
IoT Firmware Management:

Over the Air Firmware Management for

Constrained Devices using IPv6 over BLE

by

Manas Marawaha, B.Tech Electronics and Communication

Dissertation

Presented to the University of Dublin, Trinity College

in fulfillment of the requirements for the Degree of

Master of Science in Computer Science

(Mobile and Ubiquitous Computing)

University of Dublin, Trinity College

September 2017



Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated, is

my own work.

Manas Marawaha

September 1, 2017



Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Manas Marawaha

September 1, 2017



Acknowledgments

I would like to thank my supervisor Dr. Jonathan Dukes, for proposing this interesting

project and providing me an opportunity to work on it. This project provided me the

platform to pursue my interest in IoT and resource constraint devices. Jonathan continu-

ously motivated and steered me in the right direction throughout the entire project. His

constructive feedback, research guidelines, and suggestions were of great help to me.

I would also like to thank Dr. Stefan Weber, Course Director, M.Sc. in Computer

Science Mobile and Ubiquitous Computing, for his continuous support and advice

throughout the year.

Finally, I must express my very profound gratitude to my family for supporting me

spiritually throughout writing this thesis and my life in general. This accomplishment

would not have been possible without them.

Manas Marawaha

University of Dublin, Trinity College

September 2017

iv



IoT Firmware Management:

Over the Air Firmware Management for

Constrained Devices using IPv6 over BLE

Manas Marawaha, M.Sc.

University of Dublin, Trinity College, 2017

Supervisor: Dr. Jonathan Dukes

The next wave driving the Internet expansion will come from Internet of Things.

Bluetooth Low Energy (BLE) is considered to be a prime candidate to connect and let

the device communicate with each other. Furthermore, with the advent of LoWPAN

technology, it is possible to designate the IPv6 address to every “thing” in the Internet

of things paradigm. As IoT is gaining traction, a number of associated challenges have

surfaced. One of which is the management of the fleet of IoT devices.

Manual management of resource constrained IoT devices is not feasible. The network

of wireless sensors should be controlled by a remote management framework which should

take care of device control and firmware upgrade. The firmware upgrade is required to

push bug fixes, security, vulnerabilities fixes and new features into the IoT devices. In

the current state of the art, there exist no end to end firmware upgrade framework to

remotely manage the device control and firmware upgrade on BLE devices. This disser-

tation establishes state of the art in IoT protocol stack and firmware upgrade mechanism.
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Further, we investigate the gaps in current firmware upgrade mechanism and implements

an approach which adheres the specifications of remote management standard (LwM2M)

and uses CoAP block transfer for transporting the firmware image to BLE based IoT

device via IPv6 over BLE channel.
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Chapter 1

Introduction

1.1 Background

The Internet of Things, or IoT, is emerging as the next technology revolution. The term

“Internet of Things” was coined by Kevin Ashton while working with Auto-ID Center at

MIT1. The Internet of Things allows small devices to be sensed or controlled across the

existing internet infrastructure. The network of these connected devices would lead to

the merging of physical and digital worlds, opening up a host of new opportunities and

challenges for consumers, companies, and governments[1]. As estimated by various market

surveys2, billions of everyday devices ranging from wearables to industrial equipment will

be connected in coming years.

A number of significant factors have given the thrust for enabling IoT in real scenar-

ios. These include ubiquitous connectivity, widespread adoption of IP-based networking,

computing economics, miniaturization, advances in data analytics, and the rise of cloud

computing [2]. The applicability of IoT can be broken up into five key verticals of adop-

tion: connected wearable devices, connected cars, connected homes, connected cities, and

the industrial Internet.

In its simplest form, IoT is just about enabling connectivity between “things” or de-

1https://en.wikipedia.org/wiki/Internet of things
2http://www.gartner.com/technology/research/internet-of-things/
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vices. In a more sophisticated form, the IoT ecosystem consists of sending data from IoT

nodes via a gateway to storage servers or data analytics platform and relaying back man-

agement commands from a remote management platform. Figure 1.1 shows an overview

of basic building blocks in an IoT ecosystem.

Figure 1.1: The Internet of Things Ecosystem.

In general, the IoT devices such as small sensors or actuators are resource constrained

devices with low memory, processing power, reduced battery capacity. The conventional

TCP/IP stack is not applicable for IoT devices[3]; therefore a redesigned light weight

network stack is needed to let these devices to communicate with mainstream internet

and attain a working Internet of Things. In this dissertation, we will discuss state of the

art and address the challenges in the firmware update on IoT devices.

1.2 Motivation

As IoT continues to gain traction, a number of associated challenges have surfaced. These

problems range from technological to business related aspects. A survey on application

and challenges in IoT was carried out by S. Nalbandian [4]. Some of the key challenges

2



are summarized below.

• Standards: Lack of standards and documented best practices limits the potential

of IoT. Without standards to guide, manufacturers or developers sometimes design

the products that operate in nonstandard ways which impact the interoperability.

A poorly designed and configured device can have negative consequences for the

networking resources.

• Device Management and Firmware Upgrade: IoT devices are often deployed in a

remote location where the manual administration of these resource constrained de-

vices is not feasible. Upgrading the firmware on these devices is one of the key

challenges in IoT ecosystem. The firmware upgrade is required to push bug fix,

security vulnerabilities fix and new features into the IoT devices. For a seamless in-

tegration of connected devices, a network of wireless sensors should be controlled by

a remote management server which should take care of device control and firmware

upgrade.

• Connectivity: The current connectivity method relies on the centralized, server/-

client paradigm to authenticate, authorize and connect different nodes in a network.

With more and more devices coming into the network it will defy the very structure

of current communication models and the underlying technologies.

• Privacy: More and more data generation from IoT networks creates a unique chal-

lenge to privacy. This is becoming more prevalent in consumer devices, such as

tracking devices for phones and cars as well as smart televisions.

• Security: There are no stringent security standards enforced till now to prevent

attacks in IoT network. With the increase in the number of connected devices

increases the opportunity to exploit security vulnerabilities in the poorly designed

IoT networks.
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The above-discussed challenges lie in different domains of IoT. In this dissertation,

we primarily focused on identifying and addressing the gaps realted to device man-

agement and firmware upgrade in IoT devices.

1.3 Research Objectives

On the commercial basis, there is a need of automating the firmware upgrade on sensor

networks to reduce manual interventions. In the current state of the art, there is no end

to end standardized approach for remotely managing the firmware on IoT devices and

pushing new firmware when required. With the availability of energy efficient LoWPAN

technology and broad adoption of BLE, this dissertation aims to investigate and imple-

ment a standard complaint end to end firmware management system for BLE based IoT

devices using IPv6 over BLE compliant communication stack.

The research objective can be further divided into sub-objectives as listed below:

1. Establish state of the art for the IoT protocol stack.

2. Establish state of the art for firmware management of resource constrained devices.

3. Identify the gaps in the current state of the art for firmware management of resource

constrained devices.

4. Design a standard compliant end to end firmware management architecture and for

BLE based IoT devices using IPv6 over BLE compliant communication stack to

address the gaps in the current state of the art.

1.4 Dissertation Structure

This section provides an outline of the structure of the thesis document.

• The current chapter provides a brief overview of the areas of research; motivation,

research objectives and goals of this dissertation.

4



• Chapter 2 divides the objective into specific areas of research. The state-of-the-art,

background and related work for each of these areas are discussed in corresponding

sections.

• Chapter 3 specifies the design aspects of the proposed system. The requirements

of the system, the system architecture, and high-level design are discussed in this

chapter.

• Chapter 4 discusses the methods, technologies, and platform used to implement

the proof of concept of a firmware management system. The specific libraries,

programming tools, languages, and software setup used are specified in the chapter.

A discussion on system evaluation is also presented in this chapter.

• Chapter 5 summarizes the contributions made by this research, lists future work

and concludes with final remarks on the dissertation.

5



Chapter 2

State of the Art

2.1 Introduction

In this chapter, we will look into the communication models being followed in IoT network

deployment and proposed lightweight stack for IoT devices. In the recent years, there is a

lot of work done in standardizing protocols to make IoT solution inter operable. We will

discuss different protocols and standards applicable in IoT stack. Finally, we will discuss

the principles, challenges and acknowledge the work done by the researcher community

in the field of firmware updates on resource constrained IoT devices.

2.2 Communication Models

Regarding operations, it is necessary to define how IoT devices should connect and com-

municate. The Internet Architecture Board (IAB)1 released the guiding specification

RFC-7452 [5] to design Internet connected smart objects, which defines a number of

communication patterns utilized in the smart object environment. The discussion below

presents the defined pattern with the key characteristics of each model.

1https://www.iab.org/
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1. Device to Device communication model:

The device to device communication model represents two or more devices that con-

nect directly and communicate with each other. In this sort of model, devices can

exchange packets directly without the need of any intermediate gateway or applica-

tion server. For communication, this model encourages the use of wireless link layer

technologies such as Bluetooth low energy [25], Z-wave2, Zigbee3 or LoRaWAN4.

Figure 2.1 shows the communication pattern wherein two devices are connected

with each other using a radio link.

This communication model is well suited in an area where the data exchange uses

small data packets of information, and the requirement of data rate is relatively

low. The connected home is the prime use case for this communication model.

Controlling light bulbs, switches and consumer electronics which requires relatively

low data rates.

Figure 2.1: Example of device-to-device communication model [5].

2. Device to Cloud communication:

The device to cloud communication model represent IoT devices which directly con-

nect and communicate with an Internet cloud service and exchange data and control

messages. This model allows an end to end IP based connectivity between device

and cloud service using the traditional wired Ethernet or Wi-Fi connections. Figure

2.2 shows the device to cloud communication model. The IoT devices come under

2http://www.z-wave.com/
3http://www.zigbee.org/
4https://www.lora-alliance.org/
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this model should have enough resource to allow support for traditional connectiv-

ity. Typical examples include Nest Thermostat which connects directly with the

cloud service to transmit data. Further, the user can remotely control the devices

using exposed cloud interfaces/services.

Figure 2.2: Example of device-to-cloud communication model [5].

