
Links - A Literature Visualisation and
Analysis Tool

by

Eoin Nolan

Supervisor: Professor Mike Brady

Dissertation

Presented to the
University of Dublin, Trinity College

in ful�lment
of the requirements

for the Degree of

Master in Computer Science

University of Dublin, Trinity College
22nd May 2014

Declaration

I, Eoin Nolan, declare that the following dissertation, except where otherwise stated, is
entirely my own work; that it has not previously been submitted as an exercise for a degree,
either in Trinity College Dublin, or in any other University; and that the library may lend
or copy it or any part thereof on request.

Eoin Nolan

22nd May 2014

i

Acknowledgements

I would like to thank Professor Mike Brady for his excellent advice, anecdotes, and support
throughout the year. The guidance he o�ered was an invaluable help in completing this
dissertation. I would also like to thank Clare Hayes-Brady for providing the initial idea for
the dissertation and for taking time out of her schedule to contribute valuable feedback
from the perspective of the user.

Eoin Nolan

ii

Links - A Literature Visualisation and
Analysis Tool

Eoin Nolan

University of Dublin, Trinity College

Supervisor: Professor Mike Brady

The aim of this dissertation is to demonstrate the creation of a literature visualisation
and analysis tool that can augment the study of literature, while still remaining open and
intuitive in its presentation of features and data. The tool is designed to work on an iPad in
an e�ort to tap into the growing mobile market.

The central motivation of the tool, named Links, is to enable knowledge discovery by
gathering interesting quantitative data about the text and visualising it to the user in such
a way that it highlights thought-provoking sections. From exploration of the data, the user
should gain a deeper understanding of the underlying relationships, themes, and writing
styles in the text, which they may then use in their own studies.

The technical design and implementation outlined in this dissertation explains how the
data metrics needed to make this possible may be gathered. Data is gathered through the
use of natural language processing, in which grammatical tagging is used to apply lexical
categories to each word.

A focus is placed on analysing word frequency, relationships, and sentiment within the text.
Additionally, the design places a particular emphasis on creating a user-friendly interface
that enables exploration, �ltering, and annotation of the underlying data, by following
recommendations from previous research. The resulting design is compared and contrasted
to similar analysis tools to evaluate the performance of its design.

A qualitative evaluation of the tool shows that the data produced by Links meets the aim of
supporting knowledge discovery within literature. In particular, the data metrics that are
gathered can reliably highlight the most important relationships in a text, and provide and
overview of the sentiment as the piece progresses.

iii

Contents

Declaration i

Acknowledgements ii

Summary iii

1 Introduction 1

2 Background 3
2.1 Related Tools . 3

2.1.1 Phrase Net . 4
2.1.2 Easy Text Classi�cation with Machine Learning 4
2.1.3 Google’s N-Gram Viewer . 6
2.1.4 Java Graphical Authorship Attribution Program 6
2.1.5 Phraseology . 7
2.1.6 TopicNets . 7

2.2 Analysis Algorithms, Methods, and Data Sets 8
2.2.1 Grammatical Tagging . 8
2.2.2 Word Frequency and Distribution 9
2.2.3 WordNet . 9
2.2.4 Sentiment Analysis . 10

2.3 Data Visualisation Techniques . 11
2.3.1 Frequency & Distribution Visualisations 11
2.3.2 Graph Visualisation . 12

2.4 Evaluation of Related Work . 14
2.4.1 Evaluation of Related Tools . 14
2.4.2 Evaluation of the Presented Algorithms, Data Sets, and Methods . 16
2.4.3 Evaluation of Data Visualisation Techniques 17

iv

2.5 Conclusion . 18

3 Design & Implementation 19
3.1 Local versus Remote Data Processing . 19
3.2 Designing a Data Structure for Text Relationships 20

3.2.1 Data Structure Requirements . 21
3.2.2 An In-Memory Object Based Approach 21
3.2.3 Additional Application Data . 23
3.2.4 An On-Disk Approach using Core Data 24
3.2.5 Optimisations . 26

3.3 Parsing Texts and Generating Data Structures 27
3.3.1 Parsing With NSLinguisticTagger 28
3.3.2 Memory Leaks in NSLinguisticTagger 29
3.3.3 Sentiment Analysis . 30
3.3.4 Graph Construction . 31
3.3.5 Speed and Memory Performance 35

3.4 Query Design . 36
3.4.1 Identifying User Requirements . 37
3.4.2 Technical Design . 38

3.5 Designing Annotation Tools . 40
3.5.1 Technical Design . 40
3.5.2 Templates & Integration with Existing Filters 41

3.6 Designing a User Interface . 43
3.6.1 Importing Texts . 43
3.6.2 Processing the Text . 45
3.6.3 Home Screen . 48
3.6.4 Exploration of the Graph Structure 50
3.6.5 Additional Interface Components 58

4 Evaluation 64
4.1 Technical Evaluation . 64

4.1.1 NSLinguisticTagger Evaluation 64
4.1.2 Evaluation of the Graph Data Structure 66

4.2 Qualitative Evaluation . 67
4.2.1 Proximity as a Measure of Relationship 68
4.2.2 Knowledge Discovery Aspects of the Tool 69
4.2.3 Word Frequency as a Measure of Writing Style 70
4.2.4 Evaluation of the Interface Design 71

v

4.3 Conclusion . 72

5 Future Work 73
5.1 User Studies . 73
5.2 Additional Features . 75

5.2.1 Supporting Additional Text Formats 75
5.2.2 Emotive Analysis . 75
5.2.3 Collaboration . 76

5.3 Conclusion . 76

6 Conclusion 77

vi

List of Figures

2.1 A Phrase Nets graph displaying pairs found in Pride and Prejdudice 4
2.2 An etcML sentiment chart measuring sentiment for a popular social media

topic. 5
2.3 A N-Gram graph showing the doubling frequency of the word ‘Black’. . . . 6
2.4 An example of dense and sparse TopicNets graphs 8
2.5 Envisioned evolution of NLP research through three di�erent eras 11
2.6 Two word clouds. Left: An aesthetic design. Right: A functional design. . . 12
2.7 A dense graph showing the improvement made in legibility through use of

colour categorisation. 13
2.8 An example of the Word Tree visualisation for Pride and Prejudice 14

3.1 An overview of the data model used within Links 23
3.2 Representation of the sentiment analysis sliding window process 31
3.3 Linearly increasing edge count of the graph with increasing adjacency. . . 34
3.4 Speed Increases of a Multithreaded Parser 36
3.5 Overview of the annotation data structure. 41
3.6 The process of importing a text into Links from an external application. . . 44
3.7 The process of adding text from the OS clipboard. 44
3.8 The search results seen while adding Ayn Rand’s Atlas Shrugged. 45
3.9 The visualisation of the parsing process shown for The Adventures of Sher-

lock Holmes. 47
3.10 The home screen of the application showing a user’s library. 49
3.11 List visualisation of frequency. 52
3.12 Tree visualisation of a node. 54
3.13 Spiral graph of characters in A Game of Thrones 57
3.14 A sentiment chart for Pride and Prejudice showing a drop in average senti-

ment accompanied with a quote from that point. 59

vii

3.15 The �lters modal view showing lexical category options and multiple books
in the user’s collection. 61

3.16 The annotation modal view showing annotations related to Pride and Prejudice. 63

viii

List of Tables

3.1 Memory and speed results of the implemented data storage methods. . . . 26
3.2 Retained and discarded lexical categories. 28
3.3 Average lexical category usage per million words. 29

4.1 Classi�cation error of NSLinguisticTagger. 65

ix

List of Algorithms

1 Locating Edge Positions . 27
2 The graph construction process . 33
3 The spiral graph layout process. 55

x

1 | Introduction

The advent of the computer fundamentally changed the way in which we in interact with
data. Problems of scale, work that would have taken decades to complete, could now be
done overnight at the press of a button. This power opened new avenues of research
within the arts disciplines, merging computing and humanities to form a brand new �eld
of research; the digital humanities.

The digital humanities are vast areas of research covering countless di�erent topics and
tools. Indeed there are numerous examples of this research and the interesting data it can
produce being carried out within Trinity College itself I. This dissertation focuses on the
area of literature analysis. Literature, and indeed all natural language, is a complex mesh of
characters, imagery, emotion, and sentiment. Analysis of literature is an in depth process in
which one must navigate between hidden meaning and relationships in the text. Depending
on the scale of the analysis, this is a substantial amount of work in which the outcome is
very much tied to the opinions and thoughts of the reader.

The motivation behind this dissertation is to create a tool that that can leverage natural
language processing and data visualisation techniques to make the process of knowledge
discovery easier during literature analysis.

The tool, named Links, focuses on four main metrics of analysis: frequency and distribution
of words, word relationships throughout the text, di�erence analysis, and sentiment analysis.
It is believed that by analysing these metrics, the user will gain the ability to easily �nd
interesting areas of the text, such as highly positive paragraphs or sections where two
major characters appear together. With this ability to emphasise important sections of the
text, the user may supplement their traditional research methods by browsing pertinent
data and annotating their �ndings.

ITCD Digital Humanities https://www.tcd.ie/trinitylongroomhub/themes/digital-humanities/

1

https://www.tcd.ie/trinitylongroomhub/themes/digital-humanities/

1. INTRODUCTION

The aim of the tool is not to replace the qualitative insight that the user has about a piece of
literature; instead, Links provides a new method of large-scale visualisation, analysis, and
annotation that would not have been possible before. Data is not limited to single sources;
in fact some of the most interesting data is produced when multiple sources are contrasted
against one another; for example, to show di�erences in vocabulary usage between two
authors.

Many of the tools designed for use within the digital humanities unfortunately go underu-
tilised because of their complexity. There is an ongoing debate within the �eld about the
usability of the tools available. While many tools focus purely on the quality of the data
they return, the lack of attention to user interaction often hampers adoption rates among
researchers. Gibbs and Owens carried out a survey of tool creators �nding that only 33%
ever conducted usability reviews of their tools [1]. They conclude with the �nding that only
6% of scholars will use these tools, and recommend that placing an emphasis on cultivating
a broader audience should be a larger concern for creators. Links focuses on abstracting
away this complexity so that the user can operate the tool with little to no training.

The recent change in the industry from physical control based interaction, through mouse
and keyboard, to touch based interaction has been heralded as a paradigm shift in how
applications are designed with usability in mind. Links is designed to run on an Apple iPad
and naturally a large importance is placed on user interaction in a touch-enabled context.
The majority of current tools are designed for desktop interaction with a traditional mouse
and keyboard setup. However, as the usage of both desktop and laptops continues to
dwindle – having recently being overtaken in gross sales by tablets [2] – it was felt that
the option for similar tools in a mobile context should be explored.

This dissertation is structured as follows: the second chapter provides an overview of
currently available text analysis tools and algorithms and establishes the background on
which the presented tool builds upon them. The third chapter presents a design and
implementation of key components of the tool including algorithms, data structures, user
interface design, and visualisation techniques. The fourth chapter analyses the performance
of the tool both technically and qualitatively; the qualitative tests focus on the performance
of the tool in a knowledge discovery context using literature from project Gutenberg.
Chapter �ve outline recommendations for future iterations of the tool and di�erent areas
which may be improved upon. The �nal chapter, chapter six, concludes the report with a
summary of the �ndings.

2

2 | Background

The tool presented in this dissertation builds upon the foundations of several di�erent �elds
of research: Natural language processing (NLP) which examines how accurate parsing and
analysis of text by a machine can be achieved; data visualisation which studies the best way
to present complex data sets in a human readable form; and human computer interaction

(HCI) research which studies how users interact with a system and the ways in which it
can be improved.

This chapter begins with Section 2.1, which provides an overview of the related tools
in the area of text analysis and visualisation. Section 2.2 discusses the algorithms and
data sets that are commonly used within natural language processing and text analysis,
as well as the previous research in the area. Section 2.3 provides an overview of data
presentation techniques that are commonly used in text visualisation tools. Section 2.4
presents a critique and evaluation of the presented items from the previous sections, and
discusses their comparable uses within the design and implementation of Links.

2.1 | Related Tools

The digital humanities are a vast �eld of research and with a wide range of studies being
pursued, there comes an equally wide range of tools to aid with research. The initial focus
of this dissertation was to identify useful tools in the domain of text analysis and examine
how they achieved their output, both through parsing algorithms and user interaction
techniques. Many of the currently available tools aim to assist with a speci�c metric of text
analysis, such as analysing sentiment or word usage. This section outlines the background
and aims of these tools.

3

RELATED TOOLS 2. BACKGROUND

2.1.1 | Phrase Net

Phrase Net is a web-based text visualisation tool developed by IBM as part of their Many
Eyes project [3] [4]. The tool visualises the pairs of words that are found across a text in
a graph format. In this visualisation, the thickness of an edge between words represents
the amount of times that pair appears. The tool uses word frequency to determine what
to choose as the contents of the graph, limiting what is displayed to the most common
�fty words by default. The intent of this tool is to visualise the major phrases in a book by
linking common words across pattern phrases. For example, the user may de�ne a pattern
‘* and *’. This will visualise links between common words where they match that pattern.
In the example of Pride and Prejudice, the phrase ‘Elizabeth and Jane’ is quite common and
is therefore highlighted within the graph. Users may then select the edge to see the exact
sentence where the pair has occurred.

Figure 2.1: A Phrase Nets graph displaying pairs found in Pride and Prejdudice

2.1.2 | Easy Text Classi�cation with Machine Learning

Easy Text Classi�cation with Machine Learning, or simply ‘etcML’, is a web based text
analysis tool developed by computer scientists at Stanford University, which was released
in 2013 [5]. The tool allows users to upload text and run analysis using built-in classi�ers
or user-generated classi�ers. These classi�ers will determine, for example, if an article has

4

RELATED TOOLS 2. BACKGROUND

positive or negative semantics . Previous studies using the tool have analysed political bias
against the Obama administration [6] and measured global sentiment about popular events
by analysing trending Twitter feeds. EtcML places an emphasis on user-friendly interaction
to di�erentiate it with tools that have traditionally been considered quite di�cult to use.
Richard Socher, lead developer on the tool described this design focus:

“We wanted to make standard machine learning techniques available to people
and researchers who may not be able to program.” [5]

Figure 2.2: An etcML sentiment chart measuring sentiment for a popular social media topic.

5

RELATED TOOLS 2. BACKGROUND

2.1.3 | Google’s N-Gram Viewer

Google provides an N-Gram viewer that uses data gathered from their vast collection of
books spanning nearly two hundred years I. An N-Gram is a contiguous sequence of words
within a text. They can be used to measure the probability of certain words appearing
together. Previous research has used this method to generate probability maps to allow
accurate parsing of text from sources like the Wall Street Journal [7]. With this data the user
may see a distinct shift in an author’s vocabulary, or they may measure how a speci�c word
or phrase has changed in meaning over time. Such data may prove to be a useful asset for
users attempting to identify certain shifts or changes within a text. The following example
is taken from the N-Gram viewer; it shows the changing frequency in the usage of the word
‘black’ over two hundred years. Its usage roughly matched that of other colours until usage
jumped in the 1960s to match the usage of the word ‘white’. This jump coincides with
the beginning of the American civil rights movements and is an example of the change in
meaning that can be discovered by frequency distribution analysis of words or phrases [8].

1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000
0.0000%

0.0050%

0.0100%

0.0150%

0.0200%

0.0250%

0.0300%

0.0350%

Black (All)

White (All)

Red (All)

Figure 2.3: A N-Gram graph showing the doubling frequency of the word ‘Black’.

2.1.4 | Java Graphical Authorship Attribution Program

Stylometry is a �eld of study that examines the linguistic style used in pieces of literature
to determine the author of the piece. The frequency and distribution of function words –
words that have little lexical meaning but express grammatical relationships – are examined
across a set of texts to look for patterns. Tools for this purpose are widely available; one

IGoogled N-Gram Viewer : https://books.google.com/ngrams

6

https://books.google.com/ngrams

RELATED TOOLS 2. BACKGROUND

such example is JGAAP II (Java Graphical Authorship Attribution Program) which uses
quantitative analysis techniques to attribute a text to prede�ned authors. This technology
has been used to uncover unknown authors of literature pieces; most recently the novel
‘The Cuckoo’s Calling’ was revealed to have been written by J.K. Rowling, by researchers
from Duquesne University, having been published under a pseudonym [9].

