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Summary

The electricity supply is produced from a mixture of di↵erent sources. These sources

can be categorised as renewable and non-renewable. Renewable sources, such as wind

and solar produce no CO
2

emissions, but they are weather dependent. Non-renewable

sources, such as coal and gas, are stable, but they do produce CO
2

emissions. European

Union (EU) countries are required to reduce CO
2

emissions in order to comply with

EU policy. This is achieved by increasing the use of renewable energy. The weather

dependent nature of renewable sources means that the proportion of renewable and

non-renewable energy in the electricity supply is constantly changing. This means that

the CO
2

emissions produced by the electricity supply will vary over time.

The pattern of electricity consumption needs to dynamically adapt to enable the min-

imisation of CO
2

emissions. This dissertation focusses on water heaters, which have

two sources of heat energy, an electrical element and a gas-fired space heating system.

Existing research in this area has examined energy consumption of water heaters which

only have a single source of heat energy; an electrical element. A water heater can store

energy which gives it a flexible consumption pattern. This means that a water heater

can consume energy during periods when a low CO
2

emission source becomes available.

This dissertation focusses on the implementation of a controller which manages the

operation of the water heater. The goal of the controller is to provide utility to the

end user when required, while minimising the CO
2

emissions produced by the energy

it consumes. Two types of controllers are investigated. The first controller is referred

to as the expert controller. The expert controller performs actions using a known,

good control policy. The second controller employs Q-learning, a reinforcement learning

algorithm. The Q-learning controller learns a near optimal control policy by exploring as

many di↵erent state-action combinations as possible. The Q-learning controller learns

its policy through receiving positive rewards for good actions, while bad actions result

in negative rewards.

A set of experiments were carried out with the aim of determining whether the Q-

learning controller could learn a control policy that resulted in superior performance

compared to the expert controller. These experiments were carried out through the use

of a simulation framework, GridLAB-D . This dissertation describes the implementation

of the two controllers in the GridLAB-D simulation framework.



iii

The results of the experiments show that the Q-learning controller performs similarly

to the expert controller. At times, the Q-learning controller produces a lower amount of

CO
2

emissions in order to meet its heating requirements. However, this also results in

a loss of utility to the end user.
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The electricity supply is produced from renewable and non-renewable energy sources.

Renewable sources, such as wind and solar produce no CO
2

emissions, but they are

weather dependent. Non-renewable sources, such as coal and gas, are stable, but they

do produce CO
2

emissions. European Union ( EU) countries are required to reduce CO
2

emissions in order to comply with EU policy. This is achieved by increasing the use of

renewable energy. The weather dependent nature of renewable sources means that the

proportion of renewable and non-renewable energy in the electricity supply is constantly

changing. This means that the CO
2

emissions produced by the electricity supply will

vary over time.

The pattern of electricity consumption needs to dynamically adapt to enable the min-

imisation of CO
2

emissions. This dissertation focusses on water heaters, which have

two sources of heat energy, an electrical element and a gas-fired space heating system.

Existing research in this area has examined energy consumption of water heaters which

only have a single source of heat energy; an electrical element. A water heater can store

energy which gives it a flexible consumption pattern. This means that a water heater

can consume energy during periods when a low CO
2

emission source becomes available.

This dissertation investigates the implementation of two di↵erent controllers which man-

age the operation of the water heater. The first controller, the expert, implements a

known, good control policy. The second controller employs Q-learning. A set of experi-

ments were carried out in order to determine if the Q-learning controller could achieve

better performance than the expert controller. The results of the experiments show that

the Q-learning controller could produce lower levels of CO
2

emissions. However this

resulted in a loss of utility to the end user.
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Chapter 1

Introduction

This goal of this dissertation is to minimise the CO
2

emissions that are produced from

water heater usage. The fundamental way in which this is achieved is through shifting

the energy consumption pattern of a water heater to periods when low CO
2

energy

becomes available.

1.1 Background

The electricity supply is produced from two di↵erent categories of energy sources. These

two categories are renewable and non-renewable energy. Renewable sources, such as wind

and solar produce no CO
2

emissions, but they are weather dependent. Non-renewable

sources, such as coal and gas, are stable sources of energy but they do produce CO
2

emissions. The weather dependent nature of renewable sources means that levels of

renewable and non-renewable energy generation is constantly changing. This means that

the CO
2

emissions produced by electrical supply generation is also constantly changing.

Based on these characteristics of electricity supply generation, it is clear that the pattern

of energy consumption needs to coincide with periods of high renewable energy avail-

ability. Devices with a flexible electricity consumption pattern (eg. electric vehicles,

water heaters, etc.) are ideal for adapting the pattern of energy consumption.

1



Chapter 1. Introduction

1.2 Motivation

In an e↵ort to reduce CO
2

emissions, the European Union (EU) has proposed a set

of reduction targets to reach by 2050. The EU 2050 roadmap (European Commission,

2011) sets a target to achieve at least an 80% reduction in CO
2

emissions by 2050.

Increasing the use of renewable energy will contribute to achieving these targets. It

is clear that EU member countries will be required to continue lowering their carbon

emissions in the coming years.

1.3 Dissertation Objectives

This dissertation investigates two types of controllers which are designed to manage the

operation of the water heater. The first controller is referred to as the expert. The expert

controller manages the operation of the water heater based on a known, good control

policy. The second controller employs Q-learning, a reinforcement learning algorithm

in order to learn a near optimal control policy. This dissertation investigates whether

the performance of the Q-learning controller can exceed the performance of the expert

controller.

1.4 Dissertation Overview

The first chapter, Introduction, introduces the goal and background of this dissertation.

The second chapter, State of the Art, discusses the existing research related to the topic

of this dissertation. It also identifies areas that this dissertation builds on.

The third chapter, Design, outlines an overview of the type of water heater that this

dissertation focusses on. It also outlines the operation of two di↵erent water heater

controllers.

The fourth chapter, Implementation, describes the implementation of the water heater

and its controllers which are outlined in the third chapter. Note: Code implementations

can be found in appendix B

Page 2 of 58



Chapter 1. Introduction

The fifth chapter, Experimental Procedure, outlines the experiments that were carried

out in order to evaluate the performance of the two water heater controllers which are

described in the third chapter.

The sixth and final chapter, Conclusion, discusses the conclusions made based on the

results from the fifth chapter.

Page 3 of 58



Chapter 2

State of the Art

This chapter examines work related to this dissertation. Related works have examined

shifting the pattern of electricity consumption in order to achieve a particular goal. The

shifting of electricity consumption is commonly referred to as Demand Response in the

electricity industry.

This dissertation examines shifting electrical consumption to periods when the CO
2

emissions produced from the electrical supply are lower. The CO
2

emissions produced

from the electrical supply are lower at times when renewable energy forms a large part

of the supply. Related work has examined the shifting of electrical consumption in

order to achieve other goals such as minimising the total cost of energy consumption or

maximising the use of renewable energy.

2.1 Adapting Electrical Consumption Pattern

The shifting of electricity consumption patterns is a topic that is of interest to both

academia and industry. Existing research has examined this activity with the aim of

achieving a particular goal. This goal may be to minimise the cost of electricity consump-

tion, reduce peak in electrical demand, maximise renewable energy use or respond to

changes in electrical frequency. The following section examines various goals of adapting

electrical consumption in existing research.

4



Chapter 2. State of The Art

2.1.1 Demand Response

The shifting of electrical consumption in response to a changing price profile is referred

to as Demand Response. Electrical grid operators have always focussed on modifying

the level of electrical supply on the grid. In recent years, managing the level of demand

on the grid has become increasingly important for grid operators. Today, grid operators

can determine incentives for consumers to adjust their demand upon request. In Albadi

and El-Saadany (2007), Demand Response is discussed in detail with a particular focus

on the di↵erent mechanisms for price incentives.

