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Structural Health Monitoring (SHM) is a key technique to ensure the health and safety

of civil and mechanical structures. The most commonly used monitoring methods make

use of a combination of techniques such as vibration-based methods, acoustic emission,

thermal imaging and ultrasonic reflection in order to detect deformation or failure. The

use of active image processing concepts in Structural Health Monitoring of static and

moving civil structures is largely unexplored and presents an interesting area of research.

The aim of this dissertation is to evaluate the use of visual imaging from unmanned aerial

vehicles to autonomously monitor Wind Turbine blades in order to create a real - time

model which can be used to assess its structural health. Early experiments and simulations

provide promising results, and the use of powerful drones in combination with specialist

software can be used to identify small-scale deformities. This opens up various potential

areas of research such as 3D reconstruction of scenes and objects from Unmanned Aerial

Vehicles, remote unobtrusive monitoring of moving mechanical structures using visual

imaging and servoing etc.
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Chapter 1

Introduction

In recent years, wind energy has become a strong contender in the field of power genera-

tion. The rising prices and growing demand of non-renewable energy sources have sparked

interest in clean, renewable sources of energy that can be harnessed effectively. Although

wind energy has been used for small scale power generation in homes and farms for a long

time in the form of traditional windmills, it is only in the last quarter of a century that

commercial wind turbines have been used for large-scale electricity generation. As more

countries increase their dependence on wind energy, turbine sizes have increased dramati-

cally and many offshore and onshore wind farms have been constructed. Large scale wind

turbines are quite expensive and have lifespans of upto 20 years. These turbines need

to be constantly monitored for health and operating conditions, especially as they get

older, as damage in the structure of the blade or failure can result in heavy monetary

loss, environmental destruction and in some cases, even death.

This chapter first introduces the prior work done in the field of health monitoring of

wind turbines from which the motivation of the dissertation is derived. Next, the ob-

jective of the dissertation is specified and a brief summary of the proposed approach is

presented. The chapter concludes by outlining the structure of the dissertation along with

a quick synopsis of each of the following chapters.
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1.1 Background

The field of Structural and Condition Monitoring of wind turbines has been an active

area of research over the last decade, and aims to improve safety and better understand

operational loads and capacities of wind turbines. The most common methods in use

today include vibration-based analysis, ultrasonic reflection, thermal imaging, principal

component analysis, wavelet transforms and statistical monitoring. Most of these methods

require physical sensors and actuator patches to be bonded to the surface of the turbine

blade, which induces further strain in the blade resulting in damage or deformation.

Some methods may also require that the blade be detached from the wind turbine before

monitoring. Due to this, non-destructive monitoring techniques such as Acoustic Emission

and Visual Imaging are being explored for suitability in this field. Approaches using Stereo

Vision and Photogrammetry have been proposed, however, experimental tests indicate

that further refinement is required before these methods can be used commercially.

1.2 Motivation

From the above section, it can be understood why unobtrusive monitoring mechanisms

for civil structures are fast gaining popularity and do not cause damage by increasing load

on the system. These methods also provide a more economically feasible approach as the

cost of maintenance of wind turbines can be quite high, and normally ranges between 2

- 15 % of the cost of the wind turbine. Sophisticated image processing techniques are

available today that can be effectively leveraged to solve the problem of Structural Health

Monitoring. The advent of ubiquitous technology which provides enhanced capabilities

such as flight and dynamic motion to cameras can also be used to address the gap caused

by static positioning of imaging systems.
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1.3 Research Question

The aim of this dissertation is to address difficulties in using computer vision techniques

to perform health monitoring of rotating civil structures which cannot be effectively mon-

itored through image or video obtained from a stationary camera. Based on the oppor-

tunity identified above, the following research questions has been posed:

“Can visual imaging techniques be used to provide an efficient, unobtrusive

and economical monitoring method for wind turbines?”

This can be divided into further sub-questions as listed below:

1. What kind of image processing algorithm can be used for structural health moni-

toring of civil structures?

2. How can the algorithm be extended to be robust if the target structure is in motion

and not stationary?

3. What are other factors which come into play while monitoring a wind turbine in

realistic outdoor environments?

4. Can such a system be developed using commercial, easily available, off-the-shelf

technology?

1.4 Contributions

The contribution of this dissertation is the design and implementation of a proof-of-

concept system that uses a camera mounted on a quadcopter to follow a dynamic path

around a wind turbine blade in order to accurately detect any damage, cracks or structural

deformation in the blade. Such a system provides a significant contribution to the state

of the art, as most of the research in this field considers the use of static or stationary

visual sensors. Furthermore, such a system would perform autonomous monitoring with

minimal human input. By integrating the elements of flight and dynamic motion with

3



a camera, many areas of potential research have been identified such as visual servoing

around moving mechanical and civil structures, 3D reconstruction of scenes and objects

for surveillance and monitoring etc.

1.5 Dissertation Structure

This section provides an outline of the structure of the thesis document.

• The current chapter provides a brief overview of the areas of research, gaps identified,

research questions and contributions made by this dissertation.

• Chapter 2 divides the objective into specific areas of research. The state-of-the-art,

background and related work for each of these areas are discussed in corresponding

sections. A summary which connects all the areas of research and establishes their

applicability to proposed system is presented towards the end of the chapter.

• Chapter 3 specifies the design aspects of the proposed system .The requirements

of the system, the system architecture and component descriptions are discussed in

this chapter. A quick synopsis of the design is presented at the end of the chapter.

• Chapter 4 discusses the methods & technologies used and challenges encountered

while developing a system based on the design concepts described in the earlier

sections. The specific libraries, programming tools and languages used are specified

and a short summary of the implementation aspects is presented towards the end.

• Chapter 5 discusses the various metrics and factors used to evaluate the system along

with experimental observations, and concludes with a quick summary of system

performance.

• Chapter 6 provides answers to the research questions identified in Chapter 1, sum-

marizes the contributions made by this research, lists future work and concludes

with final remarks on the dissertation.

4



Chapter 2

State of the Art

The proposed system makes use of a variety of technologies such as drone automation,

visual servoing, distance estimation from image and 3d reconstruction in order to achieve

the required objective. This chapter reviews previous and ongoing research in four broad

areas of research to examine the feasibility of our proposed system. This is represented in

a diagrammatic notation in Fig 2.1. This chapter introduces the ongoing research in the

Figure 2.1: Scope of system and corresponding areas of research
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different areas which comprise our project. Section 2.1 discusses the different techniques

currently in use for the structural health and condition monitoring of wind turbines. We

then examine various challenges faced and methods that have been suggested and deployed

to overcome them. Section 2.2 introduces the reader to unmanned aerial vehicles, their

flight, control & operation and reviews innovative technology that has been proposed to

automate drone movements. Section 2.3 evaluates the use of visual servoing to control an

unmanned aerial vehicle and Section 2.4 provides an explanation of the ‘Structure from

Motion’ framework

2.1 Structural Health Monitoring of Wind Turbines

This section presents methods in use, alternative approaches and ongoing research in

the field of Structural Health Monitoring, specifically in the case of Wind Turbines. On

reviewing the literature in this field, it is concluded that the most common commercially

used Health monitoring methods use Modal Analysis, in which the vibrations of the wind

turbine blades in motion are compared to its natural vibrating frequency to determine

damage in the blade. The following sections provides an introduction to of wind energy,

structure of a wind turbine, structural health monitoring methods and a short summary

of the keypoints.

2.1.1 Wind Energy

Wind Energy is emerging an integral source of power in many developed and developing

countries. Since wind provides a clean and renewable option over other fossil fuel and

is also available in plenty, many countries are looking to harness this form of energy

efficiently to power both industries and homes. Due to decreasing costs, the market for

wind energy has rapidly increased over the last two years and the global annual electricity

production from wind farms has crossed the 390GW mark in 2014 [GWEC15]. Due to this

demand, wind turbine sizes have been progressively increasing and large wind farms are

6



Figure 2.2: Parts of a Wind Tur-
bine[MHWF2015]

Figure 2.3: Increasing size of wind tur-
bine blades[DNVGL2015]

being setup at offshore areas. The most commonly used commercial Wind Turbines have

such as the GE 1.7MW model and 1.8MW Vestas V90 have blades with lengths over 70

metres which cover almost an acre of area during rotation[Veers2003]. A comparison of the

size of turbine blades and power output produced is presented in Table 2.1[Layton2015].

According to the Global Wind Energy Council (GWEC) Statistics for the year 2014,

China, USA and Germany are the biggest producers of wind energy at present.

2.1.2 Overview of Wind Turbines

A wind turbine consists of three blades which rotate about a central fulcrum called the

hub. The hub is attached to the nacelle which houses the gearbox and other electrical and

mechanical components. All of the above components are mounted on a tall steel tower.

When wind blows, the blades rotate clockwise about the hub and the gearbox increases the

speed of rotation and transmits it to the generator, which then converts it into electricity.

For the blades to rotate effciently, the turbine must be perpendicular to the direction of

the blowing wind. For this purpose, a wind vane is used which points in the direction of the

wind and the shaft of the blade is rotated about a yaw in order to turn the nacelle toward

the wind [Hansen2008]. Based on the axis of rotation, wind turbines are classified into

Horizontal Axis wind Turbines (HAWTs) or Vertical Axis Wind Turbines (VAWTs). Most

7



Rotor Diameter and Maximum Power Output
Rotor Diameter(in m) Max power Output(in kW)

10 25
17 100
27 225
33 300
40 400
44 500
48 750
54 1000
64 1500
72 2000
80 2500

Table 2.1: Power Output of wind turbines based on rotor size

commercial large scale wind turbines are HAWTs, but newer wind farms use VAWTs as

they collect wind from all directions and are hence more efficient.[Erikkson2008]. Modern

wind turbines produce very little mechanical noise but produce large amounts of aerody-

namic noise. This noise is known as ‘wake’[Adaramola2011]. In order to minimize the

wake effect of one turbine on another in a wind farm, turbines must be spaced sufficiently

far from one another as wake effects could prevent wind energy from being harnessed

effectively.

2.1.3 Structural and Condition Monitoring of Wind Turbines

As the size of wind turbines increase, it is also crucial to ensure their safety as failure

could be expensive and fatal. In addition to this, unscheduled maintenance of turbines is

extremely expensive, and may cause unexpected downtime hence reducing the efficiency

of wind farms. Maintenance may be corrective or preventive[Márquez]. Structural Mon-

itoring can be used to estimate operational capacity, calculate blade fatigue and predict

maintenance well in advance. Wind turbines are more susceptible to damage and failure

compared to other civil structures because of acceleration fatigue caused by moving parts,

and exposure to natural elements such as strong winds, rain, moisture in air and light-

8



ning[Ghoshal2000]. Most commercial wind turbines operate for about 120,000 hours over

two decades during their lifetime. Maintenance costs are comparatively for new wind tur-

bines but drastically increase as the turbine ages. The biggest wind turbine manufacturers

such as GE, Vesta, Gamesa and Enercon spend approximately 1.5% to 2% of the wind tur-

bine cost on its maintenance annually[Smead2014][WindMeasurementInternational2015].

