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Summary

Social streams have experienced a surge in popularity in recent years. There is an increasing

number of electronic documents being sent through these streams. The noise and volume of

documents make it infeasible for a human to sort through and extract documents which describe

significant events. New event detection is the problem of identifying documents in these streams

that report on real world events. This work aims to improve the real-time detection of new events

with high-volue social streams. The objectives of the work are as follows. To perform a survey

of the state of the art in the area of on-line NED and social streams. To create an on-line NED

system that operates with social streams and is capable of detecting structured live events. To

evaluate this system in comparison to a highly published baseline system.

The research approach undertaken for this work was to survey the state of the art in new event

detection and social streams, to design and implement a system capable of detecting structured

live events in real-time and to evaluate this system in comparison to a baseline system. A critical

analysis of the state of the art is included and used to motivate the design and implementation of

the system presented. The evaluation of this system uses the standard Precision, Recall, Acur-

racy and F1 metrics, along with the s− test and S − test significance tests.

The findings of this work can be summarized as follows. The system presented throughout

this report represents a significant improvement over a highly published baseline system. This

improvment is dramatic when comparing the detection of low volume events. Furthermore, the

evaluations of the system provide insights into crucial parameters of the various state of the art

algorithms that were used.
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Chapter 1

Introduction

1.1 Motivation

Social streams have experienced a surge in popularity in recent years. There is an increasing

number of electronic documents being sent through these streams. The noise and volume of

documents make it infeasible for a human to sort through and extract documents which describe

significant events. Sakai et al. found that real world events are often reported on social streams

before official news sources [3]. With the proliferation of real time information available on social

streams, it is crucial to have systems capable of detecting new events reported by users of these

streams.

New event detection (NED) is the task of identifying news documents which describe previ-

ously unreported events. The objective is to classify each document as either new or old. This

classification can occur in either a retrospective or on-line setting [4]. Retrospective solutions

process a complete set of documents before making the individual classifications. On-line solu-

tions watch a stream of documents and classify each document as it arrives in real-time. These

streams are can be a reliable newswire or a social stream. A newswire represents a low volume,

edited stream of news document produced by some trusted entity. Social streams are high vol-

ume, noisy streams of documents produced by laypeople. The quantity of documents and noisy

nature of social streams has resulted in a paradigm shift in this field.

Social streams introduce a myriad of new challenges for NED. Users generate a large number of

documents at any given time, e.g. the Twitter stream has 500 million daily tweets (documents)1.

It is unrealistic to keep this volume of documents in the memory of a NED system. Furthermore,

these streams do not have any central editing and users are free to post documents with any

content. These documents often do not contain any news and are describing the users thoughts

at that moment. Studies have shown that as little as 3.6% of the documents in these streams are

1https://about.twitter.com/company



2

news-related [5]. NED systems must thus manage the volume of documents and the noisy, spam-

filled nature of social streams. Existing NED algorithms and methods need to be re-evaluated

with these factors in mind.

1.2 Research Question & Objective

This work investigates how events can be detected in high volume social streams. The focus

of the work is on recurring live events with a defined structure and set of possible sub-events.

Sports match are examples of such events. The time-frame of the match and the set of possible

events that can occur during it, e.g. a score, are known in advance.

The objectives of this work are as follows.

• To perform a survey of the state of the art in the area of on-line NED and social streams.

• To create an on-line NED system that operates with social streams and is capable of

detecting structured live events.

• To evaluate this system in comparison to a highly published baseline system.

1.3 Research Approach

The research approach for this work is as follows. Firstly, to perform a survey on the state of the

art to identify the key techniques used in this area. Secondly, to take a highly published baseline

system with the same focus as this work and iterate on its design. The techniques identified in

the survey are used to critique the baseline system and guide the iteration process. Thirdly, to

implement the baseline system and the new system. Finally, to preform a comparative evaluation

between both systems using a dataset with annotated real world events. Various elements of the

new systems design will be evaluated during this stage also.

1.4 Structure of this Report

The remainder of this report is structured as follows. The second chapter gives a background

into NED research and presents the state of the art in this area. This chapter also includes a

discussion on social streams, in particular the Twitter stream. The third chapter presents the

architecture of the system presented in this work. A chapter discussing the implementation of

the system immediately follows. The penultimate chapter evaluates the baseline system and the

new system with comparitive experiments. Finally, this report concludes with a discussion of the

objectives achieved and areas for future work.



Chapter 2

Background & State of the Art

This chapter first provides a background into the new event detection (NED) task. The most

common approaches to solve this task are then presented, i.e. clustering documents within vector

space. A discussion of on-line new event detection problems immediately follows. This discussion

includes a background into the locality sensitive hashing algorithm and its uses within NED. This

chapter then presents the Twitter social stream and discusses its properties and challenges when

in use with NED. Various NED system that use Twitter are then presented, and a baseline system

for comparison with this work is discussed. This chapter concludes with a summary and critical

analysis of this survey.

2.1 New Event Detection (NED)

From 1997 to 2004, DARPA funded a program, called Translingual Information Detection Ex-

traction and Summarization (TIDES), to encourage research in the analysis of electronic news

documents. NED is one of the five categories in the Topic Detection and Tracking (TDT)1 sub-

program in this domain. TDT research was focused on analyzing and organizing event-based

news documents from a stream [6], and NED is the task of identifying the first document which

describes an unreported event. There has been a recent resurgence in research in this area as a

result of the popularity of social streams, and the domain experienced a paradigm shift wherein

established solutions to the NED task wouldn’t transfer to modern high volume social streams.

