comparing numbers and strings. A basic graph (BGP) pat-

tern is a set of triple patterns and SPARQL operators. Therefore, SPARQL graph pattern

matching is defined in terms of combining the results from triples that matching given

basic graph patterns [37]. The operators of the SPARQL algebra are: AND (i.e., con-

junction), UNION (i.e., disjunction), OPTIONAL (i.e., optional patterns, like left outer

join) and FILTER (i.e., restriction).The overall structure of the language resembles SQL

with its three main blocks: A WHERE clause that is composed of a graph pattern, A

FROM clause that defines the datasets to be queried and A SELECT clause that specifies

the final form containing results to return to users. Figure 2.3 gives a simple example

Figure 2.3: An example of SPARQL query [22]
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to describe SPARQL query with the optional patterns, whose returning results are the

name of a person, the country of birth and the social security number or the passport

number if available. In this query, the WHERE clause has two different formats that are

non-optional and optional part. The previous one is from line1 to line5, which returns

the properties(name and birthplace) of the instance Person. Relatively, the OPTIONAL

clause in line06 searches for person’s social security number[22]. The second OPTIONAL

contains another nested OPTIONAL, which means if the passport number in line7 is

available, then the nested OPTIONAL will find out those countries which have issued

visas to the passport.

Generally, the core concept of SPARQL is selecting resources using graph pattern match-

ing and implementing filtering section. SPARQL query utilizes the similar grammar as

Turtle, in which both data and schema can be inquired. The UNION and OPTIONAL

operators allow SPARQL deal with open-linked data easily [25].

2.5 GeoSPARQL

So far, we have introduced the basic concept related to semantic web and RDF as well

as the idea of the query language SPARQL for RDF data. With respect to geospatial

data, several schemes were proposed for encoding simple geometry in RDF, such as W3C

Basic Geo vocabulary [19] that represent the point in WSG84 or GeoRSS[56] that sup-

port more complex geometries like rectangle and polygon. However these vocabularies

inevitably have their own limitations. For this reason, OGC proposed GeoSPARQL stan-

dard in an attempt to provide a uniform, platform-independent access to geospatial RDF

datasets and accordingly enable a rich query semantic for these datasets. In other words,

GeoSPARQL is more than a standard for representing the geospatial RDF data, but also

an extension of SPARQL for querying such data. In addition to this, GeoSPARQL also

includes an Ontology that has been designed for the purpose of supporting exchange of
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RDF data.

According to the most recently released standard[50] uses a modular design and the entire

standard is made up of six components. Vendors can accordingly choose the components

to implement based on their requirements. In this dissertation our implementation fo-

cuses on implementing the geometry component and geometry topology component. Each

component is introduced as follows:

• Core Component:the core component defines the top-level RDFS/OWL classes

for representing spatial objects. With the help of RDFS/OWL classes, systems

that support RDFS entailment and systems that support OWL-based reasoning can

hence read and understand the spatial objects. Implementations of this component

must support SPARQL query language for RDF and the SPARQL Protocol for RDF

and the SPARQL Query Results XML Format. This component enables the data

exchange of spatial data with other RDF datasets.

• Topology Vocabulary Component: the topology component defines the proper-

ties for asserting and querying topological relations between spatial objects. There

are three spatial relation families in the standards which are all described with DE-

9IM.[58] DE-9IM describes the spatial relations by specifying the spatial dimensions

of intersection of interiors, boundaries and exteriors between geometries. Vendors

do not need to implement all the spatial relations family. It is open for each im-

plementation to choose which to implement. Particularly, implementation of the

OGC Simple Features family must allow properties: geo:sfEquals, geo:sfDisjoint,

geo:sfIntersects, geo:sfCrosses, geo:sfWithin, geo:sfContains to be used in a graph

pattern.

• Geometry Component :the geometry component defines RDFS data types for

serializing geometry data, geometry related RDF properties, and non-topological

spatial query functions for geometry objects. Single root geometry class is defined
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with geo:Geometry. geo:hasGeometry would link a feature with a geometry that

represents the spatial extent. With regards to these geometries, two approaches

have been used to represent geometry literals - WKT and GML. WKT is short

for well-known text that is a markup language for representing vector geometry

objects across different spatial reference system while GML standards for Geogra-

phy Markup Language which is the XML grammar defined by the Open OGC to

express geographical features. The WKT serialization aligns the geometry types

with ISO 19125 Simple Features, and the GML serialization aligns the geome-

try types with ISO 19107 Spatial Schema. geo:asWKT and geo:asGML are the

properties that link the geometry with the geometry literal. To enable spatial

analysis, geof:distance, geof:buffer, geof:convexHull, geof:intersection, geof:union,

geof:difference, geof:symDifference, geof:envelope and geof:boundary must be im-

plemented.

• Geometry Topology Component : the geometry topology component defines

the topological query functions which served as the filter against geometry liter-

als that return boolean value. . Implementations must support SPARQL extension

function geof:sfEquals, geof:sfDisjoint, geof:sfIntersects, geof:sfTouches, geof:sfCrosses,

geof:sfWithin, geof:sfContains, geof:sfOverlaps for the Simple Features model or

other topological families like RCC8[53] or Egenhofer[26].

• RDFS Entailment Component : the RDF entailment component defines a mech-

anism for matching implicit RDF triples that are derived based on RDF and RDFS

semantics. Implementations must support graph patterns involving terms from an

RDFS/OWL class hierarchy of geometry types consistent with the one in the spec-

ified version of OGC Simple Features (ISO 19125-1) or the GML schema (OGC

07-036).

• Query Rewrite Component : the query rewrite component defines the RIF[18]

rule for transforming a simple triple pattern that tests a topological relation between
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two features into an equivalent query involving concrete geometries and topological

query functions.



Chapter 3

State-of-Art

A large amount of the triples have been published that follow the rules of linked data

which means that as a consequence thousands of knowledge graphs have been published

on the Web. According to statistic from [27] LODstats project, over 88 billion Linked

Data triples are distributed over 9960 knowledge graphs. However, how to consume such

massive amount data has become a real challenge for the industry. This chapter is going

to introduce several typical knowledge graph interfaces from a Linked Data Fragment

(LDF) perspective, present state-of-art research achievements in this area to date and

then introduce the different approaches for query execution.

3.1 RDF-based Web Interfaces

3.1.1 Linked Data Fragments(LDF)

Verborgh et al.[60] proposed a uniform view for analyzing existing knowledge graph web

interfaces. They found that all kinds of knowledge web interface can respond to a request

with a specific fragment of a knowledge graph. For example, a data dump response

includes all the triples of a partial view of the knowledge graph. In contrast, SPARQL

endpoints only responds with all the result triples of a query. Hence, they propose a

general definition of these responses as Linked Data Fragment. Informally as they state

15
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in their paper, An LDF of a RDF based knowledge is a resource consisting of a specific

subset of a RDF triples of this graph, potentially combined with metadata and hypermedia

controls to retrieve related LDFs. They also give a formal definition of the LDF but we

would not discuss it in this dissertation for simplicity. In general, a LDF usually consists

of the following three parts:

• Data: triples from a certain knowledge graph.

• Metadata: informative data is used to describe the data triples, e.g. triples count

in LDF

• Controls: links and forms are used to retrieve other related LDFs

LDF with different selection granularity can represent different mechanisms of distributing

query workload between the client and server. As shown in the Figure 3.1, the two

extremes on the LDF spectrum are the data dump on one end and SPARQL results on

the other end. Data dump does not require server to answer specific request as the client

would download all the triples and consume them locally. In reverse, the SPARQL result

Figure 3.1: LDF spectrum[60]

means the server has to finish executing the SPARQL posted by the user based on their

needs and then responds only with the results specific to that query specification. Both

extremes of LDF have their deficiencies, as it is very hard to strike a balance between the

client cost and server cost. However, some research has explored between the 2 extremes

of the LDF spectrum. A couple of works has shown that it is feasible to finding a fragment

type that can be used efficiently, whilst also having a reliable web interface. These works

are introduced in the following subsections.
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3.1.2 Formal Framework For Comparing LDF

Hartig et al.[38] proposed a Linked Data Fragment Machine (LDFM) which is a classical

Turing machine provides a formalized way to model different LDF scenarios. LDFM

model the server and client capabilities By proving formal results based on LDFMs, this

model finally proved can be used to give a formal analysis between several metrics such as

the number of requests sent to the server, and the bandwidth of communication between

client and server.

3.1.3 Data Dump

Data dump, also referred as file-based datasets is an LDF that consists of all the triples

of a dataset. Most of the times data dumps would be compress in an archive and then

published on the web at a single URL. Consequently, a data dump does not require very

complex control compared to the other LDF. Especially, in the metadata set of the data

dump, it usually contains the data like release data or license. Although data dump is

very easy to publish, it is very hard for user to make sure the dataset is always up-to-dated

and monitoring the alteration of datasets requires good technical background. So, it is

impractical for most of use cases.

3.1.4 SPARQL endpoints

SPARQL endpoint enables the client to write very specific SPARQL queries against the

published dataset. Server would execute the query upon receiving the request and send

back the result via HTTP request. Benefits of the SPARQL endpoint is that it requires

very low client cost and barely no requirements for control and metadata as LDF. How-

ever, SPARQL endpoint suffers from two-fold availability problem. as 1) majority of

the datasets are not published in the SPARQL endpoint 2) existing SPARQL endpoints

suffers from frequent downtime.
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3.1.5 Triple Pattern Fragment

Triple pattern fragments were designed to leverage the most basic building block of the

SPARQL query - triple patterns to redistribute the query workload between the client

and server. The client can only ask server for triple patterns. Server would then find out

all the triples that match the given triple pattern and send back a triple pattern fragment.