2.1.5 | Phraseology

Phraseology III is a commercial text editor for the iPad that provides the functionality to
perform text tagging of your own content. From a user interaction perspective, Phraseology
focuses on providing a user-friendly text analysis tool speci�cally designed to operate on
the hardware provided by an iPad. The tool allows users to tag their speech usage and
generate statistics on their word usage. It also allows for word stemming: showing the user
the stem, or base, of any given word and its usage throughout their work. Phraseology is
aimed towards aiding writers rather than literature researchers as is shown through its
focus on writing style analysis tools.

2.1.6 | TopicNets

TopicNets is a visual analysis tool that analyses and assigns a topic to each book contained in
a corpus [10]. The tool allows users to browse complex graphs listing academic theses from
many di�erent disciplines so that they may look for speci�c topics, overlaps, and connected
works. It was developed as part of the WiGi research project run by the computer science
department at the University of California, Santa Barbara. The focus of this project was to
develop novel interactive interfaces for exploration of data, and to make large-scale data
analysis available to users over a web interface. TopicNets presents a method of displaying
complex graphs to users that are still interactive in real time despite their considerable
size. This allows for exploration of the data rather than a traditional search and lookup
interaction.

IIJGAAP : http://evllabs.com/jgaap/w/index.php
IIIPhraseology : http://agiletortoise.com/phraseology/

7

http://evllabs.com/jgaap/w/index.php
http://agiletortoise.com/phraseology/

ANALYSIS ALGORITHMS, METHODS, AND DATA SETS 2. BACKGROUND

Figure 2.4: An example of dense and sparse TopicNets graphs

2.2 | Analysis Algorithms, Methods, and Data Sets

At its core, Links relies heavily on NLP to dissect texts to be able to provide useful feedback
to the user about their contents. As such, there was a need to analyse the �eld of text
parsing algorithms to determine which methods would provide the best trade-o� between
computation time and output accuracy. To complement these algorithms, additional text
analysis data sets were examined; a data set in this context is a precompiled set of data that
supplements the results of text parsing by allowing the tool to add additional metrics to
words such as sentiment or emotion.

2.2.1 | Grammatical Tagging

Grammatical tagging, or part-of-speech tagging, is the process of identifying the lexical
category of each word in piece of text [11]. Tagging relies on both sentence context and
term de�nition to correctly apply a grammatical tag to each word. There are a variety
of text parsing methods that have been developed for use in NLP. Due to the complexity
and ambiguity of natural language, parsing is a particularly di�cult problem to solve and
indeed has not yet been solved completely [12]. The classic example of the di�culties
presented by parsing natural language is given using the following quote:

“Time �ies like and arrow; fruit �ies like a banana”.

8

ANALYSIS ALGORITHMS, METHODS, AND DATA SETS 2. BACKGROUND

In this case it is clear to see that correct tagging of words into their lexical category, noun,
verb etc. is problematic because of the ambiguity of some words; ‘Flies’ could refer to
the insect or to the verb. Context is particularly important when parsing such sentences;
central to these algorithms are classi�ers that identify the surrounding words. There are
two distinct groups of algorithms which perform tagging. The �rst group relies on a rule
based approach that attempts to achieve accurate classi�cation through supervised learning.
The second group makes use of probabilistic models, such as the Bayesian approach, which
analyses word co-occurrence frequencies to select the most likely lexical category. Accuracy
of the output depends on the complexity of the classi�cation. Keeping the number of lexical
categories to a minimum reduces the likelihood of incorrect tagging occurring but a�ects
the quality of the output.

2.2.2 | Word Frequency and Distribution

Having parsed the input text and classi�ed each word, a clear place to start with the analysis
is to examine the vocabulary the author uses in their work. A lower mean frequency of
words used within the piece should indicate a greater vocabulary used by the author. Words
with higher frequency could indicate that the author is using certain writing styles or
themes [13]. Mean frequency is de�ned as being the number of occurrences of a word in
comparison to the total word tokens in the piece. The overall usefulness of solely using
frequency as an analysis metric in this manner has been questioned.

Baayen analysed the practicality of using word frequencies as a consistent measure of the
vocabulary and writing style present in the piece [14]. Baayen’s �ndings show that in
natural language, the mean word frequency does not converge as a sample size increases. In
reality, mean frequency will increase as the size of the corpus increases even with samples
in the size of tens of millions of words. Baayen �nds that natural language cannot be
modelled as a random distribution of words. With the example of Alice in Wonderland, he
shows that key words such as character names are topic sensitive and are tightly distributed
in distinct groups throughout the book. The distribution of these key words becomes a
much more interesting metric than simply frequency alone.

2.2.3 | WordNet

WordNet is an open source lexical database of the English language that was developed at
Princeton University and is used in many major natural language applications and research

9

ANALYSIS ALGORITHMS, METHODS, AND DATA SETS 2. BACKGROUND

projects [15]. The database maps the relationship between words by grouping them into
synonymously related sets. In a text analysis tool this database can be used to further
identify interesting points in the piece by mapping synonym relationships with frequently
occurring words; one may similarly map antonyms for a given word to �nd contrasting
sections in the piece.

2.2.4 | Sentiment Analysis

Sentiment analysis is the study of extracting the polarity or opinions of a piece of text [16].
The aim is to measure how positive or negative the sentiment of the particular piece is.
This is particularly useful when analysing highly opinionated pieces such as media articles
or reviews. The common method of extracting sentiment is to use a tailored dataset that
assigns a polarity ranking to single words for a given context. Such data sets are available
for movie reviews, sports coverage, political opinion pieces etc. This is known as the
‘bag-of-words’ approach to sentiment analysis.

SenticNet is a tool developed by MIT that is used for concept level sentiment analysis of text.
The main aim of SenticNet is to make the conceptual and a�ective information conveyed
by natural language more easily accessible to machines. Similar to etcML, SenticNet can be
used to measure user sentiment over data sets. Unlike etcML however, SenticNet provides
open source parsing tools and a sentiment database. This parser represents the cutting edge
of NLP research. It is more complex than simply applying numeric values to each word in
a sentence; it searches for additional contextual information such as negations in the input.
‘Happy’ would rank as positive but ‘not happy’ would incorporate the negation into the
result and give a negative ranking. Furthermore, it incorporates the ‘bag-of-concepts’ model
of parsing text in which the parser intelligently identi�es the current concept to determine
what the sentiment is [12]. For example, the word ‘cloud’ may be negative in concept of
‘weather’ but positive in the concept of ‘computing’. This type of parsing is envisioned to
be the medium-long term future of NLP.

10

DATA VISUALISATION TECHNIQUES 2. BACKGROUND

1950

NLP System Performance Best Path

Time210020502000

Syntactics Curve

(Bag-of-Words)

Semantics Curve

(Bag-of-Concepts)

Pragmatics Curve

(Bag-of-Narratives)

Figure 2.5: Envisioned evolution of NLP research through three di�erent eras [12].

2.3 | Data Visualisation Techniques

Having parsed the input and generated useful results data, the �nal requirement is to
present that data to the user in an intuitive and concise manner. With the advent of the
touch interface there was a fundamental shift in how users interacted with computers,
speci�cally, interaction with data sets, charts, and graphs became more ‘hands-on’ with
natural panning and zooming now available to the user for the �rst time. As a data intensive
tool, the focus of �nding user-friendly visualisation techniques for Links was paramount.
General visualisation techniques were assessed for the purpose of making data exploration
as simple and natural as possible.

2.3.1 | Frequency & Distribution Visualisations

Visualising the frequency of words for users is an important step to assisting with the
discovery of interesting data. Particularly common words may hint at the style and tone

11

DATA VISUALISATION TECHNIQUES 2. BACKGROUND

being used by an author as mentioned in Section 2.2.2. Visualisation of such data may enable
the user to quickly analyse multiple books, contrasting two authors and their di�ering
approach to writing. ‘Word Clouds’ are an extremely popular method of visualising the
frequency of words in a piece of text. In a word cloud, the size of the word is directly
proportional to the frequency in which it occurs in a text, making it easy for a user to
identify the most common words at a glance. They have been commonly used on web
pages as a means of quickly highlighting the key tag-words used within the page to allow
users to view more content related to the topic. Word Clouds have several di�erent styles
of presentation, both aesthetic and functional (Figure 2.6). The aesthetic example gives an
overview of the content but does not lend itself to exploration; placement of words is not
constrained and is unpredictable. The functional example demonstrates the use of colour
to signify importance as well as displaying the most common word in a prominent central
position.

Figure 2.6: Two word clouds. Left: An aesthetic design. Right: A functional design.

2.3.2 | Graph Visualisation

Clearly visualising the frequently occurring word pairs present in a text would allow the user
to identify complex relationships within the piece. Providing a method to explore the data
is an inherently challenging task. For a large book, the graph produced is extremely dense
with each node having a large set of edges. It is di�cult to present this type of data in two
dimensional space while retaining the user’s ability to consume information and discover
interesting data points; the sheer amount of data may result in an ‘information overload’.
With thousands nodes to be displayed, one must choose some method of prioritising which
data is actually shown, and how this process can be controlled by the user.

The semantic web is one of the largest graph structures assembled and much research has
been undertaken to determine optimal ways of uncovering this data to the common user.

12

DATA VISUALISATION TECHNIQUES 2. BACKGROUND

Dadzie and Rowe examined this �eld with the intent of �nding a visualisation technique
that would allow non-technical audiences to “obtain a good understanding of the semantic

web’s structure, and therefore implicitly compose queries, identify links between resources

and intuitively discover new pieces of information” [17]. Their suggestions focus heavily on
providing an experience that allows for the generation of data overviews and presentation
of query options to users in a simple format. Like the TopicNets approach, they show that
colour and detail restriction can achieve comprehensible graph visualisations.

Figure 2.7: A dense graph showing the improvement made in legibility through use of
colour categorisation [17]

IBM’s Many Eyes project experimented with various di�erent visualisation styles for data,
with a speci�c focus on providing an interactive experience for the user [4]. One particularly
relevant visualisation method provided by this tool is the ‘Word Tree’. A Word Tree, as its
name suggests, visualises a large tree of the possible sentences that occur within a piece
of text which begin with a chosen root word. Essentially, it visualises the common trie

data structure with entire words rather than single characters. While a tree structure is
slightly less complex than a graph, as nodes do not link back to their parents or siblings,
the visualisation style shown by IBM demonstrates that extremely large data structures
can be presented in clear manner by representing each additional layer of the structure as
a separate list.

13

EVALUATION OF RELATED WORK 2. BACKGROUND

Figure 2.8: An example of the Word Tree visualisation for Pride and Prejudice

2.4 | Evaluation of Related Work

Having presented the related tools, algorithms, analysis methods, and visualisation tech-
niques; this section discusses their relation to this dissertation, and how the design of the
tool aims to build upon this work. Related work is evaluated and potential shortfalls of
previous approaches are critiqued with a focus placed on how Links will avoid them.

2.4.1 | Evaluation of Related Tools

Instead of focusing on one speci�c area of analysis, Links brings together these various dif-
ferent methods so that it can provide the user with a wide range of analysis options through

14

EVALUATION OF RELATED WORK 2. BACKGROUND

which they may further their studies. The tools presented in Section 2.1 demonstrate the
scope of analysis options that are available. This section discusses the relationship between
Links and these tools, and how their designs were relevant to the implementation of the
tool.

Phrase Net is the most closely related tool to Links described in this chapter. As with Links,
the tool has a strong focus on the visualisation of text, speci�cally in word relationships.
Unlike Links, however, the tool places less emphasis on knowledge discovery. This is
evident in how user interaction with the data is handled; users must explicitly search for
pairs within the text by de�ning their own patterns. This design choice means that highly
frequent word pairs may go unseen by the user simply because their template does not
match. Essentially, the tool moves the burden of quality data generation onto the user.

The tool does not provide in-depth data �ltering functionality which restricts the usefulness
of the data that is being presented. The design choices made during the implementation of
Links were motivated by the goal of creating a tool that would o�er a more interactive data
presentation design than the Phrase Net approach. The relatively poor data generation
seen in the output of Phrase Net also highlights the need for higher quality relationship
detection. Due to the similarities of the two tools, both the technical design and visual
design choices made during the implementation of Links will be compared and contrasted
to those of Phrase Net in Chapter 3, with a focus on how the shortcomings of this approach
have been addressed.

EtcML presents a good case study in creating simple user interaction with complex analysis
tools. Their approach to calculating and visualising the sentiment of social media data sets
is an example of how this process may be achieved by similar tools. The visualisations
produced by etcML (Figure 2.2) show how sentiment charts can be used to easily present the
user with an immediate overview of the sentiment of a data set, and also how knowledge
discovery may be introduced by linking sentiment points back to the underlying data. This
approach to visualisation and exploration in�uenced the design of the sentiment analysis
feature of Links.

Phraseology demonstrates that a user-friendly text analysis tool is possible to implement on
the limited hardware power provided by mobile devices, and that intuitive interaction with
such a tool is achievable through the exclusive use of a touch interface. As a commercial
tool, it provides evidence that there is a demand for such analysis tools on the market.

Finally, though focusing on an unrelated area to Links, the work done by TopicNets o�ers

15

EVALUATION OF RELATED WORK 2. BACKGROUND

a range of approaches for e�ectively visualising large data sets. Their techniques allow
for the presentation of large graphs that remain navigable by the user, serving to aid with
knowledge discovery within the data. Their use of multiple detail levels, colour coding, and
data �ltering reduce the graph to a comprehensible size. Links builds its own visualisation,
and exploration tools upon some of the work done by TopicNets.

2.4.2 | Evaluation of the Presented Algorithms, Data Sets, and Methods

As a tool developed for use on an iPad, the choice of implementation languages was
restricted to Objective-C; it was therefore important to identify the best approach for
performing the tagging process described in Section 2.2.1 given frameworks and libraries
available for this language. Speed and accuracy were the most important factors of this
decision; selecting a powerful text tagging algorithm that would take an extremely long
time to execute on the limited hardware power provided by the iPad was not acceptable.
Apple developed a word tagging library as part of their core ObjectiveC frameworks,
NSLinguisticTaggerIV. This tagger is a counterpart to Siri, Apple’s voice search tool; both
technologies were made available with iOS5. The underlying classi�cation methods of
NSLingusticTagger are proprietary so the author cannot comment on their advantages
or trade-o�s. The tagger allows for a wide variety of classi�cation types, including named
entity recognition, whereby names and organisations are classed di�erently to regular
nouns, and stemming in which the root of a word is returned. The text parsing speed
of the tagger is extremely quick. This may be due in part to the access Apple has given
the tagger to the lower level functionality of the operating system; this level of access
would be unavailable to custom parsing tools as they would be limited to operation
within the iOS application sandbox. With proven speed, accuracy, and usage in industry,
NSLinguisticTagger was a natural choice for use within Links.

The results found by Baayen (Section 2.2.2) demonstrates that the distribution of words
presents a higher quality data metric than simply measuring frequency. Indeed, the data
shown by Google’s N-Gram viewer (Section 2.1.3) illustrates the usefulness of measuring
word distribution in a real world context. JGAAP (Section 2.1.4) similarly shows the merits
of collecting this data for literature analysis, speci�cally for the purposes of identifying
unique attributes of the text. The quality and usefulness these metrics has been clearly
demonstrated by these tools; therefore, Links collects and retains this information for each
book processed to provide the user with similar analysis functionality.

IVNSLinguisticTager: https://developer.apple.com/library/ios/documentation/cocoa/
reference/NSLinguisticTagger_Class/

16

https://developer.apple.com/library/ios/documentation/cocoa/reference/NSLinguisticTagger_Class/
https://developer.apple.com/library/ios/documentation/cocoa/reference/NSLinguisticTagger_Class/

EVALUATION OF RELATED WORK 2. BACKGROUND

The merits of sentiment analysis have been shown by etcML, and the work done with
SenticNet (Section 3.3.3) show how this may be achieved technically. Due to the computa-
tional complexity of the type of parsing SenticNet employs, the ‘bag-of-concepts’ model,
the approach would be too computationally intensive to be realistically implemented on
an iPad. Nevertheless, sentiment analysis may instead be provided through the use of
generalised sentiment datasets. AFINN [18] and SentiWordNet [19] are examples of such
datasets. AFINN is a human generated data set that gives a manually assigned polarity
ranking to nearly 2,500 English words and phrases. AFINN was designed to be useful in a
variety of texts as opposed to speci�c items like �lm reviews, and this makes it extremely
useful for a generalised tool like Links where the input is not guaranteed to be part of any
one particular context. SentiWordNet is a contrast to AFINN in that it is automatically
generated using classi�ers. These classi�ers leverage the synonym information available
in WordNet to generate a much larger set of polarising words than AFINN; nearly 30,000.
The accuracy of the output may not be as high as a human generated dataset but the added
coverage may provide better average results.

