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Summary

Software Defined Networking is a recent emerging field of networking. It provides
enhanced programmability, cost-effectiveness and increased levels of experimenta-
tion to networks. Beginning with the introduction of the OpenFlow protocol in 2008,
it has been adopted by many companies including Google, who use it in their data
centers. With the growth of Internet traffic levels, guaranteed levels of bandwidth
are becoming more of a necessity for online services particularly media streaming
platforms. The aim of this dissertation is to provide an insight into the field of Soft-
ware Defined Networking. It’s contribution to the field is an examination of capac-
ity reservation in SDN and what open source SDN controllers can offer networking
operators in implementing BoD.

This dissertation outlines the necessary steps to develop a bandwidth reservation
system using Ryu as the controller. It provides a listing of results gathered over the
course of the implementation which can be used as a foundation for further work in
the field or as a point of reference for anyone aiming to implement such a system in
their network.

The results gathered over the course of the dissertation indicate that open source
SDN controllers can led sufficient bandwidth reservation mechanisms to network
operators. However, it has been ascertained that certain functionality is lacking.
Aspects such as a lack of online resources and limited topological functions means
there is room for future work and improvements. As the field continues to grow in
popularity, the shortcomings it currently exhibits are expected to diminish.
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by Ciaran Egan

Software Defined Networking (SDN) is an emerging paradigm in computer net-
working that enhances network programmability by providing an interface to the
control plane of networking devices. Bandwidth is the lifeblood of the Internet and
as a result Bandwidth on Demand (BoD) is becoming an increasingly important re-
quirement for service providers with the continuous growth of Internet traffic levels.
The aim of this dissertation is to provide an insight into the field of Software Defined
Networking. It’s contribution to the field is an examination of capacity reservation
in SDN and what open source SDN controllers can offer networking operators in
implementing BoD. Through describing the steps necessary to implement a band-
width reservation system using Ryu, an open source SDN controller, this disser-
tation highlights that open source SDN controllers provide sufficient functionality
to carry out capacity reservation. Although lacking functionality in certain areas,
the results gathered indicate that open source SDN controller solutions can compete
with their proprietary equivalents.
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Chapter 1

Introduction

1.1 The Subject of Research

Software Defined Networking has become an increasingly popular paradigm of
computer networking since the introduction of the OpenFlow protocol[McKeown
et al., 2008] in 2008. By providing an interface to the control plane of Ethernet
switches (where decisions related to the forwarding of traffic are made), OpenFlow
enables a centralised control point for managing traffic flows. Changing traffic rout-
ing decision-making from the traditional distributed approach to a centralised solu-
tion provides a comprehensive overview of the network in addition to new levels of
programmability. SDN provides a cost-effective and extensible infrastructure that
has extended it’s use cases to managing the data centres of large companies such as
Google[Jain et al., 2013]. As the number of networking device vendors supporting
OpenFlow continues to grow, continued innovation in the field is expected.

As more networks migrate towards software and virtualized solutions, mechanisms
such as Bandwidth on Demand (BoD) are being re-implemented in an SDN context.
Implementing BoD in a network allows for a specific level of bandwidth to be re-
quested and reserved over that network for a specific length of time. However, due
to the inflexible nature of non-SDN driven networks, reservations can take up to
weeks to process. The programmability and flexibility provided by SDNs mean that
such bandwidth requests could be granted instantaneously.

This thesis is an examination of bandwidth reservation in SDN and what open-
source controllers can lend to network operators in implementing BoD in their net-
works. It is intended to provide an evaluation of the level of support for bandwidth
reservation mechanisms provided by Ryu, an open-source controller. Quality of
Service (QoS) is the overall performance of a network and is measured by attributes
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such as latency, bit rate and throughput. Numerous mechanisms exist to guarantee
QoS across a network and this thesis aims to examine how these mechanisms can
be implemented and perform in an SDN context. Finally, it examines what system
components are required in order to develop an SDN-driven bandwidth reservation
management system.

1.2 Motivation for Research Topic

There are a great many benefits provided by SDNs over their traditional counter-
parts. Their programmable nature provide reduced maintenance costs and im-
proved levels of control over network state. Their ability to transform simple switch-
ing devices into an array of middleboxes reduces costs as network operators can
focus on a reduced set of device command sets. On-the-fly modifications of traffic
flows provide mechanisms for diverting traffic away from damaged nodes, provid-
ing networks that are more tolerant to failure.

Internet traffic will exceed a zettabyte (1 trillion gigabytes) in 2016 and is expected to
double by 2019[Cisco Global IP Traffic Forecast 2015]. The emergence of online media
streaming services has created a need for a networking infrastructure where band-
width can be reserved in a timely manner without requiring large-scale network
modifications.

The novelty of the field could potentially lead network operators to use trusted ven-
dor SDN controllers. This dissertation aims to show that open source controllers
provide ample functionality and can compete with their proprietary counterparts.

1.3 Dissertation Overview

Section 2 provides background information on SDN, OpenFlow and SDN controllers.
It highlights the motivation behind SDN by discussing the shortcomings of modern
IP networks.

Section 3 is a description of the implementation steps that were taken throughout
the course of the dissertation and it provides an overview of each component of the
system.
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In section 4, the results of the implementation are discussed. A description of what
Ryu can offer in implementing capacity reservation is detailed.

Section 5 contains an overall evaluation of the implementation and the challenges
faced, an evaluation of the results gathered and any future work.
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Chapter 2

State of the Art

This section will provide an overview of the need, uses and key components of
SDNs.

2.1 LAN Switching

LAN switching is a type of packet switching utilised in Local Area Networks (LANs).
It is enabled by a series of connected network switches that forward traffic to it’s
destination device. The main type of switching that is relevant to this dissertation is
layer 2 switching.

Layer 2 operates at the data link layer of the OSI model[Zimmermann, 1988] and
forwards packets based on their destination MAC address. Each switch has a col-
lection of ports and a MAC address table that maps MAC addresses to the port
traffic must take in order to reach that address. In the event of a switch not having
an entry for the MAC address in it’s table, it floods all of it’s ports with a broadcast
message requesting the location of the MAC address. Each connected switch relays
this broadcast message to all of it’s neighbours until eventually a switch replies. This
reply is traced back to the original switch that initially requested the location of the
MAC address and MAC tables are updated by each switch along the way to reflect
the newly discovered MAC address.

In section 2.2.2, OpenFlow is discussed which provides an overview of the type of
functionality augmentation it can provide to switches.
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2.2 Software Defined Networking

2.2.1 Issues with Traditional IP Networks

To illustrate the motivation behind SDN, this section provides an account of some
of the difficulties associated with traditional IP networks. Firstly, they are complex
and difficult to manage[Benson, Akella, and Maltz, 2009]. Traditional computer
networks can be divided into three planes:

• The data plane: The networking devices that forward data across the network.

• The control plane: The protocols that populate the tables used by the forward-
ing devices in the data plane such as Open Shortest Path First (OSPF)[Moy,
1998].

• The management plane: These are the software tools that monitor and interact
with the control planes of networking devices and are generally Command
Line Tools (CLIs) or Graphical User Interfaces (GUIs).

Both the control and data plane reside on the networking devices in traditional IP
networks. This was so to provide resilience to networks and also provided increased
port densities and line-rates. However, this also provides very little flexibility for IP
networks as the control and data planes are vertically integrated.