A triple pattern fragment is one kind of Linked Data Fragment and is made up of the

triples data, metadata, and controls. Normally, a TPF consists of a small number of

triples approximately, 100 triples and having a hypermedia control pointing to the next

TPF. The more complex components of query processing like FILTER, ORDER BY and

so on are conducted by the client in an efficient manner locally. The TPF requires very

small server processing power as the evaluation work is done by the client which in turn

improves the server availability. However, this benefit comes with the price that it takes

more time to finish the query than a bespoke SPARQL endpoint.

In this situation, the client plays a very important role in improving the query efficiency.

Verborgh et al.[60] proposed a greedy strategy that made a better use of metadata to

address the client-side query planning problem. During the evaluation of the SPARQL

Basic Group Pattern (BGP), the client would first split the BGP into several connect-

independent sub-BGPs and evaluate these BGPs recursively. For each of the sub-BGPs,

the client would start downloading the triples for the smallest triple pattern based on the

count estimate of triples in the metadata. Then the evaluation results are bound to the

next triple pattern and repeat the same process until the entire BGP is evaluated. A

more detailed query execution work flow is introduced in the section 4.1.2.

3.1.6 Binding-Restricted Triple pattern Fragments

brTPF slightly extends the TPF interface that allows the client attach some intermediate

results along with the triple pattern request. Response of such request is expected to
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contain the triples that can potentially contribute to a join with the intermediate result

in addition to merely matching the given triple pattern. As a result, It becomes possible

to distribute the execution of joins between client and server by using the well-known

bind join strategy by this means, HTTP request and response time would be reduced

significantly.

Joachim et al. [59] conducted a research by extending the TPF server to support the

literal substring matching and investigating the impacts of different implementation in-

cluding elastic search and case-insensitive fm-index. Their research reveals that, this

approach allows the filter-based sparql generate a faster response with significantly in-

crease the server load, and such substring matching feature can be used to support other

filters like complete regular expressions and range queries.

3.2 Query Execution Approach

Server-side Query Processing: Traditional query execution was completely conducted

by the server. Server is responsible for hosting the datasets, parsing and executing the

query. Client only responsible for writing the queries based on their needs and send it

to the sever. Several efforts were devoted into optimizing the sever execution process.

Markus et al.[57] proposed an approach by using the heuristic to predict the optimal join

path. In addition to this, Buil-Aranda et al.[20] use the estimated query selectivity to

rewrite the query and thus produce a less complex query. However, server-side query

execution has two drawbacks that client may not aware what kind of query the server is

able to perform, as not all the features in the SPARQL standard may supported by the

server.

Client-side Query Processing: As the most well know research in this area, Hartig

et al.[36] proposed several for the client side query processing. Especially the linked-
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traversal-based querying. It would dereference the URLs inside the SPARQL queries and

then traverse the links to fetching more relevant information. Drawback of this approach

is very obvious that it takes very long time to finish the query and not all queries can be

resolved in general.

Hybrid-Query Processing: The general idea of hybrid-query processing is that server

and client both resolve part of the query and thus reduce the server cost and speed up

the query execution in comparison with the client query execution approach. TPF and

binding-restricted TPF have adopted such approach. In addition to this , Verborgh et

al.[60] proposed an optimized strategy in the TPF client query execution by exploiting a

local optimal sequence to evaluate the BGP.

Federated Query Processing: Federated query processing acquire the selection of

proper server that is necessary to resolve the query and at the same time, ensure the

network traffic and response time is minimized.



Chapter 4

Design

This chapter aims to give an overall view of the design work undertaken for the research

dissertation. The first section would briefly introduce some technical details about the

TPF code base, including the server API definition and the client side query execution

workflow. Then, the next section would present the software architecture of TPF client

in detail by using UML diagrams. After that, the next section would focus on illustrat-

ing what features should be included this extension and which part of the current TPF

client should be altered to support such features. Finally, the last section would list the

requirements for implementing the extension.

4.1 TPF code base

To begin with, official website of Linked Data Fragment provides various versions of Triple

Pattern Fragment implementation by different programming language. We choose the

most recent JavaScript release as the startup code base for two considerations, 1) Running

JavaScript in the browser environment is compatible for all kinds of mobile device which

has significant industrial potential if efficient geospatial calculation is enabled in TPF

client. 2) Communication between TPF server and client would produce massive network

load whilst the availability was the major consideration for the TPF server design. Node.js

21
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was specially designed for the purpose of optimizing throughput and scalability in Web

applications with many I/O operations which, under this scenario, is the most appropriate

solution for given requirement.

4.1.1 Definition of TPF web interface

As explained in the section 3.1.1, LDF provides a uniform way to analyse the existing

RDF web interfaces which also enables people to develop new RDF web interfaces by

combining different characteristics of existing RDF web interface. TPF web interface is

one such new web interface aimed at enabling live querying of RDF knowledge graph at

the minimal cost of the server resources. To mitigate the availability issue, TPF web

interface only offers the triple-pattern-based access to RDF knowledge graphs. This is

based on the consideration that triple pattern is the most basic building block of SPARQL

query and thus avoid the client downloading the entire knowledge graph. In addition to

this, TPF web interface uses the hypermedia control data to facilitate the response. With

the help of hypermedia control, a client can identify which TPF interface they are talking

to and how to access the TPFs. In general, a TPF web interface should consist of three

properties:

• data: all triples of a knowledge graph that match a given triple pattern;

• metadata: an estimate of the number of triples that match the given triple pattern;

• controls: a hypermedia form that allows clients to retrieve any TPF of the same

knowledge graph.

Figure 4.1 shows an example TPF interface. Normally a TPF server should divide each

fragment into reasonably sized pages to avoid clients accidentally download very large

chunks. In this case, TPF server serves 100 triples per page. In addition, this page also

displayed the metadata at the very beginning of the triple list to indicating how many

triples are there in the entire TPF. In this dissertation, we developed an experimental
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Figure 4.1: An example TPF server
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TPF interface to host Geographica datasets for later evaluation purposes. Detailed steps

involving in how to setup a such TPF server are introduced in the next chapter and for

the next section, we would briefly introduce the general workflow of SPARQL execution

in TPF client.

4.1.2 General work-flow

To start the query execution on the client side, TPF client must be given the URI of

an arbitrary page of some fragment of the TPF collection. To this end, we use the URI

http://fragments.dbpedia.org/2016-04/en and the example query as show in figure 4.2 to

elaborate the query process. This query is constructed to find out all the desserts made

by plants from DBpedia 2016-04 knowledge graph. The live demo is available on the

Figure 4.2: Running example of TPF client work-flow[7]

website of Linked Data Fragment. This query is a simple query that consists of only one

BGP group but is classical to describe the core idea of TPF-based query execution. To

begin with, the query clause should be passed to the client either as a string argument

or in a separate file. After the TPF client receives the query string, it would first send

the request to the server to obtain the hypermedia control of the TPF page. Hypermedia

control in TPF page includes all the necessary information to inform the client if the

server supports the triple pattern lookup. Then client would then start to evaluate the

BGP group based on server response. The TPF client uses a divide-and-conquer strategy

to evaluate the BGP group. It first splits the entire BGPs to several connect sub-BGPs

and ensures each sub-BGP is independent with each other, so that the evaluation of each
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sub-BGPs can be executed in parallel. In the given example. It has only one connected

sub-BGP. Next, for each of the independent sub-BGP, TPF client would find a solution

mapping based on the estimated triples count metadata of each triple pattern and then

the triple pattern with the minimal count would be resolved first. This approach can help

reduce the HTTP request number since each match triple would cause a solution map-

ping. In the given example, the first triple pattern has around 425 matching triples, the

second triple pattern has around 12459 triples, the third triple pattern has around 53,342

triples. According to the greedy strategy, TPF client would first send first triple pattern

”?dessert dbpedia-owl:type <http://dbpedia.org/resource/Dessert>” to the server, that

would result in 425 matching triples and then result values would be bound to the second

triple pattern. In the next step, TPF client would map the solution of the chosen triple

pattern to the rest of the triple patterns until it yields a complete solution.

In contrast to the TPF client, TPF server is ”fixed” in terms of its functionality which

simply response the triples that matching the given triple pattern and it is up to the

client to finish the complex feature of the query. For this reason, it is fair to analysis

the functional architecture of the TPF client to find out how the other query features

are supported in this client and finally target the place where the TPF client should be

modified to support GeoPSRAQL.

4.1.3 Architecture of TPF client

Figure 4.3 is the package diagram of the TPF client. It has two root packages that

called ”bin” and ”lib”. The ”bin” package is used to store JavaScript files that provide

a high level encapsulation for end users. In this case, ldf-client is the entry point of

the TPF client. In contrast, ”lib” package stores JavaScript files that served as under-

layer libraries. There are six sub-packages in this ”lib” package, namely ”sparql”, ”util”,

”Triple-Pattern-Fragments”, ”browser”, ”extractor” and ”writers”. ”sparql” package is



Draft of 12:19 pm, Monday, August 28, 2017 26

responsible for creating iterators for different types of the SPARQL queries. The ”Triple-

Pattern-Fragments” package has the files that dealing with triple pattern fragment related

tasks like communicating with TPF server or evaluating the BGP. ”extractor” package

contains files that are used to extract metadata and hypermedia control information from

HTTP requests. ”Writers” stores various kinds of writer files that translate the SPARQL

query result into certain format. ”util” package is used to store some useful utility tools.

