
Motion Synthesis Using Relative Joint Distances

Anzela Kravcevich

Master in Computer Science (MCS)

University of Dublin, Trinity College

Supervisor: Rachel McDonnell

Submitted to the University of Dublin, Trinity College May 2014

Declaration

I, Anzela Kravcevich, declare that the following dissertation, except where otherwise

stated, is entirely my own work; that it has not previously been submitted as an exercise

for a degree, either in Trinity College Dublin, or in any other University; and that the

library may lend or copy it or any part thereof on request.

Anzela Kravcevich

Dated: May 29, 2014

0

iii

Summary

In the field of animation, creating complex and realistic looking motion for human body

models is a very difficult and expensive process. Several research papers that are looking

into this field specifically focus on motion synthesis, a method to create complex motion

using only a set of basic motions. One such method is a motion graph, a directed graph

that identifies transitions between motions. By interweaving between these motions,

a longer or even infinite synthesized motion can be created. Typically short sets of

basic walk motions are used, however this can also be applied to long dance motions.

Motion synthesis from motion graphs involves two steps, the first involving motion graph

construction and the second is efficient path finding from a directed graph based on

terrain constraints. This dissertation focuses on motion graph construction, however it

does provide motion synthesis to demonstrate effectiveness of the proposed method.

The first step of motion graph construction is identifying transitions points, which

are frames of high similarity between two motions. The reason high similarity frames

are chosen for transition, is due to the small amount of interpolation required between

them to provide a smooth flow. The method for motion similarity used was primarily

focused on [Tang et al., 2008], which introduces a new method that uses joint relative

distances (JRD). Previous works on motion similarity [Kovar et al., 2002, Lee et al.,

2002] focus on computing the sum of square distances between points in a motion point

cloud. This method computes the joint distances in a single pose and compares them

to the values of a second pose. It also ignores global rotations and translations, which

iv

0

normally would have to be dealt with to ensure proper motion similarity computation.

Results are demonstrated using error function bitmap images.

The next step involves transition point extraction from these error functions. This

involves locating clusters of high similarity between two motions and is performed using

three pruning steps which ensure only the highly accurate transition points are selected.

Transition points are stored in a file format that can be loaded into any application once

a motion graph is constructed.

For the demonstration of this concept, three interactive applications where developed

to show the motion graph construction effectiveness. The first demonstrates a dance

motion transition between a set of dances. The second focuses on bipedal motion such

as walking and jogging. The last demonstration attempts to simulate a simplistic sample

application that could be used in real world environment, a dance floor is created with

randomized dances performed by several virtual characters.

The contributions of this paper include an analysis of some of the methods used

for motion graph construction in the field of animation. Also a new motion graph

construction method is proposed that requires little supervision and can simulate high

motion synthesis results.

v

Acknowledgements

I would like to thank my supervisor Rachel McDonnell for their advice and support

throughout this project. I would also like to thank Ludovic Hoyet for their additional

supervision.

vi

Contents

Summary iii

Acknowledgements vi

List of Tables x

List of Figures xi

Chapter 1 Introduction 1

1.1 Introduction . 1

1.2 Aim . 2

1.3 Outline . 3

Chapter 2 Background 4

2.1 Human Skeleton Model . 4

2.2 Animation . 6

2.2.1 Kinematics . 6

2.2.2 Dynamics . 6

2.2.3 Motion Capture . 7

2.3 BVH . 8

2.3.1 Biovision Hierarchical Data . 8

2.3.2 BVH Loader . 9

vii

0

2.4 Technology . 9

Chapter 3 State of the Art 10

3.1 Previous Work . 10

3.1.1 Initial Motion Synthesis . 10

3.1.2 Motion Graphs . 10

3.1.3 Motion Transitions . 12

3.1.4 Interpolation . 12

3.1.5 Motion Synthesis . 13

3.1.6 Motion Constraints . 13

Chapter 4 Implementation 14

4.1 Introduction . 14

4.2 Pose Similarity . 14

4.2.1 Previous Work . 15

4.2.2 Joint Relative Distance (JRD) . 17

4.3 Joint Weights . 20

4.4 Error Function . 21

4.5 Local Minima . 22

4.5.1 Comparing Same Motions . 25

4.5.2 Comparing Different Motions . 27

4.6 Creating Transition . 30

4.7 Transition Logic . 31

4.8 Transition File . 32

4.9 Optimisation . 33

Chapter 5 Results 35

5.1 Experiment Setup . 35

5.1.1 Dancing Transitions . 35

viii

0

5.1.2 Bipedal Transitions . 36

5.1.3 Dance Floor Simulation . 37

5.2 Computation Timings . 38

5.3 Transition Results . 39

Chapter 6 Conclusion 43

6.1 Contributions . 43

6.2 Conclusion . 43

6.3 Future Work . 44

Bibliography 45

ix

List of Tables

5.1 Computation timings for 2 scenarios using 1, 10, 20 threads 39

5.2 Number of transitions per motion similarity of 3 walk and 3 jog motions . 41

5.3 Number of transitions per motion similarity of 3 dance motions 42

x

List of Figures

1.1 A basic motion graph using two motions [Kovar et al., 2002] 2

2.1 Human skeleton model in the T pose, demonstrating 29 joints 5

2.2 Sample motion capture session in progress [Ger, 2014] 8

4.1 Sample symmetrical joint pair comparison of two dance poses 18

4.2 Magnitude of weights of different relative distances between joints [Tang

et al., 2008] . 19

4.3 Weights table [Tang et al., 2008] . 20

4.4 Comparison of skeleton setup [Tang et al., 2008] 21

4.5 500 by 500 frame comparison of two dance motions 23

4.6 Error function subdivided into sectors of 100 by 100 24

4.7 Comparing 2 same motions . 26

4.8 Resulting 38 transition points after pruning 27

4.9 Comparing 2 different motions . 28

4.10 Resulting 12 transition points after pruning 29

4.11 Transition within error function . 29

4.12 Transition file . 32

4.13 Error function between the same walk motion 34

5.1 Dance motion transition overtime . 36

xi

0

5.2 Bipedal motion graph application . 37

5.3 Dance floor simulation with randomized dance motions 38

xii

Chapter 1

Introduction

1.1 Introduction

Realistic human animation has played a large part in areas of entertainment, medicine

and education. However, animation can be a laborious process without the necessary

intuitive tools that could perform trivial work. The reason realistic animation is difficult

to achieve is due to the complexity of the human body containing on average 206 bones

which all affect body motion.

Motion capture systems have the capabilities to record complex human motions with

a relative high accuracy. Depending on the number of joints recorded, the number of

motions captured could range from subtle animations such as breathing to fast pace

action like running. Free basic motion capture databases are available online such as

CMU Graphics Lab [CMU, 2014] and HDM05 [HDM, 2014] for beginner animators. Clips

such as walking, running, kicking etc. are considered basic motions, a more complex clip

performing specific motion would involve a set of basics interweaved. Hence, for more

specific motions, access to expensive motion capture equipment is required as well as

skill and time. Due to the extensive setup process of a single motion capture session,

having the ability to reuse and generate complex motions from a basic set will reduce

1

the cost and time consumption of animation. Several animation tools exist to offer this

service for people starting the field of animation, such as Blender, 3ds Max and Maya.

Even such tools require human interaction in relation to parameter tweaking and path

setup.