Monitoring Methods

Schubel et al.[Schubel2013] have presented a review on various Structural Health Monitor-

ing techniques used in large wind turbine blades and describe acoustic, thermal, dielectric,

ultrasonic and fibre-based approaches. The main aim of monitoring in wind turbine blades

is to actively monitor the strain, load, fatigue and damage on the blades to prevent catas-

trophes and to gain better understanding of the operational loads of the turbine. Different

monitoring methods are used based on whether the blades are stationary or in motion.

The most common method in use today is based on vibration analysis. However, these

methods require extra sensors and actuator patches to be bonded to the surface of the

blade and increase load on the blade. Non-Destructive Testing(NDT) methods such as

acoustic emission, ultrasonic reflection and imaging are an active area of research as they

do not place further strain on the blade.

Ghoshal et al.[Ghoshal2000] published a review of different vibration-based techniques

and compared four modal methods - Transmittance Functions, Operational Deflection

Shapes, Resonant Comparison and Wave Propagation. Modal analysis works on the

principle of comparing the resonant frequency of the blade in motion with its natural res-

onant frequency in order to identify defects. All the aforementioned methods have been

explained mathematically along with measurement parameters. These damage detection

techniques were applied to an 8-foot section of a fiberglass wind-turbine blade coated with

retroreflective paint, and measured with a Scanning Laser Doppler Vibrometer (SLDV)

placed at a distance of 15 feet, used to measure the vibrations induced by 6 piezoceramic
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sensors bonded to the plate. Based on the tests conducted, it was concluded that Trans-

mittance Functions were sensitive to both damage and noise obtained from the Frequency

Response Function, and hence could detect but not localize damage. Operational Deflec-

tion and Resonant Comparison were shown to produce good response in realistic settings,

however these techniques required further refinement to be used effectively. Wave Prop-

agation was not able to detect damage which was outside the path between the sensor

and the actuator and hence was unsuitable for use. One drawback of this paper is that

the author claims that acoustic and visual methods for Structural Health Monitoring are

not very effective without presenting any numerical or factual data to substantiate this

claim.

Acoustic emission(AE) is quickly emerging as a non-destructive alternative to older meth-

ods. In this method, radiation of elastic waves is produced when there is any change in

the internal structure of the object. These elastic waves are captured in an electric trans-

ducer and are then analysed to detect, localise and identify the kind of damage in the

structure being monitored. AE can be used to detect various kinds of damage, such as

fatigue cracks, structural deformities, delamination etc. However, most studies only fo-

cus on the relation between fatigue crack severity and emission produced but there is no

complete solution which makes acoustic emission alone feasible for Structural Health Mon-

itoring of mechanical structures[Rabiei2013][Bouzid2015][Grosse2008]. Recently, Dam et

al.[Dam2015] have proposed a new method in which mechanical pencil breaks are used to

produce acoustic emission from a blade which is captured by a piezoceramic sensor. Using

a learning algorithm which teaches the system about emission frequencies, the sensors can

be configured to detect damage in the blade.

In 2015, a new technique of fusing data from multiple Micro-Electro-Mechanical Sys-

tems(MEMS) sensors to identify and localize damage in the turbine blade was proposed

by Moradi and Sivoththaman[Moradi2015]. This method is efficient due to its high accu-
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racy and fast response. Two techniques of measuring strain using optimally placed sensors

are presented by the authors —‘Perturbation Analysis’ and ‘Natural Frequency Analy-

sis’. A fusion system for sensor validation and health diagnosis is created and applied

to a blade of 33 metres. The strain in the system is simulated and the readings can be

thresholded into four levels based on vibration and strain —Healthy, Damage Warning,

Damage Blade Alarm (due to vibration frequency shift) and Damage Blade Alarm (both

strain and vibration). The experimental simulations demonstrated successful results.

Yang et al.[Yang2010] introduce an electrical condition monitoring system as an inexpen-

sive, efficient alternative to traditional SHM methods. Continuous Wavelet Transforms

(CWT) are used instead of Discrete Wavelet Transforms(DWT) particular frequencies

which are more efficient in signal analysis but computationally more expensive. Using

power monitoring may have the disadvantage that the error in the power signal may not

only be due to voltage or transducer error, but also due to the method of measurement

used as well. The CWT adaptive filter is used to measure power signal in specific fre-

quency bands, using a time-sliding frequency window. This approach was evaluated on a

test rig in collaboration with Wind turbine manufacturers in simulated conditions with

faults in synchronization and in the induction generator. The results showed that this

was a feasible, inexpensive approach for condition monitoring of wind turbines. Some of

the popular commercial Condition Monitoring products for wind turbines currently in use

are listed in Table 2.2 [Crabtree2014].

A new unobtrusive monitoring technique makes use of virtual visual sensors in conjunc-

tion with a wireless sensor networks for fault detection. These include methods that

make use of computer vision and image processing such as stereoscopic vision, Structure

from Motion etc. whose use in the field of condition monitoring has not been explored

in depth. Song et al.[Song2014] discuss the use of Virtual Visual Sensors to perform non

destructive evaluation of wind turbines by using a continuous video input to determine
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Product Manufacturer Monitoring Method
Adapt WIND GE Energy Vibration , Oil Based
Brüel & Kjaer Vibro Vestas Vibration, Acoustic, Sensor
CMS Nordex Vibration
CMaS Moventas Temperature, Vibration, Pres-

sure
DCMS National Instruments Vibration, Acoustic
OneProd Wind System ACOEM Vibration, Acoustic, Thermal,

Electrical Signals
SMP-8C Gamesa Vibration
BLADEControl IGUS ITS GmBH Acceleration
FS2500 Fiber Sensing Fibre Optic
SCAIME CMS SCAIME Temperature, Displacement,

Tilt Sensing

Table 2.2: Commercially available condition monitoring systems for wind turbines

the modal properties of the blade while it rotates. The damage is detected and localized

by analysing continuous wavelet patterns in the images obtained. This greatly simplifies

the process of capturing and localizing defects in civil structures and also decreases the

hardware infrastructure required. In the method of Stereo Vision, two cameras are placed

at a fixed distance from each other to capture images of the structure from different an-

gles. For moving objects, these cameras can be made to focus at particular points on

the structure by applying spectral markers which guide the focus of the camera. Using

the images obtained from both the cameras, a depth map is calculated which provides

an idea of the three dimensional structure of the blade. The principle of Digital Image

Correlation was applied to an industrial sized wind turbine blade and experimental results

demonstrated that this approach could quantify and detect strain across the surface of

the blade[LeBlanc2013].

2.2 Autonomous Control of Unmanned Air Vehicles

Unmanned Aerial Vehicles(UAVs) are flying vehicles that do not require an on-board pilot,

and can be used to access remote or isolated areas. The use of such vehicles has opened
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up many potential areas of research. Larger UAVs and aircrafts are generally used by the

military for border patrol, testing nuclear weapons and launching missile systems at areas

which are free from human civilization. Another kind of UAV which is garnering high

amounts of interest in the last few years is the ’quadcopter’ or drone. Quadcopters are

much smaller than traditional UAVs and can be used in a number of civil and commercial

applications. The scope of this literature review is restricted to quadcopters that can be

used to monitor moving objects. The following sections provide an introduction to drones,

their capabilities & uses, and autonomy of drones.

2.2.1 Overview of Unmanned Air Vehicles

An Unmanned Aerial Vehicle (UAV) or Unmanned Aerial System(UAS) is an aircraft

which does not require a human pilot on board, and can be controlled either remotely by

a pilot or through an on-board computer system. Fully autonomous UAVs are subject

to several legal and local regulations and are rarely used. Remotely monitored UAVs are

used in both civil and military applications. A famous kind of UAV is the quadrotor or

quadcopter. Quadcopters, used for industrial and commercial purposes, and are small

aircrafts much like the joystick controlled helicopter toys, which can be controlled using

a remote controller. The cost of drones are greatly decreasing with the advent of smaller

and cheaper electrical components. They are widely used as a hobby by technology and

flying enthusiasts. Drones can also be controlled semi-autonomously by automating sim-

ple path patterns through programming albeit with constant human monitoring. Drones

are mostly mounted with lightweight cameras on a gimbal and are used for imaging and

ranging applications. The usage of quadcopters is relatively new and needs to be dealt

with caution as incorrect operation could cause failure and in rare cases injury.

The integration of drones in different fields will have huge social and economic impacts.

Drones can form a middle layer between satellites used for imaging and human level imag-
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ing. This will provide a mid-level view with sufficient detail which can be used for three

dimensional scene reconstruction with high accuracy. They can be used in agriculture to

monitor the growth of crops and to detect pest infestation. By mounting sensors on the

drone, various kinds of surveillance activities can be carried out. They can also be used in

the energy space to monitor the health of hydraulic turbines, wind turbines etc. However,

one of the most important uses of drones will be in the field of e-commerce where they

can be used to access remote areas that are not well connected by roads. By using drones

that can lift small loads, delivery and return of ordered items can be facilitated quickly

and efficiently. Coordination of automated drones can open up a lot more areas where

UAVs can unobtrusively be used to improve everyday life. Incorporating terrestrial capa-

bilities in drones in addition to its aerial capabilities can be greatly beneficial. This would

allow drones to land & perch on walls or pillars and monitor from these vantage points

without the need for constant hovering. This would help conserve the limited battery of

the drone[Floreano2015].

Quadcopters

A Quadrotor or Quadcopter is a specific kind of UAV , which is more commonly used

in commercial applications. A quadcopter is a helicopter that makes use of four rotors

instead of the conventional single blade rotor[Allen2015]. Quadcopters make of use four

motors with attached propellers to create an upthrust that lifts the aircraft. Two of the

motors rotate clockwise while the other two rotate counter-clockwise. Quadcopters are

equipped with Vertical Take-Off and Landing ability(VTOL). These are much smaller

than conventional UAVs and as a result, the battery life is greatly limited. Some of

the most popular commercial drones today have flight times of slightly under 30 min-

utes. Quadcopters are fast gaining popularity because of their simplicity of use and

maintenance[Hoffman2007]. They usually have four inputs and six outputs, and may be

motorized or non-motorized[Hoffman2008]. The characteristic that differentiates quad-

copters is their flying principle and the propulsion mode[Gupte2012]. All motions of
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Model Camera Flight Time Price Range
DJI Phantom 3 Professional 12.4MP UHD 23 mins Expensive
DJI Phantom 2 Vision Plus 14MP 1080 HD 25 mins Expensive
Parrot AR.Drone 2.0 720p HD 12 mins Mid-Range
Hubsan X4 H107C 2.4 2MP HD 10 mins Economical

Table 2.3: Comparison of popular drones of 2015

the quadcopter can be obtained by varying 4 drone parameters. The quadcopter is

made to fly by varying the throttle in the rotor. Some of the most popular and pow-

erful quadcopters in use today are DJI Phantom 3, Hubsan X4 H107C 2.4 Quadcopter,

DJI Phantom 2 Vision Plus, 3D Robotics Iris+ and Parrot AR. Drone 2.0 Power Edi-

tion[Baguley2015][TopTenReviews2015]. A brief comparison of some of these drones is

presented in Table 2.3.

