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Various studies have determined that the network is a performance bottleneck in Big

Data processing applications running in the cloud such as Hadoop. Numerous attempts

have been made to alleviate this network bottleneck by traffic engineering during exe-

cution of the applications, using Software-Defined Networking. Such measures of traffic

engineering are overwhelmingly reactive in nature and are bound to induce control traffic

overhead in the network. In this project, we propose a proactive approach for configuring

Data Centre Networks as the means to optimize application traffic, specifically Hadoop;

thereby accelerating the execution of applications in the cloud.

We configure the network before execution of the application, to determine if there

is a performance gain when there is no control overhead in the network. The network

is configured proactively, by logging the flow decisions made by the reactive algorithms

from previous studies. These flow rules are subsequently installed in the routing devices

before the execution of the application, after which, the flows are routed reactively. We
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demonstrate an average gain in network bandwidth utilization between 11.9% to 59.9%

in comparison to reactive approaches, while Hadoop job completion times are reduced by

10% to 33.5%.

vi



Contents

Acknowledgments iv

Abstract v

List of Tables x

List of Figures xi

Chapter 1 Introduction 1

1.1 Project Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Project Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Project Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Chapter 2 State-of-the-Art 6

2.1 Software-Defined Networking . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Hadoop Traffic Optimization using SDN . . . . . . . . . . . . . . . . . . . 8

2.2.1 Application-Aware Network Optimization . . . . . . . . . . . . . . 9

2.2.2 Traffic-Aware Network Optimization . . . . . . . . . . . . . . . . . 13

2.3 Emulators for Data Centre Experimentation . . . . . . . . . . . . . . . . . 14

2.3.1 Data centre Network Emulation . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Hadoop Emulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

vii



Chapter 3 Background 19

3.1 MapReduce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 High Level Execution Overview . . . . . . . . . . . . . . . . . . . . 20

3.1.2 Hadoop Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 State-of-the-art in Data Centre Architectures . . . . . . . . . . . . . . . . . 24

3.2.1 Fat-Tree Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Flow Scheduling in Data Centre Networks . . . . . . . . . . . . . . . . . . 28

3.3.1 Equal Cost Multi-Path Routing . . . . . . . . . . . . . . . . . . . . 28

3.3.2 Global First-Fit Flow Scheduling . . . . . . . . . . . . . . . . . . . 29

Chapter 4 Design 31

4.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Proactive Flow Scheduling Algorithm . . . . . . . . . . . . . . . . . . . . . 32

4.3 Architecture Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.1 SDN Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.2 Fat-tree topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.3 Hadoop Emulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Chapter 5 Implementation 37

5.1 Implementation description . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 SDN Controller Implementation . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.1 Equal Cost Multi-Path Routing Implementation . . . . . . . . . . . 39

5.2.2 Global First-Fit Flow Scheduling Implementation . . . . . . . . . . 39

5.2.3 Proactive Controller . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3 Hadoop Emulation Implementation . . . . . . . . . . . . . . . . . . . . . . 43

5.3.1 Hadoop Job Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3.2 Functional Architecture . . . . . . . . . . . . . . . . . . . . . . . . 43

5.4 Throughput Measurement Methodology . . . . . . . . . . . . . . . . . . . . 45

viii



5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Chapter 6 Evaluation 49

6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2 Benchmark Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.3 Evaluation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.4 Evaluation of Total Bisection Bandwidth Achieved . . . . . . . . . . . . . 52

6.5 Evaluation of Hadoop Job Completion Times . . . . . . . . . . . . . . . . 54

6.6 Critical Analysis of Experiment Results . . . . . . . . . . . . . . . . . . . . 55

Chapter 7 Conclusion 57

7.1 Project Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Appendix A Abbreviations 62

Appendix B Source Disk Contents 63

Bibliography 64

ix



List of Tables

2.1 Comparison of various studies that attempt to optimize data centre traffic

of applications such as Hadoop using SDN . . . . . . . . . . . . . . . . . . 8

x



List of Figures

1.1 Fundamental abstractions of SDN. . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Overview of the operation of the OpenFlow protocol, where forwarding

behaviour of switches is controlled by a centralized controller via a secure

channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 The big data application controller reports traffic demands to the network

controller, enabling Application-Aware flow scheduling. . . . . . . . . . . . 10

2.3 The network is monitored continuously to keep track of traffic demands,

enabling Traffic-Aware Scheduling. . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Block Diagram of MRemu Hadoop Emulator. . . . . . . . . . . . . . . . . 17

3.1 High level overview of the MapReduce Framework. . . . . . . . . . . . . . 20

3.2 Basic Hadoop Architecture with the master node housing the JobTracker

and the NameNode functionalities of Hadoop, while the worker (slave)

nodes housing the TaskTracker and DataNode functionalities of Hadoop. . 23

3.3 Common Multi-Rooted Data Centre Architecture with 10 GigE and 1 GigE

links. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Fat-tree topology with 4 pods having 16 hosts in total (k=4). . . . . . . . . 26

4.1 A flowchart depicting the Proactive Flow Scheduling Algorithm. . . . . . . 32

4.2 High Level Overview of the experiment Design. . . . . . . . . . . . . . . . 34

xi



5.1 Execution of the main script that loads the different modules of the exper-

iment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Global First-Fit Network Controller Class . . . . . . . . . . . . . . . . . . 40

5.3 Handling of packetIn event on forwarding table miss by SDN controller

using OpenFlow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.4 Proactive Network Controller Class . . . . . . . . . . . . . . . . . . . . . . 42

5.5 Example of a flow decision obtained from GFF flow scheduler which is

installed by the Proactive network controller. . . . . . . . . . . . . . . . . . 42

5.6 Example of a Hadoop job trace showing one element each from the transfers

and tasks JSON arrays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.7 Functional Architecture of the Hadoop Emulation. . . . . . . . . . . . . . . 45

5.8 Sample output of cat /proc/net/dev command. . . . . . . . . . . . . . . . . 46

5.9 Pseudocode for sampling of network throughput from all hosts in the network. 47

6.1 Total throughput achieved by hosts running Hadoop job emulation in an

emulated network with 1 Gbps links, grouped by the throughput achieved

when running different Hadoop jobs for ECMP routing, Global First-Fit

flow scheduling and Proactive flow scheduling. On average, Proactive flow

scheduling was found to achieve 59.9% more bandwidth than ECMP rout-

ing and 11.6% more bandwidth than GFF flow scheduling. . . . . . . . . . 53

6.2 Time taken to complete Hadoop job emulation by hosts in an emulated

network with 1 Gbps links, grouped by Hadoop job completion times

when running different Hadoop jobs for ECMP routing, Global First-Fit

flow scheduling and Proactive flow scheduling. Proactive Flow scheduler

achieves lower Hadoop job completion times by 35.58% in comparison to

ECMP routing and 10.07% in comparison to Global First-Fit flow scheduling. 54

6.3 A screenshot of the CPU utilization while the experiment was running on

the server. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

xii



Chapter 1

Introduction

The ever growing organisations involved in search engines, social networking as well as

applications for mobile devices, require efficient analysis of the massive collections of the

data generated, which is achieved using thousands of commodity servers, resulting in

the growing trend of Big Data Analytics [41]. Big data applications process data by

distributing it across the data centre clusters, and after each piece has been analysed in

parallel, the final data set is transferred and merged across the data centre network.

To support such communication patterns, data centre topologies make use of multi-

rooted tree topologies in order to achieve higher speed links among the clusters and bypass

the limitations caused by limited port densities in commodity switches [10]. The goal of

multi-rooted tree topologies is to enable efficient communication among the network hosts

by increasing the number of paths that interconnect them, thereby creating redundancy.

Path multiplicity in multi-rooted tree topologies is achieved by horizontal scaling of hosts

[9, 26, 30, 29] in order to cater to the increasing processing demands of big data applica-

tions.

Traditional network traffic routing protocols are designed for much simplistic com-

munication patterns and topologies, with limited paths between host destination pairs,

where the small number of redundant paths are used for fault tolerance, making them

not suitable to be used for routing traffic in topologies with path diversity. Additional
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obstacles in routing of big data application traffic are possible escalation in network traffic

volumes, multiplicity of traffic patterns and high duration of data processing jobs. As a

result, various studies [10, 26, 30] have highlighted that the network is a bottleneck in the

performance of big data applications.

A significant amount of research [21, 56, 10, 45, 48, 57] has been conducted with the

sole purpose of optimizing traffic in a data centre network for large-scale data analysis

by devising new flow scheduling mechanisms and programming the entire network stack,

so as to maximize throughput in the network, enabling better performance of big data

applications. All work done in this field employs the emergent technology of Software-

Defined Networking (SDN), in order to configure the network in accordance with big data

application communication patterns.

Figure 1.1: Fundamental abstractions of SDN.

SDN allows the control of all forwarding devices in the network from a global vantage

point; it achieves this by separation of the control plane from the data plane of the for-

warding devices, enabling centralized control of the network [42]. Moreover, it maintains

the global state of the network and is responsible for the routing protocols being used

in the network, enabling prototyping of new flow scheduling mechanisms. A high level

overview of the SDN architecture is illustrated in Figure 1.1. SDN allows for network
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programmability by installing flows in the switches, based on control logic that sits in a

centralized controller which has a global view of the network. Hence, network applications

can be developed which aim to maximize throughput by creating a tight-coupling between

network flow scheduling and application communication patterns.

Consequently, using SDN, the data centre network can be optimized to handle the

traffic patterns of big data applications in topologies with path diversity, without being

limited by traditional routing protocols which are insufficient to handle such communica-

tion patterns.

1.1 Project Motivation

The motivation behind the current project is to device a flow scheduling approach in

accordance with big data application patterns, in particular MapReduce [22], which is

proactive in nature, so that the data centre network achieves maximum throughput and

the application performs better. Existing research focuses on dynamic configuration of

data centre networks by reactively scheduling flows at application runtime. Our goal is

to investigate if there are performance gains in terms of the total bisection bandwidth

achieved by hosts running big data applications in the network, when the network is

optimized proactively based on application traffic patterns.

By taking a global view of the network using SDN, we preconfigure the scheduling

system in order to avoid bottlenecks and minimize control traffic overhead in the net-

work. We use Hadoop [31] as the application for proactive network integration due to it’s

widespread use and popularity.

1.2 Project Aims

We propose a Proactive approach for the configuration of a data centre network, which

installs flow rules in the network before the big data application starts. In particular, we
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intend to

• Determine whether there is an increase in the total bisection bandwidth achieved

by the hosts in the network when flows are scheduled proactively.