Fig. 1.1: A basic motion graph using two motions [Kovar et al., 2002]

One simple and automatic approach to solving this problem is using motion graphs.

Directed graphs with frames of high similarity used as transition points between motion

capture data. Two main areas of research in motion graphs are motion similarity for

transition points and automatic generation of motion paths. This thesis will primarily

focus on the former, evaluating different methods for motion similarity and extraction of

transition frames between two motions. The Graphics, Vision, and Visualisation Group

in Trinity College Dublin provided necessary motion capture clips for this project.

1.2 Aim

The focus of this research project is to develop a system that allows for synthesis of

unique, infinite long motions that are of high quality and require minimum supervision.

The main goal is to evaluate different methods for motion similarity and attempt to

replicate an application that allows construction of motion graphs using a new method.

Results will demonstrate the quality of transitions identified for the motion graph.

2

1.3 Outline

The report is structures as follows: the second chapter gives an overview of some of

basic terminology of motion capture and animation as well as necessary background

information used throughout the dissertation. The third chapter presents state of the

art research work currently done on motion graphs. Chapter four describes implementa-

tion performed for motion graph construction starting from motion similarity, transition

point location and utilisation. The fifth chapter gives an overview of experimentation

performed to demonstrate motion synthesis based on the new motion graph construction

method. The last chapter gives an overview to contributions and future work for the

following dissertation.

3

Chapter 2

Background

2.1 Human Skeleton Model

In animation, a human body is represented as a rigid skeleton that controls a deformable

skin. A skeleton hierarchy is composed of a series of joints with hierarchical relation-

ships. Hence, each joint in a skeleton hierarchy is a child joint meaning it is attached

to another joint and a parent joint meaning it has other joints attached to it, except

for the root which is the highest joint in the hierarchy and can only be a parent joint.

The root also represents the centre of gravity for the skeleton, meaning for any physical

related computations, the total weight of the skeleton/character will be applied at this

point. Translating this root node on the Cartesian plane, additionally moves all con-

nected branches or joints hence moving the complete character in the environment. Joint

rotations over time result in a character motion. Since the skeleton is represented in a

tree like hierarchy, if a joint is rotated, it affects all child joint branches. A rotation or

transition that is said to be local to a joint, means it only represents a transformation at

that particular joint location as if the joint location was the center of its own Cartesian

plane. A global transformation however represents a rotation or transition in respect to

the complete Cartesian plane of the scene.

4

Depending on the desired level of accuracy and detail for a character motion, a

skeleton could contain joints representing legs, torso, arms and head for simple bipedal

motions or for further complexity bones such as fingers and facial markers. We use 29

joints as shown labelled in Figure 2.1. The motion capture files that where provided

by the Graphics, Vision, and Visualisation group include 29 joints to record information

of foot placement, arm, neck and back, enough to capture high quality body motion.

Details such as face and fingers would provide unnecessary complexity.

Fig. 2.1: Human skeleton model in the T pose, demonstrating 29 joints

5

2.2 Animation

Three main types of approaches exist to animate such a skeleton model: kinematics,

dynamic and motion capture. Depending on the desired animation, the method chosen

for animation could differ. Whether it is a physically correct human walk that looks

robotic, or a fast yet expensive motion capture, a mix of approaches can be taken.

2.2.1 Kinematics

There are two main types of kinematics: one is done from observation called forward

kinematics and the other one done from computation called inverse kinematics. Forward

Kinematics relies on manual joint rotations specified by the animator. This method

requires a lot of work and generally does not produce natural animations. Inverse Kine-

matics works oppositely, an animator is required to specify an end pose known as a

keyframe (as well as intermediate poses if desired) and joint parameters are determined

through computation. As an example, by identifying the final position on a Cartesian

plain that is desired for the end-effector(finger) of an arm, individual joint rotations are

computed for every joint starting from shoulder, elbow and wrist. A sample motion

can be created by computing a spline from start to end position and interpolating be-

tween them over time to create animation. This method is used for inanimate objects

or to complete a transition between one motion and another. However, it is possible to

use keyframe interpolation to create very basic human motion, it is not viable for high

quality complex motions.

2.2.2 Dynamics

Dynamic motions are computed from a set of torques around joints by applying physics

and constraints such as degrees of freedom to produce natural looking motions. [Rose

et al., 1996] An application to such a method is used to animate a character walking

and regaining his balance based on his centre of symmetry. [Geijtenbeek et al., 2013]

6

The character is taught to react to environmental changes such as hills and drops, by

providing physics based changes to the original walking motion. Even though this motion

is viable to creating physically correct motion, it does not necessarily create the most

realistic.

2.2.3 Motion Capture

Motion capture is an accurate way to record complex animations. Markers are placed

on the human or animal model and multiple cameras are used to track the motion which

is then used to animate digital character models in 2D or 3D computer animations.

The main reason for using motion capture is to simulate realistic human motion that

do not look robotic like dynamic or kinematic approaches. However, one of the draw-

back for this method is the difficult, time consuming and expensive setup. For motion

capture: knowledge of the technology is required, calibration of cameras and lights is

time consuming as well as paying for actors, animators and equipment is expensive.

Figure 2.2 demonstrates a motion capture session in progress in the Graphics, Vision,

and Visualisation Group in Trinity College Dublin.

Typical motion capture session involves:

• Actor suit up in a Velcro body suit and markers are placed on approximate loca-

tions of joints on the human.

• Camera calibration around the model, to ensure every marker is within range.

• Initial T pose, where a character stands with outstretched arms is performed to

set up the joint locations.

• Markers are named based on their joint.

• Motion capture is performed, where an actor is asked to perform a certain action.

7

Fig. 2.2: Sample motion capture session in progress [Ger, 2014]

• Resulting files are exported to perform post processing. Occasionally during mo-

tion capture, the actor could obscure one of the markers and it will lose its informa-

tion for a few frames. Animators look over the motions to ensure all information

is properly applied.

• The final motion is applied to an avatar and rigging ensures that each bone controls

a subset of the body.

Due to the extensive setup of motion capture sessions, only specific motions can be

accurately recorded, hence it is sensible to be able to produce reusable animations.

2.3 BVH

2.3.1 Biovision Hierarchical Data

Biovision Hierarchical Data (BVH) is file format that stores skeleton setup and animation

in a tree structure. It is separated into two parts. The first represents labelled joint

8

hierarchy, their initial offsets and rotations. The second part stores the number of frames

in the following motion, frame rate and per frame transitions and rotations for all the

joints in the skeleton. A frame represents a single pose of a motion at any particular

instance. Frame rate is the number of frames shown per second.

2.3.2 BVH Loader

The BVH parser I am using was written by a Ph.D. student from the Graphics, Vision,

and Visualisation Group in Trinity College Dublin. The process is separated into 2 parts.

The first part parses the skeleton joints, root offset and joint rotations. Identifying

children and parent nodes, helps with the global rotation computation. The second

part reads per frame root offset and rotation change for each node. All these values are

preloaded into an animation class to be used during runtime.

2.4 Technology

For the purpose of implementation, C++ and OpenGL where used. OpenGL allows

enough flexibility to be able to construct a 3D scene and control it real time, the BVH

loader is also written using OpenGL and C++. BVH files where provided by the Graph-

ics, Vision, and Visualisation Group in Trinity College Dublin. A set of stationary dance

motions, walking, running and idle motions where provided. The dance motions where

rotated by 90 and 180 degrees to evaluate performance of motion graph construction

based on global offset.

