
Comparative evaluation of Virtual Environments:

Virtual Machines and Containers

by

Ranjan Dhar

Dissertation

Presented to the

University of Dublin, Trinity College

in fulfillment

of the requirements

for the Degree of

Master of Science in Computer Science

University of Dublin, Trinity College

August 2016

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated, is

my own work.

Ranjan Dhar

August 29, 2016

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Ranjan Dhar

August 29, 2016

Acknowledgments

I would like to express my sincere gratitude to my supervisor Prof. Stefan Weber for

the continuous support throughout my time as his student, for his patience, motivation,

enthusiasm, and immense knowledge. His guidance helped me during the time of research

and writing of this thesis. I could not have imagined having a better supervisor and

mentor for my research work.

Last but not the least, I would like to thank my parents and friends for supporting

me throughout my life.

Ranjan Dhar

University of Dublin, Trinity College

August 2016

iv

Comparative evaluation of Virtual Environments:

Virtual Machines and Containers

Ranjan Dhar

University of Dublin, Trinity College, 2016

Supervisor: Stefan Weber

Cloud computing is a major component of the IT industry. Current cloud comput-

ing solutions make extensive use of virtual machines because they offer a high degree of

isolation as well as an opportunity to optimize for effective utilization of available in-

frastructure. However, virtual machines also rely on a degree of abstraction which may

result in performance degradation thereby affecting the users or customers. New advance-

ment in container-based virtualization techniques simplifies deployment and offers similar

opportunities in the control and optimization of resources.

The availability of these two alternative technologies has resulted in a number contrast-

ing opinions and studies. However, the advantages and disadvantages of each technology

when compared against its alternative are not clear, which leads to difficulties for infras-

tructure providers who aim to optimize the use of their resources and the service provided

to their customers.

In this study, we explore the performance profile of traditional virtual machine de-

ployments and contrast it with containers. We use a set of workloads that stresses CPU,

File I/O and MySQL server to evaluate the performance while scaling up the deployments

v

incrementally. We also evaluate the migration performance of the two on the same net-

work. We use KVM as hypervisor for virtual machines and Docker as container manager.

Our results point out that containers perform better in terms of both density and boot

latency; however, the results are reversed in terms of migration performance due to the

maturity of migration mechanisms for virtual machines which result in comparatively low

service downtime. We also discuss the potential performance inhibiting factors as well as

future optimizations.

vi

Contents

Acknowledgments iv

Abstract v

List of Tables x

List of Figures xi

Chapter 1 Introduction 1

1.1 Motivation . 8

1.2 Scope . 8

1.3 Outline . 9

Chapter 2 Background 10

2.1 Types of Virtualization . 12

2.1.1 CPU Virtualization . 12

2.1.2 Full Virtualization . 12

2.1.3 Para virtualization . 13

2.1.4 Host OS virtualization . 13

2.2 OS level virtualization . 14

2.3 Evolution of Containers . 16

2.3.1 Solaris Containers . 16

2.3.2 BSD Jails . 17

vii

2.4 Containers . 18

2.4.1 Linux Containers . 18

2.4.2 Docker . 20

2.4.3 Docker Components . 21

2.5 Virtualization Parameters . 23

2.5.1 Security . 23

2.5.2 Density . 23

2.5.3 Latency . 25

2.6 Migration . 26

2.6.1 Use cases . 26

2.6.2 Assumptions . 26

2.6.3 Types of Migration . 26

2.6.4 Live Migration . 27

Chapter 3 State of Art 29

3.1 Virtual Machines Vs Containers Performance 29

3.2 Virtual Machine Migration . 39

Chapter 4 Density 55

4.1 Introduction . 55

4.2 Benchmarking . 57

4.3 Experimental Setup and Configuration . 58

4.4 Technologies . 58

4.4.1 KVM,QEMU & LIBVIRT . 58

4.4.2 Docker . 61

4.5 Test Parameters . 61

4.5.1 CPU Performance . 61

4.5.2 File I/O Performance . 65

4.5.3 MySQL Performance . 71

viii

Chapter 5 Latency 76

5.0.1 Introduction . 77

5.0.2 Experiment, Analysis & Conclusion 78

5.0.3 Optimizations . 82

Chapter 6 Migration 86

6.1 Introduction . 86

6.2 Benchmark . 88

6.3 Experimental setup and Configurations . 89

6.4 Technologies . 93

6.4.1 KVM Migration . 93

6.4.2 Docker Migration . 94

6.5 Evaluation and Conclusion . 96

6.5.1 Total Migration Time . 96

6.5.2 Service Downtime . 98

Chapter 7 Conclusion 101

7.1 Overview . 101

7.2 Future Work . 104

7.3 Contribution . 105

7.4 Final Remarks . 105

Appendix A Abbreviations 107

Bibliography 109

ix

List of Tables

3.1 Container Implementation Comparison . 34

3.2 Model Prediction Error . 43

4.1 System Configuration . 59

4.2 Native Performance Profile . 64

4.3 Native Performance Profile for File I/O . 69

4.4 Per req. stats of 8 running VMs . 74

4.5 Per req. stats of 8 running Containers . 75

5.1 Boot up & Shut down time of VMs . 79

5.2 Boot up & Shut down time of Containers 80

6.1 Migration Profile for VMs running mprime 97

x

List of Figures

1.1 Cloud Service Taxonomy. 2

1.2 Three-layer topology . 4

1.3 Leaf Spine Architecture. 4

2.1 Classification of virtualization techniques. 11

2.2 Type 1 hypervisor. 11

2.3 Type 2 hypervisor. 12

2.4 x86 architecture. 13

2.5 Full virtualization. 14

2.6 Para virtualization. 15

2.7 Host OS Virtualization. 16

2.8 OS level Virtualization. 16

2.9 cgroup example. 19

2.10 Linux Containers. 19

2.11 Evolution of Virtualization. 20

2.12 Docker low level architecture. 21

2.13 Docker client-server view. 21

2.14 Services hosted in OS Containers. 22

2.15 Services hosted in application containers. 23

2.16 Summary of commercial virtualization products. 24

2.17 Characteristics of different types of migration. 27

xi

2.18 Pre Copy Live VM Migration Process flow. 28

3.1 The MultiBox work flow. 52

4.1 Total Processing Time. 63

4.2 Per request statistics of Containers. 64

4.3 Per request statistics of Virtual Machines. 64

4.4 Number of events in Containers. 66

4.5 Number of events in Virtual Machines. 66

4.6 Total R/W operations in Containers. 67

4.7 Total R/W operations in VMs. 67

4.8 File I/O speed variation in Containers. 68

4.9 File I/O speed variation in VMs. 68

4.10 Number of Reqs. processed per second in Containers. 69

4.11 Number of Reqs. processed per second in VMs. 69

4.12 Per Request stats of Containers. 70

4.13 Per Request stats of Virtual Machines. 70

4.14 R/W and Transactions performed by Containers. 73

4.15 R/W and Transactions performed by VMs. 73

4.16 Total number of events executed in Containers. 73

4.17 Total number of events executed in VMs. 73

4.18 Per req. stats of Containers running MySQL server. 74

4.19 Per req. stats of VMs running MySQL server. 74

5.1 Boot up and shutdown latency for VMs and Containers. 81

5.2 Boot up time optimization using checkpointing and restore. 84

6.1 Experimental setup for VM Migration. 90

6.2 Experimental setup for Docker Migration. 92

6.3 Migration profile for clean VM. 98

xii

6.4 Migration profile for VM running mprime. 98

6.5 Evaluation of Migration Performance. 100

xiii

Chapter 1

Introduction

Cloud computing often referred as “Cloud”, is the delivery of on demand, scalable, elastic

and location independent computing resources —be it an application or a whole datacenter

over an Internet on a pay –for –use basis. Based on the services offered, the cloud is usually

classified into following models:

1. Software as a Service (SAAS): Cloud based applications are run on distant comput-

ers “in the cloud” that is either a third party infrastructure or a personally owned one.

The users usually connect to the application via Internet, usually a web browser (HTTP

based)

2. Platform as a Service (PAAS): It provides a cloud based environment with all

computing resources available within the ecosystem to support the complete lifecycle of

building and delivering cloud application without bothering about the cost and complexity

of buying and managing the hardware, software, provisioning and hosting.

3. Infrastructure as a Service (IAAS): It provides companies/organizations with the

computing resources ranging from servers to networking to storage.

Besides these three fundamental models, cloud service taxonomy includes two addi-

tional services termed as:

i) Database as a service (DBaaS)

ii) Storage as a service (SaaS)

1

Figure 1.1 describes the hierarchical taxonomy of a traditional cloud service.

Figure 1.1: Cloud Service Taxonomy.

The deployment model for cloud computing are as under:

i) Public cloud: Owned, operated and managed by organizations that offer rapid

access over a public network towards the vision of affordable computing resource. By

using public cloud services, the users do not need to invest in hardware, software or

supporting infrastructure, as the same is owned and maintained by a third party cloud

provider.

ii) Private cloud: The infrastructure in a private cloud is operated specifically for a

single organization whether by deploying an in-house data center or outsourcing to a third

party. Private cloud infrastructure can be tuned to maximum efficiency with more refined

2

control of resources and avoiding any multi-tenancy isolation issues.

iii) Hybrid cloud: Uses a private cloud infrastructure combined with the strategic

integration and use of public cloud service. Although the public and private segments of

hybrid cloud are bound together, they remain unique entities. This allows it to offer the

benefits of multiple deployment models at once.

Data centers being the core of cloud technologies, their importance in terms of man-

agement and evolution can not be ignored. The topology of a data center plays an

important role in determining the service level agreements (SLAs) from a data center ser-

vice provider. Todays data centers follow a 3-layer topology. It comprises a core of data

center switches that connect to each other and to the external network providers, users

or access layer and the aggregation layer between the two moves information primarily

from north to south.

With the advancement in technologies and introduction of some new optimized algo-

rithms, leaf-spine network topology is an upcoming popular model that experiences more

east west network traffic because most of the traffic is internal due to the use of virtual-

ization. This topology adds the spine-layer with more switches to handle traffic with the

data center, such as storage area network data traffic. Figure 1.2 and 1.3 differentiates

the architectural difference between the two topologies. There are other architectures

that govern the networking in data centers like Clos topology, fat tree or the 4 post

architecture.

Cloud computing has become increasingly important because it makes computing

economical and flexible. Today, almost every enterprise runs their applications in data

centers which provide them with scalable and on demand computational and storage

resources. Cloud computing provides a new avenue for both small and large enterprises

to host their applications by providing features like on demand provisioning and payment

based on metered usage. The cost of licensing software and use of hardware is reduced

considerably as users pay a monthly or hourly fee to use services which include hardware,

software and maintenance cost. Considering the mammoth infrastructure involved in

3

Figure 1.2: Three-layer topology

Figure 1.3: Leaf Spine Architecture.

building a data center, the cloud computing would not have been the most sort and

trending computing model with a software technology termed as Virtualization.

Vitualization as the name suggests is the process of creating a virtual version of a

resource logically build on top of a physical infrastructure. In computing terms, it simply

4

means provisioning device or resources such as a server, storage device, network or even

a fully-fledged operating system, where the virtualization framework divides the resource

into one or more execution environments. Users are able to interact with virtual resources

as if it were a real single logical resource. In simple terms, virtualization describes the

separation of a resource or request for a service from an underlying physical infrastructure.

For example, with virtual memory, a system gains access to more memory than physically

present by swapping of data to the disk.

Some of the leading business challenges in todays IT organizations are: cost effective

utilization of infrastructure, responsiveness in supporting new business initiatives and

flexibility in adapting to organizational changes. Virtualization techniques can be applied

to other IT infrastructure layers like networks, operating system and applications. Vir-

tualization technologies or virtual infrastructure provides a layer of abstraction between

computing, storage and networking hardware. Virtualization gives data center operators

the advantage of managing pooled resources across different tenants allowing data cen-

ter owners to be more responsive to dynamic organization needs and to better leverage

infrastructure investments.

The key benefit of virtualization is the ability to run multiple operating systems on

a single physical system and share the underlying hardware resources —partitioning.

Virtualization can be applied to a range of systems layers like: i) hardware level ii)

operating system level and iii) paravirtualization.

For UNIX and standard X86 systems, the two approaches are used:

i)Hosted architecture and

ii)Bare metal (hypervisor) architecture

Hosted architectures provide partitioning services on top of a standard operating sys-

tems and supports various available hardware configurations. In contrast, a hypervisor

(virtual machine manager) architecture is the first layer of software installed on a clean

x86 system often termed as bare metal virtualization. Since, this architecture enables

direct access to hardware resources, this approach is much more efficient than the hosted

5

architecture enabling greater scalability, performance and robustness.

Operating system level virtualization serves a specific function. With this architecture,

the virtualization software layer runs on top of operating systems. All guest systems run

on top of this layer using the same operating system, but each of the guests has its own

resources and runs in complete isolation from other machines. Main identifying difference

for Operating system virtualization is the fact that it does not support other operating

systems other than the one the host is running.

Paravirtualization allows guest operating systems to gain direct access to the under-

lying hardware. Instead of using a simulated hardware resources, paravirtualization acts

as a thin layer which ensures all guest operating system share the same resources and

coordinate among themselves. This method is generally more efficient than traditional

hardware emulation virtualization.

The primary aim of containers and virtual machines is to isolate an application and its

dependencies in a lightweight self-contained unit that can run anywhere. They eliminate

the need of physical hardware, allowing more efficient use of resources. The difference

between the two is in terms of their architecture. Virtual machines (VMs) essentially is

an emulation of a real computer that performs all tasks as if it is a real physical entity.

VMs run on top of physical machine using a “hypervisor” or “virtual machine manager”

which in turn runs on either a host or a bare metal. VM has a virtual operating system

of its own and hypervisor acts as an orchestrator that manages the sharing of resources

among its peers.

Unlike a Virtual machine which provides hardware virtualization, a container provides

operating system level virtualization by abstracting processes from each other. Containers

like a virtual machine has its own private space for processing, can execute commands as

root, has a private network interface and an IP address.

The biggest difference between containers and VM is that containers share host systems

Kernel with other running containers. Each container gets its own isolated user space to

run processes independent of each other. Since all containers share same operating system

6

level architecture, the only part that is created and varies from container to container

is their respective namespaces. This makes containers lightweight as compared to its

counterpart i.e. Virtual Machines

By using appropriate virtualization technology, the computing becomes economical.

The cost involved of licensing software and using hardware infrastructure is reduced as

users pay a monthly/hourly fee to use resources that include hardware, software and

maintenance costs. One of the important characteristic of virtualization is the number

of guests per physical machine. i.e. density of the machine. Higher the density, less is

the cost involved as more virtual machines can be provisioned on the same underlying

physical infrastructure. Another vital characteristic of virtualization is Migration. It

allows a VM/Container to be transferred from one host to another host which can be

passive (cold migration) or active (live migration). Lastly another characteristic that

governs effective virtualization is boot latency i.e. time required to provision a guest to

respond to a service requirement. Lower latency helps a data center operator to scale

up instances during peak load, thereby complying to the SLAs. For establishing a cloud

infrastructure, it is vital for a data center operator to choose a guest technology (VMs

or Containers) that has high density, low latency and ensures low migration time and

minimum service downtime.

One vital consideration for a cloud provider is to respond to peak demand (load spikes)

without any considerable lag. If initial boot up latency is high, the data center operator

will always provision for expected peak load rather than the expected load to minimize

request latency. Less initial boot up time is an important factor for cloud technology as

the provider can provision resources dynamically without any delays. Presently by using

optimizations like check pointing, the latency can be reduced considerably. Similarly, high

density of a machine ensures that by increasing the density as per the service requirements

does not downgrade the CPU and I/O performance of the previously provisioned guests.

Lastly, migration of machines or containers ensures optimized load balancing and disaster

provisioning. Migration of machines is common as more and more distributed applications

7

are deployed on the cloud. Therefore, selecting an appropriate technology that ensures

minimum downtime and migration time for a service is of utmost priority.

This thesis contributes updated density, latency and migration time measurements

of virtual machines and containers by using latest kernel versions, new technologies like

Docker and available optimizations.

1.1 Motivation

Virtualization techniques like VMs and containers experience overheads with respect to

the density, latency and migration time. It is vital to understand the overheads before

committing to a technology for deploying guests in cloud infrastructure. There are few

reports/studies that contrast the performance of virtual machines and containers but they

are either dated in an evolving technology or are performed keeping in mind the brand

value of a particular virtualization product and sometimes confined to a very narrow

application scope. In the interest of obtaining fair experimental data to the scientific

discourse in this domain, this thesis performs qualitative and quantitative analysis of

virtual machines and containers, considering various optimization’s and latest available

technologies.

1.2 Scope

This thesis work describes the performance analysis of two virtualization techniques –VMs

and Containers. It evaluates the performance of the two based on metrics, which include

density, boot latency and migration time. Experiments were performed using workloads

that specifically stress system parameters such as CPU and IO operations. The perfor-

mance of containers and virtual machines are further analysed by scaling the number of

guests incrementally and capturing the performance dip.

8

1.3 Outline

This thesis is organized as follows:

• Chapter 2 gives background details on virtualization, its types, containers, param-

eters and migration methodologies.

• Chapter 3 surveys related work in terms of performance and migration mechanisms.

• Chapter 4 analyzes impact of increasing the density of virtual machines and con-

tainers on the CPU, File I/O and MySQL performance of the guests.

• Chapter 5 analyzes boot up and shutdown latency for both virtual machines and

containers. It also analyzes the impact of checkpoint and restore optimization on

their respective boot latency.

• Chapter 6 analyzes the migration performance in both virtual machines and con-

tainers. We use experimental build packages to perform container migration

• Chapter 7 concludes and summarizes the whole research work.

9

Chapter 2

Background

The widespread use of virtual machines has brought many positive effects on computing

environments and internet businesses. The most prominent advantage of a virtual machine

is the capital cost involved are reduced. With such cost merit, virtual machines also

provide many advantages in terms of operation. They allow us to provision infrastructure

fast and dynamically manage computing resources, such as memory size remotely.

The term “virtualization” was coined in 1960 to refer to a virtual machine or “pseudo

machine”. The creation and management of virtual machines has been termed as “plat-

form virtualization” or “server virtualization”. Figure 2.1 shows the classification of

virtualization techniques.

For understanding a virtual machine functionality, it is vital to know what a hypervisor

is. A hypervisor is a program that controls and manages the operating system. Hyper-

visor method is one of the most sort out and widely used method among virtualization

technologies because of its simplicity and open platform support.

As discussed previously, a hypervisor is a program that enables us to run one or more

virtual machines on a single physical host. In virtualization, each virtual machine is called

as guest system (guestOS) and the physical server on which the guest operating systems

run are called as host system. Some of the commercial products of hypervisors present in

the market are Xen, Virtual box, VMWare etc.