Middleboxes[Jamjoom, Williams, and Sharma, 2014] were added to improve a net-
works functionality but this increased the complexity of networks as the hetero-
geneity of the network devices adds increased command sets for network oper-
ators. These devices such as loadbalancers and firewalls need to be strategically
placed in a network. Reconfiguring of devices to handle failure cases, updates and
infrastructure changes can be an arduous process that usually requires taking them
offline, leading to downtime of network segments. Innovating, evolving, designing
and managing networks is restricted by it’s inflexibility. Topologies can’t be altered
as easily without providing updates to multiple devices. An example of the near-
immutability of IP networks can be seen in the upgrading from IPv4 to IPv6 in IP
networks. Over 10 years has been spent upgrading the address space and it isn’t
expected to completely replace IPv4 until May 2148[Prince, 2013] at the current rate.
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2.2.2 Towards SDN

SDN is a relatively new paradigm in computer networking. The term first came
to prominence with the release of OpenFlow: Enabling Innovation in Campus Net-
works[McKeown et al., 2008] in 2008. However the idea of programmable networks
has been around long before the inception of OpenFlow. The idea to separate the
control and data planes of devices has been around since the 1980s with projects
such as NCP[Sheinbein and Weber, 1982] making use of the global view of the net-
work. In 1997, active networks[Tennenhouse et al., 1997] was an early attempt to
enable data plane programmability. It enabled nodes to modify packet attributes
and to perform computations on packet values. Another project that influenced
the development of OpenFlow are programmable ATM networks[Lazar, Lim, and
Marconcini, 1996]. The architecture that was developed provided an open pro-
grammable environment that enables the creation of services or network applica-
tions.

Building and combining ideas from these projects led to the introduction of the
OpenFlow[McKeown et al., 2008] standard: a protocol for interfacing capabilities
with flow tables of Ethernet switches. This interface provides functionality to re-
move the vertically integrated nature of the control and data planes of network
devices by moving their control logic to a remote, centralised controller. The aim
of OpenFlow was to encourage experimentation in networks. The inflexibility of
networks mentioned in section 2.2.1 meant any experimentation would require con-
siderable time and effort due to the static nature of their organisation. Researchers
at Stanford found that OpenFlow allowed them to segment sections of their campus
network for experimentation without affecting the overall performance of efficiency
of the network. Traffic flows were partitioned between production and research
flows allowing for new protocols to be tested without having to build an entirely
new research networking infrastructure.

As SDN has evolved to it’s current state, there are a number of defining characteris-
tics that are used to quantify it:

• The control plane (where decisions about where traffic is sent are made) and
data plane (where the forwarding of traffic is performed) of network devices
are separated, transforming their function to simple forwarding devices.

• With the decoupling of control and data planes, the control planes of the for-
warding devices are managed remotely in a logically centralised controller
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called an SDN controller or Network Operating System (NOS).

• Forwarding decisions are flow-based (a sequence of packets between two nodes:
source and destination) rather than the existing distributed approach of destination-
based.

• As a result of the three characteristics above, SDNs are programmable.

The programmability of SDNs are considered their primary selling point. They en-
able network operators to dynamically alter flow tables. This provides the abil-
ity to modify network policies on-the-fly. Flows can be redirected around nodes
that are down. The centralised nature of the networks control plane provides an
easy to understand and comprehensive overview of the entire network. This sim-
plifies updating, modifying and building applications for the network. The con-
troller is hosted on commodity server hardware and so various implementations
with APIs in high-level languages are available. The flow-based concept means that
various networking devices such as routers, switches, loadbalancers and other mid-
dleboxes[Jamjoom, Williams, and Sharma, 2014] devices are unified in functionality,
providing increased flexibility to network operators.

OpenFlow

OpenFlow is a protocol that provides access to the forwarding planes of network de-
vices. First implemented in a campus network in Stanford University in 2008[McK-
eown et al., 2008], OpenFlow provides access to a devices control plane allowing for
flow-table entries to be added, removed and modified instantly without needing to
take the device offline. OpenFlow switches are composed of at least three parts:

• A flow table. A table that performs actions on incoming packets based on
filtering criteria.

• A secure channel. This is for communication between the switch and the re-
mote control point for the switches forwarding logic.

• The OpenFlow protocol itself. It provides a way for the controller to interact
with a switch and means that network operators don’t need to program the
switch individually.

Once a switch complies with the three requirements above, it can operate in an SDN
context. There is an increasing number of networking device vendors that support
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OpenFlow. The design of an OpenFlow switch means that vendors can support
OpenFlow without having their internal workings exposed. In addition to ven-
dors such as Cisco[Cisco, 2015] and Pica8[Bill Oliver, 2014] providing support for
OpenFlow, there are also open-source and virtual switch solutions such as Open
vSwitch[Pfaff et al., 2015] that can operate as OpenFlow devices.

FIGURE 2.1: OpenFlow switch design.
McKeown et al., 2008

OpenFlow-compatible switches contain a flow table. A flow table can easily be sub-
stituted for a MAC table but the relationship is not reversible. Each flow table entry
contains three fields:

• A rule field. This is a label for identifying (matching) packet headers. The pro-
tocol currently supports a multitude of headers such as Ipv4, Ipv6, Ethernet,
TCP/UDP and MPLS.

• An action field. This is for defining the action to be taken upon the matching
criteria in the rule field being met. Examples include, outputting the packet to
a specific port, outputting the packet to the controller for further inspection,
drop the packet for QoS or security reasons, or pass the packet to another flow
table where further matching and actions can occur.

• A stat field. This monitors the frequency of occurrence of a particular flow
entry.

The types of messages provided by OpenFlow can be categorised into two types:
switch-to-controller and controller-to-switch messages. Messages from the controller
to switch are primarily pertaining to the management or retrieval of the switches
state. Examples of such messages include a modify-state message (how flow entries
are added, deleted or modified) and a read-state message that returns statistics on
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the switch. Messages intended for the controller that originate from a switch are
for the most part asynchronous. These messages include error messages (how the
switch indicates to the controller that it is experiencing problems), packet-in mes-
sage (the switch forwards an incoming packet to the controller either purposely or
die to no matching fields in the flow table).

To demonstrate the OpenFlow protocol in action, a description of the messages
passed between the switch and the controller to establish a connection, retrieve stats
from the switch and modify a flow are as follows1:

1. The switch sends an OFPT_HELLO message to notify the controller of it’s ex-
istence in the network. This message includes the value of the highest version
of OpenFlow that it supports. The controller chooses the version of OpenFlow
that it will use based on the clients supported versions and replies with an
OFPT_HELLO message containing the version that will be used throughout
the session.

2. The controller sends an OFPT_FEATURES_REQUEST message to the switch.
This message contains just a header and queries the switch for it’s capabilities.
The switch responds with a OFPT_FEATURES_REPLY message which returns
information such as the number of tables present, the switches datapath ID,
the list of it’s ports, it’s list of available OpenFlow actions (examples include
outputting to specific port or modifying packet headers) and it’s list of Open-
Flow capabilities (examples include monitoring flow and table statistics).

3. To retrieve statistics on a switch, the controller sends an OFPT_SET_CONFIG
message to the switch outlining configuration settings such as the maximum
bytes of packet it should send to the controller and the set of configuration
flags to be used. At this point, a successful connection has been established
between the switch and controller.

4. The controller can request the state from the switch using the
OFTP_MULTIPART_REQUEST message. The types of data that can be re-
turned include statistics on various flows, tables or ports amongst others. In
addition to these statistics, information such as port descriptions and table fea-
tures can be requested in this message. Multiple request types can be chained
together in a single multipart request. The switch replies with a

1Assume a standard TCP, SCTP or TLS/SSL has been established between the switch and con-
troller.
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OFPT_MULTIPART_REPLY with an attached list of replies to the controllers
requests.

5. To add, delete or modify a flow entry on a switch, the controller sends a
FLOW_MOD request. Examples of flow-modification messages include OF-
PFC_ADD, OFPFC_DELETE and OFPFC_MODIFY. In the event of a success-
ful flow modification, the switch doesn’t reply. In the event of an error occur-
ring, the switch responds asynchronously to the controller with a
OFPET_FLOW_MOD_FAILED message.

FIGURE 2.2: OpenFlow 1.3 switch detailing the chaining of tables to
create a packet pipeline processing architecture.

[OpenFlow Switch Specification 2012]

An OpenFlow-enabled switch needs to have at least one flow table. Flow tables are
sequentially numbered beginning with 0. The creation and chaining of flow tables
creates a processing pipeline for incoming packets. This pipeline is visualised in
Figure 2.2. Packets can only be forwarded to tables in ascending numerical order
meaning a packet cannot be processed by the same table twice thus preventing cy-
cles. As a packet is processed by tables, it builds up it’s action set and does not
execute the series of actions until it has either reached the end of the pipeline, or a
particular table has decided not to forward it to the next.