”browser” packages contains the files that cope with browser environment. In a more

detailed perspective, Figure 4.4 presents the class diagram of the TPF client. In this

Figure 4.3: Package diagram of TPF client

diagram, three core classes are ”SparqlIterator”, ”ldf-client” and ”SparqlResultWriter”

constitute the skeleton of SPARQL query processing. ”ldf-client” accepts the input argu-

ments and then make decisions based on these arguments. After this process, ”ldf-client”

would pass the query object along with the configuration file to the ”SparqlIterator”

class which would creating the cascading iterators to evaluate the query. Notably, ”Spar-

qlResultWriter” is a special iterator whose source is the ”SparqlIterator”. As a result,

”SparqlResultWriter” can directly read the item from ”SparqlIterator” and generate the

result in user specified output format immediately. Rest of the classes are built around
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these three core class with different purpose. But, generally they can be divided into two

groups, classes that inherit from the core classes and classes that served as utility tools.

The first group of classes leverages the benefits of object oriented programming that ex-

tends the ”SparqlIterator” or ”SparqlResultWriter” to satisfy different query needs. The

second group of classes are aimed to assist this process. For example, the ”HttpClient”

class provides the HTTP service and the Logger provides the log service.

Figure 4.4: Class diagram of TPF client

4.2 Design of GeoSPARQL extension

As described in the section 2.5. The entire GeoSPARQL standard includes six compo-

nents. However, some of them is optional for the vendor selection. So, we would go

through these six component to find out a minimal features set to support GeoSPARQL

in TPF client.
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First component is the core component which defines an ontology for representing spatial

objects. Which is not a concern in this dissertation. The second component is the topol-

ogy vocabulary component that defines the properties for asserting and querying topolog-

ical relations between spatial objects. Using spatial relationship property for querying is

supported by TPF client if such relationship has already been built between the spatial

objects in the dataset. Nevertheless, if such triples are not exists in the dataset, this

requires the triplestore rewrite the query and generate the result accordingly. We decide

to not support this feature as well as the query rewrite component in our extension which

would be explained in the next section. Next, For the Geometry Components, it defines

the geometry serialization as well as well as non-topological spatial analysis functions

which are necessary for the new extension. The next component is the geometry topolog-

ical function that defines several topological functions that serves as the filter functions,

which also should be included. For the last components, RDFS entailment component is

also not in the scope of this dissertation.

To conclude, the minimal set of features required to provide GeoSPARQL support in

TPF client includes:

• Converting geometries between different serialization format.

• Provide support for spatial query functions that served as filter functions.

• Provide support for non-topological spatial analysis functions.

4.2.1 Properties functions vs filter functions

As described in previous section. GeoPSARQL provides two approaches to represent the

spatial relationships in the query. The first one is using the spatial relation property in

a triple pattern. For example, ?g1 geo:within ?g2. Another approach is using the filter

functions to find out the eligible geometry pairs. Although GeoSPARQL describes the

rule on how to rewrite the query to replace the spatial relations with filter function. This
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feature is not required to be implemented to comply the standard. This rule is call the

computed properties or the properties function.

In this dissertation, we decided not yet to support the properties function for two reasons.

First of all, triplestores can not guarantee the correctness as one may assert ?x geo:within

?y whilst the two respective geometries are in fact disjoint with each other. Triplestore

may not be able to refute this statement and thus lead to the conflict. Apart from this, we

aimed at exploring the efficient approach to support geospatial calculation on the client to

reduce server load. Enable filter function on the client can actually make client in control

of the entire process.

4.2.2 Solutions

This section would briefly introduce the solutions for supporting features proposed in the

section 4.2 in the TPF client. Implementation details would be introduced in chapter 5.

First of all, supporting geometry serialization format conversion is widely supported by

many public available JavaScript packages. we would seek a such package to support this

feature.

Next, for the spatial query filter functions, these functions can be viewed as a extra

subset of filter functions in the SPARQL standard. So this feature can be supported

by extending the filter function sets in the TPF client. In TPF client, filter functions

are stored as ”operator-function” pair. When evaluate the ”FILTER” clause, TPF client

would pass the filter function signature to SparqlExpressionEvalustor to match the ”oper-

ator” list, if such filter function exist in the list, it would return an function. This function

would later be passed to the previous iterator and override the prototype filter functions.

Then the iterator can filter the result based on this filter function.
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Last but not the least, support the non-topological functions is slightly more complex

than support filter functions as the return type of non-topological functions is not fixed

and usually, it occurs either in ”SELECT”, ”FILTER” or in the ”BIND” clause. How-

ever, ”BIND” is not supported in the current version of TPF client. So we would sup-

port it in the ”SELECT” and ”FILTER” clause. This can be achieved by extending

”SparqlExpressionEvalustor.js” class and using ”SparqlExpressionEvaluator” to extend

the ”SparqlIterator” class.

4.2.3 Requirements

Before introducing the formal content of implementation requirements, two fundamental

concepts are introduced in advance to help build a better understanding. Section 4.1.1

introduces the coordinate system which is a basis for different geometries to establish the

spatial connection. Next, section 4.1.2 introduces DE-9IM which is a topological model

that used to describe spatial relationships between two geometries. Afterwards, a list of

formal requirements definition was given at the end of the chapter.

4.2.4 Coordinate Reference Systems

Every geometry must be always georeferenced at a well-defined coordinate system, such

system assists to provide a precise georeferencing location and meanwhile serve as a com-

mon bias for different geometries to establish a relationship based on their coordinates. In

that respect, metadata should be maintained regarding spatial reference systems (SRS)

or coordinate reference systems (CRS) with known parameterizations, which are widely

adopted and allow transformations from one to another. Such systems define a set of

rules that specify how coordinates are actually assigned to points. In general, a spatial

reference system has four components:

• A coordinate system that describe a location relative to a center point.
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• An ellipsoid, which defines an approximation for the centre and shape of the Earth

as the Earth is not a perfect sphere.

• A datum, which defines the position of an ellipsoid relative to the centre of the

Earth.

• A projection, that transforms positions from the curved surface of the Earth onto a

plane.

In this dissertation, we adopted most widely used coordinate reference systems defined by

the European Petroleum Survey Group which is short for ”EPSG”. For the geometries or

features that represented in other coordinate reference system, we won’t transform them

into EPSG system but instead we would drop it for the time being.

4.2.5 DE-9IM

GeoSPARQL uses the DE-9IM to describe the spatial predicates. DE-9IM is the abbre-

viation of Dimensionally Extended nine-Intersection Model. It is a topological model as

well as a standard that used to describe the spatial relationship between the geometries.

In the area of computer spatial analysis, geometries could be viewed as a combination

of three parts: interior, boundary and exterior. Equivalently, the spatial relationship be-

tween two geometries thus could be described as a set of relations across these three parts

respectively which result in a intersection matrix as shown in the Form 4.5. where dim is

Figure 4.5: Intersection Matrix [10]

the maximum number of dimensions of the intersection of the interior (I), boundary (B),

and exterior (E) of geometries a and b.
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In this matrix, dimension of an empty sets is denoted as -1 or FALSE, The dimension

of non-empty sets are denoted with the maximum number of dimensions of the intersec-

tion. specifically, 0 for points, 1 for lines, 2 for areas. Then, the domain of the model

is 0,1,2,F. Consequently, this intersection matrix theoretically can describe 512 possible

two-dimension spatial relationships.

Given the following example, a and b are two overlapping polygonal geometries which

is shown in Figure 4.6 Reading in the left-to-right and top-to-bottom sequence, the DE-

Figure 4.6: A motivating DE-9IM example [2]

9IM(a,b) string code is ’212101212’. Normally, for output checking or pattern analysis,

a matrix value or a string code can be checked by a ”mask” which is a desired output

value with optional asterisk symbols as wildcards ”*” indicating output positions that

the designer does not care about. Hence, the domain of mask is 0,1,2,F,*, or T,F,* for

the Boolean form.
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For English speakers, there are about 10 relations that have a name that reflects their

semantics for example intersects. When testing two geometries against a scheme, the

result of this test is a spatial predicate named by the scheme. In the GeoSPARQL there

are eight spatial predicates defined in the Simple Features Relation Family. They all

described using DE-9IM . Following section would give a view of their requirements

4.3 Requirements Class in GeoSPARQL

Recently released GeoSPARQL standard have defined a complete set of requirements class

as well as the corresponding conformance class, as illustrate in the previous section, our

implementation would focus on supporting topology geometry component, the following

section would describe the formal requirements in detail.

4.3.1 Requirements for Spatial Query Filter Functions

As stated in clause-req 22, ”Implementations shall support geof:sfEquals, geof:sfDisjoint,

geof:sfIntersects, geof:sfTouches, geof:sfCrosses, geof:sfWithin, geof:sfContains, geof:sfOverlaps

as SPARQL extension functions, consistent with their corresponding DE-9IM intersection

patterns, as defined by Simple Features (ISO 19125-1).”

