
Influencing Factors in the Quality of Software Development

by

Michael Christian Frick, B.Sc.

Dissertation

Presented to the

University of Dublin, Trinity College

in fulfillment

of the requirements

for the Degree of

Master of Science in Computer Science

University of Dublin, Trinity College

September 2016

Declaration

I, the undersigned, declare that this work has not previously been submitted as an exercise

for a degree at this, or any other University, and that unless otherwise stated, is my own

work.

Michael Christian Frick

August 29, 2016

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis upon

request.

Michael Christian Frick

August 29, 2016

Acknowledgments

First, I want to thank my family who always believed in me and helped me to be the

person who I am now. They taught me to work hard for what I want to achieve in my

life and never give up until I reached my goals.

I also want to thank my supervisor Stephen Barrett for the support and trust in my work

as well as the guiding I received during my dissertation.

Thank you to all my friends who kept me motivated and always listening and helping me

with my problems and troubles I had.

Last but not least I want to thank everyone who volunteered to participate for the exper-

iments of this dissertation.

Michael Christian Frick

University of Dublin, Trinity College

September 2016

iv

Influencing Factors in the Quality of Software Development

Michael Christian Frick, M.Sc.

University of Dublin, Trinity College, 2016

Supervisor: Stephen Barrett

This dissertation aims to develop an approach to find factors that influence the software

development process in either negative or positive ways.

Creating Software requires cognitive skills such as logical thinking, creativity or problem

solving but also teamwork and good communication. However, the focus of this work lies

on the influences in the cognitive performance of the developers.

Most people notice inconsistency in the quality of their work. There is always a risk that

a developer is producing bad code which could lead to bugs and/or delays.

Many developers don’t really know about the exact quality of their code, neither in a

general perspective nor in their temporary performance. Even if they do, reasons for

negative or positive changes in their code quality may not be obvious.

Software metrics have been around for decades with the purpose of evaluating the quality

and the performance of the programmer but they are used primarily for project manage-

ment rather than for providing feedback to the developers.

In two experiments, mobile devices are being used to collect the contextual data of the

environment and the work patterns of the developers. An installed application on the

device of participants gathers information from sensors and collects data which is provided

v

by the operating system. It accesses the light sensor, the noise level, the step counter,

a 3axis-accelerometer and the location of the device. This information is then clustered

and linked to a context.

Two experiments were executed to demonstrate the functionality of the developed ap-

proach.

Overall, the data gathering app generates valuable information about the environment

and context. The application leads to findings that give evidence for factors that influ-

ence the brain performance for an individual participant and for patterns which could be

influences in general.

vi

Contents

Acknowledgments iv

Abstract v

List of Tables xiii

List of Figures xiv

Chapter 1 Introduction 1

1.1 Motivation . 4

1.1.1 Mobile Device Sensors . 4

1.1.2 Learning to write code . 4

1.1.3 The importance of Software Metrics 5

1.1.4 Working environment . 6

1.2 Aims . 7

1.3 Road-map . 7

Chapter 2 The State of the Art 8

2.1 Software Metrics . 9

2.1.1 Summary . 10

2.2 Metrics Measurement and Analysis . 11

2.2.1 Summary . 13

2.3 Mobile Data Gathering . 13

vii

2.3.1 Summary . 14

2.4 Data Clustering . 14

2.4.1 Summary . 16

2.5 Variable Quality Influences . 16

2.5.1 Team Communication . 17

2.5.2 Cognitive Performance . 19

2.5.3 Activity . 22

Chapter 3 Design 24

3.1 Approach . 24

3.2 Functionality Overview . 25

3.3 Mobile Application Design . 25

3.3.1 Requirements . 27

3.3.2 App Architecture . 28

3.3.3 User Interface . 28

3.3.4 Data Storage . 29

3.3.5 API . 30

3.3.6 User Information . 30

3.4 Server Design . 31

3.4.1 Requirements . 31

3.4.2 Server Front-End Design . 32

3.4.3 Server Back-End Design . 32

3.5 Tools . 32

3.5.1 Requirements . 32

3.5.2 Decrypting Tool . 33

3.5.3 Data Structuring Tools . 33

3.6 Dynamic Code and Developer Analysis . 33

3.7 Summary . 34

viii

Chapter 4 Implementation 36

4.1 Android . 36

4.1.1 User Interface . 37

4.1.2 Data Gathering . 40

4.1.3 Data Storage . 40

4.1.4 Security . 41

4.2 Server . 42

4.2.1 Back-End . 43

4.2.2 Webpages . 43

4.3 Tools . 43

4.3.1 Encryption Tool . 44

4.3.2 User Separation Tool . 44

4.3.3 Value Separation Tool . 44

4.3.4 Latex Plot Syntax Creating Tool 44

4.3.5 Map to Duration Tool . 45

4.4 Summary . 45

Chapter 5 Experiments 47

5.1 Group Experiment . 47

5.1.1 Setup and Execution . 48

5.1.2 Programming Task . 49

5.2 Individual Experiment . 49

5.2.1 Setup and Execution . 50

5.2.2 Scenarios . 50

5.3 Summary . 52

Chapter 6 Classification 53

6.1 Context Classification . 53

6.1.1 Questions . 57

ix

Chapter 7 Evaluation 59

7.0.1 Output Format . 59

7.1 Group Experiment . 60

7.1.1 Noise . 60

7.1.2 Dynamic in Light and Noise . 60

7.1.3 Location . 61

7.1.4 Movement . 61

7.1.5 Weather . 62

7.1.6 Light and Environment . 62

7.1.7 Music . 63

7.1.8 Development Performance . 63

7.1.9 Variable and Method/Function Naming 65

7.1.10 Coding Conventions . 65

7.1.11 Results . 66

7.1.12 Problems . 66

7.2 Individual Experiment Results . 67

7.2.1 Co�ee . 67

7.2.2 Music . 68

7.2.3 Running . 69

Chapter 8 Conclusions 71

8.1 Project Overview . 71

8.2 Contribution . 72

8.3 Future Work . 72

Appendix A Abbreviations 74

Appendix B Source Code 76

Appendix C Programming task 77

x

C.1 Palindromes . 77

C.1.1 Question . 77

C.1.2 Example . 78

Appendix D Participant data 80

D.0.1 Graph descriptions . 80

D.1 Participant 1 . 81

D.1.1 Date & Time . 81

D.1.2 Questions . 81

D.1.3 Accelerometer . 82

D.1.4 Light Level . 82

D.1.5 Noise Level . 83

D.1.6 Location . 83

D.2 Participant 2 . 84

D.2.1 Date & Time . 84

D.2.2 Questions . 84

D.2.3 Accelerometer . 85

D.2.4 Light Level . 85

D.2.5 Noise Level . 86

D.2.6 Location . 86

D.3 Participant 3 . 87

D.3.1 Date & Time . 87

D.3.2 Questions . 87

D.3.3 Accelerometer . 88

D.3.4 Light Level . 88

D.3.5 Noise Level . 89

D.3.6 Location . 89

D.4 Participant 4 . 90

xi

D.4.1 Date & Time . 90

D.4.2 Questions . 90

D.4.3 Accelerometer . 91

D.4.4 Light Level . 91

D.4.5 Noise Level . 92

D.4.6 Location . 92

D.5 Participant 5 . 93

D.5.1 Date & Time . 93

D.5.2 Questions . 93

D.5.3 Accelerometer . 94

D.5.4 Light Level . 94

D.5.5 Noise Level . 95

D.5.6 Location . 95

Appendix E Individuals extended Data 96

E.1 Co�ee . 96

E.2 Music . 97

E.3 Running . 97

Appendix F Ethics Information 98

Bibliography 104

xii

List of Tables

2.1 University of Hawaii - PSPs . 12

6.1 Common Outdoor Light Levels . 54

6.2 Common & Recommended Indoor Light Levels 54

7.1 Dynamic Noise Level . 60

7.2 Dynamic Light Level . 60

7.3 Weather during experiment . 62

7.4 Development Performance . 63

D.1 P1: Date and Time . 81

D.2 P2: Date and Time . 84

D.3 P3: Date and Time . 87

D.4 P4: Date and Time . 90

D.5 P5: Date and Time . 93

E.1 Cognitive Performance with Co�ee . 96

E.2 Cognitive Performance with Music . 97

E.3 Cognitive Performance with Running . 97

xiii

List of Figures

2.1 Data Clustering [27] . 16

3.1 Smartphone OS Marketshare . 25

3.2 Gathering: light, timestamp, steps, accelerometer, location, volume 27

3.3 Android Views . 28

4.1 Security Dataflow . 41

5.1 Experiment Execution . 48

6.1 Device Rotation . 55

7.1 Gathered Data . 59

7.2 Scatter Plot: Co�ee . 68

7.3 Scatter Plot: Music . 69

7.4 Scatter Plot: Running . 70

xiv

Chapter 1

Introduction

”Be a yardstick of quality. Some people aren’t used to an environment where

excellence is expected.”

Steve Jobs

Over the last years, the performance of computers rapidly increased and with it the

complexity of the Software [45]. It can be a simple tool that is written in a short time by

a single person or it can be a gigantic software project with several hundred developers

involved in it[6].

Di�erent layers of abstraction from low level to high level programming languages actually

make it possible to reduce the complexity of software projects. On top of that, there are

libraries and frameworks that provide features that already have been implemented [30].

An encapsulation of the modules is mandatory in order to allow splitting the work in a

software project. A general structure must be given to ensure that the di�erent parts can

integrate easily and to keep the code understandable.

The more people work on one project, the more important it is to provide an organized

and well planned architecture to keep the code clean.

1

In today’s world, software is everywhere! The tra�c is controlled by computers as well

as security systems, nuclear power plants or just a messenger app on a mobile phone etc.

The ubiquity of computers can make life easier, but can also cause unpredictable trouble.

In the early 1890s at the United Kingdom’s Royal Air Force, an engineer found a bug that

could have fired a missile without any command. Luckily it was found before a disaster

happened [38].

The quality requirements vary for di�erent software products. A crashing weather app

on a mobile is not as bad as a bug that is causing a production stop in a plant. However,

the quality of the software can make the di�erence whether a company will be successful

or just be one of many abortive start-ups with a good idea but a bad execution.

In the software industry, the most significant factor in the creating process is the human.

The quality strongly depends on the performance of the programmers as a single person

or in a team. That performance quality can change by various di�erent reasons even a

few times a day.

Previous researchers already did a lot of work in the field.

This dissertation will start with an overview of their findings which will include pre-

vious studies that investigated di�erent theories about influencing factors on cognitive

performance and related work.

This dissertation describes a new approach where sensors and information from mobile

phones were used to find evidence in factors that influence the performance of developers.

We developed an Android application which was installed on the participants mobile

device for the experiments. The app is gathering the location of the user, collecting sensor

data from the light sensor, accelerometer, the environmental noise from the microphone

and the data from the step counter of the device.

Two experiments investigated patterns in behavior and environment that are influencing

2

the cognitive quality of a programmer.

In the first experiment, the mobile application gathered the data while the participant is

solving a provided programming task and afterwards answering additional questions.

In a second experiment, only the cognitive performance of one participant but in a more

controlled environment was investigated.

The first experiment investigated correlations of written code and data which was gathered

during the development. The results have shown that more participants are necessary in

order to find specific influencing factors.

The individual experiment with the single participant provided evidence about influences

of di�erent music genres. Both resulting performances were also compared to a control

scenario with no music played. The results for the participants arose that classical music

reached the best results compared to heavy metal and the absence of music.

Also ca�eine seemed to reduce the cognitive performance of the participant while, on

the other hand running before solving the task showed evidence of a positive e�ect. The

results from the experiment with a group of participants shows no distinct patterns but

traces of correlations between strong changes in the environment and distraction of the

participant.

In the future, monitoring of developers performance could become ubiquitous in the

industry and students. It could be used conjointly with project-management tools that

track the development time on a specific project. It could simultaneously provide real

time feedback about the code quality itself or divergent aspects in the working place and

work patterns. Rather than only comparing the information with other app users, the

app could also systematically develop an optimal working environment and behavior of

the specific programmer.

3

1.1 Motivation

This section will describe the factor that motivated the topic of this dissertation and some

background information.

1.1.1 Mobile Device Sensors

Over the last decades the evolution of mobile devices began with a wireless telephone far

away from pocket size. Over the years, the mobile devices got displays, SMS, telephone

books, games and a lot more. In 2007, Steve Jobs introduced the first iPhone and with it

the age of the smartphone [28]. Over the years, smart-phones became powerful computers

with a better display resolution than the most televisions and the computing power of

what desktop pc users could just dream about a few years ago. More and more sensors

were packet into the small handy devices.

The range of sensors reaches from proximity detection over accelerometer to humidity

sensors etc. Google even engineered a system for 3D objects and indoor environments

with just a single device in real time [40].

Thus, a lot of people own the hardware with the capability to collect rich context information

and they even carry it with them all the time and has a lot of potential to support and

improve the people’s work and environment.

1.1.2 Learning to write code

Learning to write code is getting more and more important but still not a required subject

in school. It is the software that is controlling almost everything in our everyday life such

as tra�c, gates, calendars etc. It’s failure could have dramatic impacts in peoples life.

Thus, it is very important that programmers produce high quality code and also be able

to find good frameworks and libraries. The problem is that it is not always obvious what

4

high quality means. It can vary from good structured code to resource-aware, reliability

and much more.

Still, many programmers didn’t learn coding in school or university. They taught it to

themselves and might just have used it for fun-project which were not created for public

usage. However, they might not really know about best practices in the industry or how

good or bad his/her code really is.

I experienced this problem myself. When I started my first job as an iOS developer, I

had no practical experience in writing code mobile applications. I had to maintain the

current code and add new features in a big and unknown project. As I had no mentor or

anyone who could give me feedback, I just did it as good as I could. I still don’t know

whether I created good or bad code. With a feedback tool for my code quality I could

have learned a lot about the coding itself and by consequence, I would probably write

much better code.

1.1.3 The importance of Software Metrics

Software is becoming more complex than ever and used in almost every environment. The

deadlines in professional software projects are very strict and there is no time to develop

everything from scratch. Development teams depend on libraries rather than reinventing

the wheel over and over again.

As already mentioned in the previous section, a lot of people do programming for a hobby

where the quality and performance doesn’t matter to them as much as in a professional

environment. They also create libraries and frameworks with their quality standards. The

increasing amount of open source libraries and dependencies make it very hard, but also

very important to professional developers to be able to trust the quality and functionality.