SDN Controller

The benefits provided by OpenFlow (or an alternative protocol) aren’t scalable with-
out an orchestrator component that provides a level of abstraction above the proto-
cols command set. Having to add and modify flows on a per-switch basis every time
a device is started up, although an improvement on non-OpenFlow compatible de-
vices, isn’t scalable. To alleviate this, an SDN controller is required. Also known
as a Network Operating System (NOS), it acts as the "brains" of the network. It’s a
centralised point where all forwarding decisions for an SDN are made. It interacts
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with switches over what’s called a southbound API or interface and communicates
with business logic and applications via a northbound API where high-level pro-
gramming languages can provide directives to the controller.

SDN controllers typically handle repetitive tasks such as the initial handshake and
the reporting of OpenFlow errors. As mentioned above, using OpenFlow com-
mands on their own isn’t scalable. They provide an abstraction from the ’low-level’
OpenFlow commands provided by the southbound interface into an easier-to-use
package. The NOS facilitates in making network operations simpler[Gude et al.,
2008a] and provides a comprehensive overview of the network state.

There are both centralised and decentralised controllers available. Centralised con-
trollers provide a unified interface to the network but are also a single point of fail-
ure. These controllers are suited to smaller networks. As networks grow, more
controllers need to be added and so decentralised controllers are favoured due to
their interoperability support. Decentralised controllers, although more complex,
can be scaled easier and are more tolerant to failure. Due to its dominance in the
southbound API market, most controllers only support OpenFlow. Controllers also
contain east and westbound interfaces which are what enables multiple controllers
to communicate and coordinate between SDNs.

2.2.3 SDN Architecture

In Figure 2.3, the layers of abstraction provided by the SDN architecture are shown.

The lowest level of abstraction is the network infrastructure. It corresponds to the
hardware network forwarding devices (switches, routers, loadbalancers etc.). As is a
characteristic of SDNs, these devices only manage their data plane, the control logic
has been removed. These devices support an interface such as OpenFlow which
allows for the remote control of their control logic. Networking device vendors
are now producing networking devices that support the OpenFlow standard. In
addition, software switches such as Open vSwitch[Open vSwitch - http://vswitch.org
2013] that support OpenFlow are becoming more prominent in virtualized networks
and data centers[Weissberger, 2013].

The southbound interface is an interface for the SDN controller to interact with the
forwarding device. Open vSwitch Database Management Protocol (OVSDB)[Pfaff
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FIGURE 2.3: SDN architecture and it’s fundamental abstractions as (a)
planes, (b) layers and (c) system design architecture.

[Kreutz et al., 2014]

and Davie, 2013a] and OpenFlow are examples of such interfaces. OpenFlow (devel-
oped by the Open Networking Foundation[ONF, 2014]) is the most widely received
southbound interface and network device vendors such as CISCO and Juniper sup-
port it, providing further room for expansion for SDNs.

A network hypervisor allows for multiple virtual servers to be hosted on a sin-
gle hardware device, sharing CPU, disk memory and other computing resources.
This idea, called virtualization, is an already defined paradigm in computer sci-
ence[Chowdhury and Boutaba, 2010]. Virtual servers or machines can be easily
ported to different networking devices as needed providing flexibility and failover
in the event of a physical server going down.

The fourth layer of the SDN abstraction stack is the network operating system or the
controller. This is where the control logic of the forwarding devices is managed. It
has been covered in section 2.2.2.

The northbound interface is an interface between the management and control planes.
Where the southbound interface is a hardware interface between layers, the north-
bound interface is a software implementation. A lot of SDN controllers contain their
own northbound interface[Ferro, 2012] such as NOX and OpenDaylight. However
the variance in these APIs means that there is no de facto API, unlike how OpenFlow
is widely accepted as being the primary southbound API. The emergence of a single
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northbound interface is difficult due to the nature of varying network applications
built on top of this interface.

Language-based virtualization provides modularity to networks[Messaoud et al.,
2014] and abstracts the complexity and dynamic nature of the physical infrastruc-
ture.

Programming languages provide the simplest level of abstraction for the develop-
ment of SDNs. Here, programmers can write scripts in their preferred language of
choice to modify the network state, which is more favourable than writing ’low-
level’ OpenFlow (or another southbound API) commands. This high level of ab-
straction provides functionality to easily modify the flow tables of forwarding de-
vices. High level programming languages enable configurations to be modularised
and reused. Management becomes easier and so more time is available to network
operators to further develop and further innovate.

2.2.4 Use Cases and Benefits

The types of applications that can be developed using SDN are numerous. They can
be grouped into (but not limited to) 5 main categories[Kreutz et al., 2014]:

• Traffic engineering: Examples include load balancing, router configuration
and traffic optimisation applications.

• Mobility and wireless: Example is Light virtual access points (LVAPs)[Suresh
et al., 2012] and AeroFlux, a hierarchical WLAN control plane.

• Measurement and monitoring: These applications are for supervising a net-
work.

• Security and dependability: Examples include firewalls, access controls and
middlebox implementations.

• Data centre networking: The flexibility and modularity of virtualized net-
works provide a perfect framework to build data centres upon. Combining
the previous four application categories, responsive data centres can be built.

SDNs are cost effective. Middleboxes such as load balancers or routers can be im-
plemented on switches using combinations of OpenFlow commands and features.
Assuming the switches meet the correct criteria (such as a specific version of the
southbound interface), combinations of flow entries can be used to emulate various
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types of middlebox. It is worth noting that switches cannot be a direct replacement
for all middleboxes in every situation. Specialised hardware such as an SSL accel-
erator in a load balancer cannot be emulated on switches with the same level of
performance. SDN controllers don’t require specialised hardware to operate so can
be hosted on commodity server hardware.

2.3 Open Source SDN Controllers

2.3.1 Overview

With the introduction of OpenFlow in 2008, a number of open source SDN con-
trollers emerged that aimed to augment the newfound functionality provided by
the protocol. They are typically organised as a collection of applications or modules
that can be selectively executed. Out-of-the-box modules typically include APIs
that provide information about the network topology or install router or almost any
middlebox settings onto a switch to modify its behaviour. In addition to the array
of modules offered by controllers, new ones or customised versions of existing ones
may also be developed. ONOS[Berde et al., 2014], NOX[Gude et al., 2008b] and Bea-
con[Erickson, 2013] are examples of open source controllers that have been built on
top of the functionality provided by OpenFlow.

2.3.2 Ryu

Ryu[Nippon Telegraph and Telephone Corporation, 2012] is a component-based
software defined networking framework. Supported by NTT labs in Japan, Ryu
is built entirely in Python. It is managed and sustained by the Ryu community. It
provides SDN components or apps with APIs that are both configurable and easy to
deploy. It has been certified to work with a multitude of switches including Open
vSwitch.

Ryu is composed of a number of components or SDN apps. These provide a range
of functionality including:

• Firewall API. This REST API provides an interface to configuring switches to
behave as firewalls. Ryu also provides a similar app for implementing router
functionality in a switch.
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• QoS API. Ryu provides APIs to modify switch behaviour so that bandwidth
can be allocated to flows. It supports mechanisms such as meter tables or
Differentiated Services.

• Topology API. This is a REST interface that provides topological information
such as switches and their associated ports, links and hosts.

• Switch flow-table API. This provides a REST API where flow entries for a
switch can be retrieved, added, deleted or modified. Statistics on flows, flow
tables, queues, meter tables and ports amongst many more can be obtained.

2.4 Capacity Reservation

To illustrate the motivation behind Bandwidth on Demand (BoD)[Bernstein, 2006]
or capacity reservation in networking, consider two types of file transfer. The first
is the transfer of a video file from one host to another across an IP network. Packets
are forwarded through the network, some are dropped. The packets are sharing
the same bandwidth as other streams of packets. As the bandwidth between two
switches reaches maximum capacity, the switch drops2 any packets it cannot send
and they are re-sent by the host. The dropping and re-sending of packets in this
instance is relatively acceptable because, assuming no major network failures, the
video file will eventually reach its destination. Once the transfer is complete, the
video can be viewed at the exact same quality as it was sent at.