Filter functions defined for the Simple Features relation family, along with their DE-9IM

intersection patterns, are shown in Table 4.1. Each function would take two arguments

namely geom1 and geom2 of the geometry literal serialization type specified by serial-

ization and version. Each function returns an xsd:boolean value of true if the specified

relation exists between geom1 and geom2 and returns false otherwise. In each case, the

spatial reference system of geom1 is used for spatial calculations.
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Relation
Name

Relation URI Domain/Range Applies To
Geometry
Types

DE-9IM Inter-
section Pattern

equals geo:sfEquals geo:SpatialObject All (TFFFTFFFT)
disjoint geo:sfDisjoint geo:SpatialObject All (FF*FF****)
intersects geo:sfIntersects geo:SpatialObject All (T********

*T*******
***T*****
****T****)

touches geo:sfTouches geo:SpatialObject All except
P/P

(FT*******
F**T*****
F***T****)

within geo:sfWithin geo:SpatialObject All (T*F**F***)
contains geo:sfContains geo:SpatialObject All (T*****FF*)
overlaps geo:sfOverlaps geo:SpatialObject A/A, P/P,

L/L
(T*T***T**)
for A/A, P/P;
(1*T***T**)
for L/L

crosses geo:sfCrosses geo:SpatialObject P/L, P/A,
L/A, L/L

(T*T***T**)
for P/L,
P/A, L/A;
(0********) for
L/L

Table 4.1: Simple Features Topological Relations [50]



Draft of 12:19 pm, Monday, August 28, 2017 35

4.3.2 Requirements for Non-topological Query Functions

As stated in the clause-Req 19, ”Implementations shall support geof:distance, geof:buffer,

geof:convexHull, geof:intersection, geof:union, geof:difference, geof:symDifference, geof:envelope

and geof:boundary as SPARQL extension functions, consistent with the definitions of the

corresponding functions (distance, buffer, convexHull, intersection, difference, symDiffer-

ence, envelope and boundary respectively) in Simple Features (ISO 19125-1).”

Implementation of the non-topological should be able to handle the following error raised

by following invalid argument value :

• An argument of an unexpected type

• An invalid geometry literal value

• A geometry literal from a spatial reference system that is incompatible with the

spatial reference system used for calculations

• An invalid units URI

Worth a note that, extension mechanism of SPARQL allows returning a value instead of

raising an error.

As stated in the SPARQL specification- ”SPARQL language extensions may provide ad-

ditional associations between operators and operator functions; this amounts to adding

rows to the table above. No additional operator may yield a result that replaces any

result other than a type error in the semantics defined above. The consequence of this

rule is that SPARQL extensions will produce at least the same solutions as an unextended

implementation, and may, for some queries, produce more solutions.”

This extension mechanism was designed to enable the compatibility between different

geometry serializations. Consequently, stop the query execution exit when encounter
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multiple geometry datatypes.

The last thing that needs attention is that some non-topological query functions use

a unit of measure URI as an input argument. Some standard units of measure URIs are

defined by OGC under the http://www.opengis.net/def/uom/OGC/1.0/ namespace.

Table 4.2 shows the non-topological query function signature as well as its description.



Draft of 12:19 pm, Monday, August 28, 2017 37

Function Input Return Description
geof:distance geom1:

ogc:geomLiteral,
geom2:
ogc:geomLiteral,
units:
xsd:anyURI

xsd:double Returns the shortest distance in
units between any two Points in
the two geometric objects as cal-
culated in the spatial reference sys-
tem of geom1.

geof:buffer geom:
ogc:geomLiteral,
radius:
xsd:double,
units:
xsd:anyURI

ogc:geomLiteral This function returns a geometric
object that represents all Points
whose distance from geom1 is less
than or equal to the radius mea-
sured in units. Calculations are
in the spatial reference system of
geom1.

geof:convexHull geom1:
ogc:geomLiteral

ogc:geomLiteral This function returns a geometric
object that represents all Points in
the convex hull of geom1. Calcu-
lations are in the spatial reference
system of geom1.

geof:intersection geom1:
ogc:geomLiteral,
geom2:
ogc:geomLiteral

ogc:geomLiteral This function returns a geometric
object that represents all Points
in the intersection of geom1 with
geom2. Calculations are in the
spatial reference system of geom1.

geof:union geom1:
ogc:geomLiteral,
geom2:
ogc:geomLiteral,

ogc:geomLiteral This function returns a geometric
object that represents all Points in
the union of geom1 with geom2.
Calculations are in the spatial ref-
erence system of geom1.

geof:difference geom1:
ogc:geomLiteral,
geom2:
ogc:geomLiteral,

ogc:geomLiteral This function returns a geometric
object that represents all Points in
the set difference of geom1 with
geom2. Calculations are in the
spatial reference system of geom1.

geof:symDifference geom1:
ogc:geomLiteral,
geom2:
ogc:geomLiteral,

ogc:geomLiteral This function returns a geometric
object that represents all Points
in the set symmetric difference of
geom1 with geom2. Calculations
are in the spatial reference system
of geom1.

geof:envelope geom1:
ogc:geomLiteral

ogc:geomLiteral This function returns the mini-
mum bounding box of geom1. Cal-
culations are in the spatial refer-
ence system of geom1.

geof:boundary geom1:
ogc:geomLiteral

ogc:geomLiteral This function returns the closure
of the boundary of geom1. Calcu-
lations are in the spatial reference
system of geom1.

Table 4.2: Non-topological functions[50]



Chapter 5

Implementation

This chapter leverages two motivating examples to illustrate the implementation details

of both spatial predicates filter functions and non-topological functions.

5.1 Technology Stack

The TPF client was implemented using Node.JS and we extended the implementation of

TPF version 2.2.2 [46] support GeoSPARQL. During this process, we adopted two external

packages to assist our implementation; one for converting WKT into GeoJSON[8], and one

for manipulating GeoJSON[32] object[9]. As stated in the previous chapter, the extended

TPF client is targeted to run in a browser environment. So, we adopted browserify[12]

to compress the entire TPF client into a single JavaScript file for import in an HTML

document.

5.2 Establishment of the TPF server

Establishment of the TPF server was not very complex with the assistant of a server

configuration file. The path of the configuration file should be passed as an argument

in the server startup command. If such argument is missing, the program would instead

38
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load a default configuration file to initialize the server. A typical look of the server con-

figuration file is shown in the Figure 5.1. The configuration file is written in JSON which

Figure 5.1: example configuration file

is a lightweight data-interchange format. The example configuration file includes two at-

tributes, the first one ”title” is the name of TPF server and another one ”datasources”

is the relevant information set that used to specify datasource. TPF server supports five

kinds of datasource respectively are, HDT files, N-Triples documents, Turtle documents,

JSON-LD documents and SPARQL endpoints (with URL settings). Rest of the server

configuration features like how to set a reverse proxy, can be found on its official website.

5.3 Implementation of Filter functions

To achieve a better understanding of the implementation, we give a motivating GeoSPARQL

example with a filter function. As shown in the Figure 5.2, This query returns all the

counties that touches each other. After receiving the query string, ”ldf-client.js” would

first parse the query string into a JavaScript object using ”sparqlparser.js”. Parsed query

object can be found in the appendix. Then, the parsed query object would be passed to

the ”SparqlIterator” to create a cascading iterator chain, which is shown is the Figure

5.3. In this chain, each iterator is the source iterator of its upper iterator, for example,
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Figure 5.2: An example of GeoSPARQL query [23]

Figure 5.3: iterator chain of example query
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the GraphIterator is the source iterator of QueryIterator and QueryIterator is the source

iterator of SparqlResultWriter. Items are passed along this chain. ”FILTER” is a special

iterator in TPF client, it not just reads the item from one iterator and pass it to the next

iterator, but, it would invoke the prototype filter function in the iterator and apply given

filter function to all its items. The related code snippet is shown in the Figure 5.4. In

Figure 5.4: code snippet of filter iterator

this code, the returned source variable has a type of ”AsyncIterator” and it invoked a

prototype filter function with an anonymous function as argument. In this anonymous

function, ”evaluate()” is the actual filter function that take effect and it is returned by

”SparqlExpressionEvaluator”. The essential of ”SparqlExpressionEvaluator” is a filter

function object list, it returns the function object be matching given filter function sig-

nature which is also referred as ”operator” in the code.

In this case, TPF client would first evaluate the BGP with first six triple pattern and then

pass the result to the iterator with filter function ”c1l==c2l” and so on so forth until the

reach the filter with ”geof:sfTouches”.

The implementation of ”geof:sfTouches” would strictly follow the GeSPARQL standard

and so as the rest of spatial predicates. In particularly, the implementation of these

handler functions should take good care of the coordinating referencing system in the

Geometry String as this may cause conflict or generate an incorrect result. For the time

being, current implementation only accepts the geometry that avail EPSG standard. The
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rest representation would result in a UnsupportedCoordinateSystem exception. The fig-

ure 5.6 shows the final result of executing this example. A partial code snippet is shown

in Figure 5.5 Notably, ”ReordingGraphPatternIterator” would reorder the evaluation se-

Figure 5.5: partial code snippet of geof:sfTouches

quence of BGP based on utilize the greedy strategy and then create a sub-iterator chain

inside this iterator. This design would not affect our implementation, but it would pro-

vide useful insight for us to propose an optimal query pattern. But for the current state.

We would focus on extending the SparqlExpressionEvaluator which is served as the key

component in the filter component.

Figure 5.6: Partial result of finding touching Irish counties

5.4 Implementation of Non-topological Functions

Implementing the non-topological function generally follows the same approach as de-

scribed in the previous section. However, the difference is that filter function would
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return a boolean value to indicate if the condition was satisfied. In contrast, the Non-

topological function would return different kinds of literals as a result. For example, the

”geof:buffer” returns the WKT string while the ”geof:distance” would return numerical

literal. This problem can be resolved by return the entire result object and evaluating

literal types at the binding process. The core code snippet is shown in the Figure 5.8.

Figure 5.7: Find the cities around Athens

To demonstrate the implementation of non-topological functions, we pick up a running

example in Figure 5.7 that utilize the ”geof:distance” function to find all the cites whose

distance between Athens is less than 5000 metres and the running result is shown in the

Figure 5.9
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Figure 5.8: handle different literal types

Figure 5.9: Partial result of Finding cities around Athens



Chapter 6

Experiment

This chapter focuses on testing our GeoSPARQL extension of the TPF client. We adopted

the Geographica benchmark to drive the implementation process and finally produce a

complete result set for the entire extension. The second part focuses on using some

performance analyze tools to extract the characteristics of the query process on TPF

client and hence present insights gathered from this process and accordingly make some

recommendations for a user of the extended TPF client.