3. Device to Gateway model:

In the device to gateway model, the IoT devices connect with a gateway which

acts as an intermediary between the device and the cloud service. In this sort of

model generally, two different types of communication technologies are bridged by an

intermediary gateway and provides an end to end connectivity between IoT device

and cloud service. Figure 2.3 shows the device to gateway communication model. In

most of the use cases, a smart phone application serves as an intermediary gateway

to connect resource constrained IoT devices to connect with cloud services.

Interoperability could be a challenge in a device to gateway communication model.

Intermediate gateway should be smart enough to support a number of communica-

tion protocols so that vast number of devices can connect to these gateways.

8



Figure 2.3: Example of device-to-gateway communication model [5].

4. Back End data sharing pattern:

Back end data share model allows the user to export and analyze smart object data

from a cloud service in combination with data from other sources. This architecture

provides the authentication services which enables the user to grant access to the

third party services. The patterns re-use the RESTful API designs in combination

with the federated authentication and authorization technology such as OAuth 2.0

[6]. A graphical representation of this model is shown in Figure 2.4. Typical use

case exists if the owner of a retail shop would like to analyze the market trends from

the footfall data captured from deployed sensors in conjunction with data from a

third party provider.
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Figure 2.4: Example of back end data sharing communication model [5].

2.3 IoT Communication Stack

IoT is all about integrating machine to machine and wireless sensor network (WSN)

solutions with the mainstream Internet services using existing Internet protocol (IPs).

The integration would require the IoT endpoints to support IP connectivity or relay

their packets via IP supported gateway. In general IoT devices are low powered, resource

constrained devices which need to function long term on limited battery power and support

frequent data exchange over lossy networks. Use of existing IP stack as-is make it less

feasible to IoT devices [3].

Different standardization bodies and groups including government standards institutes

like ETSI5, organizations like IETF6/IAB, and alliances like ZigBee3 and IPSO7 are ac-

tive in creating more inter operable protocol stacks and open standards for the IoT. With

the advent of IP technologies and acceptance of IPv6 over IPv4, standardization bodies

have agreed upon the idea of using IP to even the smallest device. Protocol like 6LoW-

PAN made it possible to extend IP connectivity to IoT endpoints. 6LoWPAN enables

compressed IPv6 packets to be carried out on IEEE 802.15.4 standard [21]. Figure 2.5

5http://www.etsi.org/
6https://www.ietf.org/
7https://www.ipso-alliance.org/
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below shows the typical web application stack and redesigned IoT network stack suitable

to provide IP connectivity in low powered, resource constraint IoT nodes. This section

further discusses each layer of IoT protocol stack in more detail.

Figure 2.5: From web application to IoT node stack.

2.3.1 Data Interchange Formats

Data interchange formats are required to let the applications speak to each other in a

standard format. These formats are responsible for representation of structured data.

This section further discusses the formats suitable for IoT stack.

1. JAVA SCRIPT OBJECT NOTATION (JSON)

RFC-7159 [7] defines the specification of JSON data interchange format. JSON is a

lightweight text format which allows structured data interchange. It is completely

language independent but uses conventions associated with conventional program-

ming languages such as C, C++, C#, Java, JavaScript, Perl, Python, etc. It was

11



first introduced to the world at json.org website8. The syntax of JSON is a collection

of braces, brackets, colons, and commas that are used to define structured data. On

principle, JSON is built on two universal data structure.

(a) Collection of name value pair: Implemented as hash tables, associative arrays,

or dictionary

(b) An ordered list of values: Implemented as an array, vector, or list.

These universal data structures are supported by virtually all the programming lan-

guages which make it suitable for programming languages to have a data interchange

format based on standard data structures.

2. Concise Binary Object Representation (CBOR)

RFC-7049 [8] defines the specification of CBOR data exchange format. CBOR

is a binary data serialization format which is based on JSON data interchange

format. The design goals of CBOR includes the possibility of minimal code size,

fairly small message size, and extensibility without the need for version negotiation

[8]. CBOR is a recommended data serialization layer for the CoAP IoT protocol

suite9. Implementation of CBOR is simple and provided in various languages10.

Internet of Things is a major factor in the development of CBOR. Binary encoding

in CBOR allows faster processing.

3. IPSO Alliance

The potential of the Internet of things can be best exploited with IP as a connec-

tivity medium. The IPSO alliance7 is an organization which promotes the Internet

protocol (IP) for IoT device communication. With rapid integration of small de-

vices, IETF has provided a specification for IP-enabled IoT devices to work in a web

like fashion. There is a need to structured data model on top of application layer

8http://www.json.org/
9http://coap.technology/

10http://cbor.io/impls.html
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protocol to allow seamless communication with these small devices. IPSO provides a

common design pattern, an object model to provide interoperability between smart

object device and connected software application on devices and services [9]. IPSO

defined object model is based on Open Mobile Alliance Lightweight Specification

(OMA LwM2M) [31].

The data model followed by IPSO is in the form of CoAP URI /Object/Instance/Re-

source and identical to one which is followed by LwM2M. Section 3.7 provide details

about the Data models and object representation.

2.3.2 Application Layer

IoT is about interactions between multiple devices, things, and objects. Interaction of

devices and services will exploit the actual potential of IoT. The application layer is re-

sponsible for providing services and determines a set of protocols for message passing at

the application level. M. B. Yassein et al., [10] provides a survey and comparison of differ-

ent application protocols based on transport layer used, architecture and communication

model. This section further discusses the application layer protocol suitable for IoT.

1. CONSTRAINED APPLICATION PROTOCOL (COAP)

Constrained application protocol (CoAP) is a request/response protocol specified by

RFC-7252 [12]. CoAP is designed and well suited for a constrained environment such

as low power devices and devices with constraint resources regarding CPU, RAM,

and network. C. Bormann et al. in [11] explains CoAP protocol as a replacement

of HTTP in the domain of Internet of things. CoAP follows REST architectural

style and works upon UDP to achieve its goals with less complexity. CoAP inherits

REST feature from HTTP and allows four of the request methods: GET, PUT,

POST and DELETE. A typical CoAP packet consumes only 10-20 byte of header

size. Graphics in figure 2.6 shows the CoAP GET request from a client to the

server with the name of the resource. The server, in turn, responds with “200 OK”

13



response code, data format and requested data[11].

Figure 2.6: CoAP GET request elicits a 200 OK response [11].

CoAP provides three main features: Block transfer, Observe and Discover.

(a) Block Transfer: Block transfer will overcome the situation of fragments where

large data needs to be transferred such as firmware update. CoAP transfers

multiple blocks of information for a resource representation by simply adding

a pair of “Block options.”

(b) Observe: Using observe, the client will subscribe to a resource in server and

server will send out a notification in case of any change in the resource.

(c) Discover: Discover will expose a “well-known” resource using which devices

will be able to discover each other and their resources.

Figure 2.7 shows the inter working of CoAP with HTTP. The proxies in between can

behave like intermediately which can speak both CoAP and HTTP this providing

the interoperability between CoAP based network and traditional HTTP based

Internet.
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Figure 2.7: Web architecture with HTTP and CoAP [11].

2. MESSAGE QUEUE TELEMETRY TRANSPORT (MQTT)

MQTT11 provides a publish/subscribe service model wherein the publisher publishes

the information and subscriber subscribe to the information it wants. MQTT was

designed for low powered and constrained devices; therefore, it is well suited for IoT

deployments12. It is based on TCP/IP protocol. The broker in between publisher

and subscriber facilitates or filters the information and allow for a loose coupling

between entities. Figure 2.8 shows the pub/sub model of MQTT and data transfer

between publisher and subscriber via a common broker.

The decoupling can occur in a few different ways, space, time, and synchronization.

• Space: The subscriber doesn’t need to know who the publisher is, for example

by IP address, and vice-versa

• Time: The two clients don’t have to be running at the same time

• Synchronization: Publishing and receiving doesn’t halt operations

Through the filtering done by the broker, subscribers can subscribe messages based

on subject, content, or type of message. Once connected with the broker, a publisher

can simply send its data to the broker and broker can relay appropriate data onto

11http://mqtt.org/documentation
12MQTT-SN spec v1.2.pdf
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Figure 2.8: MQTT Publish/Subscribe Model

the subscribers who subscribed for that data. All this data transfer is done in a

light weight fashion suitable for resource constrained devices.

2.3.3 Transport and Communication Layer

1. INTERNET PROTOCOL VERSION 6 (IPv6)

Internet Protocol version 6 (IPv6) is the latest revision of the Internet Protocol

(IP) and the successor of IPv4. IPv6 was originally defined in RFC-2460 [14] by the

Internet Engineering Task Force (IETF). In July 2017 RFC-2460 was obsoleted by

RFC-8200 [15]. The motivation behind the development of IPv6 was to deal with

the shortcoming of IPv4 and its long-anticipated problem of address exhaustion.

To deploy Internet of Things it is necessary to address every “Thing” connected to

the Internet. IPv4 with its 32 bits long address (232 addresses) is not capable of

providing required address space.

IPv6 is redesigned entirely and kept the core functionalities of IP addressing, but

IPv6 is not designed to be backward compatible with IPv4. IPv6 offers following

features.
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• Larger Address Space [15]: The full version of IPv6 address is as long as 128

bits which is in contrast to IPv4, four times more bits to address a device on

the Internet. The full address range of IPv6 can provide approximately 2128

different combinations of addresses. This address can accumulate the aggressive

requirement of address allotment for almost everything in this world.

• Simplified Header [15]: In IPv6’s header all the unnecessary information is

moved to end of the header and used as an option. Wherein in case of IPv4

header the information is tied to the header. In this way, IPv6 header is more

simplified and can be compressible.

• End-to-end Connectivity: Every system now has a unique IP address and can

traverse through the Internet without using NAT or other translating com-

ponents. After IPv6 is fully implemented, every host can directly reach other

hosts on the Internet, with some limitations involved like Firewall, organization

policies, etc.

• Auto-configuration [17]: IPv6 supports both stateful and stateless auto con-

figuration mode of its host devices. This way, the absence of a DHCP server

does not put a halt on inter segment communication.