2.1.2 Minimise Financial Cost

In O’Neill et al. (2010), Ruelens et al. (2016a), the use of reinforcement learning algo-

rithms are employed with the goal of minimising the financial cost of electricity con-

sumption to the end user. In O’Neill et al. (2010), the electricity consumption pattern

of general devices was successfully adapted to avoid peaks in electricity pricing. Peaks

in electrical demand were avoided by delaying the energy consumption of a device while

also minimising the dis-utility to the end user. In Ruelens et al. (2016a), the electrical

consumption of a water heater was shifted to periods of lower prices. Two di↵erent

pricing profiles were examined; day-ahead pricing and imbalance pricing. The proposed

system for minimising cost was shown to be successful in both a simulation experiment

and a lab experiment.

2.1.3 Reduce Peak Energy Consumption

In Dusparic et al. (2013), the consumption pattern of electric vehicle charging is adapted

with the goal of reducing peak energy demand. A collection of 9 residential households

with varying base loads, were examined. Each of these households had a reinforcement

learning agent controlled electric vehicle charging station. The agent in each household

was designed to avoid overloading a local transformer which was connected to all of

the households. Each agent was provided with information on current load as well as

the predicted day ahead load. The agent successfully learned to charge the electric

vehicle during periods of low demand. The agent was also designed so that current load

information could be interchanged directly with a pricing signal.

Page 5 of 58



Chapter 2. State of The Art

2.1.4 Frequency Response

The electricity grid operator is constantly working to balance the electrical supply with

the current demand. Failure to maintain this balance results in negative consequences

for equipment connected to the grid. The balance of electrical supply and demand

can be observed by measuring the frequency of the electrical signal on the grid. The

electrical grid operator in Ireland, Eirgrid, works to maintain the desired frequency of

50Hz Eirgrid (2015a). A rise in frequency indicates that the electrical supply is greater

than demand. A decrease in frequency indicates that electrical demand is greater than

supply. In order to maintain the desired frequency of 50Hz, electricity consumers can

make small changes to their electrical consumption in order to correct fluctuations in

electrical frequency.

In Short et al. (2007), the use of dynamic demand control of consumer appliances is in-

vestigated as a mechanism for providing frequency stability. Refrigeration and heating

devices were identified as suitable appliances for providing frequency response. For ex-

ample, freezers operate throughout the entire year at all times of the day. Such devices

are always available to participate in adjusting electricity demand. Dynamically con-

trolling the demand of a number of refrigeration devices has been shown to successfully

smooth out fluctuations in frequency. It also proves e↵ective in smoothing frequency

during periods when renewable wind energy supply fluctuates.

2.1.5 Maximise Renewable Energy

The proportion of renewable energy in the electricity supply is constantly changing. This

is because of the largely weather dependent nature of renewable energy. In Dusparic

et al. (2015), the electricity consumption pattern of a collection of households is adjusted.

A distributed learning algorithm was used to control an electric vehicle charger in each

household. The control agent was encouraged to avoid causing the charging load to

exceed the total available renewable energy. Each control agent was highly rewarded

for reaching a state where the electric vehicle battery charge reached the minimum

requirement. The control agent is also encouraged to avoid charging the electric vehicle

during periods of peak demand.

Page 6 of 58
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2.1.6 Analysis

Existing research has examined the shifting of electricity consumption for the following

goals:

• Minimising the cost of energy consumption (O’Neill et al., 2010, Ruelens et al.,

2016a).

• Reducing peaks in demand (Dusparic et al., 2013).

• Responding to changes in electrical frequency (Short et al., 2007).

• Maximising the use of renewable energy (Dusparic et al., 2015).

This dissertation examines the minimisation of CO
2

emissions through dynamically

adapting the pattern of electricity consumption. As of the writing of this dissertation

no other work in this area has examined this goal.

2.2 Renewable Energy Use

Existing research has examined shifting electricity consumption to times when renew-

able energy is available. Renewable energy sources such as wind and solar are weather

dependent which means that the amount of available renewable energy varies over time.

Existing research has examined directly shifting consumption to times when renewable

energy is available. Currently, electrical grid operators are required to limit the amount

of renewable energy generation. The following section discusses these topics in more

detail.

2.2.1 Renewable Energy Curtailment

Electrical grid operators cannot always accommodate renewable energy to its maximum

available level of power generation. The electrical grid operator in Ireland, Eirgrid,

is required to limit renewable energy generation once it exceeds a safe proportion of

the total energy supply. This limiting of renewable energy is referred to as Renewable

Curtailment. Renewable energy generation is typically curtailed in order to ensure the
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stable operation of the power system. Eirgrid publishes an annual report (Eirgrid,

2015b, 2016, 2017) documenting the level of renewable curtailment which occurs each

year. In its report, Eirgrid also documents measures put in place to reduce the amount

of renewable energy that is curtailed.

2.2.2 Adapting Energy Consumption Based on Renewable Availability

Existing research has examined directly and indirectly shifting electricity consumption

to times when renewable energy is available.

In Dusparic et al. (2015), the shifting of electricity consumption to times when renewable

energy is available is examined. A collection of residential households were examined,

each with a di↵erent base load profile. Each household had an electric vehicle which

required charging. The consumption pattern of the electric vehicle charger was man-

aged by a controller which performed the majority of the charging during times when

renewable energy was available. The controller was encouraged to consume renewable

energy even during times of peak demand. However, when renewable energy was not

available, the controller was encouraged to postpone charging to periods of low overall

demand.

Dusparic et al. (2013) examined the shifting of electricity consumption to periods of

low overall demand. The proposed system was successful in its goal of shifting energy

consumption to periods of o↵-peak demand. This provided the ground work for creating

a system which shifted demand to periods of high renewable availability in Dusparic

et al. (2015).

In Ruelens et al. (2016a), the electricity consumption of a water heater device is modified

according to an external price profile. A system for controlling the water heater is

proposed which aims to minimise the cost of energy consumption while providing a high

utility to the end user. The energy pricing examined was based on the Belgian day-ahead

and imbalance profiles. The Belgian price profile incorporates a component that reflects

the renewable energy availability.
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2.2.3 Analysis

Existing research has examined directly increasing the consumption of renewable energy

by shifting energy consumption to times when it becomes available. Research has also

examined the shifting of energy consumption for other goals which can be adapted for

the goal of maximising the use of renewable energy.

This dissertation considers electricity consumed during periods of renewable curtailment

as having a zero CO
2

emissions cost. The goal of this dissertation is to minimise CO
2

emissions of energy consumption. This can be achieved through maximising the use of

electricity at times when renewable energy curtailment occurs.

2.3 Residential Energy Application

Existing Research has examined shifting the energy consumption pattern of electric

vehicle charging, water heating and also general applications. The following section

outlines some of the related works which examine each of these applications.

2.3.1 Electric Vehicle Charging

The application of electric vehicle charging has been examined in many related works

which aim to adapt a pattern of energy consumption (eg. Dusparic et al. (2013, 2015),

Shao et al. (2011)). Electric vehicles store energy in a battery. An electric vehicle is

typically connected to a power supply when the owner is at home in order to replenish

the battery. The main requirement of the electric vehicle is that it be su�ciently charged

for its next journey. It is not important when the charging of the electric vehicle occurs

as long as it provides utility when required. These properties mean that the application

of electric vehicle charging has a flexible consumption pattern.

2.3.2 Water Heating

Water Heating has been examined in many related works as a suitable application for

shifting a pattern of energy consumption (eg. Ruelens et al. (2016a, 2014, 2016b), Al-

jabery et al. (2014), Gholizadeh and Aravinthan (2016)). Water heaters are typically

Page 9 of 58



Chapter 2. State of The Art

insulated water storage tanks with one or more sources of energy. Related works have

only examined water heaters with electricity as a single source of energy. Similar to the

charging of electric vehicles, a water heater can consume and store energy at any time.

Although energy can be consumed at any time, it is important that the water heater

provide hot water (utility) to the end user when required. These properties make water

heating an excellent application for adapting an energy consumption pattern.

2.3.3 General

The shifting of the consumption pattern of general electrical devices has also been ex-

amined in existing research (eg. O’Neill et al. (2010), Wen et al. (2015)). Research

using the application of general devices has focussed on learning patterns in end user

behaviour. General devices may have a flexible or inflexible consumption pattern. This

can lead to a level of dis-utility to the end user as the utility of an inflexible device may

be delayed.