At this point of time, the only indicators are user ratings and the amount of times it’s been

used in di�erent frameworks and projects. Some few frameworks are also recommended

in public reviews articles.

5

Frameworks and libraries also need to be dynamic and maintained. Operating systems and

programming languages are being updated more frequently which requires fast changes.

A constant measuring of quality at the first place could give direct feedback that the

quality stays constant after changes and as well helps the developer to create a better

structure and code to improve the maintainability from the beginning.

The most used platform in the open source community is Github. Github is based on git

and is a web server that can be used to host software projects and allow to make them

accessible to others developers [7].

1.1.4 Working environment

A new trend, especially in the tech industry shows that company move from common

clean looking o�ce spaces to colorful creative environments. Companies like Google or

Facebook seem to reduce the strict separation of work and personal life. Companies

introduce unlimited holiday policies, provide free food and even have a laundry service

for their employees. They try to remove all the obstacles from their employees life to

allow them focus on their work.

Also the social aspect at work changes a lot. Some years ago, having a beer with the

co-workers after o�ce hours or meeting the colleagues for a ping-pong match during the

day was unthinkable.

Google tries to motivate developers to communicate more with the team by placing the

whole team in relatively small spaces and provide separate areas for tasks that require

more silence. All these e�orts to make the employees more productive are very interesting

approaches but hard to measure.

In this dissertation, we are trying to find patterns between working environment, behaviors

and the resulting code quality in learning and professional environments. Also, the

creation of awareness for code quality and performance is an essential factor in the evo-

6

lution of a programmer and is important at any stage of the experience.

1.2 Aims

The goal is create a solid base and a working demonstration of a system that can gather

data from a mobile device and show the significance of influences the quality in software

development. This work and framework hopefully inspires and helps others to do more

work in this area to bring code quality to a higher standard. Also for academia, a tool

that provides feedback on code quality for the students can help to bring them on a higher

level when they leave college.

1.3 Road-map

The next chapter summarizes the related work in the area of software metrics, measure-

ments and analysis, data gathering, data clustering, influences in cognitive performance

and software quality.

Ensuing, we describe the design of the di�erent software components to gather the

data, provide information to the participants and to ensure the privacy of the gathered

information.

Chapter 4 contains information and the process of the implementation of the di�erent

software components. The experiment is being described in chapter 5 and includes the

setup and execution, the expected results. the next chapter characterizes data classifica-

tion as well as the questions that are being asked to the participants.

The last two chapters describe and interpret the results and conclude the subject and

information of the experiment. The appendix contains an overview of the abbreviations,

links to the source code and more details about results of the experiments.

7

Chapter 2

The State of the Art

Many researchers are concerned with finding metrics of software quality. The human

factor is one of the most significant factor in the development process. Therefore, the

related work in cognitive performance and influences is an important area and related

knowledge to find factors in the software development.

This chapter provides a summary of their previous research and related work.

Measuring quality of software projects and gaining information about the progress are

valuable information for the software engineers and developers to reflect their performance.

The provided feedback helps them to identify their weaknesses and improve their skills or

optimize their work patterns [22] [30].

Also project managers have a great interest in details about the progress and the products

quality in order to coordinate the schedules, resources and having an overview about the

possible bottlenecks in the project. Early knowledge about potential problems can help

them to target it and make a di�erence between the success or failure of a software

project.

A good programmer nowadays is described as a person who can solve complicated problems

by breaking them down in smaller targeted problems that are easy to understand and to

8

solve.

Good code is supposed to be clean, easy to read and as simplyfied as possible [22].

This new approach di�ers from the early days when programmers tried to find the shortest

and most performant solutions. As long as code was using minimal resources it was fine.

Less people were working on projects and the open source community was not as impor-

tant and big as today. A lower computing power in that days made computers unable to

handle the complexity that software has today.

More people are working together on di�erent parts of complex systems. At the end

every part must go hand in hand with all other parts and the code should have a similar

structure so that people from one team could possibly also work or help out in another

team.

From a research perspective it is very interesting to get an overview approaches from

di�erent years to gain a broader understanding. Thus the following paragraphs will sum-

marize information about code metrics and code quality from several decades.

2.1 Software Metrics

Since the late 1960s, when the software development was in it’s beginning, people wanted

to measure and produce numbers to characterize code properties. The first metrics where

used and developed to measure and evaluate the performance of a programmer. Lines of

Code (LOC) per month and bugs per thousand lines of code (KLOC) are very simple but

e�cient ways for examining the productivity, which can be used to for comparison with

other programmers or general standards.

“Software Metrics“ is the term that has been used since more then 30 years. Today, many

metrics are still used to investigate the productivity of the software developers. The

amount of bugs in relation to the amount of code, the initiall number of requierements

9

compared to the requierememts at the current point in the project and the e�ort it takes

to fix faults versus the total time the project reqieres [25].

The metrics have been a great success in the industry. Most of the big software companies

and even smaller ones use metrics, though they are barely used in academia. The

metrics are created for larger software and scopes. Maintenance and re-factoring is not

as important in academia as it is in the industry with commercial software. After all,

Software metrics in the industry are primarily used for the management rather than for

the development process itself.

Industrial software metrics can be used to ensure quality, productivity and can even make

predictions of the software quality and software reliability [9].

Several researchers investigated and developed approaches to improve the metrics and the

results which they are generating. Yue Jiang et. al. [21] from West Virginia University

researched methods for improving software quality predictions. They used supervised

machine learning algorithms with datasets and focused on improving of the information

content of the training data in their research. Their results showed evidence that the

biggest di�erences in the quality of the predictions are generated by the choice of the

right software metrics rather than applying di�erent machine learning algorithm.

2.1.1 Summary

Software metrics are values that indicate the quality and performance in software development.

It is more common in project management for measuring the progress and for making pre-

dictions rather than for improving the development process and giving feedback to the

developers.

10

2.2 Metrics Measurement and Analysis

PSP - Personal Software Process is a way to gather data about the Software engineering

process and analysis of the information [14]. Over the last decades, the University of

Hawaii did a lot of research in PSP and they developed di�erent approaches to bring

students to adopt and use it in their projects and even later in their profession as a de-

veloper.

Their first approach was originally described as “A Discipline for Software Engineering”

[18]. It required the users to keep records about all the metrics by hand. The massive

overhead was a high barrier for the students to adopt and keep on working with the PSP.

For the best results they needed to write down every compiler error and they had to track

the time they were working on their projects and had to stop it for interruptions.

In 1998 the University of Hawaii started the Leap research project to provide a PSP with

low overhead for the collection and analysis of the data. This generation of PSP was using

automated tools which were asking the user for inputting the data. These tools were also

able to display information and analyses to the user. Just a few students adopted the

system. The researchers found out that another reason for the reluctant adoption was the

constant context switches for the users. Inputting the data during the programming task

interrupted and disturbed the ability to focus on the programming tasks [24]. In order to

eliminate the adopting barriers, they started the Hackystat project in 2001. Hackystat

is an open source framework for automatically gathering all the required metrics by data

collection plugins in the development environments of the users. Table 2.1 shows the

evolution of the PSPs from the University of Hawaii.

Plugins, that are installed by the in their programming environments automatically collect

the data and forward it to a centralized web service. The web service orders and analyzes

the data. If interesting results occur, the webservice sends emails to the developers to

inform them about it. The web service also provides a rich visual representation of the

data. All the di�erent approaches to provide feedback about the code lead to improve-

11

ments in the quality and the ability to estimate software projects [23]. The Appalachian

State University in North Carolina described a di�erent approach. Their goal was to

decrease the high attrition rate of computer science students and increase the attraction

to get a computer science degree in general.

The researchers were monitoring the students software development behavior in order to

find good practices for successfully learning programming. For gathering the data of the

individual students, they developed a tool called ClockIt. ClockIt allows to, fully auto-

matically, collect the data, analyze it and compare the results with the results from better

or more experienced students visually. A web interface provides access to measurements

for the student, the course instructor or an administrator.

In their results they compared the data of three students out of 75 participants. The

students with the best results, an average scoring student and the one with the lowest

grade. The comparison showed that the best student also spent the most time on the

project, but wrote less code than the average scoring student who spend almost as much

time. The worst student spend the least time and submitted the smallest amount of code.

There was an interesting correlation between the grade and the compilation errors and

the amount of compilations that were made. The best student compiled the code more

than double as much as the average student and almost 6 times more than the worst

student did [32].

Characteristic Generation 1 Generation 2
- Leap

Generation 3
- Hackystat

Collection overhead High Medium None
Analysis overhead High Low None
Context switching Yes Yes No
Metrics changes Simple Software edits Tool dependent

Adoption barriers Overhead,
Context-
switching

Context-
switching

Privacy, Sensor
availability

Table 2.1: University of Hawaii - PSPs

12

2.2.1 Summary

This section describes the evolution of analyzing software engineering processes. It started

with documenting every step by hand up to fully automated plugins that gather and

analyzed the data without any work of the developer. The section ends with an example

of a study that was executed with a data collecting and analyzing tool and its results.

2.3 Mobile Data Gathering

Ferreira, D., et al. [10] from the University of Oulu, Finland and the Carnegie Mellon

University were working on a toolkit for gathering the sensor data from mobile Android

devices. They created an extensible framework that could have been used in any Android

application at the time when the paper was released. They also released an application

for research purposes (the Aware client). The Aware client is extendable with plugins

to support more than the pre-installed sensors. By default, the application stores the

gathered data on the local hard disk but can also be uploaded to a database.

The sensoring is optimized to keep the energy impact as little as possible and not to use

more device resources than necessary.

Another approach in the area of mobile data gathering have been made by University of

Science and Technology of China HUI XIONG, Rutgers University in cooperation with

Nokia. In order to detect the context of the mobile device, Zhu, Hengshu, et al. [47] were

reading the log files of the device. The device logs provide information about location,

accelerometers and optical sensor as well as browser history or which apps were used and

are automatically recorded by the Android operating system. These information can be

used to provide context aware suggestions e.g. for other games or based on the physical

location. To read the logged information, the needs to be physically connected computer.

The information from the device logs are much richer than the information which can be

13

gathered in an application with the downside, that the device needs to be connected to a

computer in order to access the information. A installed application can compute, store

and transfer the data to a remote server from everywhere. The only requirement is access

to the internet.

2.3.1 Summary

This section describes two di�erent approaches of using the mobile phone for gathering

the sensor and device data. The first approach is using an application for that purpose

while the second research team was reading the device logs which required physical access

to the mobile device.

2.4 Data Clustering

In order to give data a meaning it makes sense to cluster in a logical way and make

assumptions about the needed features or contexts. The article “Data Clustering: A

Review” [19] provides a wide overview of di�erent techniques and ways to classify data

into groups. They describe a variety of di�erent clustering techniques, all with the goal to

find patterns and assign data to a specific category that allows to work it. The clustering

can be be distinct between hierarchical and partitional techniques. Di�erent from a

hierarchy, the partional methods don’t produce a hierarchy but simple partitions. In

their paper they describe di�erent techniques for clustering di�erent kinds of data such

as image segmentation, object recognition, document retrieval and data mining. Di�erent

techniques can be useful for di�erent kinds of applications and therefore no perfect solution

for everything is found. In another study, researchers from the University of Ouluu,

Finland used the data of a wide range of di�erent sensors to detect the context of the

user [27]. They gathered data from a microphone, a three directional accelerometer,

thermometer, light sensors and measured the humidity and skin conductivity. they were

14

using naive bayesian classifiers to combine the gathered data and correlate them with

samples. For example, they recorded the ambients of di�erent environments such as

being in an elevator or the sound of a car or conversations. They got the features from

their audio files by using algorithms from the MPEG-7 standardized metadata. Di�erent

environments have di�erent key features in their ambient, such as constant noise (e.g.

tap water) or peaks(e.g. conversation). Audio was their most valuable information, but

for example the humidity was helping to detect very accurate whether the user is in-

or outside. The results of the experiment show a very accurate detection of the correct

context in 2.1. Features like being inside or outside as well as detection whether rock

or classical music was played were detected very well. Detection between walking and

running or active and still were less accurate. The combined true positive rate was more

than 90% and the true negative value was over 85%. Their usage of good test data placing

their sensors in a good way helped a lot to get good results. In reality, when users have

phones, they carry them in purses, pockets or their hand which makes it much harder to

detect the current context. Context aware computing was already the topic of a great

paper in 1995 written by a team from the Columbia University and the Xerox Corporation

[39]. They describe a context aware system for an o�ce environment. The systems uses

the user’s location, lightning, communication bandwidth and proximity to other users

within the o�ce in order to customize the application functionality depending on the

context. This could for example include the displaying of experiment information, when

the user is in his lab or showing the calendar when another person is in a close range.

It can also be used to create context based reminders for specified locations, time, when

seeing specific people or all combined.

15

Figure 2.1: Data Clustering [27]

2.4.1 Summary

In this sections, approaches and ideas about bringing data into context are described.

Clustering techniques are mentioned as well as di�erent approaches to classify the information

by comparing them to patterns. Sometimes single sensor-values are enough to be able to

cluster properly to identify the meaning of the data. Though, mostly it is the combination

of di�erent sensor-values that give more clarity about the context.

2.5 Variable Quality Influences

The majority of software quality is based on the cognitive performance of the software

developer and the communication within the team. When the single developers write

brilliant code, but don’t know what the others do or need, the code can’t work. On the

16

other hand, the code quality still stay bad even when the development team communicates

perfectly but the individual programmers write bad code [31]. The following sections

will provide an overview about the previous research of the individual factors in that

area.

2.5.1 Team Communication

The di�erences between teams with high cooperating team-members against project teams

with less communication have been investigated an discussed by Mary Beth Pinto and

Je�rey K. Pinto [33]. They tested the two di�erent groups on performance in tasks and

the psychological outcomes.

Several di�erent factors have been tested and resulted significantly better in the high

communicating group. They scored higher in resolving problems, brainstorming, progress

review, obtaining information, gaining authorization to perform tasks and in receiving

feedback. The low cooperating team did only get a better score in resolving conflicts,

which is not surprising as fewer communication already avoid conflicts.

The importance of the communication in software teams is gaining more and more

attention from companies within the last few years. The companies and teams came

up with several ideas to improve the internal communication. Agile software engineering

methods is the solution for a lot of teams and companies to reach the goal of a better

exchange of information within the company. The concept is based on flexibility and

responsibility within a software project.