Now consider the scenario where a video is being streamed live. Here, the rate at
which packets are sent is important. In this case if packets are dropped, the quality
of the video is affected. Services such as Netflix and Sky Go depend on a reliable
end-to-end connection between hosts to provide their service to customers at an ac-
ceptable standard. They require the reservation of bandwidth in order to guarantee
their service.

As mentioned before, IP networks are inflexible. The increasing amount of traffic
passing through them[Korotky, 2013] would suggest that the likelihood of packet
dropping is also increasing. The need for bandwidth reservation is becoming more
prominent for companies that depend on reliable connections. As services request

2Switches have a small amount of memory dedicated to queueing packets it cannot forward at
the time. For this example we will assume the buffer is full.
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capacity, the current implementation would involve re-configuring individual switches
to alter their data-planes to provide more capacity.

A software defined implementation of BoD could dynamically alter the bandwidth
allocations of clients instantaneously upon request, while automatically scaling ca-
pacity back once their allowance expires. This would remove the laborious config-
uration changes required at present in IP networks. It can take weeks for service
providers to allocate bandwidth in modern IP networks. An SDN-driven solution
could complete such an allocation in a matter of seconds.
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Chapter 3

Design & Implementation

3.1 System Components

3.1.1 Bandwidth Reservation System Architecture

FIGURE 3.1: Architecture of the bandwidth reservation system.
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Database Models

To maintain track of the network state, persistent storage of the relevant information
was needed. The database schema is outlined in Figure 3.2.

FIGURE 3.2: UML class diagram representing the database models.

An entry to the port table represents a port on a switch. It maintains a reference to
it’s switch by storing it’s id. It is identified from other ports for a given switch by
it’s port_no column which is a representation of it’s port number.

CREATE TABLE port (

id INTEGER NOT NULL,

switch INTEGER,

port_no INTEGER,

PRIMARY KEY (id),

FOREIGN KEY(switch) REFERENCES switch (dpid)

);
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An entry to the host table represents a host that is connected to the network. It keeps
a reference to the ID of the port with which it first makes contact with when sending
traffic through the network. This supports hosts that are connected directly to the
network and hosts that have more than one hop between itself and the network. A
copy of it’s IP address and MAC address are also stored.

CREATE TABLE host (

id INTEGER NOT NULL,

mac VARCHAR,

ip VARCHAR,

port INTEGER,

PRIMARY KEY (id),

FOREIGN KEY(port) REFERENCES port (id)

);

An entry to the link table represents an inter-switch link. It stores the IDs of the
two ports that it is connected to which can then be traced back to the switches via
the port’s ’switch’ column. The bandwidth is stored as an integer with the value
represented in bits.

CREATE TABLE link (

id INTEGER NOT NULL,

src INTEGER,

dst INTEGER,

bandwidth INTEGER,

PRIMARY KEY (id),

FOREIGN KEY(src) REFERENCES port (id),

FOREIGN KEY(dst) REFERENCES port (id)

);

An entry to the switch table represents a switch in the network. The only value it
maintains is it’s datapath ID as it’s primary key.

CREATE TABLE switch (

dpid INTEGER NOT NULL,

PRIMARY KEY (dpid)

);

A reservation row represents a bandwidth reservation. It maintains the IP addresses
of a source and destination host along with the ingress port (the port the source
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host’s traffic will first make contact with in the network) and the egress port (the
port at which the reserved traffic leaves the network as it travels towards the desit-
nation host) of the flow. The bandwidth to be requested is an integer that represents
the capacity to be reserved in bits. The mpls_label column was used as an initial
implementation where traffic was identified on the network by means of allocating
a value to each reserved flow to be set in the MPLS header. Future work may still
avail of this functionality so the decision was made to leave it in the schema.

CREATE TABLE reservation (

id INTEGER NOT NULL,

src VARCHAR,

dst VARCHAR,

bw INTEGER,

mpls_label INTEGER,

in_port INTEGER,

out_port INTEGER,

PRIMARY KEY (id),

FOREIGN KEY(in_port) REFERENCES port (id),

FOREIGN KEY(out_port) REFERENCES port (id)

);

An entry to the port_reservation table represents a node (switch) along a reserved
flow. It maintains a reference to a reservation table entry. By retrieving all port-
reservations for a particular reservation, the path the flow takes through the network
can be determined. It stores the ID of the ingress port to each switch along a flows
path. Due to the deterministic nature of the function that maps a route from source
and destination host, the flow for a particular reservation can be determined by re-
running it. The reasoning behind including this table was to accommodate future
work that would enable more dynamic flows that change their path in response to
node failure or to make the best use out of the available bandwidth.

CREATE TABLE port_reservation (

id INTEGER NOT NULL,

port INTEGER,

reservation INTEGER,

PRIMARY KEY (id),

FOREIGN KEY(port) REFERENCES port (id),

FOREIGN KEY(reservation) REFERENCES reservation (id)
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);

Database Layer

SQLAlchemy is an Object Relational Mapper (ORM) Python library that converts
Python classes and their instances to database tables and rows. This removed the
necessity to write raw database-engine specific queries. An example of the port table
represented using SQLAlchemy is shown below.

class QoSHost(Base):

"""

Class to represent a host.

"""

__tablename__ = "host"

id = Column(Integer, primary_key=True, autoincrement=True)

mac = Column(String)

ip = Column(String, nullable=True)

port = Column(ForeignKey("port.id"))

Interactions with the database are made using SQLAlchemy’s session object. This
provides an interface to modify rows of a table that is similar to modifying attributes
of a Python object. Attributes are either added, modified or deleted and the com-
mit() function of the session class is called which takes any changes made to the
SQLAlchemy objects and persists those changes in the database. This meant that
database interactions didn’t have to be made using a database-specific language.

The ability to abstract away from a specific database engine such as MySQL or
SQLite is provided by SQLAlchemy’s database connection object that handles mul-
tiple database engines. Although SQLite was chosen as the engine of choice during
the implementation stage, SQLAlchemy’s flexibility would allow for a MySQL or
PostgreSQL database to be connected instead with minimal configuration changes.

Ryu-Interface

The RyuManager component of the system is dedicated to communicating with the
Ryu APIs. Using Python’s requests library, it takes the parameters required by the
Ryu API from the QoSTracker component and correctly packages them into JSON
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format. The request is sent to the appropriate Ryu API endpoint and returns the
returned response to QoSTracker.

The types of requests that are handled by the RyuManager are as follows:

• Configure the OVSDB address on a switch. This is so the switch knows where
to access OVSDB from in the event of any needed configuration changes. It
communicates with Ryu’s rest_conf_switch API. It accepts a single parameter,
the location of a running OVSDB process in the format <protocol>:<host>:<port>
to the url ’http:<host>:<port>/v1.0/conf/switches/<switch_id>/ovsdb_addr’.

• Add a packet-marking flow. This request configures a particular switch to
mark any incoming packets that are recognised as reserved traffic. The node
that this is rule is added to will mark packets based on their priority by assign-
ing a value to the DSCP header field in the IP packet. It determines whether
traffic is to be given a higher priority by matching on the source and destina-
tion IP addresses in the packet header. This request is sent to Ryu’s QoS rules
API which pertains to adding rules for prioritising traffic. The QoS rules url is
/qos/rule/switch-id and it accepts arguments in the following JSON format:

{

"match": {

"nw_dst": "10.0.0.1",

"nw_src": "10.0.0.4",

"nw_proto": "UDP"

},

"actions": {

"mark": 26,

"queue": 1

}

}

Upon the successful addition of the packet-marking rule, Ryu returns the fol-
lowing success message:

[

{

"switch_id":"0000000000000020",

"command_result":[

{
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"result":"success",

"details":"QoS added. : qos_id=1"

}

]

}

]

• Add a packet-checking flow. This adds a rule to check for a specific DSCP
header value. If the desired DSCP value is present in the packet, it is added to
the switch in questions higher priority queue. This request is made to Ryu’s
QoS rules API and accepts arguments in the following JSON format:

{

"match": {

"ip_dscp": 26

},

"actions": {

"queue": 1

}

}

Upon the successful addition of the packet-checking flow, the following is re-
turned in Ryu’s response:

[

{

"switch_id":"0000000000000030",

"command_result":[

{

"result":"success",

"details":"QoS added. : qos_id=1"

}

]

}

]

• Add QoS queue configurations. This request configures the maximum rates al-
located to traffic flows. The maximum rate at which best-effort (non-reserved)
traffic is defined along with the minimum rate guaranteed to reserved traffic.
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It interacts with Ryu’s QoS queues API at the /qos/queue/switch-id url and
accepts the following parameters in JSON format:

{

"port_name":"s0-eth1",

"type":"linux-htb",

"queues":[

{

"max_rate":"1000"

},

{

"min_rate":"750"

}

]

}

Upon the successful configuration of queues, Ryu’s QoS queues API returns:

[

{

"switch_id":"0000000000000010",

"command_result":{

"result":"success",

"details":{

"0":{

"config":{

"max-rate":"1000"

}

},

"1":{

"config":{

"min-rate":"750"

}

}

}

}

}

]
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Flask Server

The ability for clients (hosts) to request bandwidth was a necessary requirement for
this system so an API hosted on an HTTP server to accept information about band-
width reservations was required. Only one endpoint was necessary for the intended
implementation: the ability to post a request to the server to request bandwidth. The
only clients of this service would be hosts connected to the net so it’s frequency of
use and traffic volume would be very small.