9

Chapter 3

State of the Art

3.1 Previous Work

3.1.1 Initial Motion Synthesis

Before motion graphs [Kovar et al., 2002], several forms of motion synthesis allowed

creating character animation only using constraints to generate physically valid motions

based only on mathematical laws. [Witkin and Kass, 1988]. Later upon which was im-

proved in [Rose et al., 1996], by applying the following idea along with inverse kinematics

to introduce smooth transitions between two motion clips. Another method for transi-

tion between two clips at the time was to blend where they overlap, hence creating a

warping animation that is different to its initial set [Witkin and Popovic, 1995].

3.1.2 Motion Graphs

The initial start to the field of motion graph was introduced using image blending to

produce looping videos [Schödl et al., 2000], images are analysed based on a probability

for transition and organised into a looping graph which provides information on most

optimal looping videos that can be created. This inspired motion graphs in relation to

creating looping animations, however methods to identify motion similarity varied. The

10

method proposed by one of the original motion graph papers, involves comparing the

distances of points between two motions over a window of frames. [Kovar et al., 2002]

This method is called sum of square distances and is one of the main papers references

throughout this dissertation. By identifying windows of frames that have high similarity

between them, transition points are extracted to construct a motion graph. The sliding

window ensures not pose by pose comparison, instead it focuses on overall motion change.

A slightly different approach at the same time, with similar intention was to use pre

computed velocity at each frame instead of a sliding window [Lee et al., 2002]. Both

demonstrate methods for motion graph computation based on a small set of motion

capture files. Similar methods for motion similarity can be seen used in [Arikan and

Forsyth, 2002,Arikan et al., 2003,Safonova and Hodgins, 2007,Safonova et al., 2004,Lee

and Lee, 2004,Heck and Gleicher, 2007,Lee and Lee, 2004]. A more simplistic approach

to motion graph construction, focuses on splitting motion segments into groups based

on similarity of left or right foot placement [Kwon and Shin, 2005], the main focus of

this approach is to create a biped locomotion character. A recent study evaluates the

following motion similarity methods based on user perception. [Krüger et al., 2011]. The

study revealed that methods using joint positions rather than joint angles have greater

results when computing error function.

The motion similarity method that was used for the following dissertation takes into

account all of the above mentioned methods and proposes a new, more simplistic method

for motion similarity. The idea is to find the distances between joint positions on a single

pose and compare them to the same joint distances on a second pose. This method is

called Joint Relative Distance method [Tang et al., 2008]. Instead of comparing the

distance between the point clouds of two motions by creating an imaginary “overlap” on

the Cartesian plane, this method focuses on identifying the joint differences within one

pose before comparing it to the other. A method like this ensures global position and

rotation of the overall pose can be ignored.

11

3.1.3 Motion Transitions

Transitions between motions are collected from a motion similarity function between two

animation clips. In [Kovar et al., 2002] a local minima was identified from “sweet spots”

between window of frames that contained high similarity between two motions. [Lee

et al., 2002] computed a probability metric for transitions based on a set of joint weights

that where later optimised [Wang and Bodenheimer, 2003]. A different approach for

motion graph construction and transition calibration involves rhythmic-motion synthesis

based on feet motion beats [Kim et al., 2003], or transitions based on foot placement to

construct locomotion for a biped avatar [Choi et al., 2000,Park et al., 2002,Park et al.,

2004]. A more manual approach to transitions between motions involves identifying

transition frames based on a state machine like approach. [Mizuguchi and Calvert, 2001]

This process involves large amount of animators contribution to ensuring feet constraints

are labelled as well as perfect animation loops are prepared. A loop like approach to

motion graphs can be seen in snap-together motions, where the most common pose is

the centre of a motion graph and all paths from this pose loop back to it. [Gleicher

et al., 2003] Such a method can be useful when designing virtual characters in games

performing a repeated, simplistic task yet provides a sense of variety to it or give ability

to control a virtual characters motion using interactive input [Shin and Oh, 2006]. This

is then elaborated with several motion graphs intertwined.

3.1.4 Interpolation

Interpolation is motion generated to fill the gap between the end of one motion and

the start of the next. It creates a smooth transition that should be barely noticeable

for the user. Interpolation in motion graph transitions can be seen in [Ikemoto et al.,

2007, Safonova and Hodgins, 2007, Sun and Metaxas, 2001]. Another method to transi-

tion between two motions is represented by blending. This creates an overlap between

the start of the transition in one motion and the end of the continuing motion, plus

12

several frames in between. Blending between motions can be seen in [Kovar et al.,

2002, Mizuguchi and Calvert, 2001, Kwon and Shin, 2005]. A more advanced approach

to blending between animations, computes a registration blend curve based on knowledge

of the motion and their constraints [Kovar and Gleicher, 2003]. This is a more accurate

form of blending instead of a linear frame blend. A study by [Wang and Bodenheimer,

2004] looked into the most efficient timing for blending during the transition, based on

user evaluation. Quaternion spherical linear interpolation is another method to use with

blending between poses, it allows for smooth transitions with a fixed velocity between a

start and end of joint angles [Park et al., 2002,Kovar et al., 2002,Park et al., 2004].

3.1.5 Motion Synthesis

Motion synthesis represents a method of computing a path through a motion graph to

construct a unique new motion. Once motion graph data has been pre computed, motion

synthesis methods are proposed either real time based on user interaction controls such

as keyboard, mouse or controller [Lee and Lee, 2004, Heck and Gleicher, 2007, Kwon

and Shin, 2005, Park et al., 2002, Gleicher et al., 2003, Shin and Oh, 2006] or offline,

using a predefined path [Kovar et al., 2002, Choi et al., 2000, Sun and Metaxas, 2001],

joint position constraints [Arikan and Forsyth, 2002], annotations timeline [Arikan et al.,

2003], start and end pose [Madhusudhanan, 2005].

3.1.6 Motion Constraints

Motion annotation helps to determine motion synthesis based on user desire, whether it is

physical constraints [Fang and Pollard, 2003,Liu and Popović, 2002,Safonova et al., 2004]

such as velocity, acceleration, force, momentum or a desired motion sequence [Arikan

et al., 2003].

13

Chapter 4

Implementation

4.1 Introduction

Taking into consideration the state of the art, our aim is to create a different approach to

motion graph construction using methods of joint relative difference computation as pose

similarity. [Tang et al., 2008] However since JRD is a method to compute pose similarity,

this does not include motion. A slight variation on the local minima computation will

introduce the motion aspect to the pose comparison [Kovar et al., 2002]. To demonstrate

the results of motion graph construction, a randomized simulation of the above solution

is proposed.

4.2 Pose Similarity

One use of motion similarity method is to identify whether two motions are similar

overall, however for the purpose of construction of motion graphs, the method involves

identifying motion similarity function to find areas of low error to perform transitions

between two motions. For motions with a large number of frames, such as a dance

sequence that lasts over 30 seconds the resulting error functions will be quite large.

For the purpose of this study, only a subset of motions will be used to demonstrate

14

computation process.

Since a motion graph is constructed using a set of motions, a method is required

to compare all available motions to find best transition points. An iterative per frame

comparison methods, which compares two frames from two animations will result in an

error value that represent motion similarity between them, these can then be represented

visually in greyscale image. When searching such a function for transition points it is

important that the motion similarity method takes into account following points to avoid

any inconsistent transitions:

• Ignoring world coordinate position of the pose at specific frame ensures that iden-

tical poses where one is rotated by 90 degrees for example, are not missed.