Instead of having a the whole project scheduled and structured at the beginning, agile

concepts allow to react to problems and new information in a faster way [5]. One of the

most used and successful methods to work in agile teams is scrum.

In scrum, the tasks are separated in di�erent phases that are called sprints. A sprint is a

short time period in that a defined goal should be reached. This goal can be, for example

17

a feature or a new component. After the sprint the team comes together again and decides

about the next sprint and defines the next realitic realizable goals. I this way the team

has a lot of responsibility about the project and a lot of freedom how they reach their

goals within the sprint period. At the end of each sprint or a defined period, the team

comes together for a retrospective to discuss the last sprint/s and how to improve the

processes in the next period and if they change some methods such as the daily meeting.

The daily meeting is done buy some scrum teams, where every team member summarizes

the achievements and problems from the previous day. This meeting can be useful or

just wasting time. In order to find the best working and management patterns the teams

can test di�erent methods and discuss them in the retrospective. This dynamic changing

and regular feedback is one of the reasons why scrum is used more and more in modern

software teams [36] [31] even with downsides that the company needs to increase the trust

in the employees and give up some control [35].

Another problem with the communication in teams comes with the increasing globaliza-

tion and the internet. The ability that and employee can work from every part of the

world with an internet connection brings the disadvantages that the software develop-

ers do not necessarily sit in the same room anymore or have their working place within

a walking distance. Also allowing homeo�ce for a few days a week is an option that

employers provide their employees in order to be a more attractice and family friendly

oriented. These changes also requiere new techniques to communicate within the teams.

Communication can be done by using video conferences or email. However, both tech-

niques have their disadvantages. A videocall needs to be scheduled and requeres a good

internet communication and the problem with emails are the delayed response times and

it is too easy for others to ingnore an incoming email[4].

One possible solution is chat software which finding their way more and more in the daily

communication in software development teams [20].

Slack is the most used tool for chatting at work. The great success in these new way to

18

communicate shows in the rediculous growth. The company Slack is the fastest growing

Startup in the world. After just twenty month after its launch in February 2014, already

more than 1.7 million people where using Slack [3].

Summary

This section describes the research in teamwork and communication. I was found that a

team with more communication created better results than a team with less communication.

In order to improve communication new agile methods such as scrum were introduced.

This section also mentioned the problems that employees are not necessarily working in

the same o�ce all the time. The latest approaches that deal with this new problems are

for example chat software or video calls.

2.5.2 Cognitive Performance

Looking at the individual programmer, the most important factor is obviously the cognitive

performance of the individual person. This section shows the research in the circumstances

and influences that can impact the performance in a long or short term.

Working Environment

Improving the perfomance in Software Development can be done in a several di�erent

ways. One approach to improve the performance is the optimization of the working

environment. Amabile, Teresa M., et al. [2] wrote about a conceptual model for increasing

creativity in the work environment. Five key factors were described. The first two factors

were, the encouragement for innovation and creativity as part of the company culture

as well as according autonomy or freedom for the employees. Another key described the

adequate availability of resources for a project which might a�ect people psychologically by

the feeling to work on a valuable project. Also pressure at work was identified to increase

19

creativity on a balanced level between excessive demands and boring routine. The last key

factor in their model described the organizational impediments to creativity which could

be caused by internal competitions. A study was designed to investigate two hypotheses:

The influence of the model in high-creative projects vs low-creative projects is expected to

be much bigger. As well as obstacles scales are lower in high-creative projects compared

to low-creative projects for workload with pressure and organizational impediments. Both

hypotheses had clear result outcomes, which showed that beside the employee’s itself, the

management can significantly influence the level of creativity and innovation by forming

the organization culture. The construction of the teams and definition of the individual

roles can have a great impact on the creativity.

Context Switching

Devin G. Pope and Ian Fillmore from the University of Chicago [34] inspected correlations

in cognitive performance of students and the time between written exams. Depending on

the schedule of the examinations, students from one year have a di�erent amount of

time between exams than students in di�erent years. As a comparison they name the

example of physical performance. If the body has a longer time to recover from one task,

it performs the seconds task better compared to a shorter recovery time between these

two tasks.

In this article they compare the scores of the students in their exams and the amount of

days between the examination days. The study involves information about the students as

class(Senior, Junior, Sophomore), Gender and their Race. They all were writing Advanced

Placement (AP) Exams in the USA. Their results show that a longer break increases the

probability that the students pass the exams by 6-8%. The increasing of the performance

is linear up to 10 days.

As one of the possible reasons for the outcome the researchers names fatigue which is

20

caused by the exhausting task of studying and writing the exam. Another theory is that

the last-minute preparations are important for good results but harder to realize when

exams are closer together. Rogers and Monsell from the University of Cambridge [37]

executed an experiment to find out how a context switch can influence the performance

on cognitive tasks. It showed that a frequent context or task switching has a negative

impact on the error rate and the reaction time of the participants for the tasks they

did. Repeating this experiment for three days yielded that the practice has no positive

influence on the error rate and thus shows as well that context changing is negatively

influencing productivity and performance.

Arousal E�ects

The cognitive performance can vary based on the context and the environment. When

the body is in a relaxed state, the mind also slows down to save resources. It made

sense back in the stone age because thinking was not as important as today. Cognitive

performance was mainly needed in dangerous or unusual situations where the heart beat

is faster to provide the brain and the muscles with more oxygen and a higher arousal than

normally.

Researchers from the Brunel University in the UK showed movie clips to participants

in order to invoke di�erent defined moods before the participants had to solve given

debugging/ coding tests. The results showed improvements in their score after the par-

ticipants were confronted with high arousal video clips. Low arousal clips a�ected their

performance in a negative way compared to neutral clips [26].

It is called the Yerkes-Dodson Law, which proclaims that a higher level of arousal leads

to better cognitive performance. As ca�eine also influences the arousal, it also can be

used to boost the cognitive performance and is not just helping to wake up in the morn-

ing. Watters, Paul Andrew et. al. [44] found out that the average ca�eine for the best

21

cognitive results is an amount of 400 mg for one person. That is the amount that is

contained in ca. 5 espresso shots.

When an arousal stimmulation can be influencing the performance of a programmer, other

factors that are e�ecting the mood could also have an impact in the quality of the written

software. Many people believe that, for example the weather has a strong influence in

the daily mood of a person. Certainly, Denissen, Jaap JA, et al. [8] found out that the

sunshine alone actually has no notable e�ect in the mood of the most of the people. Cer-

tainly, some individuals have a so called seasonal a�ective disorder (SAD). Their mood is

indeed strong being a�ected by the seasons with fall and winter depressions.

However, they found significant correlations between sunlight, air pressure and precipita-

tion on the tiredness of the participants. A reason for the influence of sunlight could be

vitamin D3. The most of it is obtained through exposure to sunlight and it changes the

level of serotonin which was found to be partly responsible for the mood of a human.

2.5.3 Activity

The researchers Hillman C, et al. [16] found evidence for positive e�ects of regular activity

on cognition and brain functionality for human and animals. They found that especially

aerobic has a strong positive influence. A meta analysis showed that children who were

physically active were better in all tested categories (IQ, perceptual skills, verbal tests,

math, memory, academic readiness and others). These e�ects were also shown in other

age groups but were the strongest for children. Older people who were active during their

life showed a smaller risk of Alzheimer and Dementia.

Diet

A very di�erent, but probably the most important factor in the long term cognitive

performance are temporary diets and the consumed food during the lifetime. The human

22

brain needs good fuel to run properly. A wrong diet can strongly influence the incidences

of cognitive problems as well as healthy food can positively influence healthy ageing [42].

Some eatables demonstrated positive e�ects on the mental performance when they were

containing flavonoids like for example grapes, tea, cocoa and blueberries. Di�erent to the

previous influences, the diet and the lifestyle are less obvious in their consequences. Their

impact is slowly showing over several years and it’s hard to prove their e�ects and that

they are the influencing factors.

Studies on several mammalian species have shown that food which is rich of flavonoids

have beneficial e�ects on memory and learning, with the ability to support neurons and

protecting them again stress-induced injury. These foods also decreases the chances of

Alzheimer and dementia. Other studies have shown that flavonoid-rich groceries improves

the blood circulation and correlates with the growing of new hippocampal cells. These cells

are located in the brain region that is identified to be responsible for the memory.

Summary

This section is about the di�erent influences in the cognitive performance. Starting with

the influences of the working environment created by the company with the stress and

interest it creates with the projects itself as well as motivation and creativity by giving

employees the chances to share their ideas and feel valuable. The nest part investigates

the problem and the lower performance that occur when people switch during di�erent

tasks and contexts. Afterwards the work of influence of arousal in cognitive performance

is summarized and the section end with the influences of physical activity and the diet

and the food that has positive impacts.

23

Chapter 3

Design

The following chapter details the design of the data gathering Android application.

It will also outline the sever side implementation to compute, store and provide information.

Afterwards follows a short description of some additional tools, needed for the data

analysis.

First, it will start with a brief description of the two components and will follow with my

design decisions and my reasons for the choices.

3.1 Approach

This approach has been created a part of an idea for a system that helps to improve the

working behavior and environment of developers. The whole system is described later

in the section ’Dynamic Code and Developer Analysis’. In this dissertation we created a

toolset that allows to gather data from the mobile phone of the participants, analyze it

and correlate it with the code quality of their work. The technical design for this approach

is created for the experimental data gathering of a limited amount of participants. The

described system is not capable to handle high tra�c and to analyze the data entries of

great amount of users.

24

4Q14 4Q15
0

20

40

60

80

M
ar

ke
t

Sh
ar

e
(%

)

Android
iOS
Others

Figure 3.1: Smartphone OS Marketshare

3.2 Functionality Overview

The name of the application was chosen to be ”Dather”, which is a a combination of

”Data” and ”Gather”. The purpose of the application is to gather information from a

mobile device of a participant while he/she is working on a programming task. Afterwards

the application sends the collected data to a server for further processing and analysis.

The participant also simultaneously submits the written code which code quality will be

detected and then correlated with the processed mobile device information.

3.3 Mobile Application Design

In quarter 4 of 2015 Android had a market share of 80.7% in smart-phone sales by oper-

ating system (see Figure 3.1). The trend also shows that the number increased from the

last year [11]. Therefore, we decided to realize the mobile application implementation for

25

Android in order to be able to work with more users who have access to that application.

An alternative to the native implementation (e.g. iOS or Android) could have been a

hybrid application. A hybrid apps is based on web-technology and using the addvantage

of resposive web design to be able to work with every aspect ratio and resolution on an

mobile device. One way doing that would be by using a framework such as PhoneGap,

wich internally creates a native webview applicationand just loads the hybrid JavaScript,

HTML, CSS in it. Another software for cerating a hybrid solution is Titanum accelera-

tor which itself is using native UI components. Both frameworks have the advantage is

the simple development and the OS independence. The problem with hybrid apps are

the performance and limited accessiblity to hardware components including some sensors

[17].

The Android application make use of its build-in sensors and information provided by the

Android operating system 3.2. Di�erent than iOS, Android is an OS that can be installed

of di�erent devices from various manufactorers and with di�erent hardware components

[12]. Thus, the buit-in sensors which are clustered in motion sensors, environmental

sensors and position sensors [13] can di�er between the diverse devices. Components

that are required for standard functionality such as making phone calls are more common

than other sensors. For example, the microphone for recording the users voice or the

light sensor, which is used to detect whether the user has the phone at his ear can be

found in almost every mobile android device. Furthermore, the di�erent mobile device

manufacturers customize the open source android operating system for their devices and

their purposes. This nature can lead to di�erent settings or behavior for the hardware

and also software components.

This device diversity and the variety of di�erent screen sizes and aspect ratios make it

more di�cult to support a range of android devices and make sit impossible to test all

devices that are running a specific operating system. Apple at the other hand uses the

same aspect ration up from the iPhone5 and supports the hardware components in a

26

Figure 3.2: Gathering: light, timestamp, steps, accelerometer, location, volume

similar way in iOS.

3.3.1 Requirements

The application is primarily created for the research project and therefore not for the

everyday use. The participants should not waste much time in finding out how the app

works. The goal was to create a simple and intuitive interface and a leading flow trough

the functionality. The apps purpose is to gather the data of the participant during coding.

That includes the usage of the mobile device during work. Thus, the gathering app must

be able to run in the background, so the participant can use the app as he/she would

normally do (e.g. listing to music, texting etc.)

27

Figure 3.3: Android Views

3.3.2 App Architecture

The Android app is built based on the Model View Controller design principles. This

design principle defines the interfaces between the three di�erent parts, the Model, the

View and the Controller and states the tasks and responsibilities of each part.

The Model is the data source and in this app represented by the SQLite Database and can

only communication happens to the Controller. The Controllers are called Activities in

the Android Framework and is responsible for managing the Views, which are defined in

XML files and then modified by the responsible Controller. To keep the code base clean

and to avoid bugs, the communication is separated by the controller. The Model doesn’t

directly communicate with the View and can’t update it. It the case of changes, the

Model informs the Controller, which decides whether or not to update the view etc.

3.3.3 User Interface

The Application has two main user Interfaces, the gathering view and the question view.

The gathering view is the control interface for starting, stopping and transmitting the

data gathering. The appearance of the user interface changes related the current state

and the logical functionality. This view also displays the username and a short informing

text.

28

After successfully sending the gathered data to the server the application displays the

question view. Here, the user sees a number of questions and check-boxes to answer the

binary yes and no questions. This interface also provides a send button to submit the

answered questions to the Server.

In Figure 3.3 you can see the flow of the views in the applications. It shows screenshots

of the flow within the app from left to right. Starting at the login view, where the

participant enters his/her Github username. The next view asks for the permissions

followed by the view that informs about the sensible data handling. In the middle you

can see the gathering view, where the user controls the process. The right screenshot

shows the gathering process in action. The next view contains the questions to the user.

The last view shows the gathering view with a changed functionality. Here the user can

gather data again after completing the first gathering process.

3.3.4 Data Storage

For storing the gathered data entries, the app uses a SQLite datebase. SQLite uses SQL

syntax which and is embedded in Android and well documented by Google [43]. It is a

very light weight database and provides an abstracted and easy way to store the values

in an object oriented environment. SQLite is storing the data unencrypted by default. In

order to make sure the stored data is save and can’t be read, the data is been encrypted

as soon it’s been gathered.