6.1 Evaluation of Implementation

As few existing RDF benchmarks are related to the processing of geospatial data, there is

no benchmark designed for the purpose of evaluating triple pattern fragments. Therefore

we decided instead to use the Geographica[30] benchmark as the basis for undertaking an

evaluation which is the most up-to-date benchmark developed for evaluating the geospatial

RDF triplestore. All of the benchmark datasets and queries are publicly available.

6.1.1 Geographica Benchmark

Geographica is made up of two workloads along with their own datasets and queries,

namely the real-word workload and the synthetic workload. Real-world workload uses

45
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the linked datasets that publicly available on the web which covered a large range of

geometry types. In addition to this, real-world workload follows the approach adopted

by Jackpine[54] that defines a micro benchmark as well as a macro benchmark. Micro

benchmark is used to test the primitive spatial functions while macro benchmark is used to

test the performance of RDF triplestore in some real-world scenarios. As in the synthetic

workload, producer of Geographica generated synthetic datasets of various size to simulate

a controlled environment so that triplestores can be evaluated by queries with different

thematic and spatial selectivity. Geographica did not capture the entire GeoSPARQL

standard but, is sufficient enough to test our implementation and gives indication of its

performance against the GeoSPARQL-enabled triplestore for future exploration.

6.1.2 Datasets

real-world workload datasets: Real-world workload datasets includes six publicly

available datasets related to spatial information of Greece. Respectively, LinkedGeoData(LGD)[1],

Greek Administrative Geography(GAG)[4], CORINE Land Use/Land Cover(CLC)[3] dataset

for Greece, wild fire hotspots datasets produced by the National Observatory of Athens

(NOA), partial datasets of DBpedia[15] as well as GeoNames referring to Greece. DB-

pedia and GeoNames are very significant parts of the Linked Open Data Cloud whose

geospatial information are expressed by points. With regards to line strings, LGD dataset

offers richer geospatial information from OpenStreetMap[5] that describes the road net-

work and rivers of Greece. GAG and CLC dataset provided complex polygons. The CLC

dataset is published by the European Environmental Agency which contains the data of

entire European land cover. Finally, hotspots dataset is made of polygons representing

wild fire hotspots. Some important characteristics of the datasets used can be found in

Table 6.1

synthetic workload datasets: synthetic datasets of arbitrary size in Geographica was
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Datasets Size Triples Number of
Points

Number of
Lines

Number of
Polygons

GAG 33MB 4K - - 325
CLC 401MB 630K - - 45K
LGD (only roads) 29MB 150K - 12K -
GeoNames 45MB 400K 22K - -
DBPedia 89MB 430K 8K - -
Hotspots 90MB 450K - - 37K

Table 6.1: Real-world workload Dataset characteristics in Geographica

generated by a special generator to simulates four types of geographical features which

are: states in a country, land ownership, roads and points of interest. Each of the dataset

includes a minimal ontology that is built on top of the GeoSPARQL ontology and vo-

cabulary. Synthetic workload enables the queries of different thematic and selectivity by

following two designs. To ensure the thematic of each generated query, every feature is

assigned with a number that represents one kind of thematic tags. Each thematic tag

consists of a key-value pair of strings. As every feature is tagged with key 1, every other

feature with key 2, every fourth feature with key 4 and so on so forth,until up to key 2k

where k is a positive integer. For the selectivity, each land ownership is represented by

a hexagon and the entire spatial extent was constituted by n ∗ n such hexagons. Each

land ownership hexagon is the size of nine states which also has a shape of hexagon. The

generated road dataset consists of n features with sloping line geometries. Half of the line

geometries are roughly horizontal and the rest are roughly vertical. Each line consists of

n/2 + 1 line segments. Generated point geometries are uniformly placed across the lines.

The cardinality of the point of interest geometries is thus the power of n.

Obviously, size of the generated dataset is decided by the value of n and k where n

is the number used for defining the cardinalities of the generated geometries and k is

the number used for defining the cardinalities of the generated tag values. Geograph-

ica produced a recommended dataset by setting n=512 and k=9 and proposed a list of

corresponding queries. Characteristics of this dataset is shown in Table 6.2
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Size Triples Number of
land own-
ership

Number of
states

Number of
roads

Number of
point of in-
terests

745 MB 3880224 262144 28900 512 262144

Table 6.2: Synthetic workload Dataset characteristics in Geographica

6.1.3 Benchmark Queries

Real-world workload queries: Queries in micro benchmark was designed to test the

primitive spatial components by using simple SPARQL queries. It first tests the simple

spatial selection queries and then tests the more complex spatial join operations. Apart

from these, micro benchmark also test the non-topological functions as well as some ag-

gregation functions. Macro benchmark evaluates the performance of given RDF store in

certain application scenarios. All the descriptions and expressed features of the real-world

queries are summarized in the Table 6.4 and Table 6.5

Synthetic workload queries: The synthetic workload queries are instantiated from

two query templates presented in Figure 6.1 which performs spatial selection and spatial

join respectively. Table 6.3 lists the queries generated for this purpose.

Figure 6.1: (a) spatial selections, and (b) spatial joins.

6.1.4 Supplementary Content

Geographica benchmark covers most relevant content regarding GeoSPARQL, how- ever

some items remain unclear but have the same importance. First concern is that, Geo-
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Spatial Selection
Query Operation Tag Percentage of Given Rectangle
Synthetic Selection Intersects 1 1.0 sfIntersects 1 100%
Synthetic Selection Intersects 512 1.0 sfIntersects 512 100%
Synthetic Selection Intersects 1 0.75 sfIntersects 1 75%
Synthetic Selection Intersects 512 0.75 sfIntersects 512 75%
Synthetic Selection Intersects 1 0.5 sfIntersects 1 50%
Synthetic Selection Intersects 512 0.5 sfIntersects 512 50%
Synthetic Selection Intersects 1 0.25 sfIntersects 1 25%
Synthetic Selection Intersects 512 0.25 sfIntersects 512 25%
Synthetic Selection Intersects 1 0.1 sfIntersects 1 10%
Synthetic Selection Intersects 512 0.1 sfIntersects 512 10%
Synthetic Selection Intersects 1 0.001 sfIntersects 1 0.1%
Synthetic Selection Intersects 512 0.001 sfIntersects 512 0.1%

Synthetic Selection Within 1 1.0 sfWithin 1 100%
Synthetic Selection Within 512 1.0 sfWithin 512 100%
Synthetic Selection Within 1 0.75 sfWithin 1 75%
Synthetic Selection Within 512 0.75 sfWithin 512 75%
Synthetic Selection Within 1 0.5 sfWithin 1 50%
Synthetic Selection Within 512 0.5 sfWithin 512 50%
Synthetic Selection Within 1 0.25 sfWithin 1 25%
Synthetic Selection Within 512 0.25 sfWithin 512 25%
Synthetic Selection Intersects 1 0.1 sfWithin 1 10%
Synthetic Selection Within 512 0.1 sfWithin 512 10%
Synthetic Selection Within 1 0.001 sfWithin 1 0.1%
Synthetic Selection Within 512 0.001 sfWithin 512 0.1%

Spatial Join
Query Operation Tag 1 Tag 2
Synthetic Join Intersects 1 1 sfWithin 1 1
Synthetic Join Intersects 1 512 sfWithin 1 512
Synthetic Join Intersects 512 1 sfWithin 512 1
Synthetic Join Intersects 512 512 sfWithin 512 512
Synthetic Join Touches 1 1 sfTouches 1 1
Synthetic Join Touches 1 512 sfTouches 1 512
Synthetic Join Touches 512 1 sfTouches 512 1
Synthetic Join Touches 512 512 sfTouches 512 512
Synthetic Join Within 1 1 sfWithin 1 1
Synthetic Join Within 1 512 sfWithin 1 512
Synthetic Join Within 512 1 sfWithin 512 1
Synthetic Join Within 512 512 sfWithin 512 512

Table 6.3: Synthetic workload Queries in Geographica
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Query Operation Description
Non-topological construct functions
Q1 Boundary Construct the boundary of all polygons of CLC
Q2 Envelope Construct the envelope of all polygons of CLC
Q3 Convex Hull Construct the convex hull of all polygons of CLC
Q4 Buffer Construct the buffer of all points of GeoNames
Q5 Buffer Construct the buffer of all lines of LGD
Q6 Area Compute the area of all polygons of CLC
Spatial selections
Q7 Equals Find all lines of LGD that are spatially equal with a given line
Q8 Equals Find all polygons of GAG that are spatially equal a given polygon
Q9 Intersects Find all lines of LGD that spatially intersect with a given polygon
Q10 Intersects Find all polygons of GAG that spatially intersect with a given line
Q11 Overlaps Find all polygons of GAG that spatially overlap with a given polygon
Q12 Crosses Find all lines of LGD that spatially cross a given line
Q13 Within polygon Find all points of GeoNames that are contained in a given polygon
Q14 Within buffer of

a point
Find all points of GeoNames that are contained in the buffer of a
given point

Q15 Near a point Find all points of GeoNames that are within specific distance from a
given point

Q16 Disjoint Find all points of GeoNames that are spatially disjoint of a given
polygon

Q17 Disjoint Find all lines of LGD that are spatially disjoint of a given polygon
Spatial Join
Q18 Equals Find all points of GeoNames that are spatially equal with a point of

DBPedia
Q19 Intersects Find all points of GeoNames that spatially intersect a line of LGD
Q20 Intersects Find all points of GeoNames that spatially intersect a polygon of