• Investigate the effectiveness of proactive network configuration by comparing the

Hadoop job completion times with reactive flow scheduling approaches and static

Equal Cost Multi-Path (ECMP [33]) routing.

• Determine if there is an inverse correlation between total bisection bandwidth

achieved and Hadoop job completion times for different flow scheduling strategies.

1.3 Project Approach

We present a design of our Proactive flow scheduler based on python, which leverages

the flow scheduling decisions made by Global First-Fit [10] flow scheduling algorithm.

Subsequently, we analyse the performance of our Proactive flow scheduler against ECMP

routing and Global First-Fit flow scheduling on an emulation based testbed.

1.4 Document Structure

Chapter 2 explores the current state-of-the-art in efforts to optimize data centre network

traffic for big data applications using SDN, and the emulators used for prototyping novel

network control logic. Chapter 3 provides background for the project, explaining the

working of MapReduce and its implementation in Hadoop, subsequently describing cur-

rent state-of-the-art in data centre topologies such as the fat-tree topology [9], and finally

providing an overview of ECMP routing and Global First-Fit flow scheduling which are

used for evaluating our Proactive flow scheduling. Chapter 4 describes the design of our

Proactive flow scheduler and gives a functional architectural overview of our experimental

setup. The actual implementation of the design is described in Chapter 5. Chapter 6 de-
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tails the benchmark tests used for evaluating our Proactive flow scheduler against ECMP

routing and Global First-Fit flow scheduling and provides a brief analysis on the results

obtained. Finally, Chapter 7 contains our concluding remarks.
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Chapter 2

State-of-the-Art

In the previous chapter, we introduced our project, including our project motivation and

aims. In this chapter, we describe the current state-of-the-art in the research area where

our project lies and discuss relevant technologies and concepts upon which the current

project is built. In Section 2.1, we discuss the concept of Software-Defined Networking,

which is the fundamental building block of our project. Subsequently, in Section 2.2,

we analyse and contrast studies that have used Software-Defined Networking to optimize

Hadoop application traffic, on the basis of which, the current project is based. And finally,

in Section 2.3, we describe emulators used for emulating data centre networks and Hadoop

jobs respectively, which have made this project possible.

2.1 Software-Defined Networking

Fast paced innovations in Computing have accelerated the growth and adoption of tech-

nology throughout the world in every sphere of life. However, innovations in Computer

Networking have not been very steady, part of it was because of the unwillingness to

conduct experiments in a network carrying production traffic. Moreover, there were a

large number of protocols and network equipment already deployed in the network, which

made it more difficult to innovate [43].

6



Software-Defined Networking (SDN) enables controlling of the entire network through

a centralized controller which maintains state of the entire network and is responsible for

functions such as the routing protocols used by the forwarding devices in the network

[38]. SDN achieves this by separating the control plane from the forwarding plane, where

the control plane is housed in the centralized controller, and the forwarding plane is

controlled via a narrow channel such as the OpenFlow protocol [43], as illustrated in

Figure 2.1. Communication between the OpenFlow switches and the centralized controller

is achieved over a secure channel which is encrypted via SSL.

Figure 2.1: Overview of the operation of the OpenFlow protocol, where forwarding be-
haviour of switches is controlled by a centralized controller via a secure channel.

Consequently, new functionality can be added in networks that are already deployed

without any modification to the switches, and prototyping of new ideas can be con-

ducted without disrupting production traffic, enabling innovation in networking at soft-

ware speeds [38].

SDN has resulted in a significant amount of research conducted with the aim of op-

timizing routing protocols and managing the network more efficiently [37]. Examples of

SDN Networks include FlowVisor [52], PortLand [49] and Ethane [14]. In this project, we

leverage SDN to optimize data centre networks for Hadoop [31] traffic.
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2.2 Hadoop Traffic Optimization using SDN

Table 2.1: Comparison of various studies that attempt to optimize data centre traffic of
applications such as Hadoop using SDN

Study
FlowComb
[21]

Wang et al.
[56]

HybridTE
[57]

Pythia [48] Hedera [10]

Approach Reactive Reactive
Semi-
Proactive

Reactive Reactive

Methodol-
ogy

Software
agents on
every node
report
demands,
used to route
traffic

Interface
SDN
controller
with Hadoop
master,which
reports
demands to
controller

Install mice
flows
proactively
and elephant
flows
reactively

Hadoop
middleware
predicts
future
transfers,
network
arranged
accordingly

Devised new
flow
scheduling
algorithms as
an extension
to ECMP

Uses
Hadoop
Traffic

Yes Yes No Yes Yes

Result

Reduced
Hadoop
Runtime by
33%

Proposal, No
Results

Outperforms
Hedera and
ECMP in
flow
completion
times

Reduced
Hadoop
runtime by
43%
compared to
ECMP

39% better
bisection
bandwidth
achieved for
Hadoop
shuffle phase,
compared to
ECMP

Limitations

Agents cause
computa-
tional
overhead,
require
domain
specific
knowledge

Requires
creating
demand
estimator,
computa-
tional
overhead on
master node

Underutilizes
path
diversity for
mice flows,
elephant flow
detection
suffer
latencies

Domain-
specific,
intrusive to
app data,
induces com-
putational
overhead

100ms
latency in
Scheduling
due to
control
overhead,
might
increase
when scaled
to millions of
hosts

Type
Application-
Aware

Application-
Aware

Application-
Aware

Application-
Aware

Traffic-
Aware

In this section, we review various recent studies [21, 56, 10, 45, 48, 57] that have been
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conducted with the aim of optimizing application traffic of Big Data processing applica-

tions such as Hadoop [31] (described in detail in 3.1.2), in a data centre network using

SDN; in order to achieve faster data processing times through high network utilization.

We give a high level overview and comparison of these studies in Table 2.1. Most of the

work done in this area uses reactive measures for data centre network configuration, which

motivated us to explore a proactive approach, as described in Chapter 4.

All the studies compared in Table 2.1 employ multi-rooted tree topologies, which are

described in detail in 3.2, while they compare their performance against Equal Cost

Multi-Path (ECMP) [33] routing, which is the industry standard protocol for routing

traffic in a multi-rooted tree topology having path diversity. ECMP is described in detail

in 3.3.1. All approaches to optimize Hadoop traffic using SDN can be broadly classified

into Application-Aware networking and Traffic-Aware Networking. Studies employing the

two approaches are discussed in the next subsections.

2.2.1 Application-Aware Network Optimization

Figure 2.2 illustrates the approach of Application-Aware scheduling in order to optimize

the network for Big Data applications. It attempts to tightly integrate Big Data applica-

tion controllers with the SDN controller responsible for scheduling of flows in the network.

The application controller reports traffic demands to the SDN controller on the bases of

information obtained from the hosts, which is used by the SDN controller to configure for-

warding devices in the network in a reactive manner. We further discuss this approach of

network optimization by analysing studies that are based on this methodology for network

optimization.

Das et al. [21] attempted to optimize Hadoop by introducing a network management

framework called FlowComb that leverages SDN and monitoring of all servers running

Hadoop, to perform dynamic scheduling of flows.

The main objectives of FlowComb were to predict the network demand of an ap-

9



Figure 2.2: The big data application controller reports traffic demands to the network
controller, enabling Application-Aware flow scheduling.

plication in advance and dynamically install flows in the network switches based on its

prediction. Das et al. argued that studies monitoring the network to detect changes such

as Hedera [10], do so only after a change has occurred; moreover network monitoring is

an expensive operation. In order to anticipate network demands, Das et al. developed

software agents which were installed on all servers running Hadoop in a cluster. The

Software agents essentially performed two functions, namely, scanning Hadoop logs to

extract information about map tasks and network transfers; and sending this information

to the scheduling component of FlowComb, which is the SDN controller, thereby making

the SDN controller application-aware.

Similar to Hedera [10] as described in 3.3.2, FlowComb’s Scheduling engine dynam-

ically allocates and installs paths in the network using the OpenFlow protocol [43]; in

order to avoid traffic congestion and provide sufficient bandwidth to all flows. FlowComb

was found to reduce the average running time of sorting 10 GB of data in a 14 node

10



Hadoop cluster by 33% [21].

FlowComb has a number of drawbacks, such as it depends on domain-specific knowl-

edge to operate, hence the same implementation of FlowComb cannot be applied to differ-

ent MapReduce implementations apart from Hadoop [31], such as Dryad [35] and Spark

[53]. Furthermore, since reducers start transfers at random, FlowComb cannot determine

the exact timing of the start of a transfer [21]; extracting information at the hosts by

scanning Hadoop logs causes a computation overhead and finally, FlowComb helps in

optimizing Hadoop jobs only when the network is congested.

Similarly, Wang et al. [56] have proposed to tightly integrate Big Data applications

with network control by leveraging the programmability of networks provided by SDN

and the high network bandwidth provided by optically switched networks, making the

network application-aware. Since applications such as Hadoop [31] have a master node

that maintains an overall control over the other nodes in a cluster, as described in 3.1.2,

Wang et al. suggest to interface the SDN controller with the master node, thereby enabling

application controllers to report traffic demands to the SDN controller and issue topology

configuration commands to the SDN controller, on the basis of which, the network is

configured reactively.

The approach suggested by Wang et al. [56] would have to overcome a number of

challenges. A demand estimator engine would need to be implemented for every applica-

tion that has to be interfaced with the SDN controller for the master node, which would

introduce a significant computational overhead for the master node [56]. The reactive

nature of configuring the topology at runtime, as suggested by Wang et al. imposes sig-

nificant computational responsibilities on the SDN controller to re-configure the network

in response to traffic demands with low latency, and imposes a challenge on the SDN

controller’s scalability.

Wette et al. [57] argue that reactive approaches such as Hedera [10], which try to

optimize data centre networks by reactively installing flow entries, overwhelm the switch-

ing hardware by the number of flows that they tend to install. In order to alleviate

11



overwhelming of switching hardware, Wette et al. propose a semi-proactive approach of

flow scheduling called HybridTE. By exploiting explicit knowledge about elephant flows,

HybridTE is able to perform flow scheduling using very few flow entries in the switches.

HybridTE treats mice flows and elephant flows differently, by installing flow entries proac-

tively for mice flows and reactively for elephant flows.