2.3.4 Analysis

Existing research in the area of shifting the energy consumption pattern of electrical

devices has examined various applications which are summarised below:

• Electric Vehicle Charging.

• Electric only water heating.

• General electrical device usage.

This dissertation examines the application of water heating using two sources of energy;

electricity from the grid and heat from a gas-fired boiler. This type of water heater

inherits the useful properties of a standard electric water heater which has a flexible

consumption pattern. Multiple sources of energy provide the water heater with an

increased level of flexibility in electrical energy consumption.
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2.4 Control Algorithm for Adapting an Energy Consump-

tion Pattern

Existing research has examined various algorithms for controlling an electrical device

such that its energy consumption pattern is adapted. Reinforcement learning based

algorithms are frequently used in related works. This is largely due to the fact that

obtaining an optimal control policy for a device is typically a non-trivial task. It involves

managing the operation of a device, shifting its energy consumption pattern and also

providing maximum utility to the end user. The Q-learning algorithm is an example

of a reinforcement learning algorithm. Existing research has also examined the use of

Batch Reinforcement Learning algorithms such as Fitted Q-iteration.

2.4.1 Q-learning

The Q-learning algorithm has been frequently implemented in related works in order

to learn an optimal control policy for an electrical device (O’Neill et al., 2010, Wen

et al., 2015, Pan and Lee, 2016). O’Neill et al. (2010) chose the Q-learning algorithm

because of its common usage and relative ease of understanding. Pan and Lee (2016)

chose to use the Q-learning algorithm as it does not require a state transition model of

its environment and it can operate in stochastic environments.

2.4.2 Fitted Q-iteration

A number of related works have implemented the Fitted Q-iteration algorithm in order

to learn an optimal control policy for an electrical device (Ruelens et al., 2016a, 2014,

2016b). In Ruelens et al. (2014), the Fitted Q-iteration algorithm was implemented to

learn a control policy for an electric water heater with the aim of minimising the cost

of energy consumption. Fitted Q-iteration was chosen as it is a batch reinforcement

learning technique that does not require many interactions with its environment before

converging to a reasonably good policy. This is based on how Fitted Q-iteration updates

its policy using a combination of o↵-line learning as well as on-line learning.

Page 11 of 58



Chapter 2. State of The Art

2.4.3 Distributed W-learning

A distributed multi-agent reinforcement learning algorithm, Distributed W-learning

(DWL) has been examined in existing research (Dusparic et al., 2013, 2015, Taylor

et al., 2014). This algorithm is based on Q-learning and W-learning. Each agent in the

DWL system passes a message about the current state it is in and the value of that

state. Each device learns an optimal policy based on meeting its own objectives and

how it a↵ects neighbouring agents Taylor et al. (2014).

2.4.4 Analysis

The control algorithms which have been examined in existing research can be sum-

marised as follows:

• Q-learning (Reinforcement Learning)

• Fitted Q-iteration (Batch Reinforcement Learning)

• Distributed W-learning (DWL)

This dissertation examines the adapting of the energy consumption of a single water

heater device which is managed by a single agent. This means that a multi-agent al-

gorithm such as DWL would be inappropriate. This dissertation uses Q-learning as an

algorithm for learning an optimal control policy. Q-learning is a reinforcement learning

algorithm which learns an unknown transition model and can be used in stochastic en-

vironments. This makes it suitable for controlling the energy consumption of a water

heater device in a stochastic environment. Furthermore, as mentioned in (O’Neill et al.,

2010), Q-learning is commonly used and it is relatively straightforward to understand

its operation.
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Design

In this chapter, an overview of the water heater is outlined. The operation of a controller

device which chooses the appropriate action the water heater should perform is described.

Two separate designs of the controller based on di↵erent control policies are outlined.

The first controller is called the “expert” controller. The expert controller performs

actions based on a known good control policy. A second controller is described which

uses a reinforcement learning algorithm to learn an optimal control policy. The next

chapter will describe the implementation of the controllers outlined in this chapter.

3.1 Water Heater Overview

The water heater examined in this dissertation uses a combination of two energy sources,

electricity from the grid and heat from a gas-fired boiler. The water heater is an in-

sulated water tank which means that it can store thermal energy before hot water is

required. These two properties of the water heater, energy storage and multiple energy

sources, result in an application that is highly suitable for a flexible and adaptable energy

consumption pattern. The design of the water heater is illustrated in figure 3.1.

3.1.1 Hot Water Requirement

The water heater is required to provide hot water (utility) to the end user on a defined

schedule. The end user can choose to deviate from this schedule if necessary. It is
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Figure 3.1: Water Heater

assumed that the end user will only consume hot water during the defined requirement

schedule.

3.1.2 Electrical Energy

The water heater has an internal electrical element which can be powered on or o↵ in

order to increase the temperature of the water.

3.1.3 Heat Energy from a Gas-fired Boiler

The water heater has an internal heating coil which is heated by a gas-fired boiler. The

gas-fired boiler heats water which is circulated inside the coil. The coil then transfers

this heat energy into the water heater causing the temperature of the water to rise.

The gas-fired boiler is assumed to provide heat energy for both water heating and space

heating.

3.1.4 Controller

The water heater is managed by a controller device. The controller device reads a set of

input data at a finite time step interval. The controller uses this input data to update

its internal state. Using this state information, the controller makes a decision about
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the next action that should be performed. The controller then carries out the chosen

action before waiting for the next time step. Section 3.1.4.1 outlines the set of input

data that is read by the controller. Section 3.1.4.2 outlines the set of available actions

that the controller can take based on the current state.

Note: The controller device is considered to be an embedded device which is network

connected.

3.1.4.1 Controller Input Data

Data Item Description

Temperature
This indicates the temperature of the water

leaving the tank.

Height
This indicates the height of the hot water

column inside the water heater.

Water Demand
This indicates the rate at which hot water is

being consumed.

Electric Element On/O↵ The on/o↵ state of the electrical element.

Gas Boiler On/O↵ The on/o↵ state of the gas-fired boiler.

Electricity CO
2

Emissions
The current amount of CO

2

per kWh of

electricity produced by the grid.

Time Until Hot Water Required
The length of time before hot water is

required by the end user.

Table 3.1: Input Data Provided to the Controller

3.1.4.2 Controller Actions

The controller can select one of five di↵erent actions after each state update. However

not all actions can be chosen from all states.

1. Switch the electrical element on.

2. Switch the electrical element o↵.

3. Switch the gas-fired boiler on.
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4. Switch the gas-fired boiler o↵.

5. Do nothing.

The following rules determine which actions can be performed in a particular state. Not

all actions are available to be chosen in any given state.

• In states where the gas fired boiler is on, the agent can only select from actions:

1, 4 or 5.

• In states where the electrical element is on, the agent can only select from actions:

2, 3 or 5.

• In states where the water heater is overheating and the electrical element is on,

the agent can only select action 2.

• In states where the water heater is overheating and the gas-fired boiler is on, the

agent can only select action 4.

• In states where the water heater is overheating and the electrical element is o↵

and the gas-fired boiler is o↵, the agent can only select action 5.

Figure 3.2: Water Heater with CO2 Signal
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3.2 CO2 Signal

The controller receives a signal over a network connection (see figure 3.2) which repre-

sents the current level of CO
2

emissions produced by the electricity grid. This signal is

sent from a central authority which manages the electricity grid. The signal is a broad-

cast message which informs the controller of the current CO
2

cost of consuming a unit

of electricity (gCO
2

/kWh).

This dissertation considers times when renewable energy approaches a level where it

begins to be curtailed as periods of high renewable availability. Consuming electricity

during these periods results in less renewable energy being curtailed. In other words,

consuming electricity during periods of high renewable availability, means that available

renewable energy is consumed which would otherwise be wasted.

This dissertation considers the CO
2

emissions produced from the electricity grid during

periods of high renewable availability to be zero. This is because additional electricity

consumed during these periods maximises the use of available renewable energy.

The CO
2

signal which is broadcast to the controller, can also be interchanged with a

price signal. For example, if the electricity grid operator implements a financial incentive

to consume energy at times when CO
2

emissions are low, the price will also be low.