GAG
Q21 Intersects Find all lines of LGD that spatially intersect a polygon of GAG
Q22 Within Find all points of GeoNames that are within a polygon of GAG
Q23 Within Find all lines of LGD that are within a polygon of GAG
Q24 Within Find all polygons of CLC that are within a polygon of GAG
Q25 Crosses Find all lines of LGD that spatially cross a polygon of GAG
Q26 Touches Find all polygons of GAG that spatially touch other polygons of GAG
Q27 Overlaps Find all polygons of CLC that spatially overlap polygons of GAG
Aggregate functions
Q28 Extension Construct the extension of all polygons of GAG
Q29 Union Construct the union of all polygons of GAG

Table 6.4: Micro Benchmark Queries in Geographica

graphica can not help check how well the triplestore is compliant to the standard. Some

new features introduced in SPARQL 1.1 like Negation, are not covered in the bench-
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Query Description
Reverse Geocoding
RG1 Find the closest populated place (from GeoNames)
RG2 Find the closest street (from LGD)
Map Search and Browsing
MSB1 Find the co-ordinates of a given POI based on thematic criteria (from

GeoNames)
MSB2 Find roads in a given bounding box around these co-ordinates (from

LGD)
MSB3 Find other POI in a given bounding box around these co-ordinates

(from GeoNames)
Rapid Mapping for Fire Monitoring
RM1 Find the land cover of areas inside a given bounding box (from CLC)
RM2 Find primary roads inside a given bounding box (from LGD)
RM3 Find detected hotspots inside a given bounding box (from Hotspots)
RM4 Find municipality boundaries inside a given bounding box (from

GAG)
RM5 Find coniferous forests inside a given bounding box which are on fire

(from CLC and Hotspots)
RM6 Find road segments inside a given bounding box which may be dam-

aged by fire (from LGD and Hotspots)

Table 6.5: Macro Benchmark Queries in Geographica

mark.Table 6.5 summarizes the SPARQL features expressed in benchmark queries. The

second concern is that the Geographica benchmark does not cover the entire spatial

relationship set (e.g. geof:sfContains) as well as the supporting methods for spatial anal-

ysis(e.g. geof:difference) which are also referred as non-topological functions. In other

words, the benchmark guaranteed the query selectivity test through the synthetic work-

load, whereas the real-world workload does not provide a complete query semantic test.

In the experiment however, we did not extend the original benchmark with new queries to

address the previously mentioned concerns. But, for the readers who do want to come up

with a new benchmark for this purpose, we provide a complete set of supported features

in the most recent TPF client in the appendix. We also recommend that the design work

of a new benchmark follow the guidelines proposed by Kolas [43] for the spatial seman-

tic web system. It generally states four primary types of spatial queries that must be

covered: location queries, range queries, spatial joins, and nearest neighbor queries. So,
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any benchmark design should take this guideline into consideration and try to achieve a

balance between these four categories.

Feature Micro
Benchmark

Macro
Benchmark

Synthetic
Benchmark

Basic Group Pattern
Group Graph Pattern
Filter
REGEX Operator
OPTIONAL Operator
UNION Operator
Negation
Property Path
BIND Operator
VALUES Operator
GROUP BY Modifier
HAVING Modifier
LIMIT Modifier
OFFSET Modifier
DINSTINCT Modifier
REDUCED Modifier
Aggregates
Aggregation Projection
Subqueries
GRAPH Operator
ASK
CONSTRUCT
DESCRIBE
Primary Functions (bound)
Functions on RDF Terms
Functions on String
Functions on Numerics
Functions on Dates and Times
Hash Functions

Table 6.6: Feature Expressed in Geographica Benchmark Queries

Furthermore, there were two problems that needed to be taken good care of before run-

ning the benchmark test. First of all, most of the real-world benchmark queries using

”GRAPH” modifier to specify different dataset. However, this feature was not supported

in the recent version Triple Pattern Fragment client owing to the Triple Pattern Fragment
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client not loading the entire dataset during the query execution. Instead it fetches the

metadata of the datasets via the given URLs (address of the dataset host) and hence

decides whether create a pipeline for a triple pattern to read the triples from the host.

So, alternatively to the GRAPH modifier, we removed all the GRAPH clauses in the

original queries and manually specify the datasets URLs as part of the query execution

start-off command arguments. Another problem was that, some queries conduct the

function projection in the SELECT clause, but this feature is not supported in the Triple

Pattern Fragment client either. An alternative solution is using BIND keyword to bind

the function results to a variable and then project this variable in the SELECT clause.

Unfortunately, BIND feature is also not supported in the recent version of Triple Pattern

Fragment client. So to ensure the experiment could continue, we extended the TPF client

to support this feature while implementing the non-topological functions.

6.1.5 Performance Metrics

Triple pattern fragments adopted a complete different design against traditional RDF

triplestore whose execution result is based on the sum of computational effort from both

server side and client side, metrics applied in Geographica hence is not necessarily suitable

for evaluating triple pattern fragments. Consequently, query duration time was consid-

ered as the only metric in this experiments to give an intuitively impression of how triple

pattern fragments performs against GeoPSRAQL-enabled triplestore with reference to

the last reported result published by Geographica. More effort would be spent on explor-

ing the runtime characteristics of triple pattern fragments to acquire remarks for future

improvement. To achieve this goal, the CPU and memory profiler would be installed in

advance of the experiment and periodically make a record during the query execution.

CPU profiler would tick the CPU time and report the usage statistic data in a text man-

ner. Memory profiler can make a snapshot of the internal memory heap and accordingly

list the biggest objects in a certain order. Comparing the memory snapshots can help find
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out if the application is suffering from the memory leakage and give a standpoint where

the program can be optimized in memory perspective.

6.1.6 Experiment Setup

For the experiment, we have setup a virtual machine running Debian OS version ”Jessie”

and allocated 8GB RAM, 2 virtual CPU cores on the SCSSNEBULA platform which is an

elastic cloud service infrastructure hosted by Trinity College Dublin. To simulate the re-

mote access environment, we setup a reverse proxy on the Triple Pattern Fragment server.

In this experiment, we evaluate the following version of Triple Pattern Fragment server

and Triple Pattern Fragment client where our GeoSPARQL extension was implemented.

• Linked Data Fragments Server version 2.2.2 (Node.js >= 4.0)

• Linked Data Fragments Client version 2.0.5 (Node.js >= 4.0)

As stated in the official documentation, Tripe Pattern Fragment server supports var-

ious kinds of datasource file format and able to initiate a couple of worker processes.

From the performance point of view, HDT[29][47] was chosen as the default datasource

format and two worker processes were initiated aside the main process. However, original

datasets were published in N-Triple[21] format. A quick solution is manually convert the

N-Triples file is to HDT file utilize rdf2hdt tool provided by[29][47]. In the appendix, we

provided the final configuration file for the Triple Pattern Fragment Server. Each of the

query would be executed for five times and pick up the average value as final result.

6.1.7 Benchmark Results

During the experiment, we executed queries for five times and record the highest and

lowest observed value for each query and then calculated the average value as our final

result. The final benchmark results are displayed in the Figure 6.2, Figure 6.3, Figure 6.4

and Figure 6.5
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In the micro benchmark, every spatial selection query and non-topological queries is able

to finish in a couple of minutes. These spatial selection queries are very simple queries

that only test one function in one query. Hence, the result is effected mostly by the

datasets size. For the spatial-join query, it is very hard to finish within a reasonable time.

The last two aggregation queries are not supported, because the aggregation functions

in these queries are defined under stSPARQL extension. The macro benchmark gives an

intuitive impression of how the TPF performs in a real word scenario and we can observe

that the query duration varies differently from each query. The fastest query would finish

around ten seconds and the slowest query would take more than an hour to finish.

In the synthetic benchmark, we can observe that ,in general, the spatial-join query is

much more ”expensive” than the spatial selection query. That also happened in the real-

world benchmark workload. More specifically perspective, for the spatial selection queries,

there are three controlled variables in the benchmark: spatial functions, query selectivity

and geometry size. For the first variable, geof:sfInteresects and geof:sfWithin, queries

with the same selectivity and triple size but different spatial function have very close

query duration. For the query with different selectivity, we observed huge performance

difference. All the queries with selectivity 512 finished much faster than the queries with

the selectivity of 1. The last variable geometry size, will not affect the query duration.

For the spatial join queries, query selectivity of two datasets has played an important role

in the performance. For example, queries whose dataset selectivity are both 512 is able

to finish in seconds whereas the rest queries are not able to finish within a day.

6.1.8 Summary

In this experiment, we have tested our implementation with Geographica benchmark and

it turns out that our implementation is working as expected. But, from the result set,
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Figure 6.2: real-world benchmark results (1)

Figure 6.3: real-world benchmark results cnt. (2)
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Figure 6.4: synthetic benchmark results (1)

Figure 6.5: synthetic benchmark results cnt. (2)
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we also observed that some queries would take a couple of hours to finish and we can

not tell about how much system resource it has consumed during such period of time.

Knowing such details are very crucial if we want running our implementation in browser

environment. So, In the next section we would using the profile data(CPU, Memory) to

give a deep view of the TPF client performance.

6.2 Performance analysis of TPF client

Testing our implementation with Geographica benchmark as discussed in the last section,

indicated that our implementation functions as expected. Some of the queries in the

Geographica benchmark take very long time to finish which is obviously not an acceptable

situation for the user. For example, in macro benchmark, ”Get coniferous forests in fire”

query would take more than an hour to finish while time is the first concern in such fire

situation. In this section, we provide a deeper view of the TPF client side query processing

by analyzing the profile data collected in the previous benchmark test. This performance

analysis consists of two parts, first part focuses on analyzing the memory consumption

during the query execution. Second part focuses on analyzing the CPU time distribution.