The database has a capacity of 1024 MB which is equal to 1,000,000 KiB and can store

2,380,952 entries of an average of 0.42 KiB (this value is calculated based on the used

storage of 1,000 entries). Assuming that the maximum gathering get 30 entries per minute,

the database can store 7,9365.07 minutes or 1,322.75 hours of the gathered data.

bigbreak Additional to the SQLite database, Android provides a way to store single entries

29

such as the field with the email address of the user. The so called ”shared preferences” are

storing key-value-pairs persistently on the phone and can be accessed from everywhere in

the application.

3.3.5 API

The gathered data and afterwards the answered questions will asynchronously send to the

Server and written into the database. When the response will be received, the view shows

a visual confirmation and moves on to the next step or in case of the questions back to

the gathering interface.

The communication to the Server uses HTTP connection over a stateless REST-full ser-

vice. The REST-Service is a centralized way to allow making entries to the database and

use the computing power of the server. PHP is the programming language used server-

side and is establishing the connection to the MYSQL database.

As this application just requires to send information to the server but not receive information,

the data gets converted to JSON format and send to the server via a POST request. The

server response with a success or fail and provides some additional information in case

entries were added to the database.

3.3.6 User Information

For accessing the information from the mobile device, Android requires the user to grant-

ing the permissions for specific functionality such as using using the internet connection

of the phone or access information like the telephone book entries.

The permissions were given when the the user by simply downloading the app from the

PlayStore all in one place. However, since Android 6, the developer now is forced to ask

for the permissions within the application itself [1].

30

Thus, the users with Android 6 or higher are provided by a additional interface which is

specifically asking for permissions for Internet Access, access internet state information,

using the device microphone and getting the location of the device.

Independent from the Android version the user needs to read and accept the terms of use

at the first start of the application. The displayed text informs the user about the rights

and what is happening with the data and information the user provides through this app

usage.

Within the app the user is asked to enter his/her email address. The email address then

is being hashed with the SHA256 algorithm to ensure the data will be anonymous and

can’t connected to the user.

Also the gathered data are stored encrypted in the SQLite database on the mobile device

and just decrypted on a local computer after the researchers downloaded the encrypted

entries from the SQL database on the server. That ensure that the files are not accessible

in readable format at any time.

3.4 Server Design

The server is hosted by 1&1 Internet SE as a completely pre-configured server back-

end PHP version 5.6 and the MYSQL-server phpMyAdmin in version 4.1.14.8. The also

pre-configured server file system can be accessed using SSH or via FTP.

3.4.1 Requirements

The Website is required to provide all the information a participant could need to do

the experiment. The Interface should be clean and the participant should be also able to

31

download the android application from the same website as he/she gets the information

about the experiment. The back-end will only be used by the researchers and therefore

the user interface doesn’t matter as much as for the participants. The functionality and

the customization are the most important features.

3.4.2 Server Front-End Design

The information for the participants of the study can access information web pages and

access the downloadable Android application.

The front-end is implemented in HTML5 and CSS3 and simply uploaded to the server.

As everything is public available and accessible there was no need or using a framework

or any further security implementation.

3.4.3 Server Back-End Design

The back-end is implemented in PHP with the MYSQL-server phpMyAdmin database.

No external frameworks have been used to implement the basic REST-full service and the

establishing of the database connection and the SQL queries.

3.5 Tools

The following tools are were used during the experiment primarily for the decryption of

data to automate some processes.

3.5.1 Requirements

The tools are also just for the usage of the researchers and the requirements therefor also

the functionality, the security that no information are getting lost.

32

3.5.2 Decrypting Tool

The encryption tool an executable program written in Java for locally encrypting the

downloaded gathered data.

Its interface contains of an input field for the path of the downloaded data in JSON-

format, a button for first reading and afterwards decrypting and a output text that shows

the current state of the application. The tool writes the decrypted input values in a

separate text file in the same directory of the input file with the same name but with the

file extension .txt instead of .json.

3.5.3 Data Structuring Tools

For working with the resulting data from the experiment, a tool-set was created to take

over specific tasks. All the tools for this purpose are implemented in Python because it

provides a very handy way to work with external files. The first tool allows to extract

only the entries from a specific participant by providing the his/her Github username.

Another tool extracts the single values per entry with its timestamp and the last tool

averages the results per minute and converts the data into a form that can directly be

used in latex to draw plots. The last tool calculates the standard deviation and the

average of the values.

3.6 Dynamic Code and Developer Analysis

The work in this dissertation is part of an analysis system for code and developer. The

limited scope of the dissertation didn’t allow to target the whole idea which will be

described in this section.

The idea for the full approach is a system that constantly gathers data from the developer.

33

The system provide the developer real-time feedback on the code quality and ways to

improve the performance.

Many developers are already using applications to track their time on projects. Our

approach could combine the time tracking and the performance analysis and thus avoid

more work for the developer.

In order to reduce the problem of the limited and di�erent sensors in the variety of mobile

phone, an additional hardware device (base station) with a collection of sensors, placed

on the developers desk could gather the main environmental information. The mobile

phone would transfer specific data, that only the mobile phone can gather to the base

station. This data could be for example the location and the rotation of the mobile device.

The base station collects all the data and could also request additional information from

various sources in the internet such as the weather based on time and location.

The combined information constantly analyze the gathered data and the latest commits of

the source code and compare the data with the results of other developers. Furthermore,

automatic learning algorithms could compare the gathered data and the code of the

developers to find more specific trends and influencing factors in the performance for

individual developers. Last, notifications sent to device of the developer could provide

feedback and tips for improvement, either in the working patterns or environment.

3.7 Summary

This chapter is about the design decisions of the di�erent software parts that are needed

for the experiments. First, the functionality of each part are being described, followed by

the part about the Android application. Android was the mobile OS of choice because

it has the highest market share of all mobile operating systems. The app needs to be

simple and easy to use for single usage which is seen in the UI and the UX specification.

The app was programmed in Java using the MVC design pattern while using an SQLite

34

database for the permanent data storage. The app-server communication is been realized

using a REST-API and in order to do nothing against the users will, the user needs to

grand permissions and accept term to be able to use the app.

The Server back-end is implemented in PHP with an MySQL database while the front-end

is implemented in HTML5 and CSS while the decryption tool was created in java and the

rest tools in python.

35

Chapter 4

Implementation

This chapter is about the implementation of the main application for Android, the server

back-end and webpages. It also describes implementation of the tooling for working with

the data.

4.1 Android

As mentioned before, the Android Application (Dather) is for gathering data of the user

and get environmental information. For This purpose we developed an Android applica-

tion which can gather these information.

Beside gathering the data using an App it is also possible to read the sensoring information

which are being recorded continuously as described in the approach of Zhu, Hengshu, et

al. [47]. They are reading the device logs and get all the logged device more information

about the apps being used etc. . Sandboxing is an Android security concept that only

allows an app to access the data of the app itself and isolates the content for other appli-

cations. Thus it is no possible, using an o�cial way, to access the device logs via an app

without having physical access to the device.

In terms of the ideas for future usage of the app it doesn’t make sense to require physical

36

access to the device itself. Thus, the decision to use an App, installed on the users device,

is the best way to go for this purpose.

The implementation of the Android application has been done using the Android Studio

IDE, which is provided for free usage by Google, Inc. The code was written in Java,

which is the o�cial programming language for Android applications. Google also provides

a variety of libraries and frameworks for user interface-Elements and basic functionality.

For the user interface Android Studio has build in Solutions to either design the graphical

user interface (GUI) using Java code or defining the elements in XML files.

4.1.1 User Interface

The focus in the implementation if the user interface was to create a simple and intuitive

user experience. As the participants will use the app probably just once, the interface

must be as simple and intuitive as possible while reducing the possibility to make mistakes.

In order the achieve that, self-designed Icons are being used to simplify the handling and

the available functionality is limited to a logical order. For example, it is not possible to

send data to the server without any previous gathering process. The experiment showed

that the participants felt comfortable to use the interface itself. In order to help the

participants during the experiment, the project website 1 provided a walk-through guide

through the experiment. Though, the participants didn’t use these information source

and tried solving it on their own or where asking for personal assistance. Therefore it

is even more important to provide a clean interface and reduce the possibility of wrong

actions as much as possible.

The user interface contains of two main views, the gathering view and the question view.

There are two more views, one for asking the user for permissions and a second one for

informing about the experiment and the terms of the usage for the application.
1
http://frickm.de

37

All view have a controller/activity java class which acts as the controller. The actual

views contain of an activity XML and, depending on the complexity of the view, an

additional content XML. Both are defining the UI-elements in XML tags and as well as

their positioning within the view.

The colorscheme of the app is mainly a dark grey background with a combination of

bright UI-Elements and simple lightgrey fonts for information texts.

Login View

The login view only shows an input field and a login button. The input field requires the

Github username of the participant in order to login. After taping on the login button,

the usernames existence is been verified by the Github API.

Permissions View

The Permissions view just contains four checkboxes with it’s descriptions, each for one

permission. This view is only shown on devices with an Android version of 6.0 or later.

Once all the permissions are checked, a button appears which allows to go on. A tap

brings the user to the gather view.

Information View

This view contains a scrollview with an HTML-formatted text. A button is located at

the bottom of the scrollview. A tap on the button the user confirms that he/she read and

understood the displayed information. The user is then forwarded to the next step which

is either the permissions view or the gather view.

38

Gather View

The gather view contains of an input filed for the users email address and a dynamic

changing interface to for controlling the gathering and uploading process. The buttons

are a blue circle shape with an icon for showing the functionality of the button itself.

The Icons are a white shape without borders and designed to give a clear idea about the

representing purpose of the button. Depending on the di�erent states of the gathering

process, the buttons change in functionality and look. In the first state, it only makes

sense to display the button that starts the gathering of the data. Once pressed a red

bar with an information text on the bottom of the view indicates the running gathering

process and the button that was starting the gathering changed to a new button for

stopping the process.

A tap on the stop-button removes the red information bar disappears and the button

changes its appearance and functionality to share/upload. At the same time, a smaller

button appears on left hand side in the view which can restart the gathering process.

After tapping on the share button, a green bar appears on the bottom and the question

view opens.

Question View

The question view contains of a short information text that introduces the user to the

new interface and a bunch of checkboxes for questions on it’s left side. The questions can

be either checked, to indicate a ”yes” for the answer or can remain unchecked for ”no”.

On the bottom of the view is another share button which sends the answered questions

to the server once tapped.

The successful send is also being indicated by a green bar at the bottom and the question

view is being replaced by the gather view.

39

4.1.2 Data Gathering

The data gathering is managed by the gather class while the functionality is been managed

by the sensor class. The most sensors can just be accessed by creating an instance of the

single sensors. However, some, such as the environment volume have been customized

individually in separate classes. The volume is no predefined sensor and needed to be

created from the recording framework but without actually recording the sound. It is

calculating the decibel from the current recording and just saved the gathered volume

value. That ensures the privacy of the user and also doesn’t need so much memory of the

mobile device capacity.

As well as the volume measuring, the location has a custom implementation that uses the

GPS or Wifi signal to calculate the current latitude and longitude of the device.

The app is gathering the data of each sensor every few seconds, between every 2 and 10

seconds, depending on the device speed. After receiving all the values from the sensors,

microphone and Android OS, the app is generating a timestamp, adds the user ID to the

entry.

This way to handle the gathered data make each singly entry independent from each other

and can still be used in case of damaged data in some other entries.

4.1.3 Data Storage

Variables and temporary available resources are stored in memory during the runtime of

the app. Anyhow, the memory can just store information as long as it’s powered. The

memory is also managed by the Android operating system and can be overwritten by

other applications, once they are higher prioritized.

To store the entries and the user information permanently on the device on the hard disc

its been stored in an SQLite database. The SQLite database handles the organization

and keeps everything in a ordered form. It is also is resource optimized and allows easy

40

Figure 4.1: Security Dataflow

access to the database from the applications.

The only data that is being stored permanently is the encrypted gathered sensor data.

The permanent storage make sure that the data is not lost in the unlikely case of a crash

of the application or a failing in sending the data to the server.

In order to save states such as the information weather the user already confirmed the

he/she read and understood the terms of use, Android provides a method called Shared-

Preferences. They can store single key-value pairs and are additional to the app-states

used to store the users email address to avoid that he/she has to type it in every time the

app restarts.

4.1.4 Security

In order to prevent that the participants can be identified by the user id because it is

been generated by a SHA256 hash function that is infeasible to invert. In other words, the

SHA256 algorithm generates a base16-String of the participants Github username. There

is no known way mathematical to recover the original email address in feasible time from

the hashed String.

For encrypting the gathered data, the entries are independently getting encrypted before

41

written to the database using a hybrid cryptographic procedure. Hybrid cryptography

means the combination of using a the faster and performance friendlier symmetric cryp-

tography (using the same key for encrypting and decrypting) and the slower but more

secure asymmetric cryptography. In the asymmetric procedure also known as public-key

cryptography, uses two di�erent keys for encrypting and decrypting. A public key is

used for the encryption of the data and the private counterpart is used to decrypt the

data.

The encryption is the Android app works as follows:

A symmetric key will be generated every time the app starts using the AES CBC algorithm

with an PKCS5Padding and a random SHA1 seed. This symmetric key will be used to

encrypt the gathered data, while the symmetric key will added to each entry encrypted

with the public key of a pre-generated RSA 1024 bit key-pair.

The private counterpart of the public key will later be used to decrypt the symmetric key.

That symmetric key is then used to decrypt the entries. The decryption will happen with

a separate written Java application locally on a computer.

Thus, a decryption within the applications is not possible because the functionality and

keys are not even included.

4.2 Server

The server contains of three di�erent parts, the back-end that handles the REST-full

API calls, the MySQL Database and the web-pages for providing information to the

participants of the study. This chapter will be about the back-end and the web-pages

because the Database design is already described in the previous design chapter.

42

4.2.1 Back-End

In the PHP script, the data from the POST gets extracted and decoded from JSON to

an PHP-Array.

If the format of the data is correct, the script connects to the MySQL database and inserts

the values into the corresponding table using SQL-Syntax. For each entry a counter is

increasing it’s value and after completing the insertion, the counter-value gets returned

as a response argument. When something wrong happens, the script is responds with an

error-code.

4.2.2 Webpages

The websites are implemented as simple as possible. They are completely static and

only for displaying styled text and images. Therefore the implementation is only been

done using HTML5 for the structure and CSS3 for styling the fonts, images and visual

structuring.

Di�erent fonts were embedded using Google-Webfonts from 2 which are dynamically being

loaded at the page load or from the browser cache.