• IPSec [18]: An optional feature of providing IPsec security is included in IPv6

which makes it more secure than IPv4.

• Anycast Support: In this mode, multiple interfaces over the Internet are as-

signed same Anycast IP address. Routers, while routing, send the packet to

the nearest destination.

• Mobility [19]: IPv6 was designed keeping mobility in mind. This feature en-

ables hosts (such as mobile phone) to roam around in a different geographical

area and remain connected with the same IP address. The mobility feature of

IPv6 takes advantage of auto IP configuration and Extension headers.

Z. Jun et al., [20] explained how IPv6 is could be a key enabling factor in IoT and
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suitable for wireless sensor networks.

(a) Enormous address space of IPv6 can cater every device.

(b) Mobile IPv6 avoids triangulation and can be as efficient as normal IPv6.

(c) Internet protocol security (IPsec) is mandatory in IPv6 which can satisfy se-

curity requirement.

(d) Neighbor discovery meets the need of WSNs such as router discovery, parameter

discovery, and address auto configuration.

Z. Jun et al., [20] also proposes an improved, simplified IPv6 addressing scheme for

addressing formats in intra-WSN communication. The full version of IPv6 address

is as long as 128 bits, and the data payload in WSNs is quite small. Processing an

address with full IPv6 addressing would be a big hit in the performance of WSNs

thus compressing the control section is of great importance for energy. The author

explained the use of IPv6 prefixes in a sensor node. Often WSNs adopts prefix

001(2000::/3) which is not suitable for WSNs as computer networks often utilize

it. Author proposed prefix 0100::/8 as a new address section of WSNs. There are

techniques available which compress the IPv6 address inside a WSNs networks and

added to data packets when packets are directed to an external IPv6 network. One

such technique is 6LoWPAN which provides IPv6 networking over IEEE 802.15.4.

2. IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN)

6LoWPAN is an open standard defined in RFC-6282[21] by the Internet Engineering

Task Force (IETF). It introduces an adaption layer between network and link layer

and enables the efficient transfer of IPv6 data packets by reducing the IP overheads.

6LoWPAN works on the principle of stateless compression to elide adaptation net-

work, and transport-layer header fields, compressing all three layers down to a few

bytes. The adaptation layer has three primary elements mentioned below.

(a) Header compression
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(b) Fragmentation

(c) Layer two forwarding

W. hui et al.[22] describes the 6LoWPAN header arrangements; it uses header stack-

ing to keep orthogonal concepts separate and enforce a clear method for expressing

its capabilities. 6LoWPAN also provides support for Mesh under and Route over

routing. In the former routing method network stack has no role in routing instead,

the adaptation layer masks the lack of a full broadcast at the physical level by trans-

parently routing and forwarding packets within the LoWPAN. In route over routing

is done at the IP layer, with each node serving as an IP router.

Figure 2.9 shows the network architecture of 6LoWPAN including IPv6 network.

The 6LoWPAN network is connected to the IPv6 network using an edge router and

typically operate on the edge, acting as stub networks. The edge router handles

three actions:

(a) The data exchange between 6LoWPAN devices and the Internet (or other IPv6

network).

(b) Local data exchange between devices inside the 6LoWPAN.

(c) The generation and maintenance of the radio subnet (the 6LoWPAN network).

Two other device types are included in a typical 6LoWPAN network: routers and

hosts. Router do the work of routing data between the nodes in the 6LoWPAN

network and hosts are the end devices and are not capable of routing data in the

network. A host could be low powered devices which wake up periodically to check

its parent for data.

2.3.4 Link Layer

1. Bluetooth Low Energy (BLE)

13http://www.ti.com/lit/wp/swry013/swry013.pdf
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Figure 2.9: 6LoWPAN Network Architecture 13

Bluetooth Low Energy (BLE), also referred to a Bluetooth Smart is the Bluetooth

4.0 core specification. The widespread use of BLE makes it a perfect choice to enable

networking solution on Internet of thing devices. BLE is particularly designed for

short range communication and monitoring applications that are expected to be

incorporated into billions of devices in the next few years [24]. Bluetooth low energy

is not backward compatible to the classic Bluetooth as it was designed to provide

low cost, low bandwidth, low power and less complex radio standard. Since BLE is

rapidly adopted in the smartphone, this gives an opportunity for a number of BLE

based use cases in areas such as healthcare, consumer electronics, smart energy, and

security. Furthermore, the power efficiency of BLE is considered to be a key factor

which makes the BLE to be preferred choice compared to its competitors like Wi-Fi,

Zigbee3, etc.

Bluetooth protocol stack consists of two main components: The Controller and
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the Host [25]. The controller takes care of physical layer and link layer of BLE

stack and is typically implemented in the form of System-on-a-Chip (SoC) with an

integrated radio. The host runs on application processor and includes application-

level functionality. Graphics in figure 2.10 shows the BLE protocol stack and a short

description of all the layers is mentioned below:

Figure 2.10: Bluetooth Low Energy Stack [24]

(a) Attribute Protocol (ATT): The ATT defines the communication between two

devices playing server and client role. The server maintains a set of attributes

which stores the information managed by GATT protocol. The client and

server role is defined by GATT and does not relate to the role of central and

peripheral. The client sends out the request to access the attribute on the

server. The server responds back to the client. in terms of notification and

indication messages.

(b) Generic ATT (GATT): The GATT defines the framework that uses the ATT for

discovery services and exchange of characteristic from one device to another. A

characteristic is defined as a set of data which includes a value and properties.

The data related to services and characteristics are stored in attributes
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(c) Generic Access Profile (GAP): Defines the device role, modes, and procedure

for device discovery and services.

(d) Logical Link Control and Adaptation Layer Protocol (L2CAP): the primary

function of L2CAP is to multiplex the data of three higher layer protocol, ATT,

SMP and Link layer control signaling.

Communication between host and controller takes place using a host controller in-

terface (HCI). BLE defines four roles in its topology which are broadcaster, observer,

peripheral and central.

(a) Broadcaster: transmits data known as advertising packets. Devices like bea-

cons and sensors cannot connect to the broadcaster during the advertisement.

The purpose is to let other devices know of its presence.

(b) Observers: These are receivers which can receive advertising packets from

broadcasters and peripheral devices.

(c) Peripherals: These are devices that connect in a slave role. The broadcaster will

first broadcast their presence so that the central device knows of its existence

and then chose to connect with the device.

(d) Central: These are sophisticated devices and support multiple connections. It

initiates connections to peripherals. This device can be central and peripherals

at the same time.

2. IEEE 802.15.4

IEEE 802.15.4 is a standard defined and maintained by IEEE 802.15 working group14.

IEEE 802.15.4 specifies the operation of low-rate wireless personal area network.

The standard was initially specified in 2003 but superseded by the publication of

IEEE 802.15.4-2006 standard15. The standards specify the physical layer and mac

14http://www.ieee802.org/15/
15http://www.ieee802.org/15/pub/TG4.html
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layer of LR-WPANs with a focus on resource efficient communication between de-

vices. The emphasis is on resource constrained devices with a little cost of commu-

nication. It provides a connection with a range of 10 meters and transfer rate of 250

kbit/s. The figure 2.11 shows the protocol stack of IEEE 802.15.4. As shown in fig-

ure IEEE 802.15.4 defines the lower layers of the protocol stack. A brief explanation

of each layer is mentioned below.

(a) Physical (PHY) Layer: This is the lowest layer in the stack and concerned for

physical transmission on underlying radio and exchanging data bits with MAC

layer. More specifically PHY layer is responsible for

• Channel assessment

• Bit-level communications

(b) Medium Access Control (MAC) Layer: This layer resides on top of PHY layer

and uses the services of PHY layer. Responsibilities of this layer include the

following.

• Services for registering and deregistering the device in the network.

• Access control to the shared channels

• Guaranteed time slot management

• Beacon generation.

Standards like Zigbee3, WirelessHART16, and Thread17 extends the stack further

and defines the upper layers of the protocol stack. IEEE 802.15.4 can be used

with 6LoWPAN to determine the upper layer of protocol stack and provide IPv6

connectivity capabilities over WPANs.

16https://en.wikipedia.org/wiki/WirelessHART
17https://threadgroup.org/

23



Figure 2.11: IEEE 802.15.4 Software Stack Architecture

2.3.5 Device Management

In a majority of scenarios, remote deployment model is preferred in IoT. Operators can’t

expect the end users to perform any troubleshoot or management operation (such as

firmware updates) on remotely deployed IoT devices. For a seamless integration of con-

nected devices, the network of wireless sensors should be controlled by a remote manage-

ment server which should take care of device control and firmware updates.

S. K. Datta et al., [30] proposes an M2M device management framework that can

address the challenge of managing the fleet of connected M2M devices. The architecture

proposed by the authors follows the specification of open mobile alliance lightweight ma-

chine to machine (OMA LwM2M). It also adheres the CoRE link format [32] to represent

the M2M device and their endpoints using resource types and attributes. The framework

follows a lightweight description of M2M devices which is the key to implement an efficient

and scalable design.

The framework is divided into four layers namely: Perception layer, Proxy layer, Con-

figuration Storage layer and Service Enablement layer. Each layer performs a dedicated

set of functionality to bootstrap and manage the smart and legacy device. In the initializa-

tion phase devices are registered with configuration storage database using configuration
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REST APIs. Based on the requirements access control can be established in Service En-

ablement layer to provide access to defined user and defined devices. The integration

is done in such a way that M2M device management framework can be deployed in a

cloud system, M2M gateway or even inside a mobile application. Figure 2.12 depicts the

M2M device management framework and illustrates the concept defined by S. K. Datta et

al. Section 3.3 discuss more about the design and specification of LwM2M and firmware

update object.

Figure 2.12: M2M device management framework [30].