10

Figure 2.1: Classification of virtualization techniques.

Further a hypervisor is classified into two types (figure 2.2 and 2.3):

I. Type 1: Hypervisor runs on host system without an operating system

II. Type 2: Hypervisor runs on host operating system installed on the host system.

Figure 2.2: Type 1 hypervisor.

11

Figure 2.3: Type 2 hypervisor.

2.1 Types of Virtualization

2.1.1 CPU Virtualization

Since the physical host has only one CPU but all the running virtual machines require

their own separated CPU, this gives rise to the need of CPU Virtualization. This CPU

virtualization is enabled by hypervisor, it converts the set of CPU commands by guest

operating system and passes it on to the host CPU and collects the processing results

and delivers it back to the guest system. There are several ways in which converting and

delivering a set of CPU commands are performed. For better understanding, fig 2.4 shows

a privileged architecture, also called as “Protection ring” of X86 architecture.

2.1.2 Full Virtualization

In full virtualization, figure 2.5, a hypervisor has ring 0 authority while a guest operat-

ing system has ring 1. In full virtualization, machine code of guest operating system is

converted to machine code of host OS through binary translation. For privileged com-

mands such as device driver access, a trap for device access is executed by the hypervisor.

Because of this hierarchy, a variety of operating systems can run on the hypervisor, as a

result of an indirect access method, the speed in full virtualization is also effected.

12

Figure 2.4: x86 architecture.

2.1.3 Para virtualization

As per figure 2.6, in para virtualization whenever a privileged command is executed on the

guest operating system, it is delivered to the hypervisor using a hypercall, a system call,

instead of operating system, the hypervisor receives this hypercall directly, accesses the

hardware and returns the result as guest operating system has direct authority of resources

like CPU and memory. This method may be faster than full virtualization method but

the disadvantage being the operating system kernel has to be modified for compatibility

to hypercalls. Unlike full virtualization, para virtualization provides limited number of

guest operating systems the hypervisor can support. E.g. In Linux, approximately 20 %

of entire Kernel code has been modified for para virtualization.

2.1.4 Host OS virtualization

In this virtualization method the operating system itself provides the hypervisor function-

ality. The whole virtualization environment is supported on the host operating system.

The only weakness being its inability in intra virtual machine resource management,

performance and security. Any security issues on host operating system endangers the

13

Figure 2.5: Full virtualization.

reliability of the entire guest operating system running on a hypervisor. Figure 2.7 points

out the architecture of a Host OS Virtualization.

2.2 OS level virtualization

Lightweight virtualization also called as OS level virtualization is not new. On a Linux

platform it evolved from commercial products like VServer to OpenVZ, and, more recently,

to Linux Containers (LXC). OS level virtualization is not Linux specific, on free BSD it

is called as “Jails”, while on Solaris its “Zones”. Some of these techniques have been

available for a decade now and can be seen widely deployed in services like VPS, cheaper

and effective alternate to Virtual or physical machines. With this Containers have now

been popularized as the core components of public and private platform as a service.

Just like virtual machines, a Linux Container can run almost anywhere. Theoretically,

containers have many advantages: They are lightweight and easier to manage than virtual

machines.

Operating system level virtualization is a server virtualization method in which kernel

of an operating system allows the existence of multiple isolated user space instances,

14

Figure 2.6: Para virtualization.

instead of just one. Such instances, are often termed as Containers, Software Containers,

Virtualization engine or jails (Free BSD jail or chroot jail), it may give the illusion of a real

server from the point of view of its owners and users. This type of virtualization usually

imposes little to no overhead because applications in virtual partitions use the operating

systems normal system call interface and do not emulate. This form of virtualization

is not flexible as other virtualization approaches because it cant host a different guest

operating system or kernel as compared to its host. Fig 2.8, shows the architecture of

an operating system virtualization method with a number of virtual servers running on a

shared kernel.

The operating system level virtualization can be briefly explained based on the evolu-

tion of the virtualization products in the virtualization market: Solaris, Free BSD, LXC

and Docker.

15

Figure 2.7: Host OS Virtualization.

Figure 2.8: OS level Virtualization.

2.3 Evolution of Containers

2.3.1 Solaris Containers

It is an implementation of operating system level virtualization technology for X86 and

SPARC (Scalable Processor Architecture) systems. It can be understood as the com-

bination of system resource control and boundary separation provided by zones. Zones

are like an isolated entity (virtual servers) within a single operating system instance. By

consolidating multiple services onto one system and by isolating them into separate zones,

system administrators can reduce cost and provide most of the same protections of sep-

arate machines on a single machine. Solaris containers with resource controls are termed

16

as Zones. There are two types of zones: Global and Non global zones, the traditional view

of a Solaris OS is a global zone with process ID as 0. It is the default zone and is used for

system wide configuration, each of the non-global zone shares the same base kernel with

the main global zone. All the non-global zones have their own process ID, file system,

network namespace and are isolated from all other zones running on base system. All of

them have their separate boot environments, the zones also have many states and can

be categorized in following states: Configured, Incomplete, Installed, Ready, Running,

Shutting down.

2.3.2 BSD Jails

Jails are built on the chroot concept, which changes the root directory of a set of pro-

cesses. It in turn creates a safe and an isolated system, process created in the chrooted

environment cannot access resources outside of its boundary. This creates a security

framework where a compromised chrooted environment wont affect the entire system. In

a traditional chroot environment, processes have their separate file system they can ac-

cess independently. Rest of the system resources, users running processes and networking

subsystem Jail is characterized by four elements:

I. A directory subtree: It is the entry point of a jail. Once process is inside the jail, it

is not allowed to escape outside of this subtree.

II. Hostname: Used by the jail

III. IP Address: Assigned to a jail. It is usually an alias address for an existing network

interface.

IV. A command: The path name of an executable inside the jail. This path is relative

to the root directory of the jail environment

Jails have their own set of users and root account which are limited to jail environment.

The root account of a jail is not allowed to perform operations outside of the associative

jail environment. Thus we can say that there are various operating system level virtual-

17

ization techniques on different operating system that are more or less extension to chroot

environments.

2.4 Containers

2.4.1 Linux Containers

Linux containers is an operating system level virtualization method for running multiple

isolated Linux systems on a single host. LXC doesnt provide a virtual machine but rather

a virtual environment that has its own CPU, memory, file system and network. It can also

be defined as a lightweight Linux environment which is hermetically sealed, introspectable,

running artefact and helps in reliable deployments, high portability and loose coupling.

It generally supports only homogeneous environment. The initial release of LXC was in

2008 but it came into mass deployment only in 2014 when kernel 3.8 was released, as

this kernel release supported features like Namespaces and Cgroups. The credit for the

existence of LXC can be primarily given to Linux features: Namespaces and Cgroups

Namespaces : A concept originally developed by IBM, a Linux namespace wraps a

set of system resources and presents them to processes within the namespace, making it

look as if they are dedicated to the processes. Linux currently has six different types of

namespaces: Mount, IPC, UTS, PID, User Namespace and network. All these namespaces

together form the basis of containers.

Cgroups: Originally contributed by google, Cgroups is a Linux kernel concept that

governs the isolation and usage of system resources, such as CPU and memory, for a group

of processes. For example, if we have an application that takes up a lot of CPU cycles

and memory, such as a scientific computing application, we can put the application in a

cgroup to limit its CPU and memory usage. An example of a cgroup is given in figure

2.9.

Figure 2.10 describes the architecture of a Linux container, which has a host operating

18

Figure 2.9: cgroup example.

system (usually a Linux OS) running on a physical hardware. The host operating system

in turn hosts number of different containers with a minimal operating system installation

(Bins/Libs) which in turn runs in complete isolation with respect to each other but share

the host operating system as well as the underlying infrastructure.

Containers supposedly have near native performance as compared to virtual machines

as they do not emulate hardware. These isolated environments run on a single host and

share the same kernel and do not allow running different operating systems or kernel

versions.

Figure 2.10: Linux Containers.

19

2.4.2 Docker

With time, virtualization methodologies have evolved and various new techniques have

been practiced, out of this evolving field, application containers have come forward as

one of the most widely deployed virtualization technique presently. In the era of micro

services, application containers are meant to run a single service, they have a layered

filesystem and are built on top of operating system container technology. The evolution

of virtualization can be summarized from the figure 2.11 below with hypervisor technology

at top of the triangle followed by operating system containers and application containers.

Figure 2.11: Evolution of Virtualization.

Docker is an open source project that makes packaging of applications inside contain-

ers by providing an additional layer of abstraction and automation of operating system

virtualization on Linux. Containers themselves are just an abstraction over Linux cgroups,

which in turn are lower level kernel construct for jailing and limiting the resources of a

process and its children.

Docker initially used LXC (Linux containers) as its base but subsequently switched to

runC also known as libcontainer as shown in figure 2.12. Like LXC, runC also runs in the

same operating system as its host allowing it to share host operating system resources

like RAM, CPU, networking etc. In short, Docker adds an application deployment engine

on top of a virtualized environment. It is a lightweight and powerful open source con-

tainer virtualization technology combined with a workflow for building and containerizing

applications.

20

Figure 2.12: Docker low level architecture.

2.4.3 Docker Components

I. Docker Client and Server: Docker can be understood as a client server application as

shown in figure 2.13. Docker client talks to the Docker server(daemon) which is responsible

for managing all the requests. Docker presently does not support other operating systems

as it requires a Linux kernel.

Figure 2.13: Docker client-server view.

II. Docker Images: Images are the building blocks of Docker. They are the “build”

21

part of Dockers life cycle and are in a layered format, using union file systems that are

build step by step using series of instructions. Docker file contains all the necessary

commands a client can run to assemble an image. An analogy can be understood as

Docker file to be the “source code” and images be the “compiled code” of the containers,

which are the running code. Docker files are highly portable and can be shared, updated

or stored easily.

III. Docker Registry: Once an image is build it is stored to a registry either in a

native Docker hosted registry Docker hub or any user defined registry.

Figure 2.14 and 2.15 illustrates the key differences between operating system containers

and application containers with respect to their supported commercial products LXC

and Docker. As we can see, all the services are bundled together in OS containers. It

has a neutral filesystem and behave like virtual machines with a fully fledged operating

system. Data can be stored inside or outside the container depending on the nature of

the running services. Operating system containers are loosely coupled and are built in

composite stacks. On the other hand, application containers mimic the architecture of

micro services and are made up of read only layers using AUFS (Unification File System)

or device mapper. Instances are ephemeral and persistent data is stored in bind mounts

to host or data volume containers. Application containers are specifically designed to

support a single application.

Figure 2.14: Services hosted in OS Containers.

Figure 2.16 summarizes the important commercial products available in the market

for each virtualization technique.

22

Figure 2.15: Services hosted in application containers.

2.5 Virtualization Parameters

2.5.1 Security

Unlike virtual machines, containers expose host system call table to each guest and relies

on pointer hooks to redirect system calls to isolated data structures called as namespaces.

One of the important security concern in containers is the presence of an exploitable

vulnerabilities in pointer indirection code which eventually leads to privilege escalation

or data leakage. All the system calls on a guest operate in the same kernel address

space as data structure of other guests therefore disabling capabilities like loading kernel

extensions. Another reason, being any vulnerability in system API of host kernel are

shared, a bug exploited through system call is a shared vulnerability among peer container

but not in the case of co resident virtual machines.

2.5.2 Density

Density can be defined as a characteristic which tells us how many virtual machines or

containers can run successfully on a given underlying physical hardware which in turn

depends on:

I. Virtualization technology employed (VMs or Containers).

23

Figure 2.16: Summary of commercial virtualization products.

II. Optimizations and features provided by virtualization technology. E.g. Page shar-

ing, ballooning etc.

III. The workload involved.

Some hypervisors reserve the whole guest virtual machine memory on its startup and

does not allow memory over commitment. Theoretically it helps to achieve maximum

performance but usually there is a bit of tradeoff between high performance and density.

QOS (Quality of service) is also a vital parameter for any virtualization technology

e.g. response time. When an underlying hardware can handle the load, the metrics

either do not grow while increasing the number of virtual machines and containers or

grow linearly. When hardware becomes over utilized, these metrics start to degrade

exponentially.Theoretically, containers possess higher density than containers because:

I. No memory reservations as containers are usually a free running flexible processes.

24

II. Containers memory management is system wide wise. If one container needs more

physical RAM and hardware does not have more memory available, kernel automatically

reclaims last recently used caches of other containers.

III. Container CPU scheduler is an interactive system wide. If an external event

triggers a process, it quickly preempts current CPU hog task and schedules the interactive

one.

2.5.3 Latency

Latency can be defined as the time required to provision a guest to service an incoming

request. The boot up latency directly influences the efficiency of a cloud infrastructure.

A low latency overhead ensures on demand provisioning of guests during break load as

specified in their SLAs. Resources consumed during virtualization can be a significant

factor of overhead equation. High boot up latency is a major source of overhead. Unlike

conventional applications that are brought up once and kept running, emerging environ-

ments often run short lived tasks. If an average task runs for a few couple of minutes, it is

unacceptable to spend a major fraction of that time booting the same virtual machine or

container. Theoretically, containers have a lower boot up latency than virtual machines,

as only API and lib directory related data structures need to be initialized, while in virtual

machines the delay is because of booting an entire operating system, as containers share

the same kernel and bootloader, other initialization tasks are skipped. Boot up latency is

important and for applications that scale out to manage peak loads. Other optimizations

like check pointing a booted virtual machine and restoring it further decreases the boot

up latency of virtual machines. Theoretically even after all the optimizations, containers

possess a lower boot up latency than the virtual machines.

25

2.6 Migration

With reference to virtualization, where a guest simulation of an entire computer is actually

a software virtual machine under a hypervisor or a running container. Migration or

teleportation can be defined as the process in which a running virtual machine or a

container is moved from one physical host to another, with little or no disruption in

service. The process of migration should be completely transparent with no downtime.

Practically there is always a minor pause in availability but the magnitude is low enough

that only hard real time systems are affected. The migration in terms of virtualization

can be described as below.

2.6.1 Use cases

Migration becomes mandatory in the following conditions:

I. The running host has encountered a failure / Catastrophic failure

II. The host needs maintenance

III. Load balancing

IV. Optimal resource placement with respect to efficiency and topology

2.6.2 Assumptions

Some of the common assumptions during a migration process are:

I. Migration is LIVE (zero downtime)

II. Consistency is maintained

III. Transparency

IV. Minimal service disruption

2.6.3 Types of Migration

Migration can be classified as:

26

I. Non live migration (cold migration)

II. True live migration (shared storage based)

III. Block live migration (volume based): No shared storage required, downtime ex-

pected.

Figure 2.17: Characteristics of different types of migration.

Figure 2.17 demonstrates the characteristic of each migration type

2.6.4 Live Migration

Live migration is usually performed using these two techniques:

I. Pre Copy: Memory state is copied first followed by state transfer

II. Post Copy: Processor state is sent first followed by memory contents

Pre copy is one of the most widely used technique in majority of the deployment

configurations.

The Pre copy Live migration process can be explained from fig 2.18.

The pre copy live migration begins with a daemon process reserving a particular re-

source on the destination machine. Numerous algorithms and optimizations are employed

to identify the target host for migration. After finalizing the target host, the memory is

transferred from source to destination/target host. Once the whole memory is copied, the

27

Figure 2.18: Pre Copy Live VM Migration Process flow.

processor starts to copy the chunks of memory written during the round trip time also

known as Dirty reads. This process continues till a minimum threshold of memory is left

after which the source host is stopped and the destination host/ target is switched on, all

the new incoming requests are now serviced by the new physical host and in case of any

missing memory bytes a page fault is usually created and the old host acknowledges the

fault with required memory transfer. After successful transfer, the service at the earlier

host is discontinued and the new physical location now services all the clients without any

considerable downtime or delay. Various new algorithms and optimizations have been in-

troduced to enable a hassle free migration with minimum downtime and high efficiency

and are usually a bundled part of the virtualization product in the market.

28

Chapter 3

State of Art

This thesis analyses the virtual machine and container overheads with respect to con-

solidation density, latency and studies the migration process of both the virtualization

techniques. It also quantifies the observances with latest experimental data and lays a

metric from a data center operator point of view. Further various optimization’s are

suggested with respect to the observed pattern and a transparent view of virtualization

profile is obtained. Thus, the first section of the chapter outlines various studies which

compare virtual machines and Containers with respect to density, latency and other influ-

ential parameters, and the second section outlines the studies that explore virtualization

migration methodologies with respect to virtual machines and containers.

3.1 Virtual Machines Vs Containers Performance

Few previous studies have evaluated the performance of containers with respect to its

counterpart virtual machines in specific contexts, this piece of work bridges the gaps left

in previous evaluations with respect to both the technologies.

Felter et al. [24] evaluates memory throughput, CPU, storage and networking per-

formance of Docker with respect to KVM (Kernel Virtual Machine). This report claims

the performance of Docker either equals or exceeds KVM performance in every case. The

29

experimental analysis were done using the linear equation solving package Linpack, the

Stream benchmark of memory bandwidth, network bandwidth using nuttcp, latency us-

ing netperf, block I/O speeds with fio and Redis respectively. This study reports KVMs

start-up time to be double than that of Docker. Also, the performance of MySQL is

evaluated in both KVM and Docker. As per the experiments conducted, Docker has sim-

ilar performance to native, with the difference asymptotically approaching 2% at higher

concurrency. KVM experienced higher overhead, more than 40% in all measured cases.

The study was concluded with a claim that when both KVM and Docker are tuned for

performance, Docker equals or exceeds KVM performance in every case. For I/O inten-

sive workloads, both forms of virtualization should be used carefully. The only concern

shown with Docker in this report is the extra traffic generated during network address

translation for the networks. While the results corroborate the findings of this study with

different benchmarks, this study ignores the role of memory footprint or scalability of

either system. This study also overlooks the checkpoint and restore optimization to start

a virtual machine, which considerably decreases the boot up time of a KVM. Further they

conclude the report with claims of virtual machines being appropriate for IaaS (Infras-

tructure as a Service) and containers dominating the PaaS (Platform as a Service) model.

The gradual optimization’s happening over the years with respect to KVM is compared

to native performance delivering containers and evolution of the latter is questioned with

respect to its counterfeit. Lastly, the practice of deploying containers inside a virtual ma-

chine is questioned as this imposes the performance overheads of virtual machines while

giving no benefit compared to deploying containers directly on non-virtualized Linux.

With reference to these studies, Canonical conducted some similar series of experi-

ments with respect to LXD and KVM running a complete Ubuntu 14.04 guest [1]. These

experiments take into account the density, speed and latency and evaluate the two prod-

ucts / technologies similarly. The results conclude that for idle or low workloads, LXD

gives a density improvement of 1450%, or nearly 15 times more density than KVM. With

respect to the speed, on an average, LXD guest takes a mere 1.5 seconds to start while

30

KVM guests nearly took 25 seconds to boot. Lastly for latency, using a sample 0MQ work-

load, testing resulted in 57% less latency for guests under LXD in comparison to KVM.