4.3 Tools

The development of the following tools was necessary to work with the data that can be

downloaded from the MYSQL database.
2
https://fonts.google.com

43

4.3.1 Encryption Tool

The encryption tool is a Java application that is written to decrypt the downloaded

encrypted JSON-File of the gathered data. The simple tool is implemented in Java and is

using the IntelliJ interface builder which is based on XML. First the tool read the input

JSON-File and writes the beginning of the file into the output textfield.

Afterwards it is decrypting the symmetric AES-key using the asymmetric RSA-algorithm

with the counterpart private-key to the public-key which was used for encrypting. Having

the symmetric key allows to decrypt the whole input line by line using the AES decrypting

algorithm. At the end the decrypted entries are written to a new created file and the

filepath is been displayed in the text label.

4.3.2 User Separation Tool

This and the following three tools are written in Python. This tool reads the decrypted

text file that has been created by the java decryption tool. First, it creates a SHA256

Hash from a Github username and compares the entries of the text file with it. It only

takes the matching entries and writes them to a new text file.

4.3.3 Value Separation Tool

This tool can be used to define which of the entries are needed to work with. For example

the user can decide just to create an output file with the latitude of the participants

location. The selected data and its timestamp gets written in a new text file as well.

4.3.4 Latex Plot Syntax Creating Tool

This little tool is calculating an average for every Minute of the timestamp of the read

text file. As the gathering saved a value every few seconds, it makes no sense to display

44

all the values in a plotted graph.

The output contains the timestamp with the value for every minute in a syntax that can

directly been interpreted by latex and the pgfplots library.

4.3.5 Map to Duration Tool

This tool calculates takes a duration and maps the current measurements on that specific

duration. That allows to compare the results in a graph independent of the duration the

participant needed to solve the task.

4.4 Summary

This chapter describes the implementation of the software and tooling for the experi-

ments.

The Android app contains of:

• Login View - verifies username with Github API

• Permissions View - asks to grand permissions to app

• Information View - shows terms of the experiment

• Gather View - control center for the gathering process (start, stop, send, restart)

• Question - Asks participants questions and sends to server

The next section describes the data gathering in process in detail followed by the imple-

mentation of the data storage within the app. The app uses a hybrid encryption using

AES and RSA.

45

The next part will point out the simple PHP implementation with the database con-

nection of the Server back-end. For the front-end we used standard HTML and CSS

components and Googler web-fonts. The decryption tool uses RSA and AES for decrypt-

ing the data. The other tools read a textfile, manipulate the data and write the results

in a new textfile.

46

Chapter 5

Experiments

This chapter describes the details about the two di�erent experiments. These experiments

should demonstrate the way how such a system can monitor and analyze the development

in order to improve it and find weaknesses.

The goal of the first one is to to find correlations between the gathered data from the

mobile devices and the code quality. The second experiments purpose is to find individual

factors that influence the cognitive performance of a single person.

This chapter shows the execution of the experiments as well as the usage of the gathered

data and how the data is been interpreted.

5.1 Group Experiment

Five participants solved a programming task while the mobile application was gathering

the environment and working patterns. After completion, they submitted the gathered

data to our server and deployed their solution in a public Github repository. An overview

of the experiment procedure is shown in figure 3.1.

47

Figure 5.1: Experiment Execution

5.1.1 Setup and Execution

Every participant needed to install the ’Dather’ app on a mobile phone with at least

Android version 4.4. They downloaded the app from the project website 1 by accessing

the URL from the Android device. The website also provided information about the setup

and usage of the application.

At the first start, after installing the downloaded app, the participants needed to login

with his/her Github username, followed by granting the permissions to use the sensors

and access the required device information.

After setting up the application the experiment is ready to start. The participant runs

the gathering process while working on the programming task as described in the next

section .
1
http://frickm.de

48

After completing, the participants uploaded their solution code to Github and provided a

link of the Github repository to the research team. The Github account name was later be

used to match the gathered data with the uploaded solution-code of the participant.

5.1.2 Programming Task

The programming task for the participants has been provided via the project website 2.

The Participants were asked to create a solution to calculate the number of character

from a string, that can not be used to create a palindrome 3. The whole programming

task with examples can be found in the appendix of this dissertation. The participants

could use their favorite programming language to address the problem while they let the

android application gather their data.

The experiment showed that the participants had some issues understanding the explana-

tion of the problem. The example brought clarity and helped to understand but wasted

time of the participants who partially read the question and the next steps while they

were working on the task.

5.2 Individual Experiment

The purpose of the second experiment is to find evidence of specific factors that influ-

ence the ability of cognitive thinking. Di�erent isolated scenarios are been tested by a

participant in order to find correlations between the specific environments. This exper-

iment allows to test the factors in a more controllable environment but based on one

individual person.
2
http://www.frickm.de/codingTask.html

3
A palindrome is a word which reads the same from left to right and right to left such as anna or

racecar

49

5.2.1 Setup and Execution

In this experiment a participant solved some cognitive tasks while being in a controlled

environment in order to test the performance influences of isolated factors. Of course

it is very unlikely or even impossible to test a factor in complete isolation one factor.

There are always side factors that which are unavoidable. They could be for example

the human itself, sudden unpredictable changes in the environment and of course the

problem in keeping the factors of one part of the measurement equal to the factors of

other measurements. To minimize these factors, the ’Dather’ Android application helped

to monitor the environment and remove recorded tasks where the environment information

are too di�erent of results which are were correlated with each other. However, with

this problems in mind, the idea to measure changes in the cognitive performance of a

person, was measuring the time of finishing a Sudoku game. The game, where the goal

is to systematically add missing numbers in a 9x9 matrix, requires concentration and

logical combining of numbers. The sudoku game was already used in previous research

for measuring the cognitive performance [41] [46]. Another reason for using Sudokus is

that they can be randomly generated with a specific calculated di�culty level to make

sure that every Sudoku is equally hard to solve. A website 4 generated the Sudokus uses

an engine which is part of the gnome-sudoku software 5. A medium di�culty level and

a limited calculated range of di�culty to +/- 0.02 of 0.5 was the base for generating the

Sudokus which were then printed on paper, one per page.

5.2.2 Scenarios

The following scenarios have been tested. Each scenario was performed 10 times to get

a good mean which decreases the randomness in the experiment. In order to control the

environment variables, a modified version of the Android app recorded the environmental
4
http://www.opensky.ca/

˜

jdhildeb/software/sudokugen

5
https://sourceforge.net/projects/gnome-sudoku

50

light and volume and it was made sure that the values don’t di�er much to have a

influence in the results. The experiments were executed over a several days in mixed

up order to avoid that the training-process in solving the Sudokus can also influence the

overall average of the outcomes.

Music

The scenarios to compare in this part the influence of two di�erent types of music and

as a control scenario no music at all. The participant did the Sudokus while listening

to Spotify-Radio 6 ’Heavy Metal’ and ’Classical’ over headphones on a defined level of

volume. In the control case without music, the participant was not wearing headphone

but working in a very quite environment.

Co�ee

In this scenario we wanted to test the influences of Co�ee in the cognitive performance

as discovered by Watters, Paul Andrew et. al. [44]. Simultaneously to their results we

used a ca�eine level of almost the value that they found out is the optimum for cognitive

performance (400 mg). The whole experiment was executed in 5 days in a row with

two tasks before, and two tasks after having a co�ee. First, the participant solved the

Sudokus without taking any ca�eine for more than 16 hours, which is more than enough

to make sure no other ca�eine intake can influence to experiment [29]. Additionally the

participant had the same breakfast every day before every experiment. For the second

part of the experiment, the participant had the co�ee drink. The Co�ee Franchise declares

one espresso with 75mg ca�eine each, which sums our drink up to 375mg at an amount

of 5. After having the co�ee, the participant waited 40 minutes for the ca�eine to be

absorbed [29] and started with the Sudoku.
6
https://www.spotify.com

51

Running

This scenario compares the Sudoku result from before and after running for 30 minutes

at a speed of 10 kph in a gym. 10 minutes break are between finishing the run the

beginning of solving the Sudoku. The 10 kph for 30 minutes was a duration which was

very exhausting for the participant during the test. Hillman C, et al. [16] found evidence

for long term improvement of the cognitive ability now it is to find out how activity up to

a level of exhaustion influences the brain performance. A possibility would be an increase

of the performance related to the supply of more blood and oxygen while the heart beat is

significantly faster during activity it would also be possible that the exhausted body enters

a state to save energy after high activity and decreases the energy and heart rate.

5.3 Summary

Three experiments are described in this section. The first experiment gathers data while

participants work on a programming task. Second, a participant is solving 10 Soduku

riddles for each isolated environment (normal vs. after drinking 375 ml ca�eine, silence

vs. classical music vs. heavy metal, normal vs. after running for 30 min) and being

compared to the its counter parts.

52

Chapter 6

Classification

In this Chapter, the classification of the gathered data is been described. That means

that the data is interpreted and put into a context which can be used to generate results

in the next section.

6.1 Context Classification

In order to understand the gathered values from the sensors rather than just using them,

it makes sense to interpret them and bring it into a context. Previous research results

and also classifying controlled tested events using the gathered values will be described

in further detail within the next paragraphs.

Indoor Outdoor di�erentiation

The brightness of indoor lightning is di�erent from the brightness outdoors. Indoor envi-

ronments are mostly receiving light from an artificial light source which flickers in a rate

than can’t be noticed by the human eye. Sadly the light sensor of the mobile devices is not

precise enough to detect that flickering. Anyhow, also the luminance is di�erent indoors

53

and outdoors. Indoor lights are just not as powerful as the sun and it would require a

ridiculous amount of artificial light sources and windows to create the same brightness

within buildings as they are outside. As seen in the two tables 6.1 and 6.2, based on

the lux from the light sensor it is possible to give an educated guess whether the mobile

device is indoor or outdoor.

Common Light Levels Outdoor - Daytime

Condition Illumination in lux

Sunlight 107,527

Full Daylight 10,752.7

Overcast Day 1,075.3

Very Dark Day 107,527

Table 6.1: Common Outdoor Light Levels

Common and Recommended Light Levels Indoor

Activity/Location Illumination in lux

Warehouses, Homes, Theaters, Archives 150

Easy O�ce Work, Classes 250

Normal O�ce Work, PC Work, Study Library, Gro-
ceries, Show Rooms, Laboratories

500

Supermarkets, Mechanical Workshops, O�ce Land-
scapes

750

Normal Drawing Work, Detailed Mechanical Work-
shops, Operation Theatres

1,000

Detailed Drawing Work, Very Detailed Mechanical
Works

1,500 - 2,000

Table 6.2: Common & Recommended Indoor Light Levels

54

Movement of Mobile Phone

The Y and Z axis of the 3D accelerometer can be used to detect whether the participant

moves and uses the mobile phone.

The values from the 3 axis can give an indicator how the participant interacts with the

device. For the results, we want to know, how many times user picks up the mobile phone

and how long he/she was interacting with it. That behavior, as shown in the graphic 6.1

detects changes between the mobile device laying flat on the desk and the device being

in a vertical position by the changes in the rotation of the z- and y-axis.

Figure 6.1: Device Rotation

Location

In order to detect the location of the user, the location with the environmental noise

as well as the detection whether the user is indoor our outside. The location accuracy

depends on the way how it is been calculated which is ether the network or GPS. However,

it can vary and can’t ensure a the exact location but also using the noise and information

from the light sensor can help to limit the results to fewer possibilities.

55

When, for example the location shows a radius in an area with a library, a co�ee shop

and a public crowded square it’s a high chance that the library is not an option in the

case of a noisy environment. In order to detect whether the user is in the co�ee-shop or

the square, the light sensor can detect whether the light value is in the outdoor or indoor

brightness range.

Movement

The movement of the user can directly be seen by the steps he/she walks during the start

of the gathering until the ending. The distance and the frequency shows if the user just

walks to the fridge, toilet or somewhere close or actually walks from one place to another.

Also the locations can indicate that.

The location can also show whether the user was on public transport, on a train/car or

an Airplane depending on the travel speed and from where the user started and where

he/she arrives (airport, garage, train-station etc.).

Weather Conditions

With the location and the timestamp of the gathering and it is possible to get information

about the local weather of the users location at the time when the gathering happened

using the timeanddate-website 1.

Dynamic

The dynamic in values is the way it di�erentiates in itself. This information can be used

to detect changes in the noise level and environmental light. For detecting a range within

the dataset a range must be set which value are within a normal range and which are
1
http://www.timeanddate.com/weather

56

falling out. One way to calculate a range is to use the standard deviation + and - to the

mean of the values.

Music

Using the environmental noise it is possible to find patterns that can be related to music.

In general modern music has a very constant noise level rather than the dynamic classical

music. The iTunes top 100 2 songs at July 14th 2016 have an average length of 3:39

minutes, the shortest song is 2:42 minutes and the longest 5:13 minutes long.

In order to detect whether the participant is listening to music, the volume should go

down for 2-5 seconds between a track with a duration between 2:30 minutes and 5:30

minutes. A regular pattern with these attributes should indicate that the user is listening

to background music while working on the coding task.

6.1.1 Questions

After the gathering process, the participants were asked to answer some questions:

• Are you a student?

• Did you work in a team?

• Did you listen to music?

• Did you feel tired?

• Did you enjoy the tasks?

• Did you give all you attention to the tasks?

• Were you distracted during the tasks?

• Did you feel stressed
2
http://www.apple.com/ie/itunes/charts

57

• Do you think the tasks were easy?

All the questions can either be checked to indicate ’yes’ or leave unchecked for ’no’. The

answers can help to clarify the classification or to get new additional contexts. Some of

the questions are created based on the knowledge from previous work of researchers and

their results that can possibly influence cognitive performance.

In a long term, asking questions is not optimal. In the future the app is supposed to

learn and slowly make the questions unnecessary. Currently there is a way to detect

whether the user is listening to music by identifying patterns but the accuracy is not

exactly known and therefore also asked as a question as well could it be that the user is

wearing headphones. If the detection using the environmental noise is highly accurate,

the question can be removed from the app.

58

Chapter 7

Evaluation

This chapter shows the results of the experiments and how the gathered data can be

interpreted.

7.0.1 Output Format

Figure 7.1 shows the output format of a single entry after the decryption.

Figure 7.1: Gathered Data

59

7.1 Group Experiment

This section shows the finding in the experiment where the participants had to solve the

programming task. This section is divided into the di�erent categories where the findings

were clustered into.