• A single joint rotation parameter cannot fully express the effect it has on the final

pose. An example such as a hip rotation which affects all children bones, will

completely change the final pose, however if only a wrist is rotated, it will not

have much of an effect on the final pose

• To identify smooth transition points between motions, velocity of joint rotations

needs to be taken into account. If two motions, one that is stationary and the

other in fast motion are identified as similar, this will result in a very unrealistic

velocity transition.

• Limb positions such as left foot or right foot on ground are important to prevent

unintentional sliding of motion.

4.2.1 Previous Work

In [Kovar et al., 2002], the proposed method for motion similarity computation is the sum

of square distances between point clouds of two motions. To prevent problems described

earlier, a sliding window of k size number of frames is computed using Gaussian weights

15

over two motions to capture relevant information regarding all aspects described above

instead of just the pose similarity. This takes into account motion velocity as well as the

sum effect of individual joints on the final pose.

[Lee et al., 2002] present a different approach to compute motion similarity by

incorporating both velocity and position into their sum of square distance computation:

Dij = d(pi, pj) + dv(vi, vj) (4.1)

Where the weighted differences of joint angles d(pi, pj) and weighted difference of

velocity dv(vi, vj) are used to compute pose similarity Dij . This distance function is

used to compute a probability value of a transition between frames. The weights for

positions and velocity are selected manually by determining which have more effect on

the final pose. Weights where set for shoulders, elbows, hips, knees, pelvis and spine.

The rest are set to zero as they have little impact on visible differences between poses.

In a study on human perception for motion similarity [Krüger et al., 2011], which

made an initial assumption that computing joint angle differences between poses results

in more accurate results rather than point cloud distances, later rejecting their claim

based on gathered test data. The idea for using joint angles was that it would ignore

the human weight, gender, height variables and only focus on motion. Since joints

have different initial offsets from each other based on the unique human body structure,

finding a method that can ignore these parameters and only focus on the motion is

important for motion similarity. They gathered test results from human perception using

both stick and point light figures as well as a distance measure computation to artificially

compare motions. Methods used for the motion similarity study include: point cloud

distances [Kovar et al., 2002], principal component analysis (PCA) [Safonova et al., 2004],

quaternion and Euler angle based methods using 15,30,39 joints. These methods where

applied to both motion capture animations as well as physically synthesized motions.

16

Results showed that higher dimensional feature sets showed greater correlation values

between motions, than their lower dimensional counterparts. Motion similarity methods

that use joint positions rather than rotations are advised to be used for best results.

4.2.2 Joint Relative Distance (JRD)

To incorporate all of the above considerations, the chosen method for motion similarity

is described by [Tang et al., 2008]. Its main idea revolves around computing a relation

between joint distances based on a precomputed weights analysis of joint contribution

to final pose.

JRDp1,p2(i, j) = |D(pi1, p
j
1)−D(pi2, p

j
2)| (4.2)

Equation 4.2 represents the computation formula for finding the joint relative dis-

tance between 2 frames p1 and p2, where D(x, y) represents Euclidean distance between

two joints in a Cartesian plane. i and j represent joints within the given skeleton hier-

archy, (i, j = 0, 1, ..., n − 1) where n is 29 compared to the 25 used in the study [Tang

et al., 2008]. The resulting value represents the error margin between the distances of

two joints in two different poses.

Next step requires to measure these differences based on the weight of their relevance

to the final pose. As described earlier in Section 4.2, different joints have different effect

on the final pose. In this situations different joint pairs effect the final pose in different

ways. Values between shoulder and hip for example do not have a large degree of change

during motion. However, pairs like wrist and hip effect the final pose much more. Hence

weights where computed based on joint relevance towards the final pose. Due to the

format of weight computation, the weight values are computed for symmetrical joint

pairs. Symmetric pair of joints are identified by an imaginary vertical line through the

centre of the skeleton. An example of a symmetrical joint pair includes left wrist to hip

and right wrist to hip. Top 30 values are demonstrated in Figure 4.3 [Tang et al., 2008].

17

fp1,p2(i, j) =

 1
2(JRDp1,p2(i, j) + JRDp1,p2(i′, j′)), if (i, j) has a symmetric pair (i′, j′)

JRDp1,p2(i, j), (otherwise)

(4.3)

A visual representation of symmetrical distances is demonstrated in 4.1. The yellow

and orange lines represent the symmetrical pairs of joints between left wrist, left toe and

right wrist, right toe.

Fig. 4.1: Sample symmetrical joint pair comparison of two dance poses

Equation 4.3 demonstrates the method to incorporate symmetric pair joints into

joint relative distance computation. We want the weights of symmetric pair of joints to

be equal, hence the average between two symmetric pairs. The weights for joint pair i,j

from Figure 4.3 is the applied to the result of fp1,p2(i, j) as demonstrated in Equation

4.4, where P represents skeleton hierarchy. The total sum value is determined by the

number of chosen weights used in the error function computation.

yp1,p2 =
∑

(i,j)∈P

wi,jfp1,p2(i, j) (4.4)

18

In Equation 4.4, yp1,p2 represents the pose similarity error. Higher error meaning

lower similarity between poses. 125 total weights where identified by JRD study [Tang

et al., 2008]. Due to not all of them being available, an inquiry was made to the original

authors asking for the complete table. However, with no reply, it was decided to use the

first 30 until the a full table would be available. The table from the study is demonstrated

in Figure 4.3 containing symmetrical pairs of joints along with their weights. Due to

dissimilarities between skeletons used for BVH rigging as demonstrated in Figure 4.4,

some of these values are ignored resulting in only 22 entries. This is enough to achieve

relatively accurate results based on the weight distribution shown in Figure 4.2. To

have more accuracy, a wider range of values should be used, however this could hinder

computation.

Fig. 4.2: Magnitude of weights of different relative distances between joints [Tang et al.,

2008]

19

Fig. 4.3: Weights table [Tang et al., 2008]

4.3 Joint Weights

The following section gives an overview of the method performed in the Joint Relative

Distance study [Tang et al., 2008] to train weights based on example. The weights of

each combination of joints are computed using the tagged set of poses present from the

user perception study of motion similarity. Two sets of poses where presented to the

viewer and they had to tag them “similar” or “dissimilar”, results in n pairs of tagged

20

Fig. 4.4: Comparison of skeleton setup [Tang et al., 2008]

poses. The sum of joint relative distance from Equation 4.4 can also be written as

Y = WA, where Y represents sum of error between two poses, W represents weights

for all poses and A is the feature matrix computed using JRD method. The idea is

to identify W value to be used for the computation of Y . Using the n number of pair

poses described earlier, a constant can be set where Y = 1 for similar poses and Y = −1

for dissimilar. The previous equation can be hence rearanged into W = Y A+ where

A+ = AT (AAT)−1 to compute the pseudo-inverse matrix of A to obtain the weight with

the least square error. Using a number of these pairs of poses, a total average can be

computed for each joint symmetrical pair. Results of this study are demonstrated using

weight distribution in Figure 4.2 and the top 30 weights in Figure 4.3.