Flask[Grinberg, 2014], a web micro-framework for Python, was chosen because it’s
lightweight and easy-to-use web-server provided the required functionality. It ac-
cepts a POST request to the ’add_reservation’ endpoint and requires the following
parameters in JSON format:

{

"src": "10.0.0.4",

"dst": "10.0.0.1",

"bw": 75

}

Topology Layer

The TopologyManager component contains topological functions and acts as a go-
between for the QoSTracker and the database layer. Not added until late into the
implementation phase, this layer was required as QoSTracker was handling a lot of
these functions and the codebase was becoming messy and unmanageable.

The first function housed by the topology layer is the retrieval of the maximum
bandwidth for a particular path (sequence of switches). A path in this instance is a
sequence of switches that represents a flow across the network. It is represented as
an array of switches with the first entry being the source host and the last represents
the destination host. It sequences through the switches, querying the database layer
for a link entry between each switch. The bandwidth of each link is stored. At
the end, the minimum value is returned as the maximum bandwidth as the flow’s
bandwidth is only as large as the smallest link.

The topology layer contains a function to get the available bandwidth for a particu-
lar path. This follows the same process as outlined in the
get_max_bandwidth_for_path() description above. The only difference is that for
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each link it examines, it also checks for any existing bandwidth reservations on each
link and subtracts them from the total bandwidth for each link. Once the available
bandwidth has been calculated for each hop along the path, the smallest value is
returned as the available bandwidth for the path.

Another function provided by the topology layer is one to find a route from source
host to destination host. This function is a naive solution to discover a sequence of
nodes across a network that join two hosts. It is a recursive function that operates
on a single switch at a time, maintaining a reference to the previous switch so to
prevent backtracking. The function accepts three arguments: the destination hosts
IP address, the current switch that is currently being examined (set to the switch
that the source host is connected to) and the switch it was previously examining (set
to null for the first iteration).

def get_route_to_host(self, dst_ip, switch, prev_switch=None)

The currently implemented algorithm works as follows:

1. Query the database layer for any hosts attached to the switch.

2. If there are hosts connected to the switch, the function checks their IPs to see if
they match the ’dst_ip’ it is looking for. If it finds it, it returns the switch in it’s
own array. If there are no hosts connected or no matching host connected the
function continues.

3. Get all of the switches that are connected to the current switch. If ’prev_switch’
is not null, it is excluded from the results returned.

4. If there are no neighbours, return null as this is the equivalent of the function
reaching a ’dead-end’. Otherwise, iterate over the neighbours, re-calling itself
with a neighbouring node as the node to search. If the function returns a path
(i.e. if it has found the host), the function returns this path, and adds the
current switch to the path (array of switches) as the first entry of the array,
pushing the other path elements to the left of the array by one. This is so the
ordering of the array represents the ordering of the nodes the traffic would
traverse across the path.

5. Once a path has been determined, it is returned.

This aspect of the system requires more work. This currently returns the first viable
route to the host it discovers and not the best. The option to return multiple paths
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would be an improvement and taking the bandwidths of links into consideration
would also yield a far more efficient path discovery function.

Capacity Reservation Manager (QoSTracker)

The QoSTracker component of the system acts as an orchestrator for the various
components and handles all of the business logic for the system. It’s main tasks
include:

• Upon starting the system, it initiates the RyuManager, TopologyManager and
DBConnection components.

• It handles incoming requests from the Flask server.

• Determines what QoS rules and queue configurations are necessary to enable
a particular bandwidth reservation and passes the relevent information to the
RyuManager to be sent to Ryu’s northbound API’s.

3.1.2 Network Topology

Mininet[Lantz, Heller, and McKeown, 2010] is a software emulator for prototyping
realistic virtual networks on a single machine. Testing the bandwidth reservation
system against a set of real hardware switches would have been time-consuming
(to set up) and inflexible (in it’s abilities to change topologically). Mininet offered
an easier way to test the bandwidth reservation system against. Rather than having
to wire up, configure and turn on a set of physical switches, the network topology
can instead be ran from within the same computer that the other system components
are hosted.

Mininet can create a network topology via a terminal command or programmati-
cally by calling the Mininet API from within a Python script. The latter option was
chosen for this project due to the increased levels of control provided by the API over
the command line interface. The Mininet API allows for the creation and naming of
hosts and switches, the definition of links between them, the types of firmware to
be installed on the switches, the type and location of a controller and the ability to
set link bandwidth.
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FIGURE 3.3: Network topology diagram.

Throughout the course of development, one particular topology was used to test
more than others. It can be seen in Figure 3.3. This topology was the topology that
was chosen to test against for the following reasons:

• For any traffic to pass between two hosts on opposite sides of the topology,
at least two hops are needed. This meant that to add a reservation, multiple
switches needed to be configured with different rules (ingress nodes contain
the packet-marking rule while the others contain the packet-checking flow).

• It is linear in nature for simplicity sake. The route-finding algorithm does not
account for cycles or multiple path choices.

• An old design of the project involved marking reserved traffic with MPLS la-
bels. Having three switches meant that there was one node to test that the
MPLS label was being added correctly, one switch to assert the MPLS label
carried throughout the network and the egress node was used to validate that
the MPLS label was being correctly removed as it leaves the network.

host0 = self.addHost(’h0’)

host1 = self.addHost(’h1’)

host2 = self.addHost(’h2’)

host3 = self.addHost(’h3’)

switch0 = self.addSwitch(’s0’, dpid=’0000000000000010’)

switch1 = self.addSwitch(’s1’, dpid=’0000000000000020’)
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switch2 = self.addSwitch(’s2’, dpid=’0000000000000030’)

# 100 Mbps

self.addLink(host0, switch0, bw=100) # s0.port_1: host0

self.addLink(host1, switch0, bw=100) # s0.port_2: host1

self.addLink(host2, switch1, bw=100) # s1.port_1: host0

self.addLink(host3, switch1, bw=100) # s1.port_1: host0

# 1 Mbps bandwidth

self.addLink(switch0, switch2, bw=1) # s0.port_3: s2.port_1

self.addLink(switch1, switch2, bw=1) # s1.port_3: s2.port_2

The above code snippet from the script that generates the Mininet topology show-
cases how switches and hosts are connected along with configuring the bandwidth
between them.

3.1.3 Open vSwitch & OVSDB

Open vSwitch (OVS)[Pfaff et al., 2015] is a production quality, multilayer virtual
switch. Initially designed for virtual networking environments, it is widely utilised
and installable to hardware devices. It supports the OpenFlow protocol and is sup-
ported by both the Mininet API and Ryu.

Open vSwitch Database (OVSDB)[Pfaff and Davie, 2013b] management protocol is
a configuration protocol that is designed to manage and configure OVS implemen-
tations.

3.1.4 Ryu

Ryu is the SDN controller for the system. It takes requests about switch configura-
tions and forwards the correct configuration changes down to the switches. Three
Ryu apps are required to implement bandwidth reservation: rest_conf_switch, a
slightly customised version of simple_switch_13 and rest_qos.