2.3.6 Security

Security is a very open and key research area in IoT. S. L. Keoh et al., [33] provides a

review of standardization effort made by IETF to standardize the security solution for

IoT ecosystem. Firmware update in a sensor network contains three layers, Firmware

update repository, Communication channel and Target Device. Two types of attacks are
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considered in remote firmware updates (i) Attack on the untrusted communication chan-

nel to access the firmware image while data transport phase (ii) Attack on target device

during firmware loading phase. Both attacks have similar capabilities to perform either

passive (eavesdropping) or active (man-in-the-middle) attacks during firmware transport

and loading phase. Remote management of sensor nodes would require communication

with each node in the sensor network. CoAP which runs on UDP is a preferred choice

concerning communication medium. DTLS is a prime consideration to secure the commu-

nication channel. DTLS is considered to be a complete security protocol which provides

authentication, key exchange, and protection of application data. DTLS provides end to

end secure session between two communicating devices in our case one inside the sensor

network, and other is remote management server [33].

BLE devices are low powered and designed to run several years on a single coin cell

battery. The area of the firmware update is open for vulnerabilities and attack. For a

secure firmware update, it is needed to establish the authenticity of data originated from

the firmware build server. The conventional way of encrypting the data with asymmetric

key cryptography (Digital Signature) would not be suitable for the type of devices in

consideration due to its low computational resource. Use of symmetric key cryptography

would be more appropriate for such devices. A hash function with the combination of

Message authentication code (MAC) could be used to establish the data integrity and

authenticity of firmware update. Working with symmetric key cryptography, there is a

need to ensure the safety of secure MAC key.

2.4 IPv6 Over BLE

Seeing, the widespread usage of BLE and projection of a billion BLE based device in

near future, IETF 6LoWPAN WG standardized RFC-7668 [26] to provide end to end IP

connectivity over BLE. RFC-7668 allows the transportation of IPv6 packets over Blue-

tooth low energy. Work done by J. Nieminen et al. [24] focuses on the enablement of
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Bluetooth low energy in low powered sensor nodes and connecting these small devices

with the Internet. Figure 2.13 shows the IPv6 over BLE stack proposed by RFC-7668

and implemented by J. Nieminen et al.

Figure 2.13: Communication Stack for IPv6 over BLE [24]

Authors presented the practical implementation of RFC-7668 (When this paper was

written, RFC-7668 was in draft phase) and evaluation of its implementation. IPv6 is not

directly supported over BLE, in this implementation author modifies the already imple-

mented 6LoWPAN adaptation layer to work with BLE. Natively 6LoWPAN is designed

to work with IEEE 802.15.4 standard [21], additional work done by the authors allowed

the modification of 6LoWPAN stack and made it compatible with BLE layer. The author

described various feature (fragmentation, header compression, and neighbor discovery)

provided by 6LoWPAN in context of IEEE 802.15.4 and also talked about enabling these

features in the context of BLE. As shown in figure 2.14, RFC-7668 advocates a star based

topology to connect multiple BLE peripherals with a central BLE device. The central

device will act as 6LBR (Border router/Gateway) as the specified topology is start based,

so there is no scope is 6LR routers as in 6LoWPAN implementation in the context of IEEE

802.15.4. Further work has been identified as an action item to support mesh network-

ing in IPv6 over BLE implementation. At present [27] provides the draft version of the
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standardization work for the support mesh networking in IPv6 over BLE implementation.

Figure 2.14: Star Topology of Bluetooth Connected Device [26]

2.5 Firmware update for Constrained Devices

This section contains the current research and solutions for firmware updates in sensor

networks which is the core of this dissertation. The present state of the art spreads

in different software update functionality such as: Modular updates [38], Image based

updates [34], Incremental update [35]. This section also focused on fail safe techniques

and error recovery [36] in case of failure in software updates.

The survey provided by S. Brown, and C.J. Sreenan [34] covers a large number of dif-

ferent solutions available for WSNs software updates. It is needed that software upgrades

and maintenance of WSNs should be automatic without the need of manually reaching to

every sensor. Working with the wireless low powered sensors uncovers major challenges

regarding energy consumption, reliability, and most importantly security. Over the period

the functional requirements of WSNs changed/extended. S. Brown, and C.J. Sreenan [34]

provides an exhaustive list of the technical requirement.

• Need for dynamic Modification

• Need for heterogeneous node support

• Integration of new software in the running system
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• Update should be reliable and reach all nodes

• Handling packet loss in context of software data dissemination in WSNs

• Special boot loader to provide support for fall back.

• Control mechanism for overall management of WSNs

The author also presented functional requirement from energy efficiency point of view.

In energy reduction context techniques such as differential, modular updates are focused

which ultimately reduce the traffic load. As a result, less energy consumption. Figure

2.15 shows the architecture and components of an autonomous firmware update system.

Figure 2.15: Architecture for Autonomous update [34]

M. Stolikj et al., [35] presented his work for efficient reprogramming of wireless sensor

networks using the data compression techniques and incremental updates. Author ex-

ploited the fact that energy used by the processor is significantly less than wireless radio.

The author emphasizes on applying data compression method to a software update in

combination with any incremental update algorithm. These two approaches, could lead
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to a significant reduction in energy consumption and resource usage. The author analyzed

various other solution such as Contiki, Mate, OSAS, and Zephyr. Out of all only Zephyr

works on principles of incremental updates and all other works on modular and Virtual

machines methodology respectively.

B. Porter et al., [38] proposed a modular upgrade approach and presented Lorien which

is a type-safe modular OS. Lorien is written in a minimal component oriented extension

of C programming language and provides strongly modeled components for strong typing

of software components. Explicit use of constructors and destructors make the dynamic

component instantiation. The overall software configurations (list of modules) are repre-

sented as a collection of pre-component-instance configuration fragments that are held in

a system manifest in program memory.

S. Unterschtz et al., [36] addresses the problem of error-prone software updates which

can disable the update functionality on a sensor node. For a fail safe software updated

author divided firmware deployment process into four sections.

1. Firmware Separation

• Splitting the firmware image into segments and packets and transferring over

the allowed limit of low powered devices such as 100 bytes for IEEE 802.15.4.

• Maintaining a bit vector to store the status of segments and needed retrans-

missions.

2. Dissemination

• A central server will control the dissemination process and based on require-

ment central server will contact selected nodes only instead of flooding the

whole network.

3. Forward Error Correction

• Getting acknowledgment of each received packet will flood the network. To
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avoid this reed solom coding is used in which for each M packets, extra k

redundant packets.

4. Boot loader and error recovery

• Author emphasizes on the necessity of watch dog timer and locking the boot

loader so that it cant be modified through software updates. Boot loader should

be carefully tested at the time of deployment

We reviewed state of the art for the firmware update in IoT devices. Present work

is related to energy efficient techniques and error detection mechanisms. At the best of

our knowledge, there is no implementation exist which provide an end to end firmware

management system for IoT devices.

2.6 A survey on IoT platforms

Traditional operating system (Windows/Unix) and RTOS does not match with the re-

quirement of small scale IoT device. An operating system for IoT should support the

protocol stack defined in section 2.3. In recent years numerous open source and propri-

etary IoT operating has been rolled out. Work done by O. Hahm, et al. [28] and P. Gaur,

et al. [29] provides a discussion on the required features for an IoT OS and a survey

of current IoT operating system. Ideally, an IoT operating system should comprise of

following feature to support small IoT devices [28].

1. Architecture

2. Programming Model

3. Scheduling

4. Small Memory Footprint

5. Support for Heterogeneous Hardware
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6. Network Connectivity

7. Energy Efficiency

8. Real-Time Capabilities

9. Security

Table 2.1 provides a survey of IoT operating system in terms features mentioned above.

The survey is partially based on the work done by O. Hahm, et al. [28] and extended

further in terms of features and updated with the current development of compared IoT

operating system.

In this survey, we have analyzed various OSs targeted for resource constrained IoT

device. These devices are not capable to run traditional OS such as Linux. Generally,

all the OSs targeted for IoT devices have supported the minimal IoT stack and protocols

defined in section 2.3. We would also like to mention that in some cases the function-

ality presented by maintainers of a particular OS doesnt go well with the specification.

Practically, while working with some of the OSs defined in the survey, we found broken

support in terms of platform or feature support. It is understandable that these OSes are

developing under open source contribution and project in OSS could take time to mature

in terms of both features and documentation.
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Chapter 3

Design

So far we established state of the art for IoT protocol stack and firmware upgrade mecha-

nism. In the current state of the art, there exist no end to end firmware upgrade framework

to remotely manage the device control and firmware upgrade on BLE devices. The goal

of this dissertation is to implement an end to end firmware upgrade framework which

adheres the standards specified by the standardization body.

3.1 Requirement

To design the required firmware upgrade mechanism, a number of requirements have

identified and mentioned below.

1. A remote management system should manage firmware upgrade and device control.

2. Use of standardized and widely accepted application layer protocol to transfer the

firmware image from firmware management server to IoT device.

3. Use of IPv6 over BLE [24] as a transport layer protocol to transport firmware blocks.

4. Firmware integrity and validity check before switching to a new firmware.

5. A bootloader capable enough to execute new firmware when instructed.
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The above-specified requirements are identified in such a way that each layer of pro-

tocol stack should follow the standard protocols, and overall implementation should be

compatible and adheres defined standards.

3.2 System Architecture

Figure 3.1: System Architecture

Figure 3.1 depicts the framework upgrade system architecture. The system contains

three main components defined below.

1. LwM2M Server: This will act as a device management server which controls the

device and provides the firmware management resources to the IoT device. The

management server should follow the specifications given by OMA-LwM2M stan-

dard [31].

2. Firmware Repository: This will act as a server hosting a firmware repository and

the expectation is that this server merely serves as a separate file server making
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firmware images available to LwM2M Clients. The server should support a CoAP

server implementing block-wise transfer. LwM2M management server provides the

URI of firmware storage server to the IoT device.

3. Gateway: an Intermediary device which will forward the communication from device

to firmware management server or vice-versa.

4. IoT device: Small resource constrained device which will act as an end point.

The device will be having an LwM2M client implementation to communicate with

LwM2M server. As shown in the figure 3.1 device should also have enough capability

to store the new firmware into flash memory.