Again all important optimization’s like check pointing were ignored in case of KVM.

Kyoung-Taek Seo et al. [45] constructs cloud environment under same two servers.

One for KVM as a virtualization tool in Openstack platform and the other one for Docker.

The reason of choosing KVM as a hypervisor technology was that KVM delivers near

native performance and is provided by the native Ubuntu server. This paper evaluated

the size, average boot time and operational speed with respect to the two technologies.

For size, the paper concludes that not more than 50 virtual machines can be provisioned

on a 500 GB hard disk with an average resource requirement exceeding 8 GB while in case

of Docker containers, it only used half of the same 500 GB HDD and 177 Mb of resources

to generate more than 100 images. For average boot time, 20 images were generated on

each server with same hardware and software configurations, NMON (Nigels Monitor)

tool was used to monitor the performance. As per the results, in case of Docker, average

boot-time was 1.53 seconds and standard deviation as 0.03, while in case of virtual

machines, average boot-time was 11.48s and standard deviation as 3.4s. The dependency

on CPU resources was concluded as the deciding factor for such diverse numbers. Lastly

for operational speed measurement, a python code for calculating 100000! was used as

a benchmark and the process was repeated 100 times to eliminate vague readings. With

Docker environment, operational speed was noted as 4.546s and standard deviation as

0.02s. While in case of virtual machine environment, operational speed was 4.793s and

standard deviation as 0.05. To conclude, CPU resource dependency and storage were

considered as prime parameters for such diverse numbers. Again in this paper, industrial

workloads were ignored with minimal focus on I/O and memory optimization’s.

Another study measures the memory dependency of Docker and KVM using Open-

Stack [4] and concludes that while running a real application workload, KVM requires

six times more memory than containers. This study ignores the degree to which these

measurements are fundamental.

31

Clear containers [11] is a Linux project which aims to reduce the overheads of virtual

machines as compared to containers. The project focuses on optimizing away a few start

boot CPU initialization delays, which in turn reduces start-up time of a virtual machine.

Some of the optimization’s used are as under:

• Introduction of a fast and light weight hypervisor. Instead on finding optimization’s

with respect to QEMU, this project uses kernel virtual machine tool

• Optimization’s in the kernel

• Optimization’s in system

• Utilization of the DAX (Direct Access) feature of the 4.0 kernel which enables the

page cache and virtual machine subsystems to be bypassed entirely, allowing for

faster file system accesses and lower per-container memory usage

• KSM (Kernel Same-page Merging) on the host. This allows virtual machines to

share memory pages in a secure manner for memory that is not already shared via

DAX

• Optimization of core user space for minimal memory consumption

To conclude, clear containers is a system where one can use the isolation of virtual-

machine technology along with the deployment benefits of containers. It is an ongoing

work and some of the optimization’s introduced along with some improvements by this

can help in reducing the overheads of virtual machines to a large extent.

Soltesz et al. [46] evaluates the scalability of Linux V Server (container technology)

with Xen. According to the experiments conducted, Linux V server performs twice better

than virtual machines for server workloads and scales further while preserving the perfor-

mance parameters. In case of I/O related benchmarks, Xen performs worse as compared

to V Server. This paper focuses on aggregate throughput and avoids the impact specifi-

cation on a single host/guest which from a data center operator point of view is vital in

achieving quality of service in a multi-tenancy environment.

32

Estrada et al. [23] ran synthetic benchmarks and measured the run-times of two

short-read alignment applications on cloud-like virtualization environments. The envi-

ronments were implemented utilizing the KVM hypervisor, the Xen hypervisor and Linux

Containers. The runtime in each environment is compared against a physical server and

the conclusions are derived. For experimentation, two synthetic benchmarks were used

to quantify different aspects of each virtual machine manager technology. The paper

concluded the following observations:

i) CPU pinning can be effective for managing resource contention

ii) Despite having a similar objective, alignment programs use system resources in

different ways like periodic or one time read access

iii) Different workloads with same input and processing produce contrasting execution

time as one uses bursty read write patterns, fills caches and causes the application to

block an I/O bandwidth while the other makes many small writes

iv) Performance for a given virtual machine manager is dependent on the application

being executed

v) CPU bound applications run at near bare metal speeds in virtualized environments

vi) Virtual machine manager scheduling overheard is low when virtual machines are

not over provisioned

vii) Linux Containers have low performance overhead

In order to provide meaningful comparisons and keep the work tractable, the vast

parameter space of this study was reduced to a few important cases thereby not allowing

us to apply the conclusion to a wide range of application domains.

Regola and Ducom [43] did a similar study regarding the applicability of container

for high performance computing environment, like Open MP and MPI (Message Pass-

ing Interface). The conclusion of the study was that the input/output performance of

virtual machines is usually the limiting factor in adopting a particular virtualization

technology and that only containers offer a near native CPU and I/O performance. As a

result of this, several works/optimization’s have been introduced to reduce I/O overheads.

33

Parameter LXC Warden Docker OpenVZ

Process Isolation
Uses PID
namespaces

Uses PID
namespaces

Uses PID
namespaces

Uses PID
namespaces

Resource Isolation Uses cgroups Uses cgroups Uses cgroups Uses cgroups

Network Isolation
Uses net
namespaces

Uses net
namespaces

Uses net
namespaces

Uses net
namespaces

Filesystem Isolation Uses chroot
Overlay
filesystem

Uses chroot Uses chroot

Container Lifecycle

Tools lxc-create
lxc-stop, lxc-start
to create, stop and
start a container

Client Server
interaction in
Warden to manage
containers

Uses Docker
daemon and a
client to manage
containers

Uses vzct1
to manage
container
lifecycle

Table 3.1: Container Implementation Comparison

[17][26][35][47]

Dua et al. [22] explores the use of containers in PaaS. This paper explores various

container implementations: Linux Containers, Docker, Warden Container, Imctfy and

OpenVZ. The parameters used for implementation differentiation were process handling,

file system and namespace isolation. Table 3.1 summarizes the outcomes of this paper

while they mention the following factors in choosing a right container technology:

i) Ecosystem for pre build containers

ii) Hardened layer for isolation of Process, Network, CPU and Filesystem

iii) Tools to manage lifecycle of a container

iv) Ability to migrate containers between hosts

v) Support for multiple operating systems and Kernels.

Like before, this paper further questions the use of containers inside a virtual machine

and encourages direct container deployment by using management tools like libvirt for

near native performance, containers can be seen as a part of IaaS layer rather than just

a PaaS service. The paper concludes with the claims of containers having an inherent

advantage over virtual machines because of their performance improvements and reduced

start up time. To add to the conclusion, all the commercial container products use the

same common Linux containment principles like chroot and namespaces be it Docker or

OpenVZ.

34

Xavier et al. [52] performs the comparative evaluation in terms of performance iso-

lation of Xen (Virtual machine) to various container implementations including Linux

VServer, Open VZ and Linux Containers (LXC). This paper concludes Xens performance

isolation is considerably better than other container implementations, it is only for CPU

isolation where Xens performance is not comparable to its container counterparts. An

another study [36] also concludes the same claims but considering the pace of innovation

in virtualization field, we note that these results may be dated as the experimental setup

used technologies dated back in 2009.

Chang et al. [19] performs the analysis of virtualized server and shared storage ac-

cessing performance with the estimation of consolidation ratio and TCO (Total cost of

ownership)/ROI (Return on Investment) in server virtualization. The setup implements

five heterogeneous virtualized cloud computing systems:

i) vSphere ESX/ESXi Server

ii) Hyper-V R2 Server

iii) Proxmox Virtual environment server

iv) KVM at Ubuntu Enterprise Server

v) Cent OS based Xen server

All these heterogeneous virtualized clouds use a shared storage system. They con-

ducted a series of three experiments with each focusing on virtual machine performance

isolation, Performance evaluation based on shared storage and estimation of consolida-

tion ratio and TCO/ROI. The paper concludes that virtual machine performance achieves

nearly the same level for all of the virtualized servers, but the estimation of virtual ma-

chine density and TCO/ROI totally differ among them. We may choose a virtualization

product such as ESX server if we need a scheme with the highest ROI and the lowest

TCO in server virtualization. Alternatively, Proxmox VE would be another best choice

if we like to save the initial investment at first and own a high-performed virtualized

infrastructure in server virtualization.

Morabito et al. [41] also presents an extensive comparison of traditional hypervisor

35

based virtualization and new lightweight solutions like containers. Several benchmarks

were evaluated with respect to parameters like processing speed, storage, memory and

network. This paper uses KVM, LXC, Docker and OSv for its evaluation. Paper con-

cludes for CPU performance, both container based solutions perform better than KVM.

Considering only the computation time, containers display performance almost similar

to the native environment. In terms of memory indexing, KVM introduced roughly 30

percent performance degradation. For disk I/O performance, the two container-based

platforms offer very similar performance in both cases, which are quite close to the na-

tive one. KVM write throughput is roughly a 3rd and read throughput almost a 5th of

the native one. For memory performance, KVM, Docker and LXC all reach performance

similar to the native execution. The performance of OSv is approximately half of the

others. For network I/O performance, using TCP, LXC and Docker, it achieves almost

equal performance compared to the native one, and KVM is 28.41% slower. OSv per-

forms better than KVM and it introduces a gap equal to 26.46% compared to the native

system. All platforms offer lower throughput with UDP (User Datagram Protocol). LXC

and Docker offer comparable performance between them (42.14% and 42.97% lower than

native); KVM overhead is the largest (54.35%). OSv ranks in the middle (46.88% worse

than native). The paper concludes on the performance of KVM being improved over past

couple of years with appropriate optimization’s. Disk I/O efficiency represents the only

bottleneck for some types of applications in case of KVM.

Moolenbrook et al. [48] argues that the two virtualization techniques: hardware level

and operating system level virtualization are extremes in a continuum and that boundaries

in between the extremes may combine the several properties of both. This paper proposes

a mid level abstraction to form a new virtualization boundary, where the virtualizing in-

frastructure provides object-based storage, page caching, mapping, memory management

and scheduling, whereas any higher level abstractions are implemented within each vir-

tual environment. The prime goal in this paper was to establish a new set of abstractions

implemented in the host system and exposed to the domains. Each domains system layer

36

may use those abstractions to construct an interface for its applications. As a supporting

infrastructure, the paper proposes exposing a number of micro kernel inspired abstrac-

tions: address spaces, threads of execution and IPC (Inter Process Communication). The

paper further claims their prototype to be better in terms of flexibility and security as it

imposes no internal structure on the system layers on either side of virtualization bound-

ary and manages proper resource accounting and isolation. The initial prototype is built

on the MINIX 3 micro-kernel operating system. A virtualization boundary was drawn

between the system services such that the host system consists of the micro kernel, the

virtual machine and SCHED services, the lower three Loris layers and all hardware driver

services. Each domain has a system layer consisting of a private instance of PM, VFS, the

Loris naming layers and any of the other POSIX (Portable Operating System Interface)

services as needed by its applications. The user application layer of the domain consists

of a copy of the init user process and any actual application processes. To conclude the

paper, the research work towards this new virtualization technology is still fresh and the

prototype has not been tuned / optimized for low level performance thus cannot be taken

into consideration by data center operators.

Li et al. [34] presents a brief comparison of virtualization technologies from a high

availability perspective. The following parameters were considered vital from a high

availability characteristics of virtualization:

i) the ability to retrieve and save the state of a virtual machines

ii) the ability to perform virtual machine live migration with continuous failure detec-

tion

iii) automatic state synchronization between the active and standby

iv) recovery management by dynamically failing over to the standby when a failure is

detected and terminating the active

In this paper, series of experiments were carried on virtual machines and containers,

rising to a conclusion: HA (High Availability) /FT (Fault Tolerance) solutions already

exist in hypervisor based platforms and are commonly achieved by fail over clustering.

37

However, these solutions have limitations, e.g., either on SMP (Symmetric Multiprocess-

ing) support or on guest OS. On the other hand, in container-based platforms, there are

large amount of missing pieces. In particular, the checkpoint/restore features in container-

based environments are far from complete. Despite the efforts of clustering containers,

there is no mature feature available for continuous monitoring to detect failure of the

container and automatic fail over management, which are mandatory for a complete high

availability solution. Furthermore, future optimization’s such as using compression tech-

niques like qzip, bzip2 and rar to reduce the data volume from source to destination

thereby speeding up the migration process is also proposed. The conclusion clearly drives

and proposes the use of virtual machines in a high availability requirement and according

to the author, containers are still under maturation and would need some time to cope

up with the high availability demand.

Antunes et al. [18] focuses on the use of jail environments, provided by the FreeBSD

operating System, which present a relevant set of features that can enhance the perfor-

mance. A set of data collection tests that allows measuring the degree of optimization

obtainable in current models of cloud computing, based on the use of hypervisors tests is

also presented. Two different sets of tests were developed, the first focused on the con-

sumption of resources required by each of the respective solutions and applications, while

the second set aimed at obtaining access times to resources available for each of these

applications. For tests of consumption, the focus was on consumption of CPU, RAM and

disk space required for installing the environment and respective applications were also

evaluated. Along with this, start up time and availability of services was also measured

using system tools like top and du. The access to resource tests were divided into 3 test

groups for 3 different protocols SSH, HTTP & NetBIOS, each protocol was further tested

in 4 different scenarios. Each test was performed 20 times and these tests aimed at deter-

mining ability of each environment to provide access to resources. It was noted that with

the use of ambient jail these resources are mainly channeled to the service and the number

of instances has a negligible impact on the computer system. Also the resources required

38

to launch a jail environment are insignificant when compared with the requisites needed

to launch a virtualized environment. Jails were more effective than the virtual machines,

having a minimum release time accompanied by an irrelevant hardware consumption that

does not interfere with performance of the equipment. During data access performance

test, it was evident that the number of virtual machine instances negatively influences the

overall performance of virtualized systems, being a limiting factor for the scalability of the

solution. With jail environment, the impact was greatly reduced, reinforcing the concept

of using jail environments in high availability solutions based on open sources services. To

conclude, the paper states that the use of virtualized environments translates into a loss of

performance against the base machine, which tends to worsen with the increasing number

of instances running. A similar trend was observed in the consumption of hardware re-

sources required by the running instances. It can also be stated that the performance of a

virtualized system will suffer a loss of performance greater than 50%, and that the number

of virtualized instances running, negatively influences the performance of the computer

system and can easily compromise the viability of the solution. As opposite, it is observed

that when using jails environments, there is no performance influence to the system, and

in certain cases, it even increases the performance of the solution. It was also observed

that the number of instances of jail environments does not influence the computer system

negatively, allowing flexibility of high availability solutions.

3.2 Virtual Machine Migration

Migration of resources and processes from one host to another is very vital for effective

cloud management platform. Provisioning and load balancing are the pillars of SLAs laid

down by a cloud provider. This sections explains the state of art related to all virtual

machine migration followed by container/application migration. The aim of this section is

to lay down methodologies and current technologies being used in this domain and finding

a combined optimal study of the overheads involved in both the virtualization techniques.

39

Clark et al. [20] introduces a writable working set, the paper uses Xen hypervisor

to demonstrate virtual machine migration. The author targets migration of active OSes

hosting live services. As described before, pre copy approach of migration is used for

migration, the migration is examined with respect to two vital parameters:

i) downtime

ii) total migration time

This paper also introduces mechanism of pure stop and copy and pure demand mi-

gration. Author also lays down issues in migrating local dependencies e.g. In a cluster

environment, network interfaces of the source and destination machines typically reside on

single switched LAN. Also generating an unsolicited ARP (Address Resolution Protocol)

reply from migrated host, adverting the IP has been moved to a new location is considered

as an overhead. The author also lays down few implementation issues such as inconsis-

tency in shadow page tables and irregularity in check pointing in case of self-migration.

In the end, the paper concludes that realistic server workload such as SPECweb99 can

be migrated with 210ms downtime while the Quake 3 game server is migrated with an

imperceptible 60ms outage. However, the paper ignores WAN (Wide Area Network) mi-

gration and environments that cannot rely completely on network shared storage. The

paper also questions the iteration level in pre copy phase i.e. the pages that are modified

often (writable working set) and concludes the algorithm purely relying on heuristics.

Mishra et al. [40] describes virtual machine migration as the transferring of whole state

in order to enable maintenance and load balancing. The paper emphasizes on identifying

the virtual machine type and managed resource allocation rather than using good old bin

packaging approach but for workloads like a web application, finding an initial resource

pool is usually hard as predicting traffic density and pattern is non trivial. The paper

further points out various migration schemes like suspend and copy, pre copy and post

copy. The paper also details each process with respect to the context.

Nelson et al. [42] describes a migration system named vMotion, a VMware product.

The paper lays down three kind of states that are mandatory during migration:

40

i) Virtual device state. E.g. CPU, Motherboard, networking, storage adapters, graphic

adapters etc

ii) External connections with devices including networks, USB devices and CD ROMS

iii) Virtual machines physical memory

For networking, VMware ESX Server architecture provides a VNIC (Virtual Network

Interface Card), it has a MAC address that uniquely identifies it on local network. Each

VNIC is associated with one or more physical NICs (Network Interface Cards) managed

by virtual machine kernel, as each VNIC has its own MAC address that is independent of

physical NICs MAC address, the mobility is easy. For storage, it relies on SAN (Storage

Area Network) or NAS (Network Attached Storage) to allow us to migrate connections

to SCSI devices. Paper assumes that all physical machines involved in migration are

attached to the same SAN or NAS server. The author acknowledges, physical memory as

largest piece of state that needs to be migrated, also a level of indirection is introduced

to iteratively pre copy the memory while virtual machine continues to run on source

machine. During migration, before each page is copied, it is marked as read only so

that any modifications can be deduced by virtual machines manager. This process is

repeated till the number of modified pages is small enough or there is insufficient forward

progress. According to current VMware product, it terminates the pre copy phase when

there are less than 16 Mbs of modified pages left and there is a reduction in changed

pages of less than 1 Mb. This paper focuses on calculating the time required to migrate

a virtual machine and the time period during which virtual machine is unavailable. The

total downtime was less than one second for all the workloads except memtest86 as it rose

minimally with increasing memory sizes. memtest86 was a pathological case where all the

memory was modified during the pre-copy so that the virtual machine downtime equals

the time necessary to send the virtual machines entire memory. End to end time strictly

depends on the size of the virtual machines memory, and confirms the need to keep the

virtual machine running during most of this time. With pre-copying, the virtual machine

continues to run while memory is being transferred to the destination. The number of

41

pre-copy iterations required to migrate each workload was small. All workloads except for

memtest86 took 1 or 2 rounds before the number of modified pages was small enough to

terminate the pre copy. It took 2 or 3 rounds before the pre-copy was aborted because of

lack of progress for memtest86. To conclude, the results differ from nature of workloads

and the measurements point out that virtual machine normally experiences less than one

second of down time. Also, the end-to-end time of the migration and the impact on

other virtual machines running on the machine involved in migration can be controlled

by proper management of CPU resources.