The rest_conf_switch app contains an API for setting configuration values in switches.
This is used to set the ’ovsdb_addr’ configuration value on the switches so they
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know at what address to access OVSDB. The simple_switch_13 app is an app that
provides capabilities to learn the MAC addresses of nearby hosts. It has been modi-
fied for this implementation to report any OpenFlow errors for debugging purposes
as Ryu does not report them by default. The rest_qos app accepts requests about
QoS-related queue and rule configurations and forwards them to the switches. The
functionality provided by these API’s has been covered in section 3.1.1.

3.2 System Functionality

3.2.1 System Architecture

FIGURE 3.4: System Architecture.

There are three main components to the system: the QoSTracker (the bandwidth
reservation system), the selected Ryu apps and the network topology containing
the hosts and switches. In addition to these, a running instance of OVSDB on the
same host as the topology is required to be running. How the components interact
with each other is illustrated in Figure 3.4.

Although not restricted to a single host, the entire system was hosted on a single
machine to make development easier. Throughout the course of development, a
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Macintosh Macbook Pro 2012 model was used. VirtualBox, an open source hypervi-
sor, hosts a virtual machine (VM) running Linux that contains an installed version
of Mininet. Both the Ryu apps and the QoSTracker elements were hosted on the
laptops primary operating system and accessed the topological elements within the
virtual network by means of port-forwarding.

3.2.2 Bandwidth Reservation Mechanisms

The QoS features supported by Ryu meant that there were a number of approaches
available to implement bandwidth reservation. At this point it is worth explaining
how switch queues work. There are two types of switching queues, ingress queues
for incoming traffic and egress queues for outgoing traffic. For this project, egress
queues are the primary focus. Each queueing mechanism is composed of a collection
of smaller queues. These queues are ordered and emptied based on a priority they
are assigned. As unreserved traffic is passed through a network, it is placed in the
lowest priority queue at each egress port. If none of the higher priority queues
are populated at a given time, the switch forwards any packets in that queue. If
a burst of reserved traffic was to pass through the switch, it would be placed in a
higher priority queue and the switch would forward those packets before the lower
priority queues. How packets are assigned to queues is done via packet marking.
This marking continues with the packet throughout the network so it is continually
guaranteed a higher priority queue. In the event that a reserved traffic flow exceeds
it’s reserved bandwidth level, any traffic above the guaranteed value is placed in
lower queues and is processed throughout the network at a rate known as ’best-
effort’. All unreserved traffic is processed at a best-effort rate.

The first option considered was a per-flow reservation approach using Multipro-
tocol Label Switching (MPLS)[Rosen, Viswanathan, and Callon, 2001] to identify
reserved traffic. MPLS is a protocol for shaping and speeding up traffic flows. It
works by marking packets via assigning them an MPLS label at the ingress routers
to networks. It is continually identified by this label as it moves through the net-
work without networking devices having to examine the IP header information.
The general process for the MPLS is:

1. Determine the path the reserved traffic will take through the network.

2. On the first switch of the path (from source to destination), install a QoS rule
that checks the packet’s source and destination IP address for the expected
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values. The action upon a packet matching the criteria is to assign an MPLS
label to the packet.

3. For all nodes along the flow, define queue settings for the switch that defines
two types of traffic:

• Best-effort traffic: Any unreserved traffic is passed through the network
at the ’best-effort’ rate.

• Priority/Reserved traffic: Any traffic that is reserved.

For best-effort traffic, a queue is configured that gives it a maximum rate value
that corresponds to the maximum available bandwidth for the link connected
to the port. For reserved traffic, a queue is configured that defines a minimum
rate of traffic that is guaranteed. This corresponds to the amount of bandwidth
a client has requested. Traffic that arrives within the requested rate is given
a priority of ’1’ (or another number if more than one reservation is ongoing
across the network).

4. For all nodes along the path bar the ingress and egress, install a rule that checks
for the presence of the specified MPLS label, and assigns it to the higher prior-
ity queue.

5. For the egress node of the traffic flow, install a flow that looks for the specified
MPLS label and removes it from the packet.

Development on this approach was initially worked on but was abandoned due to
the realisation that although Ryu provides functions for removing the MPLS labels
on packets, it hadn’t actually been implemented yet. This particular solution would
not scale particularly well in larger networks as the amount of rule and queue setting
changes per-flow would become difficult to manage as the number of reservations
increases. Instead of marking packets using MPLS, the decision to use Differentiated
Services (DiffServ)[Grossman, 2013] to categorise and prioritise traffic was made.
DiffServ is a networking architecture that provides mechanisms for classifying and
managing network traffic. It used a differentiated services code point (DSCP) value
in the DS field of IP packets to classify packet priority. Queues are defined on each
switch along the reserved traffic’s path with queues defined for each type of traffic.
Reserved traffic is assigned a minimum-rate queue corresponding to the amount
of bandwidth. Upon the entry to the network, reserved packets are assigned an
appropriate DSCP value with unreserved traffic assigned a DSCP value of ’0’. At
each switch, queues are populated based on their DSCP value.
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Chapter 4

Results

4.1 Research Questions Results

4.1.1 Topology Discovery

Ryu provides a topology API that returns information on switches, ports, and links.

For switches, it provides their datapath ID to uniquely identify each switch in the
network and a list of the ports connected. Each port is uniquely identifiable by it’s
hardware address which is returned with the relevent port information by Ryu. A
HTTP GET request to the /v1.0/topology/switches/<dpid> endpoint returns:

[

{ "ports":[

{

"hw_addr":"9e:24:2a:05:a2:9c",

"name":"s0-eth1",

"port_no":"00000001",

"dpid":"0000000000000010"

},

{

"hw_addr":"3a:a7:8a:a5:83:b5",

"name":"s0-eth2",

"port_no":"00000002",

"dpid":"0000000000000010"

}

],

"dpid":"0000000000000010"
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}

]

For links, Ryu returns information about the source and destination port and switch
which, when combined, uniquely identify it from the other links. A HTTP GET
request to the v1.0/topology/links endpoint returns:

{

"src":{

"hw_addr":"82:b4:8e:79:2a:5a",

"name":"s0-eth3",

"port_no":"00000003",

"dpid":"0000000000000010"

},

"dst":{

"hw_addr":"0a:e1:fe:8a:12:69",

"name":"s2-eth1",

"port_no":"00000001",

"dpid":"0000000000000030"

}

}

The information returned by the API is sufficient to accurately determine the topol-
ogy of the network. It provides enough information to uniquely identify each in-
dividual topology component along with adequate data to derive the connections
between components.

One aspect of Ryu’s topology API that was found to be lacking was link band-
width discovery. A bandwidth reservation system cannot operate correctly without
knowledge of the links connecting the networking devices. This required having
to manually enter the bandwidths for each link in the topology for every topology
tested with. Although it is not a major stumbling block, it does hamper the systems
ability to simply plug into different topologies without making significant configu-
ration changes.
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4.1.2 Bandwidth Reservation Mechanisms

Ryu supports a variety of bandwidth reservation mechanisms meaning that net-
work operators are not limited in how they implement BoD in their networks.

4.1.3 Queues & Rules Interface

Ryu provides a comprehensive API to interface with the queueing infrastructure of
switches. Utilising Ryu’s rest_qos module, network operators can use combinations
of rules and queue configurations to build a functional capacity reservation system.

The types of requests that Ryu supports have been outlined in section 3.1.1.

4.1.4 Meter Tables Interface

Ryu supports the use of meter tables. Meters were introduced in OpenFlow ver-
sion 1.3 and are based around two values: Committed Information Rate (CIR) and
Peak Information Rate (PIR). CIR is the rate guaranteed for a client across a network,
meaning their allotted bandwidth will never drop below this value. PIR is the max-
imum amount of bandwidth a client can have at a given time. This value is greater
than the CIR and is based around the idea that 100% of the bandwidth is rarely in
use 100% of the time providing a means for clients to use up more bandwidth.