Last but not the least, we consider the analysis results together with the specific part of

the code to provide some practical recommendations on how to form a performant query

for the extended TPF client.

6.2.1 Analysis Setup

To undertake the analysis, we adopted node-inspector which is a popular Node.js debug-

ger based on Blink Developer Tools. Node-inspector can help profile the memory as well

as the CPU, also it can inspect the network client requests. In particular with the mem-

ory profile, the first memory heap snapshot would be created at the beginning of query

execution, then after five minutes make the second memory heap snapshot. Compare and

analyze the memory heap snapshot need special tools to cope with it. In this place,we
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use the Chrome developer console to help conduct our analyze.

The following sections presents the analysis results obtained. For simplicity, we choose

to only present the result of a simple BGP with only one triple pattern as it can help

achieve a better understanding in comparison with a query of complex BGP. This query

is shown in figure 6.6.

Figure 6.6: envelop example for performance analyze

In this query, it fetches all the geometries from the target dataset and then calculates

the envelope of these geometries and bind the result to ?ret variable. Hence the TPF

client would create only one iterator for this situation and it would be easier to extract

the characteristics of the query execution.

Besides that, we also set a reference group to compare the performance under local en-

vironment and remote environment. To simulate such remote environment, we set up

a reverse proxy using the service provided ngrok. It would build a tunnel between our

TPF server and ngrok server, as a result we can send our request to the ngrok server and

the ngrok server would forward our request to the TPF server hence simulate the remote

environment.
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6.2.2 Memory analysis from external view

Before analyzing the complex memory heap, we would first investigate the memory con-

sumption trend during the entire query execution. To provide a such external view of the

memory. We utilized the build in process monitoring tools in the operating system. In

Linux, this can be achieved by using top command. We provide the process id of TPF

client and then use the pipe line command to record the statistics to a separate data file

and then plot the chart.

As shown in the Figure 6.7, the y axis represents the internal memory of TPF client,

x axis represents the query execution duration that measured in seconds. Series with

short query duration was executed under local environment, another series indicate the

remote environment. From this chart, we can conclude two points, first is the network

traffic would significantly affect the query execution and the second observation is that

the memory is growing in a linear way. We assume memory growth is related to the size

of fetched triple from TPF server as the query only has one triple pattern. So, in the next

section we would investigate the memory heap to try to find out some evidences to prove

this assumption.

Figure 6.7: memory consumption trend of example query
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6.2.3 Memory analysis from internal view

In this section, we have two memory heap snapshots with a time gap of five minutes.

The comparison result of these two snapshots is shown in the table 6.7. Majority of the

memory growth was contributed by the String. It takes up 99.3 percent of the memory

increase. For the next step, we inspect the objects allocated between the two snapshots

and particularly the string object list which is shown in the Figure 6.8. We observed

that most of the new strings were geometry literals. So, we trace back the code find out

where memories are allocated for the these geometries. The code trace is shown in the

Figure 6.9. We observed all these geometries are reserved by the asyncIterator which is

an iterator used in the TPF client to read the triples of a triple pattern.

startup heap heap after five minutes
Code 8942KB 9219KB
Strings 5285KB 378134KB
JS Arrays 179KB 426KB
Typed Arrays 27KB 27KB
System Objects 1352KB 1463KB
Total 30411KB 405855KB

Table 6.7: memory heap comparison of example query

To conclude, TPF client would create an iterator for each triple pattern, at the same

time TPF client would create a cloned iterator of this iterator. In this cloned iterator,

is has a HistoryReader that would store all the mapping values of this triple pattern.

In this case, it stores all the geometries that fetched from TPF server. Code snippet of

HistoryReader is shown in the Figure 6.10.

We also observed that, all the historical data are stored in an array which would not

be released by the system until the iterator is released. In some cases, these historical

data are never used or are partially used. In order to prove this point, we disabled the

historical reader and repeated the example query, the new memory consumption chart is

shown in the Figure 6.11. In this chart, TPF client with disabled HistoryReader has a
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Figure 6.8: String object list in

Figure 6.9: function trace of geometry literal
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Figure 6.10: code snippet of historical reader
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Figure 6.11: code snippet of historical reader

very small steady memory consumption around 75 MB.

6.2.4 CPU analysis from external view

This section focuses on analyzing the CPU consumption of TPF client. Node-inspector

uses the CPU tick as a basic unit to generate the profile the CPU usage. The first of

our concern is where these CPU time were spent. We set up four reference group in the

experiment. First query was executed in the remote environment, for the second query,

we removed the envelope function and executed it again in the remote environment. Same

process would be repeated again in the local environment. Result is shown in the Figure

6.12. From this experiment we can conclude that, most of the CPU time were spent

on handling network traffic and spatial calculation. Next section, we adopted the CPU

profiler analyze tool to provide more accurate data to this respect.

6.2.5 CPU analysis from internal view

Figure 6.13 provides a top-down view of the CPU tick statistic. From this view, we

observed the top call was made by the asyncIterator, this call would invoke the read the

values from the buffered iterator and then transform the triples which is actually reading
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Figure 6.12: CPU time statistic of different query

the geometry literal and then pass it to the sparqlexpressionevaluator. In general, Iteration

of triples take up 32.9 percent of the entire CPU time and sparqlExpressionEvaluator take

up 23.8 of the entire CPU time. That proved most of the CPU were spent on the spatial

calculation and handing the network traffic.

6.2.6 Summary

From the TPF client performance analysis we can conclude that the key factor that

restricts performance of query execution is the number of triples fetched from the server.

That is because, a smaller number of triples reduces the network traffic as well as the

spatial calculation workload which would result in a better result. Second observation is

that if the TPF client can provide a better historical data management in the iterator, the
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Figure 6.13: accurate CPU time statistic

internal memory consumption during the query execution would be optimized effectively.

6.2.7 Query Formulation Recommendations

As concluded from the previous section, the key thing to achieve a better query result

in TPF client is reducing the number of necessary triples transmitted from TPF server.

That is decided by the query evaluation strategy of the TPF client. Current version

of the TPF client adopts a greedy strategy to evaluate the BGP. Greedy strategy was

driven by the local optimal selection but will not guarantee a global optimal solution. We

observe a carefully formed query can significantly improve the performance in TPF client.

Our key recommendation for users of the extended TPF client would be uplift any filter

as much as possible to split the connected BGP into separate sub-BGPs. This is recom-

mended as the filter operator reduces the solution mappings for next triple pattern. We

outline an example to illustrate this observation.

Figure 6.14 and Figure 6.15are two equivalent queries that would return all the rele-

vant information required, the points that intersects with a polygon. The second query

puts the filter in the middle of a BGP which would split the query into two sub-BGPs.

After TPF client evaluates the first BGP, filter operation would screen out all the geome-
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Figure 6.14: Get around POI (a)

tries that are not intersecting with a given polygon. As a result, less values would be

bound to the rest triple patterns and hence the performance is improved.

Table 6.8 shows that the query performance has a significant improvement for this ex-

ample. The total HTTP request reduced by 79.8% and query duration has reduced by

87.9%.

HTTP request number Query Duration
Original Query 110160 605448.186ms
Query with uplifted filter 22235 73184.333ms
Reduced By(%) 79.8 87.9

Table 6.8: performance comparison of equivalent query
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Figure 6.15: et around POI (b)



Chapter 7

Conclusions

This chapter discusses the main contribution in this dissertation and evaluate the GeoSPARQL

extension from both engineer perspective and conceptual perspective. Last but not the

least, this chapter also proposed some future work options and suggestions.

7.1 Conclusion

The main objective in this dissertation is enable the GeoSPARQL query on the TPF

client. In our implementation, we choose to support the spatial filter functions defined in

the Geometry Component as well as the spatial analysis functions defined in the Geometry

topology components. The implementation process was driven by the Geographica bench-

mark. It finally proves that it is feasible to extend the TPF client to support GeoSPARQL

query.

The second objective in this dissertation is test our extension with the Geographica

benchmark. The test result shows that our implementation is work as expected but

it takes more time for TPF client to finish a GeoSPARQL query than a bespoke spatial

triple store. Our extension enables the server to handle the spatial data at a minimal

cost and provided the client with great flexibility to explore a efficient way to finish the

69
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GeoSPARQL query.

Consequently, we choose to conduct a performance analysis in order to find out the per-

formance restriction of the TPF client and hence make some suggestions based on the

observation. According to our analysis, a better historical data management in the TPF

client iterator could help optimized the run-time internal memory consumption and bet-

ter BGP evaluation strategy could help reduce the network traffic by reducing the triples

that need to be transmitted to the client and finally improve the TPF client performance.

We also recommend the user to uplift the filter function to separate the BGP manually

which would help improve the performance.

To conclude, idea of extending the TPF client to support GeoSPARQL is a feasible as a

new option for consuming the spatial data. It reduced the server cost to host a public

knowledge graph which in return would encourage the organizations to publish the public

available knowledge graph and fully utilized client resource. More important, the idea of

TPF enables the client to split the query and explore an efficient approach to execute the

both SPARQL and GeoSPARQL query which has great potential for future improvement.

7.2 Future work

From this dissertation, we realized how important the BGP evaluation strategy is for the

TPF client. Current version of the TPF client adopted greedy strategy to evaluate the

BGP, it works fine with most of the cases, but for some special cases, it won’t yield a

global optimal solution which in return would slower the query execution. Future work

could investigate the potential BGP evaluation strategy. In addition to this, future work

could also design a better data structure as well as a better historical data management

strategy for the iterator in TPF client which would help reduce the memory consumption

during the query consumption.