2.4.3 | Evaluation of Data Visualisation Techniques

Section 2.3.1 outlines the ability of word clouds to intuitively convey the contents of a text
in a visual fashion. As visualisation is a cornerstone of Links, this type of design could
prove useful in providing an overview of the text to the user. The tool builds upon the
functional word cloud approach by applying some layout constraints that make knowledge
discovery a more intuitive process for the user.

For graph visualisation, the guidelines presented in Section 2.3.2 by Dadzie et al, and the
methods utilised by TopicNets, present a useful staring point for interaction design; however,
they were created with the assumption that the processing power of a desktop computer
would be available. Without having that advantage, Links must also attempt to adhere to
the guidelines while implementing visualisation techniques that remain computationally
viable. Large scale presentation of graphs such as those seen in TopicNets is likely to be
unattainable on a mobile device; therefore a focus on adapting the techniques to a mobile
context is pursued in the design of Links.

The approach taken by IBM’s Word Trees presents a good starting point for moving these
visualisations to a mobile context. Though Word Trees are designed to visualise phrase
usage, the approach may also be suitable for visualising relationships between nodes in
a graph. Given the screen space limitations that a tool running on an iPad must operate

17

CONCLUSION 2. BACKGROUND

within, this approach provides a suitable presentation style that also functions well within
a touch context. Compared to the Phrase Nets approach (Figure 2.1), where the number of
words displayed is restricted and edges are drawn between each visible node, the Word
Tree approach allows for arbitrarily large lists. This feature bene�ts data exploration and
knowledge discovery.

2.5 | Conclusion

This chapter discussed the work that has been done in the �eld of text visualisation and
analysis, and its relevance to this dissertation. The background presented here strongly
in�uenced the design and implementation of Links. The following chapter discusses speci�c
design and implementation details, relating this work back to the information presented
in this chapter by comparing and contrasting the work done to the approaches presented
here.

18

3 | Design & Implementation

As an application designed to run on an iPad, the implementation was developed through the
use of Objective-C and experimentation with additional Apple frameworks such as Quartz
and Core Data. The choice of technologies and frameworks available on Apple devices
in�uenced design decisions throughout the tool’s development. This chapter explains how
the tool was designed, the reasoning behind the design decisions that were made, and how
they a�ected the outcome and e�ectiveness of the tools.

Section 3.1 discusses the advantages and drawbacks of developing the tool to run locally
on an iPad versus a design which connects with a central server. Section 3.2 details the
data structure design choices, what the requirements were and how it was implemented.
It also compares the memory usage and speed of two separate approaches: in-memory
and on-disk. Section 3.3 discusses the implementation of the parsing algorithms required
to generate the data. It includes an examination of speed and memory performance, as
well as trade-o�s made. Section 3.4 outlines the design of the data queries within the
tool, including the user requirements that drove their implementation, and their technical
implementation. Section 3.5 describes the design of the annotation system within Links.
The chapter concludes with Section 3.6, which describes the design of the interface with a
particular focus on usability and data exploration.

3.1 | Local versus Remote Data Processing

The �rst design decision was to choose a data processing architecture on which to build the
application. Data processing in this context refers to the three distinct operations: parsing
and tagging of input text, creation of the required data structures, and analysis of the text’s
sentiment. The two choices were to process the data locally or to transfer data to a central

19

DESIGNING A DATA STRUCTURE FOR TEXT RELATIONSHIPS 3. DESIGN & IMPLEMENTATION

server for processing and then querying that repository later. Processing data remotely has
the advantage of being able to provide computationally powerful hardware, thus increasing
the speed of both text parsing and data queries. A central server would also allow for the
parsing algorithms and data query algorithms to be updated as needed rather than having
to push out application updates. However, if one considers the possibility of multiple users
simultaneously accessing the service, then a scaling problem is presented; processing in
a central location produces a bottleneck as all users must wait for their requests to be
scheduled and handled, as well as having to wait for data to be returned over the network.
Scaling this design to handle large amounts of users is a di�cult architecture problem with
the solution simply being to increase the amount of available servers. While that is an
acceptable solution, it is one that comes at a higher operational cost.

The alternative local processing implementation does not su�er from this scaling problem.
Though the processing time is longer due to the slower hardware available on the devices,
it remains constant regardless of the amount of users. Similarly, users do not require an
internet connection and data queries do not need to be transmitted, saving both time and
bandwidth.

With these considerations it was decided that Links use a local processing approach. As
an academic tool with no focus on monetary pro�t, reliance on a central server was con-
sidered to be too much of a hindrance despite potential speed advantages. Operational and
maintenance costs associated with running a central server would need to be �nanced by a
benefactor; removing this requirement removes the associated costs. Future implementa-
tions of such a tool may examine the possibility of using a local server, potentially one that
is operated by a university department, as a means to increase speed while not su�ering
from the drawbacks of a centralised architecture.

3.2 | Designing a Data Structure for Text Relationships

Choosing a central data structure for the tool was arguably the most important design
decision made during the implementation. The performance of the application is directly
linked with the performance of the data structure that the users manipulate and query.
The algorithms within the application, and the type of data that needed to be returned
from queries, dictated the requirements of the data structure. This section discusses these
requirements and how the data structure was designed in response the potential queries a
user would perform, and the trade-o�s between time complexity and space complexity.

20

DESIGNING A DATA STRUCTURE FOR TEXT RELATIONSHIPS 3. DESIGN & IMPLEMENTATION

3.2.1 | Data Structure Requirements

As with any data intensive application, the requirements of the underlying data structures
are driven by the type of operations that will be carried out. Trade-o�s between time
complexity and size complexity need to be �ne tuned to create the most e�cient data
structure possible. As an application running on relatively weak mobile hardware, namely
an iPad, Links prioritises the time complexity of data operations over space complexity.
Data storage is reasonably plentiful on these devices in comparison to CPU power. By
increasing space complexity of the underlying data structure, it was possible to decrease
time complexity to a point whereby queries could be carried out in an acceptable amount
of time, normally instantaneously. This has the drawback of making initial processing
slower as more data needs to be produced, however, o�setting computation time into the
processing phase produces a superior user experience.

With speed being a key requirement, the choice of underlying data structures was made to
prioritise constant time operations. The tool operates on tens of thousands of unique words
and an order of magnitude more relationships between words. To enable queries such as
word lookup and comparison of word usage across multiple data sets, lookup operations
need to be handled in constant time. This allows the application to quickly check if a certain
word or relationship exists without the need to search the entire data set, i.e. O

(
1
)

lookup
time versus O

(
n
)

lookup time, where n is the size of the database. Storage of these words
needs to be contained within a structure that allows for this requirement.

The calculation of relationships between words at parsing time greatly increases the space
complexity of the data structure, but decreases the time required for later queries. A graph
structure naturally lends itself to this kind data; each word becomes a node in the graph
and the edges between nodes represent the relationships that have been found within a
text. Relationships need to be weighted to measure their relevance in a text, therefore a
weighted graph structure is the most suitable design for this task.

3.2.2 | An In-Memory Object Based Approach

Having chosen a graph data structure, the overall design could then be implemented with
an object based approach; that is, each node and edge of the graph has a corresponding
in-memory object representing it. In-memory approaches allow for extremely fast lookup
functionality as no data needs to be retrieved from disk at any point. This additional

21

DESIGNING A DATA STRUCTURE FOR TEXT RELATIONSHIPS 3. DESIGN & IMPLEMENTATION

speed-up is particularly useful for the computationally weak devices the tool is designed to
run on.

A Node object consists of several pieces of data: the word it represents, the lexical category
it belongs to, a list of edges to other nodes, the frequency of occurrence of the word within
the text, and the positions in the text where the word appears. The edges are stored within
an EdgeList object, this is simply an extension of the NSMutableSet class that allows for
additional operations to be built into the object such as selecting edges that link to speci�c
lexical categories, or selecting edges that have met a certain minimum weight. The Edge

object consists of a pointer to both left and right Node objects and has a weight associated
with it.

Unlike traditional graph data structures where nodes are discovered through searching
algorithms such as Breath-First Search or Depth-First Search, the graph used within Links

required constant time lookup of each node and edge as described previously. This is
achieved by storing each object within a central hash-table. Nodes are placed in the table
using a key that is unique to the node. This key is generated through the following function:

Node Key = hash(word ++ lexical category)

Including the lexical category in key creation is extremely important as it allows the user
to distinguish between the di�erent meanings of words as they are used within the text, e.g.
‘�ies’ as a noun and ‘�ies’ as a verb. Similarly, edges are keyed and stored within a hash
table. Given two nodes A and B, the key for the edge between them is found as follows:

Edge Key = hash((MIN(A.key, B.key) << 32) | MAX(A.key, B.key))

This method of edge keying has the advantage of being commutative whereas simply
appending the two keys and hashing would produce di�erent keys depending on the order
of the nodes. Therefore the same edge can be found between two nodes, A and B, regardless
of the order they are parsed in.

When a graph is successfully constructed it is archived to disk so that reconstruction of the
graph does not need to occur every time the application begins. This is achieved through
use of the NSKeyedArchiver class. This archiver can intelligently store object graphs to
disk by tracking the objects that have already been saved, and ignoring those that have
been previously encountered; therefore, cyclic graphs such as those found within Links do
not become stuck in an in�nite loop. However, the archiver is subject to stack memory

22

DESIGNING A DATA STRUCTURE FOR TEXT RELATIONSHIPS 3. DESIGN & IMPLEMENTATION

constraints. Continuously recursing on an object’s children can cause a stack over�ow.

This was a problem in the initial implementation of Links whereby saving extremely large
graphs would crash the application. By recursing on every Edge object and saving the
nodes and their children, there could easily be thousands of stack frames created. To solve
this problem the Edge object is set up to no longer recurse on its related nodes; instead,
it saves the two keys associated with these nodes and returns from the archival function
immediately. When reloading a graph from memory, the nodes are loaded �rst followed by
the edges. When an Edge object is loaded it reconstructs the graph by looking up the two
Node objects it forms an edge between by using the previously saved keys. The pointers to
these nodes are then saved and the keys are discarded.

3.2.3 | Additional Application Data

Figure 3.1: An overview of the data model used within Links

23

DESIGNING A DATA STRUCTURE FOR TEXT RELATIONSHIPS 3. DESIGN & IMPLEMENTATION

The root object of the application is the Library object, a singleton class that may be
accessed by any part of the application. This object contains a cache of books that have
already been loaded from disk, which allows the application to prevent needless reloading
any time a book is accessed more than once. Accompanying the cache is a list of all books in
the library; this is a list of BookInfo objects. A BookInfo object contains all the necessary
information required to present details of the book to the user in the user interface without
having to load the entire object graph it relates to. This information includes the title,
author, ISBN, descriptions, and a UUID. The UUID is used for �nding the corresponding
graph on disk, e.g. <UUID.archive> will load the related book. A UUID was used for this
purpose rather than the title or ISBN as these would restrict the user to only being able to
load a single copy of a given novel, or create collisions if the titles of two novels were the
same.

Each book is saved to disk contained within a Book object. This object contains the nodes
and edges of the graph in hash-tables as previously described. Coupled with the graph
is a list of chapters and their positions within the text, along with a measurement of the
sentiment of the piece.

3.2.4 | An On-Disk Approach using Core Data

Despite the speed advantages provided by an in-memory approach, it presents an upper
limit on the amount of text that may be analysed, as a �nite amount of data structures
may be loaded into memory at any one time. Single pieces of text are unlikely to present a
memory problem as, for example, a 100,000-word novel requires only around 10MB of space.
However, when analysing an entire corpus consisting of many large novels it is possible
that storing the data entirely within memory may not be feasible. With this possibility
clearly limiting Links, experimentation with the use of an on-disk data store was carried
out.

Core Data is the Apple framework designed for this purpose. The framework allows for the
creation of ‘managed object contexts’ which assigns the responsibility of object management
to the system; this includes moving objects from being stored in an SQL database on disk,
to being cached in memory. The retrieval of these objects from disk is transparent to the
developer, and objects contained in a managed context can be periodically �ushed to disk to
prevent a large memory overhead. Similarly, data is only read from disk when it is required;
queries can be run over the entire database and only the relevant data will be stored in
memory on completion in what is called the persistent store [20]. In comparison to the

24

DESIGNING A DATA STRUCTURE FOR TEXT RELATIONSHIPS 3. DESIGN & IMPLEMENTATION

in-memory approach, the Core Data method may also completely use available memory, as
it has the option to simply reset the context and empty memory. This advantage means it
can theoretically work with much larger data sets.

Modifying the application to make use of the Core Data framework involved creating an
adapted data model for the graph structure. Graph data structures do not naturally lend
themselves to the relational model that Core Data is built upon so some changes were made.
These changes revolve around ensuring that each Node or Edge is linked to a speci�c Book
by creating a new relationship between them, and that Node positions – where the word
occurs within a piece of text– are saved to a separate table. With an object-based approach
these relationships are explicit; positions are stored within the Node objects themselves,
and nodes and edges are stored within a parent Book object. References to nodes and edges
are cached in memory to prevent repeated lookup from the persistent store.

The performance of the standard in-memory implementation was compared against the
Core Data implementation. Both implementations used the same parsing and graph
construction algorithms; only the data storage was di�erent between the two. Despite
being designed for data access, the speed performance of the Core Data implementation
was poor in comparison to the in-memory approach. While it did allow for lower run
time memory usage, its memory usage during the parsing stage was nearly �ve times
greater. This greater usage may be due to the fact that objects created during the process
are not being autoreleased by the persistent store. Disabling autorelease on the in-memory
implementation creates equally high memory usage; this suggests that temporary objects
created during parsing are not being released until much later in the process. It may also
be attributed to the extra data needed to �t the graph data structure into a relational form;
for example, each edge table row contains a reference to a Book object which introduces
an additional overhead. More concerning was the lookup performance o�ered by Core
Data. During graph creation the parser will produce pairs of nodes that need to be linked.
An edge may exist between these nodes already so the algorithm must determine if it is
incrementing the weight of an existing edge or creating a new one. This is handled using a
lookup; fetch requests used by Core Data were exponentially slower than the in-memory
design and access time increased with the size of the database. Timing performance is a
crucial factor in the choice of data storage and because of the poor results shown by Core
Data it became impractical to use. Shown in Table 3.1 are the average timings taken during
testing.

25

DESIGNING A DATA STRUCTURE FOR TEXT RELATIONSHIPS 3. DESIGN & IMPLEMENTATION

Words Parsed Memory Usage Creation Time Edge Lookup

Core Data 150,000 108MB 17 seconds 6.7ms
300,000 240MB 58 seconds 16ms

In-Memory 150,000 24MB 12 seconds 0.0004ms
300,000 44MB 26 seconds 0.0004ms

Table 3.1: Memory and speed results of the implemented data storage methods.

3.2.5 | Optimisations

The original implementation of the graph structure included an array in each Edge object
to store the locations of where the relationship appears in the text; this was intended to
make the process of locating relationships – where two words appear in close proximity
within the text – more e�cient. The extra memory overhead this created was too costly
to be retained; each NSMutableArray has a 250-byte minimum memory cost to allow for
insertions and internal variables. In a large book with an excess of 100,000 edges, storing
positions created the need to have roughly 25MB of extra data in memory. This could
account for nearly half of the overall size of the data structure. By omitting the edge
locations and instead computing them when required based on the node locations, the need
to store this data is removed.

Each Node object contains a list of location tuples detailing the character o�set of the word
in the text and the actual index of the word within the text. Two nodes share an edge if
their index is within a speci�ed adjacency limit. Edges can be found in O

(
n
)

time by taking

26

PARSING TEXTS AND GENERATING DATA STRUCTURES 3. DESIGN & IMPLEMENTATION

advantage of the fact that node locations are guaranteed to be sorted in order.