NED applications assign a confidence score to each document which depicts the likelihood of

that document describing a new or old event. Applications fall into two categories: Retrospective

or On-line. Retrospective applications process a complete corpus of documents before assigning

the confidence scores. On-line applications process each document as it arrives and immediately

assigns to it a score [7]. On-line applications make use of streaming algorithms [8], wherein

documents arrive one at a time and must be processed before future documents are received.

1http://www.itl.nist.gov/iad/mig/tests/tdt/
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Researchers believe that NED is the most difficult of the TDT tasks [9]. The state of the art

in NED applications typically represent documents using the Vector Space Model (VSM) (see

below). Clustering algorithms with the VSM determine a documents NEW/OLD classification.

2.1.1 Vector Space Model

Using the VSM is the standard approach for document classification in NED. This model repre-

sents documents as |V |-dimensional vectors where V is the vocabulary. The axes in the vector

space are the terms in V . Figure 2.1 shows this concept.

Figure 2.1: Three document representations in VSM with three terms.[1]

A pre-processing step is required to stem the words in the document and remove stopwords. Each

term value is then alculated using the tf · idf scheme. This scheme is the standard approach in

the information retrieval domain. The tf · idf scheme fulfills two key objectives. Firstly, frequent

appearances of the same term in a document increases the likelihood of that term being important

to the document’s content. This follows the intutition that the higher the term frequency in a

document, the more likely that term is relevant to the documents content. Secondly, terms

which are rare across the entire document set N should be weighted highly when they appear in

a document d. This follows another intution that rare terms across the entire corpus increase the

relvance of those terms when they do appear. The tf and idf equations capture these objectives

respectively. The term frequency tft,d of term t in document d is the number of times t occurs

in d. The log frequency weighting is used and is computed according to Equation 2.1.

wt,d =

1 + log10(tft,d) if tft,d ≥ 0

0 otherwise
(2.1)

The document frequency dft of term t is defined as the number of documents that contain t.

The inverse document freqency idf is computed according to Equation 2.2. It is important to
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note that there is one idf value per term in V . This necessitates the use of a training phase to

determine the initial idf values.

idft = log10(N/dft) (2.2)

Combining these equations gives the weighted value for each term in the document.

Wt,d = wt,d × idft (2.3)

2.1.2 Document Similarity and Clustering

The standard approach to computing the similarity between documents is to compute the differ-

ence between their vectors. The cosine similarity equation 2.4 is an efficient means to compute

this similarity between two vectors ~u and ~v.

similarity = cos(θ) =
~u · ~v
||~u||||~v||

(2.4)

The cos(θ)~u,~v score will range in values from 1 to 0, with 1 indicating the vectors are parallel

and 0 being perpendicular. Negative values are not possible since the vector terms are computed

using tf · idf . The distance between two vectors is computed by 1 − cos(θ)~u,~v. Allen et al.

reported that the cosine similarity is the best performing metric for the NED task [9].

A naive approach to NED is to assign a document as NEW/OLD depending on the distance

between it and its nearest neighbour, as per algorithm 1. This algorithm has a quadratic run-

ning order of O
(
n2
)
, where n is the number of documents in the corpus. This algorithm doesn’t

scale efficiently enough for use in a social stream setting.

Algorithm 1 A naive algorithm for the NED task

Require: t← input threshold

1: for all d in document corpus do

2: dismin ← mind′ {distance(d, d′)}
3: if dismin > t then

4: d← NEW

5: else

6: d← OLD

Clustering algorithms are more efficient approaches to the NED task. These algorithms create

clusters of documents with the goal that the documents in a cluster all report on the same event.

When classifying a new document, these algorithms compare the centroids of the clusters to the

new document. If the distance is within a certain threshold then that document is added to that

cluster. Otherwise it is classified as NEW and a new cluster is created. Algorithm 2 shows a

basic clustering approach.
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Algorithm 2 Clustering algorithm for the NED task

Require: t← input threshold

1: for all d in documents do

2: dismin, c← minc {distance(d, clusters)}
3: if dismin > t then

4: d← NEW

5: create new cluster(d)

6: else

7: d← OLD

8: c← d

The majority of NED applications under TDT use clustering algorithms. These algorithms use

the tf · idf term weighting formula with the cosine similarity metric to determine cluster mem-

bership. A training phase is required to determine the threshold t and the initial idf values [6].

The state of the art in cluster algorithms differ in their use of the tf · idf weighting.

For example, Allan et al. used a modified version of tf · idf weighting that factored in doc-

ument age [7]. Brants et al. used an incremental tf · idf model where they updated the idf

values periodically [10]. This approach allows new terms to be added to the vocabulary as they

appear in new documents. Various other researchers have made slight modifications to the tf ·idf
model. Schinas et al. boosted the weights of terms they deemed relevant to the events they were

detecting [11]. They used a key-word lexicon based approach to detect this words. Makkonen

et al. and Yang et al. proposed a new vector models where multiple vectors were constructed

per document [12, 13]. These vectors represented separate semantic classes, and they computed

similarity between documents by comparisons in their vector sets.

2.1.3 On-line NED with Social Streams

The volume of documents in social streams has necessitated the re-evaluation of NED algorithms.

Google News has more than 4,500 sources 2, Yahoo! News has more than 5,000 sources 3 and

there are more than 500 million documents produced on Twitter daily 4. This volume of sources

and documents has caused a resurgence in research in On-line NED systems [14, 15, 16, 17, 18, 19].