Appendix A

Abbreviations

Short Term Expanded Term

W3C World Wide Web Consortium

ISO International Organization for Standardization

RDF Resource Description Framework

RDFS Resource Description Framework Scheme

OWL Web Ontology Language

WKT Well Known Text

SPARQL SPARQL Protocol and RDF Query Language

DE-9IM Dimensionally Extended nine-Intersection Model

GeoSPARQL Geographic query language for RDF data

OGC Open Geospatial Consortium

OSI Ordnance Survey Ireland

LGD LinkedGeoData

GAG Greek Administrative Geography

CLC CORINE Land Use/Land Cover

NOA National Observatory of Athens
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Short Term Expanded Term

HDT Header Dictionary Triples

RAM Random Access Memory

CPU Central Processing Unit

OS Operating System

URI Uniform Resource Identifier

URL Uniform Resource Locater

HTML Hyper-Text Markup Language

HTTP Hyper-Text Transfer Protocol

XML Extensible Markup Language

TPF Triple Pattern Fragment

WKT Well-Known-Text

GML Geography Markup Language

BGP Basic Group Pattern

CRS Coordinate Reference System

SRS Spatial Reference System

JSON JavaScript Object Notation

JSON-LD JSON for Linked Data

LDF Linked Data Fragment



Appendix B

Parsed SPARQL JavaScript Object

Example

{

”queryType ” : ”SELECT” ,

” v a r i a b l e s ” : [

”? c 1 l ” ,

”? c 2 l ”

] ,

”where ” : [

{

” type ” : ”bgp ” ,

” t r i p l e s ” : [

{

” sub j e c t ” : ”? c1 ” ,

” p r e d i c a t e ” : ” http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type ” ,

” ob j e c t ” : ” http :// o n t o l o g i e s . geoh ive . i e / o s i#County”

} ,

{
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” sub j e c t ” : ”? c1 ” ,

” p r e d i c a t e ” : ” http ://www. w3 . org /2000/01/ rdf−schema#l a b e l ” ,

” ob j e c t ” : ”? c 1 l ”

} ,

{

” sub j e c t ” : ”? c1 ” ,

” p r e d i c a t e ” : ” http ://www. openg i s . net /ont/ geo sparq l#hasGeometry ” ,

” ob j e c t ” : ”? g1”

} ,

{

” sub j e c t ” : ”? c2 ” ,

” p r e d i c a t e ” : ” http ://www. w3 . org /1999/02/22− rdf−syntax−ns#type ” ,

” ob j e c t ” : ” http :// o n t o l o g i e s . geoh ive . i e / o s i#County”

} ,

{

” sub j e c t ” : ”? c2 ” ,

” p r e d i c a t e ” : ” http ://www. w3 . org /2000/01/ rdf−schema#l a b e l ” ,

” ob j e c t ” : ”? c 2 l ”

} ,

{

” sub j e c t ” : ”? c2 ” ,

” p r e d i c a t e ” : ” http ://www. openg i s . net /ont/ geo sparq l#hasGeometry ” ,

” ob j e c t ” : ”? g2”

}

]

} ,

{
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” type ” : ” f i l t e r ” ,

” exp r e s s i on ” : {

” type ” : ” opera t i on ” ,

” operator ” : ”!=” ,

” args ” : [

”? c1 ” ,

”? c2”

]

}

} ,

{

” type ” : ” f i l t e r ” ,

” exp r e s s i on ” : {

” type ” : ” opera t i on ” ,

” operator ” : ” langmatches ” ,

” args ” : [

{

” type ” : ” opera t i on ” ,

” operator ” : ” lang ” ,

” args ” : [

”? c 1 l ”

]

} ,

”\”en\””

]

}

} ,
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{

” type ” : ” f i l t e r ” ,

” exp r e s s i on ” : {

” type ” : ” opera t i on ” ,

” operator ” : ” langmatches ” ,

” args ” : [

{

” type ” : ” opera t i on ” ,

” operator ” : ” lang ” ,

” args ” : [

”? c 2 l ”

]

} ,

”\”en\””

]

}

} ,

{

” type ” : ”bgp ” ,

” t r i p l e s ” : [

{

” sub j e c t ” : ”? g1 ” ,

” p r e d i c a t e ” : ” http ://www. openg i s . net /ont/ geo sparq l#asWKT” ,

” ob j e c t ” : ”?w1”

} ,

{

” sub j e c t ” : ”? g2 ” ,
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” p r e d i c a t e ” : ” http ://www. openg i s . net /ont/ geo sparq l#asWKT” ,

” ob j e c t ” : ”?w2”

}

]

} ,

{

” type ” : ” f i l t e r ” ,

” exp r e s s i on ” : {

” type ” : ” f u n c t i o n C a l l ” ,

” func t i on ” : ” http ://www. openg i s . net / de f / func t i on / geosparq l / s fTouches ” ,

” args ” : [

”?w1” ,

”?w2”

] ,

” d i s t i n c t ” : f a l s e

}

}

] ,

” l i m i t ” : 15 ,

” type ” : ” query ” ,

” p r e f i x e s ” : {

”geo ” : ” http ://www. openg i s . net /ont/ geosparq l #”,

” geo f ” : ” http ://www. openg i s . net / de f / func t i on / geosparq l /” ,

” o s i ” : ” http :// o n t o l o g i e s . geoh ive . i e / o s i#”

}

}



Appendix C

TPF Server Configuration File

{

” t i t l e ” : ”Geo Pro j e c t ” ,

” datasource s ” : {

” boundaries−count i e s ” : {

” t i t l e ” : ” Boundaries −− count i e s ” ,

” type ” : ”HdtDatasource ” ,

” s e t t i n g s ” : {

” f i l e ” : ” . / data/2016−11−16−county . hdt”

}

} ,

” boundaries−e l e c t o r a l−d i v i s i o n s ” : {

” t i t l e ” : ” Boundaries −− e l e c t o r a l d i v i s i o i n s ” ,

” type ” : ”HdtDatasource ” ,

” s e t t i n g s ” : {

” f i l e ” : ” . / data/2016−11−16−ed . hdt”

}

} ,
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”Greek−Administrat ive−Geography−Dataset ” : {

” t i t t l e ” : ”Greek Admin i s t rat ive Geography Dataset ” ,

” type ” : ”HdtDatasource ” ,

” s e t t i n g s ” : {

” f i l e ” : ” . / data /gag . hdt”

}

} ,

”CORINE−Land−Use/Land−Cover−Dataset ” : {

” t i t t l e ” : ”CORINE Land Use/Land Cover Dataset ” ,

” type ” : ”HdtDatasource ” ,

” s e t t i n g s ” : {

” f i l e ” : ” . / data / c o r i n e . hdt”

}

} ,

”LinkedGeoData−Dataset ” : {

” t i t t l e ” : ”LinkedGeoData Dataset ” ,

” type ” : ”HdtDatasource ” ,

” s e t t i n g s ” : {

” f i l e ” : ” . / data / l inkedgeodata . hdt”

}

} ,

”GeoNames−Dataset ” : {

” t i t t l e ” : ”GeoNames Dataset ” ,

” type ” : ” Turt leDatasource ” ,
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” s e t t i n g s ” : {

” f i l e ” : ” . / data /geonames . t t l ”

}

} ,

” Hotspots−Dataset ” : {

” t i t t l e ” : ” Hotspots Dataset ” ,

” type ” : ”HdtDatasource ” ,

” s e t t i n g s ” : {

” f i l e ” : ” . / data / hotspots . hdt”

}

} ,

” synthe t i c−datase t ” : {

” t i t l e ” : ” s y n t h e t i c −− datase t ” ,

” type ” : ”HdtDatasource ” ,

” s e t t i n g s ” : {

” f i l e ” : ” . / data / s y n t h e t i c . hdt”

}

} ,

”DBpedia−Dataset ” : {

” t i t t l e ” : ”DBpedia Dataset ” ,

” type ” : ” Turt leDatasource ” ,

” s e t t i n g s ” : {

” f i l e ” : ” . / data / dbpedia . t t l ”

}

}

} ,
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” p r e f i x e s ” : {

” rd f ” : ” http ://www. w3 . org /1999/02/22− rdf−syntax−ns#”,

” r d f s ” : ” http ://www. w3 . org /2000/01/ rdf−schema#”,

”xsd ” : ” http ://www. w3 . org /2001/XMLSchema#”,

”dc ” : ” http :// pur l . org /dc/ terms /” ,

” f o a f ” : ” http :// xmlns . com/ f o a f /0 .1/” ,

” dbpedia ” : ” http :// dbpedia . org / r e s ou r c e /” ,

”dbpedia−owl ” : ” http :// dbpedia . org / onto logy /” ,

”dbpprop ” : ” http :// dbpedia . org / property /” ,

”hydra ” : ” http ://www. w3 . org /ns/hydra/ core #”,

” void ” : ” http :// r d f s . org /ns/ void #”,

”geo ” : ” http ://www. openg i s . net /ont/ geosparq l#”

}

}



Appendix D

Supported Feature in TPF Client

v2.0.5
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Feature
Basic Group Pattern
Group Graph Pattern
Filter
REGEX Operator
OPTIONAL Operator
UNION Operator
Negation
Property Path
BIND Operator
VALUES Operator
GROUP BY Modifier
ORDER BY Modifier
HAVING Modifier
LIMIT Modifier
OFFSET Modifier
DINSTINCT Modifier
REDUCED Modifier
Aggregates
Aggregation Projection
Subqueries
GRAPH Operator
ASK
CONSTRUCT
DESCRIBE

Table D.1: Feature Expressed in GeoGraphica Benchmark Queries
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