3.3 OMA Lightweight M2M

The sections provide the details about the device control specification given by OMA

Lightweight M2M (LwM2M)[31] and further extends to a discussion on firmware update

specifications. The OMA Lightweight M2M (LwM2M) defines service architecture for

IoT devices and the protocol for device management. Graphics in figure 3.2 presents

the application layer communication between a LwM2M server and a LwM2M client,

which is present in the LwM2M device. The architecture shows the use of CoAP and

SMS binding with Datagram transport layer security (DTLS) as a UDP transport layer

security. LwM2M supports four interfaces between a device and server.

1. Bootstrap: Interface is used to provide required information to the LwM2M Client

to enable the LwM2M Client to perform “Register” with one or more LwM2M

Servers.

2. Client Registration: Interface is used by a LwM2M Client to register with one or

more LwM2M Servers, maintain each registration and de-register from a LwM2M

Server.
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3. Device Management and Service Enablement: Interface is used by the LwM2M

server to access object instances and resources available from a registered LwM2M

Client. The interface provides this access through the use of “Create”, “Read”,

“Write”, “Delete”, “Execute”, “Write-Attributes”, or “Discover” operations.

4. Information Reporting: Interface is used by a LwM2M server to observe any changes

in a resource on a registered LwM2M client, receiving notifications when new values

are available.

Figure 3.2: LwM2M Architecture [31]

Version 1.0 of LwM2M the specification [31] defines the following list of the object as

part of core technical specification.

0. Security Object

1. Server Object

2. Access Control Object
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3. Device Object

4. Connectivity Monitoring Object

5. Firmware Update Object

6. Location Object

7. Connectivity Statistics Object

3.3.1 LwM2M Firmware Upgrade Mechanism

Object 5 of LwM2M core technical specification enables firmware management on IoT

device. This Object includes installing firmware package, updating the firmware, and

performing actions after updating the firmware. The specification allows a version 1.0

complaint LwM2M client to connect with any LwM2M version 1.0 compliant server to

upgrade the firmware using the object and resource structure defined by the technical

specification. Table B.1 gives the details regarding LwM2M firmware object and its access

method. The firmware object further breaks down into the resources associated with it.

The specification [31] specifies nine resources related to firmware object. Table B.3 gives

a detailed explanation of firmware resource with the allowed values associated with it.

Figure 3.3 depicts the state diagram specified by OMA-LwM2M specification [31] for

firmware upgrade mechanism. The state diagram consists of possible states shown in

rounded rectangles and their transition condition. The graphics also depicts the assertion

and variable assignment. Variable “Update Result” signifies the error condition during

firmware update process. “state” variable defines the current state of the system. Table

B.3 defines all the possible outcome of resources associated with firmware upgrade object.
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Figure 3.3: Firmware Update Mechanism [31].

State Diagram Walkthrough

Use Case #1: Successful Firmware Update

Initially, the STATE of the system remains IDLE and LwM2M server writes the

“Package URI” to IoT Device. IoT device establishes a connection with firmware

repository identified by URI provided by LwM2M server and starts downloading the

firmware image using CoAP block wise transfer. With the start of firmware download

STATE of the system should change to “DOWNLOADING”. The firmware download

will finish with the reception of the last block of firmware and at this point, the STATE

of the system should change to “DOWNLOADED”. The system will update the new

firmware upon the reception of “Update” resource from LwM2M server and STATE

should change to “UPDATE”. After the upgrade, the system should restart with new

39



firmware image and state of the system should change to “IDLE” and updates the result

with ‘1’ (Successfully update).

Use Case #2: Failed Firmware Update

Initially, the STATE of the system remains IDLE and LwM2M server writes the

“Package URI” to IoT Device. IoT device establishes a connection with firmware

repository identified by URI provided by LwM2M server and starts downloading the

firmware image using CoAP block wise transfer. With the start of firmware download

STATE of the system should change to “DOWNLOADING”. The firmware download

will finish with the reception of the last block of firmware and at this point, the STATE

of the system should change to “DOWNLOADED”. The system will update the new

firmware upon the reception of “Update” resource from LwM2M server and STATE

should change to “UPDATE”. The system will match the CRC received from the header

of firmware with the calculated CRC of the firmware image. In case of CRC mismatch,

the system will raise an assertion and update the “update result” with ‘5’ (Integrity

check failure).

The above discussion presented only one failure possibility. Similarly, in other failures,

the result will be updated with the type of failure given in OMA LwM2M specification

table B.3.

3.4 Firmware Transfer using CoAP Block Transfer

To avoid IP fragmentation, RFC-7959 [13] extends the specification of primary CoAP

with a pair of “Block” option to transfer multiple blocks of information from a resource

representation in multiple request-response pairs. Both the client and server have to

mutually agree on the size of the block to transfer. In general, CoAP block-wise transfer

is useful in case of firmware image transfer from firmware management server to IoT

device. OMA-LwM2M specification [31] mandates the use of CoAP block-wise transfer

to transport the firmware image.
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Figure 3.4: Example of client fetching firmware image [31].

The figure 3.4 shows the transfer of firmware image using CoAP block-wise transfer in a

scenario where a package URI is provided to the client by LwM2M server and client

fetches the firmware image from indicated firmware management server. In the example

the both LwM2M client and server agreed on a block size of 128 bytes and the firmware

image of 80 KiB (=81920 bytes) sent to the LwM2M Client in 640 messages with each

128 bytes payload.

3.5 Firmware Validation

Once the new firmware is completely received in the system, it is essential to check its

validity. A faulty or erroneous firmware could make the system unusable after the

update. S. Unterschtz, et al. in his work [36] emphasis on the importance of fail-safe

over the air update and techniques to ensure system safety. In this implementation

below defined methods have been used to ensure validity and integrity of new firmware.

1. Cyclic redundancy check (CRC): Used to perform firmware validation. CRC is an
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error detecting algorithm used to detect changes in raw data.

2. Firmware Size: This can be used to validate the integrity of firmware.

The firmware image is extended with the meta data header which contains the server

side calculated CRC value and Firmware image size. Once the firmware received at

device side, these values can be matched with the values calculated from the received

firmware. Figure 3.5 depicts the structure of final firmware with an extended header

containing CRC value and Firmware size.

Figure 3.5: Firmware image with extended header containing.

Firmware validation would take place in “DOWNLOADED” state of firmware update

state machine [31]. Any error in validation will be reported back to LwM2M server

using “update result” resource of firmware upgrade object.

3.6 Flash Operation and Bootloader

The previous sections explained firmware validation and transfer mechanism of a

firmware image from firmware management server to IoT device using CoAP block-wise

transfer. Upon the reception in an IoT device, firmware blocks could be stored in two

ways:

1. RAM Storage: The received blocks would be stored in RAM which is a volatile

but faster memory.

2. Flash Storage: The received blocks would be stored in flash memory which is a

nonvolatile but slower memory.
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Figure 3.6: Flash bank with separate partition for new firmware.

The decision of storing the firmware depends on requirements and available resource of

the system. In general, the capacity of the flash memory in a constrained device is more

than RAM capacity. In this implementation, a hybrid approach is followed in which a

number of firmware blocks first stored into RAM and then transferred in to flash

memory. After completing the flash writing, the system will then ask for further blocks

from firmware management server. As shown in figure 3.6 the system works on a dual

bank approach where the new firmware would be flashed into a separate memory region

in flash memory which doesn’t impact the area where the current firmware is stored.

From the firmware update perspective the work of the bootloader is to verify the

firmware image and when instructed write the new firmware image from swap partition

to active firmware area.
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3.7 High Level Design

This section describes the high-level design for firmware update flow adhering the

specification of LwM2M mentioned in section 3.3.1. Logically the system is divided into

three parts mentioned below

1. LwM2M Client

2. Firmware Download Process

3. Firmware Upgrade Process

Upon system start, the application will wait for firmware update request from the

LwM2M server and maintains the state of the system accordingly. The flow diagram in

figure 3.7 describes the interaction among the LwM2M client, firmware download

process, and firmware update process. The design adheres the state machine

specification given by LwM2M in section 3.3.1 maintains the state of the system at any

given point of time.

LwM2M Client

The LwM2M client receives the request from LwM2M server. The communication takes

place using CoAP application layer protocol. Each request is in the form of CoAP URI

“/Object/Instance/Resource” followed by a CoAP CRUD operation. It is the

responsibility of the client to forward the request to appropriate object type with the

data payload. Graphics in figure 3.8 depicts the structure of an LwM2M request. The

state of the system will remains “IDLE” in this region of control flow.

Firmware Download Process

After the reception of firmware update request from LwM2M server, the LwM2M client

invokes the “Firmware Download Process.” The firmware download process changes the

state of the system to “DOWNLOADING” and initiate a CoAP GET request to the
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Figure 3.7: High Level Software Design
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Figure 3.8: LwM2M Request Format

package URI received from the LwM2M client. At the first practical opportunity, this

process downloads the firmware blocks and save it into the flash memory. The details of

firmware block storage are mentioned in further sections. Once it receives all the

firmware blocks, it changes the state of the system to “DOWNLOADED” and finish the

process.

Firmware Update Process

In firmware upgrade specification, LwM2M defined “Update” resource (Table B.3) to

upgrade the firmware package stored into flash memory in firmware download phase.

This resource becomes executable only if the state of the system is “Downloaded.” In

this phase, firmware update process changes the state of the system to “Updating” and

validates the firmware using CRC matching technique mentioned in section 3.5. The

process asserts the client and updates the results as CRC error if validation gets failed

otherwise it proceeds to save the boot loader settings and restarts the system.
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Chapter 4

Prototype Implementation and

Evaluation

4.1 Introduction

This chapter will provide a detail description of the firmware upgrade framework

implementation. It includes the discussion on hardware platform used, choice of software

platform along with the implementation of end to end firmware update software.

4.2 Requirement

4.2.1 Hardware Platform

Nordic Semiconductor nRF52 (nRF52832)

Nordic semiconductor’s nRF52 (nRF52832)1 is chosen as the hardware platform for this

prototype due to following reason.

1. Low-cost BLE device.

2. Support for IPv6 over BLE which is the core requirement of this dissertation

1https://www.nordicsemi.com/eng/Products/Bluetooth-low-energy/nRF52-DK
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3. Widely supported by open source RTOS such as Contiki2, Zephyr3.