2.2.2 Flight and Control of Quadcopters

All motion and operations of the drone are controlled using four parameters —Yaw, Pitch,

Roll and Uplift. ‘Yaw’ refers to the rotation of the head of the drone about the z-axis

in a clockwise or counter-clockwise direction. ‘Roll’ flies the quadcopter sideways, either

to left or right. ‘Pitch’ is the movement of quadcopter in the forward or backward di-

rection while ‘Uplift’ increases or decreases the elevation of the quadcopter by increasing

or decreasing thrust from the propeller blades. These four parameters are represented

in Fig.2.4 shown below. To tilt the quadcopter along an axis, the throttles on one side

are increased while that on the other side are decreased. To rotate the quadcopter, the

rotation of the clockwise or counter clockwise rotors is increased. The quadcopter can be

flown in two configurations the ‘X’ configuration and the ‘+’ configuration as shown in

Fig 2.5 and Fig 2.6. The X configuration is generally more stable and easier to operate

than the + configuration.

The algorithms used to control these devices can range from simple loop feedback to
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Figure 2.4: Yaw, Roll, Pitch and Uplift in a drone

complex neural networks. With the advent of low-cost and small sized sensors, the kinds

and number of sensors that can be mounted on these devices is also steadily increasing.

A quadrotor usually has some electronic controls and a microcontroller board, but may

also contain a GPS and image processing software for camera motion estimation, obstacle

detection etc. Control systems are used when multiple quadcopters need to collaborate

on a task. Environmental challenges such as wind and terrain also play an important

role in the flight of the drone. A good navigation system is essential for a quadcopter.

These algorithms usually run on a remote computer and control signals are sent to the

quadcopter. Testbeds are also being created to test these navigation algorithms efficiently

and effectively.

Drones are flown singularly or as a swarm by developing a network between them. Swarm

drones are used for border patrol, accurately tracking and localizing humans and objects.

Ma’sum et al.[Ma’sum2013] developed a Particle Swarm Optimization (PSO) Algorithm

in which each drone in the swarm would use its individual and global perception in order

to recognize and track an object. This algorithm has been tested with both mobile and

stationary targets.

Safety Considerations

It is important to perform continuous monitoring of the drone while it is in flight as it

may collide with a structure or bird and cause damage. Furthermore, in the presence of
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Figure 2.5: X Configuration of Drone
[Floreano2015]

Figure 2.6: + Configuration of Drone
[Floreano2015]

obstructions, drones may not perform well as they will not be able to lock on to GPS

satellites. Drones are mostly used in three kinds of applications - recreational, civil or

commercial, and military. Recreational drones are used as a hobby or for photography

from unusual elevations or angles. Commercial Drones are used for surveillance, delivery

of goods and terrain exploration. Military drones are used for Inspection, Surveillance

and Reconnaissance (ISR) applications, unmanned killing, warfare and to test nuclear

weapons[Wilson2014].

Murray & Park[Murray2013] highlighted the need for continuous monitoring of UAVs by

human operators and propose a mathematical model through which autonomous move-

ment and human monitoring & operation can be simultaneously balanced in order to

improve safety and operation of UAVs. This article brings to light the importance of

the human element in UAVs and the dangers of fully autonomous flight of such vehicles.

The model suggested provides a new approach to determining amount and time of human

input needed while flying a drone.

Wilson[Wilson2014] has presented a study of ethics in the usage of drones in various

fields. A drone can be evaluated based on the person controlling them. There are three
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levels based on which the drone’s ethical component can be analysed:

1. The actions of the person controlling the drone

2. The intentions of the person controlling the drone

3. The consequences of the actions performed by the drone

Hence, in effect the moral framework is applied to the controller or end-user of the drone.

A drone’s ethics comes into play when its flight or operation causes hindrance to other

people. This could include noise caused by the drone, invasion of privacy if people’s

pictures are captured without their permission or knowledge, stealth stalking etc. In

commercial settings such as Amazon’s AirPrime, a large number of drones may be used

and hence cause crowding in the available airspace. This may inadvertently affect other

flying manned vehicles by restricting the airspace available to them. They may also have

negative environmental repercussions. From the military perspective, there may be a huge

breach in ethics as collateral damage is likely. In unmanned killing through drones, there

is a huge risk as wrong identification of target could result in the loss of an innocent life.

Autonomy of drones is the most controversial as completely autonomy may cause a drone

to misbehave during failure or error. Especially in critical military situations, excessive

caution needs to be exercised.

2.2.3 Autonomous Drones

One of the greatest advantage of drones is their capacity for autonomous flights in various

environments. Due to this, their application in civil and industrial applications is ever in-

creasing and no longer limited to military operations alone. New frameworks, methodolo-

gies and procedures are being developed to increase the reliability of autonomous drones.

Today, technological advances have reached a sufficiently mature level where drones can

be flown semi-autonomously. However, at present, the commercial drones available are

inaccurate to use at ground level or inside closed spaces and may misbehave due to lack of
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control signals. Due to this, the full potential of autonomous drones cannot be achieved

as some amount of user supervision is necessary[Floreano2015].

Autonomy in drones

Autonomy in robots is the ability of robots to function by themselves without manual

input, by maintaining knowledge of state and using some sensing techniques. Autonomy

frees the drone from human supervision and increases scope of use. There are different

increasing levels of autonomy that a drone can have which are listed below[Floreano2015]:

• Sensory-motor autonomy: This translates high-level commands to the drone

such as to fly to a particular height, move to a GPS point etc. into low-level

platform-specific combination of yaw, roll and pitch.

• Reactive autonomy: This is built over sensory-motor autonomy. In this kind

of autonomy, the drone maintains its position even in the presence of wind, signal

failure and other unpredicted occurrences. It also helps the drone avoid obstacles

in its path and maintain a fixed distance from a stationary or moving object.

• Cognitive autonomy: This built over both reactive and cognitive autonomy. This

is used to perform complex operations such as object recognition and tracking,

mapping and localization.

A drone with Cognitive autonomy is completely exempt from human supervision. The

drone uses incoming data and state information at a point to determine its future action.

Reactive autonomy requires minimal supervision while sensory motor autonomy requires

moderate human supervision.

Mellinger et al.[Mellinger2011] developed a drone system which made use of cognitive

autonomy to fly through windows, perch on walls or wires and to follow aggressive trajec-

tories. Multiple-drone systems were programmed to achieve cooperation in manipulating
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Figure 2.7: Embedded Microcontroller on AR Parrot drone[Lugo2014]

Figure 2.8: Structure of Remote Processing Station[Guimaraes2012]

a payload through rigid attachments. A gripper system was also developed to enable

robot climbing. The experimental results showed that autonomous behaviour was pos-

sible for singular and multiple drone systems. Autonomous drones usually make use of

an on-board computer system or a remote base station for processing input and correct

navigation of the drone. This is shown in Figure 2.7 and Figure 2.8

Chen et al.[Chen2013] proposed the design for a spatially aware autonomous drone using

a quadcopter, an Android phone or tablet, an Arduino microcontroller and ultrasonic

sensors that could be used to autonomously navigate the drone to explore a new loca-
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tion. Such a system would be highly useful in the field of Intelligence, Surveillance and

Reconnaissance(ISR) for wars, border surveillance and exploring unmanned areas includ-

ing search and rescue. The system is constructed in three parts - setting up the system

hardware, establishing the navigation and control within indoor locations and inferring

the position of drone and its surroundings from images. The Arduino-Android interface

was found to be highly complex and caused flight instability. The experimental results

indicated that such a system was highly feasible and could be extended and refined to

commercial drones. A similar system with improvements was suggested by Chirtel et

al.[Chirtel2015] which could be used to construct the map of an unknown indoor space.

A Simultaneous Localization and Mapping(SLAM) framework was incorporated to create

a map of the location autonomously. This system is designed using Commercial Off-the-

Shelf(COTS) technology in order to use economical equipment and evaluate the ease of

developing such a system. An android phone is mounted on the quadcopter and com-

municates with a mounted input output board(IOIO) through Lidar. The experimental

results indicated that the lack of GPS signal made it difficult for the drone to hold its

position and avoid obstacles, and hence such a method is not very effective.

An effective prototype for a fully autonomous quadcopter was proposed by Guimaraes

and team in 2012 [Guimaraes2012]. In this design, a master-slave architecture is used

where an embedded microcontroller acts as the designated master. The data obtained

from the drone is processed at the radio base station which offers significant advantages in

comparison with on-board processing. This is represented in Fig 2.8. As the computing

power on board is very limited due to the size of the drone, complex operations may take

too much time to process or may not be feasible at all. Furthermore, intensive operation

will drain the battery of the drone thereby greatly decreasing the flight time of the system.

A stabilization strategy is used in conjunction with the algorithm in order to maintain

the drone’s orientation while varying the Yaw, Pitch and Roll parameters. A simulation

testbed for this system was developed using Matlab and PID Controllers. The findings
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from this experiment indicated that this system performed well even in the presence of

noise. Lugo & Zell proposed a similar system using the AR Parrot drone. The vertical

orientation of camera and detected FAST corners are used to maintain position of the

drone and vary its horizontal velocity. A second algorithm that uses pyramidal images

and computes optical flow is used for accuracy. An on-board embedded microcontroller

is present which processes the incoming input and controls motion and navigation of the

drone.

Various other approaches to automate drones have been proposed in recent times. All of

these make use of some imaging or ranging technique along with a stabilization strategy.

Jang et al. suggested the use of MEMS sensors and Kalman Filters in order to make

accurate estimations even in the presence of noise [Jang2007]. A Four Stroke RC Engine

was used with a quadcopter to test autonomous flight [Bluteau2006]. The RC engine is

primarily used to increase the power to weight ratio of the quadcopter. A distributed

software and hardware architecture was used in the setup of the system. Two kinds of

sensors are mounted on the drone - propriocentric sensors for low-level commands and

extroceptive sensors for high-level commands. Results indicate that further refinement of

this design is required for 3d localization. Methods using acoustic emission and reflection

have been explored but results and simulations indicate that these are not very effective.

Based on the literature review, the best algorithms to autonomously move the drone in

an indoor or a non GPS-accessible location by producing a location map use ultrasonic

reflection and visual imaging. Simple and complex image processing algorithms such as

Stereo Vision, Feature detection, template matching and servoing techniques have been

implemented and tested by various teams. A detailed description of some of these imaging

techniques and experimental simulations have been described in the following section.
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2.3 Visual Imaging and Servoing in Drones

As most commercial drones are mounted with good quality cameras, they can use visual

techniques in order to track and detect objects. Vision-based navigation and tracking

has become a very important aspect in the field of robotics. This approach can not only

be used to capture images of objects or scenes but also to detect moving objects, follow

objects at fixed distances, provide localization, estimate paths and monitor risky areas.