Meter tables make use of the underlying queueing infrastructure already in place in
switches. For each switch, two flow tables are created. The first table compares the
current rate of the incoming traffic. The first table drops any packets that fall above
the clients PIR. All packets that fall within the PIR are forwarded to the second table.
Here, any packets that fall within the clients CIR are placed in a priority queue. The
remaining packets, those that are at a rate between the clients PIR and CIR, are
placed in the best-effort queue. Packets that fall within the CIR are marked with
a priority that carries and is recognised throughout the network. Any packets that
fall between CIR and PIR are marked as priority 0. This approach has the advantage
that assuming the correct calculations were done on allocated reservations and their
associated PIR and CIR, traffic shaping only occurs at the ingress to the network.

Ryu’s QoS REST API provides an endpoint for manipulating meter entries. An
HTTP POST request to the /qos/meter/<switch_id> accepts parameters in the fol-
lowing format:
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{

"meter_id":"<int>",

"bands":[

{

"action":"<DROP or DSCP_REMARK>",

"flag":"<KBPS or PKTPS or BURST or STATS",

"burst_size":"<int>",

"rate":"<int>",

"prec_level":"<int>"

}

]

}

4.2 Implementation Results

Unfortunately the bandwidth reservation does not work as intended. Due to a num-
ber of reasons, the full scope of functionality was not implemented. The following
is a walkthrough of what functionality does work with examples at each stage.

4.3 Environment Setup

For this example the topology used to test is outlined in figure 4.1. The links between
hosts and switches are 100 Mbps and the links between switches are 1 Mpbs to create
a bottleneck.

To begin, create the virtual topology by running:

sudo python topologies/2_switches_4_hosts.py

Next, set up the required Ryu APIs by running:

ryu-manager ryu.app.rest_qos ryu.app.new_qos.qos_simple_switch_13

ryu.app.rest_conf_switch --observe-links

Once Ryu has setup the APIs, it should recognise the switches which is indicated by
the following output from Ryu:
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FIGURE 4.1: Network topology diagram.

FIGURE 4.2: Ryu recognising the virtual switches.

Once the controller is running and the switches are connected properly, verify that
Ryu has correctly populated the flow tables by running the pingall command in
mininet:

FIGURE 4.3: Mininet output showing the hosts pinging each other.

Now that the switches are able to communicate with each other, the bandwidth
reservation system can be started by running the following command:

sudo python qos_tracker/qos_server.py

The bandwidth reservation system begins by forwarding the address of the running
OVSDB instanve to configure the switches for QoS rule and queue setting changes.
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Now, bandwidth reservations can be requested. The following is an example call to
the bandwidth reservation system:

curl -i -H "Accept: application/json" -H "Content-Type:

application/json" -X POST -d ’{"src": "10.0.0.4",

"dst": "10.0.0.1", "bw": 750}’

http://localhost:5000/add_reservation

Here, a client is requesting 750 bits of reserved bandwidth from the host with the IP
address 10.0.0.4 to the host with IP address 10.0.0.1. On the bandwidth reservation
terminal, the output is displayed upon receiving the request in figure 4.4.

FIGURE 4.4: Output from the bandwidth reservation system upon re-
ceiving a bandwidth reservation request.

The messages beginning with ’++’ indicate that what is being printed is the response
from Ryu’s APIs. The messages beginning with ’ADDING’ indicate an entry to the
database being added. Here, we can see that it adds a reservation entry and three
port_reservation entries, one per switch along the path.

In figure 4.5, the requests to the /qos/queue and /qos/rule endpoints sent by the
bandwidth reservation system can be seen. For each switch, a rule and a queue
setting are posted as outlined in sections 3.2.2 and 3.1.1.

The full terminal output from the three components will be included in Appendix
A.

4.3.1 Component Validation

This section will be a demonstration of the components that do work.
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FIGURE 4.5: Output from the terminal running Ryu’s APIs.

Firstly, to validate that the switch queue settings were correctly added, the following
shell script can be ran that returns the queue settings for each switch:

echo "\n"

curl -X GET http://localhost:8080/qos/queue/0000000000000010

echo "\n"

curl -X GET http://localhost:8080/qos/queue/0000000000000020

echo "\n"

curl -X GET http://localhost:8080/qos/queue/0000000000000030

echo "\n"

FIGURE 4.6: Output from executing get_queues.sh.

This returns the output seen in figure 4.6. In this screenshot we can see the max rate
applied to best-effort traffic. Note how there is no minimum value for best-effort as
they have no level of guaranteed bandwidth. For priority traffic, a queue of min rate
750 bps is defined which means that no matter how much traffic is passing through
that switch at any given time, that 750 bps is guaranteed.
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Secondly, to validate that Ryu is correctly adding rules, the following shell script
can be executed to return the rules associated with each switch:

echo "\n"

curl -X GET http://localhost:8080/qos/rules/0000000000000010

echo "\n"

curl -X GET http://localhost:8080/qos/rules/0000000000000020

echo "\n"

curl -X GET http://localhost:8080/qos/rules/0000000000000030

echo "\n"

The output returned from this shell script is shown in figure 4.7. Note how the
switch with the datapath ID of 32 (0000000000000020) has different rules than the
other two switches. This is so due to the switch with datapapth ID of 32 is the ingress
node of the flow i.e. 10.0.0.4 (the source host) is connected directly to this switch. As
a result, this switch is tasked with marking the packets with the appropriate DSCP
value. Note how the other two switches only check for the DSCP value and assign
it to a queue.

FIGURE 4.7: Output from executing get_rules.sh.

To test that the packet marking rule is correctly identifying and marking the pack-
ets, start a wireshark[Orebaugh et al., 2007] (a tool for monitoring and debugging
network traffic) session by running the following command:

sudo wireshark &

Next, in the mininet terminal, start up individual terminals for the hosts at 10.0.0.1
(h0) and 10.0.0.4 (h3) by running:

xterm h0 h3

On 10.0.0.1 (the destination IP of the reservation) run the following command that
sets up an iperf (a tool for simulating network traffic) session:

iperf -s -u -i 1

This creates a running server (-s flag) that is ready to accept UDP traffic (determined
by the -u flag) and reports any incoming traffic in intervals of 1 second (-c 1).
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On the 10.0.0.4 (recall that this is the source IP of the reservation), start up a client
iperf session by running the following command:

iperf -c 10.0.0.1 -i 1 -u -b 1M

FIGURE 4.8: Output from wireshark capturing the DSCP value of the
marked traffic.

This command tells 10.0.0.4 to stream UDP (-u flag) at a rate of 1 Mbps (-b 1M)
to 10.0.0.1. Capturing this traffic in wireshark shows that the correct DSCP value
is being added to the packet. The default for best-effort traffic is 0 but as can be
seen in figure figure:Wireshark, this contains an actual DSCP value and so has been
identified and marked correctly.

This was as much of the project that works. The actual queueing of prioritised traffic
does not work. In the even that two traffic streams are traversing the bottleneck at
the same time, the switches assign equal bandwidth to each stream instead of 750
bps to the prioritised traffic and 250 to the best-effort traffic.

4.4 Additional Results

Due to the shortcomings of the implementation, the following is an account of how
to implement capacity reservation in a single switch using Ryu’s APIs to prove that
it is indeed possible to use Ryu to carry out capacity reservation. It follows an ex-
ample detailed in chapter 11 of the Ryubook[Ryu SDN Framework.
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First, the topology is built. It consists of a single switch with two hosts attached.
The following mininet comand will generate it:

sudo mn --mac --switch ovsk --controller remote -x

Next, modify Ryu’s simple_switch_13 app so that flow entries are added to table
with ID 1 instead of 0 with the following command:

sed ’/OFPFlowMod(/,/)/s/)/, table_id=1)/’

ryu/ryu/app/simple_switch_13.py >

ryu/ryu/app/qos_simple_switch_13.py

Then, install the new module by running the following command within the ryu
directory:

python ./setup.py install

Then get the appropriate Ryu apps running:

ryu-manager ryu.app.rest_qos ryu.app.qos_simple_switch_13

ryu.app.rest_conf_switch

Once Ryu is running and a successful connection has been made with the virtual
switch, the following bash script will add a bandwidth reservation:

sudo ovs-vsctl set Bridge s1 protocols=OpenFlow13

sudo ovs-vsctl set-manager ptcp:6632

echo "Adding ovsdb address to switch:"

# Add ovsdb address to switch

curl -X PUT -d ’"tcp:127.0.0.1:6632"’

http://localhost:8080/v1.0/conf/switches/0000000000000001/

...ovsdb_addr

echo "\n"

echo "Adding queue settings to switch:"

# Add queue settings to switch

curl -X POST -d ’{"port_name":"s1-eth1","type":"linux-htb",

"max_rate":"1000000","queues":[{"max_rate":"500000"},

{"min_rate":"800000"}]}’

http://localhost:8080/qos/queue/0000000000000001

echo "\n"
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echo "Adding queue-assignment flow:"

# Install flow entry to assign queue id

curl -X POST -d ’{"match":{"nw_dst":"10.0.0.1","nw_proto":"UDP",

"tp_dst":"5002"},"actions":{"queue":1}}’

http://localhost:8080/qos/rules/0000000000000001

echo "\n"

FIGURE 4.9: Output from the shell script that adds QoS rules to the
switch.