Algorithm 1: Locating Edge Positions
Result: Given two nodes, A and B, algorithm returns an array of edge positions

1 Matched = 0
2 Skipped = 0
3 for i = 0, i < Node A Locations do
4 for j = Matched + Skipped, k = 0, j < Node B Locations and k < Adjacency Limit do
5 IndexA = Node A Location[i]
6 IndexB = Node B Location[j]

// Check if the two indexes are outside the adjacency limit

7 if IndexA > IndexB + Adjacency Limit then
8 Skipped ++
9 continue

10 else if IndexA < IndexB - Adjacency Limit then
11 break

// When inside the limit the two indexes form an adjacent pair

12 else
13 Add Location to Edge Positions
14 Matched ++
15 k ++
16 end

17 end

18 end
19 return Edge Positions

3.3 | Parsing Texts and Generating Data Structures

The initial task that must be carried out when loading a piece of text into the application is
parsing. This process converts input from a plain text �le into the previously described
graph structure on which meaningful queries may be carried out. Parsing consists of
three distinct operations: tagging, graph construction, and semantic analysis. This is the
most processor intensive task that is carried out at any point during the execution of the
application, and therefore the speed at which it completes is paramount to the usability of
the tool. Parsing is only required once per book as the data produced during this stage may

27

PARSING TEXTS AND GENERATING DATA STRUCTURES 3. DESIGN & IMPLEMENTATION

simply be read from disk during subsequent executions.

3.3.1 | Parsing With NSLinguisticTagger

Apple’s NSLinguisticTagger provides the backbone to the text parsing algorithm used
within Links. The NSLinguisticTagger handles the process of determining the lexical
category of each word in a piece of text. Tagging allows the tool to separate words into
distinct categories so that their usage may be measured throughout the piece. The tagger
caters for most lexical classes present in English grammar; however, during the parsing
process Links strips the words that are not considered to provide any useful information to
the user, as shown in Table 3.2.

Retained Discarded

Nouns Adverbs Pronouns Conjunctions
Adjectives Adverbs Prepositions Determiners
Classi�ers Idioms Particles Numbers

Interjections Others

Table 3.2: Retained and discarded lexical categories.

The rationale behind removing certain lexical classes is twofold. Firstly, the words that
are used from certain categories, such as pronouns (he, she, their etc) and conjunctions
(and, but, so etc) are unlikely to signi�cantly change from text to text; therefore their
inclusion would add little additional information to the user’s insight about a piece, while
signi�cantly diluting the information being presented to them. Links does not attempt
to perform coreferencing: the process of linking pronouns with the noun representation.
Secondly, storing these extra nodes within the graph would drastically increase the memory
overhead required. Each extra word encountered means there would be an additional Node
object as well as an extra set of Edge objects to go with it.

In general, these discarded classes make up a signi�cant amount of the overall word usage
within English text. By stripping them before the graph creation process, there is a non-
trivial amount of memory which can be saved. Biber et al studied the usage of lexical classes
in di�erent writing styles [21]. Their results show that by removing the lexical classes in
question, the total memory savings available range from 38.5% to 57%. Furthermore, the
graph construction time is reduced linearly as the amount of nodes decreases, which results

28

PARSING TEXTS AND GENERATING DATA STRUCTURES 3. DESIGN & IMPLEMENTATION

in a 40% speed increase in graph creation, and a 9% speed increase to the overall parsing
algorithm. The linear complexity of parsing is shown in Figure 3.4.

Conversation
Adverb Adjective Verb Noun Pronoun Preposition Determiner Other
50 25 210 150 165 55 45 300

Academic
Adverb Adjective Verb Noun Pronoun Preposition Determiner Other
30 100 165 300 40 150 100 95

Table 3.3: Average lexical category usage (in thousands) per million words [21]

As each word is tagged, it is placed in a WordToken object; this object contains the word
itself, a reference to the lexical class, a character o�set into the text and a word count.
The character o�set is required to allow the user to return to the exact location of the
given word in the text. The word count is a reference to the order in which the word was
processed by the parser, ignoring white space and discarded words; e.g. ’Elizabeth is the

twentieth word in the text’. Character o�sets cannot be used for this purpose, as there is
no guarantee that the distance between two o�sets indicates a edge location, regardless of
how close they are. This is due to stripped words, punctuation, and white space creating
unknown distances between each word in a pair. A simple ascending integer removes
this ambiguity and allows for later computation of pair locations within the text. Once
created, each WordToken is placed into an array and this is passed to the graph construction
algorithm when parsing is complete.

3.3.2 | Memory Leaks in NSLinguisticTagger

During the development of the parsing algorithm there was an unusually high memory
overhead which could not be attributed to any object allocations that were included within
the code. From further analysis of the code it was discovered that NSLinguisticTagger
was leaking memory during its execution. Removing any additional functionality, i.e.
WordToken creation, and simply running the tagger over a piece of text could prove this
theory. With no allocations in the code there should be little overhead from the tagger;
however, the tagger would still acquire memory during its execution. The program would

29

PARSING TEXTS AND GENERATING DATA STRUCTURES 3. DESIGN & IMPLEMENTATION

not release this memory even after parsing had completed. If the user were to load a large
piece of text into Links, this leak would cause memory warnings and eventually cause the
application to be terminated by the operating system.

It was discovered that any new line characters within the text being parsed would cause
this memory leak. By removing all newlines from the input text, and carrying out tagging
sentence by sentence, this leak was eliminated. This has the unfortunate e�ect of removing
white space that may have been added by the author explicitly. It is unclear what the
underlying cause of the leak is, as the implementation at the operating system level is
unavailable to examine.

3.3.3 | Sentiment Analysis

Sentiment analysis takes place during the tagging process. The purpose of this analysis is
to produce an overall picture of the sentiment of a piece and how it changes as the text
progresses. This allows the user to highlight interesting sections where the sentiment may
radically change. The analysis calculates the average sentiment of a small text segment;
this average is used as a data point on a line chart. Each segment produces the average
sentiment for six hundred words. This number was chosen after testing performance
against a small number of known texts. It provides a good balance between data point
resolution and delivering a high-level overview of sentiment for the text. If the segment
section is too small, the data produced will not realistically re�ect the actual sentiment
intended by the author, as a relatively small amount of strongly positive or negative words
can distort the data at that point. If the segment is too large then the data point will tend
heavily toward neutrality, and the overall chart will not be able to highlight interesting
sections as e�ectively.

The data sets that determine the polarity value of each word, AFINN [18] and SentiWordNet
[19], have di�ering data representation formats and must be standardised for use within
the application. AFINN ranks words with a polarity value between –5 and +5, whereas
SentiWordNet ranks words between –1 and +1. Both data sets were parsed from their
respective sources and added into an Objective-C dictionary, mapping each word to its
polarity value normalised between –1 and +1. This is a process that only needs to be
carried out once as the binary data of the dictionary can simply be loaded from disk when
needed without additional parsing. There is no need to handle this process within Links

itself; a separate command line tool was produced to read sentiment data sets and output a
normalised sentiment dictionary that could be statically linked within the application.

30

PARSING TEXTS AND GENERATING DATA STRUCTURES 3. DESIGN & IMPLEMENTATION

As each word is parsed by the tagger, its polarity is checked using the sentiment dictionary.
If the word is not found then it is implicitly declared neutral and given a polarity value
of zero. The sentiment algorithm uses a sliding-window approach to generating segment
averages. In this approach, the total sentiment for a sub section of two hundred words is
calculated and placed on a stack. When a sub section is calculated, it is pushed onto the
stack and the oldest section is removed. The average for three sections is calculated and
a data point is saved for that text location. Five sentiment data points are calculated for
every thousand words in the text. By calculating averages using overlapping sections in
this way, the possibility of having dramatically di�erent data points per segment is reduced
and a more realistic picture of overall sentiment is presented. It is unlikely in most cases
that the true sentiment of a piece will radically change in less than two hundred words;
therefore, the sliding window approach e�ectively eliminates outlying data points on the
line graph it produces. The data points produced are saved to disk for later use and an
overall sentiment indicator is calculated for the book, ranking it very positive, positive,
neutral, negative, and very negative. 0% to 10% is neutral, 10% to 20% is positive, and 20%
to 100%, and the same for the negative direction. These ranges tend towards zero to re�ect
to how books seem to tend towards neutrality, regardless of their sentiment.

Figure 3.2: Representation of the sentiment analysis sliding window process

3.3.4 | Graph Construction

The graph construction processes essentially takes the complete set of WordToken objects
from the parser and builds the graph structure that will be used throughout the program
for queries. The process begins by iterating through each WordToken in the array received
from the tagger. The tokens are provided by the tagger in the order that they appear in
the text, which allows for word proximity – a measure of the relationship between two
words – to be analysed. A Node object is created for each token as it is encountered for

31

PARSING TEXTS AND GENERATING DATA STRUCTURES 3. DESIGN & IMPLEMENTATION

the �rst time, setting its initial frequency – or appearance count – to one. When a word is
encountered that has been previously processed, the constructor is intelligent enough to
fetch the existing node and increment its frequency rather than create a duplicate Node

object.

After a Node is created, the algorithm gathers a set of the adjacent nodes succeeding it.
For each of the gathered nodes, the algorithm creates an Edge object to represent the link
between the node and its adjacent counterpart, that is, each Edge represents a relationship
between two words that have been found within the text. As recurring word pairs within
the text are discovered, the weight of the corresponding Edge object is incremented to
re�ect the regularity of this occurrence. Once processing is completed, the edges with the
highest weight represent the strongest relationships within the text.

The adjacency limit governs the distance between words in which a pair is still considered
valid; words within a close proximity governed by this limit are said to be related. A small
set of adjacent nodes means that the construction process will be faster and the memory
overhead will be smaller. A larger set will provide better quality word pairs for the user to
explore. Consider the case where two main characters appear together in a novel; a word
pair could capture this meeting if their names appeared close enough together. Given the
following sentence: “Alice thanked Bob and left.”, the useful word pair in this case would be
(Alice, Bob), however, this would only be encountered if the adjacency count was set to
two or greater. This is the default adjacency count in Links; it provides good relationship
generation between proper nouns and their descriptions, through adjectives and adverbs,
without incurring a signi�cant speed decrease during parsing.

Figure 3.3 represents the e�ect of increasing the adjacency count during processing of
Pride and Prejudice. One may expect the rate at which edge counts increase to ease o� as
the adjacency becomes higher, this is because the probability that an edge already exists
becomes greater as more pairs are encountered. However, as can be seen, this does not
appear to be the case. As Baayen stated about word frequencies not converging as a corpus
grows [14], similarly pair frequencies do not seem to converge at any signi�cant rate as
the adjacency increases. With no clear point of convergence, the choice of adjacency size
becomes a question of data quality as there is no memory advantage to selecting a speci�c
value.

In the case where the adjacency limit is set to a value greater than one, the weighting of
the edges may be handled in several di�erent ways. The simplest weighting strategy is to
apply a weight of 1 to every encountered pair; this means that words appearing directly

32

PARSING TEXTS AND GENERATING DATA STRUCTURES 3. DESIGN & IMPLEMENTATION

beside each other are given the same precedence as words that may be separated by several
places. Other weighting strategies may apply a linearly decreasing value to the edges based
on distance (1, 0.9, 0.8 etc), or similarly, and exponentially decreasing weight (1, 0.5, 0.25
etc). Links uses a static weighting strategy as it provides the clearest information to the
user, that is, the �nal weight directly corresponds to the number of times the pair appears.
This was considered to be more useful to the user than potentially having di�erent weights
for pairs that appear an equal amount of times.

Algorithm 2: The graph construction process
Result: The graph data structure required to represent the text

1 for i = 0, i < Word Tokens do
2 Node CurrentNode = Construct Node (Word Tokens[i])
3 for j = i + 1, k = 0, j < Word Tokens and k < Adjacency Limit do
4 Node AdjacentNode = Construct Node (Word Tokens[j])
5 Weight = Weighting Strategy (k)
6 Add Edge Between (CurrentNode, AdjacentNode, Weight)
7 end

8 end
9 return Graph

33

PARSING TEXTS AND GENERATING DATA STRUCTURES 3. DESIGN & IMPLEMENTATION

0 10 20 30 40 50 60 70 80 90 100

0

0.5

1

1.5

·106

Adjacency

N
um

be
r
of

Ed
ge
s

Figure 3.3: Linearly increasing edge count of the graph with increasing adjacency. Realist-
ically, adjacency above ten will produce word pairs that are inconsequentially linked, thus
reducing the e�ectiveness of relationship identi�cation. Adjacency between zero and ten,
and indeed to one hundred, shows a linear increase in edge allocations.

In comparison to the design taken by Phrase Net [3], whereby pairs are only generated if
they conform to ridged templates, the approach taken by Links is more versatile as words
are matched by proximity, which therefore allows for common pairs to be more easily
detected. To further this bene�t, proper nouns are treated separately to other lexical classes
during edge calculation; two proper nouns are considered paired if they occur within a
slightly larger proximity than any other combination of lexical categories. This has the
positive e�ect of emphasising character and location relationships, while having little e�ect
on the overall memory requirement of the graph.

The bene�t of this approach is evident when compared to the Phrase Net approach.
When visualising Pride and Prejudice, the link between Elizabeth and Mr Darcy is highly
pronounced as it should be when one considers their tightly coupled relationship within
the text. This same relationship does not register at all with the Phrase Net approach using
any of the standard templates, and therefore the user cannot adequately explore where
these interactions are happening.

34

PARSING TEXTS AND GENERATING DATA STRUCTURES 3. DESIGN & IMPLEMENTATION

3.3.5 | Speed and Memory Performance

Parsing and data structure generation is the most CPU intensive process that is carried out
within the tool. As the most intensive task, it is also the slowest; it is the only process that
requires the user to wait for any signi�cant amount of time. User experience is closely tied
to how the user expects an application to perform; if the user has an expectation to quickly
load a book and begin exploring the data, a slow parsing process could risk frustrating
them and ultimately cause them to stop using the tool.

In an attempt to mitigate this risk, the option of multithreading the parsing process was
explored. The graph construction algorithm requires a comparatively short amount of time
to complete in the overall process of generating the output data; it is roughly 20% of the
required processing time assuming a low adjacency limit. The tagging process consumes
the greatest amount of time and presented the greatest opportunity for increasing the
overall speed.

Apple’s documentation regarding NSLinguisticTagger states that any given instance
must only be accessed by a single thread; this multithreaded implementation experiments
with creating a separate instance per thread. When multithreading the parsing algorithm,
the tagging process is split across a set amount of threads. In the case of the iPad, the
amount of threads was �xed at two due to current processors in these devices providing
two threads of execution. The option to increase this thread amount was retained to
future-proof the tool for the likely release of quad core devices.

Each thread is given its own instance of an NSLinguisticTagger and a sub section of the
overall text required to be parsed; parsing is then carried out as normal until all threads
complete and their collective results are combined before beginning graph construction.
The multithreaded parser shows a slight increase in performance, averaging 7% quicker
than its single threaded counterpart. Removing any non-tagging related functionality
from the thread — such as sentiment analysis or WordToken creation — causes the speed
improvement to disappear. This indicates that multiple instances of the NSLinguistic-

Tagger cannot be used simultaneously in di�erent threads. It seems likely that the tagger
requires exclusive access to a lower level component of the operating system as part of
its operation. This is an obvious limitation on the speed of the parsing algorithm and
is one that may only be sped up by a multithreaded implementation of the tagger. As a
core component of the operating system, this is would have to be implemented by Apple.
Despite the limitation, the 7% increase in speed in the other facets of the algorithm is
non-trivial and contributes towards a more positive user experience.

35

QUERY DESIGN 3. DESIGN & IMPLEMENTATION

0 50K 100K 150K 200K 250K 300K
0

20

40

60

80

100

120

Words Parsed

Ti
m
e
in

se
co
nd

s

Singlethreaded
Multithreaded

Figure 3.4: Speed Increases of a Multithreaded Parser

3.4 | Query Design

The motivation behind Links was to create a tool that that could leverage natural language
processing to make the process of knowledge discovery easier during literature analysis.
Central to making this possible is by providing the use of queries. Querying is the process
of reducing a data set based on speci�c direction from the user. Queries are a fundamental
component of Links; they provide the bridge from simply presenting raw data to the user, to
enabling knowledge discovery by allowing users to take an entire data set and intelligently
reduce it down to a manageable set of results. Queries are often the most di�cult component
to design within in a data intensive application [17]. Complex queries produce the highest
quality set of results as the user may tailor multiple facets of the data to suit their needs.
However, with greater complexity comes the added challenge of presenting these query
options to the user in a way that is intuitive and easy to use. The downfall of many similar
applications, as described by Gibbs and Owens [1], is in their lack of attention to this aspect
of their design. Complex queries may provide excellent results, but if the user cannot
understand how to make use of them then the quality of the results means little. Keeping
with the theme of usability, the design for the query system in Links is based on providing
the most powerful functionality possible through an interface that has little to no learning
curve.