Camera operations and computer vision applications form the largest area in which drones

are being commercially used today. Visual Servoing is the process of using visual input to

control the movement of the drone such as tracking a particular template, colour, shape

etc. This can be done in two ways in an Unmanned Aerial Vehicle - by either moving

the quadcopter at a fixed distance from the moving object, or by keeping the quadcopter

stationary and focusing the camera on the object as it moves.

Achtelik[Achtelink2009] presents the prototype of a system in which the motion of a quad-

copter is controlled through visual feedback and inertial sensors. Well-designed markers

are used for easy detection, and to facilitate robust movement in the presence of noise.

The quadcopter has an Inertial Measurement Unit(IMU) consisting of accelerometers,

gyroscopes and two processors of which one is used to communicate to a base station

wirelessly. Small, inexpensive VGA cameras were mounted on the quadcopter and the

maximum distance to detect a marker was established as 5 meters. Four markers (strong

LEDs within ping pong balls) were used to reduce exposure time of the camera in order

to avoid motion blur and ambient light. For tracking and reconstruction, the centre of

gravity is calculated for each of the markers by transforming the RGB plane into a YUV

plane, and applying a median filter to determine its correct centre in neighbourhood. The

3D coordinate centres are then obtained from the 2D centres and used to determine the

quadcopter’s position and orientation. The processing times and delays were measured

before control with the help of initial inertial sensors. The system was evaluated based
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on stability of the drone while stationary and in motion and was reliable in tracking the

quadcopter.

An interesting approach and control strategy to follow the path of a 3D moving object

using an unmanned air vehicle (UAV) is presented by Mondragón et al.[Mondragón2011].

This method uses visual data input and performs colour distribution based segmentation

in order to develop an Image-based Visual Servoing system. The UAV maintains a fixed

distance from the centre of the moving object and from the image plane in order to ensure

stable motion and continuous detection. This approach is tested in indoor as well as out-

door settings. Detection of the moving object through camera input is difficult because it

is susceptible to sudden changes in illumination and color. For initial object detection, the

author has proposed a simple colour distribution based extraction. For Visual Servoing,

it is ensured that the target is present in cameras field of vision and at a fixed distance

from the UAV. Based on the results obtained, it is concluded that such an approach is

feasible and also robust to environmental conditions.

Visual Servoing systems are classified into two categories:

• Pose-based: Using pose estimation

• Image-based: Using image information

Hamel & Mahony proposed an image-based navigation strategy for drones[Hamel2005]

which makes use of pose particle information to calculate the visual error. A decou-

pled control design using structured control Lyapunov function is implemented in this

system. The experimental simulation for this system is conducted with a an X4-flyer

drone and demonstrates that the control functions effectively in 2D. An improvement

to the aforementioned system is proposed by the authors to increase the system’s effi-

ciency[Guenard2008]. A non-homogeneous gain term is added and adapted to the error

measurements in order to balance out the poor conditioning of the image Jacobian matrix.
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Figure 2.9: Design of Object Colour Tracking using Fuzzy Control [Olivares-Mendez2011]

The results exhibit the robustness and efficiency of this algorithm.

Ian Golightly and Dewi Jones have explored the use of unmanned aerial vehicles for

inspection and monitoring of overhead power lines[Golightly2005]. The quadrotor would

draw electricity from these wires which would offer significant advantages over a freely

flying drone. Hough Transform is used to obtain the position and orientation (pose) in-

formation from the UAV. The experimental tests are conducted in lab and the results

show that such a system is useful, accurate and resistant to noise and disturbances.

Vision4UAV is a software that provides vision based capabilities to Unmanned Aerial Ve-

hicles such as Object Detection, Localization and Tracking using Fuzzy Servoing[Olivares-

Mendez2011]. The camera mounted on the rotary wing of the drone focuses on continu-

ously following an moving target object in air, and maintaining a fixed distance from it.

This algorithm is tested on real flights in various scenarios and is validated to be robust to

changes in wind, illumination and perturbation. This system can also be used for swarm

flying in formation and for indoor navigation. The design of this system is represented in

Fig 2.9. A similar design will be used in the proposed system.
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2.4 Structure from Motion

Structure from Motion(SFM) is a 3D reconstruction framework based on the principle of

photogrammetry. Photogrammetry is used to estimate measurements and depth from 2D

images and also for accurately determining surface points in an image. It makes use of

ultrasonic reflection to estimate 3D motion in a reference field. SFM is fast growing as an

area of interest as it can be used to construct 3D models of scenes or objects from a set

of 2D images without a 3D correspondence input parameter. In simpler words, SFM is

the automatic recovery of camera motion and scene from a set of images. SFM is used in

various computer vision applications such as shape reconstruction, navigation & tracking

and in generation of Computer Generated Imagery (CGI).

3D reconstruction of a scene can take place in one of two ways. In the first method,

some prior knowledge of the scene is used in order to make estimations and increase the

degrees of freedom. For example, the use of a planarity constraint can give some idea

regarding the positions of points from an image to 3D space. The second method suggests

use of corresponding image points like Corners or Edges in multiple views. Using different

views of an image, a 3D point can be reconstructed by ‘triangulation’. Camera calibra-

tion, position and orientation need to be determined and expressed using a projection

matrix. The 3D model is constructed by determining and matching the same feature in

different views[Szeliski2011]. Structure from Motion is mainly based on two major prin-

ciples - Feature Extraction and Stereo Vision. Various algorithms have been developed

for research on SFM. The two most popular frameworks are the Stanford ’Bundler’ algo-

rithm and the ’VisualSFM’ framework. Both of these can be used for research and lab

purposes but do not produce very accurate results in comparison with specialist software.

Pollefys suggested a similar method for the reconstruction of 3D scenes from 2D im-

ages[Pollefys05]. The motion and calibration of the camera and the shape of a rigid static
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Figure 2.10: 3D Reconstruction of a scene using SFM [Westoby2012]

object being photographed can be recovered from an image sequence. The approach

presented was fully automatic and could handle photo or video sequences acquired with

uncalibrated hand-held cameras. A much more refined algorithm was presented by the

author for real-time 3D reconstruction of urban scenes[Pollefys2008]. Instead of using

individual images, a video stream is taken as the input along with GPS and inertial

measurements so that the reconstructed model can be placed in its estimated geographic

co-ordinates. Accuracy is achieved by using a two-step stereo reconstruction process and

exploiting the redundancy across frames. Results are tested on video sequences compris-

ing hundreds of thousands of frames.

A fully automated 3D reconstruction and visualization system is suggested for buildings

and architectural scenes by Furukawa and team [Furukawa2009]. This method claims

to be applicable to both interior and exterior environments. This presents a challeng-

ing problem as it is difficult to reconstruct walls as they have no markers or textures to

perform keypoint matching. The system makes use of structure from motion, multi-view

stereo and stereo vision in order to calibrate camera and recover the 3d geometry of the

objects in the scene. Depth-maps are used in order to compute simplified real world mod-

els. Finally, the model is rendered in an image-based 3d viewer. Using this algorithm,

the 3d model of the entire first floor of a house was produced.
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2.4.1 Feature Detection

Features are interesting points in an image that can be used for low-level processing

operations. During feature detection in an image, each and every pixel is examined it to

see if it contains a feature. In this manner, all the feature pixels in an image are extracted

and used for various kinds of operations. Some common features include edges, corners

and blobs. Many sophisticated feature detection algorithms use SIFT feature detection

or FAST Corner detection which are described in the following sections.

SIFT Feature Detection

Scale Invariant Feature Transform (SIFT) is a feature detection and extraction algorithm

that was proposed by David Lowe in 1999. SIFT has gained popularity because of its

robustness to illumination changes, scaling, noise, affine distortion and rotation. In this al-

gorithm , a training image is provided to the algorithm from which features are extracted.

These features are then stored in a database. An object in a test image is detected by

comparing the features in the database to the features in the test image based on the Eu-

clidean distance between its feature vectors. From the set of matches, few are discarded

and the good ones are maintained. Objects which pass these matches are identified and

then extracted. The SIFT algorithm can be broken be broken down into 5 steps which

are described below[Lowe1999]:

1. Scale-Space Extrema Detection: Difference of Gaussians(DoG) is calculated for

the image with blurring of the image with scaling parameters σ and kσ. Using the

DoG, images are searched for local extrema over scale and space, i.e, each pixel is

compared with its neighbours in the current scale and its previous and next scale.

If it is the local extreme in its neighbourhood, it becomes a potential keypoint.

2. Keypoint Localization and Filtering: The keypoints are then filtered to obtain

accurate results. Taylor Series Expansion of Scale is used to check if the extrema is

lesser than the threshold. If the extrema is lower then the threshold., it is discarded.
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Figure 2.11: Key steps in the SIFT Algorithm

This removes all the low-contrast points and maintains strong keypoints.

3. Orientation Assignment: Orientation is assigned to each of the keypoints in

order to make it rotation-variant. A scale-dependent neighbourhood of each of

these points is considered and the gradient and direction is calculated. This creates

keypoints with same location and scale but with different orientations. All of these

4. Keypoint Descriptor: A 16x16 neighbourhood around the keypoint is divided

into 16 sub-blocks of 4x4 size. An 8-bin orientation histogram is created for each

sub-block. The bin is represented as a vector to form a keypoint descriptor.

5. Keypoint Matching: Keypoints in two images are matched by examining their

corresponding neighbours.

Various improvements have been proposed to the SIFT algorithm such -SIFT, N-SIFT,

PCA-SIFT and Color SIFT by extending scale and dimension in order to improve the

speed and accuracy of matching. SIFT is being widely used in medical imaging, image

registration, identifying unknown areas and robotic mapping and navigation.

FAST Corner Detection

Features from Accelerated Segment Test (FAST) was developed by Edward Rosten and

Tom Drummond, is used for feature detection & extraction and can be used for tracking

objects in scenes. It is primarily used to identify corner points in an image. The FAST

algorithm is much faster than other feature detection algorithms such as SIFT and Harris-
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Figure 2.12: FAST Corner Detection[OpenCV2015]

Plessey Corner Detection. For each pixel, the 16 pixels on the circle of radius 3 around

the point are considered. If ‘N’ of these surrounding pixels are greater than the pixel

intensity plus a threshold value or lesser than the pixel intensity minus a threshold, then

the point is identified as a corner. The threshold value and the value of ’N’ are obtained

through machine learning.