Clark et al. [21] also broadens the pre copy approach and focuses on iterative page

transfer. This paper further claims that the size of virtual machine directly influences the

total transfer time.

Wu, Zhao et al. [51] measures the performance of live virtual machine migration

under different level of resource availability. This paper focuses on deducing performance

measurements like downtime and total migration time. This paper considers only CPU

usage of virtual machine migration and the modeling of migration performance under

different CPU allocations on source and destination. The fundamental goal in this paper

is to build a performance model for live virtual machine migration which can accurately

estimate the migration time based on resource allocation. The paper also models the

relationship between resource allocation and migration time by profiling the migration

of virtual machines running different types of resource intensive benchmarks. Xen was

used to perform all the experiments with a DomU (Domain Unprivileged) virtual machine

running different resource intensive applications while Dom0 (Domain Zero) was allocated

different CPU shares for processing the migration. The results from the experiment

showed that the virtual machine migration time is substantially impacted by Dom0s

CPU allocation whereas the performance model can accurately capture the relationship

with the coefficient of determination generally higher than 90%. The paper concludes

with Table 3.2 which shows the difference between the predicted and measured migration

times was typically within a few seconds. The prediction accuracy proved to be vital

42

VM Average Median
CPU-Intensive 1.58 1.74
Memory read intensive 7.63 3.33
Memory write intensive 9.25 6.79
Disk I/O intensive 4.01 2.97
Network send intensive 3.53 3.16
Network receive intensive 4.94 2.43

Table 3.2: Model Prediction Error

for migrating a CPU intensive virtual machine, the prediction error was higher when the

CPU allocation to Dom0 is low for migrating a memory, disk or network intensive virtual

machine. It also concludes that when Dom0 is under heavier contention from the DomU

activities, its behavior becomes less predictable.

He, Guo et al. [28] preferred freezing and transferring of the state rather than using

other methods. The paper points out resource management as cumbersome because of

guest operating system using considerable amount of cloud resources. Further, author

also points out the need of an approach for better resource provisioning and management

in hybrid cloud environment.

Zhao et al. [53] implements a simple model that decreases the migration time of

virtual machines by shared storage and fulfills zero downtime of relocation of virtual

machines by transforming them as Red hat cluster services. It also proposes a distributed

load balancing algorithm COMPARE AND BALANCE based on sampling to reach

an equilibrium solution. The paper uses OpenVZ and evaluates the live migration time

of virtual machine and the convergence. In the experiment, EUCALYPTUS provides

support for VLAN across multiple physical hosts via VDE (Virtual Distributed Ethernet)

virtual switches and there is a VDE switch on each physical host. In the implementation,

the physical host on which algorithm is running randomly uses the loads of other physical

hosts that have been stored on shared storage periodically. Computation executed at each

physical host should not cost too many local resources. Physical hosts may also join the

cloud because of scalability and depart from it because of invalidation, so simplicity and

statelessness are necessary to the algorithm. During evaluation, for migration time, the

43

data pointed out that the average time of live migration is smallest in a scenario where

the whole data of a virtual machine is not considered for copying, all it does is to sum

the contents of a VE to a file on shared storage and restoring it via the file on the target

host. The worst migration time occurs when there is a direct operation of data on the

shared storage and the process includes a lot of locking operations and synchronization

cost. For convergence, during the running process of system, each host logs the processor

usage every minute on the shared storage and the algorithm executes once every twenty

minutes. It then uses the standard deviation of average processor usage of all hosts

in past twenty minutes as a measure of the balance of the system. If the number of

system hosts were very large, it would select some hosts uniformly at random and then

compute the standard deviation of the random variable. The paper concludes that the

COMPARE AND BALANCE algorithm converges very fast, but the migration time

for an OpenVZ virtual machine was still high.

Milojii et al. [38] prefers process migration to state migration as only current running

process is involved in migration. The paper further describes process migration a step

forward towards application migration. Process migration needs continuous monitoring

of memory pages and copying them iteratively creates an overhead.

Kalim et al. [31] focuses on virtual machine migration across subnets as it proposes a

challenge for the purpose of load balancing, moving computation close to data sources or

connectivity recovery during natural disasters. The paper points out that conventional

approaches use methods like tunneling, routing and layer 2 expansion methods to extend

the network to geographically disparate locations, thereby transforming the problem of

migration between subnets to migration within a subnet, further increasing complexity

and involves human intervention. This paper enables virtual machine migration across

subnets with uninterrupted network connectivity. The author proposes decoupling IP ad-

dress from the notion of transport endpoints as the key for solving problems like mobility.

The mechanics involved in such an approach can be defined into following processes:

i) Connection setup: 3 way handshake

44

ii) Suspension

iii) Resumption

iv) Synchronization: SYN message validation occurs

v) Continued Operation

The paper further evaluates the proposed approach with the existing available solu-

tions and presents a case study in terms of following sub characteristics a) Layer 3 vs

Layer 2 Migration b) Downtime and Latency c) Virtual machines coupling with previous

state d) Correctness e) Pause and copy migration f) Backward compatibility g) Deploy-

ment h) Compatibility with live migration i) Middle boxes and TCP Options j) Network

performance and scalability and k) Security considerations. The paper finally concludes

that the use of IP addresses as part of flow labels –to identify the transport connection

–overloads the notion of network naming and that this is the fundamental reason that

inhibits a clean approach for virtual machine migration beyond a subnet. It suggests that

decoupling the transport end point naming from IP addresses is not only possible, but is

also efficient.

Fischer et al. [25] provides an analysis of the potential failures of services running

within virtual machines and how virtual machine migration or replication can be used

to address these failures. It further addresses the problem of re-establishing connectivity

between a service and its clients upon successful migration, by leveraging results from

mobility specially focused on WAN migration. The paper lays down potential issues for

virtual machine migration across WAN as the bandwidth between source and destination

site is severely limited in comparison to a local connection and with the new location of

the virtual machine, the implication of different addresses at the new location, the routing

of network traffic for the virtual machine has to be adapted –i.e. a network recovery has

to be performed. The author points at the result of wide area migration may result

into a mobility problem which may further render the service unreachable unless network

recovery is performed. The paper further explains techniques like Indirection where at

the application layer, the traffic is forwarded to virtual machine upon successful migration

45

via an application layer proxy remaining at the source network. Second approach at layer

3 is knows as MIP (Mobile IP) that leverages IP mobility. Another approach pointed out

was hiding the virtual machine behind a NAT (Network Address Translation) router. The

paper points the drawback of using these techniques as the indirection point must remain

available in the upcoming communication. The problem can be alleviated by giving DNS

record of a server running within the virtual machine a short TTL (Time to Live). After

the particular time, all new requests to the virtual machine should arrive at the new

location of the virtual machine, there are certain drawbacks in this approach as there are

still clients which are connected to the old location and considering the TTL to be short,

the DNS cache can still persist longer in several locations in the network. The paper

further implements two variants of network recovery after WAN migration

i) Link Tunneling: A tunnel between the original access router of a service and its

new location is created. To facilitate the migration, several steps have to be performed.

First, an additional virtual bridge, named sshbr, is created on destination host. Next,

a link layer tunnel is created between virtual machine br1 on the access router and the

created sshbr. Using this bridged approach, all network traffic can be transparently

redirected to the virtual machine. This is verified by the client, who accesses the virtual

machine during migration.

ii) SIP (Session Initiation Protocol) Signaling: In this approach, the author uses

SIP Specific Event Notification (RFC 3265). The SIP server acts as a publish/subscribe

system where server mobility events are propagated. Each UA (User Agent) which has

subscribed to that kind of event receives a notification when such an event occurs.

For the implementation, the experiment uses the SIP stack in the Python programming

language. The paper concludes by analyzing the respective advantages and disadvantages

of the mentioned approaches. The link tunneling approach keeps the network configura-

tion of the virtual machine unchanged. This is in particular beneficial for legacy services

that cannot be changed to take topological mobility into account. However, the approach

requires access to the access router of the virtual machine at its original location. This

46

can be a problem if the access router is affected by the network challenge itself (e.g. in the

case of a natural disaster). In contrast, the SIP signaling approach indicates how network

recovery on the application layer can mask an IP address change. This is beneficial, as

traffic is routed more directly, and does not require a cooperative access router. However,

the migration is not transparent to the application anymore. Both approaches achieve a

downtime below one second –which is significantly better than no action and should be

acceptable for most services.

Considering the WAN migration, Wood et al. [49] states that virtual machine migra-

tion in WAN gets complicated when the size of the virtual machine exceeds 50 GBs, the

paper also points out I/O processing as a bottleneck during virtual machine migration.

Jin et al. [30] presents the design and implementation of a novel memory compression

based virtual machine migration approach (MECOM) that first uses memory compression

to provide fast, stable virtual machine migration, while guaranteeing the virtual machine

services to be slightly affected. Based on memory page characteristics, the paper intro-

duces an adaptive zero aware compression algorithm for balancing the performance and

the cost of virtual machine migration. The paper first exploits memory compression tech-

nique to minimize the downtime and total migration time during live migration and also

analyses memory page characteristics. It uses adaptive memory compression approach

to tune migration performance of virtual machines. The author states compression as a

significant factor in improving the performance of live migration as it indirectly augments

network bandwidth for migration. Compressed dirty pages take shorter time to fly on the

network. Also the network traffic drops dramatically when less amount of data is trans-

ferred between source and target nodes. The compression algorithm introduced needs to

be lossless as the compressed data requires to be exactly reconstructed and the overhead

of memory compression should be as small as possible so that it does not affect the live

migration. The CBC (Characteristics based Compression) algorithm introduced in the

paper uses multithreading techniques to parallelize compression tasks and the number of

threads is tuned to provide best performance. All the experiments performed are based

47

on Xen 3.1.0, the paper concludes that by using the described system, the process can

get a better average performance than Xen: up to 27% on virtual machine downtime, up

to 32% on total migration time and up to 68.8% data cut down that must be transferred.

Ibrahim et al. [29] states that continuous page monitoring for modification causes an

increase in transitional look aside buffer (TLD) flusher and soft page faults on write oper-

ation which further affects the performance of the application. Furthermore, continuous

copying of pages to I/O buffer may rise to memory contention. In fault tolerant scenarios,

process migration is not considered a viable option.

Laadan and Nich et al. [32] underlined the process isolation of container type vir-

tualization as a reason for application independence. i.e. running same applications of

different versions on same physical machine. The paper further explains private virtual

namespace which is primarily responsible for achieving isolation.

Mirkin et al. [39] presents the check pointing and restart feature for containers in

OpenVZ. This feature allows one to checkpoint the state of a running container and restart

it later on the same or a different host, in a way transparent for running applications and

network connections. Check pointing and restart are implemented as a loadable kernel

modules in addition to a set of user space utilities. Since a container is an isolated entity,

its complete state can be saved into a disk file-the procedure known as check pointing.

The same container can then be restarted back from that file. Check point and restart

also make it possible to move a running container from one server to another without a

reboot. The author describes the check pointing in containers as a three stage process:

i) Freeze process: Move processes to previously known state and disable network

ii) Dumping: Collect and save the complete state of all the containers processes and

the container itself to a dump file

iii) Stop the container: Killing all the processes and unmount containers file system

Like checkpointing, author also describes restart procedure being vice versa of check

pointing:

i) Restarting the container: Creating a container with same state as previously saved

48

in dump file

ii) Restart process: Creating all the processes inside the container in frozen state, and

restore all of the dependent resources from the dump file

iii) Resume the container: Resuming processes execution and enable the network.

Post this process, the container continues its normal execution. Paper states that

by using check pointing and restart feature, the live migration process becomes easier,

it implements a simple algorithm that has no external dependency on any additional

hardware like SAN. The algorithm can be summarized in a process flow as:

i) Containers file system synchronization: Transferring containers file system to desti-

nation server using rsync utility

ii) Freezing the container: Freezing all processes and disabling networking

iii) Dump the container: Collecting all resources and saving them to a file on disk

iv) Second containers file system synchronization: During the first synchronization, a

container is still running, so some files on the destination server can become outdated. So

second synchronization should be performed only post container freezing

v) Copy the dump file: Transfer the dump file to the destination server

vi) Restart the container on the destination server: Create a container on the desti-

nation server and creating processes as saved in dump file

vii) Resume the container: Resuming containers execution on destination

viii) Stopping the container on the source server: Killing the containers processes and

unmounting its file system

ix) Destroying the container on source server: Removing containers file system and

config files on source server

The paper further identifies stages iii-vi responsible for the most delay in service,

the experiments also point out that second file system sync time and dump file copying

time are responsible for about 95% of all the delay in service. The paper further lays

down possible optimization’s for this problem as i) Second file system sync optimization:

Decreasing the number of data being compared during the second sync ii) Decreasing

49

the size of a dump file by using either lazy migration or iterative migration. The paper

concludes by using check pointing and restore optimization’s, a considerable decrease in

the delay of a service has been achieved.

Romero and Hacker et al. [44] also use Open VZ to explain the three step process of

live migration:

i) Container suspension followed by memory dumping

ii) The dumped memory is copied to destination host

iii) The migrated container is resumed and source container is shut down followed by

memory cleansing

The paper also compares live migration approaches for parallel applications and con-

cludes by using optimization’s like check pointing can affect the application performance,

contrasting to the view of Mirkin [39]. Various literature’s are available which implement

check pointing for efficient application portability. E.g. The Condor Project [2] and CRIU

[3]. The CRIU check pointing method is also explained in Chapter 6.

Hadley et al. [27] presents Multi-Box, a lightweight container technology that facil-

itates flexible vendor-independent migration. The framework introduced in the paper

defines workload fluidity as the capability to migrate one or more applications from one

CSP (Cloud Service Provider) to another at short notice with little or no human interven-

tion. The paper introduces a method of achieving workload fluidity by utilizing extremely

lightweight containers based on control groups (cgroups). The author describes Multibox

container as a versatile execution environment supporting various processes, which are

unaware of the remainder of the system. By using cgroups, a container is created as a

namespace within the host to isolate its own processes, system, network devices and the

file system. Multibox containers are managed by a container manager that creates the

namespace, routes network traffic to the host and its containers and allocates resources

to the container to support running applications. It also facilitates user interaction with

the namespace. During implementation, kernel support is needed to run control groups

within a virtual machine. The lightweight cgroups package provides this functionality

50

that can be compiled into a standard 3.x kernel. To facilitate easy deployments, the

author compiled Kernel 3.14.22 with support for control groups. The support for para

virtualised environments is enabled to ensure compatibility with a larger number of CSPs.

The built kernel was compiled into an RPM package to enable easy installation on RedHat

Linux systems such as those running RHEL and CentOS. The container manager is also

implemented as an init script supporting the commands like prep, create, boot, it sync

and resync. The Multibox work flow can be explained as shown in figure 3.1. The paper

evaluates its framework in terms of migration of stateful and stateless applications. In the

case of stateful application, a client connected to the game server was able to reconnect

within a few seconds without changes to the connection settings or the game’s state. In

the case of the stateless application, a client browsing the hosted website did not notice

any interruption. The paper concludes that the performance overhead of deploying within

a lightweight container is 4.90% of the resources available to an average virtual machine

and downtime during a migration is less than the time needed to scale a server using

provider-centric tools. The author finally remarks MultiBox containers of great advan-

tage as they are transferable to any CSP infrastructure that supports any Linux variant.

Meaning no more CSP cooperation is required, which is a ground breaking advancement

in the area of cross-cloud computing. Furthermore, MultiBox containers are lightweight

by design and migrating them is significantly more resource efficient than other cloud

workload migration approaches.

Wood et al. [50] points out in all current implementations, detecting a workload and

initiating a migration is handled manually, this paper introduces automated Black box

and Gray box strategies for virtual machine migration in large data centers. Black box

technique automates the task of monitoring system resource usage, hotspot detection,

determining a new mapping and initiating necessary migrations. All these necessary deci-

sions are made entirely based on observing each virtual machine from outside and without

any knowledge of application resident within each virtual machine. On the other hand,

gray box technique assumes access to small amount of operating system level statistics in

51

Figure 3.1: The MultiBox work flow.

addition to external observation to better optimize the migration algorithm. This paper

introduces Sandpiper which implements a hotspot algorithm that determines when to

migrate a virtual machine and a hotspot mitigation algorithm that determines what and

where to migrate and how much to allocate after the migration. The detection component

employs a monitoring and profiling engine that gathers usage statistics on various virtual

and physical servers and constructs profiles of resource usage. Upon detection, Sandpipers

migration manager is invoked for hotspot mitigation. The migration manager employs

provisioning techniques to determine the resource needs of overloaded virtual machines

and uses a greedy algorithm to determine a sequence of moves or swaps to migrate over-

loaded virtual machines to under loaded servers. Results point out that Sandpiper can

alleviate single server hotspots in less than 20s and more complex multi-server hotspots in

few minutes. Results show that Sandpiper imposes negligible overheads and that gray-box

52

statistics enable Sandpiper to make better migration decisions when alleviating memory

hotspots. Sandpiper runs a component called the nucleus on physical server; the nucleus

runs inside a special virtual server and is responsible for gathering resource usage statis-

tics on that server. It also employs a monitoring engine that gathers processor, network

interface and memory swap statistics for each virtual server. For gray-box approaches, it

implements a daemon within each virtual server to gather OS-level statistics and appli-

cation logs. The nuclei periodically relay these statistics to the Sandpiper control plane.

The control plane runs on a distinguished node and implements much of the intelligence

in Sandpiper. It comprises three components: a profiling engine, a hotspot detector and

migration manager. The monitoring engine is responsible for tracking the processor, net-

work and memory usage of each virtual server. It also tracks the total resource usage on

each physical server by aggregating the usages of resident virtual machines. It maintains

a usage history for each server, which is then used to compute a profile for each virtual

and physical server. Three black box profiles are introduced on per virtual server basis:

CPU utilization, network bandwidth utilization and swap rate. To ensure that a small

transient spike does not trigger needless migration, a hotspot is flagged only if thresholds

or SLAs are exceeded for a sustained time. Sandpiper employs a time series prediction

technique to predict future values and uses Xen to implement it. In short, Blackbox is

responsible for estimating peak CPU, memory and network bandwidth needs while Gray

box is responsible for peak CPU & network needs. The migration process can be explained

in following phases:

i) Hotspot Mitigation: Once a hotspot has been detected and new allocations have been

determined for overloaded virtual machines, the migration manager invokes its hotspot

mitigation algorithm. This algorithm determines which virtual servers to migrate and

where in order to dissipate the hotspot

ii) Capturing multi-dimensional loads: Involves calculating volume of a virtual machine

iii) Migration Phase: Involves querying the physical machine with high volume servers

and moving the machines with least volume where the VSR (Volume to Size Ratio) is sat-

53

isfied, the algorithm prepares a list of overloaded virtual machines and a new destination

server for each

iv) Swap Phase: Deals with the situation when there are not sufficient idle resources

on less loaded server. Algorithm exchanges a high VSR virtual machine from a loaded

server with one or more low VSR virtual machines from an under loaded server

The Sandpiper nucleus is a Python application that extends the XenMon CPU mon-

itor to acquire network and memory statistics for each virtual machine. The monitoring

engine in the nucleus collects and reports measurements once every 10 seconds –the de-

fault measurement interval. The nucleus uses Xens Python management API to trigger

migrations and adjust resource allocations as directed by the control plane. While black-

box monitoring only requires access to domain 0 events, gray—box monitoring employs

two additional components: A Linux OS daemon and an Apache module. The paper

concludes that Sandpiper is able to resolve single server hotspots within 20 seconds and

scales well to larger data center environments thereby proving a breakthrough in dynamic

migration across various data centers.