Similarly, consuming energy at times when CO
2

emissions are high, the price will also

be high.

3.3 Expert Controller

The expert controller was designed based on a known good policy. This policy was

derived from a set of expert rules. The expert rules are shown in table 3.2.
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Rule Number Description Action

1 Tank is overheating Switch o↵

2

Hot water is not required until much later and electricity

with low CO
2

emissions is available and the tank is below

the target temperature

Switch on

3
Hot water is soon required and the tank is below the target

temperature
Switch on

4
Hot water is soon required and the tank is less than half

full of hot water
Switch on

5
Hot water is soon required and the tank is within the

target temperature range and the tank is currently heating
Switch on

6 All other states Switch o↵

Table 3.2: Expert Controller Rules

Note: when the expert chooses to switch on the water heater, the energy source with the

lowest CO2 emissions is chosen.

3.4 Q-learning Controller

The second controller uses Q-learning (Watkins and Dayan, 1992), a reinforcement learn-

ing algorithm which learns an optimal control policy. The precepts of the Q-learning

agent are the same inputs available to the controller as outlined on page 15. The actions

available to the Q-learning agent are the same controller actions as outlined on page 15.

A reinforcement learning agent learns an optimal (or near optimal) control policy without

a known state-action transition model. The agent learns a state transition model through

trying di↵erent actions in each state. As the agent attempts new actions, it receives

feedback in the form of a positive or negative reward once it reaches the next state. By

trying an action and observing the resulting reward, the agent can begin to learn an

optimal policy.
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3.4.1 Agent Environment

• The task environment of the agent is partially observable. The agent can only

observe state at finite time steps. The entire state of the environment is not visible

to the agent. For example, the agent will not observe a change in environment

state between observation time steps.

• The agent operates as a single agent. There are no other agents which an individual

agent needs to cooperate with in order to achieve its goal.

• The environment that the agent operates in is stochastic. The next state observed

by the agent is not completely determined by the current state and the action

performed by the agent. For example, the end user of the water heater may leave

a tap running by accident which completely drains the tank and prevents the agent

from heating the tank.

• The agent operates in a sequential task environment. Actions that the agent de-

cides to perform or not perform will influence the future states of the environment.

• The environment that the agent operates in is a continuous environment. For

example, the temperature, height and demand of hot water are a combination of

continuous values (as opposed to discrete values).

3.4.2 Q-learning Agent

(Watkins and Dayan, 1992) developed an o↵-policy temporal-di↵erence (TD) learning

algorithm which is known as Q-learning. It is defined below (Sutton and Barto, 1998):

Q(St, At) Q(St, At) + ↵
h
Rt+1

+ �max
a

Q(St+1

, a)�Q(St, At)
i

Figure 3.3: Q-learning Algorithm

The Q function is a learned action-value function which provides the agent with the

value for taking a given action in a given state. It directly approximates the optimal

action-value function q⇤ regardless of the current policy of the agent. The current policy
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will determine how the state-action pairs (St, At) are updated. Correct convergence to

an optimal policy is eventually achieved through continuously updating the state-action

pairs.

The diagram below from Sutton and Barto (1998) demonstrates a pseudo-code version of

the Q-learning algorithm. For each step of an agent episode, the agent selects an action

A based on the current state S using the Q-value function. The agent then performs the

selected action and observes the resulting new state S0 and the reward R for performing

the previous action. The agent then updates its Q-value for (S,A) based on the resulting

S0 and the received R. The update of the Q-value also incorporates the learning rate

(↵) and the discount factor (�).

The learning rate (↵) is a value set between 0 and 1. A low learning rate means that

Q-values are never updated. A high learning rate means that Q-values are updated very

frequently and the agent learns very quickly.

The discount factor (�) is a value set between 0 and 1. The value of the discount

factor indicates whether the agent is biased towards receiving current rewards or future

rewards. When the discount factor is close to zero, the agent considers rewards in

the future to be less important than current rewards. When the discount factor is 1,

the agent considers rewards of the infinite horizon to be more important than current

rewards.

Figure 3.4: Q-learning Algorithm Pseudo-code (Sutton and Barto, 1998)
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3.4.3 Action Selection

The agent must update its Q-values by visiting as many state-action (S,A) pairs as it

can. However, it is not feasible to visit every (S,A) pair and update the appropriate Q-

value. This dissertation provides training time for the agent to explore as many random

(S,A) combinations as possible. After the exploration phase, the agent then performs

actions based purely on its learned Q-values. The latter phase is referred to as the

exploitation phase.

3.4.3.1 Exploration

During the exploration phase, the agent chooses from a selection of weighted-random

actions. A set of softmax probabilities are calculated based on the current Q-values for

each available action (a 2 A) in the current state S (see figure 3.5).

The temperature parameter (⌧) is a value between 0 and infinity which normalises the

resulting probabilities. A high temperature value means that the resulting probabilities

will be relatively similar. A low temperature value will highlight the higher probabilities

and suppress the lower probabilities.

During the exploration phase, the agent uses the set of softmax probabilities as weights

for choosing a random action. This means that the agent will tend to choose random

actions which have at least been moderately successful during a previous experience.

The temperature value used to calculate the set of softmax probabilities is reduced over

time as the agent nears an optimal policy.

Pt(a) =
exp(qt(a)/⌧)Pn
i=1 exp(qt(i)/⌧)

Figure 3.5: Softmax Function

3.4.3.2 Exploitation

During the exploitation phase, the agent calculates the softmax probability for each

available action (a 2 A) based on the known Q-value for the current state S. The
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temperature used to calculate the set of probabilities is relatively small. This means

that only the currently known optimal actions for a given state are chosen.

3.4.4 State Representation

The Q-learning controller requires that the state of the environment be presented to it

in a way that adequately encodes the pertinent pieces of information. However, it is also

important to consider the size of the state space. A large state space can encode more

information about an environment but will require more exploration in order to evaluate

state-action pairs. On the other hand, a small state space will require less exploration in

order to evaluate state-action pairs but it may not be large enough to adequately inform

the agent about the state of the environment.

The following list outlines the various components that form the overall view of envi-

ronment state for the agent.

Temperature The temperature of the water leaving the water heater is encoded such

that it represents whether it is below, at, or above the target temper-

ature. It can also represent when the tank is overheating.

Height The height of the hot water column in the water heater is encoded such

that it represents whether it is empty, less than half full, more than

half full or full.

Water Required The time until hot water is next required by the end user is encoded

in the following values: required, soon required, and required later.

Electric CO2 The level of CO
2

emissions produced from the electricity grid supply

generation.

Electric The state of the electrical element is encoded to indicate whether it is

on or o↵.

Gas The state of the gas boiler is encoded to indicate whether it is on or

o↵.
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3.4.5 Rewards

A central component to the operation of a reinforcement learning agent is the reward

it receives for carrying out an action in a given state. Receiving a reward for each

state-action pair is the mechanism which provides feedback to the agent about how well

it has performed. In order for the agent to maximise its long term reward, it must

choose optimal actions which result in a positive goal state. A structure of rewards

is therefore required to positively reward and reinforce good actions while negatively

rewarding (punishing) the agent for taking bad actions.
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Implementation

In this chapter, the implementation of a water heater simulation is outlined. The design

of the water heater is outlined in the previous chapter. This chapter focusses on the

implementation of the expert controller and the Q-learning agent controller. It also

describes the sources of the data used in the simulation. The next chapter will outline

the experiments that were run using the simulation and the results that were obtained.

4.1 GridLAB-D Simulation Framework

The GridLAB-D simulation framework was chosen to simulate the water heater. GridLAB-

D is designed to simulate power system distribution. It is a framework intended for end

users who are investigating the design and operation of power distribution systems (Car-

lon, 2012). The framework uses a language called GLM in order to describe an electrical

grid model. The model can include a number of houses, transformers and power stations

which are all connected. A model can specify a number of players for loading input data

and a number of recorders for saving measurements of electrical consumption.

GridLAB-D was chosen as the simulation framework for implementation of this disser-

tation for a number of reasons.