Luo et al. presented the first framework for a practical On-line NED system [17]. They apply

heuristics on top of clustering NED approaches to make computation feasible. These heuristics

include keeping only a limited set of documents in memory, limiting the vocabulary and employing

parallel computing techniques. However, current state of the art in NED applications employ

locality sensitive hashing (LSH) to reduce computation [20]. Constant processing time is possible

using LSH, even in modern social streams.

2http://www.news.google.com
3http://www.news.yahoo.com
4http://www.about.twitter.com/company
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2.1.3.1 Locality Sensitive Hashing (LSH)

Locality sensitive hashing (LSH) is a technique to probabilistically reduce the dimensions of data.

The key approach is to hash the data into buckets such that similar points collide. LSH has var-

ious different forms and is used in a variety of domains. In the NED domain, LSH is used to

solve the nearest neighbour problem, i.e. determining which point in the VSM is the closest to

the query point. LSH works well for NED because of the large dimensionality of the vectors [21].

The distance between a document and its nearest neighbour determines whether it is assigned

NEW/OLD. Linearly searching for the nearest neighbour for each document isn’t feasible for the

volume of documents in social streams. Rather than search for the nearest neighbour, recent

research has focused on solving the problem of finding the approximate nearest neighbour. An

approximate nearest neighbour is any point which lies between (1 + ε)r of the query point, with

r being the distance to the actual nearest neighbour.

LSH works by hashing points into buckets with a high probability that close points will col-

lide. A random projection hashing scheme works best for NED [22, 23]. This hashing scheme

ensures the proportionality between the probability of collision and the cosine similarity of the

vectors. The hash is computed by intersecting the vector space with k random hyperplanes,

where k is the desired number of bits in the hash. Each bit k of the hash of vector v is either 1

or 0 depending on which side of the hyperplane v lies. Figure 2.2 shows the hash signature for

a single vector.

Figure 2.2: Hash signature computation using 6 hyperplanes.[2]

A LSH system contains L buckets each with a unique random projection hash function. A new

document is hashed into each bucket and a set of colliding points is collected from each bucket.
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This set of points is then linearly searched for the nearest neighbour. Petrovic et al. produced

a LSH algorithm that is capable of operating in high volume modern social streams [24]. Their

algorithm is shown in 3. This algorithm has a simple extension over the base LSH approach,

corresponding to lines 9−11. They show that simply applying LSH to a NED system with social

streams produces poor results due to high variance. This is a byproduct of the failure of LSH

to find a nearest neighbour if that neighbour is far from the query point. Petrovic et al. solve

this problem by linearly searching a number of most recently seen documents. The algorithm

attempts to find a recently seen document that is closer than that returned by LSH. This search

is only performed if the incoming document is to be assigned NEW by the LSH system. Petrovic

et al. also gave two important heuristics that should be used with social streams. Firstly, the

number of documents allowed in a bucket should be bounded. They use a first in first out (FIFO)

replacement scheme. Secondly, the number of colliding points that are searched for the nearest

neighbour is also bounded. They give a figure of 3L comparisons where L is the number of

buckets in the LSH system. These two heuristics are necessary to ensure a constant space and

time running order for the NED system.

Algorithm 3 LSH algorithm with reduced variance[24]

Require: t← input threshold

1: for all d in documents do

2: add d to LSH

3: S ← set of points that collide with d in LSH

4: dismin(d)← 1

5: for all d’ in S do

6: c = distance(d, d’)

7: if c < dismin(d) then

8: dismin(d)← c

9: if dismin(d) > t then

10: compare d to a fixed number of most recent documents

11: and update dismin if necessary

12: assign score dismin(d) to d

13: add d to inverted index

2.1.4 Use of Semantics with NED

Various researchers report success with applying semantic analysis during the NED task. Zhang

et al. give a metric to replace tf · idf [25]. This metric uses different term weights depending

on the category of named entities the term belongs to. Makkonen et al. compute four vec-

tors per document [12]. Each vector relates to one of four semantic classes: Locations, Proper

Names, Temporal Expressions and Normal Terms. Similarity between documents is computed

by comparing each set of vectors. Kumaran et al. give another modification to the vector model
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based on named entities [26]. They also produce category stop lists per named entity to improve

topic-centered weighting. Finally, Petrovic et al. use paraphrases to increase term coverage in

social streams [27].

2.2 The Twitter Stream

Having examining the NED task and associated algorithms, this chapter now discusses the Twit-

ter social stream, its properties and the state of the art in NED tasks using this stream.

Twitter is a popular social stream where users post documents (tweets) up to 140 characters

long. Tweets get posted to a users public timeline. They can contain regular text, hashtags,

mentions or URLs. A hashtag is a Twitter notation used to tag your document for categoriza-

tion. Structured events, such as sports games or political debates, usually advertise a specific

hashtag for use. For example, the Six Nations rugby campaign encouraged the use of the hashtag

#6nations. Mentions are Twitter usernames, preceded with the @ symbol. This allows users

to interact with each other via tweets. Users also have the option of retweeting others tweets.

Retweeting is the process of quoting another tweet and posting it on your timeline.

Twitter is growing in popularity. In 2007, the company reported 400 million tweets per quarter.

Today, the Twitter stream has a daily volume of 500 million tweets. Twitter offers a public

Streaming API 5 for access to a subset of these tweets. This API provides access to real-time

tweets. Developers have the option of sampling all tweets currently being posted, or to provide

some filtration parameters. The API currently returns up to 1% of total tweets occurring at that

time. All tweets matching the filtration parameters will be returned unless that volume exceeds

1% of total tweets. Tweets are returned in JSON format and contain information such as the

time the tweet was created and its text.