36

QUERY DESIGN 3. DESIGN & IMPLEMENTATION

3.4.1 | Identifying User Requirements

Links began development with the intent of o�ering the user the ability to investigate and
discover interesting data in literature. The core set of tasks that were considered important
to provide include, but is not limited to:

Word Frequency Analysis Viewing word frequencies gives the user an immediate per-
spective of the vocabulary an author is using in a piece. This information allows the
user to build opinions around the nature of the work, identify thematically important
words, or words integrally linked with an issue dealt with in the text. For example, the
theme of family may lend itself to high usage of the words ‘sister’, ‘mother’ etc. With
speci�c words identi�ed as being interesting, their distribution in the text can guide
the user towards important sections of the book so that they may collect relevant
quotations or contrast how multiple sections di�er from one another. Chapters with
a high concentration of interesting words highlight to the user where they may �nd
evidence of themes or issues [14] [13].

From a technical perspective, accommodation of this kind of interaction requires
queries that can restrict the lexical categories being shown to the user. For example
the user may want to identify what adjectives the author is using in their descriptive
prose to identify if it is overly positive or negative; �ltering out all unnecessary
lexical categories is crucial to making this straightforward.

Relationship Identi�cation An important part of analysis is the process of identifying
major characters and their relationships to other characters or places in the novel.
As with word frequency, the ability to �lter lexical category is required. Characters
will naturally appear as nouns or proper nouns within the text, therefore by simply
removing the non-relevant lexical categories the user will be presented with a set of
characters or locations in the novel. Additionally, important characters or locations
inherently have a higher frequency of appearance in the text than other nouns and
will be presented more prominently in the output as a result. Having identi�ed
an important word such as a character, the relationships between this word and
others in the text must be presented. These relationships are the word pairs that
were generated during the initial parsing. The pairs and their frequency can help
highlight relationships between the selected word and others in the book. For
example, two characters may be paired; both the frequency of this pair and its
distribution throughout the book provide interesting points of analysis for thus user.

37

QUERY DESIGN 3. DESIGN & IMPLEMENTATION

Filtering by lexical category is again required for this process. To identify char-
acter relationships, the user will need to �lter pairs that have the lexical category
proper noun←→ proper noun similarly if the user wishes to identify actions taken
by a character they may �lter using proper noun←→ verb etc.

Contrasting Multiple Books Some of the most interesting data can be gathered by
contrasting multiple works. An example of this usage would be to identify the
words used within one novel that are of uniquely important to that work. A user may
achieve this by comparing a single novel against the rest of the author’s bibliography.
The words that have an proportionally high frequency of usage may have a special
signi�cance to the novel and could allow the user to �nd interesting examples of
their usage. Similarly, a user may want to perform Boolean operations to only show
words that are common across a set of books, or to show words from one set of books
that do not appear in another set. This kind of analysis allows the user to compare
and contrast the vocabulary usage of multiple authors at once. Essentially, it allows
the user to perform the previously described operations but at a much larger scale
than a single book.

With judicious use of each of the �lters: lexical category �lters, pair �ltering, Boolean �lters,
proportional �lters, and traditional search functionality, the user will be able to create
complex queries by layering functionality rather than specifying large complex queries
directly.

3.4.2 | Technical Design

Filters are directly tied to a special BookCollection object. This object contains a set of
all the books being analysed and the �lter settings that are currently being applied. The
reasoning behind tying the current collection to the current �lters was to enable the quick
transfer of �ltered results between view controllers in the application. This provides the
bene�t of presenting the same set of results in each view type, that is, if a user performs a
�lter operation in the one visualisation, the results are automatically updated in any other
visualisation of that data. Essentially it avoids the problem of results being out of sync
across the application.

A BookCollection contains two distinct sets of books: a retain set, and a discard set. The
�rst �lter to be applied during a query is the negation �lter. When this is applied, nodes
appearing in any of the books from the discard set are removed from the �nal output.

38

QUERY DESIGN 3. DESIGN & IMPLEMENTATION

This allows for Boolean �ltering in the form {node ∈ Output : node ∈ RetainSet ∧ /∈
DiscardSet}. Users may also specify that words must be common across each book in
the retain set, this is described in the form {node ∈ Output : node ∈ Graph ∀Graph ∈
RetainSet}.

As mentioned in Section 3.2, the data structure was designed to allow O
(
1
)

lookup of nodes
and edges. Leveraging this fact allows for the Boolean �ltering algorithms to be completed
in O

(
n
)

time; for each encountered node from books in the retain set, it can be quickly be
discovered if the node exists in the discard set, a match causes the node to be discarded.
The same process applies for ensuring words are common across each retained book.

If the user has selected the proportional subtraction option then the nodes in the discard
set are not simply removed. Instead, the average proportion of all nodes is calculated for
the two sets. Proportion is de�ned as being the total frequency of the words divided by
the total size of the set. The resulting set contains the nodes from the retain set with the
proportional frequency of nodes from the discard set subtracted from them. For example, if
the node “Algorithm” has a proportion of 0.02 in the retain set, and a proportion of 0.005
in the discard set, the output node will have a proportion of 0.015. Nodes that have a
lower proportion in the retain set than the discard set are completely removed from the
output. Words that are used a proportionally equal amount of times in both sets will not be
emphasised in the results, and those which di�er will naturally rise in prominence in the
results.

During the retain/discard operations, there is also the opportunity to �lter nodes with
unwanted lexical categories. The BookCollection has as set of lexical categories that are
to be retained. Each node in the graph has its associated lexical category stored as an
integer. The process of �ltering nodes for output is straightforward; simply do not pass
the node to the output if the lexical category is not in the collection’s set. Lookup into this
set is O

(
1
)

therefore it does not a�ect the overall complexity of the �lter algorithm. After
passing all �lter requirements, Node objects are copied from their containing data structure
to prevent modi�cation of the underlying graph structure.

With the �ltered nodes produced, the �nal step is to sort the output array either ascending
or descending based on frequency. This operation uses the standard Objective-C quicksort
and completes in O

(
n log n

)
time.

39

DESIGNING ANNOTATION TOOLS 3. DESIGN & IMPLEMENTATION

3.5 | Designing Annotation Tools

Allowing the user to annotate their �ndings from the graph marks the beginning of a process
that enables transformation of quantitative data into qualitative insight. Annotation is the
task of applying user-generated notes and comments to the underlying data structure, and
being able to retrieve and review these notes at the user’s convenience.

Annotations allow the user to keep track of interesting points in the data and return to
them for further study if necessary. Determining what kinds of data should be open to
annotation is a key point that could change based on each individual user’s needs. It is
therefore imperative that the annotation design covers as broad a use-case as possible
while remaining clear and intuitive to the user. Considering the key components of the
core graph structure – nodes representing the words of the text and edges representing
the relationships in the text – it is logical that these should be fundamental points of the
annotation system. Supplementing these annotations is the ability to directly quote a piece
of text, and a generate comments that may be attached in a general fashion to a book.

3.5.1 | Technical Design

The major technical requirement for annotations is their capacity for quick retrieval, both
manually by the user, and programmatically for interface updates. This requirement dictates
that the lookup of a single annotation must be completed in O

(
1
)

time; linear lookup would
scale poorly if a user has thousands of annotations spread across multiple books.

Annotations are represented through the use of Annotation objects. These objects contain
the text of the annotation, as well as its type and a hash of the speci�c collection it is
associated with. When an annotation is created by the user, it is stored separately to the
graph it corresponds to. The graph structure of any book will be signi�cantly larger than the
set of annotations that map to it. It is more e�cient to simply load the required annotations
as a separate data structure when required, as this does not incur the signi�cant time cost
associated with loading the graph. This allows the user to review the notes they have taken
immediately when required.

Each annotation is stored centrally within Links using the Library singleton. This allows
for consistent retrieval and editing throughout the tool; edits that are made in one section
of the tool will be carried over to all other sections. The annotations are stored within a

40

DESIGNING ANNOTATION TOOLS 3. DESIGN & IMPLEMENTATION

hash table of linked lists. This design allows for multiple annotations with the same key to
be stored.

Figure 3.5: Overview of the annotation data structure.

In the case of a user annotating a word in the text, the key of the corresponding Node
object will be used for insertion into the hash table. Knowing the key ahead of time allows
for the tool to retrieve all related annotations by loading the linked list for that key. Related,
in this instance, refers to annotations the user has made to the same word but in a di�erent
context, such as a separate novel. Showing related annotations allows the user to consider
contrasting points between one text and another, and allows them to incorporate these
views into new annotations.

Though many annotations may share the same key, each one is separately linked to the
book or collection they are associated with. With this separation in place the user may
create unique annotations for analysis of single texts, and for analysis involving multiple
books, even in the case where collections overlap.

3.5.2 | Templates & Integration with Existing Filters

A template is a user-de�ned description that is designed to �t broad sections of the data. For
example, the user may de�ne a new annotation template ‘family’; they may then associate

41

DESIGNING ANNOTATION TOOLS 3. DESIGN & IMPLEMENTATION

that tag to words in the graph – sister, brother etc. – using the template annotation.
Templates provide two pronounced bene�ts to the tool:

1. The user gains the ability to tag large swathes of data in a much smaller space of time.
Traditional text based annotations may be suitable for retaining knowledge; however,
they do not provide an ability to discover new knowledge. When a user tags a piece
of the graph they are essentially adding qualitative data to the underlying structure.
This data could itself be visualised back to the user, for instance, showing them a
graph of occurrences for the tag ‘family’ in the text; this opens up the potential for
user-assisted thematic analysis in the tool.

2. Annotation templates provide a way to extend the �ltering system presently imple-
mented within the tool. The tags created by the user may be incorporated into �lters
as a way of further restricting nodes based of their associated tags. Restriction in
this fashion allows for more concise exploration of the data.

The proposed method for implementing the tagging system is to add a single 64-bit integer
(long long) to each node. Each tag corresponds to a single bit of the integer, allowing for
extremely quick lookup of a tags existence on a node by using simple bitwise operations.
There are several advantages of this approach over alternative approaches, such as adding
arrays of tags to a node, or using the node’s key to lookup into a tag hash table:

• An additional 8 bytes is added to the size each node, this overhead is acceptable in
comparison to the overhead used by adding a mutable array: 250 bytes.

• Using a hash table approach would not incur signi�cant memory costs; however,
there would be an additional time cost associated with the lookup of each tag.

• With an integer based approach, a node may be con�rmed to have multiple required
tags in a single operation. For example, given three tags with the bit positions, 0,
1, and 2 it is possible to ensure each of these bits are set by masking the unrelated
bits and performing an exclusive-or with the binary number0b0111. If the output is
non-zero then the node does not include all the required tags for the given �lter.

The integer approach has the disadvantage of limiting the user to sixty-four available tags.
However, the speed and memory advantages of this approach outweigh the disadvantage
of limiting the total available of tags, as users are unlikely to require a larger tag amount.

42

DESIGNING A USER INTERFACE 3. DESIGN & IMPLEMENTATION

3.6 | Designing a User Interface

Links is designed for use by students and researchers that are studying humanities subjects.
It was imperative that the chosen user interface design make the tool as accessible to as
broad an audience as possible as per Gibbs and Owens’ recommendations [1]. Assumptions
about the ability of the user are kept to a minimum; it is assumed they are comfortable
using a touch interface from experience with the default applications that come with an
iPad. Actions like scrolling and panning actions are available; similarly, navigation through
view controllers using the navigation bar, and opening menu items using navigation bar
buttons is available. Other interface options, such as multi-touch gestures, are regarded as
being too advanced and are not used within the tool.

A major focus throughout the design of this tool was in enabling high-level interaction
with the graph data while maintaining the usability required for use by a broader audience.
This section focuses on the design choices made and the trade-o�s between usability and
capacity for knowledge discovery in the tool.

3.6.1 | Importing Texts

The natural starting point for designing a tool which interacts so deeply with text is to
ensure that importing the material to be analysed is as simple as possible. The �rst barrier to
entry for making use of the tool is the process of importing a text. Unlike other applications
where users may learn by exploration of the interface, without importing texts there is
nothing for the user to explore or learn inside the tool. Therefore it is extremely important
that adding books or articles to the user’s library is as straightforward as possible.

Upon installation, Links registers itself with the operating system as an application that
can open plain text �les. Plain text �les were chosen for both their simplicity in processing
and their ubiquity in computing; the majority of applications dealing with text will provide
a method to save in .txt format. Registration with the operating system allows the
user to open text �les from any source that provides a �le browsing ability, including
email applications for opening attachments, cloud storage applications, and web browser
downloads. Using standard operating system features is essential for increasing usability
as users will both expect, and be comfortable with the feature.

43

DESIGNING A USER INTERFACE 3. DESIGN & IMPLEMENTATION

Figure 3.6: The process of importing a text into Links from an external application.

Additionally, users may simply copy and paste text into the tool. This covers the case where
a user encounters an interesting text they wish to analyse, but where they lack access to a
text �le of the piece. Once the text is copied, the user may paste it into a special area of
the tool and continue as if they had loaded a �le from disk. The paste action is achieved
by extending the options of a UILabel to accept paste input. A label allows for the text to
be taken from the operating system clipboard, but does not allow the user to accidentally
change the content as would be possible in a standard text �eld. This method also remains
consistent with the behaviour of loading a �le from disk.

Figure 3.7: The process of adding text from the OS clipboard.

44

DESIGNING A USER INTERFACE 3. DESIGN & IMPLEMENTATION

3.6.2 | Processing the Text

The �rst step in processing the text is to acquire an optional title and author for the piece. If
the user provides this information, Links will connect to the Google Books API I to retrieve
possible matches. This has several bene�ts; �rstly, it abstracts away the responsibility of
adding additional metadata to the book from the user. This data, such as ISBN numbers,
genres, publication dates, descriptions, images etc. is desirable to have yet tedious for the
user to manually add. Secondly, by adding metadata the user quickly gains the ability for
additional �ltering options in their library, such as �ltering on publication year and genres.
Finally, being able to present cover images to the user that were sourced online enhances
their ability to quickly �nd books in the library through recognition of the image rather
than recalling and searching for the title.

Figure 3.8: The search results seen while adding Ayn Rand’s Atlas Shrugged.

As previously described in section 3.3, the parsing process is the only component of the tool
which requires the user to wait any signi�cant amount of time for an action to complete.
Parsing can take several minutes for a large book so there is a need to inform the user about
the progress throughout the execution. The research done by Nielsen [22] and Card et

al [23] on the topic of user interaction with long processing delays shows that ten seconds
is the upper limit for keeping a user’s attention focused on one dialog. As the parsing time
in Links is many multiples of that attention span, there was a distinct need to both make
the process more interesting, and enable the user to estimate the time remaining. While
parsing the text, the user interface is continuously sent updates about the current count for
each lexical category as tagged by NSLinguisticTagger. This is designed to keep the user

IGoogle Books API: https://developers.google.com/books/

45

https://developers.google.com/books/

DESIGNING A USER INTERFACE 3. DESIGN & IMPLEMENTATION

interested in the progress as the information presented is both a visually appealing way
and provides interesting information about the linguistic content of the book.

A similar process happens during graph construction; the current count of Node and Edge

objects that have been created is displayed on the interface. In conjunction with this visual
style, a loading bar also displays the total progress that has been achieved by the parser
at that point in time. This allows the user to get a quick overview of the processing time
that remains. Estimating the remaining time is possible, but will not be entirely accurate
due the way in which the parsing algorithm works; work is not evenly spread throughout
the text, for example, certain discarded lexical categories may make up the majority in
one section and the minority in another meaning the �rst section will parse more quickly.
Evened out over the size of an entire book, these timing di�erences between sections are
negligible. The process of saving the graph to disk cannot be timed as the archival function
of Objective-C does not have a progress callback. During this �nal part of the algorithm, a
simple activity indicator is shown to the user to reassure them that progress is still taking
place.

46

DESIGNING A USER INTERFACE 3. DESIGN & IMPLEMENTATION

Figure 3.9: The visualisation of the parsing process shown for The Adventures of Sherlock
Holmes.