• GridLAB-D is an open source framework which means that the source code can

be modified. This was necessary for the implementation of the two water heater

controllers.
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• The GridLAB-D framework contains sophisticated functions for modelling the

physical characteristics of an electric water heater. The existing water heater

model provides a starting point for implementing the water heater as described on

page 13.

• The GridLAB-D framework includes mechanisms for loading input interval data.

• GridLAB-D provides mechanisms for saving output interval data.

• Related research has used GridLAB-D for simulating electric vehicle charging (Dus-

paric et al., 2013)

4.2 GridLAB-D Core Operation

The core of GridLAB-D is a collection of modules that contain the class implementation

of di↵erent entities. These entities are instantiated as objects whose specifications are

explicitly defined in a model. The operation of each object is determined by its imple-

mentation which is defined in its class. GridLAB-D manages the state of each object

and the interactions between each object over a finite time period. There are a number

of key terms used to describe GridLAB-D which are outlined below.

Model A model in GridLAB-D describes the overall system that will be simulated. It

may specify a collection of houses, transformers and power lines and how they

are all connected. This is represented in a GLM file.

Class A class is a c++ source code file. The GridLAB-D project contains a class

for every item that it models. Within the class are a number of functions

which carry out the mathematical modelling of the operation of that class. For

example, GridLAB-D has a class file for water heater, capacitor, transformer,

dishwasher, air conditioner, etc.

Object Objects refer to instances of a class (similar to the c++ language). Objects

are defined and initialised in a model. Each object must specify the values of

required parameters in the GLM model file.

Module A module in GridLAB-D contains a collection of related classes. For example,

the residential module contains classes for the water heater, air conditioner,
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dish washer, electric vehicle charger, etc. A required module must be defined

in the model before classes from that module can be instantiated as objects.

The core operation of the GridLAB-D framework is based on discrete time step sim-

ulation. Each module is responsible for maintaining the state of its objects during

simulation. The module uses a solver function which iterates through each object. The

solver ensures that all the objects of a module are updated correctly at each time step.

Each class implements the logic necessary for updating the state of an object at each

time step. This logic is referred to as object synchronisation. This solver function ter-

minates once the state of the all the objects in a module stabilise. An object is said to

have reached a stable state after it has not changed state for a pre-determined constant

number of time step iterations.

4.2.1 Object Synchronisation

At the core of this implementation is a sync function. The sync function accepts two

parameters T
0

and T
1

. These parameters are passed from the GridLAB-D core. T
0

indicates the time at which the object last performed the sync function. T
1

indicates

the time at which the object is currently executing its sync function.

The object must first determine if it has changed in state since its previous update at

T
0

. If the agent determines that it has changed in state it must calculate the duration

of the change (T
1

� T
0

). This duration is essential for many calculations that an object

may have to perform (eg. calculating the amount of electrical energy consumed since

the last update).

The object must finally determine a value to return to GridLAB-D core, T
2

. The T
2

return value indicates the time in the future at which the object expects to require its

next update. The object can set T
2

to a value TS NEVER which indicates to GridLAB-D

core that the object has stabilised. If this occurs, the object can only execute the sync

function in future if another object has modified its boundary condition.
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4.3 Water Heater

GridLAB-D provides a number of modules including a residential module. Within the

residential module are a number of related classes including a house and a water heater

class. A water heater object in GridLAB-D can only be instantiated in a model as a child

of a house object. The house class models the characteristics of a single family home. The

house class considers heat gains and losses from: conduction through exterior walls and

roof, air infiltration, solar radiation and internal gains from lighting and people. These

heat gains and losses influence the ambient temperature of the water heater environment

and is therefore important when modelling the operation of the water heater.

The water heater class models the state of the tank as it gains and loses heat energy.

The water heater class was originally implemented to model a water heater with only

a single source of energy, an electrical element. The water heater required a number of

modifications in order to model the di↵erent types of controllers which are simulated.

4.3.1 Overriding the GridLAB-D Controller

The standard GridLAB-D controller was bypassed so that a custom controller could

control the operation of the water heater. This was achieved by modifying an internal

property of the water heater class to indicate the mode of operation of the water heater.

4.3.2 Implementing Gas Heating

The GridLAB-D water heater class was extended in order to model a water heater with

two sources of energy; electricity and heat from a gas-fired boiler as described in section

3.1 . This was fundamentally achieved by switching the power input to the water heater

to a level that would be supplied by a coil when the gas boiler is running. When the

water heater returned to electrical heating, the power input to the water heater was

switched to the level supplied by the electrical element in the tank.
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4.3.3 Implementing a CO2 Signal

The water heater class was modified to read the value of a CO
2

signal which is supplied

by a GridLAB-D player object. The player object reads a CSV file containing the CO
2

emission value for the current time interval. This source of this CSV file is described in

section 4.4.1.2 .

4.4 Data

In order to run the simulation experiments, a collection of data was required. The

experiments (see chapter 5) are run over a two year period, 2014 and 2015. It was

possible to source data pertaining to the electricity supply from the Irish electrical grid

operator, Eirgrid. However, it was not possible to source real data relating to residential

hot water usage. In cases where data was not available, it was generated based on the

known characteristics of the data.

4.4.1 Eirgrid Data

The electricity grid operator in Ireland, Eirgrid, maintains a data set which contains

information about system generation, system demand, renewable energy generation, as

well as the CO
2

emissions produced from electricity generation. This data is available

upon request to the Eirgrid organisation.

For the purposes of this dissertation, data was requested relating to system generation,

system demand, renewable energy generation, and CO
2

emissions produced from elec-

tricity generation over a two year period 2014-2015. The data received from Eirgrid was

in a time interval format at a 15 minute granularity. Note: Gaps in data were linearly

interpolated.

4.4.1.1 Renewable Curtailment Events

It was not possible to directly source data regarding when renewable curtailment events

have occurred. Eirgrid publishes data about the level of renewable curtailment which
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has occurred each year. However, it is not possible to determine this data at a finer

granularity.

In this dissertation, renewable curtailment events are considered to occur at times when

the amount of renewable energy generation approaches a proportion of the total gener-

ation supply which is close to the level when curtailment is required. In 2014, Eirgrid

carried out renewable curtailment when renewable energy generation exceeded 50% of

total system generation (Eirgrid, 2015b). In 2015, Eirgrid increased the maximum level

of renewable generation to 55% of system generation.

Using this information, a collection of renewable curtailment events for 2014 was iden-

tified by selecting time periods when the renewable supply exceeded 40% of the total

supply. In a similar fashion, a collection of renewable curtailment events for 2015 was

identified when the renewable supply exceeded 45% of the total supply. This resulted in

a collection of renewable curtailment events which span roughly 16% of each year.

4.4.1.2 Electricity CO2 Emissions

Data relating to CO
2

emissions produced from electricity generation was sourced from

Eirgrid. Gaps and null values occurred in sparse patterns throughout the data and were

corrected using linear interpolation. This CO
2

data was in the form of tCO
2

/hour. This

was converted into the form of gCO
2

/kWh. The formula for conversion is (tCO
2

/hr)⇥10

6

systemgeneration(MW )

.

This dissertation considers CO
2

emissions produced from electricity generation to be zero

during periods of renewable curtailment. Therefore, at time intervals which coincide with

a renewable curtailment event, the gCO
2

/kWh was set to zero.

4.4.2 Generated Data

Unfortunately, data relating to space heating demand, water heating demand and hot

water consumption could not be sourced. In Sustainable Energy Authority of Ireland

(SEAI) (2013), these sets of data were identified as “Data Gaps”. In order to provide

a complete set of necessary input data for simulation experiments, some data sets were

generated. In an e↵ort to make generated data as representative of real data as possible,

it was based on known characteristics and best assumptions.
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The generation of the data was implemented using a python script. Space heating

demand data, water heating demand data and hot water consumption data was all

generated in parallel. This was necessary as certain data such as space heating demand

will influence the nature of water heating demand.

4.4.2.1 Space Heating Demand

Space heating demand data was generated based on the requirements of a four per-

son residential household. It modelled a typical requirement pattern of morning and

evening heating. The demand pattern was varied according to weekday and weekend

requirements as well as seasonality. The generation of space heating demand data also

accounted for unexpected increases in demand for space heating.