This script begins by setting the version of OpenFlow to be used by the switch. Then
it adds the address of the running OVSDB process to the switches configuration.
Then queue settings are defined and a packet checking rule is pushed. The output
from the script can be seen in figure 4.9.

Note how rather than match on a source and destination IP address, this approach
matches on a destination IP address and a destination port, 5002 in this example.

To verify that the queue and rule configuration changes were implemented correctly,
open up two terminals per host. On the first h1 terminal, run a server instance of
iperf on port 5001 and on the second repeat the command but on port 5002. On
the first h2 terminal send UDP traffic to the iperf server running on port 5001 on h1
while at the same time sending UDP traffic from the other h2 terminal to the other
running iperf server on h1 on port 5002.

Figure 4.10 shows the output from these commands. The requested reserved band-
width was 800 Kbps. Although there are slight timing issues with the terminal
output, the top-left terminal shows bandwidth at 900 Kbps with the lower, non-
reserved stream of traffic only getting approximately 60 Kpbs. The reason behind
the traffic not being split 800/200 Kbps is that the switch divides up the remaining
bandwidth evenly between the two streams of traffic so that the reserved flow gets
an additional 70-100 Kbps as does the unreserved flow.
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FIGURE 4.10: Output from the four terminals that show traffic being
shaped.
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Chapter 5

Conclusion

5.1 Evaluation of Implementation

Although certain functionality was provided by the bandwidth reservation system,
the key component of actually reserving the bandwidth was never fully imple-
mented. This was for a number of reasons but primarily due to a poor implementa-
tion strategy.

From the beginning, the system was being built and designed with complex and
large networks in mind. Rather than get the system to work with a single switch,
then a linear topology of switches followed by a mesh of switches one-by-one, the
system tried to support multiple topologies with varying link bandwidths at the
beginning. A more iterative approach would have yielded better progress. The
key component to the whole system was correctly configuring the queue and rules
settings of switches and it ended up being one of the few parts that didn’t work
in the end. If one was to re-implement a bandwidth reservation system similar
to the one detailed in section 3, it would be advised to get the initial reservation
mechanisms working on simpler and more manageable topologies before building
for scale. The results detailed in section 4.4 indicate that Ryu can indeed provide
mechanisms to reserve bandwidth. Attempts were made to get the system to work
with a single switch but it still would not work meaning that it was an error in
the logic of the bandwidth reservation system that was preventing it from working
rather than a failure of the functionality provided by Ryu.

One challenging aspect of developing the bandwidth reservation system with Ryu
was the lack of supporting documentation. The only official documentation is found
at [Ryu SDN Framework]. Originally written by the Ryu project team in Japanese, the
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book has since been released in English. Although the book provides many step-
by-step examples of how to leverage the APIs provided by Ryu, at certain parts, it
seems as if some of the original intended meaning has been lost in translation which
caused some confusion early on in the implementation stage. The relative newness
of both the field and Ryu itself meant that when solutions to certain problems were
discovered, no other occurrence of the problem could be found on the forums online
and manual debugging was necessary.

Another aspect of the project that hampered progress was understanding how to
structure an application in an SDN context. When initially developing, certain tu-
torials were followed to achieve topology discovery such as [SDN Lab - Topology
Discovery with Ryu 2014] which suggested including business logic inside the Ryu
applications themselves and calling the library functions rather than using an API.
This approach doesn’t align with how SDN applications should be structured as
detailed in section 2.2.3. The separation of business logic from the NOS provides
an additional layer of abstraction. Although the approach to topology discovery
covered in that tutorial was never actually implemented, the idea of keeping the
business logic coupled with the controller logic continued until very late into the
implementation. Having the two components so tightly coupled created many im-
plementation challenges that would have been avoided had the two elements been
separated from the beginning. Only when they were separated and the project had
a more SDN-appropriate architecture was significant progress achievable.

5.2 Evaluation of Results

The intention of this dissertation was to investigate what Ryu can lend to network
operators in implementing bandwidth reservation. The two components that were
identified as important to such a system were the ability of the controller to effec-
tively determine the topological elements of the network and the bandwidth reser-
vation functionality it offers.

Based on the results outlined in sections 4.2 and ??, and the experience of developing
a bandwidth reservation system using Ryu as the SDN controller, it has been deter-
mined that Ryu provides sufficient functionality to network operators to implement
capacity reservation in their networks.
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In terms of recommending an approach to bandwidth reservation, the use of meter
tables should be considered above a customised implementation compromised of
QoS rule and queue settings. Meter tables provide a layer of abstraction above the
queueing infrastructure. They require less configuration and scale better due to the
reduced number of flow entries, rules and queue settings required.

Although Ryu is lacking functionality such as host discovery and bandwidth dis-
covery, it is believed that as the field of SDN and the number of people using Ryu
as their selected controller increases, more attention will be given to improving the
feature set provided. Similarly, as more people develop with Ryu, the number of on-
line documentation, resources and forum posts will increase providing an improved
knowledge base for using Ryu.

The results outlined in section 4 indicate that open source SDN controllers can com-
pete with their proprietary counterparts.

5.3 Future Work

There are a number of improvements that would enhance the functionality of the
bandwidth reservation system. The two most pertinent ones are improving the
topology layer and adding functionality to dynamically re-allocate reservation flows.

5.3.1 Improved Topological Logic

The topology layer of the bandwidth system is the most lacking component. In par-
ticular, the function that finds a path through the network from one host to another
is too static and naive to be implemented in a production environment. Mentioned
briefly in section 3.1.1, the function does not account for cycles in topologies, does
not take the bandwidth of the path into account and always returns the first avail-
able path from source to destination host.

An improved routing function would yield a more efficient and intuitive reservation
system. It could return multiple paths for the QoSTracker component to choose from
and return the available bandwidth of each option to enable a more informed rout-
ing decision. An alternative solution would be to replace the function completely
with an implementation of Dijkstra’s shortest path algorithm which could take into
account the weights of paths (link bandwidths) in determining the best path.
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5.3.2 More Intuitive Reservations

Currently, once a bandwidth reservation has been created, it’s path through the
network stays the same. As a particular path or entire network begins to reach
maximum reservable capacity, the ability to rearrange reservation paths would im-
prove the overall efficiency of the system. Relocating reservations to make room for
incoming requests that otherwise would not be grantable would mean that more
reservations are possible compared to the current non-intuitive approach. The abil-
ity to move reservations would enable the system to tolerate certain node failures -
any bandwidth reservations affected by such a failure could be diverted around the
dead node without impacting system functionality.

In addition to making reservation flows movable, adding a start and end time to
reservations could enable improved levels of reservation organisation. A sched-
uler component could be added to schedule any upcoming reservations and interact
with the flow moving capabilities mentioned previously to move existing capacity
reservations to accommodate upcoming ones.
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Appendix A

Complete Terminal Output from
Section 4.2

For the example given in the results section, here is the complete terminal output
for the mininet, Ryu and bandwidth reservation manager components.

FIGURE A.1: Mininet output.

FIGURE A.2: Bandwidth reservation system terminal output.
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FIGURE A.3: Ryu output part 1.

FIGURE A.4: Ryu output part 2.
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