The Twitter stream is inherently noisy. Users engage in humor, project their personal thoughts,

spread rumors and memes, and other frivolous activity that has no correlation with real world

events [28, 29]. Pear Analytics report that 3.6% of tweets are news related [5]. The rest com-

prises of spam, conversational tweets, retweets, self-promotion and ‘pointless babble’. Despite

this noisy nature, Twitter is a useful social stream in a news-related context. Various researchers

have studied Twitter user engagement during live events. Shamma et al. report Twitter user

engagement during the 2008 US Presidential Debates [30] and Armstrong focused on live sports

games [31]. Sakaki et al. concluded that Twitter users can be used as social sensors and are

capable of reporting on events before official news sources [3].

5https://dev.twitter.com/docs/api/streaming
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2.2.0.1 Twitter for NED

The volume of documents, public API and noisy nature of Twitter have made it a popular social

stream for research. Sakaki et al. gave the first comprehensive study of using Twitter users as

‘social sensors’ for real world events [3]. Their work focused on the detection of earthquakes in

the Japan area. They noticed that there is a temporal spike in activity during the immediate

aftermath of an earthquake. This follows the intuition that a real world event causes a sudden

increase in people talking about it. The system they produced detected these temporal spikes

and used keyword extraction with geo-location information to recognize an earthquake. They

concluded that events, such as earthquakes, are often reported on social streams before official

news sources. The majority of later research has used this temporal property [16, 19, 32, 33,

34, 15, 30, 35, 36]. The noisy nature of Twitter has led researchers to use various techniques

from the natural language processing domain. Spam detection, text stemming and stop word

elimination improve the document quality for NED. Other researchers use sentiment analysis to

improve their NED systems. Kwon et al. and Schinas et al. used sentiment in tweets to extract

terms and weighted them differently for the similarity computations [33, 11].

2.3 NED systems that use Twitter

TwitInfo [35] allows users to input keywords describing events and presents them with the fol-

lowing features:

• Timeline: A graph showing tweet volume with peaks labelled as potential sub-events.

• Map: A map interface showing geo-locations of event tweets.

• Relevant Tweets: A list of tweets the system deems relevant to the event, coloured by

sentiment (Red vs. Blue).

• Popular Links: A list of links that have been posted during the event.

• Sentiment Pie-chart: A pie-chart showing the proportion of positive to negative sentiment

in event tweets

TwitInfo uses temporal peaks to detect sub-events during the user defined event. The system

does not attempt to recognize these sub-events. The peaks are labelled as potential events and

the user must recognize them. Furthermore, the system relies on user defined events at runtime

and operates in a retrospective setting.

TwitterStand [37] reports on breaking news as reported by Twitter users. They make use of

a list of pre-approved sources along with public Twitter users. They trained a Naive Baynes

classifier to separate the reliable tweets from noise. The system uses a leader-follower clustering

algorithm to detect events. Unlike this work, TwitterStand does not run on-line and relies heavily
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on pre-approved sources.

Other researchers have concentrated on sports game event detection and Twitter. Lanagan

et al. [38] and Zhao et et al. [36] use temporal spikes during sports games to detect events. The

system provided by Zhao et al. is the baseline system that was chosen to implement for this

work.

2.3.0.2 A Baseline System

This dissertation is focues on the detection of structed live events using the Twitter stream.

A baseline system has been identified which relies on the highly published temporal heuristice

presented by Shakaki et al. [3]. This system serves as a comparison during the evaluations

presented later in this work. The SportsSense, presented by Zhao et al., is the baseline system

that was chosen [36]. This system uses prior knowledge of American Football sports games to

build a NED system with Twitter. SportsSense is ‘the first [system] to detect sports game events

using Twitter.’ The authors use the temporal peaks identified by Sakaki et al. [3] and lexicon-

based keyword extraction to detect events. The authors built a document corpus by monitoring

official NFL Twitter accounts and using the Twitter API to collect tweets with NFL-based

hashtags. They found that the top 10 most frequent terms in this corpus were either team names

or event terminology. They studied various filtration parameters for the data. They concluded

that restricting tweets to those written in English and containing at least one team name provided

the best results for NED. The SportsSense system has two stages: Event Detection and Event

Recognition. Algorithm 4 outlines these stages. The Event Detection stage uses an adaptive

sliding window algorithm to detect bursts of activity in the stream. The authors define bursts

of activity as a period where the post rate of the window exceeds some threshold t. The post

rate computation is the total tweets in the second half of the window divided by the total tweets

in the first half. The algorithm starts with a 10 second window. The window size increases

to 20, 30 and 60 seconds in turn until an activity burst is detected. The second stage, Event

Recognition, is used when a burst of activity has been detected. This stage takes the tweets

during this burst and attempts to correlate them with a pre-defined event. Stemming and stop

word elimination are used as a pre-processing step. The post rates of pre-defined event keywords

are then calculated. If a post rate for an event keyword exceeds a threshold t′ then that event is

reported.
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Algorithm 4 SportsSense two-stage algorithm[36]

1: function Event Detection(t)

2: loop

3: Init window size to 10 seconds

4: post rate← (post rate in first half)/(post rate in second half)

5: if post rate < t then

6: Increase window size

7: go to 4

8: else

9: Event Recognition()

10: sleep(1 second)

11:

12: function Event Recognition(t′)

13: pre-process tweet texts

14: compute post rate of event keywords in window

15: if post rate > t′ then

16: Report event

2.4 Summary

The survey of the state of the art presented in this chapter has lead to the following conclusions.