4.4.2.2 Water Heating Demand

Water heating demand data indicates the times at which hot water is required. It does

not indicate the actual level of consumption of hot water. The generation of water

heating demand data was heavily influenced by the pattern of space heating demand.

Water heating data was generated in such a way that it closely matches the pattern of

space heating demand. This was based on the assumption that space heating demand

data indicates the level of occupancy of the household.

Water heating demand is encoded as a number which represents the time until hot

water is required. This number is based on the number of 30 minute intervals before the

requirement of hot water. For example, a value of 0 indicates that hot water is currently

required while a value of 2 indicates that hot water is required in one hour and so on.

An example sequence is {4, 3, 2, 1, 0}. This method of encoding time before required

hot water allows for encoding unexpected increases in demand. For example another

sequence, {4, 1, 0}, represents an unexpected advance in demand for hot water.

4.4.2.3 Hot Water Consumption

Typical hot water consumption is estimated to be 15.8 gallons per person per day in

a typical household (National Renewable Energy Laboratory, 2011). The hot water
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consumption for four people was spread across the period of water heating demand for

each day.

4.4.3 Water Heater Properties

The characteristic properties of the water heater such as the volume, heat loss, power

output of the electrical element and power output of the coil heated by the gas boiler are

based on the values of a real water heater, the Kingspan Tribune XE TXD250 (Kingspan,

2017). The values for each of the properties are shown in the table below.

Property Value

Tank Volume (L) 250

Tank Height (m) 1.8

Coil Power Output (kW) 20.2

Electrical Power Output (kW) 5

Standing Loss (W) 65

Table 4.1: Water Heater Properties

4.4.4 Gas Boiler Properties

The characteristic properties of the gas-fired boiler such as the power output, electrical

consumption and CO
2

emissions, are based on the values of a real gas boiler, the Baxi

Ecoblue 24 Combi boiler (Baxi, 2016). The values for each of the properties are shown

in the table below.

Property Value

Power Output (kW) 24

Electrical consumption when firing (kW) 0.85

CO
2

Emissions (gCO
2

/kWh) 250

Table 4.2: Gas Boiler Properties
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4.5 Implementation of the Expert Controller

The expert controller was implemented within the GridLAB-D water heater class. The

implementation of the expert controller was based on a known good policy as outlined

on page 18. Listing B.1 on page 49 outlines the core implementation of the expert

controller based on the rules in table 3.2.

4.6 Implementation of the Q-learning Controller

The Q-learning controller was implemented based on the agent design as outlined on

page 19. At the core of the Q-learning controller is the step function. The step function

accepts the current state of the environment as a parameter. It then updates the Q-

value for the previous state-action combination based on the new state and the reward

received for entering the new state. The learning rate (↵) used to update the Q-value is

0.3 . The discount factor (�) used is 0.7 . Finally the step function returns a new action

to be performed. The code implementation for the step function can be seen in section

B.2.1 on page 50.

4.6.1 Action Selection

The last section of the Q-learning controller step function selects the next action to take.

Action selection during the exploration phase is performed di↵erently to action selection

during the exploitation phase. The select action function selects the appropriate

action for the current phase of the agent. An implementation of the select action

function can be seen in section B.2.2 on page 51 .

4.6.1.1 Exploration

During the exploration phase, the action selects a weighted-random action as described

on page 21. A random number between 0 and 1 is chosen. Each softmax probability is

compared against the random number. If the random number is less than the current

softmax probability, the action which is associated with that probability is chosen. If

the random number is greater than the current softmax probability, the random number
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is subtracted by the softmax probability amount. The next softmax probability is then

compared. The implementation of this exploration action selection function can be seen

in section B.2.2.1 on page 52.

4.6.1.2 Exploitation

During the exploitation phase, the agent chooses what it perceives as the known optimal

action. It does this by selecting the action with the maximum softmax probability

out of all the softmax probabilities for available actions which is calculated using a

relatively small softmax temperature (see 3.4.3.2 on page 21). The maximum probability

is selected by searching the entire array of softmax probabilities until the maximum value

is found. The action corresponding to the maximum softmax probability is selected.

The implementation of the exploitation action selection function can be seen in section

B.2.2.2 on page 52.

4.6.2 State Representation

The implementation of the state representation follows the design as outlined on page 22.

The agent state was implemented in such a way that it could easily be represented as a

number. This was achieved by creating a bit vector representation. This implementation

resulted in having each state of the environment represented by 10 bits. This means

that there are a total of 1024 agent states. The table 4.3 illustrates the implementation

of the bit vector. The bit vector was stored in an unsigned short which has a size of

16 bits. The dark grey cells in the table indicate unused bits.
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Bit Index State Component Value Type

0 RENEWABLE AVAILABLE BOOLEAN

1 ELECTRIC ON BOOLEAN

2 GAS ON BOOLEAN

3 TANK DRAINING BOOLEAN

4 TANK HEIGHT
EMPTY, LESS THAN HALF FULL,

MORE THAN HALF FULL, FULL

5

6 WATER TEMPERATURE
BELOW TARGET, AT TARGET,

ABOVE TARGET, OVERHEATING

7

8 WATER REQUIRED NOW, SOON, LATER, MUCH LATER

9

10

11

12

13

14

15

Table 4.3: Bit Vector State Representation

4.7 Water Heater Model

The GridLAB-D model which instantiates the objects necessary for running the sim-

ulation experiments was implemented in a GLM file. This GLM file instantiates the

following objects:

• A house object which was used as a parent object to the water heater.

• A water heater object which is controlled by the expert or the Q-learning controller.

• A player object for loading CO
2

emission interval data into the simulation.
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• A player object for loading the exploration and exploitation schedule for the Q-

learning agent.

• A player object for loading the water heating demand interval data.

• A player object for loading the hot water consumption interval data.

• A player object for loading the space heating demand interval data.

• A recorder object for saving the performance of the controller.

• A recorder object for saving the CO
2

emissions produced from water heater usage.

• A recorder object for saving the power consumption data of the house and water

heater objects.
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Experimental Procedure

This chapter outlines the experiments that were carried out in order to evaluate the

performance of the expert controller and the Q-learning controller. The first experiment

compares the performance of the expert controller to the Q-learning controller using

regular exploration data and exploitation data. The second experiment compares the

performance of the expert controller to the Q-learning controller which mixes the ex-

ploration data and exploitation data used in the first experiment. This mixing of the

exploration data and the exploitation data is also referred to as a spliced data set.

5.1 Evaluation Period

Each experiment is run over a two year period, 2014 and 2015. The year 2014 is used

for the purpose of allowing the Q-learning controller to learn a control policy during its

exploration phase. The year 2015 is used for the purpose of comparing the performance

of the expert policy to Q-learning agents learned policy.

5.2 Evaluation Episode

An episode is considered to include the time before hot water is required as well as

the time when hot water is required. Episodes are used as a time measurement for

comparing the performance of the expert controller to the Q-learning controller.
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Figure 5.1: Length of an Evaluation Episode

5.3 Experiment One

5.3.1 Aim

The aim of this experiment is to directly compare the performance of the expert con-

troller to the Q-learning controller using the default settings and implementation as

outlined in the previous chapter. The optimal controller should have the lowest CO
2

emissions without compromising the utility to the end user.

5.3.2 Method

1. A simulation is executed using the expert controller over the 2014 – 2015 data set.

2. A second simulation is executed using the Q-learning controller over the same

2014 – 2015 data set. The Q-learning controller trains on the 2014 data during its

exploration phase before exploiting its learned policy during 2015.