4. Software development kit with ready made examples for the supported feature.

5. Debugging support using SEGGER Jlink toolchain4.

Bluetooth CSR 4.0 Dongle

Bluetooth CSR 4.0 is a USB dongle which supports Bluetooth V4.0 specifications. The

dongle is used to provide Bluetooth capability to a Ubuntu based server which is

mentioned in next section. It has dual-mode capability and support with both

Bluetooth and Bluetooth low energy. It can deliver up to 3Mbps data rate with a range

of 20 meters.

Figure 4.1: nRF52 Soc and CSR Bluetooth V4.0 Dongle.

Ubuntu based server

A Ubuntu Linux distribution version 17.04 based server is used for the following reason

1. To provide BLE connectivity to IoT device using BLE dongle.

2. To host LwM2M server for device management.

2http://www.contiki-os.org/
3https://www.zephyrproject.org/
4https://www.segger.com/products/debug-probes/j-link/
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3. To host CoAP based firmware server which reads the firmware image and transfer

block by block to IoT device.

4.2.2 Software Platform

Contiki operating system

Contiki 5 is an open source lightweight operating system specifically designed for

Internet of Things. It connects low powered, resource constrained IoT devices to the

Internet. A. Dunkels et al., [40] explained Contiki is built around an event-driven kernel

but provides optional pre-emptive multithreading that can be applied to individual

processes. It supports dynamic loading and replacement of different programs and

services. The author described for an operating system designer primary challenge lies

in finding lightweight mechanisms and abstractions that provide a rich enough execution

environment while staying within the limitations of the constrained devices. Contiki is

implemented in the C language and has been ported to a number of micro controller

architectures, including Nordic Semiconductor nRF52 series, Texas Instruments

MSP430, Atmel AVR and much more. Contiki can load and unload individual

applications or services at run-time so an incremental technique could be used to save

transmission data and bandwidth. Figure 4.2 depicts the Contiki network stack and its

corresponding implementation.

Contiki provides a dynamic structure which allows programs and drivers to be replaced

during runtime and without relinking. The kernel consists of a lightweight event

scheduler that dispatches events to running processes and periodically calls process

polling handlers[40]. Contiki kernel supports two kinds of events: asynchronous and

synchronous events, and it only provides the most basic CPU multiplexing and event

handling features. The rest of the system is implemented as system libraries that are

optionally linked with programs. The communication stack is implemented as a service

5 http://www.contiki-os.org/
6http://anrg.usc.edu/contiki
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Figure 4.2: Contiki Network Stack.6

to enable run-time replacement.

Nordic IoT SDK

The nRF5 IoT SDK 7 is an IPv6 capable Bluetooth low energy software stacks that

enable nRF5 series devices to connect and communicate directly to cloud services and

other devices over the IP-based network using Bluetooth low energy. It includes an IPv6

over Bluetooth low energy adaptation layer (6LoWPAN) and a complete Internet

Protocol Suite including IPv6, ICMP, UDP, TCP, DTLS, TLS, CoAP, and MQTT. It

provides the support of required features in the form of drivers, libraries, examples, and

APIs which makes it general purpose tool for getting started with IoT. IPv6 addresses

are assigned to all IoT devices, and the BLE link is used to transmit the IPv6 packages.

The graphic in figure 4.3 shows the IoT devices that are connected to the Internet

through BLE enabled router.

7 https://www.nordicsemi.com/eng/Products/Bluetooth-low-energy/nRF5-SDK-for-IoT
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Figure 4.3: BLE enabled IoT Network.8

The SDK also included various examples for configuring nR52 devices as a Bluetooth

low energy 6LoWPAN node and configuring it with the above transport layer (UDP and

TCP) with security (DTLS and TLS), to the application layer CoAP, MQTT, and

LwM2M. Figure 4.4 depicts the protocol stack of Nordic IoT SDK which is required to

route IPv6 packets to and from IoT devices.

Figure 4.4: Protocol stack of Nordic IoT SDK.footnotemark[8]

SoftDevices are precompiled, pre-linked libraries that can be programmed into Nordic

nRF series devices. It is an abstraction layer for the BLE radio and lets the application

integrate with lower layer radio technology. The SoftDevice provide the facility to

develop application code as ARM Cortex-M0 project and access the toolchain of ARM

8 http://infocenter.nordicsemi.com
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Cortex-M0 for application development. The examples given in NRF IoT SDK requires

a modified SoftDevice. “S1xx iot”9 supports L2CAP Connection Oriented Channels,

which is needed for transport of IP packets.

The APIs exposed by SoftDevice is composed of C function which makes the application

completely independent of compiler and linker8. The APIs are based on SuperVisor

Calls (SVC) and defined in a set of a header file. In ARM architecture SVCs are

software triggered interrupts and in Nordic’s implementation SVCs conforms to a

standard procedure call and allows parameter passing and return values. By calling a

Softdevice API, triggers an SVC interrupt which in turn calls the SVC interrupt

handler. The application compiles without any function address information at compile

time and this removes the application linking dependency with the SoftDevice. The

header files contain all information required for the application to invoke the API

functions. This SVC interface makes SoftDevice API calls thread-safe.

ARM GNU Toolchain

The GNU Embedded Toolchain 10 for ARM is a collection of packages featuring ARM

Embedded GCC compiler, binutils, GNU debugger (GDB) and other GNU libraries

necessary for bare-metal software development. It is a ready-to-use, open source suite of

tools for C, C++, and Assembly programming targeting devices based on the ARM

Cortex-M and Cortex-R processors. Based on Free Software Foundation’s (FSF) GNU

Open source tools and newlib, these toolchains are available for cross-compilation on

Microsoft Windows, Linux and Mac OS X host operating systems.

The toolchains support code generation for non-OS or ’bare-metal’ environments. It

supports ARM Cortex-M0, Cortex-M0+, Cortex-M3, Cortex-M4, Cortex-M7,

Cortex-R4, Cortex-R5, Cortex-R7, Cortex-R8 processors and ARMv8-M baseline and

mainline architectures.

9nRF5 IoT SDK v. 0.9.0 Release Notes
10https://developer.arm.com/open-source/gnu-toolchain/
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Leshan (OMA Lightweight M2M server)

Leshan is an open source OMA Lightweight Machine to Machine (LwM2M) java client

and server implementation11. It provides libraries to develop an LwM2M client and

server using the Java programming language. Leshan project contains a client, a server,

and a bootstrap server as an example to demonstrate Leshan APIs and for testing

purpose. Below mentioned are some of the salient features of Leshan

• Eclipse project since 2014

• Modular Java libraries

• Based on Californium CoAP implementation

• Based on Scandium DTLS implementation

• IPSO objects support

As shown in the figure 4.5, Leshan provides a very simple UI to get the list of connected

clients and interact with clients resources.

11http://www.eclipse.org/leshan/
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Figure 4.5: UI of Leshan Server shows interaction with NRF device.

4.3 Software Setup and Configurations

Connecting Devices to the Router

Ubuntu version 17.04 has a pre-compiled 6LoWPAN module. To establish a connection

between an nRF52 device and Linux router following procedure need to follow.

# Log in as a root user.

$ sudo su

# Mount debugfs file system.

$ mount -t debugfs none /sys/kernel/debug

# Load 6LoWPAN module.

$ modprobe bluetooth_6lowpan
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# Enable the bluetooth 6lowpan module.

$ echo 1 > /sys/kernel/debug/bluetooth/6lowpan_enable

# Look for available HCI devices.

$ hciconfig

# Reset HCI device - for example hci0 device.

$ hciconfig hci0 reset

# Read 00:AA:BB:XX:YY:ZZ address of the nRF5x device.

$ hcitool lescan

# Connect to the device.

$ echo "connect 00:AA:BB:XX:YY:ZZ 1" >

/sys/kernel/debug/bluetooth/6lowpan_control

# Check if you have established a connection.

$ ifconfig

# Try to ping the device using its link-local address,

for example, on bt0 interface.

$ ping6 -i bt0 fe80::2aa:bbff:fexx:yyzz

# Disconnect from the device.

$ echo "disconnect 00:AA:BB:XX:YY:ZZ" >

/sys/kernel/debug/bluetooth/6lowpan_control

# Check if there are active connections left.

$ ifconfig

Creating Link-Local IPv6 addresses

A link local IPv6 address must be assigned to a device to identify it uniquely in the

network. This address is based on the interface identifier (IID), which derives from the

Bluetooth Device address. Link-local addresses contain the prefix FE80::/10 and a 64-bit
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interface identifier (IID) [16]. Link-local addresses are used for addressing on a single

link if no router present in the network or the case of automatic address configuration.

Creating an IPv6 link-local address comprises three steps:

1. Transforming the Bluetooth device address into Modified EUI-64 format

2. Transforming the Modified EUI-64 address into an IID

3. Transforming the IID into a link-local address

For example, link-local address for the Bluetooth device address C0:11:22:33:44:55 is

FE80:0000:0000:0000:C011:22FF:FE33:4455, or simpler FE80::C011:22FF:FE33:4455.

Global IPv6 Prefix Distribution

By using a link-local source or destination address, routers are not allowed to forward

any packets to other links. It is required to distribute a global IPv6 prefix to the

connected devices to expose Bluetooth devices outside the link-local network. For this

purpose, Router Advertisement Daemon (RADVD) can be used on Linux. RADVD can

periodically or on solicitation send a Router Advertisement message. There are two

ways of obtaining global IPv6 prefix.

1. Stateful auto-configuration (using DHCPv6).

2. Stateless auto-configuration.

The figure illustrates how an IPv6 global address is constructed using stateless 4.6

auto-configuration.

RADVD Configuration as follows:

# Set IPv6 forwarding (must be present).

$ sudo echo 1 > /proc/sys/net/ipv6/conf/all/forwarding
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Figure 4.6: IPv6 Stateless Auto-Configuration.8

# Run radvd daemon.

$ sudo service radvd restart

# Assign prefix to btX interface

$ sudo ifconfig btX add 2001:db8::1/64

Leshan Server Initialization

The Leshan bootstrap and LwM2M standalone server have to be compiled from source

code. After compilation libraries and example server would be ready to use. Following

commands will execute Leshan bootstrap and LwM2M server.