A NED system with social streams must be able to cope with high volume and noise. Traditional

NED clustering techniques are infeasible due to the volume. However, using a locality sensi-

tive hashing algorithm to solve the nearest neighbour problem can make cluster feasible in an

on-line setting. This requires using the tf ·idf scheme to represent each document in vector space.

The state of the art NED systems that operate with the Twitter stream do not typically use

these techniques. Instead, they overly rely on the temporal heuristic presented by Shakaki et al.

[3]. This leads to the intuition that these systems will fail to detect events that do not cause

a significant burst of activity on the stream. Therefore, this survey has motivated this work to

incorporate clustering, LSH algorithms and the temporal heuristic to design and implement a

NED system capable of running on-line with Twitter.



Chapter 3

New Event Detection in Social

Streams (NEDISS) System

Architecture

3.1 Introduction

This work presents NEDISS, a NED system that operates on-line with social streams. The NED

algorithms used in NEDISS were designed using the state of the art in on-line NED and the tem-

poral heuristic shown by Shakaki et al. [3]. This combination alleviates the reliance of current

on-line NED systems on the temporal heuristic. The objective was to design a system capable

of detecting all events, and not just those which caused a significant spike in document volume.

NEDISS was designed to operate with high volume social streams. These streams necessitate

the use of various heuristics to ensure computation is feasible [17]. Therefore, the NEDISS ar-

chitecture was modulated into three parallel processes: Stream Processor, Cluster Manager and

Event Recognizer.

All the designs presented in this chapter and the implementation of them in chapter 4 were

completly the work of the student.

The remainder of this chapter is structured as follows. First, the architecture of the Stream

Processor process is outlined and each component design is discussed in detail. Next, the Cluster

Manager process architecture is presented and each component design is again discussed in depth.

Finally, the third process of the system, Event Recognizer, and its components are discussed.
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3.2 Stream Processor

Stream Processor consumes one document1 at a time from the social stream. This process

was designed to represent each document in vector space and compute its nearest neighbour.

The tuple of document and nearest neighbour is then sent to the Cluster Manager process. The

components of this design can be seen in figure 3.1 and the algorithm is outlined in Algorithm 5.

Figure 3.1: Components in the Stream Processor Architecture

Algorithm 5 Algorithm for Stream Processor

1: for all doc in data adapter() do

2: if filter(doc) is True then

3: vect← vectorize(doc)

4: nearest neighbour ← locality sensitve hashing(vect)

5: output (vect, nearest neighbour)

3.2.1 Data Adapter

The Data Adapter component is the link between the social stream and NEDISS. This component

was designed to retrieve one document at a time from the stream in chronological order. This

document is then passed on to the Document Filtration component.

3.2.2 Document Filtration

The noisy nature of social streams necessitate a filtration layer. The Document Filtration compo-

nent was designed to provide such a layer. Documents which aren’t news-related are filtered out.

This design eliminates further computation on irrelevant documents. The Document Filtration

component receives the documents from the Data Adapter and passes them on to the Vectorizer

1A tweet is analogous to a document
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if they pass the filter test. The implementation of the filter test will vary depending on the social

stream.

3.2.3 Vectorizer

The Vectorizer component is responsible for representing each document in vector space. The

following design decisions were made to ensure feasible computation with a high volume social

stream.

Firstly, the vocabulary was fixed. This decision was necessary because of the use of tf · idf
to calculate the term values of the vector. There can only be one idf value per term in the

vocabulary. Having an unbounded vocabulary would result in unpredictable memory limitations

and idf value updates/additions would increase computation dramatically. Luo et al. showed

the benefits of a fixed vocabulary with tf · idf [17]. Locality sensitive hashing (used in a future

component) also requires a fixed vocabulary.

Secondly, the vectorizer object was built using a training phase. This was mandatory to learn

the initial idf values. Having a pre-built vectorizer alleviates the need for an on-line learning

phase wherein events may be missed. The use of a fixed, learned vectorizer in the design gives

predictable performance and replicative results.

The vector representation of each document is passed onto the Locality Sensitive Hashing com-

ponent.

3.2.4 Locality Sensitive Hashing

The Locality Sensitive Hashing component was designed to receive a document vector as input

and output the nearest neighbour to that document. The component design is built with L

number of Buckets and a Bucket Manager.

Each Bucket contains a hash-table and unique hash function. These hash functions were de-

signed using random projection. A random projection hash function creates k random vectors in

term space. The k-bit hash for an incoming vector is computed by calculating the dot product

between it and each k random projection. Each Bucket will have different random projections

and thus each hash function will be different. A list of documents is kept for each entry in the

hash-table. For an incoming vector, the Bucket will return the list of documents that it collides

with and add the vector to the hash-table.

The Bucket Manager was designed as the entry point for the Locality Sensitive Hashing compo-

nent. It manages the L different buckets. For an incoming vector, the manager gets the set of

colliding documents from each Bucket. This set of colliding documents is collected and a simi-
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larity metric is computed between the incoming vector and all collisions. The cosine distance

metric is used, and the document with the lowest score is returned as the nearest neighbour.

This process is outlined in algorithm 6.