2.4.2 Stereo Vision

Stereo Vision is the process of estimating 3D information from a set of cameras which

capture images from different angles or perspectives. This is obtained by examining rel-

ative positions of the same object in different images. Stereo Vision is generally used

for creating depth maps of an object by following some assumptions like planarity or

linearity. In the most basic, form, stereo vision makes use of 2 different cameras placed

Figure 2.13: 2D Stereo Vision[NI2015]

at a fixed vertical or horizontal distance from each other. This produces two views of
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the same scene. From these views, relative depth estimations can be obtained. This is

done using the principle of triangulation where, an object’s distance from the camera can

be obtained using 3 parameters namely dimension (height or width of the object being

captured), pixels that it occupies in the image and focal length of the camera. Using this

technique, the actual distance between two points can be computed. Camera calibration

is a very important step in stereo vision in order to determine focal length of the camera

and also account for distortion in image.

Multi-view Stereo Vision makes use of several views from an object to compute distance

between various points or markers on the surface of an object. The camera is moved

around the object in a circle and using the different depth maps obtained, a 3d point

cloud can be constructed. A representation of Multi-view Stereo Vision is depicted in Fig

2.14. Multi-view stereo vision forms the basis for the Structure-From-Motion Framework.

Stereo Vision has reached a level of maturity where the algorithm has been used in vari-

Figure 2.14: Multiview Stereo Vision[Westoby2012]

ous critical applications such as planetary exploration and outer space navigation [Gold-

berg2002]. The use of robotic stereo vision forms the fundamental basis of autonomous

robots and has been applied to various situations like UAV automation, robotic track-

ing, road traffic surveillance and monitoring, border patrol etc. One of the most famous

applications of this method is the self-driving car. Stereo vision is also used for SLAM

applications to build grid maps of unknown areas or environments. Various techniques
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have been proposed to reduce the disparity in the map information obtained from stereo

vision. Don Murray[Murray2013] proposed a methodology through which the errors cre-

ated by occupancy grid mapping can be overcome successfully. Errors are reduced by

using continuous disparity surfaces to separate and classify images based on the “spikes”

caused by mismatches.

Through the use of SIFT and multi-view stereo vision, a 3D model can be obtained.

This combined algorithm constitutes the SFM framework.

2.5 Summary

Over the last quarter century, there has been a tremendous growth in the field of wind en-

ergy. Traditional windmills located at the farms and houses have given way to large-scale

wind turbines whose blades are more than 65 metres in length. As these large blades move

continuously and are exposed to natural elements like wind, rain and lighting, there is a

crucial need to monitor them continuously in order to prevent failure which could cause

heavy monetary loss, damage and even death. Various wind turbine monitoring mech-

anisms are used such as Vibration-based analysis, Ultrasonic reflections(Sonar, Lidar),

thermal imaging and oil-based methods. Most methods require some physical sensors to

be bonded to the surface of the wind turbine blade and hence, induce further strain in

the blade. Non-destructive, unobtrusive methods such as Acoustic emission and Visual

Imaging are gaining popularity and have become popular areas of research in the field of

Structural Health Monitoring. The proposed system explores the use of computer vision

algorithms for monitoring wind turbines.

Unmanned Aerial Vehicles(UAVs) or drones have moved from being military equipment

and are now being widely used in civil and commercial areas. Due to their small size and

flight capability, quadcopters have become extremely popular as they provide ”eyes-in-the-
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sky”. One of their greatest uses today is Simultaneous Localization and Mapping(SLAM)

applications where they can be used to create grid maps of unknown or unmanned areas.

This greatly improves safety of critical applications. They are also used for surveillance

and monitoring of traffic, for three-dimensional reconstruction of scenes and for border

patrol. The numerous advantages offered by commercial-off-the-shelf drones can be har-

nessed effectively to monitor civil structures. In the case of civil structures in motion,

flight in different patters around these structures can allow for closer unmanned inspec-

tion. As most commercial drones today are fitted with a high definition camera, visual

imaging capabilities can be leveraged over the mobility of the drone to perform effective

monitoring. This aspect forms a key element of the proposed system.

With growing advances in the field of image processing and computer vision, small

amounts of detail in a scene can be calculated using different methods. 3D reconstruction

of objects and scenes has become a huge area of research and has uses in medical imag-

ing, geographic applications such as surveillance and mapping, and in almost all fields

of animation. If 3D reconstruction can be used in the field of Structural Health Moni-

toring by obtaining models of sufficient detail where damage, strain or deformation can

be detected, it can be widely used as economical and feasible alternative to traditional

monitoring methods. Structure from Motion or Stereo Vision can make use of different

views taken from a camera for 3D reconstruction of the scene. From the research, it can

be concluded that one novel approach to SHM could be by making use of unmanned aerial

vehicles mounted with visual sensors in order to construct a real-time, 3D model from a

2D image set in order to detect damage or failure in the structure.
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Chapter 3

Design

This chapter specifies the design aspects of the proposed system. First, the requirements

of the system are listed to provide a thorough understanding of the objective of the

dissertation research. Next, the proposed system architecture is presented followed by

detailed descriptions of each of the system’s components. Finally, a quick summary of

the design pattern, principles and techniques used is presented to the reader.

3.1 Requirements

A preliminary analysis of the objectives of our system reveal various hardware and software

requirements. Some of the requirements were determined at the beginning while others

were derived during the process of research.

1. In order to construct a 3D model of the wind turbine blade, several different views,

i.e. 2D images of the blade are required. These images combined must span the

entire length, breadth and height of the blade.

2. A suitable pattern must be determined for the drone such that the images captured

by the camera mounted on the drone must satisfy the criteria specified in the earlier

requirement.
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3. The system must account for sudden gusts of wind and wake effects which may

cause unpredicted displacement of the drone from its expected position.

4. The proof-of-concept system must be constructed using commercial, easily-available

technology in order to demonstrate the economical feasibility and ease of implemen-

tation of the suggested approach.

5. The hardware constraints of the unmanned aerial vehicle such as speed, size, battery

and flight time must be considered and its suitability for use in the proposed system

must be evaluated beforehand.

6. The 3D model generated should possess sufficient detail such that strain or defor-

mation in the blade is accurately detected and localized.

7. The 3D model should be generated from the set of 2D images in real-time.

8. As the system encompasses a range of technologies, it must be possible to integrate

these technologies to obtain an end-to-end flow with minimal amount of human

intervention.

3.2 System Architecture

Keeping in mind the aforementioned requirements, a suitable system architecture is pro-

posed. The system mainly consists of two modules which are further divided into compo-

nents. The simplified architecture of the system is represented in Fig 3.1 The first module

encompasses a learning algorithm which is responsible for the following functions:

• Determine a suitable path around the turbine blade using a mathematical model.

• Use a tracking algorithm to obtain expected positions of the drone at different times.

• Determine correction equations to account for wind gusts and unexpected drone

movement.
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Figure 3.1: Simplified System Architecture

• Fly the drone using corrected equation around the turbine blade and capture images

from vantage points.

The second module of the system uses computer vision and image processing concepts to

construct a 3D model from the 2D images obtained. The functions of this module are

listed below:

• For each image, identify feature keypoints that can be matched in other images.

• Compare the identified keypoints with keypoints in every other image and perform

3D stitching when a match occurs.

3.3 Learning Module

The Learning Module computes the path of the drone using a mathematical model so

that it can be flown autonomously around the blade. A tracking algorithm is used to

establish corrections in positions of the drone due to the effect of winds and other natural
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Figure 3.2: Architecture of the Learning Module

factors. The Learning module is comprised of various components which are represented

in the Fig 3.2. Each component of the system is described in the following subsections.

3.3.1 Drone pattern Estimation

A helix is chosen as a suitable model for the path of the drone around the wind turbine

blade. A helical path is an ideal choice in this case as it not only covers a circular arc

around the blade to obtain images from various angles but also provides a stepwise linear

increment in height. By choosing various vantage points around the drone on a helical

curve, it can be ensured that the images captured will cover all surfaces of the blade.

Helical Pattern

A mathematical model can be used to rotate the drone in a helical fashion around a sta-

tionary blade. There are three kinds of helical structures namely Circular Helix, Cylindri-

cal Helix and Slant helix. For the stationary wind turbine blade, a cylindrical helix model

is chosen. The required helix is first constructed in the Cartesian coordinate system and
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Figure 3.3: Identifying points on helix and conversion to real-world coordinates

then translated to real world coordinates as shown in Fig. 3.3. The parametric equation

of a helix in the Cartesian system is given by:

x = rcosθ

y = rsinθ

z = bθ

for θ ∈ [0, 2π] and b is a constant given by
h

2π
where h is the height of the helix and r is

the radius of the helix .

Translation of helical pattern to real world coordinates

From the above parametric equation, we can obtain points on a helix by varying the

value of θ in constant increments. These points need to be converted from the Cartesian

system into real world co-ordinates. To achieve this, the (x, y, z) coordinates of the helix

are converted to Global Positioning System coordinates in decimal degree format, i.e., to

corresponding Latitude, Longitude and Elevation values.
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Figure 3.4: Difference between estimated and actual position due to wind and wake effects

3.3.2 Object Tracking

Although the above approach seems to provide a robust solution, the presence of wind

and aerodynamic noise may cause the drone to move to a different position instead of

the expected position. Commercial drones have mechanisms to remain stationary in the

presence of winds by increasing the speed of the propeller blades in the direction opposite

to wind ,however this is not very effective while the drone is in motion. Since the size of

modern quadcopters is quite small, it may be blown some distance away by a strong gust

of wind. This is represented in Fig 3.4.

In order to estimate the difference between the expected position and actual position

of the quadcopter, we compute positions of the drone by identifying spectral markers in

images captured by the drone at various points. The quadcopter can be made to detect

and track a colored marker on the surface of the blade by segmenting the markers in the

incoming input image stream. Using this method, the actual position of the drone at a

particular point can be calculated.
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This approach however has a few limitations. The tracking of the coloured marker is

done in the 2D system, however the required co-ordinates of the point should contain

three dimensions. The x and y coordinates can be estimated from the position of the

marker in the captured image, however the z coordinate which represents the distance

from the blade cannot directly be obtained through this method. A simple alternative

has been suggested to rectify this.

3.3.3 Distance Estimation

The distance of the camera from the turbine blade can be calculated using a simplistic

approach of detecting two different spectral markers on the blade in an image frame

instead of a single colored marker. If the focal length of the camera is known, this reduces

to the problem to one of triangulation. The distance of the camera D from the blade can

be derived by using the formula

D =
W ∗ F
P

where W is the distance between the two markers on the blade, F is the focal length of

the camera and P is the pixel distance between the two markers in the captured image.

This can be further simplified by using two differently coloured markers which can be

tracked easily by the drone. This has been shown in Fig 3.5

3.3.4 Correction Equation

By making use of the methods mentioned above, the expected and actual positions of

the drone are computed. The error is calculated as the linear displacement in the three

directions x, y and z, and is given by

δx = xexp − xact

δy = yexp − yact

δz = zexp − zact
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Figure 3.5: Tracking two differently coloured spectral markers

where (xexp, yexp, zexp) are the coordinates of expected position of drone and (zact, zact, zact)

are the coordinates of actual position of drone. This method linearizes the points observed

on the helix and simplifies the error calculation to simple linear translation rather than a

differential equation.