3. The results are based on the performance of the controllers during the 2015 period

of the simulation.
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5.3.3 Results

Metric Q-learning Agent Expert

Total CO2 emissions (kg) 1096.25 1124.53

Total energy consumed (kWh) 5018.16 4985.72

Total renewable energy consumed (kWh) 692.81 517.77

Total Utility 0.99 1.0

Mean CO2 emissions per episode (kg) 1.30 1.34

Number episodes without full utility 3.0 0.0

Mean Utility per episode 0.99 1.0

Mean renewable energy consumed (kWh) 0.27 0.20

Table 5.1: Results from Experiment One

Figure 5.2: Probability Density Carbon Emissions (kgCO2 ) Per Episode

5.3.4 Conclusion

The results of the experiment show a lower level of mean CO
2

emissions per episode for

the Q-learning agent at 1.30 compared with the expert at 1.34 . However, the Q-learning
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agent mean CO
2

per episode is not a statistically significant lower mean value (p value

= 0.07) (statistical significance is when p < 0.05).

The mean utility of the Q-learning agent, 0.99 is lower than the mean utility of the

expert, 1.0 . The mean utility of the Q-learning agent is a statistically significant lower

mean value by a marginal amount (p value = 0.04).

From observing the resulting probability density graph in figure 5.2 it appears that

the expert and the Q-learning agent perform at roughly the same level in terms of

CO
2

produced per episode. The second experiment uses a di↵erent exploration and

exploration data set in an attempt to obtain conclusive results.

5.4 Experiment Two

5.4.1 Aim

The aim of this experiment is to directly compare the performance of the expert con-

troller to the Q-learning controller using the implementation as outlined in the previous

chapter. However, in this experiment, the CO
2

emission data for 2014 and 2015 are

spliced together. This was done by taking the values from every second day in 2015 and

using them in 2014 and vice versa.The optimal controller should have the lowest CO
2

emissions without compromising the utility to the end user.

5.4.2 Method

• A simulation is executed using the expert controller over spliced 2014 – 2015 data

set.

• A second simulation is executed using the Q-learning controller over the same

spliced 2014 – 2015 data set. The Q-learning controller trains on the 2014 data

during its exploration phase before exploiting its learned policy during 2015.

• The results are based on the performance of the controllers during the spliced

2015 period of the simulation.
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5.4.3 Results

Metric Q-learning Agent Expert

Total CO2 emissions (kg) 1173.84 1221.99

Total energy consumed (kWh) 4962.11 5350.75

Total renewable energy consumed (kWh) 318.34 498.58

Total Utility 0.99 1.0

Mean CO2 emissions per episode (kg) 1.40 1.45

Number episodes without full utility 8.0 0.0

Mean Utility per episode 0.99 1.0

Mean renewable energy consumed (kWh) 0.24 0.20

Table 5.2: Results from Experiment Two

Figure 5.3: Probability Density Carbon Emissions (kgCO2 ) Per Episode

5.4.4 Conclusion

The results from the experiment show that the Q-learning agent achieved a lower mean

value of CO
2

emissions per episode (1173.84) compared to the expert (1221.99). The
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agent achieved a statistically significant lower mean CO
2

emissions value per episode (p

value = 0.02) .

The results also show that the mean utility per episode achieved by the agent (0.99)

was lower that the mean utility achieved by the expert (1.0). The Q-learning agent lost

utility in 8 out of the total 837 episodes in the simulation. This lower mean utility per

episode achieved by the agent was statistically significant (p value 0.008).

Based on these results, it seems that the Q-learning agent can operate and produce lower

CO
2

emissions. However, this lower CO
2

emissions level come at a price to the utility

of the end user.
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Conclusion

6.1 Controller Comparison

The core objective of this dissertation was to determine whether the Q-learning controller

can exceed the performance of the expert controller. The results show that the Q-

learning controller performed almost at the same level as the expert controller. This

indicates that the agent learned a control policy that is similar to the known, good

control policy implemented by the expert. The results also show that the Q-learning

controller achieves a lower mean value of CO
2

emissions produced during each episode.

However, this also resulted in a slightly lower mean utility per episode.

6.2 Analysis

The following analysis section discusses some reasons why the Q-learning controller may

not have performed better than the expert controller.

6.2.1 Lack of Real Data

Unfortunately, the experiments lack the use of real space heating demand, hot water

demand and hot water consumption data. Running experiments based on real hot water

consumption patterns would have most likely provided significantly di↵erent results

regarding the performance of the two controllers.
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If the experiments were run using real data based on the hot water consumption pattern

of an individual household, the Q-learning agent would have the opportunity to adapt

its control policy to the characteristics of that household. The expert controller would

be at a disadvantage under these circumstances as its control policy is static and does

not adapt.

The experiments in this dissertation used a set of generated data as described in section

4.4.2 on page 29. Ultimately, this data can not adequately reflect the varying levels of

hot water consumption that a real household will exhibit.

6.2.2 CO2 Emissions of Electricity

In the initial stages of this project, the CO
2

emissions per kWh of electricity generated

were assumed to vary quite substantially as a result of the varying levels of renewable

energy availability. Once the data regarding CO
2

emissions produced via electricity gen-

eration was sourced from Eirgrid, it became apparent that the level of CO
2

per kWh of

electricity never drops below the CO
2

per kWh produced by a gas boiler. This disserta-

tion considers the CO
2

produced from the electricity supply to be zero during periods

of renewable curtailment. This means that electricity only has lower CO
2

emissions per

kWh compared to the gas boiler during periods of renewable curtailment.

This discovery had a large impact on this project as it was originally assumed that a rela-

tively sophisticated control policy would be required to strategically consume electricity

outside of renewable curtailment events.

6.3 Future Work

In the future, renewable energy will become a larger source of the electricity grid gener-

ation. Renewable energy can be safely accommodated at higher levels on the grid each

year. This means that renewable curtailment will become less frequent. It also means

that the CO
2

emissions per kWh of electricity generated will eventually drop below the

CO
2

emissions per kWh produced by a gas boiler. This will require a more sophisticated

control policy in order to minimise the CO
2

produced from water heater usage in the

future.
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Water heaters are continually progressing to accommodate more sources of energy. Wa-

ter heaters are even starting to be used for space heating purposes. This type of water

heater will require a more sophisticated control policy in order to manage an increasing

number of requirements. Under these circumstances, a learning agent which learns an

optimal control policy may prove more successful.

Further work is required in the area of gathering data about residential hot water con-

sumption patterns and heating demand patterns. This data is important for carrying

out simulations which are representative of the environment they are modelling.
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Security Considerations

In the following chapter, security considerations relating to the implementation and

deployment of the system as outlined in chapter 3 are discussed. This chapter will focus

on the interaction between the learning agent (client) and the central authority (server).

The main purpose of the server is to provide data to the client about the state of the

environment (i.e. the current CO
2

emissions produced from electricity generation).

In a real world deployment, the client will most likely be running on a low power,

embedded device connected to the internet. The central server will actively listen for

requests from any client. The client will make requests at regular intervals in order

to maintain an up-to-date state of the agent environment. An example of the client

requesting data from the server can be seen in figure A.1 below.

Figure A.1: Overview of Client Request to Central Server

The communication between the client and server introduces some potential security

issues which could allow an attacker to tamper with the system. The following sections

discuss how to prevent these attacks from occurring.
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A.1 Central Server Authentication and Message Integrity

In this system, the client must be able to verify the authenticity of the server that it is

communicating with. If the client cannot verify the identity of the server, a rogue server

could be servicing the request of the client.

In order to provide server authentication, the server must have a certificate. A digitally

signed certificate is issued from a certificate authority (CA). The certificate of the issuing

CA may in turn be signed by a superior CA. The certificate combines the identity of

the central server authority and the server public key. The private key which is linked

to the certificate public key must be kept secret. The client must trust the certificate of

the server itself or of the issuing CA or a CA superior to the issuing CA.

Before any communication between the client and server can occur, both parties must

first negotiate a Transport Layer Security (TLS)(Dierks and Rescorla, 2008) handshake.

As part of this handshake, the server will send it’s certificate. The client will then

encrypt its own secret key using the server public key. If the client trusts the server

certificate and the server can decrypt the client secret, then the client has successfully

verified the authenticity of the server.

If a successful TLS handshake has been negotiated between the client and server, a secure

Transmission Control Protocol (TCP) connection will be established. The client and

server will both have formed a symmetric key which is used to encrypt the data payload

of each TCP packet. The data payload consists of the user data to be transmitted as

well as a Message Authentication Code (MAC). The MAC ensures the integrity of the

data so that the message sent by the server is the same message that the client receives.