Using a data centre architecture as described in 3.2, HybridTE installs one forwarding

tree per ToR switches using OpenFlow wild-card flow table entries in a proactive manner,

which, Wette et al. argue is sufficient for small flows. As far as the elephant flows are

concerned, Wette et al. investigate the effect of different techniques for elephant flow

detection such as HadoopWatch [51], which monitor Hadoop logs to predict upcoming file

transfers and packet sampling, which has been demonstrated by Choi et al. [16] to be

effective in determining elephant flows when using a reasonable sample. Using elephant

flow detection schemes as previously described, HybridTE re-routes elephant flows to the

shortest path which is the least congested, in a reactive manner.

HybridTE was found to outperform ECMP [33] and Hedera [10] in terms of flow com-

pletion times, with ECMP taking 29.1% longer times for flow completion in a network

with increasing congestion than HybridTE [57]. However, HybridTE has certain limi-

tations such as it does not exploit path diversity for routing mice flows, and detecting

elephant flows to avoid congestion has inherent high-level latencies.

Pythia [48] is another study that aims to optimize Hadoop job completion times by

predicting Hadoop data transfers at runtime and avoiding congestion during the Hadoop

shuffle phase by dynamically routing network flows. Pythia has two components

• Hadoop instrumentation middle-ware that runs on all of the Hadoop worker nodes,

responsible for predicting future shuffle transfers by extracting information from

Hadoop logs, similar to software agents employed by FlowComb [21].

• An Orchestration entity that dynamically allocates reactive paths on runtime on

the basis of future shuffle transfers predicted by the middle-ware which is sent to it.
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The Hadoop instrumentation middle-ware is able to determine the size of a data

transfer, since after a map task finishes, it writes the intermediate <key, value> pairs to

disk [45], which is read by the instrumentation middle-ware [48]. The size of the future

transfer, along with the map task ID is subsequently transmitted to the orchestration

controller, which reactively configures the network based on the supplied prediction.

Neves et al. evaluated Pythia on a cluster of 10 servers with a total RAM of 128GB

and found that Pythia outperforms ECMP which is the industry standard for multipath

routing, as explained in 3.3.1; by lowering Hadoop job completion times by 43% [48].

However, Pythia has certain limitations, such as the Hadoop instrumentation layer is able

to access Hadoop logs, making it intrusive and difficult to implement in a multi-tenant

data centre, with different Hadoop jobs running simultaneously causing a computational

overhead at the worker nodes. Pythia is very specific to Hadoop and would not function

for a broader range of communication patterns.

2.2.2 Traffic-Aware Network Optimization

In contrast to application-aware network optimization, as discussed in 2.2.1, traffic-aware

network optimization seeks to optimize the network by continuously monitoring forward-

ing devices and reporting the changing traffic information to the SDN controller, as il-

lustrated in Figure 2.3, which subsequently performs flow scheduling on the bases of the

reported information. This monitoring can be done via the SDN controller itself, since it

can request traffic statistics from OpenFlow switches.

Hedera [10] is one such study that employs traffic-aware scheduling. The study pro-

poses an extension to ECMP, whereby, it routes flows exceeding a certain threshold in a

reactive manner. We do a more comprehensive discussion on Hedera’s Global First-Fit

flow scheduling algorithm in 3.3.2 and evaluate implementations of ECMP and Global

First-Fit against our proactive approach in Chapter 6. Hedera was found to significantly

reduce Hadoop shuffle transfer times in comparison to ECMP routing, achieving 39%
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Figure 2.3: The network is monitored continuously to keep track of traffic demands,
enabling Traffic-Aware Scheduling.

more of the total bisection bandwidth available in the network, as compared to ECMP.

2.3 Emulators for Data Centre Experimentation

In this section, we describe the emulators that we used for the implementation of our

current project, detailed in Chapter 5, since we did not have access to a cluster of servers

for running our experiments. Firstly, in 2.3.1, we describe the emulator used for emulating

data centre networks and subsequently, in 2.3.2 we describe an emulator that emulates

the working of Hadoop [31] using real Hadoop traces.

2.3.1 Data centre Network Emulation

In order to exploit the full potential of SDN as described in 2.1, it should be possible to

prototype novel approaches for network control without the need of running experiments
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in a data centre, since all researchers do not have access to such resources. Lantz et al.

[38] filled this gap by introducing Mininet, which is a lightweight virtualization platform

for prototyping SDN Networks. Mininet can work on the constraint resources of a single

laptop. It is built with the following attributes

• Allows defining of new topologies and functionality using familiar programming

languages, specifically, python [55].

• Network can be deployed from virtual to physical hardware without any change in

code, with high degree of fidelity in behaviour.

• Allows managing the network in real time, scaling to thousands of switches on a

single physical host.

Code created in other similar emulators like Opnet [3] and ns-2 [1] for network simu-

lation cannot be ported directly to real hardware; moreover, they don’t provide the func-

tionality of interacting with the network in real time [38]. On the other hand, Mininet

leverages Linux features such as network namespaces and virtual Ethernet pairs, enabling

it to offer support for networks with bandwidth in Gigabits and hundreds of nodes such

as controllers, switches and hosts; all of which are emulated with ease on a single laptop.

All these attributes made Mininet the ideal choice of network emulator for our current

project since we did not have access to a cluster of servers.

Mininet combines its lightweight Linux virtualization with an interactive command

line interface and an extensible API written in python to experiment with SDN. The

interactive CLI can be used to manage the entire SDN network from a single command

line while a simulation is running. The Mininet python API can be used to define custom

network topologies, node types and experiments [38].

Mininet uses Open vSwitch [2] for emulating OpenFlow switches in the network, and

works well with all SDN controllers such as POX/NOX [28], OpenDayLight [24], et cetera.

A Mininet host is essentially a shell process which resides in it’s own namespace [38],
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having virtual Ethernet interfaces, making it very lightweight. An SDN controller can

work with Mininet as long as the switches running in mininet have IP connectivity to the

controller [38].

Mininet scales well to over 1000 nodes owing to sharing of the file system, process ID

space, kernel and other resources, providing a bandwidth of 1-3 Gbps through a single

switch [38], making it ideal for running emulations of a data centre network on a single

laptop. However, Mininet has certain limitations, such as it suffers from a lack of perfor-

mance fidelity when the emulation has high loads, additionally, software based forwarding

cannot surpass the speeds obtained by TCAM accelerated vendor switches, live host mi-

gration is not supported and Mininet does not support distributed emulation since it can

only run on a single machine. Nonetheless, Mininet offers a viable alternative to running

experiments in real hardware and provides a scalable and interactive environment with

an extensible API to conduct experiments, which is why we chose it for implementing our

experiment as described in Chapter 5.

2.3.2 Hadoop Emulation

Use of real hardware robust enough for running data centre experiments is not a valid

option for many researchers since such resources are not readily available. We faced a

similar problem, therefore we chose to run the experiments of this project on a Hadoop

emulator-based test bed.

The emulator that met our requirements was MRemu, devised by Neves et al. [47].

MRemu is a framework that works as a Hadoop emulator by reproducing traffic patterns

of a Hadoop job trace with the same latencies as in the original Hadoop job trace. Hence,

using MRemu, Hadoop jobs are emulated in hosts running on Linux containers [47] such

as Mininet, as described in 2.3.1 to emulate data centre nodes, running on a single physical

host, which have low IO and CPU resources to run a real Hadoop job.

Studies have demonstrated that MapReduce applications are sensitive to performance
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of the network [21, 18], nonetheless, numerous studies use synthetic traffic patterns, gen-

erated following certain probabilistic distributions [9, 26, 20], which fails to capture the

true network workloads [47]. Taking this into consideration, Neves et al. developed a tool

for extracting traces from Hadoop job execution logs with enriched network information

to generate comprehensive Hadoop job traces to be used with MRemu. These traces [46]

produced by Neves et al., made available online, have been employed by us in this project.

Figure 2.4: Block Diagram of MRemu Hadoop Emulator.

Figure 2.4 shows a high level overview of the Hadoop emulator in MRemu. Hadoop

job traces are fed to the Job Trace parser, which uses information from the trace, such as

wait times and task durations, to mimic the latencies in a real Hadoop job execution. The

traffic generator generates iperf flows, mimicking network transfers of the real Hadoop

job corresponding to the trace, while the logger logs Hadoop events to local disk of the

emulated nodes.

MRemu makes it possible to test different network routing control logic using SDN

for Hadoop traffic on the constraints of a single physical system, making it ideal to be

used in conjugation with Mininet, as described in 2.3.1, for Hadoop traffic scheduling

experimentation. MRemu supports production SDN controllers such as POX/NOX [28]

and OpenDayLight [24], making it ideal for evaluating novel approaches to route Hadoop

traffic in order to accelerate it.

Neves et al. [47] tested MRemu, by first obtaining Hadoop traces from a real cluster of

16 identical nodes, running Hadoop 1.1.2, while the emulation was performed on a single
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node with 16 GB of RAM and 16 x86 64 cores, running on Mininet 2.1.0. The original

Hadoop jobs ran applications forming part of the HiBench Benchmark Suite [34] such as

Bayes, Sort, Nutch and PageRank. On performing a comparison between job completion

times in real hardware and the MRemu emulation setup, Neves et al. observed that the

job completion times were comparable. Furthermore, Neves et al. evaluated individual

flow completion times as well and found the transfer durations in the emulation to be

slightly different than the real transfer durations, owing to inaccuracies in Hadoop logs

(used to extract traces) due to high-level latencies. Nonetheless, Job Completion times

were found to be near accurate, owing to which, we chose to use MRemu for evaluating

our proactive approach as described in Section 5.

However, MRemu has certain limitations, such as

• MRemu supports emulation of only one job at a time, having no support of concur-

rent job execution.

• MRemu does not model failure handling techniques of Hadoop, making it a require-

ment of only running successful job traces for emulation [47].

• MRemu does not support distributed emulation, hence it can only support a limited

number of Linux container nodes that can be supported by a single physical server

and cannot scale to hundreds of nodes.

Nonetheless, MRemu adequately met our requirements for a Hadoop emulator that

can be run over Mininet, therefore, we chose to use it for the current project in conjugation

with Mininet.
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Chapter 3

Background

In this chapter, we describe the research which led to the current project. In Section

3.1, we provide an overview of the MapReduce framework and subsequently the Hadoop

MapReduce implementation [31].

Furthermore, in Section 3.2 we describe the current state-of-the art in data centre

architecture design and focus on fat-tree [9] data centre topology in 3.2.1, which is used

in our experiment as the network topology because of its ability to alleviate inter-node

communication bandwidth bottlenecks in large-scale clusters.