To improve accuracy of this approach, a machine learning algorithm can be implemented

to learn the error ranges and calculate an approximate error model for various wind speeds

in a particular area. During the training phase, the actual and expected positions are

computed during differnt times when wind speeds may be different. Based on the range

of errors obtained, a mean value of error is computed which will be used for correction

during the testing phase. The corrected equation is given as

xfinal = rcosθ − δx

yfinal = rsinθ − δy

zfinal = btheta− δz
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Figure 3.6: Steps in 3D Reconstruction Module

At each corrected point (xfinal, yfinal, zfinal), a two dimensional image of the blade is

captured at a fixed distance from the blade.

3.4 3D Reconstruction Module

This module retrieves the image set captured by the quadcopter at various points and

processes it into a three dimensional model in real time. By incorporating a high level

of detail into the 3D model, deformities, delamination and cracks can be detected and

localized in the wind turbine blade. The ‘Structure-from-Motion’ framework which uses

SIFT Feature Detection multi-view stereo vision is used to compute the 3D model of

the turbine blade. The steps in conversion of the 2D images set to the 3D model is

diagrammatically represented in Fig 3.6.

3.4.1 Structure from Motion

Th ‘Structure from Motion’ framework is used to convert 2D filtered images to a 3D

Point Cloud or Mesh Model. The 3D model is then examined for cracks, bends or other

deformation by a human operator. The Structure from Motion Pipeline is described in a

series of steps listed below:
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Figure 3.7: Object Estimation from Structure from Motion [Snavely2008]

• Create a 2D image set such that each image provides a different view of the object

or scene whose 3D model needs to be constructed.

• Identify SIFT features in each image that can detected and matched in other images.

• Search for corresponding feature matches in other images.

• Compute camera positions and point positions in the image such that the viewing

rays intersect.

• Filter out false matches by applying visibility constraints.

• Apply a Bundle Adjustment algorithm for corrections and smoothing surfaces.

• Compute surface from 3D points by developing a mesh model or point cloud.

3.5 Design Challenges

To effectively monitor a stationary wind turbine blade using an unmanned air vehicle,

certain key design aspects needed to be considered. Some important design challenges

along with corresponding decisions are listed below.
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Figure 3.8: SFM Workflow Figure 3.9: 3D Reconstruction using SFM

1. A simple yet effective pattern for the quadcopter’s motion around the blade should

be determined.

A helical or spiral pattern would be ideal in this case as it provides a 360 ◦ view

around the surface of the blade. The step wise increment in height at each point

makes it even more beneficial as a gradual increase in height and can provide views

that differ slightly in angle which allow for greater overlap and more feature matches

between images. This pattern is also sufficiently complex, and can be used to

effectively utilize the autonomous, unobtrusive monitoring and flight capabilities of

the drone.

2. It must be possible to achieve an end-to-end flow in the system by interfacing separate

components of the system

The various components of the system may be developed using different technologies

and integration of these components will pose an interesting challenge. As this

project is divided amongst various separate fields of research such as robotics, civil

engineering, computer vison and machine learning, languages and libraries that can

be easily integrated are chosen and combined together to achieve an end-to-end

flow. The 3D reconstruction module and the Learning algorithm will not need to
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be integrated as the drone flight logically separates these two components of the

system.

3. A suitable 3D reconstruction mechanism must be chosen to construct the 3D model

As the speed of the drone is quite high, its movement in a helical pattern will gen-

erate a stream of images at rates similar to those in video capture. For this reason,

the ‘Structure from Motion’ framework which produces accurate 3D models and

meshes from a video stream or a continuous sequence of input images is determined

to be suitable.

3.6 Summary

This chapter presented an overview of the requirements of the proposed system derived

from the research objective. The system architecture is specified which consist of 2 parts

- the Learning Module and the 3D Reconstruction Module. The Learning Module deter-

mines the pattern that the quadcopter must follow, points on the path at which images

must be captured and corrections in the presence of wind and wake effects. A helix is

chosen as the most suitable model. The 3D Reconstruction Module provides a framework

through which a set of 2D images that furnishes different views of a scene or object can

be used to construct a 3D point cloud or a three dimensional mesh model. The Structure

from Motion algorithm using SIFT keypoints is used to achieve this. Finally, some of the

design challenges that were faced during the course of the research have been presented

along with resulting design decisions.
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Chapter 4

Implementation

This chapter discusses the methods and technologies which can be used to develop a

system based on the design concepts discussed in Chapter 3. First, each component in

the system is described in detail along with the algorithms, methodology, language and

libraries that have been used for its implementation. Next, the integration of the various

components of the software and hardware are described. Finally, the end-to-end flow of

the system is described along with a short summary.

4.1 Helical Path of the drone

4.1.1 Cartesian construction of helix

Using the parametric equation of the helix, an arbitrary number of equidistant points are

chosen on each spiral of the helix. Linearization of the helical pattern using a fixed number

of points greatly reduces the complexity of the problem. For a larger wind turbine blade,

the number of points chosen will be high while a smaller blade may require fewer points

because of greater overlap of views from individual points. Large numbers of images

greatly increase the complexity and load on the system so the number of points must

be optimized such that a minimum number of images are captured in order to produce

a sufficiently detailed model for the turbine blade in consideration. Each of the points
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Figure 4.1: Algorithm for generating points on Helix

on a single spiral arc is obtained by varying the value of θ. ‘n’ equidistant points on a

single spiral of the helix are chosen by splitting the angle of a circle into n equal parts.

Hence each point (xi, yi, zi) on the spiral is obtained by varying the angle θ in stepwise

increments of
2π

n
such that θ =

2π

n,
,
4π

n
...2π, where i = 1...n. The points on subsequent

spirals in the helix are obtained by varying the height ‘h’ of the helical arc for the spiral

in consideration.

The diameter ‘d’ of the helix is given by

d = Longest Cross Section of Blade +(2 * Distance of camera from blade)

The drone is positioned at a minimum distance of 8 metres in the blade. This is to account

for the wind turbine blade’s vibrations which may cause collision between the drone and

blade and also to ensure sufficient level of detail in captured images. The vertical area

captured by the camera can be calculated using the focal length of the camera lens. The

HD camera mounted on the DJI Phantom Vision Plus has a focal length of 5mm and can

capture a vertical height of 7.63 meters of the object while flying at distance of 8 meters

from it. This maximum vertical height forms the height ‘h’ of the helix. The pseudocode
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Figure 4.2: Processing Sketch to validate helix algorithm

to obtain points on the helix is presented in the Fig 4.1.

The above algorithm is implemented in Java and points are generated on the helix based

on the blade length entered and the radius of the helix calculated. The points obtained

are plotted on a console to test the accuracy of the algorithm. This is done using a ‘Pro-

cessing’ sketch as in Fig 4.2. Once the algorithm is validated, required points on the helix

are computed based on the blade length and radius.

4.1.2 Cartesian to Geographic Co-ordinates

From the earlier step, the Cartesian coordinates of various points on the helix pattern can

be computed. In order to facilitate revolution of the drone about an actual wind-turbine

blade, the points should be mapped to real world coordinates. This can be done in one

of two ways:

• Conversion of Cartesian Coordinates to GPS and Elevation

• Conversion of Cartesian Coordinates to Euler Angles (Roll, Yaw & Pitch).

48



The proposed system will make use of the first method of conversion to GPS as it allows

easy integration of model with the drone. To achieve this conversion, the system datum

(World Geodetic System 84) is used. Other methods of converting Cartesian coordinates

to cartographic coordinates include Bowring’s algorithm(1985) and the Heiskanen algo-

rithm. The WGS 84 standard assumes the center of mass of earth as a reference point and

an ellipsoid reference shape. The WGS 84 conversion has been implemented in Java by

using the ‘AGI.Foundation.*’ libraries and integrated with the system elements described

in Section 4.1.1.

The combined code takes the length and maximum cross-section of the turbine blade

as input and computes the Cartesian and Cartographic coordinates of points on a helix

curve around the blade. The origin is assumed as the hub of the wind turbine so that the

necessary elevation for the points can be calculated. The hub is assumed to be at a height

of 150m from the ground for experimental purposes. This allows each point obtained

in the previous step to be converted to Latitude, Longitude and Elevation values in the

decimal degree format.

4.1.3 DJI GroundStation Waypoints API

The Latitude, Longitude and Elevation values computed are directly interfaced with the

drone’s API in order to achieve autonomous flight. The path of the drone from one point

on the helix to other takes place in a linear fashion and does not follow an arc. To achieve

a circular arc between points, Euler Angles must be used. The geodetic coordinates

obtained are fed into the DJI Phantom 2 Vision Plus drone using the DJI GroundStation

Waypoints API which flies the drones autonomously between the specified locations.
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Figure 4.3: Calculation of Helical Points around blade

4.1.4 Summary

This module produces a linearized Helical path of the DJI Phantom drone along the wind

turbine blade. By using the blade length and blade radius as input, the parametric equa-

tion of the helix is used to compute various points on the helix. These points are converted

from Cartesian to Geodetic coordinates which are then fed into the DJI Phantom 2 Vision

Plus drone via the DJI Ground Station Waypoints API to obtain an automated helical

path around the blade. The workflow of this component is represented in Fig 4.3

4.2 Marker Tracking using Quadcopter

The GPS locations determined in the earlier step may contain some inherent error in

positional accuracy, which typically ranges to a few meters of length. For this reason, a

mechanism that is independent of GPS needs to be chosen in order to estimate the error

between expected and actual positions. This divided this into a series of steps:
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1. Track colored marker in video stream and determine its coordinates

2. Identify atleast two differently colored spectral markers in the image and calculate

distance between them in order to calculate the distance of camera from the blade.

3. Track motion in the absence of colored markers.

4.2.1 Tracking motion using a colored marker

By placing a colored marker on a moving object, the motion of the object can be tracked

easily. The image can be thresholded in order to separate the colored marker from the

rest of the image. The coordinates of the centroid of the bounding box that contains the

segmented marker region can provide a reference point for the position of the object in

the video frame or image sequence.

First, the input image or video is converted from the RGB color space to the HSV color

space as colored objects can be tracked more easily and accurately using Hue, Saturation

and Value components. The HSV ranges for a particular color are determined either

through trial and error or more efficiently using a machine learning algorithm as shown

in Fig 4.4.

Next, objects of a particular color in the image are segmented by thresholding using the

range of hue, saturation and value determined in the previous step. All the pixels whose

values lie between the maximum and minimum values in the range are extracted from the

image. Erosion and Dilation are performed after thresholding in order to eliminate noise.

In the final step, contours are identified in the binary threshold image obtained. Us-

ing the ‘moments’ method, the longest contour in the frame is determined and the (x,y)

coordinates of each of the points on the longest contour are retrieved. The centroid of

the largest white region in the binary image is obtained by averaging all points on the
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Figure 4.4: HSV Image Figure 4.5: Color Tracking Figure 4.6: Longest contour

Figure 4.7: Pixel distance between two colored markers

contour. These steps are shown in Fig. 4.5. This algorithm is implemented using C++

and OpenCV 2.4.10.