47

DESIGNING A USER INTERFACE 3. DESIGN & IMPLEMENTATION

3.6.3 | Home Screen

The home screen is the starting point of the tool; it shows the user’s library with details
about each book it contains, as well as the options to add a new book or progress to di�erent
parts of the tool. Each book is listed with its title, author and cover image; details speci�c
to Links are also shown here, including the total number of nodes and edges within the
graph for the given book (described to the user as words and pairs), the overall sentiment
rating as calculated during parse time (Section 3.3.3), and the total number of annotations
attached to the book.

The major objectives of this screen were to present the details of a user’s library in a clear
and concise way, enabling the user to gain a quick overview of the contents of each book.
Secondly, the user is presented with the abilities to search for a book through a standard
search bar and to open the library �ltering settings.

When a user wishes to explore the graphs for a selection of books, they may choose any
combination from their library and simply press the analysis button, represented by a light
bulb icon. Similarly, if they wish to perform sentiment analysis, they may select a single
book and press the sentiment button, represented by a line chart icon.

48

DESIGNING A USER INTERFACE 3. DESIGN & IMPLEMENTATION

Figure 3.10: The home screen of the application showing a user’s library.

49

DESIGNING A USER INTERFACE 3. DESIGN & IMPLEMENTATION

3.6.4 | Exploration of the Graph Structure

Dadzie et al succinctly describe bene�ts of visualisation within their study [17]:

The power and value of visualisation is seen in its ability to foster insight
into and improve understanding of data, therefore enabling intuitive, e�ective
knowledge discovery and analytical activity. This is achieved by removing the
cognitive load encountered in managing the large amounts of complex, distrib-
uted, heterogeneous data common in today’s technology and information-rich
society, and relying instead on advanced human perceptual ability.

Knowledge discovery is the central motivation behind Links. To enable this process to
take place, the visualisations of the graph structure needs to adhere to several principles as
described by Dadzie:

1. The visualisation must have the ability to generate an overview of the underlying
data.

2. It must support �ltering to remove less important data.

3. Regions of interest must provide a higher detail than the overview.

Additionally, the graph must remain navigable by the user; this is the process that enables
movement along edges from node to node, simply displaying the graph as a static image
does not lend itself to discovery. Furthermore, the performance of navigating the graph
must be acceptable by the standards of the user; in Links acceptable performance is de�ned
as requiring any navigation or �lter action to be completed within the order of milliseconds.
Longer waiting times risk frustrating the user and hindering the usefulness of the tool. To
meet these principles, the visualisations Links needed to overcome a number of issues:

Graphs are an inherently di�cult data structure to visually represent; as the number of
nodes increases linearly in a graph, the number of edges increases exponentially, assuming
there is an edge between each node. Each node in the graphs constructed by Links will
have a minimum of four edges due to the adjacency calculation (Section 3.3.4); in reality
each node will likely have a much higher number edges as the number increases linearly
with each appearance of the word (Figure 3.3). Visualising all nodes and all edges in a
single view may cause the user to experience an ‘information overload’; by presenting
so much information, the user loses the ability to see the signi�cance of the data being

50

DESIGNING A USER INTERFACE 3. DESIGN & IMPLEMENTATION

shown. The visualisation methods in Links were chosen to highlight information so that
it retains relevance to the rest of the graph and remains consumable by the user. Other
implementations of graph visualisation, such as TopicNets, rely on providing multiple
levels of detail and colour coding to abstract away large amounts of data into manageable
sections for the user.

The visualisation of word frequency is the �rst view the user encounters upon entering
the graph interaction function of the tool. The purpose of this view is to allow the user to
�nd a root word from which to begin their traversal of the graph. The view presents every
node in descending order as this works o� the theory that important words with appear
with a higher frequency than others. Building upon the recommendation made by Dadzie
et al, and shown in TopicNets [10], Links colour codes each node by its lexical category to
aid for quicker recognition by the user when they are browsing words.

51

DESIGNING A USER INTERFACE 3. DESIGN & IMPLEMENTATION

Figure 3.11: List visualisation of frequency in Sherlock Holmes. Note the colour coded lexical
categories.

52

DESIGNING A USER INTERFACE 3. DESIGN & IMPLEMENTATION

Tree View

When the user selects a word from the frequency view, the tool enters the graph. Links
expands upon the approach taken by IBM’s Word Trees. Presenting the edges from one
node in an isolated fashion gives the user a very speci�c region of interest to examine
as recommended by Dadzie et al. This design is implemented as the primary means of
exploring the graph within the tool. The user begins by picking a root word, as with the
Word Tree approach; at this point they are presented with a list of edges to that node, as
well as the weighting applied to each of these edges. Edges are displayed in descending
order so that potentially important relationships in the text are naturally displayed at the
top of the list.

Users may navigate along edges by simply tapping on any of the linked words. This is
implemented as part of a navigation view controller, therefore the user gets the bene�t of
being able to backtrack through their exploration to an earlier point in the graph. Pairs
that have been previously annotated by the user are highlighted with a yellow colour
to emphasise their importance to the user; this serves to remind the user that they have
annotated the link.

Providing an overview of the data is one of the requirements from Dadzie et al; when
viewing a speci�c node, Links shows an overview graphic of where that word appears in
the text. From the overview, the user can gain qualitative information extremely quickly;
for example, a user may notice that a character ceases to appear after a certain point in the
novel. Tapping on the overview will bring the user to the corresponding location of the
text where that word appeared; here they may draw their own conclusions about why that
character stopped appearing.

Similarly, tapping on an edge will cause the overview to change to displaying the locations
of that relationship in the text. This is especially useful for keeping track of the relationships
between two characters, as the distribution provides hints about how that relationship
changes throughout simply by the change in frequency. Comparing this approach to the
Phrase Net approach (Figure 2.1); one can see that Phrase Net does not bene�t from the
overview functionality such as that provided by Links, as the user is given no indication
of where exactly the pairs are occurring in the text. Furthermore, the Phrase Net imple-
mentation fails to provide a method for the user to easily �nd the quote, instead opting to
only show a small extract of the sentence it is contained in. From a knowledge discovery
standpoint, the Phrase Net approach hinders the user’s ability to truly learn from the
visualisation. The approach taken in Links is designed to overcome this shortfall.

53

DESIGNING A USER INTERFACE 3. DESIGN & IMPLEMENTATION

Figure 3.12: Tree visualisation of a node. The colour coded pairs – Jane and Mr Darcy –
indicate an annotation has been made for those links. The red lines provide an overview
for where Elizabeth and Mr Darcy appear together in Pride and Prejudice

54

DESIGNING A USER INTERFACE 3. DESIGN & IMPLEMENTATION

Spiral graph

Experimentation was done to determine if it was possible to create a visualisation technique
that would maintain the exploratory nature of the tree view, while visualising frequency
and pairs through size and colour respectively. The spiral graph was the result of this
experiment. The design was inspired by the word cloud visualisations mentioned in Section
2.3.

Algorithm 3: The spiral graph layout process.

1 Theta = 0
2 Rotations = 1
3 LastPoint = 0
4 CenterX = 0
5 CenterY = 0
6 Place First Node At (CenterX, CenterY)
7 MaxFrequency = First Node Frequency

// The distance between the current spiral rotation level and the following level.

8 MaxDistance = (Second Node Frequency / MaxFrequency) * WIDTH / 2
// The distance between the current node and the next node.

9 Bu�erDistance = (Second Node Frequency / MaxFrequency) * WIDTH
10 foreach Remaining Nodes do
11 CurrentPointWidth = Node Frequency / Max Frequency * WIDTH
12 Theta += (LastPoint/2 + CurrentPointWidth/2) / ((MaxDistance + Bu�erDistance *

(Theta mod 1)) * 2 * Pi)
// Check if we have performed a full rotation and update max distance and buffer

distance.

13 if Theta >= Rotations then
14 Rotations++
15 MaxDistance += Bu�erDistance
16 Bu�erDistance = CurrentPointWidth
17 end
18 LastPoint = CurrentPointWidth
19 x = CenterX + (MaxDistance + Bu�erDistance * (Theta mod 1)) * cos(2 * Pi * Theta);
20 y = CenterY + (MaxDistance + Bu�erDistance * (Theta mod 1)) * sin(2 * Pi * Theta);
21 Place Node At (x, y)
22 end

55

DESIGNING A USER INTERFACE 3. DESIGN & IMPLEMENTATION

The aim of the spiral graph is to the visually represent the frequency of each node through
physical size as in a word cloud, whereby more frequently occurring nodes appear larger on
the screen. This appearance is coupled with several other requirements. Firstly, the layout
of the graph must be ordered; unlike a word cloud, the spiral graph strictly places nodes
along a spiral shape. This has the advantage of making it easier for the user to explore
the graph; high frequency words appear at the centre while and gradually decrease as the
graph expands. The spiral also ensures that nodes do not overlap during layout. Secondly,
the graph must have the ability to show the edges between nodes. Drawing all the edges
on such a large scale graph causes too much visual noise; there is no way to draw 100,000
edges on a small two-dimensional screen and have the result remain comprehensible. To
avoid this issue, edges are represented by colour rather than lines that physically link nodes.
To display edges, a user selects a node; this causes the related nodes to be highlighted.

The spiral visualisation is built on top of a scroll-and-pan view. This is the same technology
that is commonly used in mapping applications. The view allows the user to explore the
graph by panning from node to node and zooming in on the smaller nodes at the fringes.

The spiral graph su�ers from sluggish performance due to the large number of nodes it
must display. The number of nodes drawn to the screen is capped at �ve hundred to prevent
the visualisation becoming too slow to be useful. The common approach to visualisation on
touch devices is to have each individual piece of data placed into a view cell. These cells are
reused as the user scrolls through the data, meaning that only a small subset of the larger
data set is ever drawn at any one time. However, because of the zoom functionality of the
spiral, it is possible that a user may have all the data displayed at once, therefore requiring
an individual cell for each piece of data. This is highly taxing on the system and causes
noticeable slowdown. Limiting the distance that a user can zoom out, therefore limiting the
amount of data on the screen, could help alleviate this problem. However, this limits the
e�ectiveness of the visualisation, as users will no longer be able to zoom out to view all the
highlighted pairs at any one time. In its current form, the spiral graph does not perform
as well as the tree view for the purposes of knowledge discovery, though additional work
could be productive in improving its practicality by focusing on speed improvements and
additional exploration options, such as viewing edge locations.

56

DESIGNING A USER INTERFACE 3. DESIGN & IMPLEMENTATION

Figure 3.13: Spiral graph of characters in A Game of Thrones. The words highlighted orange
indicate the presence of a close relationship with Jon

57

DESIGNING A USER INTERFACE 3. DESIGN & IMPLEMENTATION

3.6.5 | Additional Interface Components

Sentiment Chart

A user may view an overview of a text’s sentiment by selecting the option from the home
menu. The sentiment of a text is presented to the user using a traditional chart. The Y-axis
of the chart maps sentiment from +1 to -1 and the X-axis represents the location in the text.
Experimentation was done with an approach that only displayed the average sentiment,
that is the average of both positive and negative sentiments combined. The result was that
both polarities would essentially cancel each other out. This has the undesired e�ect of
presenting a section that is completely neutral, i.e. a polarity of 0, in the same way as a
section that is complete polarising, i.e. the positive and negative are both roughly equal.
By displaying polarising sections as neutral, the user loses the ability to identify them as
being potentially important.

To avoid this issue, two additional sets of data points are added to the chart to represent
the positive polarity and negative polarity separately. This allows the user to quickly locate
areas of extreme contrast, while retaining the ability to view the overall average. A similar
approach is taken by etcML for visualising sentiment of social media sets; this visualisation
uses an interlocking design with both polarities being drawn using the entire Y-axis (Figure
2.2). Links di�ers by dividing the Y-axis evenly between the two polarities.

The lines are drawn using a Catmull-Rom spline instead of using Bezier splines. Catmull-
Rom splines provide the advantage of producing a line that curves through a set of control
points whereas Bezier splines produce lines around a set of control points; this latter is
not ideal for accurate representation of data. The implementation for the Catmull-Rom
approach in Objective-C was based on work done by Erica Sadun [24].

Chapter markers are placed throughout the chart to aid the user in determining the exact
location the chart represents at any given point. A list of chapters is displayed alongside
the chart with the current chapter being highlighted to also aid the user in this respect.
Users may quickly navigate the chart by selecting chapters from this list.

Tapping at any point in the chart will cause the tool to open the book at the related
section. Words from this corresponding section are highlighted green or red based on
their associated sentiment. The intensity of the background colour is based o� the polarity
rating for that word; very positive polarity produces a solid green, very negative polarity

58

DESIGNING A USER INTERFACE 3. DESIGN & IMPLEMENTATION

produces a solid red, and neutral words remain white.

Figure 3.14: A sentiment chart for Pride and Prejudice showing a drop in average sentiment
accompanied with a quote from that point.

Application of Filters

The addition of data �ltering functionality is the �nal recommendation as described by
Dadzie et al. Filters are accessible throughout each of the graph visualisations: frequency,
word tree, and spiral. The behaviour of the �lters remains consistent across each of these
views; users select the �lter option and a modal overlay appears containing the �lters.

These �lters present the option to restrict the lexical categories that are currently been

59

DESIGNING A USER INTERFACE 3. DESIGN & IMPLEMENTATION

shown. Options are presented as simple check boxes in a collection view; this has the
advantage that should the need to expand these �lter options become apparent, they may
simply be added with no redesign of the interface. Lexical �ltering provides the user with
the ability to re�ne the presented data to �t the information they are seeking; for example,
if the user wishes to view character relationships they may �lter by proper nouns, thus
leaving only characters and locations in the visualisation.

In addition to lexical �ltering, the option to compare multiple books is presented. Each
book in the user’s current analysis collection is presented in a list. This list contains two
sections: a retain section and a discard section. Users may drag and drop books from one
section to the other simply by pressing and holding. This type of interaction is slightly
more advanced than other interface techniques, however, as it is a core part of the iOS
menu system – holding menu icons to rearrange them — it was believed that users would
be comfortable performing such a task. After creating separate retain and discard sets, the
user may select the proportional subtraction option to perform the operation described in
Section 3.4.2. Similarly, they may select the common words option to perform a Boolean
and operation over each book in the retain set as described in the same section.

60

DESIGNING A USER INTERFACE 3. DESIGN & IMPLEMENTATION

Figure 3.15: The �lters modal view showing lexical category options and multiple books in
the user’s collection.

61

DESIGNING A USER INTERFACE 3. DESIGN & IMPLEMENTATION

Addition of Annotations

The annotation functionality is the �nal interface addition to Links. As with �lters, the
annotation input functionality is contained in a modal view that remains consistent across
each view controller that implements the feature. The current implementation of Links
allows annotations to be applied to relationships, words, and as a book comments. Pressing
the annotation button will present the user with an input �eld to enter text as well as a list
of related annotations. Each annotation in the list is marked with its type, the data it refers
to, and the book to which it is attached. Users are not required to enter an annotation at
this point; they may simply browse previous annotations.

A related annotation is an annotation that the user has made to the same data point over
their entire library. For example, if the user is analysing a series of books, they may have
annotated a character in one book; when they are analysing subsequent books in the series,
the annotations they have made in the �rst book will also be shown. Once an annotation is
added, the corresponding data point becomes highlighted in the visualisation so that the
user may easily �nd it again.

62

DESIGNING A USER INTERFACE 3. DESIGN & IMPLEMENTATION

Figure 3.16: The annotation modal view showing annotations related to Pride and Prejudice.

63

4 | Evaluation

This chapter begins with a technical evaluation of the current implementation of Links. The
evaluation commences with the topic of part-of-speech tagging, speci�cally NSLinguis-

ticTagger, its performance, and its merits within an academic research project of this type.
The underlying graph data structure is then discussed. The memory overhead is evaluated
and potential improvements to its implementation are suggested. A qualitative evaluation
of the graph construction algorithm is then given, with a speci�c focus on the quality
of the calculated relationships and their usefulness to the user. The focus then moves to
knowledge discovery within Links, with the discussion centring on how well this was
achieved through the use of word relationships, location overview, and sentiment analysis.
The chapter concludes its evaluation with a discussion on the merits of the interface design
choices taken by Links in comparison to those taken by similar tools.

4.1 | Technical Evaluation

4.1.1 | NSLinguisticTagger Evaluation

As a central technical component of the tool on which the quality of the output heavily
relies, it is imperative that the part-of-speech tagger performs to acceptable levels. In this
context, performance refers to the accuracy of the tagger rather than speed or memory
overheads.