Finally, in Section 3.3 we describe the current state-of-the-art flow scheduling mecha-

nisms for in data centre networks, namely Equal Cost Multi-Path Routing (ECMP [33])

and Global First-Fit [10], implementations of which are used in our experiment to compare

against proactive measures of flow scheduling.

3.1 MapReduce

MapReduce was introduced by Dean et al. [22] as a programming abstraction, which

enables distributed cluster computing with commodity servers and is highly fault tolerant

and reliable. MapReduce is one of the most frequently used framework for big data

processing [11] and we chose it for our project due to its ubiquity and popularity. It
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Figure 3.1: High level overview of the MapReduce Framework.

broadly consists of 3 phases, namely the map, shuffle and reduce phases as illustrated in

Figure 3.1.

MapReduce is a computational model based on key-value pairs. The Map function

produces a set of intermediate key-value pairs for a given input [22]. Subsequently, the

intermediate data is grouped according to its keys in the shuffle phase. Finally, in the

reduce phase, all values for a given key are combined to produce the final result. The

data used for MapReduce jobs is usually stored in a distributed file system (DFS), which

takes care of fault tolerance by replicating the data across the cluster. Examples of such

data stores include GFS [25] and HDFS [13].

3.1.1 High Level Execution Overview

The input data set of a MapReduce job is first partitioned into M pieces, which are

processed in parallel by different machines [22]. The Reduce function is invoked by par-

titioning the intermediate key set of the data into a set of R pieces, which is distributed

across the entire cluster for computation.

MapReduce computation proceeds in the following steps

• The input file is first split into M pieces while MapReduce starts up on the entire
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cluster of machines.

• One of the machines in the cluster is designated as the master node, while all the

other nodes in the network are worker nodes which are assigned jobs by the master

node. The master assigns a map task or a reduce task to each one of the idle worker

nodes in the network from a total of M map tasks and R reduce tasks.

• The corresponding partitioned input is read by the worker which is assigned a map

task, it parses the input and emits key-value pairs and passes each of those to

the map function. Intermediate key-value pairs emitted by the map function are

buffered in memory.

• The buffered pairs are written into persistent memory store of the worker nodes

on a periodic basis and are partitioned into R pairs. Memory locations of these

key-value pairs are sent to the master node so that they can be forwarded to the

reduce worker nodes [22].

• On notification about these locations, the reduce worker reads the buffered data from

the persistent memory store of the map workers via RPC calls [22]. Subsequently,

it sorts the intermediate keys of the data by grouping the same keys together, this

is also called the shuffling phase.

• The sorted intermediate data is iterated upon by the reduce worker nodes and for

each unique key encountered, it passes the corresponding key-value pairs to the

reduce function.

After all the above steps culminate, the output consists of R output files. These

files may or may not be merged into a single output file, depending on the MapReduce

implementation.
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3.1.2 Hadoop Overview

Hadoop is one of the most frequently used open source MapReduce implementations. We

choose Hadoop as the MapReduce implementation of choice for this project due to it

being open source and its widespread usage for Big Data analysis. It broadly consists of

two main components

• Hadoop MapReduce - Open-source implementation of the MapReduce computation

model.

• HDFS (Hadoop Distributed File System) - A resilient, fault tolerant and distributed

file system that provides high throughput access to application data and is designed

to be used with commodity hardware [13].

Similar to the Google MapReduce model [22] outlined in Section 3.1, HDFS too has

a master-slave architecture [13]. As illustrated in Figure 3.2 a Hadoop cluster consists of

the following

• HDFS layer consists of two types of nodes responsible for managing the Distributed

file system

– NameNode - The entire Hadoop cluster contains one NameNode which serves

as the master server, managing the file system access of worker nodes and the

file system name space. It also instructs the DataNodes (slaves) in the cluster

to create, delete and replicate data blocks.

– DataNode - There is a usually one DataNode on each node in the cluster,

which is responsible for managing the persistent storage attached to that node

in the cluster. File system read and write requests are also processed by the

DataNodes.

• MapReduce layer consists of two types of nodes that control the execution of MR

jobs [58]
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Figure 3.2: Basic Hadoop Architecture with the master node housing the JobTracker
and the NameNode functionalities of Hadoop, while the worker (slave) nodes housing the
TaskTracker and DataNode functionalities of Hadoop.

– JobTracker - Similar to the NameNode, there is one JobTracker Node in a

Hadoop cluster, housed in the master node, which is responsible for scheduling

all the jobs of the system to be run on the TaskTracker (worker) nodes [58]. It

keeps track of the progress of every job, rescheduling it to other TaskTracker

nodes in case of failure [58].

– TaskTracker - TaskTrackers or worker nodes, run the MR jobs assigned to

them by the JobTracker node and report the progress back to the Jobtracker

[58] node.

Most of the data transfer loads in a Hadoop cluster are attributed to the shuffling

phase, when intermediate data from the mappers is shuffled over to the reducer nodes, as
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outlined in subsection 3.1.1.

Chowdhury et al. [18] analysed Hadoop traces from Facebook’s Hadoop cluster and

found that on an average, 33% of the runtime is consumed by the shuffle phase. Addi-

tionally, in 26% of the tasks with reduce jobs, more than 50% of the runtime is spent

in the shuffle phase, while it accounts for upwards of 70% of the runtime in 16% of the

jobs [18], confirming results reported in literature [10, 26, 30] which state that network

is a bottleneck in MapReduce. Therefore, with this project, we aim to make the net-

work application-aware to alleviate loss in performance of MapReduce due to network

bottlenecks.

3.2 State-of-the-art in Data Centre Architectures

Distributed big data computational frameworks such as MapReduce [22], Dryad [35] and

Hadoop [31] leverage enormous clusters made up of commodity CPUs for their compute

prowess. Various recent studies [12, 15, 23, 25, 26] have determined that networks are

bottlenecks in data centres running distributed big data application frameworks. In order

to scale the number of hosts in a cluster running these distributed big data application

frameworks, multiple paths are required between source and destination hosts [9, 26, 27,

30, 29], which has heavily influenced data centre network design.

Recent data centre architectures advocate horizontal scaling of hosts instead of vertical

to overcome limited port densities in commercial switches in order to support the com-

munication patterns of big data applications [9, 26, 27]; therefore such architectures take

advantage of the availability of a large number of parallel paths between any two source

and destination switches, and are known as multi-rooted tree topologies [10]. Multi-rooted

tree topologies consist of two or three level trees of switches [9, 10] with higher speed links,

while the aggregate bandwidth decreases while moving higher up in the multi-rooted tree

topology [32].

At the leaf of a multi-rooted tree topology, there are a number of GigE ports (48-288)
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Figure 3.3: Common Multi-Rooted Data Centre Architecture with 10 GigE and 1 GigE
links.

with 10 GigE uplinks to one or more switches in the aggregation layer [9] as illustrated

in Figure 3.3. Moving up in the tree hierarchy, switches have 10 GigE ports (32-128),

capable of switching significant amounts of traffic between the edges [9].

Al-Fares et al. [9] advocate the use of a fat-tree topology [39] for data centre network

design and showed that full aggregate bisection bandwidth can be achieved using com-

modity Ethernet switches of data centre clusters with tens of thousands of hosts. Fat-tree

topology aims to alleviate shortcomings in current data centre network design such as

• over-subscription of links higher up in the topology, where over-subscription is de-

fined by Al-Fares et al. [9] to be the ratio of worst-case aggregation bandwidth

which can be achieved by the end hosts to the total bisection bandwidth available

in the network; where typically, data centre designs are oversubscribed by a ratio of

2.5:1 (400 Mbps) to 8:1 (125 Mbps) with 1 Gb/s commodity Ethernet switches [32]

and,

• the cost of building a network with an over-subscription ratio of 1:1 is quite sub-

stantial, with each of the 48-port GigE switch at the edge costing around $7000,

while the 128-port switches at the aggregation and core layer cost around $700,000

[9],

by providing backward compatibility to hosts running Ethernet and IP, scaling eco-

nomically using commodity Ethernet switches for data centre design and providing a
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scalable interconnection bandwidth enabling any host to communicate with any other

host in the network at its full local network interface bandwidth [9].

3.2.1 Fat-Tree Topology

Fat-tree topology [39] is a special instance of a Clos topology, which was introduced in

the 1950s to deliver high levels of bandwidth in telephone networks by interconnecting

smaller commodity switches [19]. It is organised into k -pods, where each pod contains

of two layers of k/2 switches [9]. Each of the k/2 hosts in the lower layer are connected

directly to each of the k port switches in the lower layer of the pod. The remaining k/2

ports of each of the switches in the lower layer are connected to k/2 ports of the total k

ports up the hierarchy in the aggregation layer.

The core switches are k/22 in number, with each of the core switch having one port

connected to each of the k pods . Consecutive ports in the aggregation layer of each pod

switch are connected to core switches on k/2 strides in such a manner that the ith port

of any core switch is connected to pod i. A fat-tree topology built with k-port switches

supports k3/4 hosts.

Figure 3.4: Fat-tree topology with 4 pods having 16 hosts in total (k=4).

In this project, we use a fat-tree topology with k = 4 for our experiments as described
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in Chapter 4. Figure 3.4 illustrates a k -ary fat-tree topology with k = 4, which is the

topology we employ for our experiments. It consists of k3/4 i.e. 16 host machines with

4 pods. Hosts connected to the same lower level switch form a subnet; hence, all traffic

between two hosts in the same subnet is switched while all the other traffic is routed.

In order to achieve maximum bisection bandwidth in a fat-tree network, outgoing

traffic from a pod needs to be spread evenly amongst the core switches. There is a need

for the core switches to be able to recognize and provide special behaviour to the traffic

classes that need even spreading since

• Routing protocols such as OSPF2 [44] take hop-count as a metric of shortest path,

causing switches to concentrate traffic going to a subnet to a single port even though

there are (k/2)2 paths in the network with the same cost, thereby under utilizing

the path diversity in the network and causing severe congestion at these points [9].

• Extensions to OSPF2 such as OSPF-ECMP [54] cannot be used on commodity

Ethernet switches and require an overwhelmingly large number of prefixes.

To alleviate these shortcomings, Al-Fares et al., devised an addressing scheme that

allocates all IP addresses in the network within the private 10.0.0.0/8 block.