54

Chapter 4

Density

In the previous chapter, we summarized the state of art for virtualization technology,

including all modern and legacy virtualization techniques. In this chapter, we will de-

scribe the design, implementation and evaluation of virtual machines and containers by

considering density as a parameter and taking into account their performances in terms of

scalability. This chapter further gives us a brief description of our approach and motiva-

tions behind the architecture design, benchmark characteristics and configurations. The

later section evaluates the density for both virtual machines and containers, and deduces

a conclusion based on their respective performances under same test conditions.

4.1 Introduction

In terms of virtualization, density can be referred as the total number of virtual ma-

chines or containers that can be run on an underlying host. In recent times, one of the

primary parameters of a virtualization technology is the virtual CPU to physical CPU

ratio. VMWare for example puts forward the notion that total TCO of virtualization

technology must consider virtual machine density. The general measure in this context

is: The more virtual machines per physical server, the better. Virtual machine density

directly influences the IT efficiency whether you measure it in terms of cost/application or

55

cost/user. Another aspect of density is that the management cost increases linearly with

respect to density, which further results in decrease of efficiency. Such increase in density

results in higher management cost because of increase in complexity imposed by increase

in the number of virtual machines and containers especially at the network layer. DHCP

(Dynamic Host Configuration Protocol), DNS etc. are all impacted and not necessarily

favorably by the increase in density.

One of the important objective of achieving high density is achieving it without af-

fecting the performance of other guests already running on the same physical host. A

data center operator benefits only if the guest technology is scalable, does not impact

peer guest performances and is easy to manage. As a result, it is vital to analyse how the

increase in number of guests affects the performance of other guests running on the same

physical infrastructure.

This chapter quantifies the deterioration of performance for containers and virtual

machines by running them simultaneously on the same physical host. Running more

guests simultaneously causes a lot of resource contention and swapping among the guests

running on the same physical host. In order to avoid high overheads, an optimal trade off

should be maintained between density and complexity. To analyse the impact of density

among the peers we measure the performance in terms of:

i) CPU Performance

ii) File I/O Performance

iii) MySQL Server Performance

We gather these performance parameters as we simultaneously increase the number

of guests per host. All guests run the same workload under same configurations to avoid

any ambiguities. We use this methodology based on the need of spinning up multiple

instances of an application at a particular site during a data center outage.

56

4.2 Benchmarking

Sysbench [5] is a modular cross platform and multithreaded benchmark tool for evaluating

operating system parameters that are vital for a system running database related intensive

loads. Sysbench currently provides features that help us to measure the following system

parameters:

• File I/O performance

• Scheduler performance

• Memory allocation and transfer speed

• POSIX threads implementation performance

• Database server performance

For our experiments, we will perform the CPU stress testing which in our case per-

forms an intensive prime number calculation. All calculations are performed using 64

bit integers. Each thread executes the requests concurrently until the total number of

requests or total execution time exceeds the limit as specified in the run command.

Secondly, we will use the file I/O test mode, which is used to produce various kinds

of I/O workloads. The test consists of two stages:

i) Prepare: At this stage, sysbench creates dummy test files with a specified size. It

is very vital to ensure size of test files should always be higher than the RAM of the test

machine, in order to avoid memory caching affecting our result sets.

ii) Run: During this stage, test execution initiates with respect to the number of

threads specified. Each thread performs specified I/O operations on the set of files.

Several I/O operations are supported such as seqwr (sequential write), rndrd (random

read), rndrw(random read/write) etc.

Lastly, we use the oltp test mode, which is used to benchmark a real database server

performance. The motivation behind using this test scenario is that majority of the guests

57

running in a modern data center facility are usually used to host heavy databases such as

MySQL and Cassandra. Just like file I/O test mode, this test also has two stages:

i) Prepare: In this phase, we create a test table after MySQL installation with a

specified number of rows

ii) Run: During this stage, we simply execute the test by explicitly specifying param-

eters such as mode, time, request filtering etc

For all our experiments, we will be using sysbench version 0.4.12.

4.3 Experimental Setup and Configuration

Table 4.1 lists the configuration of the machine on which all our experiments were per-

formed.

4.4 Technologies

With respect to our experiment, choosing an appropriate guest technology was vital.

Considering all our experiments were performed on a host running Linux operating system,

it was relevant to choose a virtualization product that natively supports Linux operating

system and mimics its underlying architecture as well. For virtual machines, we use KVM

(Kernel Virtual Machine) with QEMU (Quick Emulator) and libvirt while for containers

we use Docker which is implemented using Linux features such a cgroups and namespaces.

4.4.1 KVM,QEMU & LIBVIRT

For virtual machines, hypervisor serves as the core of virtualization, in case of our ex-

periment, QEMU and KVM both act as a hypervisor. Since QEMUs performance tends

to get slower in case of systems that lack hardware virtualization, KVM thereby helps

QEMU to access hardware virtualization features efficiently on different architectures by

adding an accelerating feature. KVM is a Linux kernel module, that enables the mapping

58

CPU Name Intel (R) Core (TM) i7-4770 CPU@3.40 GHz

Type
Hyper

Threaded Processor
Architecture X86-64

Cores
per socket

4

Threads
per core

2

Total
number of CPUs

8

Machine
Name

Dell-Optiplex
9020

RAM
8

GB
Operating

System type
64
bit

HDD
Capacity

500
GB

Disk
Type & RPM

ATA - 5400

Model
Number

ST500LM000-1EJ162

Host
Operating System

Linux
16.04

Guest
Operating System

Linux
14.04.4

Kernel
Version

4.4.0-28-generic

Table 4.1: System Configuration

59

of physical CPU to virtual CPU. This mapping provides the hardware acceleration of

virtual machines and boosts its performance. In our case, QEMU uses this accelerating

agent when we set the virttype feature as KVM. When used together, QEMU behaves like

a hypervisor and KVM as an accelerating agent. We also use libvirt which is a virtual-

ization management library that manages both KVM & QEMU. Libvirt consist of three

utilities:

i) API library

ii) Daemon (libvirtd)

iii) Command line tool (-virsh)

To minimize the performance overhead, modern processors support virtualization ex-

tensions e.g. Intels VT–X. Using such technologies, a slice of physical CPU can be directly

mapped to the virtual CPU. Hence the instructions meant for virtual CPU can be directly

executed by physical CPU slice therefore improving the execution speed. If server CPU

does not support such virtualization extensions, then the hypervisor is responsible for

executing the virtual CPU instructions using translation. QEMU uses TCG (Tiny Code

Generator) to optimally translate and execute the virtual CPU instructions on physical

CPU. Also, KVM only runs on x86 CPU architectures. The kernel component of KVM is

included in all mainline Linux distributions while we use the following versions of packages

for our experiments:

QEMU Version: 2.7.0

libvirt Version: 2.1.0

The configurations of our guest virtual machines are as under:

RAM allocated: 1024 MB

CPUs allocated: 1 out of 8 available

HDD space allocated: 25 GB

60

4.4.2 Docker

As explained already in chapter 2, we use Docker for performing all experiments with

containers. We will be using Docker version 1.12.0 for all our tests. We choose Docker

over all other container products because it is built on top of LXC (Linux Containers)

and provides a clean, manageable and portable form of containerization. Due to the darn

popularity of Docker over the last couple of years, it is now almost used by every large

IT infrastructure organization, so evaluating a technology of today would further add a

value to our final analysis.

4.5 Test Parameters

To evaluate the density of both virtual machines and containers, we evaluate the following

parameters to establish a fair comparison between the two. All the specified experiments

were performed 10 times to avoid any errors in the experimental numbers. All values were

averaged for the resultant evaluation. Further graphs for 12 or more running containers

are also plotted along with the evaluation graphs only to analyse the performance trend

individually and has no role in direct comparison to that of virtual machines.

4.5.1 CPU Performance

We measure the CPU performance of virtual machines and docker containers with the

configuration as depicted previously. The benchmark runs a single thread to calculate the

specified prime numbers. The test verifies the prime numbers by dividing the numbers

with sequentially increasing numbers and verifying the remainder for zero value. In our

current analysis, we calculate 30000 prime numbers and the test scenario remains same

in all the cases. The test is initially done on a native Linux host with no guest technol-

ogy running. The same test is repeated on a virtual machine followed by incrementally

increasing the number of virtual machines up to 8 on the same physical host. The scaling

61

quotient of our experiment was restricted to 8 virtual machines and 12 Docker containers.

By incrementing the number of guests, we measure the total time required by each guest

to perform the operation. With total time, we also evaluate the per request statistics

of the running guests such as minimum, average and maximum time required to process

a single request. The thread fairness is also considered as a parameter for evaluation.

In our iterations for both virtual machines and containers we use a single thread for all

our calculations. A test image file was created with all the configurations and desired

dependencies installed [6].

Evaluation and Results

The CPU performance of virtual machines and containers primarily depend upon the

following two parameters:

i) Total time required to finish a particular task

ii) Per request statistics of the process where we evaluate the minimum, maximum,

average and 95 percentile of the time required to process a single request

We plot the graphs with respect to the native performance and virtual machine per-

formance (increasing the numbers incrementally) as well as native and Docker container

performance separately. Since the calculation of prime numbers in both the cases is same

(i.e. 30000). The total time required therefore directly depends upon the availability of

CPU to the process. By incrementing the number of guests on the underlying host we

find a pattern in terms of process time.

As we can clearly infer from figure 4.1, the time required to finish the process on a

native Linux machine was timed around 35.94 seconds. As far as the virtual machines

are concerned, the performance of CPU deteriorates slowly as we incrementally increase

the number of guests. The delay is still not very high considering the number of guests

running, we can still observe an increase of around 7.06 seconds when running a single

instance to running 8 guests simultaneously. In case of containers, the performance is

comparable to its counterpart. For 8 running containers, the process takes 42.05 seconds

62

Figure 4.1: Total Processing Time.

to finish which is approximately equal to the performance delivered by virtual machines.

In case of per request statistics, we evaluate the performance of virtual machines and

containers with respect to table 4.2 to establish a clear performance degradation trend

between the two.

As seen from figure 4.2 & 4.3, the minimum and average time required to process a

request is fairly same in both virtual machines and containers i.e. clocked at 3.67 ms and

4.45 ms for 8 active running guests. The 95 percentile value also suggests towards the fact

of the performance being nearly same. The only parameter that differs between the two is

the maximum time, there is a significant performance boost in case of Docker, where the

time required is almost half of what is required in Linux virtual machine, this particular

parameter may not contribute to the overall aspect of the performance but in case of

63

Minimum
Time

3.58
ms

Average
Time

3.59
ms

Maximum
Time

9.07
ms

Approximating
to

95 percentile

3.62
ms

Table 4.2: Native Performance Profile

Figure 4.2: Per request statistics of Con-
tainers.

Figure 4.3: Per request statistics of Virtual
Machines.

workloads which involve processing huge numbers and pattern matching, containers may

just win the bout over its counterpart.

The evaluation of CPU performances of both Docker containers and virtual machines

leads to the conclusion that the CPU performance is comparable in both the technologies.

The performance degradation factor is also same when it comes to scaling up the number of

guests. From a data center operator point of view, there is no huge performance incentive

for choosing one of them and the choice should entirely depend on the functional and

non-functional requirements of the workload to be processed.

64

4.5.2 File I/O Performance

We measure the file I/O performance of both Linux machines and Docker containers

by preparing appropriate test files. On a native system, we prepare 80 GB test files to

calculate the file I/O performance, we maintain a 1:10 ratio between the test file and

RAM. For all the tests on Linux virtual machines, we create 10 GB test files as the RAM

allocated to each virtual machine is 1 GB. In case of Docker containers, as there is no

explicit allocation of RAM to the container, we again use 10 GB test files to set a fair

comparison with respect to its counterpart. We configure and set up all test files on a

single Linux virtual machine and clone it for experimenting with multiple virtual machines

using libvirt utility, thereby decreasing manual work involved in the setup. Vagrant [9]

was also an option to spin up multiple virtual machines but we ignore it as vagrant only

supports Virtual Box [10] natively, in order to use it for KVM we have to download a

separate plugin that uses a command mutate which converts the boxes from virtual box

format to KVM compatible format. This conversion will affect the performance analysis

of our experiment, libvirt further uses full cloning opposed to that of linked cloning, for

qualitative output from our benchmark. In case of Docker containers, we prepare an

image with all the dependencies and test files and push it to the repository, the image

can be found here [7].

Considering the time involved in file I/O operations, we set the maximum time pa-

rameter as 300 seconds in all our respective cases. We also use random read & write and

synchronous mode for our analysis. The file I/O operations are performed initially on a

native Linux machine followed by linear increase in number of guests (1 to 8 for KVM and

1-12 for Docker containers). Using this test, we evaluate parameters such as total number

of events performed, number of requests processed per second, speed of execution and

per request statistics such as average time, maximum time and approximating request

parameters to 95 percentiles. We also deduce specific file I/O parameters such as number

of reads and writes.

65

Figure 4.4: Number of events in Contain-
ers.

Figure 4.5: Number of events in Virtual
Machines.

Evaluation and Results

To evaluate the file input output performance, we consider the following parameters for

our experiment:

i) Total number of events executed in a given time interval

ii) Number of reads and writes performed

iii) Speed of execution

iv) Per request profile

v) Number of requests processed per second

We consider these 5 parameters to be vital in a fair evaluation of the two technologies

considering the variety of file I/O workloads a system can be exposed to; these parameters

are almost the driving factor in all of them.

As seen from figure 4.4 & 4.5, the total number of events processed in case of native

was 34854, all our further analysis is in reference to this number. When performing the

same operation in both containers and virtual machines, we find out that the performance

remains same when a single guest instance is running but as we increase the number of

guests, the events executed in case of virtual machines decreases drastically. As from figure

4.4, we can clearly see the events executed almost decreases to half when we incrementally

increase the number of guests from 1,2,4 to 8. While in case of Docker containers, the event

66

Figure 4.6: Total R/W operations in Con-
tainers. Figure 4.7: Total R/W operations in VMs.

execution decreases by a factor of 0.25% on an initial increase in guests but almost drops

marginally when increasing the number of guests further. The degradation of performance

in virtual machines is huge when scaling is a requirement.

The total number of reads and writes performed is a driving factor for the even-

tual conclusion on the performance parameters as we can accordingly use a virtualization

technology based on workload characteristics whether it requires high reads or write trans-

actions. Again for our evaluation, the native performance is noted as: Reads = 20912

and Writes = 13941. As we can see from figures 4.6 & 4.7 above, the factor between the

difference of reads and writes remains constant throughout our iterations but as suggested

earlier the performance of virtual machines degrades drastically as the number of guests

are increased similar to what we inferred in last section. For 8 simultaneous running

guests, we observe the performance of both reads and writes decreases with a ratio of 1:6,

which is surely a big variation considering the scaling and vast data sets involved.

Speed of execution or the speed at which it performs the file I/O operation is one

of the most important factor in determining file I/O performance. As we can clearly

infer from figure 4.8 and 4.9, the speed of execution on native is approximately around

2.01 Mbps. The speed curve also shows a similar trend like the previous two sections, it

decreases linearly as the number of guests increase. The curve in case of virtual machines

67

Figure 4.8: File I/O speed variation in
Containers.

Figure 4.9: File I/O speed variation in
VMs.

is sharp and performance degradation is directly proportional to the number of guests

added. In case of Docker containers, after an initial linear performance degradation, the

curve almost approaches a constant value. E.g. The speed with 8 guests running in case of

virtual machines is 77.42 Kbps while on the other hand Docker containers deliver a speed

of 512 Kbps for similar number of guests. The difference between the two is relatively high

and Docker certainly proves to provide better performance than KVM. The difference can

be accredited to the dynamic allocation of memory resources in containers to that of fixed

allocation in virtual machines. Sharing the same system resources with the host operating

system helps containers to achieve high performance for reads & writes. There is a similar

graph trend for the request per second parameter as well. Figure 4.10 & 4.11, in this case

the Docker containers almost process 6 times more requests than its counterpart in a

second which certainly contributes to the superior performance of Docker containers over

KVM.

At the end, the per request profiles are referenced again with respect to the native

performance as shown in table 4.3.

Figure 4.12 & 4.13 point out to the conclusion of Docker containers delivering better

performance than virtual machines. The distribution of lines on the time axis for maxi-

mum time, average time and approx. 95 percentile value clearly points out the superior

68

Figure 4.10: Number of Reqs. processed
per second in Containers.

Figure 4.11: Number of Reqs. processed
per second in VMs.

Minimum
Time

3.58
ms

Average
Time

3.59
ms

Maximum
Time

9.07
ms

Approximating
to

95 percentile

3.62
ms

Table 4.3: Native Performance Profile for File I/O

69

Figure 4.12: Per Request stats of Contain-
ers.

Figure 4.13: Per Request stats of Virtual
Machines.

performance of Docker containers. As we see, the maximum time is evenly distributed

and varies as we increase the number of guests, the distribution may be similar but the

number involved almost differs by a factor of 3, the performance in terms of timings is also

noted to be 3 times less than that of virtual machines. Also it is interesting to observe

the blue line (8 VMs) drifting so sharply from the mean average time while for the same

number of guests, the average time for Docker containers remains around the mean mark.

This clearly indicates the performance of containers is efficient when the number of guests

are increased.

70

From evaluating all the five vital parameters, its fair to conclude that Docker contain-

ers offer better performance in all aspects of file I/O operations but taking into account

the fact that Docker containers almost offer near native performance, there is no room

for further future optimization’s while in the case of virtual machines, the I/O can be im-

proved by using many optimization’s such as by enabling hardware assisted virtualization

or using optimal memory swapping and paging techniques. However, the vast difference

in performance parameters can still not be ignored and virtual machines would have to

come a long way in matching the performance of containers. At present, containers surely

seem to be the appropriate choice for all data center operators running heavy file I/O

tasks. E.g. Hadoop workloads.