Algorithm 6 Algorithm for Bucket Manager

Require: vect← input vector

1: set of collisions← []

2: for all b in buckets do

3: collisions← b.get collisions(vect)

4: set of collisions.append(collisions)

5:

6: for all v’ in set of collisions do

7: dist← cosine distance(vect, v′)

8: if dist < distmin then

9: distmin ← dist

10: nearest neighbour ← v′

11:

12: output nearest neighbour

Petrovic et al. reported that additional steps are required in the LSH algorithm to reduce vari-

ance [24]. The Locality Sensitive Hashing component design doesn’t include these steps. These

steps require keeping a number of previously seen documents in memory and linearly searching

them for a closer document than the nearest neighbour. This requires additional memory and

running time that this work doesn’t deem necessary. Instead, a subsequent component (Cluster

Manager) was designed to reduce the variance that LSH introduces. This results in a quicker

and more memory efficient algorithm than that presented by Petrovic et al.

Petrovic et al. gave two heuristics to follow if deploying a LSH system in an on-line environment

[24]. Firstly, to limit the number of documents allowed in each hash-table entry. This gives an

upper bound for the memory usage of an LSH system. Each Bucket uses a First-In-First-Out

replacement scheme for the hash-table entries. Secondly, to limit the size of the set of collisions

that is linearly searched for the nearest neighbour. They gave a figure of 3L where L is the

number of Buckets in the LSH system. This gives an upper bound for the running time of an

LSH system. Both of these heuristics were included in the design.

Once the Locality Sensitive Hashing component has found a nearest neighbour, it is sent to

the Cluster Manager process along with the original document and their similarity score.
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3.3 Cluster Manager

Cluster Manger maintains and monitors clusters of similar documents. This process receives each

new document and its nearest neighbour from the Stream Processor process. The decision is then

made whether to assign the document to an existing cluster or create a new one. This descision

is made based on the similarity between the document and its nearest neighbour. Events are

detected by monitoring the growth rate of the clusters. Once an event has been detected, the

corresponding cluster is sent to the Event Recognizer process. The Cluster Manager process is

designed to perform two functions: to maintain clusters and to monitor clusters. The central

component to this process is the Cluster.

Figure 3.2: Cluster Manager process

3.3.1 Cluster

A cluster is a collection of similar tweet documents. The objective of clustering is to cluster

all documents which describe the same event together. The NEDISS cluster architecture was

designed to reduce memory and provide quick access to the information needed by the Cluster

Manager to maintain and monitor the set of clusters. The design places an upper bound on the

number of documents that a cluster can hold. Once this bound is exceeded, only document IDs

are held by a cluster. These IDs are needed to determine document membership in the clusters,

but the full document is discarded. The logic behind this decision is that a cluster contains doc-

uments describing the same event, therefore only a limited number of documents are required to

recognize such an event. In the case of Twitter, a document ID is 8 bytes and the full document

is typically greater than 6100 bytes. Therefore, this design reduces memory usage considerably.
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Figure 3.3: UML Class diagram for a Cluster

The most frequent operations performed on a cluster are document addition, a document mem-

bership test, getting the age of the cluster and getting the growth rate of the cluster. The latter

two functions require the design to include additional information other than the raw documents.

The age and growth rate of a cluster are determined using the creation times of each document in

the cluster. Therefore, an additional data-structure (along with the one holding the documents)

was added to the design to hold this information. Thus, the cluster object was designed with the

following data-structures.

Firstly, a hash-table mapping document IDs to raw documents. There is an upper bound placed

on the size of this hash-table, as mentioned previously.

Secondly, a hash-table mapping document IDs to a NULL entry. This data-structure is used

as the overflow for the first hash-table when the size bound is met. The entries are NULL be-

cause only a key membership test is required.

Finally, a third hash-table object is used to track the timestamps of the documents in the clus-

ter. This hash-table maps timestamps to number of documents contained in the cluster with

that timestamp. Hash-tables were chosen for these data-structures because they provide a O
(
1
)

lookup time. The growth rate algorithm is outlined in Algorithm 7.
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Algorithm 7 Cluster growth rate calculation

1: sortedFreqs← sort(timestampFrequencies.keys())

2: startT ime← sortedFreqs(0)

3: endT ime← sortedFreqs(−1)

4: midT ime← endT ime− StartT ime
5:

6: firstHalf ← Number of documents in cluster with timestamp <= midT ime

7: secondHalf ← Number of documents in cluster with timestamp > midT ime

8: output secondHalf / firstHalf

3.3.2 Maintaining Clusters

The first responsibility of the Cluster Manager process is to maintain the clusters. This involves

the creation of new clusters and the addition of new documents to the appropriate cluster. A

pairing of a new document and its nearest neighbour, and their distance score, is received as

input to this process. A decision must first be made whether this new document should be added

to a cluster or a new cluster should be created for it. This is determined using a threshold t. If

the distance between the new document and its nearest neighbour is less than t, then the new

document is added to an existing cluster. Otherwise a new cluster is created for the document.

The existing cluster that is selected for the document to be added to is the cluster which contains

the nearest neighbour. The algorithm for adding/creating clusters is shown in Algorithm 8. The

design does not place an upper bound on the number of active clusters. Instead, the Cluster

Manager process monitors the existing clusters and deletes those which are deemed unlikely to

be classified as an event.