Addressing in a fat-tree topology follows the following pattern

• Switches in the pod are allocated IP addresses in the form 10.pod.switch.1, where

pod belongs in the range [0, k -1], while the switch denotes the position of the switch

in the pod

• Core switches are allocated addresses in the form 10.k.j.i, where j and i denote the

co-ordinates of the core switch in the (k/2)2 grid

• Hosts have addresses of the form 10.pod.switch.I D, where I D denotes the host’s

position in its subnet
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This addressing scheme helps in building a two-level routing scheme and scales to 4.2M

hosts. The two-level routing scheme enables even spread of traffic across the network [9].

Two-level lookup is implemented in hardware using Ternary Contet-Accesible Memory

(TCAM).

Due to all these optimizations, Al-Fares et al. [9] found that in a fat-tree network

of 16 hosts, the two-level switches achieve approx. 75% of the aggregate ideal bisection

bandwidth. For their benchmark suite, Al-Fares et al. leveraged dynamic flow alloca-

tion strategies available in certain routers and found that their flow classifiers performed

significantly better than traditional tree topologies which achieve only 28% of the ideal

bandwidth, with the worst-case aggregate bisection bandwidth achieved by the network to

be 75% of the ideal. In light of the results achieved by Al. Fares et al., we choose fat-tree

topology as the topology of choice for running our simulations described in Chapter 4.

3.3 Flow Scheduling in Data Centre Networks

To take advantage of topologies such as fat-tree, described in 3.2.1, which have multiple

paths between the same host-destination pair. In this section, we describe current state-

of-the art protocols such as Equal-Cost Multi-Path (ECMP) [33] and Hedera [10] for

Multi-Path flow scheduling. These two flow scheduling techniques along with our proactive

approach are employed in the design of our experiment as described in Chapter 4 and

subsequently evaluated against each other in Chapter 6.

3.3.1 Equal Cost Multi-Path Routing

Switches that support ECMP are configured with many possible paths for the same host-

destination pair. When a packet arrives at a switch, with possible multiple paths to its

destination, selected fields of the packet are hashed modulo the total no of paths and the

packet is forwarded along the path that corresponds to the result. This results in splitting

of the load, maintaining the arrival of packets for the same flow. ECMP is supported by
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most enterprise switches.

However, ECMP has a lot of limitations, such as it does not take flow bandwidth into

account when it makes flow allocation decisions, which can cause bottlenecks at certain

links even when the communication pattern is simplistic; this further results in collisions

because the static mapping of flows to paths does not take into consideration the current

network utilization which overwhelms switch buffers degrading overall performance [10].

Moreover, the growth in routing table entries is multiplicative as the number of paths

grow causing increase in lookup latency and cost.

Nonetheless, ECMP implementations support 8-16 multiple paths currently, and it

works for topologies such as fat-tree, therefore we evaluate it against other approaches,

namely Global First-Fit and a proactive approach, for routing of Hadoop traffic as de-

scribed in Chapter 4 for our current project.

3.3.2 Global First-Fit Flow Scheduling

To alleviate the shortcomings of ECMP described in the previous sub-section, Al-Fares et

al. [10] devised a dynamic flow scheduler called Hedera. Hedera is essentially an extension

to ECMP; it works similarly to ECMP as described in 3.3.1 for small flows, however when

flows exceed a certain threshold rate, Hedera dynamically allocates an appropriate path to

the flow after doing a demand estimation and installs the path in the appropriate switches.

The flow lives only till a certain timeout after which, the flow entries are removed from

the path.

The demand estimator converges to the natural flow demand by performing repeated

iterations of decreasing the flow capacities at the receivers and increasing it at the sources

until the capacities converge. Al-Fares et al. devised two algorithms for dynamic flow

placement, namely Global First-Fit and Simulated Annealing. In this project, we focus

only on Global First-Fit and evaluate it against other approaches of routing Hadoop traffic

in a fat-tree topology, since it is much simpler to implement than Simulated Annealing.
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When a flow exceeds the threshold rate, Global First-Fit initiates a linear search of

all the possible paths that can accommodate the flow and places the flow in the first

such path that it encounters [10], making it a greedy algorithm. The flows are placed

by creating a reservation of the bandwidth capacity along the path and subsequently

installing the flow entries in the aggregation and edge switches. Global First-Fit achieves

this by maintaining a list of the reserved capacities of all the links in the network and

placing flows accordingly.

Al-Fares. et al. ran benchmark tests to evaluate the effectiveness of Global First-Fit

against ECMP routing in a test bed of 16 hosts arranged in a fat-tree topology with

OpenFlow [43] enabled switches. They also ran tests in a simulator for measuring the

scalability of their routing algorithms. Al-Fares et al. [10] found that Global First-Fit and

Simulated Annealing significantly outperform ECMP for various communication patterns

achieving achieving 39% more of the total bisection bandwidth available in the network,

as compared to ECMP.
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Chapter 4

Design

In the previous chapter, we summarised the background for the current project, more

specifically by providing a description of the technologies that we use in the design of

our experiment, such as Hadoop [31], Global First-Fit flow scheduling [10] and fat-tree

data centre topology [9]. In this chapter, the design approach and objectives of our

experiment are described in Section 4.1. Subsequently, in 4.2, we describe our proactive

flow scheduling algorithm. In Section 4.3, a high level overview of our experiment design

is provided and finally, in Section 4.4, an analysis of our experiment design is provided.

4.1 Approach

We propose a proactive flow scheduling mechanism in order to determine if there are

performance gains, in terms of Hadoop [31] Job completion times and total bisection

bandwidth achieved by a data centre network.

The existing flow scheduling mechanisms described in 2.2 are overwhelmingly reactive

in nature. Therefore, our approach stands as a contrast to these existing flow scheduling

mechanisms, since

• We configure the network before any commencement of traffic on the basis of pre-

vious executions.
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• There is less control overhead than reactive approaches on the network.

Finally, by measuring our approach against existing flow scheduling mechanisms, we

want to investigate if the control overhead of reactive approaches lowers their performance.

4.2 Proactive Flow Scheduling Algorithm

Figure 4.1: A flowchart depicting the Proactive Flow Scheduling Algorithm.

We device a proactive routing strategy as depicted in Figure 4.1 in the following steps

• We run a Hadoop job on a cluster of 16 hosts, arranged in a fat-tree [9] topology;
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where all switches in the network are controlled by a centralized controller using the

OpenFlow [43] protocol.

• Hadoop traffic is routed in the network using the Global First-Fit (GFF) [10] flow

scheduling algorithm.

• The flow scheduling decisions made by the GFF algorithm are logged and persisted

into the memory of the controller.

• Concurrently, the total bytes transmitted and received by each host in the cluster are

logged into disk, which are used to calculate the total bisection bandwidth achieved

by the hosts in the network.

• Subsequently, the same Hadoop Job is run again and the traffic of the network is

handled by the Proactive controller.

• The Proactive controller reads the flow scheduling decisions for the same job made

by the GFF algorithm earlier, and installs them statically in the network, prior to

the start of Hadoop transfers.

• After installing flow entries statistically, it defaults to the GFF behaviour for routing

flows in the network.

• While the Hadoop job is running, each host in the network logs the total number

of bytes transmitted and received by its network interface in order to calculate the

average bisection bandwidth achieved for proactive routing.

• The steps above are repeated iteratively for different Hadoop jobs. When all the

iterations are completed, we obtain Hadoop Job completion times and total bisection

bandwidth utilization for our proactive and GFF (reactive) routing strategies.
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4.3 Architecture Overview

The High-level architectural design of our experiment is illustrated in Figure 4.2, and it

broadly consists of three parts: an SDN controller, a fat-tree data centre topology and a

Hadoop Emulator. A brief overview of each part is provided in this section.

Figure 4.2: High Level Overview of the experiment Design.

4.3.1 SDN Controller

The SDN controller has a three-fold functionality as illustrated in Figure 4.2. It routes

Hadoop application traffic with three different routing algorithms, namely, ECMP [33]

which is the de-facto standard of routing traffic in a multi-rooted tree architecture [9],

Global First-Fit [10], which is a reactive flow scheduling algorithm that builds upon

ECMP, and finally, our proactive flow scheduling algorithm which leverages the reactive

flow decisions made by GFF for a certain Hadoop job, installing them statically before

communication commences in the network for the same Hadoop job.
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At a time, it schedules flows using one of the three algorithms, which is specified when

the SDN controller is launched. It controls the forwarding behaviour of all the switches

in the fat-tree topology using the OpenFlow [43] protocol as illustrated in Figure 4.2.

4.3.2 Fat-tree topology

As mentioned in 2.3.1, we employ Mininet [38] for emulating a data centre network,

since we do not have access to a 16 host cluster. Therefore, we use the Mininet network

emulator for emulating a k -ary fat-tree topology (described in 3.2.1), where k = 4 as

illustrated in Figure 4.2. All the switches in the emulation are connected to an external

SDN controller via the OpenFlow protocol, while each of the 16 hosts in the Mininet

emulator run a Hadoop emulation.

4.3.3 Hadoop Emulation

As illustrated in Figure 4.2, each host in the Mininet emulator is running a Hadoop

emulation. Since, the entire fat-tree topology is run on a single machine, it is not feasible

to run a full version of Hadoop [31] on the emulated hosts. Therefore, we use a lightweight

alternative, by running a Hadoop emulator MRemu, on each host. As described in 2.3.2,

MRemu emulates Hadoop by producing iperf flows which are based on real Hadoop Job

traces. Thus, we are able to simulate the running of Hadoop jobs in a 16 host fat-tree

topology, where the routing decisions of the switches are controlled by an external SDN

controller.

4.4 Analysis

Our aim in proposing the design of this Proactive flow scheduling algorithm was to inves-

tigate if there are benefits in terms of better application performance and high bisection

bandwidth utilization by proactive configuration of a data centre network.
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In order to fulfil our aim, we introduced the design of our experiment in this chapter

whereby we use reactive configurations logged from the GFF algorithm, which are fed

into the proactive controller to be installed into the network as static flows. Automatic

generation of proactive configuration for the network is beyond the scope of this project.