7.1.1 Noise

Regular mobile phone microphones are not calibrated to provide an general loudness.

Therefore we can use the values of the environmental noise only for finding peeks or

changes. The environmental noise shows a steady low noise level for four of the partici-

pants while one participant has some high peeks in the data.

7.1.2 Dynamic in Light and Noise

Noise P1 P2 P3 P4 P5

Dynamic Score 139.72 78.51 37.61 67.80 59.63

Average 1,676.59 549.59 159.82 1033.95 498.67

Table 7.1: Dynamic Noise Level

Light P1 P2 P3 P4 P5

Dynamic Score 2.46 2.44 - 12.73 0.26

Average 7.37 5.69 - 59.73 1.35

Table 7.2: Dynamic Light Level

The standard deviation added and subtracted from the mean is the range that separates

normal noise and peeks. The values are only in a positive range. If the minimum value

went negative in the calculation, it was set to zero instead.

60

The values outside of the range, as a percentage relatively to the standard deviation were

added together and result in a number which can give a good indicator of the amount and

level of dynamic. These value divided by the number of minutes of the gathering create

the dynamic score which indicates the level of dynamic in a dataset. The average value

is the mean of all the percentage values outside of the range.

7.1.3 Location

The location of the participants was not able to be accessed from two of the participants.

Two of the other participants were working in Dublin, Ireland while a third one did the

task in Madrid, Spain.

The step counter of the participants didn’t provide valuable information as the step count

was never more than 10 and didn’t change during the gathering process. Also the location

of the participants didn’t change during the experiment. Thus, we can assume that the

participants didn’t move during the experiment.

7.1.4 Movement

The 3-axis accelerometer of the participants devices don’t show any changes. In all the

gathered results, the device was laying on the desk without big movements in between. A

value close to 0 for the X and Z axis of the measurements as well as a value close to 10 for

the Z axis show that the mobile phones were positioned screen upwards on a horizontal

surface. Any movements of the device would have changed at least one of the values of

an axis.

61

P1 P2 P3 P4 P5

Description - Cloudy and Drizzly - Sunny Cloudy

Temperature - 17¶C - 31¶C 14¶C

Humidity - 82% - 31% 62%

Pressure - 1007 nPA - 1018 nPA 1028 nPA

Table 7.3: Weather during experiment

7.1.5 Weather

The weather is looked up based on the location, data and time. Therefore, the weather

of the two participants without location was not possible to find out. The weather of the

experiments of two participants was cloudy for one, and cloudy with a little bit of rain for

the other one. The third participants had a hot sunny day. The individual information

can be seen in table 7.3.

7.1.6 Light and Environment

The results of each individual participant (see appendix) show a good probability that all

the participants where working on the task indoor. Based on the classification mentioned

in the previous section, the highest brightness of the participants environment with 554.33

lux, which is a in the section of a o�ce space or a very dark day 6.2 6.1. However,

the mentioned maximum value is a peek in the results of a single participant. Another

participant whose light level was on a high level was working during a sunny time which

removes the possibility that it was a very dark day and that the participants was working

outside. The other two participants had a lower light measured and therefore just a small

possibility that they were actually working outside. Also the location of the participants

are all in urban areas within a range of several buildings.

62

7.1.7 Music

Only two of the five participants answered the questions if they listening to music, with

’yes’. However, there didn’t seem so be a correlation between any of the results and the

fact of listening to music. Also the analysis of the gathered noise level showed didn’t show

any evidence of people listening to music. That either means that the participants were

wearing headphones or the noise level didn’t match the pattern that is described in the

classification chapter.

7.1.8 Development Performance

The performance in software development is not only measured by the quality of the re-

sulting code also the actual e�ciency of the programmer matters especially for companies.

The code from the experiment is analyzed based on these three aspects.

Light P1 P2 P3 P4 P5

Src code lines
per min

5.74 5.12 1.16 0.58 0.36

lines of src
Code

69 95 20 35 33

max nesting
depths

1 3 2 2 2

unnecessary
lines

0 0 2 5 0

no intending 0 0 0 0 0

duplicated
code

0% 0% 0% 0% 0%

Table 7.4: Development Performance

A software named ”Teamscale” was used for the code analysis. The systems analysed the

code for Structure Metrics like lines of code, nesting depth etc. It also detects comments,

63

test coverage, architecture conformance, code duplications and Anomalies like naming

convention violations [15].

The limited size of the code from the experiment also provides only limited code analysis

information. Writing unit tests of the code was not part of the experiment and therefore

a factor which can’t take any influence in the results.

E�ciency

The e�ciency of the code is been determined by the written source code lines per minutes.

The more code the developer wrote per minute, the more productive he/she is. The lines

of code in the project is an indicator of the complexity of the solution. Solving the same

problem with less code is mostly a sign that the developer reduced the complexity and

created better code. Also the nesting depth within the code is a factor in the e�ciency

of solving a problem. The deeper the nested loops are, the more complex it gets. In most

of the cases it is better to keep the nested depth as low as possible. The longest method

length was not used as an indicator because long method names can be more descriptive

as well as be confusing. Therefore it can’t be detected only from the metrics if it’s positive

or negative.

Code Quality

Having single lines of white-space is important to keep the structure of the code clean and

separate parts such as methods from eachother. Anyhow, several lines are just reducing

the code that a developer can see on the screen and should be avoided. In this section

also the formatting is been looked at. Code without indented code blocks is massively

decreasing the readability of the structure and makes it very hard to get an overview.

It is also bad style to have duplicated code at di�erent places in the project. That

reduces the maintainability and can cause bugs or unexpected behavior. Here, the amount

64

of duplicated code is shown in percentage. Luckily, none of the participants had any

duplications in the code.

7.1.9 Variable and Method/Function Naming

The naming of the variables is detected by hand. A script can extract the variable names

and method names of a project to make it easier for a large code base and multiple projects.

For this experiment, we just looked at meaningful names rather than abbreviations which

meaning can just be guessed. The evaluation of the naming of variables and methods

should be descriptive and help others to understand the code. The code of the participants

is not showing a very good example neither shows it a very bad one. Participant 4 was

using the best naming for the variables while the method names are not clear. The

best naming for methods can be found in the code of participant number 2. The least

descriptive variable naming was done by participant 5 and the method name of participant

of participant 4 where confusing in the functionality of the methods.

7.1.10 Coding Conventions

Coding conventions such as using camelCase for variables and method names, starting

lowercase and Class names starting Uppercase, are some examples for coding conventions

that should not be changed within a project to help to increase readability. The mentioned

conventions above and keeping a constant style was followed by all participants except

of participant number 5, who switched between camelCase and underscore for variable

names.

65

7.1.11 Results

The experiment demonstrates that the application for collecting data works well and

creates valuable data that can be used to to find evidence for influencing factors in

development quality when it will be applied in a larger scope.

bigbreak The evaluation of the data showed that di�erent results in the developing quality

always had more than just one factors that are di�erentiating the work and environmen-

tal patterns 7.4. Also, the quality in software developing is assembled from di�erent

components and can’t be used as a general term.

Participant four was the only participants who stated to be distracted during the ex-

periment results show that there could be a possible correlation between the dynamic

changes in the light level of the distraction as this participant has by far the highest dy-

namic score and highest average in the relative amplitude 7.2. The noise didn’t show clear

evidence as the results in the coding task don’t show a pattern for the two highest values

of participant one and participant four. Also no evidence was found that the solving time

of the experiments has any influence in the length and quality of the code. Correlations

between weather and any code metrics were not found within the results.

7.1.12 Problems

The gathering process showed some problems with the permissions of di�erent mobile

devices and di�erent settings. Also, not every device has the same sensors and some

devices have di�erent default security settings that permit to access specific data within

the application even when the application itself has permissions granted. Furthermore the

usage of di�erent programming languages for the experiments made it di�cult to compare

the results with each other. A larger group and a larger project with more resulting source

code was not achievable in the scope of this dissertation but would have been of great

value to detect influences rather than just plausible factors.

66

A first idea was to let the participants do the task whenever they want to find out

whether they work at night or day. However, it turned out that the majority of the

participants confirmed to do participate at the experiment but actually forgot to execute

the experiment for several times. At the end, they did it right now after a being reminded.

So, the time of the day can not be used as a indicator for detecting the working times of

participants.

7.2 Individual Experiment Results

The results of the individual experiment are demonstrating the usage and the abilities

for the ’Dather’ application. Rather than in the first experiment, it is taking only the

data of a single person into account. The data only shows a plausible factor but doesn’t

confirm the influences of the tested factors. A lot more test cases would be needed to

create a more accurate average value. However, the purpose of this experiment was to

demonstrate the usage of the gathering application to ensure more controlled comparable

environments rather than in the other experiment which detected the environment and

patterns.

The graphs of the three scenarios 7.2, 7.3 and 7.4 shows an overview of the durations that

the participant needed to solve the Sudokus. The black dots are signaling the solving

time on the y-axis for each of the ten measurements per scenario. The horizontal line

in every scenario is signaling the mean duration that the participant needed to solve the

Sudokus.

7.2.1 Co�ee

The the scatter plot 7.2 shows the times of ten Sudoku solvings of the participant. The

exact time can be seen in table E.1 in the appendix.

67

Befo
re

Co�
ee

Afte
r Co�

ee

10

15

20

25

so
lv

in
g

tim
e

in
m

in
ut

es

Figure 7.2: Scatter Plot: Co�ee

The results shows an average time which the participant needed without drinking co�ee

was 14:24 minutes and after consuming 17:37 minutes minutes per Sudoku. The

participant needed 3:13 minutes or 22.34% longer after having a strong co�ee.

These results are di�erent than the findings in [29], who found that a similar amount of

ca�eine (400 mg) increases the cognitive performance.

However, in our case the participant of the Experiment mentioned to feel fretful after the

intake of the high amount of ca�eine. That could be a reason for the lower performance

of the subject. Thus, it is possible that a overdose had negative impact on the participant

and lower amount of ca�eine would have had resulted better.

7.2.2 Music

7.3 and E.2 show the times of the Sudokus that have been solved by the participant and

the duration it took. It shows that the average time of solving was the shortest when the

participant was listening to music. The participant solved the ten Sudokus in 89.35% of

the average time compared to the results archived without music. That is 1 minute and

34 seconds less time in average. On the other hand, the average solving time while

68

Clas
sic

al

Heav
y Meta

l

No Musi
c

10

15

20

25

30
so

lv
in

g
tim

e
in

m
in

ut
es

Figure 7.3: Scatter Plot: Music

listening to heavy metal music was 4.08 % or 36 seconds slower than without listening to

music. The results show evidence that for the participant the cognitive performance in

solving Sudoku riddles was increasing when listening to classical music and decreasing at

heavy metal music.

7.2.3 Running

The graph 7.4 results show a trend for a better performance after strong physical activity.

Table table with the exact times can also be found in the appendix E.3.The average solving

time after the run (10:52 min) is 3:20 min faster than the 14:12 minutes before running.

That is a decrease of 22.5% from before to after and can be seen in E.3. Compared to

the two other individual experiments, the results of this scenario are di�ering more at

each measurement. 4 times, the solving after the running took actually longer than the

completion in the pre-run state.

69

Befo
re

Run

Afte
r Run

10

15

20

so
lv

in
g

tim
e

in
m

in
ut

es

Figure 7.4: Scatter Plot: Running

70

Chapter 8

Conclusions

This chapter summarizes the findings of this dissertation and the evidence that have been

accumulated. It concludes the work and results as well as the contribution to the research

area. The chapter will be completed with a direction for future work in this area and the

potential of research in this field.

8.1 Project Overview

This dissertation investigated correlations between temporarily environmental influences

and human behavior in their cognitive performance. An Android application was used

by participants to gather data about light, volume, location, accelerometer and the step-

counter with a timestamp. Two di�erent experiments, one with a single participant and

another one with a group of subjects, were executed. The first experiment gathered

data while the participants worked on a given programming task. The second experiment

investigated isolated factors against each other. The results of the first experiment did not

provide clear evidence for factor. It gives a plausibility that distractions of the participant

can be correlated to a high dynamic light level in in the environment. The results from

the second experiment gave more clarity and showed evidence of a negative influence by

71

a high dose of ca�eine as well as listening to heavy metal music while working. On the

other hand, indicators point out that classical music while working has a positive e�ect

on the cognitive performance as well as high physical activity before the tasks.

8.2 Contribution

The dissertation describes the development of a system for finding influences in the

software development. The results show that the approach with an application for gather-

ing data and afterwards comparing with analyzed code worked well and has the potential

to find evidence in influencing factors for a larger scope. The source code of the Android

app and all the tools for this work are available on Github for unrestricted use. The links

to the repositories can be found in the appendix.

This dissertation portrays the first steps of measuring the environment and the behavior

of the developer. It distinguished the data into context and compared it with other results

in the area of cognitive performance and software development. A lot of previous work is

about long term e�ects in cognitive performance while this dissertation investigated the

instant influences who are actually easier to change by the developers themselves.

This work demonstrates the possibility to correlate code metrics with it’s changing in-

fluences that could be used to optimize the processes and environments in software

development.

8.3 Future Work

In order to find evidence for influencing factors in software development it is necessary to

work with a larger group of participants who produce more source code.

72

Also, as already mentioned in the Design chapter, this dissertation provides a good base

for creating an ecosystem for consonantly providing feedback to developers about their

performance and environment. Such a system could also provide feedback to project

managers and give suggestions how to improve performance, based on collected analyzed

data.

Wearables such as smart-watches, fitness trackers or medical devices are entering the

market and are providing even more information about the developers behavior, health

and possibly more.

Furthermore, long term studies with more participants would help to create more accurate

results and with that knowledge help the software industry to improve the quality and

help future developers to be aware about their code quality.

More research work is also needed. As by now, many influences in cognitive performance

are only discovered in experiments reasoned with theories but rarely scientific facts. In

order to find more influences, a deeper knowledge is necessary to fully understand the

human brain and cognition.