4.4 Error Function

An error function is a visual representation of motion similarity. It can help identify

frames of high similarity between two motions. During the per frame motion similarity

21

computation, the error values are collected and visually represented in a greyscale bitmap

image. The error minimum and maximum values are recorded to rescale all error values

to fit a 0 to 255 range to represent black and white pixels. Dark regions of the map will

represent low error and white regions represent high error. Equation 4.5 shows rescaling

computation, where the minimal and maximum value from a set are selected and applied

to the old value. The reason rescaling the error function is required, is to create a clear

distinction between low and high error values. Otherwise the error function bitmap looks

grey and offers very little information regarding low and high error patches.

new = ((old−min) ∗ 255)/(max−min) (4.5)

Figure 4.5 demonstrates a sample error function for the first 500 by 500 frames of

a dance motion. Motion one is represented as the width of the image starting from left

to right and motion two is the height of the image from top to bottom. Every pixel

in the bitmap image represents a pose by pose similarity comparison of two motions.

Sample poses from 100 frame intervals including 0 are demonstrated along with the

error function. Dark areas represent frames of high similarity. Upon evaluation it can

be noted that clusters of low error frames represent stationary motions or motions which

are moving with the same velocity and remain very similar for a duration. These types

of clusters are required to be extracted as transitions.

Error function or distance grid has also been used in [Kovar et al., 2002, Kovar and

Gleicher, 2004,Heck and Gleicher, 2007], for similar purpose.

4.5 Local Minima

Once a similarity graph between motions has been constructed, “sweet spots” or areas

of high windows of similarity are extracted as motion graph transition points.

In [Kovar and Gleicher, 2004], instead of searching for local minima point, a 1D

22

Fig. 4.5: 500 by 500 frame comparison of two dance motions

minima chain is computed instead. This chain represents a subset of two compared

motions which have a high value of similarity, bridges are formed between sets of chains

to generate new synthesized motion paths within the motion graph.

Parameter based transition points will store constraints about a given motion frame,

in the example described by [Choi et al., 2000], motions are labelled by foot on ground

position to allow motion synthesis based on a start and end location.

The method that has been implemented to perform a local minima computation

for this research project involves a three step pruning process. During the per frame

23

similarity computation, a 100 by 100 frame sectors local minima is recorded to be pruned

later, a sample grid is seen in Figure 4.6. The smaller the sector size, the more local

transitions can be recorded, however the size of a sector should not be smaller than the

transition time value k, otherwise this will result in overlapping transition markers and

excess computation time, which is unnecessary. Once all per sector local minimas have

been computed, the three step pruning process is performed to optimise the resulting

transitions:

Fig. 4.6: Error function subdivided into sectors of 100 by 100

• The first pruning step involves checking this minima to be below a user specified

threshold, this ensures that the level of motion similarity and transition points can

be controlled by the user. The lower the threshold, the less points will be collected,

but the quality of transition points will be higher. Figures 4.8 4.10 demonstrates

values below threshold being distinguished from the rest in yellow.

24

• Second pruning process involves checking bordering local minimas that are too

close and eliminating them. This check is necessary when local minimas are rep-

resenting the same “sweet spot” within a close distance from each other, in such

situations the bottom left most local minima is used and the rest are ignored. This

is due to the transition method that is used, where transition frames used start

from Ai to Ai+k−1 from motion A and Bj−k+1 to Bj from motion B, where i and

j represent transition point. During this pruning step, duplicate “sweet spots” are

removed and remaining go onto step three. To achieve this most optimally, local

minimas are checked from top right to bottom left of the error function. This is

explained more clearly in Section 4.6.

• In the last step, velocity of motion is checked. In [Kovar et al., 2002], the slid-

ing window ensured velocity of a motion is compared before a local minima is

computed. Since there is no velocity computation prior to the local minima, an

average value around the local minima is computed to ensure the poses to be used

for blending are of low error similarity, hence resulting in a smooth transition

during stationary motions or motions of equal velocity.

4.5.1 Comparing Same Motions

To show effects of the local minima pruning process more clearly, Figure 4.7 demon-

strates a sample 2000 by 2000 frame exact same dance motion similarity error function.

The sections that where used to compute local minima are of size 100 by 100 frames. A

clear black line can be seen going diagonally across the error function, this demonstrates

a comparison of exact same frames hence why they will always return error values of

0. The image can be mirrored along the diagonal. Figure 4.8 then shows the same

error function after the pruning. Areas in yellow represent local minima values that are

below a user defined threshold, they have been collected and joined by a yellow coat.

Red dots represent selected transition points that have met all the criteria, the number

25

of points that was collected is 38. They have been enhanced visually to ensure clear

comprehension. Most of the transition points that have been selected are located close

to the diagonal. Contrary to belief, not all transition points are selected directly on top

of the diagonal. This is due to the blending method used during transition as described

in Section 4.6. Another thing to note, is during computation of an error function for

two motions that are exactly the same except for one has been globally rotated by 90

degrees, results showed that the same error function has been created. Leading to a

conclusion that JRD method ignored global position and rotations.

Fig. 4.7: Comparing 2 same motions

26

Fig. 4.8: Resulting 38 transition points after pruning

4.5.2 Comparing Different Motions

The following example shows the same error function computation, however instead of

two same motions, two different ones where used. The actors where asked to follow an

instructional dance video and attempt to replicate the dance. Due to human perception

being a variant, the dances are slightly different, yet still following a similar pattern.

Figure 4.9 shows the resulting error function, it no longer has a diagonal with a perfect

error result of 0, instead a slight offset can be seen between the two motions specifically

at the start when the dance is slightly stationary with a long period of holding a pose.

A slight grey overlap can be seen between these, this represents two dancers changing

the pose slightly off key. Figure 4.10 represents a similar pruning process, where yellow

27

represents local minimas below a user specified threshold and red represents chosen

transition points. In this case only 12 values have been returned.

Fig. 4.9: Comparing 2 different motions

Once the pruning process is complete resulting values are recorded as most optimal

transition points between two motions of any frame size. Similar approach was taken

in [Schödl et al., 2000] et al in at attempt to generate video from a set of photographs

based on their similarity metric.

28

Fig. 4.10: Resulting 12 transition points after pruning

Fig. 4.11: Transition within error function

29

4.6 Creating Transition

Once frames are collected that have high probability of transition between 2 motions

Ai and Bj , transitions are created by blending frames Ai to Ai+k−1 and Bj−k+1 to Bj

inclusive, as demonstrated in Figure 4.11, where k is a user specified value for transition

timer. It determines the number of frames available to perform full transition from Ai

to Bj . a(n) returns a transition value in the range of 0.0 to 1.0, where a(p) < 0.0 if

p < 0 and a(p) > 1.0 if p > k.

a(p) = 2(
p + 1

k
)3 − 3(

p + 1

k
)2 (4.6)

First step involves performing linear interpolation of the root node, based on the

current a(p) transition value, where 0 < p < k. To ensure proper global root offset,

RAi+p and RBj−k+1+p
, represent a frame difference between current and last displayed

frames. Interpolation is computed between these offsets and is displayed in respect to

total animation offset which is updated every frame.