4.5.3 MySQL Performance

We measure the database server performance by using MySQL. We install all the depen-

dencies alongside creating a dummy test table with 1,000,000 rows. The same methodol-

ogy of cloning and Docker image push is used to automate configuration and setup across

all the guests. The MySQL Docker image can be found here [8]. In this experiment, we

use 6 threads to perform the computations concurrently, which again remains constant

throughout the whole process. The login credentials to MySQL server are passed as an

argument in the command line terminal for process automation but is not encouraged

in production environment because of data privacy regulations. The explicit parameters

used in all our tests are:

Read only mode = OFF

Maximum Time = 60 seconds

Maximum request = 0

Using this test, we evaluate relational database specific statistics such as number of

transactions performed, number of reads and writes, total number of events and per

request statistics like in all our earlier cases. We use MySQL version 5.7.14 for all our

71

analysis.

Evaluation & Results

To evaluate the MySQL server performances in both virtual machines and containers we

evaluate the following parameters to propose a final conclusion:

i) Number of Reads, Writes & Transactions performed

ii) Number of individual events executed

iii) Per request profile

Establishing an evaluation profile in terms of reads and writes was important for our

analysis as most of the servers in data centers usually perform database transactions and

depending on the particular workload, number of reads and writes to a database greatly

quantifies our results.

As seen from figure 4.14 & 4.15, it is evident that the performance of Docker containers

quite easily surpasses to that of virtual machines. The steep linearity in the curve points

out at the degrading performance of virtual machines as the numbers goes high but in case

of Docker containers, the first linear decrease is followed by a smooth curve which hints

at its efficiency in terms of scaling the MySQL server. The container running 8 guests

performs 27 times more reads and 14 times more writes than its counterpart. Same trend

is followed for the number of transactions executed, where Linux virtual machine processes

almost 2 and a half transactions per second compared to that Docker executes transactions

at the speed of 30.5 transactions/second which is quite a large number considering the

overall performance balance.

To add to the above analysis, the number of events executing under different number

of active running guests also follow the same trend. From figure 4.16 and 4.17, we observe

that the number of events significantly reduce to almost half as the number of guests are

increased incrementally. The Docker almost turns out to have equal bar length as the

number of containers are increased. The contrast in the numbers can be clearly identified

when both of them run 8 guests simultaneously, virtual machine executes 176 events

72

Figure 4.14: R/W and Transactions per-
formed by Containers.

Figure 4.15: R/W and Transactions per-
formed by VMs.

Figure 4.16: Total number of events exe-
cuted in Containers.

Figure 4.17: Total number of events exe-
cuted in VMs.

while container executes 1979 which further reduces to 1859 when running 12, from these

result sets we can infer that scaling up containers does not affect the performance as

compared to virtual machines. This may be primarily because of the design architecture

of the containers with respect to virtual machines where resources and access rights are

dynamically allocated with respect to process requests.

Lastly, analysing the per request statistics of both containers and virtual machines,

we see that the minimum and average time are almost concentrated at a particular time

interval which is comparable to both virtual machines and containers but as soon as

the virtual machine deployments is increased to 8, the minimum time, average time,

73

Figure 4.18: Per req. stats of Containers
running MySQL server.

Figure 4.19: Per req. stats of VMs running
MySQL server.

Minimum
time

369.76
ms

Average
time

3472.17
ms

Maximum
time

4918.05
ms

Approx.
95 percentiles value

3872.24
ms

Table 4.4: Per req. stats of 8 running VMs

maximum time and approx. 95 percentiles value line shoots away drastically from the

mean indicating a sharp performance degradation. This performance dip is experienced

because of over provisioning the underlying resources, as the memory swapping process

between virtual machines introduces additional latency. Although the maximum time

required to process a single request increases gradually in containers but the factor of

increment is not even comparable to that of virtual machines. While running 8 guests,

the performance delivered by virtual machines and Docker containers are tabulated in

tables 4.4 & 4.5 respectively

Clearly the performance of MySQL server in Docker containers is much better to that

of virtual machines. As we are using Ubuntu 14.04 as our base image for implementing

MySQL server, but in case of Docker containers, the performance can be enhanced by

using MySQL image directly as our base image. We have used Ubuntu 14.04 as our base

74

Minimum
time

369.76
ms

Average
time

3472.17
ms

Maximum
time

4918.05
ms

Approx.
95 percentiles value

3872.24
ms

Table 4.5: Per req. stats of 8 running Containers

image to set a fair comparison profile for both containers and virtual machines. From

evaluating all the parameters mandatory from a MySQL server performance point of

view, the analysis leads to the conclusion that containers offer better performance over

virtual machines plus managing, configuring and provisioning them is trivial and less time

consuming than its counterpart.

At the end, this chapter concludes that depending on the type of workload a data

center or a server in a data center is about to run, the appropriate technology should be

used. For CPU intensive workloads, both containers and virtual machines deliver same

performances while for file I/O intensive and MySQL server tasks, containers offer better

performance and the results are not even comparable to suggest further optimization’s

might match the performance throughput of containers. The effort involved in spinning

up a container instance is also much lesser to that of the virtual machines. There is

no surprise that Docker containers are now the favourite virtualization technology for

all the infrastructure dependent organizations as well as cloud providers running heavy

transactions as speed and minimum performance degradation govern the efficiency of a

running application inside a data center. Also by using containers, cloud providers will be

able to offer a more attractive and flexible SLA options to the clients thereby providing

both performance and economic incentives.

75

Chapter 5

Latency

Boot up latency and Shut down time of a virtualization technology are one of the impor-

tant characteristics of an efficient cloud infrastructure. Boot up latency can be defined

as the time required to provision a guest to service a particular request while shut down

latency can be defined as the time required to suspend a running guest completely en-

abling less resource contention of the underlying host. These two parameters directly or

indirectly influence the efficiency of cloud computing model. Lower boot up time of a

guest helps the data center operator to provision guests for the peak load and ensures

higher probability of meeting response deadlines as promised in SLAs. Similarly, a small

shut down time for guests ensures high availability of computing resources and flexibility

in terms of switching workloads across the servers. In this chapter, we will study the

boot up and shut down time of two guest technologies –Virtual machines and Containers.

Further we will analyse the experimental results from both of them and propose some

optimizations that can help in decreasing the boot up time and shut down latency.

For conducting all the experiments, we will use the same system configurations as

specified in chapter 4.

76

5.0.1 Introduction

Considering the term “Boot up time” is quite vast in its meaning and context, it can be

defined in different ways:

i) Time taken to complete the full BIOS (Basic Input/Output System) run

ii) Time taken to get to a login prompt

iii) Time taken to first see the desktop after a successful login

iv) Time taken for the user to efficiently interact with the machine after a successful

login

With such a generality, usually for servers, it is measured as the time taken to get to

a login prompt while for desktop, it is the time taken where a user can effectively interact

with the machine after a login. In our case, since we are using a desktop machine for

our experiments, we simply disable the password prompt option and measure the boot

up time as “the time taken by the system to display an interactive home screen”.

Some of the clients require immediate resources such as CPU, memory, disk space etc

for computing resource intensive applications such as game hosting, DNA pattern analysis

and weather forecasts etc. In many scenarios, the client submits requests for thousands

of virtual machines and containers while the cloud provider has to provision the resources

in an acceptable time frame as specified in their service level agreement (SLAs). Once

these services are hosted, the clients generally release the resources immediately to save

cost. In such cases, a large delay in provisioning may result in customers turning away

to other providers and therefore fast provisioning of large amount of resources is a need

to stay competent in the market. On demand provisioning is directly influenced by the

boot up and shut down time respectively, the lesser the boot and shut down time, faster

the provisioning of guests for all concurrent requests.

Theoretically, containers should have a lower boot up and shut down time than virtual

machines, because for containers only API –relevant data structures are required to be

initialized, but in case of virtual machines, it has to retrieve the whole operating system

77

from the storage. The workload in container uses the host servers operating system kernel,

therefore avoiding the unnecessary delay experienced in virtual machines. Higher speeds

allow any development projects to get project code activated fast, test code in different

ways and to launch additional features such as e-commerce capacity on a website –all very

quickly. As specified earlier, the boot up time for a virtual machine is the time required

till a user interactive desktop appears while in case of containers it can be measured as

the time required to execute a run command. Similarly, the shut down time for virtual

machines is noted as the time taken from the selection of the shutdown prompt to the time

the hypervisor prompts an inactive message for the same machine. In case of containers,

it is simply time taken to execute the exit command. We account for the boot up and

shutdown time to get an estimate of the latency involved while these guest technologies

are used in data center deployments.

For all other experiments, the host runs an Ubuntu 16.04 operating system while the

guests run Ubuntu 14.04.4. Both are freshly installed and has no additional running

processes at boot time. We use default Ubuntu configuration to test the boot up and

shutdown time in both virtual machines and containers. System time was used to measure

intervals across all iterations.

5.0.2 Experiment, Analysis & Conclusion

For all our iterations, we use the same technologies as in the previous chapter. i.e. Linux

Virtual Machines (KVM) and Docker containers. Not only do we calculate the individual

boot and shut down time for a particular guest but like before we compute the pattern

of boot time change while increasing the number of guests on the same physical host.

Number of active running guests also play a significant role in the boot up and shut down

timings of a guest and we study the same as a part of our evaluation. The experiment

for each scenario was performed 10 times to avoid any ambiguity in the results. Table

5.1 & 5.2 points out the boot up and shut down timings of Linux virtual machines and

78

Number of
Virtual Machines

Boot up time
(seconds)

Shutdown
time

(seconds)
1 6.12 3.24
2 6.30 3.40
4 7.86 3.53
8 9.00 4.03
12 30.77 11.35

Table 5.1: Boot up & Shut down time of VMs

containers in these scenarios:

i) 1 active running virtual machine and container

ii) 2 active running virtual machines and containers

iii) 4 active running virtual machines and containers

iv) 8 active running virtual machines and containers

v) 12 active running virtual machines and 16 containers

Measuring the latency in terms of scaling up the guest deployments is an essential

parameter to evaluate the performance of the two, as in realistic data center environments,

the number of virtual machines and containers range from few hundreds to thousands.

Considering the configuration of our system, our maximum analysis is confined to 12

active running virtual machines and 16 containers.

Table 5.2 summarizes the boot up and shutdown time for Docker containers varying

from one to 16 running Docker containers.

As per tables 5.1 and 5.2, we observe that it takes 6.12 seconds to boot a kernel virtual

machine while it just takes around 0.44 seconds to start a Docker container. Note that

the time measured is in regard to the fact that both run 14.04 base image.

As seen from figure 5.1, the boot up time of a virtual machine almost differs by a

factor of 6 for a single running instance. As we increase the number of guests, we observe

a sharp trend in the KVM line, the boot up time increases linearly and almost triples when

we run 12 guests simultaneously, the reason for this sudden increase can be accounted

to the more resource contention activity on our host. As our host can support 8 CPUs,

79

Number of
Virtual Machines

Boot up time
(seconds)

Shutdown
time

(seconds)
1 0.44 0.44
2 0.45 0.44
4 0.43 0.46
8 0.44 0.46
16 0.45 0.45

Table 5.2: Boot up & Shut down time of Containers

the boot up time rises slowly with respect to the increase in guests but as soon as we

over provision the resources, the boot time shoots up drastically. To establish a fair

comparison, we observe that under 8 active running guests the difference in between the

two is almost 8.5 seconds which is significant enough from a data center operator point

of view where it is expected to provision a huge number of guests at a promised time

interval (based on the SLA). In contrast to virtual machines, we see that the scalability

is well handled in case of containers where the boot up time remains constant up to 16

active running containers which is very impressive compared to its counterpart. A similar

trend is observed for the shut down time, where the difference between the two is 3.57

seconds for 8 active guests. The shutdown time again increases as we increase the guests

in case of KVM but Docker containers offer similar performance throughout, even at 16

running containers, the shut down time value remains constant with respect to the earlier

readings and overlaps with the boot up latency line. It is fair to conclude that containers

easily win the bout in terms of speed of spinning up and shutting down a guest as the

time for provisioning and shutting off is fairly balanced and remains constant throughout

all guest iterations. Further it completely depends on the nature of the workload, where

other functional and non-functional requirements do not consider provisioning delay a

barrier in their performance.

The delay in the boot up time of virtual machines can be accounted to the booting

process of an entire operating system, which is not the case with containers. Containers

share the same kernel with the host, ending up saving the time used by bootloader and

80

other init tasks. If we could negate the operating system boot process in virtual machines,

significant efficiency can be achieved. Some of the cloud providers create offline virtual

machines as a template. E.g. AWS (Amazon Web Services) state saves these virtual

machines so the new virtual machines can be provisioned in a short duration.

Boot up and shutdown time of a virtual machine or a container is important for

applications that scale out to handle peak workload by spawning more instances of the

applications. In such cases, employing containers is more profitable and efficient than

using virtual machines. As a result, cloud providers use virtual machines and containers

to handle peak loads.

Figure 5.1: Boot up and shutdown latency for VMs and Containers.

81

5.0.3 Optimizations

From the results, we can clearly see that containers have better defined and faster boot

up and shut down times. As far as the results are concerned, there are certain ways in

which we can improve the boot up and shutdown time of virtual machines and containers.

As containers already provide us a very low boot up and shutdown time, there are not

many optimization techniques that can improve our results, except one which we will

evaluate towards the end of this chapter. In this section, our primary focus will be on

optimizing the boot up and shutdown time of virtual machines in comparison to that of

the containers.

Some of the basic performance checklist of improving the boot up and shutdown times

in virtual machines are:

i) Making sure that Operating system disk is defragmented

ii) Using optimal application specially at boot time

iii) Enabling hardware assisted virtualization

iv) Giving virtual machines less or required memory. Additional memory puts addi-

tional pressure on host operating system

v) Optimizing unwanted performance parameters such as “Responsiveness” control

While these steps improve the boot up and shutdown timings but there are two im-

portant methods that can further improve the boot timings considerably:

i) Enabling booting up of virtual machines at host boot time

ii) Using Snapshots (Checkpoint & Restore)

By enabling the run time boot option in Linux virtual machines, we can reduce the

additional overhead of spinning up a virtual machine. As we boot the host operating

system, the KVM module parallelly boots all the virtual machines that have this feature

enabled therefore reducing individual boot timings across all virtual machines. Though

this method does negate the boot up and shutdown time respectively but it lacks the

flexibility that is required in high scale deployments such as in multi –tenant data centers,

82

not all virtual machines should be booted as we boot the underlying server, continuous

dynamic provisioning also poses a serious threat to this method. So we use this approach

for a strict set of basic nodes used in cloud infrastructure that should always be up and

running such as management consoles.

The second and the most important method that can optimize the boot up time is

by using virtual machine snapshots. A snapshot is a copy of a VMDK (Virtual Machine

Disk File) at a given point in time. Snapshots generally are used as means of check

pointing and restoring a virtual machine to a particular event when a failure or system

error occurs. Note that snapshots alone do not provide back up for virtual machines. In

modern day data centers, snapshots are extensively used as templates. E.g. In Amazon

EC2, there are numerous templates available with a pre installed operating system and

required dependencies. By using snapshots, we skip the boot up time required and can in

turn return directly to a particular process or application runtime. This elides majority

of the overheads such as init processes etc., therefore reducing the start-up time by an

order of magnitude.

The same optimization can be used by containers by using Checkpoint and restore

in User space CRIU [3], which is explained in the next chapter as well. Checkpoint and

restore in user space is a software tool for Linux operating system, which freezes a running

application and checkpoints it to a disk as a collection of files. Afterwards, the same files

can be restored and run from the check pointed state.

From figure 5.2, we can see that check pointing a virtual machine results in considerable

improvement. The virtual machine boots almost three times faster than using normal

boot up process, which provides a huge performance bonus to the data center operator.

In contrast, for a container, the time saved by using a check pointing and restore approach

is around 0.03 seconds. Therefore, starting a container is almost as fast as restoring it

from a check pointed state. Check pointing does not give the same benefits to container

as that to a virtual machine.

Even by using the check pointing and restore optimization, the container is still 4.5

83

Figure 5.2: Boot up time optimization using checkpointing and restore.

times faster than virtual machines. This difference may further reduce in future with

new technologies and optimization specially towards the check pointing and restoring

feature. E.g. SnowFlock [33] virtual machine fork system reduces the boot up time of

a virtual machine by 3–4 times by duplicating only the virtual machine descriptor and

guest kernel memory from an already running virtual machine and then duplicating the

rest on demand. Snowflock uses XEN hypervisor for this.

It is usually a non–trivial process to analyse the boot up study from outside a data

center and on different hardware architectures but in recent performance analysis studies

[37], we note that adding a 100 –200 ms delay to a request is unlikely to be satisfactory con-

sidering the orders of magnitude of concurrent requests. We suspect that further changes

in the operating system such as using more aggressive para virtualization techniques will

84

help in meeting the ms strict demands of latency sensitive services.

Therefore to conclude, containers perform better than virtual machines but the gap

is considerably reduced to that of earlier boot times by using checkpointing and restore

optimization. The start–up time for a virtual machine which was almost 14 times to that of

containers could be reduced by almost a factor of 10, which results in a huge performance

incentive. Similar approach does not benefit containers as such and the difference between

the boot up latency of containers with or without using check pointing and restore is

almost negligible. Overall containers still prove to deliver better performance over virtual

machines but with continuous optimizations in check pointing and restore methods for

virtual machines, we might suspect that these numbers will almost be comparable to that

of containers in near future.

85

Chapter 6

Migration

Migrating operating system instances across different physical hosts is a useful method-

ology for data center administrators. It allows a clean distinction between the hardware,

software and facilitates fault management, load balancing and system maintenance. It

also significantly boosts an organizations disaster recovery efforts and improves business

agility. In this chapter we will discuss the migration scenarios in both Linux virtual ma-

chines and Docker containers as well as evaluate its performance in terms of migration.

6.1 Introduction

In chapter 2, we have already specified the various use cases, assumptions, types and the

process of virtual machine live migration. Migration is one of the important characteristics

of a flexible cloud infrastructure. Migration not only provides performance enhancing

features such as load balancing and proportional server distribution across the geography

but also helps during catastrophic cases like data center crisis or disaster recovery. It

also enables efficient performance management from a data center operator point of view.

Demand based flexibility is vital in terms of cloud infrastructure. E.g. A game server

instances have to be migrated from one location to another depending on the peak load

time in a particular time zone. Spinning up additional instances often results in high

86

cost and complex management process. Migration of guests is always a viable option

because not only does it present economic incentives in terms of less active instances but

also incurs negligible to almost zero downtime. Choosing a particular type of migration

methodology usually depends on the type of workload to be processed. Cold migration

is a cheaper alternate but involves high processing and considerable downtime, on the

other hand live migration is comparatively expensive and has negligible impact on the

performance of an active virtual machine and the downtime almost approaches zero.