We find that the design set forth meets the requirements of this project, and is general

enough to be applied to any Big data processing application traffic. It is a first step

towards evaluating a proactive measure of network configuration for big data application

processing, owing to which it is straightforward to implement. The next chapter describes

a proof-of-concept implementation of this design in python.
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Chapter 5

Implementation

The previous chapter described our proposed Proactive flow scheduling algorithm and

the design of our experiment. We leverage pre-existing reactive flow scheduling decisions

in the design of our Proactive scheduler. In this chapter, we describe the implementa-

tion of our experiment design that has been employed to evaluate the effectiveness of our

proposed Proactive flow scheduler. In Section 5.1, an overall description of our design

implementation is provided, outlining the working of different major components. In Sec-

tion 5.2, the implementations of ECMP, GFF and our Proactive flow scheduling SDN

controllers are described. Moreover, Section 5.3 describes the structure of Hadoop job

traces and functional working of the Hadoop emulation. In Section 5.4, our implementa-

tion for measuring throughput from the hosts in the Hadoop emulation is described, and

finally, Section 5.5 summarises our design implementation.

5.1 Implementation description

We have implemented our Proactive flow scheduling algorithm using the dart branch [7]

of the POX [4] SDN controller. POX provides an extensible API written in Python, which

can be used to program its controlling behaviour. As described in 2.3, we use the Mininet

Network Emulator [38] for emulating a 16 host fat-tree data centre topology, where each
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host is running a Hadoop emulation using MRemu [47]. The forwarding behaviour of

the switches in the fat-tree network topology is controlled by the POX controller using

OpenFlow [43]. We run Hadoop jobs and measure Hadoop job completion times along

with the total network bandwidth utilization for three flow scheduling algorithms, namely,

ECMP [33], Global First-Fit [10] and our Proactive flow scheduling.

Figure 5.1 illustrates the working of LaunchExperiment, which is the main Python

script that initiates the experiment. It builds a Mininet Network topology object, by using

a script from Ripl-POX [8] to initialize the switch, host and link configurations for a fat-

tree network topology. Ripl-POX is an extension to the POX controller which provides

ECMP hash based routing, as described in 3.3.1, and Mininet network configurations for

data centre topologies such as fat-tree, described in 3.2.1.

Figure 5.1: Execution of the main script that loads the different modules of the experi-
ment.

Subsequently, a remote SDN controller is added to the Mininet network topology

object by providing its IP address and port, as illustrated in the Figure 5.1, and the

Mininet network emulation is launched. Finally, using Python’s Multiprocessing library,

two processes are launched simultaneously on each of the 16 hosts, where one of the

process runs the Hadoop emulation as described in detail in Section 5.3, while the second

process samples the bytes received by the host from its network interface, described in

detail in Section 5.4.
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LaunchExperiment script illustrated in the Figure 5.1 runs the experiment to measure

total bisection bandwidth achieved and Hadoop job completion times when using different

SDN remote controllers running on the IP address 127.0.0.1:6633, which are used for

evaluating the effectiveness of our Proactive flow scheduling against reactive scheduling.

5.2 SDN Controller Implementation

In this section, we describe the Python-based implementation of our Proactive controller

along with implementations of ECMP and GFF controllers using the Python API of the

POX SDN controller.

5.2.1 Equal Cost Multi-Path Routing Implementation

As mentioned in 5.1, we used the ECMP routing implementation from Ripl-POX, which is

an extension of the POX controller. ECMP routing is described in detail in 3.3.1. It is the

de-facto industry standard routing mechanism for multi-path topologies [10] described in

3.2, and attempts to spread traffic evenly in a network with multiple equal cost paths by

hashing selected fields of an incoming packet modulo the total number of paths available

and forwarding the packet along the path that corresponds to the result.

5.2.2 Global First-Fit Flow Scheduling Implementation

Global First-Fit flow scheduling is an extension to ECMP routing for scheduling traffic in

a topology with multiple equal cost paths between any two source and destination pairs

of hosts, described in further detail in 3.3.2. It maintains link capacities of all paths in the

network. When a flow needs to be scheduled, GFF performs a linear search of all possible

paths that can accommodate the flow, and allocates the first path that it encounters,

which meets the bandwidth demands of the flow.

The GFF controller class implementation [6] used in the experiment is illustrated in

Figure 5.2. Once all the switches in the fat-tree topology are connected to the GFF
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controller, the handle ConnectionUp(event) function stores the switches in a Python list

with the switch Data Path IDs which uniquely identify OpenFlow switches, as keys.

Figure 5.2: Global First-Fit Network Controller Class

Subsequently, the get all paths() function calculates equal cost routes by calling the

get equal cost routes(src, dst) function for all possible pairs of source and destination

nodes in the network. When an OpenFlow switch gets a packet which has no matches in

its forwarding table, the packet is sent to the SDN controller for processing [43]. This event

is handled by the handle packet reactive(event) function, which responds by installing a

flow entry in the switch, matching the header fields of the packet reactively, using the

GFF flow scheduling algorithm, and logs the header match fields along with the egress

port into a JSON file, to be used later by the Proactive controller.

5.2.3 Proactive Controller

We implemented the Proactive Controller on the hypothesis that installing flows based

on application traffic patterns in a proactive manner will reduce control overhead and

high-level latencies caused due to installing of flows reactively. Towards this end, we log

flow scheduling decisions made by the GFF controller in a JSON file as described in 5.2.2,

for a particular Hadoop job. The same Hadoop job is run again and the logged flows from

the previous execution are subsequently fed into the Proactive controller, which installs

them as soon as all the switches in the network are connected to it. Finally, for every
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Figure 5.3: Handling of packetIn event on forwarding table miss by SDN controller using
OpenFlow.

packetIn event i.e., when a packet is sent to the controller by a switch since its header

fields do not match any entry in the switch’s forwarding table as illustrated in Figure

5.3, the controller procecsses the packet, and based on the control logic running in the

controller, it creates FlowMod message, with an action specifying the egress port of all

packets matching specific header fields. Subsequently, all packets matching the field as

specified in the FlowMod message are routed to same egress port by the switch till the

entry times out. Similarly, after all the Proactive entries time out, the proactive controller

behaves like the GFF controller, by routing the packets reactively on packetIn events.

Figure 5.4 illustrates the implementation of the Proactive controller class using POX

controller’s Python API. Similar to the GFF controller class described in 5.2.2, the

handle ConnectionUp(event) function stores all switches of the network connected to

the controller corresponding to their data path IDs, in a Python list. Additionally, it calls

the install proactive path() function.

The install proactive path() function reads all the flow scheduling decisions made by

the GFF controller, and installs the same in the appropriate switches. One of the sample

flow scheduling decision logged by the GFF controller is illustrated in Figure 5.5.
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Figure 5.4: Proactive Network Controller Class

{
"dl_type": 2048 ,
"nw_dst": "10.0.0.2",
"tp_dst": 6666 ,
"dpid": 1,
"tp_src": 48383 ,
"dl_dst": "00:00:00:00:00:02",
"dl_vlan": 65535 ,
"nw_src": "10.0.0.3",
"dl_src": "00:00:00:00:00:03",
"out_port": 2

}

Figure 5.5: Example of a flow decision obtained from GFF flow scheduler which is installed
by the Proactive network controller.

Notable fields in the log of a flow scheduling decision include nw src, nw dst, dl src,

dl dst, dpid and out port which are the source IP address, destination IP address, source

Ethernet address, destination Ethernet address, switch data path ID and the output

port respectively. All such logged flow decisions are installed by the Proactive controller

in the switches along with an IDLE TIMEOUT, so that switch routing tables are not

overwhelmed. Once the flow entries expire, traffic is routed in a reactive manner, as

described in 5.2.2.
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5.3 Hadoop Emulation Implementation

Since it is not feasible to run a full version of Hadoop on emulated hosts, running on a

single machine, due to memory and I/O constraints; therefore, we use a Hadoop emulator

MRemu [47], as discussed in detail in 2.3.2. It uses traces of real Hadoop Jobs to emulate

Hadoop traffic patterns in an emulation running on a single machine, without the need

of a real Hadoop cluster. In this section, we describe the structure of Hadoop application

traces used in the experiment, and briefly discuss the functional workflow of the Hadoop

emulation.

5.3.1 Hadoop Job Traces

The Hadoop emulator generates traffic patterns in the network on the basis of Hadoop

job traces, as discussed in detail in 2.3.2. The MapReduce applications used to obtain

these traces are discussed at length in 6.2. Information available in the Hadoop job traces

is stored in JSON format. Figure 5.6 illustrates one element each from the transfers

and tasks JSON arrays in a Hadoop trace. The elements of the transfer array provide

information about the network transfers and their durations, between two hosts.

This information is used to generate iperf flows between the source and destination

hosts for the intended time duration, thereby simulating transfers of the real Hadoop job.

Similarly, the task array provides information pertaining to the different tasks assigned to

the hosts in the network and their durations, which are simulated by the corresponding

hosts.

5.3.2 Functional Architecture

LoadExperiment script executes the Hadoop emulation on all hosts in the network by

launching the AppLauncher class, as illustrated in Figure 5.1. Functional working of

the Hadoop emulation on each host in the network is illustrated in Figure 5.7. The

AppLauncher class executes Hadoop emulation on each host by obtaining information
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{
"transfers": [{

"dstAddress": "172.27.102.16",
"dstPort": 59861 ,
"duration": 2.140714136 ,
"finishTime": 1388441782.972 ,
"mapper": "attempt_201312301708_0016_m_000014_0",
"reducer": "attempt_201312301708_0016_r_000003_0",
"size": 62584054 ,
"srcAddress": "172.27.102.1",
"srcPort": 50060 ,
"startTime": 1388441780.831286

}],
"tasks": [{

"finishTime": 1388441795.897 ,
"host": "172.27.102.1",
"name": "attempt_201312301708_0016_r_000002_0",
"processingTime": 6.937 ,
"shuffleFinished": 1388441788.953 ,
"sortFinished": 1388441788.96 ,
"sortingTime": 0.007 ,
"startTime": 1388441772.748 ,
"type": "REDUCE",
"waitFinished": 1388441778.417361 ,
"waitingTime": 5.669361

}]
}

Figure 5.6: Example of a Hadoop job trace showing one element each from the transfers
and tasks JSON arrays.

about the type of host, i. e. if the host is the JobTracker or one of the TaskTrackers from

the TraceParser class. If the host’s IP address corresponds to the JobTracker IP address

in the Hadoop trace file, then it assumes the role of the JobTracker i. e. the master node

in the network, while all other hosts in the network assume the role of TaskTrackers.

TaskTrackers simulate the working of a Hadoop job by creating iperf flows with the

same durations as the actual transfer times, which are obtained from the TraceParser

class. Realistic latencies caused while running Map/Reduce tasks in Hadoop are also

emulated by the TaskTrackers. Similarly, information about the network traffic generated

by the actual JobTracker is used to generate iperf flows by the emulated JobTracker.