Rp = a(p)RAi+p + [1− a(p)]RBj−k+1+p
(4.7)

Next step focuses on computing spherical linear interpolation between joint angles

of frame Ai+p and Bj−k+1+p using quaternions. Resulting animation provides a smooth

transition with a fixed velocity, hence why it is important that transitions happen be-

tween two motions with similar velocity, otherwise the transition will look unnatural.

qip = slerp(qiAi+p
, qiBj−k+1+p

, a(p)) (4.8)

Similar approach was taken in [Kovar et al., 2002] and Lee et al. Other transitions

are available such as [Rose et al., 1996], where transitions are done using a mixture of

spacetime constraints and inverse kinematics.

Constraints for foot positions ensures no sliding during motion, these constraints can

30

be set when recording transition points and identifying foot placement, however due to

the method of joint relative distance computation instead of the standard node difference

computation, this is already ensured. When comparing two motions, one if the left foot

on ground to a motion with right foot on ground, the resulting error will be high due to

the joint differences, hence ensuring that joint positions are only slightly different. The

joint difference weights have high values between joints such as feet and root as well as

wrists and root.

4.7 Transition Logic

For demonstration purposes the transition logic involves 3 steps. To identify when

a transition occurs, we decided to include user input command to trigger a random

transition. When a call is made, a random transition is selected from the motion graph

based on the closest available transition point to the current frame. When a transition

is selected the 3 step transition begins.

• Before the transition frame Ai is reached, the displayed motion is treated as normal.

Resulting value from a(p) will always be below 0.0 meaning when spherical linear

interpolation is performed, the full value of motion one is used.

• When the transition frame Ai is reached, a p increment will take place and a slerp

will provide a transition. On the last transition frame, the animation fully switches

to use motion B.

• Once transition is finished, motion is continued from Bj frame. Once the button

is pressed again motion A becomes motion B and a new transition is looked up.

Synthesized motions are created randomly with user input. This can be further

expanded, where transitions are picked based on a certain parameter, like a line by

which a character has to walk, or a point which he has to reach. The development of

31

this project started with the idea of creating infinite length dance motions from a set of

dance clips, hence ideally creating a scene with randomized dancing characters.

4.8 Transition File

Figure 4.12 shows a sample transition file. To ensure saving computation time, a

transition file can be precomputed to be loaded at any time. The format for the transition

file can accommodate any number of motions. The file format is explained in a file sample

4.8.

Fig. 4.12: Transition file

MoGra . t r a n s i t i o n s :

Trans i t i on s : N A B

X1 Y1

X2 Y2

N = Number o f t r a n s i t i o n s

A = Motion 1

B = Motion 2

X1 − Xn = Ai

32

Y1 − Yn = Bj

The following file format is parsed into a 2D array where first element stores motion

A. Every element in that array stores values B, Ai, Bj . When searching for closest

transition to the current frame, using the current motion ID, that sub array is accessed

and the closest transition frame Ai is located. An expansion on this could include

a second check to ensure that the closest transition also has the smallest Bj , hence

allowing for a longer motion B once the transition is completed, ensuring avoidance of

dead ends. The loading of motions are interchangeable, when loading values into A sub

array a mirror is also loaded into B where Ai and Bj are swapped positions.

4.9 Optimisation

Due to the large number of iterations required to be performed for the similarity com-

putation, several forms of optimisations are proposed. Since the computation is done

frame by frame comparison, palletisation is one form of optimisation. This is done using

OpenMP, which is an API that supports multi-platform shared memory multiprocessing

that is available for C++. Effect of parallel computing is demonstrated in 5.2.

The second form of optimisation is for the computation of motion similarity between

two of the same motion. This is to ensure transitions between earlier or later points

within the same motion. A sample error function for such a motion similarity can be

seen in Figure 4.13. The diagonal creates a mirror image of the error function, hence

only half as much computation is required for such situations. This is particularly useful

for motions with large amount of frames.

33

Fig. 4.13: Error function between the same walk motion

34

Chapter 5

Results

5.1 Experiment Setup

For the purpose of testing, three basic interactive applications where setup. The first

two demonstrate spherical linear interpolation at a preprocessed transition point and

the third demonstrates a sample application of the following research project.

5.1.1 Dancing Transitions

To demonstrate effectiveness of the transition location algorithm, an interactive character

is placed in a scene starting from a dancing motion. With the help of user interaction by

pressing a designated keyboard key, a transition is located based on the current frame

and the closest best suited transition frame is returned. The transition logic is then

assigned an Ai and Bj frames and until the current frame reaches Ai the application will

display the motion as normal. Once reached Ai, the application will blend between the

two motions based on a time sequence and apply spherical linear interpolation between

joint angles of two motions. This is demonstrated by the transition of colours between

green and red and vice versa. Once transition is finished, the motion will play out the

new animation from frame Bj . The character can be set to transition between animations

35

with a press of a button.

Fig. 5.1: Dance motion transition overtime

Figure 5.1 demonstrates a transition between two dance motions over a period of

around 50 frames. The poses are offset slightly to demonstrates the difference in poses

over time.

5.1.2 Bipedal Transitions

Demonstrates similar functionality as the first interactive application, however instead

of purely dancing animations, the motion graph is constructed using walking and jog-

ging motion clips. Similar interactive controls are applied with a moving camera that

36

follows the virtual character. Sample application setup can be shown in Figure 5.2

The transitions do not work as smoothly as the dancing motion transitions due to very

limited number of feet constraints beeing monitored. The character occasionally seen

skipping a step with an unrealistic linear interpolation for the root position. Locomotion

motion graphs that focus on feet transitions would work better in such a situation such

as described in [Kwon and Shin, 2005].

Fig. 5.2: Bipedal motion graph application

5.1.3 Dance Floor Simulation

A sample application that can be created using the following algorithm is a simple

simulated dance floor with multiple randomly dispersed characters. Using only a set of

dance motions the characters will perform unique, infinite long dance sequences that are

randomly generated real time. This application requires no user interaction and will be

randomly generated each time on load. This simple application can be further expanded

to follow a more guided randomization of people placement and the actions performed

based on the current situation. A preprocessing step to generate motion graph has to

37

be performed during initial run, however after that the motion graph file can simply be

loaded at any point for any desired application. Figure 5.1 demonstrates the application

running.

Fig. 5.3: Dance floor simulation with randomized dance motions

The randomization factor based on the C++ random library is used to set initial

character positions as well as starting frame, starting animation and transitions calls.

Since all the calls are random and not monitored for dead ends, the simulation is not

perfect, however it does offer a proof of concept.

5.2 Computation Timings

Table introduces the computation timings recorded for motion graph construction. The

system specifications where: 2.67GHz Intel Xeon Processor, 4GB of RAM , and a

NVIDIA Quadro FX 580 graphics card, running on a 64-bit Windows 7 computer.

Table 5.1 on page 39 demonstrates computation timings for 2 scenarios, the first is

a motion graph constructed using 3 dance motions of approximately 4,000 frames each,

38

overall creating 24,000 iterations. The second scenario includes 3 walking and 3 running

motions of approximately 100 frames each, hence resulting in 2,100 iterations. Each

scenario was computed under 1, 10 and 20 number of parallel threads demonstrating

computation efficiency. For both of these scenarios transition results are presented in

Section 5.3.