4.2.2 Tracking differently colored moving objects

By tracking two spectral markers in a frame instead of one, the pixel distance between

the markers in the image captured can be used to gauge the distance of the drone from

the blade as an alternative to using ranging mechanisms such as acoustic or ultrasonic

reflection. The pixel distance between the markers can be obtained by calculating the

Euclidean distance between the bounding box centroids of the two markers in the Fig 4.7.

In the simplest method, the distance of blade from the camera can be obtained by using

the focal length of the camera, the pixel distance between the markers and the actual

distance between the markers using the formula
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DistanceFromCamera =
FocalLength ∗ ActualDistanceBetweenMarkers

P ixelDistanceBetweenMarkers

By applying this formula to the incoming video stream or image sequence, the distance of

the drone from the blade can be calculated. The pixel distance calculated in the earlier

step is applied along with the focal length of the camera (5mm for a DJI Phantom Vision

Plus quadcopter with a mounted HD 1080p camera). An arbitrary distance of 5meters

is considered as the actual distance between the spectral markers. In a system where

distances are continuously calculated for each incoming frame an additional control can

be setup which ensures that the drone stays within a range of distances from the blade.

This has been implemented using Python(X,Y) and OpenCV 2.4.10.

4.2.3 Sequential Differencing to identify motion

This method is used to track a moving object in the input video stream or in a sequence

of images. Two sequential images from an input stream or from a video are read by

the system. The pixels in the two images are compared in order to detect what pixels

have changed with between them. This can be obtained by computing difference between

successive frames and using a difference image in order to identify the changed pixels. A

threshold is applied to the difference image in order to clearly segment the moving object.

Erosion and Dilation are performed on the threshold image to eliminate false positives

and false negatives in the presence of noise. Finally a bounding box is drawn over the

segmented area and the centroid is highlighted and labelled with its 2D coordinates to

facilitate easy following and tracking as shown in Fig 4.8.

This approach is used to detect whether the blade is stationary or in motion without

the need for colored markers, and to follow the blade’s trajectory in 2D in the absence of

spectral markers on the blade. This is implemented using C++ and OpenCV 2.4.10.
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Figure 4.8: Object tracking without color

4.2.4 Summary

This module enables the drone to move in a specific pattern around the wind turbine

blade without the need for GPS locations to be supplied beforehand. The drone can be

programmed to follow a colored marker at a specified distance from the blade. Distance

between the blade and drone can be evaluated from the image sequence by calculating

distance between differently colored markers in the image and comparing the pixel distance

to the actual distance between the two markers. In the abscence of spectral markers,

collision between the blade and the drone can be prevented by detecting object motion

without spectral markers through the method of sequential frame differencing.

4.3 3D Reconstruction from 2D Image Set

Once the drone’s pattern is established, images are captured from different vantage points

on the helix which are used to construct a 3D model of the blade in real time. For this

purpose the ’Structure-from-Motion’ approach is used. Our end product is a 3D point

54



cloud or mesh model with sufficient detail to detect and localize deformation or damage

in the blade.

4.3.1 VisualSFM

A popular Structure-From-Motion framework ’VisualSFM’ is used to compute the 3D

point cloud. This software, developed by Changchang Wu, makes use of SIFT using

Gaussian pyramids and Multicore Bundle Adjustment along with multi-view Stereo Vi-

sion in order to compute a 3D point cloud of the object[Wu2011].

This application can be used for sparse 3D reconstruction based on the keypoints iden-

tified by the algorithm. It takes the 2D image set as input, checks each of the images

for SIFT features and looks for these feature matches in all other images as shown in

Fig 4.9. If feature matches are found, the corresponding views of the features are used to

establish a depth map between points in the image. By performing this operation for each

of the images in the image set, most of the matches are correctly obtained. One major

drawback of this algorithm is that is not robust to illumination changes such as shadows

and noise, and hence cannot be used to construct a very accurate 3D model. The output

of this tool is a set of perspective images and calibration parameters of the camera based

on the images that have been captured. A limitation of Visual SFM is that it cannot be

used effectively for dense keypoint match computations. It can be integrated with the

PMVS/CMVS tool developed by Yasutaka Furukawa to obtain a dense 3D perspective.

4.3.2 CMPMVS

The sparse or dense 3D perspectives obtained from Visual SFM must be converted to

a suitable form through which it can be viewed as a 3D model. Moreover, the model

should have the ability to be viewed from different perspectives. CMPMVS, developed

by Michal Jancosek and Tomas Pajdla [Jancosek201], is a 3D reconstruction software
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Figure 4.9: Computation of SIFT points and perspective images in VisualSFM

used to construct a mesh model from a set of perspective images. Based on the matched

features, perspective images and intrinsic and external camera calibration parameters, a

dense 3D point cloud is computed which consists of the object’s feature keypoints from

perspectives. In the abscence of spectral markers, VisualSFM and CMPMVS provide a

very, poor inaccurate model of the scene. Hence, for this approach to be used effectively,

spectral markers need to be added to the surface of the blade.

4.3.3 MeshLab

Meshlab is an open-source, lightweight tool that can be used to view, edit and render

structured and unstructured meshes. This software is used to correctly display and render

the mesh model constructed by CMP-MVS in the previous step. The processing capacity

of MeshLab is quite low and can only be used to view and render meshes that are less

than 100Mb in size. This implies that specialist 3D rendering software will be required

to produce blade models with high amounts of detail. A mesh created using CMP-MVS

and rendered using MeshLab is shown in Fig. 4.10
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Figure 4.10: 3D point Cloud, Mesh and texture rendered using MeshLab

4.3.4 Blender

Blender is an open-source image processing, computer graphics and animation software

that can be used for creation, modeling, simulation, filtering and rendering of 3D graphical

structures. Blender will be used to render and filter high-definition meshes that cannot

be processed by MeshLab as shown in Fig 4.11.

4.3.5 Summary

The 3D Reconstruction Pipeline is described in this section. VisualSFM is used to match

SIFT Features, estimate camera calibration parameters and generate perspective images

that provide an idea about the position of the camera while capturing the image. CMP-

MVS takes the perspective images from Visual SFM and constructs a sparse or dense 3D

mesh. The generated mesh can be viewed as a point cloud, a mesh structure or in its

rendered form in MeshLab or Blender.

4.4 Integration

Various technologies are used to implement the above system. In order to integrate the

different components of the system and obtain an end-to-end flow end-to-end workflow,

certain simplifications have been used due to the time constraints of the project. The
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Figure 4.11: Dense 3D Mesh rendered using Blender

GPS co-ordinates of the Helix path from the Java implementation are written to a file

from which it is read by the DJI Ground Station API to set waypoints for the drone. The

different marker tracking algorithms that have been developed using OpenCV, Python

and C++ are integrated into a single component by importing the Python library in C++

and embedding the Python snippets within the C++ code.

4.5 Implementation Challenges

Numerous challenges were faced during the implementation of the system. Some of them

are listed below:

1. Conversion of (x,y,z) to GPS (Lat,Long,Ele) is challenging.(WGS 84)

2. Very short distance errors cannot be reliably obtained by GPS.

3. Image processing software requires high computational power

4. Object tracking in 3D is complex.
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5. Two-camera stereo vision depth maps are not very accurate as point cloud is gen-

erated using only 2 images.

6. Large meshes are not very easily rendered, and cannot be processed efficiently using

open source tools.

7. Spectral or SIFT patterns must be present on the surface of the blade for the chosen

approach to work.

4.6 Overall Summary

Different technologies and software were evaluated for suitability for developing the system

according to the design specifications. Initial experiments attempted to create the helical

pattern of drone by providing values of drone parameters (roll, yaw, pitch and uplift) for

path between two consecutive points on helix. This proved to be highly complex and did

not provide good results during simulation through the Heli - X Quadcopter Simulator.

The linearization of the steps in the helix and conversion to GPS greatly simplified the

problem and allowed effective vantage points to be determined on the surface of the

helix. Wake and wind effects have been accounted for by implementation of the marker

and motion tracking algorithms which are used to determine the position errors obtained

during different wind speeds. 3D reconstruction was initially attempted using stereo vision

however the results weren’t accurate enough to detect deformities or cracks in the blade.

After extensive research, the SFM framework was determined to be suitable for achieving

the objective of the system. All parts of the system have been successfully implemented

but the integration requires refinement. Most of the testing of the system has been done

using software simulators. The next step would be to test the system on a wind turbine

blade in outdoor settings.
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Chapter 5

Evaluation

This chapter presents an evaluation of the proposed system which gives an indication of

the system performance. As this system contains various disparate modules, different

experiments are conducted to measure the efficacy of each of these modules individually

and fot the system as a whole. The aim of the experiments conducted is to obtain an

overall understanding of the efficiency, reliability and usability of the proposed system.

5.1 Rationale

Before the experiments are discussed in detail, it is important to understand the factors

that affect the proposed system and metrics that can be used to measure the performance

of the system.

5.1.1 Factors

The proposed system is composed of several different components which are responsible

for various functions of the system. Factors which affect different aspects of the system

are considered and these will also play an important role in the overall effciency of the

system.

1. Distance of the drone from the blade: The distance of the drone from the
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blade is important to determine the range of distances between which the flight

of the drone must be restricted in order to obtain suitable results and maintain

acceptable safety margins. The minimum distance of the drone along its linear path

from one point on the helix to another also plays an important role as sufficient

distance should be maintained to avoid collisions with the blade.

2. Presence of noise during image capture: The presence of noise or blurriness

in the image being captured from camera may prevent the drone from following the

marker correctly.

3. Resolution and number of images captured: The resolution and number of

the images provided as input for 3D reconstruction will greatly affect the quality

of the output 3D model. The time taken to process the images will also vary

significantly based on these factors.

5.1.2 Metrics

Several metrics have been identified which can be used to evaluate the performance of the

proposed system.

1. Accuracy of Helix path: The accuracy of the helical path of drone will determine

whether the drone can actually move around the blade in a fashion that provides

clear views from any vantage point while maintaining a minimum distance in order

to avoid collision.

2. Accuracy of marker detection and tracking: The distance maintained by the

drone from the blade and the presence of noise while capturing images such as

blurriness due to rain, sudden wind etc. will determine how well the drone can

detect and track the colored markers on the blade.

3. 3D Reconstruction time: The time taken by the system to reconstruct the 3D

model will a direct indicator of memory usage and system performance.
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Figure 5.1: Distance error in linearization of helix(Top View)

4. Quality of 3D model :The quality of the 3D model will be the most important

metric to determine the performance and reliability of the system as it must be de-

tailed enough in order to accurately detect and localize cracks, structural deformities

and damage in blade.

5.2 Experiments

The evaluation is conducted through three experiments which are described in detail in the

following sections. The aim of the first experiment is to measure the disparity in distance

of drone from the blade due to simplification of the helical pattern into a sequence of

linearisations.