Debug information from the emulated JobTracker and TaskTrackers about network events
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Figure 5.7: Functional Architecture of the Hadoop Emulation.

are logged in disk.

5.4 Throughput Measurement Methodology

In this section, the implementation for sampling throughput in the emulated network of

our experiment is discussed. In order to measure the total bytes received by a host in the

network, we leverage information obtained from /proc/net/dev directory of each host in

the network.

The /proc/ is a virtual Linux filesystem which is made available to user processes
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by the Linux kernel in order to share internal information about the system [5]. The

/proc/net/ directory contains a number of files providing some aspect of information on

networking of the Linux system. The contents of the files in the /proc/net/ directory can

be viewed by using the cat command. One such file in the /proc/net/ directory is the

/proc/net/dev file which provides information about the number of bytes transferred and

received by the configured network interfaces of the system.

Figure 5.8: Sample output of cat /proc/net/dev command.

A sample output of the cat /proc/net/dev command is illustrated in Figure 5.8. At

any instant, it gives the total number of bytes transmitted and received by the configured

network interfaces. This information is leveraged to calculate the total bisection band-

width achieved by the emulated Hadoop traffic in the network, when routed via reactive

and proactive approaches.

Once the Hadoop emulation is executed on each host by the LaunchExperiment script,

it launches the sample bandwidth(net) function simultaneously, as illustrated in 5.1, which

measures the bandwidth used by each host in the network from the /proc/net/dev file.

Pseudocode for sampling bandwidth utilized by each host is illustrated in Figure 5.9.

The sample bandwidth(net) function creates an empty list of lists with the host objects as

keys. Subsequently, while the Hadoop Emulation is running, it captures the total bytes

received by the host interface by calling the sample rxbytes(net, rxbytes) function, and

storing the time duration between every two samples in a list. The sample rxbytes(net,

46



Figure 5.9: Pseudocode for sampling of network throughput from all hosts in the network.

rxbytes) function captures the number of bytes received by the network interface by

reading the contents of the /proc/dev/net file and stores it in a list corresponding to the

host object.

When the Hadoop emulation terminates, the process of sampling bytes is stopped

and the sample bandwidth(net) function calculates the aggregate throughput achieved by

calling the agg throughput(rxbytes, sample durations), where the list of bytes sampled and

the the durations of their sampling are sent as parameters. The agg throughput(rxbytes,

sample durations) function calculates the total aggregate throughput achieved by all the

hosts in the network by converting the bytes to throughputs for each host and subsequently

summing the average throughput achieved by each host in the network.

5.5 Summary

In summary, we implement the following components based on the design in Chapter 4

• An extension to the Global First-Fit flow scheduling controller which logs its flow

scheduling decisions in a JSON file.

• A Proactive controller that leverages the flow scheduling decisions logged by the
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Global First-Fit controller, by installing them proactively and subsequently default-

ing back to the reactive behaviour of GFF controller.

• A mechanism to sample bytes received by each host in the network via the /proc/net/dev

directory, which is used to calculate the total throughput achieved by the hosts in

the network.

The next chapter discusses the tests carried out to evaluate our implementation of

the Proactive flow scheduling mechanism by comparing it against the total throughput

achieved by reactive routing techniques and the effect of different flow scheduling mecha-

nisms on Hadoop job completion times.
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Chapter 6

Evaluation

The previous chapter detailed the implementation of our design proposed in Chapter 4,

including the implementation of our Proactive flow scheduler. This chapter describes

the benchmarking tests that were carried out to evaluate our Proactive flow scheduler

against ECMP and Global First-Fit flow scheduling algorithms. Section 6.1 describes

our experimental setup. Subsequently, in Section 6.2, we describe the nature of Hadoop

job traces used for evaluation. Section 6.3 gives a brief overview of the methodology

followed in obtaining experimental results. Sections 6.4 and 6.5 provide a comprehensive

description regarding the evaluation of total average bisection bandwidth achieved by the

different flow scheduling mechanisms and their effect on Hadoop job completion times.

Finally, in Section 6.6, we summarize our findings and critically analyse the same.

6.1 Experimental Setup

The tests described in this chapter were all run on a Dell Server with 8 x 3.40GHz cores

of Intel Core i7-4770 processor, 16 GB of RAM, and 475.4 GB of hard disk space running

Ubuntu 14.04 LTS operating system. The Python implementation of our experiment used

Python version 2.7. The Hadoop traces used in our evaluation were obtained by Neves

et al. [47] on a real cluster of 16 identical servers, each having 12 x86 64 cores, a single
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HDD and 128 GB of RAM, interconnected via 1 Gbps Ethernet links, running Hadoop

1.1.2 on top of Red Hat Enterprise Linux 6.2 operating system.

For running our network emulations, we used the Mininet network emulator from its

cs244 branch version, since it is compatible with Ripl-POX controller that is used for

ECMP routing, as discussed in 5.2. For the Hadoop emulation, we used the MRemu

emulator [46], and used POX dart [7] SDN controller for flow scheduling of the emulated

Hadoop traffic.

6.2 Benchmark Traces

The Hadoop job traces used to generate traffic in our experiment were obtained from

the MRemu github repository [46]. The same traces were used by Neves et al. [47] to

evaluate the performance of MRemu. The traces have been obtained from the following

applications which are a subset of the HiBench benchmark suite [34]

• Sort - This application sorts text input data which is generated via a RandomTex-

tWriter. Sort is used frequently to benchmark Hadoop performance. 32 GB of data

was sorted to obtain Job traces.

• PageRank - It implements the page-rank [34] algorithm which calculates web page

ranks by taking the number of reference links in the web page as a metric. Hence,

PageRank serves as a large-scale indexing application. Neves et al. configured

PageRank to process 500K pages, totalling approximately 1 GB of input size; and

used the Pegasus Project [36] implementation of PageRank to obtain job traces.

• Nutch - It is part of Apache Nutch [50], which is a scalable and flexible web crawler

that uses the MapReduce model for indexing pages in large-scale web search engines.

Nutch was configured to index 5M pages, which totalled to approximately 8GB of

input data.
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• Bayesian Classification - Another canonical use of MapReduce is large scale ma-

chine learning. This application uses a classification algorithm for data mining and

knowledge discovery called Naive Bayesian [34]. It forms a part of Apache Mahout,

which is a popular machine learning library. To obtain Hadoop job traces, 100K

pages were configured to be processed by Bayesian Classification.

However, the Hadoop job traces in the MRemu github repository [46] have not been

classified according to the Hadoop applications that were run in the real cluster setup to

obtain them. Therefore, in our evaluation of the effect of different flow scheduling mech-

anisms on total bisection bandwidth achieved and the respective Hadoop job completion

times for different Hadoop job traces, we were not able to classify the different Hadoop

traces on the basis of the HiBench applications that were used in order to obtain them.

This is a limitation in our evaluation of the different routing mechanisms since different

traces have achieved different levels of the network bisection bandwidth and we were not

able to explore the causes for the same.

6.3 Evaluation Overview

We evaluated the effect of different routing mechanisms on the total bisection bandwidth

achieved and Hadoop job completion times by running tests in the following manner

• Firstly, we launched the POX controller with ECMP routing.

• While the ECMP controller was running, we launched the Mininet network emula-

tion of a 16 host fat-tree topology with each host running the Hadoop emulation.

• Subsequently, we stored the total bandwidth achieved and the total job completion

times to disk, once the Hadoop emulation was over.

• We followed the same procedure listed above while running Global First Fit flow

scheduling and our Proactive flow scheduling in the POX controller instead of ECMP
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scheduling, and logged the total bandwidth achieved by the hosts in the emulation

and their respective job completion times to disk.

The above procedure was repeated for different Hadoop job traces and the results

obtained are discussed in the following sections.

6.4 Evaluation of Total Bisection Bandwidth Achieved

After running benchmark tests as described in the previous section, we plotted the total

throughput achieved for ECMP, GFF and Proactive flow scheduling for different Hadoop

job traces on the graph illustrated in Figure 6.1. Global First-Fit flow scheduling was ob-

served to outperform ECMP routing in all instances, achieving 24.21% more throughput

on average than ECMP routing.

Al-Fares et al. [10] found Global First-Fit to outperform ECMP by achieving 39 %

more of the total bisection bandwidth available in the network. The difference of 15 %,

between our results and the ones obtained by Al-Fares et al. might be attributed to the

fact that we run our experiment on a single server, causing the GFF flow scheduler to

perform slower due to limited computational resources.

Our Proactive flow scheduling mechanism was observed to perform significantly better

than ECMP, achieving 59.9% more of the total bisection bandwidth available in the

network than ECMP routing. In comparison to Global First-Fit routing, the Proactive

flow scheduler was comparable for the first two of the Hadoop Job traces, i. e. job1

and job2 respectively, while for job3 and job4, Proactive flow scheduling outperformed

Global First-Fit scheduling, as illustrated in Figure 6.1. On an average, the Proactive flow

scheduler achieved 11.6% more of the total bisection bandwidth available in the network

than Global First-Fit flow scheduling.

Since we are not aware of the exact nature of the Hadoop job traces used in the

evaluation of the Proactive controller against ECMP routing and GFF flow schedul-

ing, as described in 6.2, therefore, we cannot point out the reasons for Proactive flow
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Figure 6.1: Total throughput achieved by hosts running Hadoop job emulation in an
emulated network with 1 Gbps links, grouped by the throughput achieved when running
different Hadoop jobs for ECMP routing, Global First-Fit flow scheduling and Proactive
flow scheduling. On average, Proactive flow scheduling was found to achieve 59.9% more
bandwidth than ECMP routing and 11.6% more bandwidth than GFF flow scheduling.

scheduling to outperform Global First-Fit scheduling for job3 and job4 Hadoop traces

respectively, while performing comparably to Global First-Fit routing for job1 and job2

Hadoop traces, as illustrated in Figure 6.1. Nonetheless, the results obtained substantiate

our claim that Proactive flow scheduling improves network performance by reducing the

amount of control overhead in the network.