Number of Threads ≈ 24, 000 iterations (seconds) ≈ 2, 100 iterations (seconds)

1 1906.41087 4.07130

10 512.43802 2.26303

20 498.30888 2.30014

Table 5.1: Computation timings for 2 scenarios using 1, 10, 20 threads

5.3 Transition Results

The following section demonstrate the number of transition points located for two sce-

narios described earlier. Along with the final number of transition points, values are also

available after each pruning/condition step described in Section 4.5. For the purpose of

the demo, the parameters that affected the results are as follows:

• The number of frames to make a transition (k) was set to 30, based on a study

[Wang and Bodenheimer, 2003,Wang and Bodenheimer, 2004]

• The degree for error between two poses otherwise known as user threshold was set

to 15.0f based on previous trial and error.

• The size of sectors for local minima computation was set to 50 by 50 frames.

39

Table 5.2 on page 41 shows results computed for motion graph construction of 6

walk/jog motions where values A and B represent the motion being compared. Not all

motions have transitions available due to the very limited number of frames available

for each. Most transitions are removed on the 3rd condition, which checks the average

values around the local minima to be below the threshold. Due to the nature of the fast

paced walk and jog motions, blending between them would naturally look akward, other

methods would suit such a scenario better.

Table 5.3 on page 42 demonstrates similar results for 3 dance motions. Each dance

motion contains on average 4,000 frames, hence the number of transitions is very large

compared to the previous example. Motions which are compared to themselves have

a higher number of transitions due to the same person performing the dance, rather

than two different people. A possible improvement on this computation could include

reducing the value for the error threshold. This will result in more accurate transition

points.

40

A B Sectors After 1st Condition After 2nd Condition After 3rd Condition (final)

1 1 9 9 9 0

1 2 9 9 8 0

1 3 6 4 4 0

1 4 9 0 0 0

1 5 6 6 6 0

1 6 9 6 5 0

2 2 9 9 9 0

2 3 6 0 0 0

2 4 9 9 8 3

2 5 6 5 5 0

2 6 9 9 9 2

3 3 4 4 4 0

3 4 6 6 6 0

3 5 4 4 4 0

3 6 6 6 5 2

4 4 9 9 9 0

4 5 6 6 5 2

4 6 9 9 8 2

5 5 4 4 4 0

5 6 6 6 6 0

6 6 9 9 9 0

Table 5.2: Number of transitions per motion similarity of 3 walk and 3 jog motions

41

A B Sectors After 1st Condition After 2nd Condition After 3rd Condition (final)

1 1 6561 3620 2420 1512

1 2 6399 2182 1305 911

1 3 6399 863 476 362

2 2 6241 4881 3134 2592

2 3 6241 2537 1434 1304

3 3 6241 4413 2993 2445

Table 5.3: Number of transitions per motion similarity of 3 dance motions

42

Chapter 6

Conclusion

6.1 Contributions

The contributions made by the following dissertation includes an analysis of different

methods of computation for motion graphs as well as a proposal for a new method. The

method ignores global rotations and translations and has a modifiable accuracy measure

by changing the number of weights that are taken into account during error function

computation. The method was used for a motion graph construction of a set of dance

motions and a set of walk and jog motions. Three applications where built around this

and results where demonstrated based on computation timings as well as transition point

numbers.

6.2 Conclusion

Based on the experimentation results, the following methods demonstrates a new way

for motion graph construction with little supervision and relatively fast computation

timings. However, best results where achieved for stationary simulations such as a

dance motion. In simulation with a walking motion, several problems arose such as step

skip upon transitions.

43

6.3 Future Work

To further improve the following method for motion graph construction, one of the most

important efficiency related upgrades includes writing transitions to a database instead

of a file. This is done in [Kovar et al., 2002] and many other research papers. Specifically

for situations where motion files are 4000 frames long, a database can pre compute and

store the following values, so loading would be much faster. From a database motion

graph a path can be constructed real time or offline.

Since this dissertation was primarily focused on motion graph construction, the next

step would involve computing an efficient path based either on terrain constraints [Arikan

et al., 2003], user control [Lee and Lee, 2004, Heck and Gleicher, 2007, Kwon and Shin,

2005], predefined path [Kovar et al., 2002] or a start and end location [Madhusudhanan,

2005]. However, due to the nature of this method, bipedal motions require more work.

For example marking feet position to ensure transitions avoid incorrect foot placement,

hence skipping [Park et al., 2004]. The path construction will also ensure dead end

avoidance in the motion graph.

Simple improvements to the local minima pruning method could include removing

values on a diagonal between two of the same motion, during motion similarity. This

will ensure unnecessary looping transitions are removed that effectively do nothing.

44

Bibliography

[CMU, 2014] (2014). Cmu graphics lab motion capture database. http://mocap.cs.

cmu.edu/.

[Ger, 2014] (2014). Hardware skinning. http://www.antongerdelan.net/opengl/

skinning_part_one.html.

[HDM, 2014] (2014). Motion capture database hdm05. http://www.mpi-inf.mpg.de/

resources/HDM05/.

[Arikan and Forsyth, 2002] Arikan, O. and Forsyth, D. A. (2002). Interactive motion

generation from examples. In Proceedings of the 29th Annual Conference on Computer

Graphics and Interactive Techniques, SIGGRAPH ’02, pages 483–490, New York, NY,

USA. ACM.

[Arikan et al., 2003] Arikan, O., Forsyth, D. A., and O’Brien, J. F. (2003). Motion

synthesis from annotations. In ACM SIGGRAPH 2003 Papers, SIGGRAPH ’03,

pages 402–408, New York, NY, USA. ACM.

[Choi et al., 2000] Choi, M. G., Lee, J., and Shin, S. Y. (2000). A randomized approach

to planning biped locomotion with prescribed motions.

[Fang and Pollard, 2003] Fang, A. C. and Pollard, N. S. (2003). Efficient synthesis of

physically valid human motion. In ACM SIGGRAPH 2003 Papers, SIGGRAPH ’03,

pages 417–426, New York, NY, USA. ACM.

45

http://mocap.cs.cmu.edu/
http://mocap.cs.cmu.edu/
http://www.antongerdelan.net/opengl/skinning_part_one.html
http://www.antongerdelan.net/opengl/skinning_part_one.html
http://www.mpi-inf.mpg.de/resources/HDM05/
http://www.mpi-inf.mpg.de/resources/HDM05/

[Geijtenbeek et al., 2013] Geijtenbeek, T., van de Panne, M., and van der Stappen, A. F.

(2013). Flexible muscle-based locomotion for bipedal creatures. ACM Transactions

on Graphics, 32(6).

[Gleicher et al., 2003] Gleicher, M., Shin, H. J., Kovar, L., and Jepsen, A. (2003). Snap-

together motion: assembling run-time animations. ACM Trans. Graph., 22(3):702.

[Heck and Gleicher, 2007] Heck, R. and Gleicher, M. (2007). Parametric motion graphs.

In Proceedings of the 2007 Symposium on Interactive 3D Graphics and Games, I3D

’07, pages 129–136, New York, NY, USA. ACM.

[Ikemoto et al., 2007] Ikemoto, L., Arikan, O., and Forsyth, D. (2007). Quick transitions

with cached multi-way blends. In Proceedings of the 2007 Symposium on Interactive

3D Graphics and Games, I3D ’07, pages 145–151, New York, NY, USA. ACM.

[Kim et al., 2003] Kim, T.-h., Park, S. I., and Shin, S. Y. (2003). Rhythmic-motion syn-

thesis based on motion-beat analysis. In ACM SIGGRAPH 2003 Papers, SIGGRAPH

’03, pages 392–401, New York, NY, USA. ACM.