5.2.1 Experiment 1:

We consider a helix of radius 8 meters radius that is centred at the origin. We then esti-

mate the distance between the path of the drone along the spiral arc and compare it with

the closest distance between the line joining two points on the helix. This is represented

in Fig 5.1. The minimum number of points per spiral is considered to be 3 as atleast 3

perspectives will be required to construct a three dimensional model. The height of the

helix is assumed to be 12 meters. The percentage error in distance for different number

of points on helix is listed in Table 5.1.
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Number of Points Nearest Distance from blade(in m)
3 4.46
4 5.852
6 6.997

Table 5.1: Shortest Distance between drone and blade after linearization

Figure 5.2: Percentage error in distance of drone from blade due to linearization of helix

The percentage error is calculated by measuring the perpendicular distance from the

center of the helix to the line joining two consecutive points on the helix, and comparing

it with the actual distance that it needs to maintain from the blade, i.e. 8m. From the

observation it is evident that the greater the number of points on the helix, the smaller the

error in distance. This is consistent with intuitive expectations. It can be concluded that

in order to maintain a minimum distance of 8 meters between the drone and the blade,

the error in linearization must be accounted for and the helix radius correspondingly

corrected.

5.2.2 Experiment 2:

In the case of a sudden tilt or jerk of the drone, or in the presence of rain or other natural

factors, the image captured by the drone may be blurred. This may also occur due to
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Figure 5.3: Original Markers without blur Figure 5.4: Markers with 13 % blur

Figure 5.5: Markers with 40 % blur Figure 5.6: Markers with 60 % blur

overexposure of camera lens, incorrect focus and poor lighting levels. In such cases, the

coloured spectral marker might not be detected accurately or may not be detected at

all. This provides an indication that the image obtained by the drone cannot be used for

3D reconstruction as blurred features cannot be detected by the SIFT Feature Detection

component of the ‘Structure from Motion’ approach. We have introduced a Gaussian Blur

in the sample image to detect levels of blurring at which accurate detection of marker fails

By applying different sample horizontal and vertical blur levels to the sample image,

levels upto which blurring can be handled by algorithm are detected. The graph shown in

Fig 5.7 indicates the percentages of blur at which markers cannot be detected accurately.

From experimental results, it is seen that the algorithm is robust up to 18% vertical and

horizontal blur and produces moderate results for blurs ranging from 20-40%. These per-

centages can vary significantly based on the pixel area occupied by the marker in obtained

image. In cases of higher blurring, the spectral markers are not detected as the algorithm
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Figure 5.7: Marker Detection Accuracy vs Percentage of Blur

is unable to detect continuous contours. Marker images with different levels of blurring

are shown in Fig 5.3, Fig 5.4, Fig 5.5 and Fig 5.6.

5.2.3 Experiment 3:

This experiment is used to determine the range of distances from the blade that the drone

can maintain in order to acquire good quality images which can be used for 3D recon-

struction. If the drone is too close to the blade, the spectral marker will appear large and

the surface area of the blade being imaged will be correspondingly small. If the drone is

overly far from the blade the features of the blade will be too small for effective integration

in the 3D reconstruction.

In this algorithm, the minimum bounding box area for a marker to be detected is con-

sidered to be 40x40 pixels for an HD 1080 camera. If the area occupied by the spectral

marker in the image is less than 40x40 pixels, it indicates that the camera is too far away

from the surface of the blade to detect keypoints on the blade. For experimental purposes,

two markers are assumed to be at a distance of 3 meters from each other on the surface of

the blade. The farthest distance of the drone from blade is calculated using the principle
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Processing Times(in min)
Number of images 1920x1080 2048x1536 3120x4160

8 35 54 65
15 41 55 83
20 60 65 86
25 82 95 112

Table 5.2: Processing times for images of different resolutions

Figure 5.8: Time taken for 3D Reconstruction

of triangulation and estimated to be a maximum of 34.64 meters for the DJI Phantom

Vision Plus camera. Similarly if the drone camera is too close to the surface of the blade,

the keypoints will be magnified and blurred. Hence the drone must maintain a minimum

distance from the blade. In order to account for vibrations of the blade in the wind and

provide an appropriate safety margin, this distance is estimated at 8 meters.

5.2.4 Experiment 4:

The time taken for the 3D reconstruction process greatly varies based on the resolution,

size and number of input images. A number of models are created using different sets

of 2D images at different resolutions. The time taken to process and render the final 3D
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models is measured and compared to obtain an understanding of the memory usage and

performance of system. All 3D model reconstructions have been performed on a system

having 16GB DDR3 RAM and an UltraHD 3280 x 2160 display. The time taken for

different image sets are represented in Table 5.2 and Fig 5.8.

5.3 Summary

Various metrics have been used to evaluate the performance of the proposed system.

Based on the experiments and simulations conducted, the following insights have been

gained:

• While moving the drone from one point on the helix to another, the motion in

linearized and not an arc segment. This must be kept in mind while estimating

minimum distance from blade.

• The system is robust to slight blurring, but does not currently provide sufficiently

accurate results in the presence of high noise.

• The distance of the drone from the blade should lie within a threshold range which

allows the features to be detected correctly

• The 3D model can be reconstructed in real time and the time taken is dependent

on the number and quality of the images used.
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Chapter 6

Conclusion

The first section of this chapter describes how the proposed system addresses the research

questions set out at the beginning of the dissertation. The second section provides an

analysis of the goals set and achieved during the course of the dissertation. The third

section discusses future work to refine the system, and advance research from this point

and the final section provides concluding remarks about the system.

6.1 Research Questions

This section addresses the research question posed at the outset of the research by ad-

dressing each of the sub-questions that arise from it. An overview of the approach used

to tackle these questions are presented below:

“Can visual imaging techniques be used to provide an efficient, unobtrusive

and economical monitoring method for wind turbines?”

The construction of a real-time accurate 3D model of the blade from its 2D image set using

computer vision provides an efficient, economical, unobtrusive structural Health Monitor-

ing technique. The 3D model developed can be analysed to identify cracks, strain, damage

and deformation in the blade.
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The subquestions arising from the research question are addressed below:

• What kind of image processing algorithm can be used for structural health monitor-

ing of civil structures?

The construction of a 3D model of a civil or mechanical structure from various per-

spective images would provide an insight into the shape, texture and other physical

attributes of the structure. Algorithms such as Stereo Vision, Feature Matching and

Structure from Motion can be used to achieve this. Stereo Vision and Feature-based

3D stitching algorithms were implemented but did not provide satisfactory results.

The ’Structure from Motion’ framework demonstrated promising results and can be

used for monitoring civil structures proactively.

• How can the algorithm be extended to be robust if the target structure is in motion

and not stationary?

For moving structures such as Wind Turbine blades, the camera focus needs to be

maintained on the surface of the blade so that different views of the blade can be

obtained. This would be difficult to achieve using a stationary camera. By using a

quadcopter mounted with a high definition camera, motion capability can be added

to the camera and hence the camera can be effectively made to follow the wind

turbine blade as it rotates. Hence, by leveraging the capabilities of an unmanned

air vehicle with a camera, the algorithm specified earlier can be extended to moving

structures.

• What are other factors which come into play while monitoring a wind turbine in

realistic outdoor environments?

The locations at which wind turbines are installed are susceptible to a variety of

natural factors such as wind, rain, sudden illumination changes etc. Wake effects

also play an important role as they generate strong gusts of wind behind the rotating

plane of the wind turbine. Due to all of these factors, the path of the drone may
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change while in motion around the blade.

• Can such a system be developed using commercial, easily available, off-the-shelf tech-

nology?

The prototype of the system has been implemented using the DJI Phantom Vision

Plus commercial drone and open source libraries from OpenCV, Python, VisualSFM

and CMPMVS. Although the model processed and rendered using these tools pro-

vides suficient detail, specialist software will be required to produce accurate models

with high levels of detail.

6.2 Conclusions

The proposed system was researched, designed, implemented, tested and evaluated during

the course of the dissertation. Firstly, the helical path of the drone was achieved through

simplification into linear steps. To account for displacement from the desired path due to

natural factors like wind and rain, a correction equation is devised. Finally, a 3D model

is constructed from 2D images taken from various points on the helix around an object.

This has not been tested on a real blade but on a similar surface which contains optical

markers for matching.

The contributions of this dissertation to the state-of-the-art are as follows:

1. Automation of quadcopter flight in a helical pattern:

Autonomous flight of quadcopters is an active area of research today as the use of

drones increases. Estimating and automating different patterns of drone flight can

be performed using a similar approach.

2. Color marker tracking by quadcopter on a moving wind turbine blade:

By tracking a colored marker on a moving turbine blade, a drone can be made to

follow the circular path of a turbine blade in 2D and keep it in focus. This can not

70



only be used for health monitoring but also other surveillance applications such as

following a moving vehicle.

3. 3D Reconstruction of Wind Turbine Blade The use of a 3D model for the purpose

of Structural Health Monitoring is a novel approach and opens new potential areas

of research.

6.3 Future Work

There are a few limitations in the proposed system. The helical path algorithm can only

be used to revolve the drone around a stationary blade . This can be extended to a

moving blade by using a slant helix or a quasi helical pattern. This is an area of potential

future research interest. 3D Reconstruction of constantly shifting scenes and Tracking &

Following vehicles in real time can also be performed using a similar approach. UAVs can

also be used to monitor and follow flying vehicles such as helicopters air balloons etc. as

the capabilities of commercial quadcopters increase. The calculation of error due to wind

and other effects can be propagated to other drones in the vicinity which are affected by

the similar natural factors. This can be used to predict corrections when autonomously

flying a swarm of drones.

6.4 Final Remarks

Structural Health Monitoring of civil structures is an active area of research. In this

dissertation, a novel approach of using drones mounted with cameras to monitor civil

structures is proposed. A prototype is implemented by using commercial, easily available

software and the experimental simulations conducted exhibit that such an approach is

not only feasible but also shows promising initial results.
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Appendix A

Abbreviations

Short Term Expanded Term

SHM Structural Health Monitoring

UAV Unmanned Aerial Vehicle

NDT Non Destructive Testing

GWEC Global Wind Energy Council

AE Acoustic Emission

SFM Structure From Motion

VTOL Vertical Take Off From Landing

ISR Intelligence, Surveillance and Reconnaissance

SLAM Simultaneous Localization and Mapping

COTS Commercial Off-the-Shelf

SIFT Scale Invariant Feature Transform

IMU Inertial Measurement Unit

FAST Features from Accelerated Segment Test

2D Two Dimensional

3D Three Dimensional

GPS Global Positioning System
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Appendix B

DJI Phantom 2 Vision Plus

Specifications

Battery 5200mAh LiPo Battery

Max. Flight Speed 15m/s

Gimbal Upto 90 ◦

Camera 14MP, 4384x3288

Video Recording 1080p & 720p

Controller Battery 3.7V, 2000mAh

Range Extender Distance 500-700m

DJI Vision App iOS 6.1 or above, Android 4.0 or above
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