There are many security and compliance concerns around the migration process. If

we do not follow the virtualization best practices for migration, our infrastructure may

be susceptible to security risks and sometimes violate the compliance regulations. E.g.

Migrating a virtual machine with customer credit card data to a host that in turn is

running a public web server, for example, violates the payment card industry data security

standard. All the corporate policies and compliances can be fulfilled by using a migration

suite consisting of management software, provisioning software and integrated process

management tools.

Although the migration of virtual machines is a much matured technology with dedi-

cated products such as VMotion from VMware which governs smooth mobility of virtual

machines across same or different domains. Because of the wide applicability of migra-

tion in virtual machines, these products are designed to have negligible impact on the

performance and enable easy management platforms.

The same cannot be said about containers. Since containers are usually lightweight

and stateless, migrating them is not beneficial. The cost of spinning up a new container is

almost equal to migrating the same. However, if a container is used to host applications

that are required to maintain a state, there is always a volume associated with the con-

tainer which has to be migrated as well but as of today Docker (Docker version 1.12.0)

does not support check pointing and restoring a container which is required for migrating

the volume of a container. The present version uses pause and unpause to suspend and

restore the container state on the same host which in turn only checkpoints and restores

87

the instances rather than the volume. This pause and unpause feature is based on cgroups

freeze feature.

In this chapter, we will use an experimental version of Docker (1.9.0-dev) that enables

check pointing and restoring along with its volume. We will further analyse the following

parameters to establish a clear conclusion of their respective migration profiles:

I. Total Migration Time

II. Service downtime

These two parameters govern the performance of migration process. Total migration

time can be defined as the time taken to complete the whole migration process starting

from executing the migration command from the source to the time the target host services

its first request.

The downtime during migration can be defined as the time during which the services

are unavailable to the end users, the switch over from source to target causes the downtime

of a service.

We evaluate these parameters in both virtual machines and containers and also estab-

lish a clear view of the performance degradation and its possible countermeasures.

6.2 Benchmark

We perform the migration of virtual machines and containers in both clean and stress

testing state. It is important to test the migration during a state where a virtual machine

or a container is running an application or service that performs heavy CPU and file I/O

transactions. Using such a scenario is vital for our analysis so as to evaluate the impact of

a prolonged pre copy phase on the overall migration performance. For all our experiments,

we will be using mprime as our benchmark.

Mprime is the Linux command line interface version of Prime 95 [12] to be run in a

text terminal or in a terminal emulator window as a remote shell client. It is a freeware

application written by George Woltman that is used by GIMPS, a distributed comput-

88

ing project dedicated to find new Mersenne prime numbers. In simple words, mprime,

processes through a giant set of numbers as fast as possible to determine if they are prime.

Mprime makes heavy use of the processors integer and floating point instructions, it

feeds the processor a consistent and verifiable workload to test the stability of the CPU

and the L1/L2/L3 processor cache. It also uses all cores of a multi CPU system to ensure

high load stress test environments. An additional hybrid mode is provided that tests both

CPU and RAM. The thread specification enables multi core testing.

Depending upon the type of processor used for testing, the mprime gives us an option

to use the same amount of threads during our testing phase. The mprime supports 3

types of tests:

i) Type1: Performs small fast Fourier transforms which involves maximum heat and

power consumption. This mode does not involve any memory testing.

ii) Type2: Performs large fast Fourier transforms (with much higher heat and power

consumption). In this mode, some of the RAM is also tested

iii) Type3: Also known as Blend which almost tests every aspect of the system. This

mode involves heavy RAM testing.

Type 3 is the extreme level of stress testing in mprime and failure of the same indicates

bad memory or a bad memory controller.

Since the primary aim of our experiment is not focused around stress testing of a

system therefore for all our tests we will use Type 2 mode as its stresses both CPU and

RAM to a considerable limit that may apply to a practical scenario of active services

running on a guest to be migrated.

6.3 Experimental setup and Configurations

The nodes used for the experiment have identical system configurations as specified in

chapter 4. We use the same system configuration to avoid any mismatch in terms of

system architecture and operating system compatibility. From figure 6.1, we can see that

89

Figure 6.1: Experimental setup for VM Migration.

the experimental setup consists of 3 nodes:

i. Host A (Source node)

ii. Host B (Target node for migration)

iii. Observer C

The nodes use public key authentication to establish an SSH session between them.

The observer node C is explicitly used to capture the events on Host A and Host B. The

events captured are the timings with respect to total migration time and service downtime.

All the nodes exist on the same network and are interconnected by a high speed 1 Gbps

LAN. Since the hypervisors in both Host A and Host B are connected, each time Host

A boots up, it can remotely manage all the virtual machines on Host B. Port forwarding

of virtual machines area enabled to enable virtual machine access from the same or a

different source. Further we test the virtual machine under following configurations:

i. Clean Linux machine with 1 CPU and 512 MB RAM

ii. Clean Linux machine with 1 CPU and 1 GB RAM

iii. Clean Linux machine with 1 CPU and 6 GB RAM

90

iv. Virtual machine running mprime with 1,2,4 CPUs and 512 MB RAM

v. Virtual machine running mprime with 1,2,4 CPUs and 1 GB RAM

vi. Virtual machine running mprime with 1,2,4 CPUs and 2 GB RAM

The following configurations are used to analyse if the migration process is affected

during a particular time period where a workload is performing heavy CPU and mem-

ory related transactions. The migration process was reiterated 5 times for each of the

configurations listed above.

In order to capture the events across the source and the destination, we use a script

file which continuously pings (using default 1 second time interval) both the machines

and also clears any cached entries for the address resolution. Along with continuous

pinging the system, we capture the data packets using Wireshark [13]. The Wireshark

intercepts the ping responses on the host A and on host B. The Wireshark is configured

to listen to a particular interface/bridge (virbr0) with machines IP address and type of

packet filtered as “ICMP”. The Wireshark instance on the destination host B waits for

the acknowledgment of the ping requests during migration. It is interesting to note that

during the process of migration, the IP address of a virtual machine does not change,

which enables us to pre configure the Wireshark instance on host B. By using such a

setup, we compute the total migration time and downtime respectively.

• Total Migration Time = Time at which Migration command is executed –Time at

which the first ping acknowledgment is received on host B.

• Service Downtime = Time at which the last packet on host A failed a ping –The

first ping acknowledgment at target host.

To avoid any time synchronization problem between host A and host B, both the

systems were synchronized to an external NTP server. For all our experiments, we use

Linux 14.04.4 as our guest operating system.

As mentioned earlier, the migration methodology in case of containers is relatively

immature as compared to its counterpart, so instead of migrating a container from one

91

Figure 6.2: Experimental setup for Docker Migration.

physical machine to another, we migrate the containers from one virtual machine to

another using Vagrant [9]. The migration process involves moving both active running

instances and the volume associated with it. From fig. 6.2, we can infer that Vagrant

in turn uses Virtual box [10] to manage these virtual machines. In our test scenario, we

perform all the experiments on a single physical host and spin up two virtual machines

using Vagrant to enable container migration. Considering the container migration feature

is still under experimental phase, we expect the future implementations of containers

to support migration natively. The container migration also requires compiling Kernel

with specific Kernel modules enabled as well as using an experimental version of Docker

(1.9.0-dev), which supports the check pointing and restoring of Docker containers by

saving their state to files. The complexity involved in the process made Vagrant the right

technology choice for our analysis. We use Ubuntu 14.04 cloud image for all our container

experiments. The host system uses Ubuntu 16.04 in both virtual machines and container

experimental setup.

92

6.4 Technologies

6.4.1 KVM Migration

We use the same technologies as specified in chapter 4, i.e. KVM + QEMU + Libvirt for

virtual machines and Docker for containers.

KVM supports different types of migrations such as offline and live migration. We

can also migrate between an AMD host to an Intel host, but a 64-bit guest can only

be migrated to a 64-bit host. In our experiment, we perform live migration of virtual

machines on a 64-bit Intel machine. Though it is recommended to use shared storage

(NFS) to perform virtual machine migration in KVM but considering the additional

infrastructure involved, all our experiments are performed directly without involving any

shared storage pool. Using shared storage improves the performance of migration in data

center deployments as the numerous systems have access to the same storage pool thereby

decreasing network latency involved in fetching a particular resource from one host to

another. In our experiments, we will use a pre hook and use the option of –copy -storage

-all to enable virtual machine migration. The guest machine is migrated from source to

destination by using the virsh command. The general syntax of the virsh command is:

virsh migrate –live guest name destination URL

where, guest name is the name of the guest to be migrated

and, destination URL is the connection URL of the destination host physical machine

The destination system should run same Linux version, be using same hypervisor and

has libvirt running. An example of the migration command used in our experiment is:

virsh migrate –live –copy –storage –all testVM qemu+ssh: 134.226.34.148

The successful migration of virtual machine can be further verified by using the virsh

list command, which displays the names of current virtual machines running on the sys-

tem.

It is also possible to perform multiple, concurrent live migrations, where each migration

process runs in a different command shell. The migration process can also be performed

93

using virt-manager which is a graphical management console for Linux virtual machines.

The live migration process can be verified by checking the newly transferred guest running

mprime stress testing. Our analysis further quantifies the effect of RAM size and variable

CPU cores during live migration process

6.4.2 Docker Migration

We will use suspend and resume process to migrate a Docker container from one host to

another. We will be using CRIU [3] with Docker to enable container migration. CRIU

as already mentioned in previous chapter is a software tool for Linux operating system

which enables freezing a running application and check pointing it to a persistent storage

as a collection of files. The same can be resumed later with all its volume dependencies.

The CRIU is implemented in user space rather than in Kernel. Since the current Docker

version does not support suspending and resuming of containers, we will therefore use

CRIU to enable it.

CRIU was originally build to support only Linux containers but as we know Docker

is capable of running a Linux container, we should be able to use the same features in

Docker. In order to use CRIU, we need to build a Kernel with certain features enabled.

The following features can be enabled by preparing a Kernel .config file. The features to

be enabled for Kernel can be found out on CRIU official website. Since check pointing

and restoring Docker containers is still under experimental phase, we need to build an

experimental version of Docker. As CRIU till date is not fully merged into Docker,

therefore we will use a fork of Docker [14]. All the alterations and dependency setup were

performed inside a Vagrant virtual machine and the box can be downloaded from the

repository [15]. After configuring all the dependencies, we spin up a virtual machine and

ssh into it to run a Docker container. We can check the checkpoint and restore feature

description by using the –help option. The syntax for checkpoint and restore is:

docker checkpoint /*name of container*/

94

docker restore /*name of container*/

To perform container migration, we spin up two vagrant virtual machines. We execute

a script that prints consecutive odd numbers with system time. System time is printed

up to millisecond precision, in order to capture the migration time. Another helper

shell script is written to perform migration container migration [16]. The script needs 3

arguments to run:

i. Name of container to be migrated

ii. Path of host A vagrant box

iii. Path of host B (target) vagrant box

The migration process involved in containers also uses a live pre copy approach. The

total migration time and service downtime is calculated by using a script which prints a

stream of odd numbers along with the system time on the console. This system time is

used to calculate the total time and service time. Further Docker logs can also be used

to verify the timestamps. The success of migration process is confirmed by checking if

the process prints the next odd number on the console of host B following the last odd

number printed on the console of host A. The total migration time and service downtime

are calculated as:

• Total migration time = Time at which migration command is executed –Time at

which the first number is printed on the target host

• Service downtime = Time at which the first number was printed on host B –Time

of the last printed number on host A

Both of these parameters are analysed with respect to virtual machines to verify the

performance of migration and to understand if migrating a container is beneficial than

directly running a new container and suspending the old one.

95

6.5 Evaluation and Conclusion

Migration using the setup as specified in the previous section was performed and the

different time period under different workloads and configurations were captured. The

evaluation of migration performance was entirely based on the two parameters

i) Total migration time

ii) Service downtime

6.5.1 Total Migration Time

As mentioned previously, total migration time can be computed as the difference between

the time the migration command is executed to the time when the target host of migration

processes its first request. Migration time in case of other migrations such as offline mode

is comparatively less as compared to that of live migration because unlike live migration,

other modes of migration do not involve iterative pre copy phase. Iterative pre copy

phase directly influences the migration time which in turn depends on the nature of the

workload under execution. If an application is generating high number of writes, it will

eventually increase the dirty paging frequency, thereby increasing the total migration time

as a substantial amount of threshold is required to proceed to the next phase, otherwise

the iterative pre copying processes in a continuous loop. Several algorithms [50] have been

designed to efficiently manage the pre copy iterations. Because of the high accuracy of

iterative copying, the service downtime is directly influenced.

In our experiment, we perform migrations under different configurations of virtual

machines. We perform the migrations under different virtual machine configurations to

analyse if system parameters (RAM, CPUs) and active processes affect the migration

performance.

As seen from figure 6.3, for clean Linux virtual machines with 1CPU each and varying

RAM allocations (512MB, 1GB, 6GB), we observe that irrespective of the memory size,

the total time remains fairly constant with the mean clocked at 244.2 seconds.

96

Number of
Virtual Machines

Boot up time
(seconds)

Shutdown
time

(seconds)
1 6.12 3.24
2 6.30 3.40
4 7.86 3.53
8 9.00 4.03
12 30.77 11.35

Table 6.1: Migration Profile for VMs running mprime

For further analysis, table 6.1, we perform virtual machine migration by not only

allocating a variable memory but variable CPU as well. All these virtual machines also

run mprime benchmark. We perform these iterations under different system configurations

to emulate the nature of servers and workloads inside a data center. We gradually increase

the RAM size with CPU allocation, we also use threads for mprime testing, to establish a

fair comparison for our evaluation in case of multi core systems. Each thread stress tests

each core of the processor. The mean time completion for 512 MB RAM with variable

CPU allocation was clocked at 215.6 seconds while the time increased by 245.6 seconds

and 274.2 seconds respectively for 1GB and 2GB RAM sizes. We can see that the RAM

size did not affect the overall performance of migration except a minimal rise in time

due to varying memory allocations. In case of data centers, where heavy workloads are

processed, this minimal fraction of time increase for various memory sizes can sum up to a

large value resulting in performance degradation. As we can see from figure 6.4, the time

almost remains constant and the slight deviation among the numbers can be accounted

to variable memory allocations and network delays.

As we know, containers use host Kernel to perform all process execution, so the check

pointing and restoring in case of containers experiences less migration time, as only a pro-

cess is migrated from one system to another to that of migrating a fully-fledged operating

system. The migration time though should not be compared directly to virtual machines

as we are using experimentally build packages to perform process migration, which at this

point of time is not encouraged in production environment. As per table 6.2, the Docker

97

Figure 6.3: Migration profile for clean VM.
Figure 6.4: Migration profile for VM run-
ning mprime.

container migration process requires 11.79 seconds which is almost 20 times better to that

of virtual machine.

6.5.2 Service Downtime

From an application performance point of view, total migration time is not an important

factor in determining migration efficiency as it is invisible to the end users and the ap-

plication itself. Total migration time only proves to be beneficial for a cloud provider,

where instances should be moved quickly thereby providing flexible resource provisioning.

Service downtime can be defined as the time during which a service becomes unavailable

due to migration. A large service downtime has a direct effect on the end users and is one

of the important parameter of a SLA for a cloud infrastructure. In order to abide by the

SLA and offer high performance, a service should have a zero downtime. Practically it is

impossible to experience zero downtime as the switching delay will always tend to make

services unavailable for a fraction of a time, however it is mandatory to reduce the delay

to the smallest number possible.

In our experiments, we compute the downtime as the difference between the time the

new host services its first request to that of the last request serviced by the primary host.

We use the same system and software configurations as used in the previous section. In

98

case of a clean Linux virtual machine migration, the downtime experienced is marked

at a mean of 2.67 seconds. Further we test the downtime under different configurations

and memory sizes. It is interesting to note that the downtime remains constant in all

scenarios. i.e. for 512 MB RAM at different CPU allocations, the mean downtime is 2.21

seconds. We can see from figure 6.4 and table 6.1, that the downtime is scattered across

all configurations with 1.81 & 2.51 seconds respectively. From this we can infer that the

memory size and workload do not affect the service downtime as the values approach a

constant value primarily because of same threshold for iterative pre copy phase across all

configurations and iterations.

In case of containers, the service downtime is measured around 5.70 seconds (table

6.2) which is almost double to that of virtual machines. This downtime can be accounted

to the immature version of CRIU package for Docker containers and therefore cannot be

considered as an accurate estimation of the performance.

From figure 6.5, it is fairly easy to conclude that a virtual machine has a considerable

large migration time (237.2 sec) as compared to containers (11.70 sec) but the trend

is reversed for service downtime (2.20 sec for VMs and 5.70 sec for Container). Virtual

machines offer high performance to that of containers during migration as per present state

of art because of the less service downtime. As described earlier, service downtime directly

affects the efficiency of the running application as well as the SLAs. Low or negligible

downtime should be key to every migration technique. As seen from our analysis, it

should be noted that virtual machines offer better performance during migration than

containers although containers offer quick migration than virtual machines by a factor

that is even not comparable but considering the service downtime is almost double in

containers than virtual machine, it should make virtual machine a favorable option in all

data center deployments. Moreover because of the maturity in migration techniques in

virtual machine, it is considered as a viable option to that of containers.

In future, we might witness some developments towards the container migration espe-

cially in Docker because of its wide spread use across industries. But at this moment, it

99

Figure 6.5: Evaluation of Migration Performance.

is fair to conclude that virtual machines perform better than containers when migration

is a mandatory requirement.

We may experience minor setbacks when the tools or technology we are using fails to

work as expected during migration. This may arise because of locked files or network and

site outages. It is important that the technology we use is able to perform under adverse

conditions without impacting production and losing data. Considering these risks, virtual

machines should be preferred for migration as there are dedicated migration packages

which not only optimize but orchestrate the whole migration process keeping potential

risks under consideration. On the other hand, same cannot be said about containers as the

migration technology under containers is still immature and under constant development.

100

Chapter 7

Conclusion

In the previous chapter, we evaluated the migration performance which is one of the

important characteristics of effective virtualization. In this chapter, we will summarize

the project, its findings and discuss some future work.

7.1 Overview

Virtualization projects have been the focus of many IT organizations where primary aim

is to consolidate servers or data centers, decrease Capex (Capital expenditure) and Opex

(Operating expenses) and launch successful green conservation initiatives. Virtualization

in simple terms can be defined as consolidating processing power, memory, network band-

width and storage capacity onto the smallest number of hardware platforms possible and

then apportioning those resources to servers or system based on time slicing. The main

aim of virtualization is to make the most efficient use of available IT resources. Virtual-

ization decouples all computing resources making them available to a common pool. As a

result of this, new or old services can be added, removed or altered without any complex

process.