High quality output from the tagger allows the graph construction algorithm to more
accurately map relationships throughout the text, as characters, locations, et cetera are
likely to be correctly attributed to their proper lexical category rather than erroneously
split across multiple categories. As part of the technical evaluation of Links, the tagging

64

TECHNICAL EVALUATION 4. EVALUATION

accuracy of NSLinguisticTagger was measured over the Brown Corpus.

The Brown Corpus is a large selection of texts sourced from multiple di�erent topics and
writing styles that was compiled in the 1960s at Brown University [25]. Each of the texts
within the corpus was manually tagged by linguists; therefore, due to its accuracy it has
become the de facto standard is measuring the performance of part-of-speech taggers.

To evaluate the accuracy of NSLinguisticTagger, its output was tested against the known
input set provided by the Brown Corpus’ �ction category. It was believed that this category
would provide the closest match to the type of content that users would be loading and
would therefore provide the most accurate set of results.

The test made use of the open source Natural Language Toolkit (NLTK)I, as it provides the
ability to count the number of appearances for each lexical category in any of the Brown
Corpus’ text categories. The same set of texts was also processed by the NSLinguistic-

Tagger and the counts for each lexical category were taken. The two sets of results are
shown in Table 4.1.

Tag Source Nouns Proper
Nouns

Verbs Adjectives Adverbs Total

Links 11063 2618 12067 3382 3387 32517

Brown 10881 2409 11687 3226 3185 31388

Di�erence 182 209 380 156 202 1129

Classi�cation
Error

1.67% 8.67% 3.25% 4.83% 6.34% 3.59

Table 4.1: Classi�cation error of NSLinguisticTagger.

On average, NSLinguisticTagger di�ers from the Brown Corpus by 3.5%. This di�erence
is clearly quite low and represents extremely accurate classi�cation; however, as described
in Section 2.2.1, there is a trade-o� between the quality of the output and the overall
accuracy based on the number of lexical categories that are being analysed. The number
of categories analysed by NSLinguisticTagger is much lower than the Brown Corpus.
This is the reason why the results of NSLinguisticTagger have a higher count on average
per category, that is, more lexical categories are being merged into a single representative
category. For example, the word ‘not’ is treated as an adverb by NSLinguisticTagger but

INLTK: http://www.nltk.org/

65

http://www.nltk.org/

TECHNICAL EVALUATION 4. EVALUATION

as a special negation category in the Brown Corpus. These results may seem to indicate
that the accuracy is very high but they do not indicate the overall quality. The lexical
categories used by NSLinguisticTagger are quite broad and do not allow for extremely
in-depth analysis, such a examining verbs by their tenses.

Proper noun detection di�ers by roughly 9%. Characters and locations form the fundamental
relationships in literature and this is the type of data that users will analyse using the tool.
Correct classi�cation of proper nouns is therefore prioritised as being more important than
other lexical categories, as they have a higher bearing on the quality of the output. A 91%
accuracy rate represents a strong framework to build the tool upon and justi�es the choice
of NSLinguisticTagger as the natural language processing component of Links.

Despite its high accuracy rate, the closed source nature of NSLinguisticTagger prevents
further improvement or alteration to be made to it by the academic community. This
presents di�culties should additional functionality be required at a later stage of the
development of Links. Open source alternatives are available such as the previously
mentioned NLTK library. The majority of these libraries are written for Java or Python,
and would therefore be unable to run in the iOS environment required by Links. C or
C++ based implementations may be possible to incorporate within the tool and could help
decouple Links from its reliance on NSLinguisticTagger. When making the choice about
which tagging frameworks to use, consideration should be given to the inherent speed
bene�ts that NSLinguisticTagger gains by being provided with lower level access to the
operating system than alternatives. Experimentation may be carried out to determine if the
bene�ts of an open source implementation would outweigh both the accuracy and speed
of the current implementation.

4.1.2 | Evaluation of the Graph Data Structure

Due to the limited processing power of iOS devices, speed requirements were heavily
emphasised during the development and implementation of Links, at the expense of a
higher memory overhead. Section 3.2 describes how the choice of in-memory data structure
representation was chosen over an on-disk approach.

The chosen method addressed the speed di�culties that were presented by the on-disk
approach; however, this approach still presents memory usage challenges where large
amounts of books are involved, due to how archival works in Objective-C. The NSKeyed-

Archiver function, which is used to save an in-memory graph to disk, requires an entire

66

QUALITATIVE EVALUATION 4. EVALUATION

copy of the serialised data to be present in memory before the �ush to disk may occur. This
is due to how object relationships are tracked by the function and it naturally contributes
to a high associated memory cost. The memory cost of both approaches is shown in Table
3.1. The trade-o� of larger memory requirements for access and �ltering speed allows
the user to quickly explore the data that has been generated rather than require them to
periodically wait. This implementation lends itself to a more ‘hands-on’ user experience
than what may be o�ered by alternative on-disk approaches.

Despite the memory challenges, this approach works adequately for small-scale analysis
of less than ten books, and demonstrates that a graph data structure has bene�ts for use
within the tool. It does introduce the drawback of requiring the user to wait when initially
loading the tool, as entire object graphs must be loaded from disk before any analysis
can occur. Moving forward with the implementation – taking the input sizes towards
handing an entire corpus – will necessitate the reconstruction of the data model to handle
this requirement. A possible alternative to the current design would be to use an on-disk
graph database, such as ArangoDBII. Databases of this type are speci�cally designed with
graphs as the �rst choice representational model rather than the traditional relational
model found in Core Data; they therefore present performance gains where a graph data
model is required for data representation. Such a model may meet the speed requirements
needed by Links while also allowing the implementation to leverage an on-disk data store,
eliminating the memory issues caused by the current approach.

4.2 | Qualitative Evaluation

The area of literature analysis is subjective based on the views of the reader. Similarly, the
quality of the output produced by Links is subjective to each individual user; data that is
useful to one user may not meet the needs of another. This section will therefore evaluate
the quality of the data output based on its performance with known texts. It will also
evaluate the knowledge discovery potential of Links in comparison with similar available
tools.

IIArangoDB: https://www.arangodb.org/

67

https://www.arangodb.org/

QUALITATIVE EVALUATION 4. EVALUATION

4.2.1 | Proximity as a Measure of Relationship

Section 3.3.4 outlines the technical design for using the proximity of words in a book to
indicate the potential strength of relationships. It is this process that creates the data which
allows the user to browse strongly linked words and see exactly where relationships occur
within the text. The following examples are based on the data generated from processing
Jane Austen’s Pride and Prejudice [26].

Character relationships, and indeed relationships between all proper nouns, are a special
case of the graph construction algorithm as they are given a much larger proximity limit than
other lexical categories. This decision was made to strengthen the output by emphasising
character relationships to the user. Taking the example of Elizabeth, the main character of
Pride and Prejudice, her strongest relationships are calculated to be Jane, her sister and best
friend; Mr Darcy, her eventual lover; Lydia, her younger sister; and Mr Collins, her suitor.
Essentially, the relationships presented through the data for this novel accurately map
those which one may reasonably expect a reader to conclude as being the most important
from their own reading.

Pride and Prejudice has a central main character in Elizabeth, so the relationships between
her and the supporting characters tend to be quite pronounced. A Game of Thrones [27] is
a fantasy epic by George R.R. Martin in which there is no central main character; instead,
the novel is told from the viewpoint of many di�erent characters with each chapter being
dedicated to a speci�c character. One may expect that because the book is fragmented in
this way that the relationships between characters would not register as strongly as those
shown in Pride and Prejudice. However, despite the fragmentation, character relationships
are still pronounced in the output. Interestingly, each character’s story arc occurs at distinct
geographic locations. These locations are also apparent in the results generated by Links,
more so than Pride and Prejudice.

The results shown by testing over several novels show that proximity of words within
a text, and how frequently those words appear together, is an accurate indicator of how
important those relationships are to the text. The relative noise in the data, or relationships
that are not important, are kept to a minimum due to their inherent lack of frequency
within a given work. Where this approach does not perform as well is in books where
characters go by multiple names; full titles, common names, nick names etc. This has the
e�ect of diluting the relationships so they do not appear as signi�cantly in the results.
Overall, for the known texts that were tested, the proximity approach shows a higher
quality relationship calculation than the pattern-based approach taken by Phrase Net [3],

68

QUALITATIVE EVALUATION 4. EVALUATION

as compared in Section 3.3.4.

4.2.2 | Knowledge Discovery Aspects of the Tool

Presenting strong relationships is the �rst step in enabling knowledge discovery within the
tool. The goal of knowledge discovery is to provide the user with the ability to gain insight
into the text from sources that they may not have considered before, as well as providing
evidence to support the user’s own views about the text. There are several avenues for this
kind of discovery presented by Links.

Firstly, relationship weighting allows the user to see which exact relationships have been
calculated as signi�cant to the text. These relationships regularly match what the user’s
own expectations are, as described in the previous section. However, there is the possibility
that the user may encounter relationships whose weighting are higher than expected.
By identifying why the algorithm has calculated the weight in such a way, the user may
gain additional insight from sections they would have previously have skipped. This
kind of exploration and identi�cation is especially useful among minor characters whose
relationships to one another may not be as clear to the user from a single reading.

Secondly, providing a location overview of both word appearances and relationship ap-
pearances in the text allows the user to quickly identify signi�cant occurrences and �nd
relevant passages for quotations. An example of this usage, from A Game of Thrones, can be
seen when examining the relationship between a major character, Jon, and his brother Robb.
As previously mentioned, this novel dedicates di�erent character viewpoints per chapter;
this has the e�ect of banding the appearances, that is, relationships for a given character
naturally appear most frequently within chapters expressed from their own viewpoint.
This provides an interesting approach to utilising the location overview. Occurrences of
a relationship outside the banded areas provide noteworthy results. In the case of Jon
and Robb, the results provide anecdotes from other characters about their relationship,
speci�cally their childhood together; the user may not have considered these opinions in
their analysis and so this could provide an extra dimension to their study.

Finally, sentiment analysis allows the user to quickly identify sections of the book which
are highly polarising. All of the books tested tended towards neutrality, that is, they will
either be slightly positive or slightly negative on average, but rarely di�ering throughout.
In general, the ‘bag-of-words’ approach to sentiment analysis described in Section 2.2.4 does
not allow for precise identi�cation of particular passages, as the context of each word highly

69

QUALITATIVE EVALUATION 4. EVALUATION

a�ects its intended sentiment. For example, negation is not handled; ‘He was not happy’
would register as positive sentence due to the positive rating given to ‘happy’. Despite the
shortcoming of this approach, the data produced still creates usable sentiment data on a
large scale, such as identifying where an entire chapter that has a slightly lower sentiment
than the average. An example of this usage can be seen in Pride and Prejudice. Roughly half
way through chapter twenty-four there is a noticeable drop in sentiment. This corresponds
to a section where Elizabeth has become disillusioned with the world as is arguing with
her sister, Jane:

My dear Jane, Mr. Collins is a conceited, pompous, narrow-minded, silly man;

you know he is, as well as I do; and you must feel, as well as I do, that the woman

who married him cannot have a proper way of thinking. You shall not defend her,

though it is Charlotte Lucas. You shall not, for the sake of one individual, change

the meaning of principle and integrity, nor endeavour to persuade yourself or me,

that sel�shness is prudence, and insensibility of danger security for happiness.

The sentiment chart performs its role in knowledge discovery by allowing the user to �nd
sections such as that described, simply through investigation of the chart, and without
needing previous knowledge of the text. Additional use of context would improve its overall
performance in this respect.

4.2.3 | Word Frequency as a Measure of Writing Style

Word frequency can be used to identify writing styles or themes in a text [13]. The use
of certain adjectives and adverbs can especially highlight the authors intended sentiment
in a book. For example, in Lewis Carroll’s Alice in Wonderland, the most used adjectives
include large, great, curious, and mad. This usage re�ects the light-hearted children’s story
that Carroll has created. Such data is easily available to the user in Links through use of
lexical �lters.

Comparison of multiple books as described in Section 3.4.2 also produces interesting data
in this regard. The user can quickly identify unique vocabulary usage amongst multiple
authors. Comparing multiple books by the same author presents another opportunity
for analysis. An example of this usage can be seen when directly comparing a novel and
its sequel; the user can leverage the proportional subtraction feature, also described in
Section 3.4.2, to identify how an author’s vocabulary has expanded from the �rst novel
to the second. With the Game of Thrones novella, Martin’s usage of the word ‘said’ drops

70

QUALITATIVE EVALUATION 4. EVALUATION

almost 25% from the �rst book to the second, potentially indicating that he expanded his
vocabulary in the area of character speech.

4.2.4 | Evaluation of the Interface Design

The design of Links is intended to overcome the knowledge discovery shortfalls and user
interaction di�culties that are apparent in other text visualisation and analysis tools by
adhering to the set of design requirements laid out by Dadzie et al [17] (Section 3.6.4). The
design process explicitly focused on providing additional ways for the user to access and
interact with the underlying data rather than follow the static visualisation approach taken
by Phrase Net.

Firstly, the visualisation of relationships in Links – using the word tree approach – performs
signi�cantly better for knowledge discovery than the single-view based approach taken
by Phrase Net (Figure 2.1). The Phrase Net approach limits the onscreen data to only �fty
words. This is not enough information to accurately visualise all the important relationships
within a text. The approach taken in Links allows for an unlimited amount of relationships
to be visualised, albeit it only shows the relationships to a single word at any given time.

Secondly, Phrase Net does not provide the user with access to the underlying text. Therefore
when occurrences of a relationship are provided, only small extracts are shown to the user.
These extracts may not be enough for the user to gain an appreciation of the context in
which a relationship is appearing, nor do they provide a visual overview of where the
relationship occurs in a text. Links addresses this by allowing the user to directly access the
underlying text for every occurrence of a relationship, as well as providing the user with an
immediate visual representation of the occurrences (Figure 3.12). This visual overview may
be used to quickly compare the occurrences of multiple relationships and generally lends
itself to knowledge discovery more e�ciently than the list approach taken by Phrase Net.

Finally, the Phrase Net approach does not provide a �ltering function to the user, as is one
of the requirements for user-friendly visualisations set out by Dadzie et al. Conversely,
Links provides a relatively large set of options for the user to �lter on. The data presented
therefore moves from simple static visualisation to a dynamic, user directed visualisation.
This approach is designed to make the data more useful to the user and to improve the
quality of the visualisations.

From a user interaction perspective, the tool uses simple navigation techniques and inter-

71

CONCLUSION 4. EVALUATION

actions that are part of the common design patterns of iOS. It is believed that by adhering
to these interface principles, the need for explicit user training is removed. Additionally,
the user does not require any knowledge of the inner workings of the tool’s algorithms to
generate data or perform data �ltering. The focus on ease-of-use should address the main
concerns presented by Gibbs and Owens [1].

4.3 | Conclusion

This chapter presented an evaluation of both the technical and qualitative aspects of Links.
The �ndings from the output of the tool show that there is merit in this approach to literature
visualisation, and that the data gathered can aid in the process of literature analysis. Initial
qualitative feedback received from a lecturer of English at University College Dublin has
been positive. Subsequent research should focus on surveying users from a broad range
of humanities disciplines to evaluate the quality of the data and the usability provided by
Links, with adjustments made based on this feedback.

72

5 | Future Work

This chapter discusses the potential future work which may add to the research that has been
presented in this dissertation. Section 5.1 outlines how user studies should be conducted
and discusses their bene�ts to the overall usability and quality of Links. Section 5.2 then
discusses further features that may be added to the tool, both in a usability perspective and
in a data quality perspective.

5.1 | User Studies

Gibbs and Owens noted that only 33% of tools created for use within the digital humanities
ever conducted usability reviews [1]. This point is emphasised as a deciding factor in the
poor uptake of analysis tools in the �eld. To avoid the same shortfall from a�ecting the
quality and usability of Links, it is clear that in-depth usability reviews should be next step
to help achieve the original goal of the project: to create a user-friendly literature analysis
tool that aids in knowledge discovery.

The target demographic for the tool is students and researchers studying English literature.
Studies should therefore analyse the usage of the tool in this context. Examples include
analysing the usage of the tool for an English literature assignment in a college course,
or examining its uses in a research project in the �eld. User studies should focus on two
metrics; the usability of the tool, and the quality and usefulness of the data according to
the users.