73

Appendix A

Abbreviations

Short Term Expanded Term

AES Advanced Encryption Standard

API Application programming interface

APK Android application package

CBC Cipher Block Chaining

CSS Cascading Style Sheets

GUI Graphical User Interface

GPS Global Positioning System

HTML HyperText Markup Language

74

Short Term Expanded Term

IQ intelligence quotient

IOS (originally) iPhone Operating System

JSON JavaScript Object Notation

KLOC Thousand lines of code

LOC Lines of Code

PSP Personal Software Process

PKCS Public Key Cryptography Standards

REST Representational State Transfer

RSA Rivest-Shamir-Adleman

SAD Seasonal A�ective Disorder

SHA Secure Hash Algorithm

SMS Short Message Service

UI User Interface

URL Uniform Resource Locator

UX User Experience

XML Extensible Markup Language

75

Appendix B

Source Code

• Android Application for gathering the data

https://github.com/MiChrFri/Dather

• Java Application for decrypting the data

https://github.com/MiChrFri/Decryptor

• Python toolset for formatting the results

https://github.com/MiChrFri/AnnaLize

• Website and Backend

https://github.com/MiChrFri/frickmDE

76

Appendix C

Programming task

The programming task for the crowd Experiment.

C.1 Palindromes

C.1.1 Question

Generate a palindrome with the maximum possible amount of characters from an input

string.

Count the amount of characters from the input that you didn’t use in your palindrome

then add 65 to the result and convert the result to the respresending ASCII character

What’s a palindrome?

A palindrome is a word which reads the same from left to right and right to left such as

anna or racecar

77

Input structure

a String with characters from a-z and whitespace

The first line indicates the number of test cases

The following lines are the individual test cases

C.1.2 Example

input

2

hello my world

amazing code

Explanation Testcase 1

The largest palindrome you can create from the characters:

hello my world

lohol

These are 7 leftover characters:

emywrld \\char.count = 7

When we add 65 we get 72, which is a ’H’ in the ASCII table

65 + 7 = 72 \\char:’H’

78

Explanation Testcase 2

The largest palindrome you can create from the characters:

amazing code

ama

These are 8 leftover characters:

zingcode \\char.count = 8

When we add 65 we get 73, which is a ’I’ in the ASCII table

65 + 8 = 73 \\char: ’I’

Result

HI

79

Appendix D

Participant data

These are the results of the measurements from Experiment one for each participant.

D.0.1 Graph descriptions

Accelerometer

The accelerometer graph shows the changes of the three axis values over the time of the

experiment.

Noise and Light

The graphs of the noise and light level show the changes of the measurements (y-axis)

over time (x-axis). The the thicker horizontal line indicates the average value and two

lines, one below and the other one on top of the average is the range of the standard

deviation and is treated di�erent in the evaluation section.

80

D.1 Participant 1

D.1.1 Date & Time

2016-07-28

Start Time End Time

12:52:44 13:04:45

Duration

00:12:01

Table D.1: P1: Date and Time

D.1.2 Questions

Are you a Student?

Did you work in a team?

Did you listen to music?

Did you feel tired?

Did you enjoy the tasks?

Did you give all you attention to the tasks?

Were you distracted during the tasks?

Did you feel stressed

Do you think the tasks were easy?

81

D.1.3 Accelerometer

≠1 0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

5

10

Duration of the experiment in minutes

ac
ce

le
ra

tio
n

in
m

/s
2

Accelerometer XYZ Axis

X
Y
Z

D.1.4 Light Level

≠1 0 1 2 3 4 5 6 7 8 9 10 11 12 13
320

340

360

Duration of the experiment in minutes

Li
gh

t
le

ve
li

n
lu

x

Light

82

D.1.5 Noise Level

≠1 0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

200

400

600

Duration of the experiment in minutes

U
nc

al
ib

ra
te

d
am

pl
itu

de
of

so
un

d
pr

es
su

re

Volume

D.1.6 Location

No data gathered

83

D.2 Participant 2

D.2.1 Date & Time

2016-08-03

Start Time End Time

12:23:50 12:42:23

Duration

00:18:33

Table D.2: P2: Date and Time

D.2.2 Questions

Are you a Student?

Did you work in a team?

Did you listen to music?

Did you feel tired?

Did you enjoy the tasks?

Did you give all you attention to the tasks?

Were you distracted during the tasks?

Did you feel stressed

Do you think the tasks were easy?

84

D.2.3 Accelerometer

0 2 4 6 8 10 12 14 16 18

0

5

10

Duration of the experiment in minutes

ac
ce

le
ra

tio
n

in
m

/s
2

Accelerometer XYZ Axis

X
Y
Z

D.2.4 Light Level

0 2 4 6 8 10 12 14 16 18
240

260

280

Duration of the experiment in minutes

Li
gh

t
le

ve
li

n
lu

x

Light

85

D.2.5 Noise Level

0 2 4 6 8 10 12 14 16 18

200

400

600

Duration of the experiment in minutes

U
nc

al
ib

ra
te

d
am

pl
itu

de
of

so
un

d
pr

es
su

re

Volume

D.2.6 Location

minute 0 : -3.6881917, 40.4579957 minute 1 : -3.68815341053, 40.4579801474) from minute

2 : -3.6881432, 40.457976)

Madrid, Spain

86

D.3 Participant 3

D.3.1 Date & Time

2016-08-03

Start Time End Time

15:38:54 15:56:12

Duration

00:17:18

Table D.3: P3: Date and Time

D.3.2 Questions

Are you a Student?

Did you work in a team?

Did you listen to music?

Did you feel tired?

Did you enjoy the tasks?

Did you give all you attention to the tasks?

Were you distracted during the tasks?

Did you feel stressed

Do you think the tasks were easy?

87

D.3.3 Accelerometer

0 2 4 6 8 10 12 14 16 18
0

5

10

Duration of the experiment in minutes

ac
ce

le
ra

tio
n

in
m

/s
2

Accelerometer XYZ Axis

X
Y
Z

D.3.4 Light Level

0 2 4 6 8 10 12 14 16 18

≠0.5

0

0.5

1

Duration of the experiment in minutes

Li
gh

t
le

ve
li

n
lu

x

Light

88

D.3.5 Noise Level

0 2 4 6 8 10 12 14 16 18
10

20

30

40

Duration of the experiment in minutes

U
nc

al
ib

ra
te

d
am

pl
itu

de
of

so
un

d
pr

es
su

re

Volume

D.3.6 Location

No data gathered

89

D.4 Participant 4

D.4.1 Date & Time

2016-08-04

Start Time End Time

10:20:13 11:20:41

Duration

01:00:28

Table D.4: P4: Date and Time

D.4.2 Questions

Are you a Student?

Did you work in a team?

Did you listen to music?

Did you feel tired?

Did you enjoy the tasks?

Did you give all you attention to the tasks?

Were you distracted during the tasks?

Did you feel stressed

Do you think the tasks were easy?

90

D.4.3 Accelerometer

≠5 0 5 10 15 20 25 30 35 40 45 50 55 60 65
0

5

10

Duration of the experiment in minutes

ac
ce

le
ra

tio
n

in
m

/s
2

Accelerometer XYZ Axis

X
Y
Z

D.4.4 Light Level

≠5 0 5 10 15 20 25 30 35 40 45 50 55 60 65
300

400

500

Duration of the experiment in minutes

Li
gh

t
le

ve
li

n
lu

x

Light

91

D.4.5 Noise Level

≠5 0 5 10 15 20 25 30 35 40 45 50 55 60 65
0

1,000

2,000

Duration of the experiment in minutes

U
nc

al
ib

ra
te

d
am

pl
itu

de
of

so
un

d
pr

es
su

re

Volume

D.4.6 Location

53.3437734, -6.2510318

Dublin, Ireland

92

D.5 Participant 5

D.5.1 Date & Time

2016-08-09

Start Time End Time

15:49:28 17:20:58

Duration

01:31:30

Table D.5: P5: Date and Time

D.5.2 Questions

Are you a Student?

Did you work in a team?

Did you listen to music?

Did you feel tired?

Did you enjoy the tasks?

Did you give all you attention to the tasks?

Were you distracted during the tasks?

Did you feel stressed

Do you think the tasks were easy?

93

D.5.3 Accelerometer

0 10 20 30 40 50 60 70 80 90 100
0

5

10

Duration of the experiment in minutes

ac
ce

le
ra

tio
n

in
m

/s
2

Accelerometer XYZ Axis

X
Y
Z

D.5.4 Light Level

0 10 20 30 40 50 60 70 80 90 100

90

95

Duration of the experiment in minutes

Li
gh

t
le

ve
li

n
lu

x

Light

94

D.5.5 Noise Level

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

Duration of the experiment in minutes

U
nc

al
ib

ra
te

d
am

pl
itu

de
of

so
un

d
pr

es
su

re

Volume

D.5.6 Location

-6.250537, 53.3437789

Dublin, Ireland

95

Appendix E

Individuals extended Data

These are the times of the measurements from the individual Experiment one for each

scenario.

E.1 Co�ee

Experiment with Ca�eine

Condition Duration

Measurement 1 2 3 4 5 6 7 8 9 10

No Co�ee 20:43 21:36 13:14 23:02 09:32 12:18 15:05 09:49 10:07 08:41

Co�ee 12:39 22:32 09:00 26:34 14:23 16:21 25:18 16:16 14:47 18:15

Table E.1: Cognitive Performance with Co�ee

96

E.2 Music

Experiment with Music

Condition Duration

Measurement 1 2 3 4 5 6 7 8 9 10

No Music 13:40 12:16 09:11 11:07 15:19 09:47 11:32 09:08 16:00 23:33

Heavy Metal 30:12 15:51 14:42 15:46 19:47 09:51 11:01 12:34 09:58 13:23

Classical 20:52 09:45 21:14 13:01 09:06 19:34 08:02 10:36 19:58 15:03

Table E.2: Cognitive Performance with Music

E.3 Running

Experiment with Running

Condition Duration

Measurement 1 2 3 4 5 6 7 8 9 10

Before run 12:28 11:38 12:29 20:23 08:35 16:10 14:15 11:46 13:32 20:41

After run 14:27 10:29 15:29 08:03 08:53 09:51 10:45 13:28 08:41 08:31

Table E.3: Cognitive Performance with Running

97

Appendix F

Ethics Information

The following pages contain the ’Information Sheet for Prospective Participants’ and the

’Informed Consens Form’ from the ethics application.

98

TRINITY COLLEGE DUBLIN

 INFORMATION SHEET FOR PROSPECTIVE PARTICIPANTS

This research is part of my dissertation which is a requirement of the MSc Mobile and Ubiquitous
Computing within Trinity College Dublin.
Within this research we try to identify and analyse influences on the learning quality of writing computer
software.

Participation:
In order to participate you must be aged 18 or over and legally competent to supply consent.
The provided information about this research and the consent form must have read by you or had read to
you.
You must have had the opportunity to ask questions and all your questions must have been answered to your
satisfaction. You also understand the description of the research that is been provided to you.
You agree that your data is used for scientific purposes and you have no objection that your data is published
in scientific publications in a way that does not reveal your identity.
In the unlikely event that illicit activity is recorded, this will be communicated to appropriate authorities.
Your data is being gathered and securely transmitted to a server of the researchers/research team.
You may stop electronic recordings at any time, and you may at any time, even subsequent to your
participation have such recordings destroyed (except in situations such as above).
No recordings will be replayed in any public forum or made available to any audience other than the current
researchers/research team.
You freely and voluntarily agree to be part of this research study, though without prejudice to your legal and
ethical rights.
You may refuse to answer any question and that you may withdraw at any time without penalty.
Your participation fully anonymous and no personal details about you will be published.
The proceeding is at your own risk if you or anyone in my family has a history of epilepsy.

Context of research:
Learning how to program and thinking like a programmer can be a very different process for different
people. It seems that some students have more problems and struggles than others. Also more experienced
programmers sometimes write better code and sometimes create less quality. This dissertation investigates
metrics of environmental influences in the cognitive processes which are responsible for the code quality and
performance in the process of software developing. The programming skills are measured by automated code
analysis software and then correlated with gathered data during the development process. The built in sensors
and of the participants mobile phone such as the location, microphone, accelerometers etc. are being used to
gather information about the environment and context. Therefore it is required for the participants to install
and start the provided android application on their device.

Benefits for the participants:
The participants will get feedback and information about their individual results and the code quality
compared to other participants. They can also request the results of this study and the influencing factors in
the quality of the results. This knowledge can help to increase their own code quality and optimise their
working environment.

The procedure of this study:
Each participant needs to install the data gathering application on their cellular devices will explicitly asked
to allow the application to collect the relevant data. The required permissions as defined by the Android
application model are: accessing the location of the user, using the microphone, using the internet connection
of the device and to get information about the network state. The granted permissions only effect this specific
application. It doesn’t influence any other application of the device or the operating system.

Afterwards the information sheet for prospective participants will be displayed within the application. In
order to go on, the user need to confirm that he/she understood the information and agrees to the procedure.
Starting the gathering process in the app will trigger a periodically collection of data until the user stops the
process. Beside the gathering process, no data will be collected.
After working on programming projects, the participants may be asked to answer some additional questions
through the application. After completing and submitting the gathered data, the participant can uninstall the
application. The deinstallation is managed by the Android operating system and removes the application and
all the gathered data from the device as well as all the granted permissions. Once the data has been actively
submitted by the user, it will remain on the server even when the app is deinstalled on the mobile device. In
order to delete the data on the server, the user must request the deletion via email.
The user is required to upload the programming code on Github and grant access to the working repository in
order to do the analysis.

Withdraw from study:
The user can withdraw from the study any time without naming any reasons. In order to delete all the data
that have been collected until that point the user needs to delete the Android app on his/her mobile device
and inform the researchers via email in order to delete the data from the server.

The expected duration of the participants involvement:
First, the participant needs to download the app and initially enter information about person, university and
experience. Before starting the programming task, the student needs to open the application and log the start
time. After the submission the app asks the participant additional occasional questions. The estimated time
for the initial setup is not more than 5 minutes. Afterwards the data is constantly being gathered during the
development process. The submission of the particular datasets after the gathering takes less than a minute.

The gathering process:
The gathering process starts as soon the user actively starts the gathering within the Android application. The
data is been gathered until the user hit the stop button. The gathered data will be saved encrypted on the hard
disc of the mobile phone during the gathering process. After finishing the gathering, the user needs to
explicitly tap on a button to send the data to the server. Without the active sending action user, no data will
be transmitted at all.

Data to be gathered:
In order to find correlations between the code quality and environmental influences, we need to gather as
many information about the environment as possible. We want to detect the ambient noise by using the
microphone of the mobile phone. We will only save the noise value without audio files. None of the cameras
will be used for collecting photos or videos, neither will we access any private data from the users mobile
device.
We will also collect motion information about the mobile device itself, the data from its light sensor. In order
to collect additional information about the environment, we gather the location and current time of the
mobile device which we could use to get the local weather information. Some devices have additional
sensors for detecting environmental information such as` temperature or humidity that we also might use in
this study.