A.2 Message Insertion, Deletion, Modification or Replay

The connection between the client and server is secured using TLS. This means that

each packet that is transmitted contains an encrypted payload. The decrypted payload

includes the data and the corresponding MAC. The TLS standard specifies that the

message, data length, sequence number, MAC key and two fixed character strings are

all components of the computed MAC.
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The sequence number component makes it possible to detect when messages are inserted

or deleted. The MAC itself protects against message modification as this can only be

computed by the sender. The sequence number also protects against replay attacks.

A.3 Man-In-The-Middle (MITM)

An attacker can launch a MITM attack by hijacking a TCP connection between a client

and server. If successful, the attacker can intercept and retransmit the data transferred

between the client and server.

This type of attack can be protected against by using TLS to secure the TCP connection

as described in section A.1. This provides a means of authentication so that the client

can verify the legitimacy of the server. For the purposes of this system, only one side of

the communication needs to be authenticated; the server.

A.4 Eavesdropping

The data being transmitted from the server to the client is not particularly sensitive

information. This is because the data is regarding the state of the public electrical

grid system and is not personal data. However, communication that occurs over a

TLS connection as outlined in section A.1 will also ensure data confidentiality. This is

because the data transferred between the client and server is encrypted and can only be

decrypted by the client and server.

A.5 Client System Security

The physical security of the client is considered to be of low risk due to its location

within a residential household. A much greater risk to the security of the client comes

from its connection to the internet. This potentially exposes the device to an attacker

located anywhere in the world. The client should be configured to not listen for incoming

connections. The client should be configured to only open connections to the trusted

central server.
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A.6 Client Fail-safe

In cases where the client cannot communicate with the server due to some sort of failure

(eg. server o✏ine due to DOS attack, TLS handshake failure, etc.), the client should

resort to a “safe” mode of operation. This means that the client should update its state

so that it can operate without severe negative consequences. For example, if the client

cannot obtain the state of renewable energy availability from a trusted source, it should

assume that renewable energy is not available.
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Code Implementation

B.1 Expert Controller

1 i f ( overheating ) {

2 // Rule # 1

3 switch_on = f a l s e ;

4 } // Hot water i s not r equ i r ed un t i l much l a t e r

5 e l s e i f ( gda_st_heating_distance > 1) {

6 // Rule # 2

7 i f ( gda_st_renewable_available && less_than_target ) {

8 switch_on = true ;

9 } e l s e switch_on = f a l s e ;

10 } // Hot water i s soon requ i r ed

11 e l s e i f ( gda_st_heating_distance <= 1) {

12 i f ( less_than_target ) {

13 // Rule # 3

14 switch_on = true ;

15 } e l s e i f (ai�>get_tank_height (h ) == ql_state : : LESS_THAN_HALF ) {

16 // Rule # 4

17 switch_on = true ;

18 } e l s e i f ( currently_inside_target_band && currently_heating ) {

19 // Rule # 5

20 switch_on = true ;

21 } e l s e {

22 // Rule # 6

23 switch_on = f a l s e ;
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24 }

25 }

B.2 Q-learning Controller

B.2.1 Q-Learning Step Function

1 ql_action : : QL_ACTION qlearning : : step ( ql_state new_state ) {

2 ql_action : : QL_ACTION action ;

3 double alpha = props�>getLearningRate ( ) ;

4 double gamma = props�>getDiscountRate ( ) ;

5

6 /⇤ Manage the ep i sode s t a t e ⇤/

7

8 // check i f the l a s t s t a t e was the end o f an ep i sode

9 i f ( isGoalState ( last_state ) && ! isGoalState ( new_state ) ) {

10 episode_state = END_OF_EPISODE ;

11 }

12

13 i f ( episode_state == END_OF_EPISODE ) {

14 // do the end o f ep i sode s t u f f here

15 number_episodes++;

16 // c a l c u l a t e the softmax temp

17 double discount = props�>getSoftmaxTemperatureDiscount ( ) ⇤ ( -

number_episodes / 10) ;

18 current_softmax_temperature = props�>getSoftmaxTemperatureIntial ( )  -

� discount ;

19 i f ( current_softmax_temperature < props�> -

getSoftmaxTemperatureMinimum ( ) ) {

20 current_softmax_temperature = props�> -

getSoftmaxTemperatureMinimum ( ) ;

21 }

22 // t r a n s i t i o n to not in ep i sode

23 episode_state = NOT_IN_EPISODE ;

24 }

25

26 i f ( episode_state == NOT_IN_EPISODE ) {

27 // the agent i s s t a r t i n g f o r f i r s t time
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28 episode_state = NEW_EPISODE ;

29 }

30

31 e l s e i f ( episode_state == NEW_EPISODE ) {

32 // t r a n s i t i o n to in ep i sode s t a t e i f a l r eady in new ep i sode

33 episode_state = IN_EPISODE ;

34 }

35

36 /⇤ Now perform ac t i on s e l e c t i o n and update q va lue s ⇤/

37

38 i f ( episode_state != NEW_EPISODE && episode_state != NOT_IN_EPISODE ) {

39 // get the cur rent reward

40 char current_reward = r_values [ new_state . get_state ( ) ] ;

41 // update q va lue f o r the l a s t s ta te , a c t i on combination

42 // based on the cur rent reward

43 double old_q_value = q_values [ last_state ] [ last_action ] ;

44 double max_following_reward = max_reward ( new_state . get_state ( ) ) ;

45 double new_q_value = alpha ⇤ ( current_reward + (( gamma ⇤  -

max_following_reward ) � old_q_value ) ) ;

46 q_values [ last_state ] [ last_action ] = new_q_value ;

47 }

48 i f ( episode_state != NOT_IN_EPISODE ) {

49 // s e l e c t a new ac t i on

50 action = select_action ( new_state ) ;

51 }

52

53 last_state = new_state . get_state ( ) ;

54 last_action = action ;

55 re turn action ;

56 }

B.2.2 Action Selection

1 /⇤

2 ⇤ Manages ac t i on s e l e c t i o n and exp l o r a t i on / e xp l o i t a t i o n phase .

3 ⇤ Always makes the appropr ia t e ac t i on s e l e c t i o n opera t i on .

4 ⇤ Returns the ac t i on the agent should take based on the cur rent s t a t e .

5 ⇤/

6 ql_action : : QL_ACTION qlearning : : select_action ( ql_state st ) {
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7 ql_action : : QL_ACTION action ;

8 i f ( exploit ) {

9 action = exploit_action ( st ) ;

10 }

11 e l s e {

12 action = explore_action ( st ) ;

13 }

14 re turn action ;

15 }

B.2.2.1 Exploration

1 ql_action : : QL_ACTION qlearning : : explore_action ( ql_state st ) {

2 vector<double> probs = softmax_probs (st , current_softmax_temperature ) ;

3 // get random number between 0 and 1

4 double random_num = ( double ) rand ( ) /( double ) RAND_MAX ;

5 i n t selected_action = �1;

6

7 f o r ( i n t i = 0 ; i < probs . size ( ) && selected_action == �1; i++){

8 i f ( probs [ i ] >= 0 . 0 ) {

9 i f ( random_num < probs [ i ] ) {

10 selected_action = i ;

11 } e l s e {

12 random_num �= probs [ i ] ;

13 }

14 }

15 }

16

17 assert ( selected_action != �1) ;

18 re turn ql_action : : QL_ACTION ( selected_action ) ;

19 }

B.2.2.2 Exploitation

1 ql_action : : QL_ACTION qlearning : : exploit_action ( ql_state st ) {
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2 vector<double> probs = softmax_probs (st , props�> -

getSoftmaxTemperatureMinimum ( ) ) ;

3 i n t max_index = 0 ;

4 f o r ( i n t i = 0 ; i < probs . size ( ) ; i++){

5 i f ( probs [ i ] > probs [ max_index ] ) {

6 max_index = i ;

7 }

8 }

9 re turn ( ql_action : : QL_ACTION ) max_index ;

10 }
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