Algorithm 8 Cluster Maintenance

Require: vect← input document

Require: nearest neighbour ← nearest neighbour of vect

Require: t← threshold

1: dist← cosine distance(vect, nearest neighbour)

2: if dist < t then

3: add vect to same cluster as nearest neighbour

4: else

5: create new cluster with vect

3.3.3 Monitoring Clusters

The second responsibility of the Cluster Manager process is to monitor the clusters. This entails

monitoring the age of the clusters and their growth rate. The age of a cluster is defined as the

difference in time between the oldest and newest document in the cluster. The goal of NEDISS
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is to detect realtime events in social streams. Therefore, if the age of a cluster is above some

threshold, and it hasn’t been classified as an event, then that cluster should be deleted as it is

unlikely to correspond to a real world event. The Cluster Manager was designed to aggressively

delete such clusters to save memory. This design decision was made in lieu of placing an upper

bound on the possible number of clusters.

Cluster growth rate determines if a cluster is classified as an event. This captures the tem-

poral burst of activity heuristic presented by Shakaki et al. [3]. Clusters which have a growth

rate greater than some threshold should correspond to real world events. The Cluster Manager

process was designed to linearly search each cluster and get their growth rate. If any of these

values exceed the threshold, then that cluster is classified as a potential event and sent to the

Event Recognizer process.

Monitoring clusters relies on two thresholds: maximum age allowed and minimum growth rate

to be classified an event. The maximum age allowed determines how aggressively clusters are

deleted. A low value will result in clusters getting deleted quickly. This is the safest in terms

of memory usage, but could result in missed events where a cluster was deleted that would have

been classified as an event at a later time. The minimum growth rate determines how fast a

cluster must grow for it to be classified as an event. A low value will result in more clusters being

classified as events. This increases the likelihood of false positives. A high value will result in

fewer clusters getting classified as events. This would result in fewer, more accurate classifications

but with more events being undetected. This threshold value defines the granularity of events

that are detected by the system. The implementation and evaluation in this work explores a

number values for these thresholds.

Once a cluster has been classified as a potential event by the Cluster Manager process, it is

sent to the Event Recognizer process.

3.4 Event Recognizer

The final process in the NEDISS system is called Event Recognizer. This process receives clusters

from the Cluster Manager process that are classified as new events. The role of this process is to

recognize these events given knowledge of the structured events the system is trying to detect.

This process was designed to include knowledge of the events possible during the structured

events. Using this knowledge, the system attempts to categorize each cluster into a possible

event. If successful, this event is output from the system. Otherwise, the cluster is rejected. This

design helps alleviate some false positives from the previous processes. This process is split into

three components: Event Classifier, Named Entity Extractor and Data Output.
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Figure 3.4: Event Recognizer process

3.4.1 Event Classifier

The Event Classifier component was designed to attempt to classify an input cluster as a pre-

defined event. A keyword lexicon-based approach was taken. The design assumes a list of

predefined events is available, and a list of keywords or phrases for each event. For example, a

possible event may be ‘goal’ and the list of keywords associated with that event could be [‘score’,

‘scores’, ‘scored’, ‘goal’, ‘goals’]. The algorithm for classifying an event is shown in Algorithm 9.

Algorithm 9 Event Classification

1: for all doc in cluster do

2: for all event in predefined events do

3: lexicons← get lexicons(event)

4: if any lexicon in doc then

5: votes[event] + +

6: event← max(votes)

7: if event.count > (cluster.count/2) then

8: output event

9: else

10: output unclassified

The classification algorithm was designed as a voting system. Each document in the cluster

increments the vote for the predefined events that it contains the keywords of. The predefined

event that the cluster is classified as is that which has the most amount of votes after this

algorithm. A final check is applied to ensure that over 50% of the documents in the cluster voted

for that event. This clause alleviates some false positives when a cluster contains documents

describing various different events. Once the cluster has been classified, it is sent to the Named

Entity Extractor component.
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3.4.2 Named Entity Extractor

The Named Entity Extractor component was designed to improve the output of NEDISS. In-

tuitively, a real world event will have a list of associated named entities. This component was

designed to collect this list of named entities. As well as improving the quality of output from

NEDISS, named entity extraction can be used to improve accuracy. With the list of predefined

events, one could associate a minimum number of named entities expected with such an event.

For example, a substitution event in a soccer game should have three named entities involved:

the two players and the team. If a cluster was classified as a substitution, the Named Entity

Extractor could reject it if there wasn’t at least three named entities extracting from the docu-

ments. This design reduces some false positives from the system.

The Named Entity Extractor component is optional. The task of named entity extraction is

a slow process. An on-line NED system such as NEDISS must evaluate the speed cost in relation

to the accuracy improvements such a component would provide. This evaluation can been found

in chapter 5. The final component of NEDISS is Data Output.

3.4.3 Data Output

The Data Output component was designed to output the events detected by NEDISS. This

component receives the final event detection information that was computed using the previ-

ous components in the system. The inclusion of this component allows the design of NEDISS

to output structured information for use by other applications. This information includes the

event detected, an estimated timestamp for the event and the named entities involved in the

event (where applicable). The implementation of this component is flexible and determines the

format of the final output of NEDISS. For example, an implementation may output an XML

file describing each event. The Data Output component is the final component in the NEDISS

design.
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NEDISS Implementation

4.1 Introduction

This chapter presents the implementation of the NEDISS design given in chapter 3. The primary

technology used was the Python programming language. Python is a multi-paradigm interpreted

language that has a comprehensive set of libraries available in the standard implementation. The

implementation presented in this work focuses on the Twitter social stream and detected pre-

defined events during sports games. Three separate threads form the basis of this implementation,

encapsulating the design of the Stream Processor, Cluster Manager and Event Recognizer.