Virtualization benefits the IT infrastructure in terms of:

i. Lower expenses

101

ii. Business continuity

iii. High availability

iv. Fast provisioning

v. Corporate governance

Virtualization can be enabled using many technologies, out of which virtual machines

and containerization are the most preferred methods. Hypervisor and virtual machines

have been the most used approach to virtual workload deployment because of its maturity

and massive open community support.

Container virtualization is now quickly emerging as an efficient and reliable alternate

to traditional virtualization, thereby providing new flexible features as well as problems

to data center operators. The difference between the two can be can be characterized by

resource usage management (operating system level) and location of virtualization layer.

Virtual machines rely on a hypervisor which is either installed on top of a host operating

system or on top of the actual bare metal. Once the hypervisor is installed, virtual

machines can be provisioned from systems available computing resources. Each virtual

machine in turn possesses its own operating system and running applications. Virtual

machines offer full isolation from its other peers running on the same physical host.

On the other hand, in containers a host operating system is installed first followed by a

container layer e.g. LXC or libcontainer. Once the virtualized container layer is installed,

containers can be provisioned from underlying systems available resources and various

applications/services can be deployed inside them. These containers offer isolation but

share the same operating system with the host machine.

Containers are considered as more resource efficient than virtual machines because

the need of additional resources for each operating system is eliminated. Therefore, the

resulting instances are smaller and faster to provision and manage. As a result of this, a

single physical system can host more containers to that of virtual machines. It directly

affects the economics towards a cloud infrastructure by providing a considerable cost cut

but also presents a single point of failure for all running containers. However, containers

102

and virtual machines can co-exist in the same environment, complementing each other

thereby expanding the available toolset for data center operators to provide resource

optimization based on the nature of the workload.

In this project, we evaluate the performance of virtual machines and containers to

narrow down the gap purported between the two. We evaluate the performance consid-

ering the economics from a cloud provider point of view. We use Linux virtual machines

and Docker containers for our experiments, as both of them are open source technologies

and offer near native performance. We evaluate 3 important parameters

• Density

• Boot latency

• Migration

Density is further evaluated using the following factors

i) CPU performance

ii) File I/O performance

iii) MySQL server performance.

The performance is evaluated by scaling up the deployments incrementally on the same

physical host. From the results, we observe, the CPU performance is almost equivalent

in both the cases as the number of guests scale up. The performance degradation factor

also remains constant.

In case of file I/O performance, containers offer better performance than virtual ma-

chines in terms of execution speed and number of transactions. The performance degrades

considerably when the virtual machines are scaled up to 8, thereby proving to be less op-

timal as compared to containers, where the performance remains fairly constant. The

containers again offer better performance in case of MySQL server implementation by

executing high number of reads and writes.

Secondly, we evaluate the boot up and shutdown times for both the technologies.

The boot up and shutdown time in case of containers fairly remains constant irrespective

103

of the number of guests. While for virtual machines, the time increases linearly and

shoots up when the memory allocation for virtual machine exceeds the actual RAM size

of the underlying host leading to provisioning bottleneck. The checkpoint and restore

optimization can be used to improve the boot latency in virtual machines while the same

optimization technique is not effective in containers.

Lastly, we evaluate the migration performance in both virtual machines and containers

considering total migration time and service downtime as our primary factors. We note a

contrasting behavior in between the two, virtual machines require more time to migrate a

virtual machine than a container. i.e. almost 20 times higher than that of containers. On

the other hand, service downtime which directly impacts the end user and the application

performance is almost double in containers to that of virtual machines. High service

downtime in containers can be accounted to the technology immaturity for migration

process. We still use experimental build tools to evaluate migration in containers which

cannot be considered as a standard basis of performance analysis in production based

environment.

7.2 Future Work

This work quantifies the performance profile of both virtual machines and containers. Fur-

ther research could express the evaluation more precisely using wider system parameters.

Since the experiments were performed in a research laboratory, it would be interesting

to evaluate the same in a data center environment with actual industrial workloads. The

performance prediction can be improved by using higher degree of scalability such as by

spinning up 1000s of virtual machines and containers in a data center environment. Also

the migration testing could be improved by using a SAN and performing migration itera-

tions inside or outside a particular network. Further establishing migration performance

analysis across different cloud infrastructure providers as well as across variable machine

architectures would improve the prediction model. Lastly, due to lack of development in

104

container migration methods, it would be interesting to perform the migration tests when

container technologies such as Docker supports the migration process natively rather than

using a third party module/package. Further research could capture the role of Kernel

data structures to the cost of virtual machines and containers. Theoretically, containers

should improve higher costs on host Kernel opposed to that of virtual machines.

7.3 Contribution

In summary, this work contributes to the comparative analysis of virtualization environ-

ments. The evaluation quantifies overall performance parameters between virtual ma-

chines and containers. Our evaluation results demonstrate that containers offer better

performance in terms of density and provisioning (boot latency) when deployments are

scaled incrementally, while the virtual machine performance shoots up when the resource

allocation exceeds the available resources, because of high swap activity.

Furthermore, this study also focuses on the migration performance, even though it is

not officially supported in any of the available container technologies. The study acknowl-

edges the high migration time in virtual machines over containers but at the same time

providing minimum service delay over virtual machines.

7.4 Final Remarks

Virtualization today has become a major component of IT infrastructure and has been

widely used to effectively provision and manage computing resources. Virtualization has

governed the IT policies as well as economics. Virtual machines have been used since the

dawn of virtualization and have proved to be efficient. The resurgence of containers has

been late and has gained popularity during the last couple of years. As the interest in

containers continue to grow, hopefully this will lead into the research of new and better

ways to optimize its performance and additional features such as migration, so that IT

105

industries and cloud providers can easily benefit from the performance incentives that

modern day containers can offer us.

106

Appendix A

Abbreviations

Short Term Expanded Term

SPARC Scalable Processor Architecture

LXC Linux containers

AUFS Unification File System

QOS Quality of service

KVM Kernel Virtual Machine

IaaS Infrastructure as a Service

PaaS Platform as a Service

NMON Nigels Monitor

DAX Direct Access

KSM Kernel Same-page Merging

MPI Message Passing Interface

TCO Total cost of ownership

DNS Domain Name System

ROI Return on Investment

UDP User Datagram Protocol

IPC Inter Process Communication

POSIX Portable Operating System Interface

107

HA High Availability

FT Fault Tolerance

SMP Symmetric Multiprocessing

ARP Address Resolution Protocol

WAN Wide Area Network

VNIC Virtual Network Interface Card

NICs Network Interface Cards

SAN Storage Area Network

NAS Network Attached Storage

DomU Domain Unprivileged

Dom0 Domain Zero

VDE Virtual Distributed Ethernet

MIP Mobile IP

NAT Network Address Translation

TTL Time to Live

SIP Session Initiation Protocol

UA User Agent

VMDK Virtual Machine Disk File

CBC Characteristics Based Compression

CSP Cloud Service Provider

VSR Volume to Size Ratio

DHCP Dynamic Host Configuration Protocol

QEMU Quick Emulator

TCG Tiny Code Generator

BIOS Basic Input/Output System

108

Bibliography

[1] Canonical. lxd crushes kvm in density and speed.

https://insights.ubuntu.com/2015/05/18/lxd-crushes-kvm-in-density-and-speed/,

2016. [online; accessed 18:33, 7 july 2016].

[2] Condor team. condor. http://research.cs.wisc.edu/htcondor/, 2016. [online; accessed

18:33, 7 july 2016].

[3] Criu team. criu. http://criu.org/, 2016. [online; accessed 18:33, 7 july 2016].

[4] Kvm, docker & lxc benchmarking with openstack. http://bodenr.

blogspot.com/2014/05/kvm-and-docker-lxc-benchmarking-with.html, 2016. [on-

line; accessed 18:33, 7 july 2016].

[5] Sysbench official github repository. https://github.com/akopytov/sysbench, 2016.

[online; accessed 18:33, 7 july 2016].

[6] Sysbench cpu test image (ubuntu 14.04). https://hub.docker.com/r/rnjndhr/sysbench-

cpu/, 2016. [online; accessed 19:52, 25 august 2016].

[7] Sysbench file i/o test image (ubuntu 14.04). https://hub.docker.com/r/rnjndhr/sysbench-

fileio/, 2016. [online; accessed 19:52, 25 august 2016].

[8] Sysbench mysql test image (ubuntu 14.04). https://hub.docker.com/r/rnjndhr/mysql-

sysbench/, 2016. [online; accessed 19:52, 25 august 2016].

109

[9] Vagrant home page. https://www.vagrantup.com/, 2016. [online; accessed 19:52, 25

august 2016].

[10] Virtualbox home page. https://www.virtualbox.org/, 2016. [online; accessed 19:52,

25 august 2016].

[11] Clear containers. https://clearlinux.org/features/clear-containers. 2016. [online; ac-

cessed 18:33, 7 july 2016].

[12] Prime95 home page. http://www.mersenne.org/, 2016. [online; accessed 19:52, 25

august 2016].

[13] Wireshark home page. https://www.wireshark.org/, 2016. [online; accessed 19:52, 25

august 2016].

[14] Criu compatible docker build. https://github.com/boucher/docker/tree/docker-

checkpoint-restore, 2016. [online; accessed 19:52, 25 august 2016].

[15] Pre configured vagrant box. https://atlas.hashicorp.com/rnjndhr/boxes/criudocker,

2016. [online; accessed 19:52, 26 august 2016].

[16] Container migration helper script. https://gist.github.com/rnjn09/96763e0de315ac53cecf188a8499f72f,

2016. [online; accessed 19:52, 26 august 2016].

[17] Nadav Amit, Muli Ben-Yehuda, Dan Tsafrir, and Assaf Schuster. viommu: efficient

iommu emulation. In USENIX Annual Technical Conference (ATC), pages 73–86,

2011.

[18] Carlos Antunes and Ricardo Vardasca. Performance of jails versus virtualization for

cloud computing solutions. Procedia Technology, 16:649–658, 2014.

[19] Bao Rong Chang, Hsiu-Fen Tsai, and Chi-Ming Chen. Evaluation of virtual machine

performance and virtualized consolidation ratio in cloud computing system. Journal

of Information Hiding and Multimedia Signal Processing, 4(3):192–200, 2013.

110

[20] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Chris-

tian Limpach, Ian Pratt, and Andrew Warfield. Live migration of virtual machines.

In Proceedings of the 2nd conference on Symposium on Networked Systems Design &

Implementation-Volume 2, pages 273–286. USENIX Association, 2005.

[21] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Chris-

tian Limpach, Ian Pratt, and Andrew Warfield. Live migration of virtual machines.

In Proceedings of the 2nd conference on Symposium on Networked Systems Design &

Implementation-Volume 2, pages 273–286. USENIX Association, 2005.

[22] Rajdeep Dua, A Reddy Raja, and Dharmesh Kakadia. Virtualization vs container-

ization to support paas. In Cloud Engineering (IC2E), 2014 IEEE International

Conference on, pages 610–614. IEEE, 2014.

[23] Zachary J Estrada, Zachary Stephens, Cuong Pham, Zbigniew Kalbarczyk, and Rav-

ishankar K Iyer. A performance evaluation of sequence alignment software in virtu-

alized environments. In Cluster, Cloud and Grid Computing (CCGrid), 2014 14th

IEEE/ACM International Symposium on, pages 730–737. IEEE, 2014.

[24] Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio. An updated perfor-

mance comparison of virtual machines and linux containers. In Performance Analysis

of Systems and Software (ISPASS), 2015 IEEE International Symposium On, pages

171–172. IEEE, 2015.

[25] Andreas Fischer, Ali Fessi, Georg Carle, and Hermann de Meer. Wide-area virtual

machine migration as resilience mechanism. In Reliable Distributed Systems Work-

shops (SRDSW), 2011 30th IEEE Symposium on, pages 72–77. IEEE, 2011.

[26] Abel Gordon, Nadav Amit, Nadav Har’El, Muli Ben-Yehuda, Alex Landau, Assaf

Schuster, and Dan Tsafrir. Eli: bare-metal performance for i/o virtualization. ACM

SIGPLAN Notices, 47(4):411–422, 2012.

111

[27] James Hadley, Yehia Elkhatib, Gordon Blair, and Utz Roedig. Multibox: lightweight

containers for vendor-independent multi-cloud deployments. In Workshop on Em-

bracing Global Computing in Emerging Economies, pages 79–90. Springer, 2015.

[28] Sijin He, Li Guo, and Yike Guo. Real time elastic cloud management for limited

resources. In Cloud Computing (CLOUD), 2011 IEEE International Conference on,

pages 622–629. IEEE, 2011.

[29] Khaled Z Ibrahim, Steven Hofmeyr, Costin Iancu, and Eric Roman. Optimized

pre-copy live migration for memory intensive applications. In Proceedings of 2011

International Conference for High Performance Computing, Networking, Storage and

Analysis, page 40. ACM, 2011.

[30] Hai Jin, Li Deng, Song Wu, Xuanhua Shi, and Xiaodong Pan. Live virtual ma-

chine migration with adaptive, memory compression. In 2009 IEEE International

Conference on Cluster Computing and Workshops, pages 1–10. IEEE, 2009.

[31] Umar Kalim, Mark K Gardner, Eric J Brown, and Wu-chun Feng. Seamless migra-

tion of virtual machines across networks. In 2013 22nd International Conference on

Computer Communication and Networks (ICCCN), pages 1–7. IEEE, 2013.

[32] Oren Laadan and Jason Nieh. Operating system virtualization: practice and expe-

rience. In Proceedings of the 3rd Annual Haifa Experimental Systems Conference,

page 17. ACM, 2010.

[33] Horacio Andrés Lagar-Cavilla, Joseph Andrew Whitney, Adin Matthew Scannell,

Philip Patchin, Stephen M Rumble, Eyal De Lara, Michael Brudno, and Mahadev

Satyanarayanan. Snowflock: rapid virtual machine cloning for cloud computing. In

Proceedings of the 4th ACM European conference on Computer systems, pages 1–12.

ACM, 2009.

[34] Wubin Li and Ali Kanso. Comparing containers versus virtual machines for achieving

112

high availability. In Cloud Engineering (IC2E), 2015 IEEE International Conference

on, pages 353–358. IEEE, 2015.

[35] Jiuxing Liu, Wei Huang, Bülent Abali, and Dhabaleswar K Panda. High performance

vmm-bypass i/o in virtual machines. In USENIX Annual Technical Conference,

General Track, pages 29–42, 2006.

[36] Jeanna Neefe Matthews, Wenjin Hu, Madhujith Hapuarachchi, Todd Deshane,

Demetrios Dimatos, Gary Hamilton, Michael McCabe, and James Owens. Quan-

tifying the performance isolation properties of virtualization systems. In Proceedings

of the 2007 workshop on Experimental computer science, page 6. ACM, 2007.

[37] David Meisner, Junjie Wu, and Thomas F Wenisch. Bighouse: A simulation infras-

tructure for data center systems. In Performance Analysis of Systems and Software

(ISPASS), 2012 IEEE International Symposium on, pages 35–45. IEEE, 2012.

[38] Dejan S Milojičić, Fred Douglis, Yves Paindaveine, Richard Wheeler, and Songnian

Zhou. Process migration. ACM Computing Surveys (CSUR), 32(3):241–299, 2000.

[39] Andrey Mirkin, Alexey Kuznetsov, and Kir Kolyshkin. Containers checkpointing and

live migration. In Proceedings of the Linux Symposium, volume 2, pages 85–90, 2008.

[40] Mayank Mishra, Anwesha Das, Purushottam Kulkarni, and Anirudha Sahoo. Dy-

namic resource management using virtual machine migrations. IEEE Communica-

tions Magazine, 50(9):34–40, 2012.

[41] Roberto Morabito, Jimmy Kjällman, and Miika Komu. Hypervisors vs. lightweight

virtualization: a performance comparison. In Cloud Engineering (IC2E), 2015 IEEE

International Conference on, pages 386–393. IEEE, 2015.

[42] Michael Nelson, Beng-Hong Lim, Greg Hutchins, et al. Fast transparent migration

for virtual machines. In USENIX Annual technical conference, general track, pages

391–394, 2005.

113

[43] Nathan Regola and Jean-Christophe Ducom. Recommendations for virtualization

technologies in high performance computing. In Cloud Computing Technology and

Science (CloudCom), 2010 IEEE Second International Conference on, pages 409–

416. IEEE, 2010.

[44] Fabian Romero and Thomas J Hacker. Live migration of parallel applications with

openvz. In Advanced Information Networking and Applications (WAINA), 2011

IEEE Workshops of International Conference on, pages 526–531. IEEE, 2011.

[45] Kyoung-Taek Seo, Hyun-Seo Hwang, Il-Young Moon, Oh-Young Kwon, and Byeong-

Jun Kim. Performance comparison analysis of linux container and virtual machine

for building cloud. Advanced Science and Technology Letters, 66:105–111, 2014.

[46] Stephen Soltesz, Herbert Pötzl, Marc E Fiuczynski, Andy Bavier, and Larry Peter-

son. Container-based operating system virtualization: a scalable, high-performance

alternative to hypervisors. In ACM SIGOPS Operating Systems Review, volume 41,

pages 275–287. ACM, 2007.

[47] Cheng-Chun Tu, Michael Ferdman, Chao-tung Lee, and Tzi-cker Chiueh. A com-

prehensive implementation and evaluation of direct interrupt delivery. In ACM SIG-

PLAN Notices, volume 50, pages 1–15. ACM, 2015.

[48] David C Van Moolenbroek, Raja Appuswamy, and Andrew S Tanenbaum. Towards

a flexible, lightweight virtualization alternative. In Proceedings of International Con-

ference on Systems and Storage, pages 1–7. ACM, 2014.

[49] Timothy Wood, K Ramakrishnan, J Van Der Merwe, and P Shenoy. Cloudnet:

A platform for optimized wan migration of virtual machines. University of Mas-

sachusetts Technical Report TR-2010-002, 2010.

[50] Timothy Wood, Prashant J Shenoy, Arun Venkataramani, and Mazin S Yousif. Black-

114

box and gray-box strategies for virtual machine migration. In NSDI, volume 7, pages

17–17, 2007.

[51] Yangyang Wu and Ming Zhao. Performance modeling of virtual machine live migra-

tion. In Cloud computing (CLOUD), 2011 IEEE international conference on, pages

492–499. IEEE, 2011.

[52] Miguel G Xavier, Marcelo V Neves, Fabio D Rossi, Tiago C Ferreto, Timoteo Lange,

and Cesar AF De Rose. Performance evaluation of container-based virtualization for

high performance computing environments. In 2013 21st Euromicro International

Conference on Parallel, Distributed, and Network-Based Processing, pages 233–240.

IEEE, 2013.

[53] Yi Zhao and Wenlong Huang. Adaptive distributed load balancing algorithm based

on live migration of virtual machines in cloud. In INC, IMS and IDC, 2009. NCM’09.

Fifth International Joint Conference on, pages 170–175. IEEE, 2009.

115