# Multiplex port

$ ifconfig bt0 add 2001:db8::1/64

$ ifconfig bt0 add 2001:db8::2/64
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# Execute Leshan LwM2M server

$ java -jar leshan-server-demo/target/leshan-server-demo-*-SNAPSHOT

-jar-with-dependencies.jar --coaphost 2001:db8::1 --coapport 5683

# Execute Leshan bootstrap server

$ java -jar leshan-server-demo/target/leshan-server-demo-*-SNAPSHOT

-jar-with-dependencies.jar --coaphost 2001:db8::1 --coapport 5683

4.4 Software Implementation and Interaction

Figure 4.7 depicts the interaction between the components of the system. The

interaction is logically divided into five parts and described in further sections.

1. Initialization phase

2. Firmware Update Request

3. Firmware Download phase

4. Firmware Update phase

5. Firmware Swap phase
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Figure 4.7: Master Sequence Diagram.
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(a) BLE module initialization (b) Application Initialization

Figure 4.8: System Initialization Flow

Initialization phase

Once started the application initializes the BLE module and flash memory to store the

firmware. BLE requires initialization of GATT attributes and its advertisement packet.

After the initialization phase, BLE starts advertisement and waits for a connection. The

advertisement period can be configured in advertisement initialization which directly

affects the energy consumption.

The flow diagram in figure 4.8a describes the initialization sequence of BLE module and

registration of callback functions to handle the generated event. The application

initialization sequence in figure 4.8b represents the initialization of required libraries

such as LwM2M engine, CoAP library, IoT DFU library and Flash Memory.

LwM2M client initiates the communication and register its identity with LwM2M
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server. This mode refers as “Bootstrapping” phase where the LwM2M client receives

server information from a bootstrap server and registers its identity with LwM2M

server. Graphics shown in figure 4.9 shows the registered IoT device with Leshan

LwM2M server. The application also performs initialization task such as CoAP

initialization, LwM2M engine initialization, Registering default LwM2M resources, BLE

initialization, Nordic’s IoT DFU library initialization and flash memory initialization.

The flow diagram in the figure illustrates the initialization of various subsystem.

Figure 4.9: Device Registration with Leshan Server.
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Firmware Update Request

The user can issue a firmware update request using the “Package URI” object of

LwM2M firmware resource. Package URI will generate a CoAP “POST” request and

provides the URI of firmware to the application. With the next practical opportunity the

CoAP server issues CoAP “GET” request to block-wise download the package into the

system. More details on LwM2M firmware resource can be found in table B.3. Graphics

in figures 4.10 shows the UI of Leshan LwM2M server with firmware update object.

Figure 4.10: Firmware Update UI of Leshan Server

Firmware Download phase

CoAP blockwise transfer is used for transporting the firmware from firmware

management server to IoT device. Section 3.4 explains the mechanism of CoAP block

transfer where both server and client mutually agree on the size of the block to transfer

and client initiates the transfer process. Wireshark12 logs in figure 4.11 signifies the

transfer of CoAP blocks from firmware management server to IoT device.

Upon reception of firmware block, it needs to be written into flash memory. As

illustrated in figure 4.12, in this implementation a number of blocks first collected into

RAM buffer and then written into flash memory. Writing of firmware blocks into flash

memory is implemented using the “IoT File” library provided by Nordic

12https://www.wireshark.org/
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Figure 4.11: CoAP block transfer messages in wireshark

semiconductor8. IoT file abstraction library provides the APIs for accessing any object,

which can be treated as a file. Applications can use the APIs provided by libraries for

read and write operations to the memory block. The provided APIs are implemented in

an asynchronous fashion and to support that the library defines the event structure

where an application callback is assigned in the initialization phase of specified file

instance. The callback notifies the application when the data is ready, or operation is

completed which in turns could be useful to unlock another procedure. Message passing

using events and callbacks is shown in the “firmware download” and “firmware update”

phase of figure 4.7

In the SoftDevice implementation provided by the Nordic semiconductor, the underlying

flash operations are performed using the SoC library API. The flash memory access is

scheduled by SoftDevice in between the protocol radio events8. The flash access time

could be larger with short connection or advertisement intervals. The access may also be

slightly delayed to minimize the disturbance of the BLE radio protocol. In some case,

the flash memory access may fail with a timeout event:

NRF EVT FLASH OPERATION ERROR.

Firmware Update phase

The importance of firmware validation is mentioned in section 3.5. Firmware validation

is implemented using the “IoT DFU” library provided by Nordic semiconductor8. IoT

DFU exposes a common API for configuration and checksum validation. The library is
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Figure 4.12: Firmware blocks collection into RAM buffer

also responsible for triggering a swap procedure by writing into the “boot flags” which

indicates bootloader to swap firmware image. IoT DFU library is implemented in an

asynchronous fashion and hence required an application callback to notify the user-level

application. The library also provides support to validate the checks for multi firmware

update scenario, for example, updating softdevice and application together.

Firmware Swap phase

In this phase, the system will be in bootloader context. During initialization, the

bootloader will either initiate the firmware swap mode or request the softdevice to

launch the application. The configuration settings define if a new valid firmware present

in the flash memory. The bootloader initiates a firmware swap mode if the configuration

settings (boot flags) indicates to swap the firmware. The flash memory partitioned

logically for the different component. The figure 4.13 depicts the memory layout of a
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512kB nrf52 device.

Figure 4.13: Flash Memory Layout of a 512kB nrf52 device.8
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4.5 Data Structure

Below defined table 4.1 lists the major data structure used in this implementation.

Data Structure Description

Coap packet t CoAP Packet structure

Lwm2m object t Describes the structure for LwM2M object

Lwm2m resource t Describes the structure for LwM2M resource

Lwm2m instance t Describes the structure for LwM2M Instance

Lwm2m firmware t Describes the resources of LwM2M firmware object

iot file evt t Asynchronous event of IoT File library

iot file struct t Describes the structure for file abstraction

iot dfu firmware block t Description of single block of firmware

iot dfu firmware desc t
Description of the new firmware that has been written into flash

memory

bootloader settings t Structure holding bootloader settings for application and bank data

ble enable params t BLE GATTS init options

ble gap addr t BLE address

ble advdata t Data structure for BLE advertising packet.

ble ipsp handle t Structure contains information regarding IPSP profile

Table 4.1: Data Structures.

66



4.6 Evaluation

4.6.1 Firmware Download and Firmware Update

Objective

This experiment is a qualitative analysis to evaluate the functional requirement of the

implementation. The test issues the firmware download and update commands from

LwM2M server and assess the state of the system and update result.

Methodology

1. Configure the software and related services as mentioned in section 4.3.

2. Access Leshan server UI and check the firmware version and state of the system.

3. provide “package URI” and check the state of the system.

4. The system state should change after the package download.

5. Execute update and check the firmware version after device reboot.

Results

The results are measured and mentioned below for each given test case in section 4.6.1.

1. Initially Firmware version was “NRF OTA V1.0, ” and state of the system was

“IDLE.”

2. After providing the “package URI,” the state of the system was changed to

“DOWNLOADING.”

3. After package download, the system state was changed to “DOWNLOADED.”

4. After execution of update device rebooted and firmware version changed to

“NRF OTA V2.0.”
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Discussion

This experiment provides a qualitative analysis of the implemented framework. We

tested all the functional requirement and states of the system.

4.6.2 Firmware download time with different size of RAM

buffer

Objective

As shown in figure 4.12 firmware blocks are first downloaded into RAM buffer and then

transferred into flash memory. The size of the RAM buffer depends on the application.

The objective of this experiment is to measure the firmware download time with

different sizes of RAM buffer.

Methodology

An experiment was conducted with different size of RAM buffers shown in table 4.2.

Five iterations of firmware download for each RAM buffer size was performed, and the

average value was taken for the final result.

Results

The results are tabulated in the table below.

Iteration 256 Bytes 512 Bytes 1024 Bytes 2048 Bytes

1 161 153 147 145

2 162 153 147 146

3 161 153 146 145

4 161 154 147 145

5 162 153 147 146
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Average 161.4 153.2 146.8 145.4

Table 4.2: Results for Experiment #1.

Discussion

In this experiment, it was expected to gain substantial time difference with the change

in RAM block size. As shown in table 4.2 there is a marginal change in time with the

change in RAM block size. The reason for this anomaly could be the use of Nordic

Semiconductor SoftDevice implementation for flash writing. As discussed in section 4.4

flash device operation could be effected with BLE radio events. This performance

evaluation needs an investigation of the underlying implementation of Nordic

semiconductor and hence it is deferred for future work.
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Chapter 5

Conclusion and Future Work

5.1 Introduction

We identified the gaps in the current state of the art for firmware update and proposed

the design for an end to and firmware solution adhering to specified standards. Further,

we implemented a working prototype of the proposed design and evaluated the

implementation. The final chapter concludes the dissertation by highlighting the

features of the implementation, challenges faced during the implementation and future

work that can be done.

5.2 Prototype

This dissertation presents a working prototype of an end to end firmware upgrade

framework which adheres the standard specifications. The prototype provides the

implementation of firmware upgrade state machine specified by OMA LwM2M [31]. The

prototype was tested with a number of different new firmware images to upgrade and it

was concluded that the approach is successfully allowing the new firmware upgrade on a

BLE device and also presenting the state of the system at any given point of time.

70



5.3 Contributions

In this dissertation, we established state of the art for current IoT standards and

specifications. Further, we identified the gaps in the current firmware update solution.

We addressed these deficiencies by implemented an end to end solution for the firmware

upgrade on a BLE device using IPv6 over BLE which adheres the current standards.

The implementation is ready for an open source contribution. Below mentioned are the

novel contributions of this dissertation.

1. Coding and implementation for LwM2M firmware state machine.

2. Coding and implementation CoAP block transfer client in IoT device.

3. Integration of Nordic IoT DFU library with open source Contiki RTOS.

5.4 Challenges

1. The code base involved two different SDKs, Nordic IoT SDK7 and Contiki

operating system5. Integration of Nordic’s IoT DFU libraries with Contiki SDK

became a problem. Each relevant code file was manually selected and added into

Contiki code base.