Usability testing would allow us to carefully study how users interact with the tool. These
tests could be conducted though observation of a set of users interacting with the tool
during a ‘think-aloud’ session. Each user should be given a set task, such as identifying
the relationships present in a book, and then they should outline their thoughts during the

73

USER STUDIES 5. FUTURE WORK

interaction with the tool. Questions may be posed to the user to gauge their understanding
of the tool and its features. This process would allow us to build feedback on which features
are clear and intuitive, and which are vague or di�cult to use. Essentially, this approach
should focus on questioning whether users can e�ectively learn how to use the features
provided by the tool, and if the observations prove or disprove the assumptions made about
user ability made in Section 3.6. The feedback gathered during these sessions may then be
iteratively incorporated into the tool to increase the overall usability.

A second set of tests should analyse the quality of the generated data based on feedback
from a set of users. These tests should focus on two metrics. Firstly, they should determine
whether the knowledge discovery features of the tool are performing in a way that allows
users to �nd new data in a real world context. Secondly, they should focus on the users’
opinions about the data produced. As discussed in Section 4.2, literature and its analysis is
entirely subjective, therefore there is a need to standardise the results of such a qualitative
study as much as is feasible. An approach to standardisation would be to assign the users
the same analysis task, such as analysing a certain novel. With a large enough sample size,
the subjective views on the novel should converge into manageable sets; for example, if
the majority of users mention that they think the relationship between two characters is
the most important in the book, and this is not detected by Links, then there is an area
immediately highlighted for improvement. It is important to avoid catering the iterative
changes to the qualitative side of the tool based on feedback that is speci�c to single users.
Such changes may skew results that users on a whole do not necessarily agree with.

Finally, an interesting user study would be to evaluate how the tool copes with foreign
language literature. The tagging algorithm present in the tool should detect the language
that the input text is written in and perform lexical analysis accordingly. The graph
construction algorithms, and relationship detection features, were designed with English
in mind. It is entirely possible that the grammatical structure of other languages would
cause the algorithm to miss important data. For example, in German a conjunction causes
the verb to move to the end of the sentence. This would undo the intention of setting two

to be the adjacency limit during parsing as described in Section 3.3.4. Overcoming these
challenges could prove to be an interesting area of research.

74

ADDITIONAL FEATURES 5. FUTURE WORK

5.2 | Additional Features

The features implemented in Links represent only a small subset of the possible analysis
metrics that could be provided to the user. This section describes the possible additions to
the feature set provided by the tool.

5.2.1 | Supporting Additional Text Formats

From a usability perspective, the exclusive reliance on the plain text format currently seen
within the tool presents an unfortunate limitation on users; any texts they may wish to
analyse must be in this format. Most novels are unlikely to be available in plain text formats;
in particular, any e-books that a user owns will likely be available only in the epub or mobi
formats. If a user cannot import the texts that they own for analysis, then they will have
little reason to make use of the tool.

Addition of importers for the epub and mobi should therefore be a priority for further
development of the tool. Open source importers for these formats are widely available and
should be relatively straightforward to combine with the existing parsing functionality
present in the tool.

5.2.2 | Emotive Analysis

As is demonstrated with the implementation of sentiment analysis in the tool, pre compiled
data sets can be used to provide additional interesting analysis metrics to the user. Links
could be extended to implement emotive analysis. Emotive analysis is the process of tagging
a word with an emotive category. The vast majority of words do not have an associated
category and are therefore considered to be neutral in this context. An example of such a
database is WordNet-A�ect [28]. This database maps words to their a�ective categories by
utilising the synonym information available in WordNet. For example, the words ‘joy’ and
‘happiness’ would be tagged as positive emotions. The database is still a work in progress
and has only mapped a very small percentage of WordNet’s entirety. Nevertheless, the
ability to explicitly tag these sets of words within pieces of text, especially literature, would
be a powerful ability to provide to the user. Combined with the distribution information
that is collected for each word, visualising this data would allow the user to easily identify
important or emotive sections within a text, and would help in expanding the knowledge

75

CONCLUSION 5. FUTURE WORK

discovery options of the tool.

5.2.3 | Collaboration

Experimentation with the addition of collaborative functionality could produce increases
in the e�ectiveness of knowledge discovery and the quality data visualisations provided
by the tool. Allowing users to share their annotations and tags among one another would
allow for research groups to delegate analysis work between each member.

Research may be done to identify similar collaboration tools in use in the digital humanities,
and user studies could be conducted to determine how collaborative analysis processes are
currently handled for literature analysis. The results gathered could be then be used to
determine what the user requirements are, and how the additional functionality could be
implemented.

5.3 | Conclusion

Chapter 4 demonstrated that the data produced by Links can be useful in a variety of
circumstances. The recommendation of the author is that future work on the tool should
focus primarily on user interaction aspects, ensuring that it is usable by as broad of an
audience as possible. Further research should evaluate the worth of the data being produced,
and tailor the output to the feedback received from testing. Additional research may also
focus on extending the analysis options provided by the tool based on the cutting edge
research being undertaken in the �eld.

76

6 | Conclusion

The tools developed for use within the humanities have long su�ered from an inability
to reach a broader audience due to their complexity [1]. The aim of this dissertation has
been to create a literature visualisation and analysis tool that would augment the study of
literature, while still remaining open and intuitive in its presentation of features and data.

As the technology industry moves forward, the rate of tablet users increases while traditional
desktop usage decreases. It is imperative that the tools of the future are available to
users through the medium they are most comfortable with. The technical design and
implementation of Links has shown that it is possible to implement these types of complex
analysis tools on a tablet device. The work underlines how special concern must be given
to both time and memory constraints to create a tool that is fast enough to meet user
expectations. Furthermore, the focus on user interaction has shown that visualisation
and exploration of large-scale graph structures is possible on such devices, despite limited
screen size and processing power, by following an established set of design principles.

The central motivation of Links is to enable knowledge discovery by presenting interesting
quantitative data to the user. This data should help them identify pertinent sections of
the text that they would not have ordinarily examined. The qualitative evaluation of the
tool has shown that the data produced by Links meets this aim of supporting knowledge
discovery within the text.

Using proximity to measure the strength of a link between words has proven itself to be a
valuable and reliable metric for highlighting important relationships in the text. The ability
to move from a visual overview of the data to the exact quote in the text that generated
it, enables the user to study literature in an interactive and exploratory way that was not
possible before. The comparison of multiple books opens up new avenues for the user to
examine the di�erences and similarities between authors. Similarly, sentiment analysis has

77

6. CONCLUSION

shown it provides the user with the ability to quickly discovery highly polarising sections
of the text, simply by exploring a chart.

Future work may focus on enhancing the results through the addition of new analysis
features to the tool. User studies need to be carried out to ensure that the tool is as user
friendly as possible, and that the data being produced is of a high enough standard to
positively aid in analysis.

Through both the technical and qualitative evaluations of the tool, the author believes that
the original aims of Links have been met. Links represents a signi�cant departure from the
world of complex tools used exclusively by researchers, to one in which any person can
perform literature analysis. In these modern times where school children are replacing
textbooks with tablets, the research undertaken by this dissertation shows that with further
work, the fundamental way in which we study with literature could quickly change in the
future.

78

Bibliography

[1] F. Gibbs and T. Owens, “Building better digital humanities tools: Toward broader
audiences and user-centered designs,” Digital Humanities Quarterly, vol. 6, no. 2, 2012.

[2] J. Titcomb, “Tablets forecast to overtake PC sales at end of year,” The Telegraph,
September 2013.

[3] F. van Ham, M. Wattenberg, and F. B. Viegas, “Mapping text with phrase nets,” IEEE
Transactions on Visualization and Computer Graphics, vol. 15, no. 6, pp. 1169–1176,
Nov. 2009. [Online]. Available: http://dx.doi.org/10.1109/TVCG.2009.165

[4] F. B. Viegas, M. Wattenberg, F. van Ham, J. Kriss, and M. McKeon, “Manyeyes:
A site for visualization at internet scale,” IEEE Transactions on Visualization and

Computer Graphics, vol. 13, no. 6, pp. 1121–1128, Nov. 2007. [Online]. Available:
http://dx.doi.org/10.1109/TVCG.2007.70577

[5] Stanford University Engineering Department, “Stanford scientists put free text-
analysis tool on the web,” https://engineering.stanford.edu/research-pro�le/
stanford-scientists-put-free-text-analysis-tool-web.

[6] R. Weiss, “Measuring media bias: A computational method of indexing a�ective slant
amongst news outlets,” unpublished - Information available at: http://www.etcml.
com/blog/investigate-the-news : Last Accessed Thursday 24 April 2014.

[7] M. J. Collins, “A new statistical parser based on bigram lexical dependencies,” in
Proceedings of the 34th Annual Meeting on Association for Computational Linguistics,
ser. ACL ’96. Stroudsburg, PA, USA: Association for Computational Linguistics,
1996, pp. 184–191. [Online]. Available: http://dx.doi.org/10.3115/981863.981888

79

http://dx.doi.org/10.1109/TVCG.2009.165
http://dx.doi.org/10.1109/TVCG.2007.70577
https://engineering.stanford.edu/research-profile/stanford-scientists-put-free-text-analysis-tool-web
https://engineering.stanford.edu/research-profile/stanford-scientists-put-free-text-analysis-tool-web
http://www.etcml.com/blog/investigate-the-news
http://www.etcml.com/blog/investigate-the-news
http://dx.doi.org/10.3115/981863.981888

BIBLIOGRAPHY BIBLIOGRAPHY

[8] D. Mackenzie, “Literature by the numbers,” Nautilus, vol. 1, no. 6, Oct. 2013.

[9] P. Juola, “How a computer program helped reveal J. K. Rowling as author of A Cuckoo’s
Calling,” Scienti�c American, vol. 309, no. 3, Sep 2013.

[10] B. Gretarsson, J. O’Donovan, S. Bostandjiev, T. Höllerer, A. Asuncion, D. Newman,
and P. Smyth, “Topicnets: Visual analysis of large text corpora with topic modeling,”
ACM Trans. Intell. Syst. Technol., vol. 3, no. 2, pp. 23:1–23:26, Feb. 2012. [Online].
Available: http://doi.acm.org/10.1145/2089094.2089099

[11] A. Voutilainen, “Part-of-speech tagging,” The Oxford handbook of computational lin-

guistics, pp. 219–232, 2003.

[12] B. White and E. Cambria, “Jumping NLP curves: A review of natural language
processing research,” IEEE Computational Intelligence Magazine, vol. 9, p. 2, 2014.
[Online]. Available: http://sentic.net/jumping-nlp-curves.pdf

[13] H. R. B. Gery W. Ryan, “Techniques to identify themes,” Field Methods (FMX), pp.
85–109, 2003.

[14] R. H. Baayen, Word Frequency Distributions. New York City, NY, USA: Springer
Publishing, 2001.

[15] G. A. Miller, “Wordnet: A lexical database for english,” Commun. ACM, vol. 38, no. 11,
pp. 39–41, Nov. 1995. [Online]. Available: http://doi.acm.org/10.1145/219717.219748

[16] B. Pang and L. Lee, “Opinion mining and sentiment analysis,” Found.

Trends Inf. Retr., vol. 2, no. 1-2, pp. 1–135, Jan. 2008. [Online]. Available:
http://dx.doi.org/10.1561/1500000011

[17] A.-S. Dadzie and M. Rowe, “Approaches to visualising linked data: A survey,”
Semant. web, vol. 2, no. 2, pp. 89–124, Apr. 2011. [Online]. Available:
http://dx.doi.org/10.3233/SW-2011-0037

[18] F. Å. Nielsen, “AFINN,” Richard Petersens Plads, Building 321, DK-2800 Kgs. Lyngby,
mar 2011. [Online]. Available: http://www2.imm.dtu.dk/pubdb/p.php?6010

[19] S. Baccianella, A. Esuli, and F. Sebastiani, “Sentiwordnet 3.0: An enhanced lexical
resource for sentiment analysis and opinion mining,” in Proceedings of the Seventh

80

http://doi.acm.org/10.1145/2089094.2089099
http://sentic.net/jumping-nlp-curves.pdf
http://doi.acm.org/10.1145/219717.219748
http://dx.doi.org/10.1561/1500000011
http://dx.doi.org/10.3233/SW-2011-0037
http://www2.imm.dtu.dk/pubdb/p.php?6010

BIBLIOGRAPHY BIBLIOGRAPHY

International Conference on Language Resources and Evaluation (LREC’10), N. C. C.
Chair), K. Choukri, B. Maegaard, J. Mariani, J. Odijk, S. Piperidis, M. Rosner, and
D. Tapias, Eds. Valletta, Malta: European Language Resources Association (ELRA),
may 2010.

[20] M. S. Zarra, Core Data (2nd edition): Data Storage and Management for iOS, OS X, and

iCloud.

[21] D. Biber, S. Johansson, G. Leech, S. Conrad, and E. Finegan, Longman Grammar of

Spoken and Written English (Hardcover). Pearson ESL, November 1999.

[22] J. Nielsen, Usability Engineering. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1993.

[23] S. K. Card, G. G. Robertson, and J. D. Mackinlay, “The information visualizer, an
information workspace,” in Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, ser. CHI ’91. New York, NY, USA: ACM, 1991, pp. 181–186.
[Online]. Available: http://doi.acm.org/10.1145/108844.108874

[24] E. Sadun, The Advanced iOS 6 Developer’s Cookbook, 4th ed. Addison-Wesley Profes-
sional, 2013.

[25] W. N. Francis and H. Kucera, “Brown corpus manual,” Department of Linguistics,
Brown University, Providence, Rhode Island, US, Tech. Rep., 1979. [Online]. Available:
http://icame.uib.no/brown/bcm.html

[26] J. Austen, Pride and Prejudice. RD Bentley, 1853. [Online]. Available: http:
//books.google.ie/books?id=kQ0mAAAAMAAJ

[27] G. Martin, A Game of Thrones, ser. Song of ice and �re. HarperVoyager, 2011.
[Online]. Available: http://books.google.ie/books?id=3Wf_�kFQmgC

[28] C. Strapparava and A. Valitutti, “WordNet-A�ect: An a�ective extension of WordNet,”
in Proceedings of the 4th International Conference on Language Resources and

Evaluation. ELRA, 2004, pp. 1083–1086. [Online]. Available: MISSING

81

http://doi.acm.org/10.1145/108844.108874
http://icame.uib.no/brown/bcm.html
http://books.google.ie/books?id=kQ0mAAAAMAAJ
http://books.google.ie/books?id=kQ0mAAAAMAAJ
http://books.google.ie/books?id=3Wf_ffkFQmgC
MISSING

	Declaration
	Acknowledgements
	Summary
	Introduction
	Background
	Related Tools
	Phrase Net
	Easy Text Classification with Machine Learning
	Google’s N-Gram Viewer
	Java Graphical Authorship Attribution Program
	Phraseology
	TopicNets

	Analysis Algorithms, Methods, and Data Sets
	Grammatical Tagging
	Word Frequency and Distribution
	WordNet
	Sentiment Analysis

	Data Visualisation Techniques
	Frequency & Distribution Visualisations
	Graph Visualisation

	Evaluation of Related Work
	Evaluation of Related Tools
	Evaluation of the Presented Algorithms, Data Sets, and Methods
	Evaluation of Data Visualisation Techniques

	Conclusion

	Design & Implementation
	Local versus Remote Data Processing
	Designing a Data Structure for Text Relationships
	Data Structure Requirements
	An In-Memory Object Based Approach
	Additional Application Data
	An On-Disk Approach using Core Data
	Optimisations

	Parsing Texts and Generating Data Structures
	Parsing With NSLinguisticTagger
	Memory Leaks in NSLinguisticTagger
	Sentiment Analysis
	Graph Construction
	Speed and Memory Performance

	Query Design
	Identifying User Requirements
	Technical Design

	Designing Annotation Tools
	Technical Design
	Templates & Integration with Existing Filters

	Designing a User Interface
	Importing Texts
	Processing the Text
	Home Screen
	Exploration of the Graph Structure
	Additional Interface Components

	Evaluation
	Technical Evaluation
	NSLinguisticTagger Evaluation
	Evaluation of the Graph Data Structure

	Qualitative Evaluation
	Proximity as a Measure of Relationship
	Knowledge Discovery Aspects of the Tool
	Word Frequency as a Measure of Writing Style
	Evaluation of the Interface Design

	Conclusion

	Future Work
	User Studies
	Additional Features
	Supporting Additional Text Formats
	Emotive Analysis
	Collaboration

	Conclusion

	Conclusion