Usage of gathered data:
The data is exclusively used to for this study and will not be provided to anyone else then the research team.
The data will be used to create behaviour models and identify interesting patterns.
(e.g. We expect to find correlations between exigent tasks and loud noisy in the working environment).
The collected data during the study will be anonymised and the transmission over the internet will
exclusively be in an encrypted form and just used for statistical analysis purpose. The data will also be
stored encrypted and a not traceable identifier will be used to keep the data anonymous.

Participants can be assured they will not be mentioned by name or any other unique identifier and their data
will be handled with the most possible discretion.
We also guarantee no direct quotations and contextual appropriateness.

Rights of the participant:
Every participant has the right to withdraw and to omit the individual collected data, without penalty.
A requested withdraw would lead to deletion of the entire data of the participant which was collected related
to that study.
Participants also have the provision to receive an individual debriefing after participation.
The participant has the right to request a digital copy of the dissertation after its completion.

TRINITY COLLEGE DUBLIN

 INFORMED CONSENT FORM 
 

LEAD RESEARCHERS:
Michael Frick, Stephen Barrett

BACKGROUND OF RESEARCH:
We try to identify metrics, how environmental influences can change the progress of improving
programming skills of Computer Science students in order to provide feedback to the students. The feedback
consists of correlation of environmental indicators with code performance, and anonymised comparative
results with with the other participants based on categorised patterns during the experiment.

PROCEDURES OF THIS STUDY:
Each participant needs to install the data gathering application on their cellular devices will explicitly asked
to allow the application to collect the relevant data.
Afterwards the information sheet for prospective participants will be displayed within the application. In
order to go on, the user need to confirm that he/she understood the information and agrees to the procedure.
Starting the gathering process in the app will trigger a periodically collection of data until the user stops the
process. Beside the gathering process, no data will be collected.
After working on programming projects, the participants may be asked to answer some additional questions
through the application. After completing and submitting the gathered data, the participant can uninstall the
application. The deinstallation is managed by the Android operating system and removes the application and
all the gathered data from the device as well as all the granted permissions. Once the data has been actively
submitted by the user, it will remain on the server even when the app is deinstalled on the mobile device. In
order to delete the data on the server, the user must request the deletion via email. The user is required to
upload the programming code on Github and grant access to the working repository in order to do the
analysis.

PUBLICATION:
This study is part of my Master dissertation and will be published by Trinity College Dublin.

DECLARATION:
• I am 18 years or older and am competent to provide consent.

• I have read, or had read to me, a document providing information about this research and this consent
form.

• I have had the opportunity to ask questions and all my questions have been answered to my satisfaction
and understand the description of the research that is being provided to me.

• I agree that my data is used for scientific purposes and I have no objection that my data is published in
scientific publications in a way that does not reveal my identity.

• I understand that if I make illicit activities known, these will be reported to appropriate authorities.

• I understand that my data is gathered and securely being transmitted transmitted to a server of the
researchers/research team.

• I understand that I may stop electronic recordings at any time, and that I may at any time, even subsequent

to my participation have such recordings destroyed (except in situations such as above).

• I understand that, subject to the constraints above, no recordings will be replayed in any public forum or
made available to any audience other than the current researchers/research team.

• I freely and voluntarily agree to be part of this research study, though without prejudice to my legal and
ethical rights.

• I understand that I may refuse to answer any question and that I may withdraw at any time without penalty.

• I understand that my participation is fully anonymous and that no personal details about me will be
published.

• I understand that if I or anyone in my family has a history of epilepsy then I am proceeding at my own risk.

 I have received a copy of this agreement.

PARTICIPANT’S NAME:

PARTICIPANT’S SIGNATURE: Date:

Statement of investigator’s responsibility: I have explained the nature and purpose of this research study, the
procedures to be undertaken and any risks that may be involved. I have offered to answer any questions and
fully answered such questions. I believe that the participant understands my explanation and has freely given
informed consent.

RESEARCHERS CONTACT DETAILS:
stephen.barrett@scss.tcd.ie
frickm@tcd.ie

INVESTIGATOR’S SIGNATURE: Date:

Bibliography

[1] System permissions. https://developer.android.com/guide/topics/security/

permissions.html. accessed on 02.07.2016.

[2] Teresa M Amabile, Regina Conti, Heather Coon, Je�rey Lazenby, and Michael Her-

ron. Assessing the work environment for creativity. Academy of management journal,

publisher: Academy of Management, 39(5):1154–1184, 1996.

[3] Je� Bercovici. Slack is our company of the year. here’s why everybody’s

talking about it. http://www.inc.com/magazine/201512/jeff-bercovici/

slack-company-of-the-year-2015.html, 2015. accessed on 15.07.2016.

[4] Erran Carmel. Global software teams: collaborating across borders and time zones.

Prentice Hall PTR, 1999.

[5] Tsun Chow and Dac-Buu Cao. A survey study of critical success factors in agile

software projects. Journal of Systems and Software, 81(6):961–971, 2008.

[6] Michael A Cusumano. How microsoft makes large teams work like small teams. MIT

Sloan Management Review, 39(1):9, 1997.

[7] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. Social coding in

github: transparency and collaboration in an open software repository. In Proceedings

of the ACM 2012 conference on Computer Supported Cooperative Work, pages 1277–

1286, Lyon, France, 2012. ACM.

104

[8] Jaap JA Denissen, Ligaya Butalid, Lars Penke, and Marcel AG Van Aken. The e�ects

of weather on daily mood: A multilevel approach. Emotion, publisher: American

Psychological Association, 8(5):662–667, 2008.

[9] Norman E Fenton and Martin Neil. Software metrics: successes, failures and new

directions. Journal of Systems and Software, publisher: Elsevier, 47(2):149–157,

1999.

[10] Denzil Ferreira, Vassilis Kostakos, and Anind K Dey. Aware: mobile context instru-

mentation framework. Frontiers in ICT, 2:6, 2015.

[11] Inc. Gartner. Gartner says worldwide smartphone sales grew 9.7 percent in fourth

quarter of 2015. http://www.gartner.com/newsroom/id/3215217, February 2016.

accessed on 08.06.2016.

[12] Mark H Goadrich and Michael P Rogers. Smart smartphone development: ios versus

android. In Proceedings of the 42nd ACM technical symposium on Computer science

education, pages 607–612, Dallas, Texas, USA, 2011. ACM.

[13] Inc. Google. Sensors overview. https://developer.android.com/guide/topics/

sensors/sensors_overview.html. accessed on 08.06.2016.

[14] W Hayes and JW Over. athe personal software process (psp): An empirical study

of the impact of psp on individual engineers. Technical report, o Technical Report,

CMU/SEI-97-TR-001, Software Eng. Inst., Pittsburgh, 1997.

[15] Lars Heinemann, Benjamin Hummel, and Daniela Steidl. Teamscale: Software qual-

ity control in real-time. In Companion Proceedings of the 36th International Confer-

ence on Software Engineering, pages 592–595, Hyderabad, India, 2014. ACM.

[16] Charles H Hillman, Kirk I Erickson, and Arthur F Kramer. Be smart, exercise your

heart: exercise e�ects on brain and cognition. Nature reviews neuroscience, 9(1):58–

65, 2008.

105

[17] Andreas Holzinger, Peter Treitler, and Wolfgang Slany. Making apps useable

on multiple di�erent mobile platforms: On interoperability for business applica-

tion development on smartphones. In Multidisciplinary research and practice for

information systems, pages 176–189. Springer, 2012.

[18] Watts S Humphrey. A discipline for software engineering. Addison-Wesley Longman

Publishing Co., Inc., 1995.

[19] Anil K Jain, M Narasimha Murty, and Patrick J Flynn. Data clustering: a review.

ACM computing surveys (CSUR), 31(3):264–323, 1999.

[20] Sirkka L Jarvenpaa and Dorothy E Leidner. Communication and trust in global

virtual teams. Journal of Computer-Mediated Communication, 3(4):0–0, 1998.

[21] Yue Jiang, Bojan Cuki, Tim Menzies, and Nick Bartlow. Comparing design and code

metrics for software quality prediction. In Proceedings of the 4th international work-

shop on Predictor models in software engineering, pages 11–18, Leipzig, Germany,

2008. ACM.

[22] Philip M Johnson. Leap: a ’́personal information environment́’ for software engineers.

In Proceedings of the 1999 International Conference on Software Engineering, pages

654–657, Los Angeles, California, USA, Mai 1999. IEEE.

[23] Philip M Johnson. Project hackystat: Accelerating adoption of empirically guided

software development through non-disruptive, developer-centric, in-process data col-

lection and analysis. Department of Information and Computer Sciences, University

of Hawaii, publisher: University of Hawaii, 22, 2001.

[24] Philip M Johnson, Hongbing Kou, Joy Agustin, Christopher Chan, Carleton Moore,

Jitender Miglani, Shenyan Zhen, and William EJ Doane. Beyond the personal

software process: Metrics collection and analysis for the di�erently disciplined. In

Proceedings of the 25th international Conference on Software Engineering, pages 641–

646, Honolulu, Hawaii, USA, 2003. IEEE Computer Society.

106

[25] Cem Kaner et al. Software engineering metrics: What do they measure and how

do we know? In In METRICS 2004. IEEE CS, Florida Institute of Technology,

Melbourne, Florida, USA, 2004. Citeseer.

[26] Iftikhar Ahmed Khan, Robert M Hierons, and Willem Paul Brinkman. Mood inde-

pendent programming. In Proceedings of the 14th European conference on Cognitive

ergonomics: invent! explore!, pages 269–272, London, UK, Aug 2007. ACM.

[27] Panu Korpipää, Miika Koskinen, Johannes Peltola, Satu-Marja Mäkelä, and Tapio

Seppänen. Bayesian approach to sensor-based context awareness. Personal and

Ubiquitous Computing, publisher: Springer-Verlag, 7(2):113–124, 2003.

[28] John Laugesen and Yufei Yuan. What factors contributed to the success of apple’s

iphone? In Mobile Business and 2010 Ninth Global Mobility Roundtable (ICMB-

GMR), 2010 Ninth International Conference on, pages 91–99, Athens, Greece, 2010.

IEEE.

[29] Anthony Liguori, John R Hughes, and Jacob A Grass. Absorption and subjective

e�ects of ca�eine from co�ee, cola and capsules. Pharmacology Biochemistry and

Behavior, 58(3):721–726, 1997.

[30] Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship. Pren-

tice Hall PTR, ISBN 0132350882, 9780132350884, Upper Saddle River, NJ, USA, 1

edition, 2008.

[31] Nils Brede Moe, Torgeir Dingsøyr, and Tore Dyb̊a. A teamwork model for under-

standing an agile team: A case study of a scrum project. Information and Software

Technology, 52(5):480–491, 2010.

[32] Cindy Norris, Frank Barry, James B Fenwick Jr, Kathryn Reid, and Josh Rountree.

Clockit: collecting quantitative data on how beginning software developers really

work. ACM SIGCSE Bulletin, publisher: ACM, 40(3):37–41, 2008.

107

[33] Mary Beth Pinto and Je�rey K Pinto. Project team communication and cross-

functional cooperation in new program development. Journal of product innovation

management, 7(3):200–212, 1990.

[34] Devin G Pope and Ian Fillmore. The impact of time between cognitive tasks on

performance: Evidence from advanced placement exams. Economics of Education

Review, publisher: Elsevier, 48:30–40, 2015.

[35] Balasubramaniam Ramesh, Lan Cao, Kannan Mohan, and Peng Xu. Can distributed

software development be agile? Communications of the ACM, 49(10):41–46, 2006.

[36] Linda Rising and Norman S Jano�. The scrum software development process for

small teams. IEEE software, 17(4):26, 2000.

[37] Robert D Rogers and Stephen Monsell. Costs of a predicatible switch between simple

cognitive tasks. Journal of experimental psychology: General, publisher: American

Psychological Association, 124(2):207–231, 1995.

[38] Philip E Ross. The exterminators [software bugs]. Spectrum, IEEE, 42(9):36–41,

2005.

[39] Bill Schilit, Norman Adams, and Roy Want. Context-aware computing applications.

In Mobile Computing Systems and Applications, 1994. WMCSA 1994. First Work-

shop on, pages 85–90, Palo Alto, California, USA, 1994. IEEE.

[40] Thomas Schöps, Torsten Sattler, Christian Häne, and Marc Pollefeys. 3d modeling

on the go: Interactive 3d reconstruction of large-scale scenes on mobile devices. In

3D Vision (3DV), 2015 International Conference on, pages 291–299, Lyon, France,

2015. IEEE.

[41] Rory Sobolewski, Richard B Reilly, Simon Finnigan, Paul Dockree, Kate O’Sullivan,

and Ian H Robertson. Monitoring of cognitive processes in older persons. In 2009

108

4th International IEEE/EMBS Conference on Neural Engineering, pages 132–135,

Antalya, Turkey, 2009. IEEE.

[42] Jeremy PE Spencer. Food for thought: the role of dietary flavonoids in enhanc-

ing human memory, learning and neuro-cognitive performance. Proceedings of the

Nutrition Society, publisher: Cambridge Univ Press, 67(02):238–252, 2008.

[43] Lars Vogel. Android sqlite database and contentprovider-tutorial. Java, Eclipse,

Android and Web programming tutorials, 8, 2010.

[44] Paul Andrew Watters, Frances Martin, and Zoltan Schreter. Ca�eine and cognitive

performance: the nonlinear yerkes–dodson law. Human Psychopharmacology: Clini-

cal and Experimental, publisher: Wiley Online Library, 12(3):249–257, 1997.

[45] Niklaus Wirth. A brief history of software engineering. IEEE Annals of the History

of Computing, 1(3):32–39, 2008.

[46] Jie Xiang, Junjie Chen, Haiyan Zhou, Yulin Qin, Kuncheng Li, and Ning Zhong.

Using svm to predict high-level cognition from fmri data: A case study of 4* 4

sudoku solving. In International Conference on Brain Informatics, pages 171–181,

Beijing, China, 2009. Springer.

[47] Hengshu Zhu, Enhong Chen, Hui Xiong, Kuifei Yu, Huanhuan Cao, and Jilei Tian.

Mining mobile user preferences for personalized context-aware recommendation.

ACM Transactions on Intelligent Systems and Technology (TIST), 5(4):58, 2015.

109