2. Support for NRF52 DK in the current version of Contiki is broken. The issue is

already reported, but no action is taken yet. This dissertation is implemented

using the previous version of Contiki in which NRF52 DK is supported.

3. Less documentation regarding the flash usage of nrf52 DK causes the loss of time

while integrating flash writing support to Contiki OS.

4. Testing and debugging on actual hardware was time-consuming. For debugging

purpose, most of the time we had to rely on message prints on the serial terminal.

5. Reading and understanding the specification was time-consuming.
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5.5 Future Work

5.5.1 Energy Efficient Updates

Energy is a major constraint in IoT devices. In general updating, a firmware means

pushing a fix or new feature into the device. A major part of the firmware remains

same. In this implementation, we are sending a new firmware with every update which

required more energy with every update. Approaches like incremental or modular

Updates could be used for an energy efficient firmware upgrade. These methods reduce

the traffic load by sending only a part of firmware to upgrade; as a result less energy

consumption. In section 2.5 we mentioned few approaches which follow an incremental

or modular update fashion. In future, these approaches could be integrated with current

prototype to make it more robust and energy efficient solution.

Incremental Update

In incremental update approach, a compressed incremental patch could be sent in the

existing system. This would reduce the bandwidth usage as compared to image based

update. To generate the delta (change of old and new firmware) a number of techniques

are available namely, RDIFF, VCDIFF, and BSDIFF. The delta can be compressed on

the server side using Lempel-Ziv (LZ) variant of data compression algorithm. Upon

reception of delta on IoT device, it can be decompressed and patched with the active

firmware updates. The required downtown of the system would depend on the

application of the system and method of patching. At present Zephyr1 supports

incremental updates and development is on going for IPv6 support over BLE. Zephyr

could be a potential platform to work with to support incremental update. However,

from device management side, specification given by LwM2M supports only image based

update. It would be challenging to handle an end to end upgrade for a single patch of

firmware.

1https://www.zephyrproject.org/
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Modular Update

In a Modular update, the OS should support the dynamic linking and instantiation of

modules. Contiki is one such platform which supports dynamic module loading. Again

in this solution, the challenge would be from device management side, specification

given by LwM2M supports only image based update. It would be challenging to handle

an end to end upgrade for a single module of the system.

5.5.2 Firmware Upgrade in a mesh network

In December 2016, Bluetooth SIG released the specification for Bluetooth V5.02.

Bluetooth V5.0 adopted the mesh topology which allows devices to become a hub and

communicating directly or indirectly with other devices. In this dissertation, the current

firmware upgrade prototype is focused on a peer to peer firmware upgrade. The mesh

support of Bluetooth V5.0 could be used to extend this prototype and allowing the

firmware upgrades on peer nodes using the IoT device in picture as a hub.

As described in section 1.2 the traditional communication paradigm of client/server

model is not appropriate for IoT. In mesh network nodes can communicate with each

other and from firmware upgrade prospective neighboring nodes can fetch latest

firmware from its peer nodes. This will eliminate the single point of failure possibility

and introduce resiliency in the network.

5.5.3 Security implication of firmware upgrade

Security is an open area of research in the domain of Internet of things. There are

vulnerabilities exposed in each layer of IoT ecosystem. In case of firmware upgrades

security needs to be implemented from firmware management server till the IoT device.

The report provided by S.Farell et al.,3 mentions a large number of concerns when it

2https://www.bluetooth.com/specifications/bluetooth-core-specification
3https://tools.ietf.org/html/draft-farrell-iotsu-workshop-00
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comes to securing the ecosystem. This dissertation could further be extended to address

the security concerns and provide a “secure end to end firmware upgrade framework.”

5.5.4 Performance Evaluation

We performed the performance evaluation in section 4.6.2. Further investigation is

required to identify the cause of anomaly caused in download time with the different size

of firmware blocks. One such indication is the interference of SoftDevice with flash

writing while ongoing radio event. This could be further analyzed with the good

knowledge of Nordic’s SoftDevice implementation.

5.6 Conclusion

The aim of implementing a standard compliant, end to end firmware upgrade solution

on a BLE device using IPv6 over BLE was successfully achieved using Nordic NRF52

platform and support provided by Contiki operating system. To the best of the writers

knowledge, this is the first time such an approach where an inter operable solution for

firmware upgrade in IoT device had been implemented.

The framework and its further extension would provide a solution for long running

problems in IoT ecosystem to manage and upgrading a fleet of devices. The

specification followed by this framework would make it inter operable and extend its

reach to work with different vendors and services. This approach is a one step forward

to envisage the Internet of Things.
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Appendix A

Abbreviations and Acronyms

Short Term Expanded Term

IoT Internet of Things

IP Internet Protocol

IPv6 Internet Protocol Version 6

OS Operating System

SDK Software Development Kit

HDK Hardware Development Kit

API Application Programming Interface

RFC Request for Comments

SIG Special Interest Group

WSN Wireless Sensor Network

REST Representational state transfer

IETF Internet Engineering Task Force

IAB Internet Architecture Board

6LoWPAN IPv6 over Low-Power Wireless Personal Area Networks

CoAP Constrained Application Protocol

CoRE Constrained RESTful Environments

LwM2M Lightweight M2M
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Appendix B

LwM2M Firmware Update

Specification

Object Definition

Name Object ID Instances Mandatory Object URN

Firmware Update 5 Single Optional urn:oma:lwm2m:oma:5

Table B.1: Firmware Object Definition [31].

Resource Definition
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ID Name Operations Instances Mandatory Type Range Description

0 Package W Single Mandatory Opaque Firmware package

1 Package URI RW Single Mandatory String 0-255 bytes

URI from where the device can down-
load the firmware package by an alter-
native mechanism. As soon the device
has received the Package URI it per-
forms the download at the next prac-
tical opportunity. The URI format is
defined in RFC 3986. For example,
coaps://example.org/firmware is a syn-
tactically valid URI. The URI scheme
determines the protocol to be used.
For CoAP this endpoint MAY be a
LwM2M Server but does not necessar-
ily need to be. A CoAP server imple-
menting block-wise transfer is sufficient
as a server hosting a firmware repos-
itory and the expectation is that this
server merely serves as a separate file
server making firmware images avail-
able to LwM2M Clients.

2 Update E Single Mandatory none

Updates firmware by using the
firmware package stored in Package,
or, by using the firmware downloaded
from the Package URI. This Resource
is only executable when the value of
the State Resource is Downloaded.

3 State R Single Mandatory Integer 0-3

Indicates current state with respect to
this firmware update. This value is set
by the LwM2M Client. 0: Idle (be-
fore downloading or after successful up-
dating) 1: Downloading (The data se-
quence is on the way) 2: Downloaded
3: Updating If writing the firmware
package to Package Resource is done,
or, if the device has downloaded the
firmware package from the Package
URI the state changes to Downloaded.
Writing an empty string to Package Re-
source or to Package URI Resource, re-
sets the Firmware Update State Ma-
chine: the State Resource value is set
to Idle and the Update Result Resource
value is set to 0. When in Downloaded
state, and the executable Resource Up-
date is triggered, the state changes
to Updating. If the Update Resource
failed, the state returns at Down-
loaded. If performing the Update Re-
source was successful, the state changes
from Updating to Idle. Firmware Up-
date mechanisms are illustrated below
in Figure 29 of the LwM2M version 1.0
specification.

5 Update Result R Single Mandatory Integer 0-9

Contains the result of downloading or
updating the firmware 0: Initial value.
Once the updating process is initi-
ated (Download /Update), this Re-
source MUST be reset to Initial value.
1: Firmware updated successfully, 2:
Not enough flash memory for the new
firmware package. 3. Out of RAM dur-
ing downloading process. 4: Connec-
tion lost during downloading process.
5: Integrity check failure for new down-
loaded package. 6: Unsupported pack-
age type. 7: Invalid URI 8: Firmware
update failed 9: Unsupported protocol.
A LwM2M client indicates the failure
to retrieve the firmware imagine using
the URI provided in the Package URI
resource by writing the value 9 to the
/5/0/5 (Update Result resource) when
the URI contained a URI scheme un-
supported by the client. Consequently,
the LwM2M Client is unable to retrieve
the firmware image using the URI pro-
vided by the LwM2M Server in the
Package URI when it refers to an un-
supported protocol.
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ID Name Operations Instances Mandatory Type Range Description

6 PkgName R Single Optional String 0-255 bytes Name of the Firmware Package

7 PkgVersion R Single Optional String 0-255 bytes Version of the Firmware package

8 Protocol Support R Multiple Optional Integer

This resource indicates what proto-
cols the LwM2M Client implements
to retrieve firmware images. The
LwM2M server uses this information
to decide what URI to include in
the Package URI. A LwM2M Server
MUST NOT include a URI in the
Package URI object that uses a pro-
tocol that is unsupported by the
LwM2M client. For example, if
a LwM2M client indicates that it
supports CoAP and CoAPS then a
LwM2M Server must not provide
an HTTP URI in the Packet URI.
The following values are defined by
this version of the specification: 0
CoAP (as defined in RFC 7252) with
the additional support for block-wise
transfer. CoAP is the default set-
ting. 1 CoAPS (as defined in RFC
7252) with the additional support for
block-wise transfer 2 HTTP 1.1 (as
defined in RFC 7230) 3 HTTPS
1.1 (as defined in RFC 7230) Addi-
tional values MAY be defined in the
future. Any value not understood
by the LwM2M Server MUST be ig-
nored.

9 Delivery Method R Single Mandatory Integer

The LwM2M Client uses this re-
source to indicate its support for
transferring firmware images to the
client either via the Package Re-
source (=push) or via the Package
URI Resource (=pull) mechanism. 0
Pull only 1 Push only 2 Both. In
this case the LwM2M server MAY
choose the preferred mechanism for
conveying the firmware image to the
LwM2M Client.

Table B.3: Firmware Resource Definition [31].
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