The throughput readings used in Figure 6.1 were taken by re-running the tests de-

scribed in 6.3, and taking the mode of the throughput values obtained, so as to avoid

Random Errors in the values since the experiment was compute intensive.
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6.5 Evaluation of Hadoop Job Completion Times

As described in 6.3, we observed the Hadoop job completion times when traffic was routed

following ECMP, Global First-Fit and Proactive scheduling mechanisms respectively, for

different Hadoop Job traces and plotted the readings on the graph illustrated in Figure

6.2. We found the Hadoop job completion times to correlate with the average bisection

bandwidth achieved by hosts in the emulated network, when traffic was routed following

the three flow scheduling algorithms, as described in the previous section.

Figure 6.2: Time taken to complete Hadoop job emulation by hosts in an emulated net-
work with 1 Gbps links, grouped by Hadoop job completion times when running differ-
ent Hadoop jobs for ECMP routing, Global First-Fit flow scheduling and Proactive flow
scheduling. Proactive Flow scheduler achieves lower Hadoop job completion times by
35.58% in comparison to ECMP routing and 10.07% in comparison to Global First-Fit
flow scheduling.

Hadoop job completion times were found to have an inverse correlation with the to-

tal bisection bandwidth achieved, indicating that flow scheduling mechanisms that achieve

a higher bisection bandwidth result in lowering of Hadoop job completion times. We cal-

culated Pearson product-moment correlation coefficient for average throughput achieved
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by different routing mechanisms as the dependent variable and the average time taken

for Hadoop job completion by different routing mechanisms as the independent variable,

and found the correlation coefficient to be -0.9981, which is indicative of total negative

correlation between the two.

Moreover, Global First-Fit scheduling was found to lower Hadoop job completion

times by 15.07% in comparison to ECMP scheduling, while the Proactive Flow scheduler

was found to lower Hadoop job completion times by 35.58% in comparison to ECMP

scheduling and 10.07% in comparison to Global First-Fit flow scheduling.

6.6 Critical Analysis of Experiment Results

As mentioned in Section 6.2, the Hadoop job traces used were a subset of the HiBench

benchmark suite of MapReduce applications, specifically, Sort, Nutch, PageRank and

Bayesian Classification, produced by Neves et al. [47], made available on the MRemu

github repository [46]. However, they were not classified into their application types,

hence we were not able to account for the reasons behind the difference in bisection

bandwidth achieved by different Hadoop job traces as illustrated in Figure 6.1; which is

a limitation of our evaluation.

Nonetheless, we were able to evaluate the bandwidth achieved and Hadoop job com-

pletion times for ECMP, GFF and our Proactive flow scheduling mechanisms. Global

First-Fit was found to achieve 24% more aggregate bandwidth than ECMP. Al-Fares et

al. reported this difference to be 39%. We speculate the difference in our findings to be

attributed to the fact that our experimental setup involved a single server emulating 16

hosts arranged in a fat-tree topology, resulting in a computation bottleneck as illustrated

in Figure 6.3, which is a screenshot of the Ubuntu System Monitor utility, taken while

the emulation was running, showing that at certain point of time, all 8 cores of our server

used for the experiment were running at full processing utilization.

We evaluated our Proactive flow scheduling mechanism against ECMP and Global
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Figure 6.3: A screenshot of the CPU utilization while the experiment was running on the
server.

First-Fit flow scheduling, and observed an average gain of 59.9% and 11.6% in total

bisection bandwidth achieved against ECMP and Global First-Fit flow scheduling respec-

tively. Moreover, Proactive flow scheduling achieved faster Hadoop job processing times

by 35.58% and 10.07% in comparison to ECMP and Global First-Fit flow scheduling,

highlighting the potential of Proactive Network configuration approaches to optimize per-

formance of Big Data applications. Moreover, we found the total bisection bandwidth

and Hadoop job completion times to be negatively correlated by Pearson’s correlation co-

efficient of -0.99, which underlines the huge potential of Reactive and Proactive Network

configuration to enhance the performance of Big Data processing applications in a data

centre network.
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Chapter 7

Conclusion

In the previous chapter, we summarized our evaluation of the Proactive flow scheduler in

terms of its performance and compared it with ECMP routing and Global First-Fit flow

scheduling. In this chapter, we will summarize the project and our results, and discuss

possible future work.

7.1 Project Overview

Recent years have seen a steady growth in the amount of data generated by mobile and

web applications, which is the fuel that drives Big Data Analytics. Mayer-Schönberger et

al. [40] define ”big data” as the ability of harnessing information in novel ways thereby

producing valuable insights or goods of significant value. As the data volumes grow,

big data processing frameworks such as Hadoop [31] require scaling out to thousands of

commodity servers, subsequently resulting in an increase in the network traffic. Network

performance has been found out to be of paramount importance for optimizing the pro-

cessing times of Big Data applications, since research [10, 26, 30] has determined the

network to be a performance bottleneck.

Recent studies [9, 26, 30, 29] propose horizontal scaling of hosts to thousands of com-

modity servers in multi-rooted tree topologies, such as a fat-tree topology that exploit
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path diversity to overcome limited port densities in commodity switches, thereby scaling

the network with the increasing number of servers required to process large volumes of

data. Moreover, emergent technologies such as Software-Defined Networking enable pro-

gramming of the network stack, by maintaining a global view of the network state which

is enabled by the separation of the control plane from the data plane of forwarding devices

[38].

Various research efforts [21, 56, 10, 45, 48, 57] have tried to make the network dynam-

ically reconfigure according to application traffic demands, in order to avoid congestion

and optimize big data processing in a data centre network. Dynamic network reconfigura-

tion approaches are reactive in nature and try to optimize network performance by either

being application-aware, where the big data application controller reports traffic demands

to the network controller which subsequently reconfigures the network accordingly, or by

adopting the approach of traffic-awareness, where a network monitor provides information

to the network controller for reactive reconfiguration. However, such reactive measures of

network configuration are bound to induce control traffic in the network and cause high

level latencies in reconfiguring the network dynamically.

We propose a Proactive approach for the configuration of a data centre network, which

installs flow rules in the network before the big data application starts. The flow rules

are obtained from the previous execution of the same application when it is routed by the

Global-First Fit [10] flow scheduling algorithm, which is a traffic-aware algorithm that

builds upon Equal Cost Multi-Path (ECMP) routing. ECMP is the standard routing pro-

tocol in multi-rooted data centre networks with path multiplicity. Our Proactive network

controller reverts to Global First-Fit flow scheduling once the proactive flows installed by

it in the forwarding devices expire.

In order to evaluate our Proactive network controller against ECMP routing and

Global First-Fit flow scheduling, we ran emulations of Hadoop jobs on a 16 host fat-

tree topology, running on a single server, and measured the effect of the different flow

scheduling mechanisms on total bisection bandwidth achieved by the hosts in the net-
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work and Hadoop job completion times. An average gain of 59.9% and 11.6% in total

bisection bandwidth achieved by the hosts in the network in comparison to ECMP routing

and Global First-Fit flow scheduling was observed, when network traffic was routed by the

Proactive controller. Moreover, the Proactive controller reduced Hadoop job completion

times by 35.58% and 10.07% in comparison to ECMP routing and Global First-Fit flow

scheduling.

Automatic generation of Proactive configurations for the network was beyond the

scope of this project, therefore we used the network configurations generated by Global

First-Fit flow scheduling. The results obtained by us indicate that proactively configuring

the network results in an increase in the total network utilization which benefits the

performance of big data processing applications. Given that current application-aware

and traffic-aware approaches of dynamic network configuration are not optimized with

Proactive configurations, there may be more to be gained in terms of average network

bisection bandwidth utilization, if they are optimized before deployment.

7.2 Contribution

In summary, our project validates the effectiveness of Proactive configuration of data

centre networks in optimizing big data application performance. Our evaluation results

demonstrate that reactive approaches have a lot to gain if they are optimized proactively

before deployment, since our Proactive flow scheduler is able to achieve higher bisection

bandwidth utilization in a data centre network and lower Hadoop job completion times

than current static ECMP routing and reactive approaches explored in research, such as

Global First-Fit flow scheduling.

Furthermore, we established a high negative correlation between total bisection band-

width achieved in the network and Hadoop job completion times, further highlighting the

significance of network performance in accelerating big data applications.
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7.3 Future Work

While our Proactive flow scheduling approach has increased the network performance

in terms of the total bisection bandwidth achieved, it relies on flow scheduling decisions

made by the Global First-Fit algorithm for the same Hadoop job. In order to fully explore

the effect of Proactive configuration of the network, the network has to be configured

proactively based on the application communication patterns. A future extension to our

Proactive flow scheduler might be to independently install Proactive configurations in the

network by generating them automatically, on the basis of application communication

patterns.

We based our experiment on an emulation based testbed, since we did not have access

to the hardware resources for deploying our implementation on a real cluster of 16 hosts.

Moreover, for the same reason, we used the Hadoop job traces obtained by Neves et al.

[47], which were not classified according to the MapReduce applications that were run

to obtain the traces, thereby hindering our ability to account for the difference in total

bisection bandwidth achieved for different Hadoop job traces as discussed in Chapter

6. Consequently, a future extension to our experiment would be to obtain Hadoop job

traces from a real cluster and subsequently run the experiment on the same, in order to

validate the findings from our emulation based testbed and account for the difference in

the average bisection bandwidth achieved for different Hadoop applications.

7.4 Final Remarks

Big Data processing is being used to solve complex problems of society by levering enor-

mous volumes of data available from ubiquitous computing devices. In order to ensure

robust performance of big data applications, data centre networks have to be configured

according to application communication patterns, so that traffic congestion in the net-

work is avoided. By utilizing the emergent technology of Software-Defined Networking,
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the network stack can be programmed to configure a data centre network in accordance

with application communication patterns, enabling scalability of network performance as

more commodity servers are added into the network in order to deal with the growing

data volumes. We showed that optimizing the network proactively results in performance

gains over current reactive approaches and hope that as research evolves out in this field,

the full potential of Proactive network configuration for optimizing big data processing

will be exploited.
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Appendix A

Abbreviations

Short Term Expanded Term

SDN Software Defined Networking

ECMP Equal Cost Multi-Path

RPC Remote Procedure Call

HDFS Hadoop Distributed File System

MR MapReduce

CPU Central Processing Unit

ToR Top of Rack

TCAM Ternary Content Addressable Memory

GFF Global First Fit
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Appendix B

Source Disk Contents

This document also includes a source disk containing:

• The complete source code and referenced libraries for the Python implementation

described in Chapter 5, along with a readme file for running the experiment (in the

folder src),

• A spreadsheet with the results obtained for evaluating the experiment in Chapter 6

(in the folder results).
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