[Kovar and Gleicher, 2003] Kovar, L. and Gleicher, M. (2003). Flexible automatic

motion blending with registration curves. In Proceedings of the 2003 ACM SIG-

GRAPH/Eurographics Symposium on Computer Animation, SCA ’03, pages 214–224,

Aire-la-Ville, Switzerland, Switzerland. Eurographics Association.

[Kovar and Gleicher, 2004] Kovar, L. and Gleicher, M. (2004). Automated extraction

and parameterization of motions in large data sets. In ACM SIGGRAPH 2004 Papers,

SIGGRAPH ’04, pages 559–568, New York, NY, USA. ACM.

[Kovar et al., 2002] Kovar, L., Gleicher, M., and Pighin, F. (2002). Motion graphs. ACM

Trans. Graph., 21(3):473–482.

[Krüger et al., 2011] Krüger, B., Baumann, J., Abdallah, M., and 0004, A. W. (2011).

46

A study on perceptual similarity of human motions. In Bender, J., Erleben, K., and

Galin, E., editors, VRIPHYS, pages 65–72. Eurographics Association.

[Kwon and Shin, 2005] Kwon, T. and Shin, S. Y. (2005). Motion modeling for on-line

locomotion synthesis. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics

Symposium on Computer Animation, SCA ’05, pages 29–38, New York, NY, USA.

ACM.

[Lee et al., 2002] Lee, J., Chai, J., Reitsma, P. S. A., Hodgins, J. K., and Pollard,

N. S. (2002). Interactive control of avatars animated with human motion data. In

Proceedings of the 29th Annual Conference on Computer Graphics and Interactive

Techniques, SIGGRAPH ’02, pages 491–500, New York, NY, USA. ACM.

[Lee and Lee, 2004] Lee, J. and Lee, K. H. (2004). Precomputing avatar behavior from

human motion data. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics Sym-

posium on Computer Animation, SCA ’04, pages 79–87, Aire-la-Ville, Switzerland,

Switzerland. Eurographics Association.

[Liu and Popović, 2002] Liu, C. K. and Popović, Z. (2002). Synthesis of complex dy-

namic character motion from simple animations. In Proceedings of the 29th Annual

Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’02, pages

408–416, New York, NY, USA. ACM.

[Madhusudhanan, 2005] Madhusudhanan, S. (2005). Interactive human locomotion us-

ing motion graphs and mobility maps. Master thesis, Oregon State University.

[Mizuguchi and Calvert, 2001] Mizuguchi, B. and Calvert (2001). Data driven motion

transitions for interactive games.

[Park et al., 2004] Park, S. I., Shin, H. J., Kim, T.-H., and Shin, S. Y. (2004). On-line

motion blending for real-time locomotion generation. Journal of Visualization and

Computer Animation, 15(3-4):125–138.

47

[Park et al., 2002] Park, S. I., Shin, H. J., and Shin, S. Y. (2002). On-line locomo-

tion generation based on motion blending. In Proceedings of the 2002 ACM SIG-

GRAPH/Eurographics Symposium on Computer Animation, SCA ’02, pages 105–111,

New York, NY, USA. ACM.

[Rose et al., 1996] Rose, C., Guenter, B. K., Bodenheimer, B., and Cohen, M. F. (1996).

Efficient generation of motion transitions using spacetime constraints. In SIGGRAPH,

pages 147–154.

[Safonova and Hodgins, 2007] Safonova, A. and Hodgins, J. K. (2007). Construction

and optimal search of interpolated motion graphs. In ACM SIGGRAPH 2007 Papers,

SIGGRAPH ’07, New York, NY, USA. ACM.

[Safonova et al., 2004] Safonova, A., Hodgins, J. K., and Pollard, N. S. (2004). Synthe-

sizing physically realistic human motion in low-dimensional, behavior-specific spaces.

In ACM SIGGRAPH 2004 Papers, SIGGRAPH ’04, pages 514–521, New York, NY,

USA. ACM.

[Schödl et al., 2000] Schödl, A., Szeliski, R., Salesin, D. H., and Essa, I. (2000). Video

textures. In Proceedings of the 27th Annual Conference on Computer Graphics and

Interactive Techniques, SIGGRAPH ’00, pages 489–498, New York, NY, USA. ACM

Press/Addison-Wesley Publishing Co.

[Shin and Oh, 2006] Shin, H. J. and Oh, H. S. (2006). Fat graphs: Constructing an

interactive character with continuous controls. In Proceedings of the 2006 ACM SIG-

GRAPH/Eurographics Symposium on Computer Animation, SCA ’06, pages 291–298,

Aire-la-Ville, Switzerland, Switzerland. Eurographics Association.

[Sun and Metaxas, 2001] Sun, H. C. and Metaxas, D. N. (2001). Automating gait gen-

eration. In Proceedings of the 28th Annual Conference on Computer Graphics and

Interactive Techniques, SIGGRAPH ’01, pages 261–270, New York, NY, USA. ACM.

48

[Tang et al., 2008] Tang, J. K. T., Leung, H., Komura, T., and Shum, H. P. H. (2008).

Emulating human perception of motion similarity. Journal of Visualization and Com-

puter Animation, 19(3-4):211–221.

[Wang and Bodenheimer, 2003] Wang, J. and Bodenheimer, B. (2003). An evaluation

of a cost metric for selecting transitions between motion segments. In Proceedings of

the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA

’03, pages 232–238, Aire-la-Ville, Switzerland, Switzerland. Eurographics Association.

[Wang and Bodenheimer, 2004] Wang, J. and Bodenheimer, B. (2004). Computing the

duration of motion transitions: An empirical approach. In Proceedings of the 2004

ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’04, pages

335–344, Aire-la-Ville, Switzerland, Switzerland. Eurographics Association.

[Witkin and Kass, 1988] Witkin, A. and Kass, M. (1988). Spacetime constraints. In

Proceedings of the 15th Annual Conference on Computer Graphics and Interactive

Techniques, SIGGRAPH ’88, pages 159–168, New York, NY, USA. ACM.

[Witkin and Popovic, 1995] Witkin, A. and Popovic, Z. (1995). Motion warping. In

Proceedings of the 22Nd Annual Conference on Computer Graphics and Interactive

Techniques, SIGGRAPH ’95, pages 105–108, New York, NY, USA. ACM.

49

	Summary
	Acknowledgements
	List of Tables
	List of Figures
	Chapter Introduction
	Introduction
	Aim
	Outline

	Chapter Background
	Human Skeleton Model
	Animation
	Kinematics
	Dynamics
	Motion Capture

	BVH
	Biovision Hierarchical Data
	BVH Loader

	Technology

	Chapter State of the Art
	Previous Work
	Initial Motion Synthesis
	Motion Graphs
	Motion Transitions
	Interpolation
	Motion Synthesis
	Motion Constraints

	Chapter Implementation
	Introduction
	Pose Similarity
	Previous Work
	Joint Relative Distance (JRD)

	Joint Weights
	Error Function
	Local Minima
	Comparing Same Motions
	Comparing Different Motions

	Creating Transition
	Transition Logic
	Transition File
	Optimisation

	Chapter Results
	Experiment Setup
	Dancing Transitions
	Bipedal Transitions
	Dance Floor Simulation

	Computation Timings
	Transition Results

	Chapter Conclusion
	Contributions
	Conclusion
	Future Work

	Bibliography