4.2 Stream Processor

4.2.1 Data Adapter

The Data Adapter connects to the Twitter public Streaming API. This API provides access to

real-time documents on the Twitter stream. NEDISS was implemented to focus on live sports

games. Therefore, the Data Adapter component provides a set of filtration parameters to the

Twitter API to improve the relevance of the documents returned. These parameters consist of a

language restriction and a set of keywords. To reduce computation, only documents written in

the English language are acceptable to NEDISS. The set of keywords limits the possible docu-

ments to those which contain at least one of the keywords. Zhao et al. showed that 60% of sports

game related tweets have the team name [36]. They concluded that a filtration set of team names

and game terminology was effective. NEDISS extends this by also including the nicknames and

common abbreviations of the teams, and official Twitter hashtags (where applicable). The full

set of keywords is available in Appendix A.

This component was implemented using a Twitter package for Python, called twitter. This pack-

age provides objects for communication with the Twitter API. These objects accept standard
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OAuth1 tokens for authentication and allow the inclusion of filtration parameters. The OAuth

tokens were retrieved from the Twitter dev center 2. The implementation provides access to the

filtered stream through a Python generator object. Documents are returned in JSON format and

Data Adapter converts them to Python dictionary objects. Each new dictionary (document) is

then passed on to the Document Filtration component.

4.2.2 Document Filtration

The Document Filtration component was implemented to remove spam, retweets and conversa-

tional tweets from the Twitter stream. Grier eg al. demonstrated how spam tweets must contain

URLs [39]. The Tweet objects returned by the Twitter API include fields which can be checked

to classify the tweet as spam, retweet, conversational or acceptable. A tweet is deemed spam if it

contains a URL. The ‘urls’ field of the ‘entities’ field in the tweet object contains this information.

The tweet contains a ‘retweeted status’ field that shows if the tweet is a retweet of another tweet.

Conversational tweets are marked by the ‘in reply to user id’ field which gives the user id of the

person the tweet is conversing with. The implementation classifies a tweet as acceptable if these

three fields are ‘None’. This was implemented using a filter with a lambda function (shown in

listing 1) on the generator returned by the Data Adapter. The text of the acceptable tweet is then

preprocessed and sent to the Vectorizer component. This preprocessing step removes mentions

and grammar from the tweet.

Listing 4.1: Lambda filter functions applied to Twitter Stream

not_a_reply = lambda x: not x.get(’in_reply_to_user_id ’)

not_a_retweet = lambda x: not x.get(’retweeted_status ’)

no_urls = lambda x: not x.get(’entities ’).get(’urls’)

acceptable_tweet = lambda x: not_a_reply(x) and not_a_retweet(x)

and no_urls(x)

4.2.3 Vectorizer

The vectorizer object was implemented using the scikit-learn Python package 3. This is the

de facto machine learning and data analysis package for Python. Two vectorizer objects were

implemented, each with different vocabularies. The first vocabulary consisted of sports game

terms and team names (the same list used for the filtration parameters). This vocabulary is

available in Appendix A. The second vocabulary was learned from the training set. The 0.5%

most frequent words in the training set were used. This percentage was chosen empirically by

investigating the terms used throughout the training set. The evaluation of these two vectorizer

objects is included in chapter 5.

1http://oauth.net/
2http://www.dev.twitter.com
3http://www.scikit-learn.org



25

Each vectorizer was implemented to use lowercase terms in the computation and ignore stop-

words. The stopword list chosen was the one included in the nltk Python package. The two

vectorizer objects differ in the n-grams they consider. The learned vocabulary vectorizer only

considers 1-gram terms. The other vectorizer considers l-gram terms, where l is the largest num-

ber of terms in a vocabulary lexicon. Each vectorizer was saved to a file after it was trained with

the training set.

For each tweet the Vectorizer component received, it transforms that tweet to a sparse ma-

trix using the trained vectorizer. Tweets are inherently short documents consisting of upto 140

characters. This results in few terms relative to the vocabulary. Therefore, a sparse matrix pro-

vides a more memory efficient representation for the vectors. Each sparse matrix is then passed

along to the Locality Sensitive Hashing component.

4.2.4 Locality Sensitive Hashing

The Locality Sensitive Hashing component was implemented in Python. Two classes were cre-

ated: Bucket and BucketManager.

Listing 4.2: Bucket Class for the LSH System

class Bucket:

def __init__(self , k, num_features , max_values ):

self.hash_table = defaultdict(list)

self.randv = numpy.random.randn(k, num_features)

self.max_values = max_values

def get_collisions_and_add_value(self , tweetVect ):

sig = get_signature(tweetVect.vect , self.randv)

pointer = self.hash_table[sig]

res = list(pointer)

if len(res) >= self.max_values:

pointer.pop (0)

pointer.append(tweetVect)

return res

The Bucket class was designed with internal variables for the hash-table, k hyperplanes and an

upper bound for the number of documents allowed in each hash-table entry. The hash-table was

implemented using Python’s defaultdict collection. This collection provides a dictionary object

that returns a default value when there are no entries for the key. The LSH hash-table is designed
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such that an empty list of documents is returned when a key isn’t present in the hash-table. The

k hyperplanes are generated using a helper function in the numpy Python package, randn. This

function returns an array of random values from the standard normal distribution. By default

these values will be from N(1, 0).

The Bucket class implementation has one function which handles all the necessary logic:

get collisions and add value. This function takes a TweetVect tuple as input and returns the list

of TweetVect objects that the input collides with. The function also has the side effect of adding

the input to the hash-table. A TweetVect tuple is a helper object that holds the original tweet

document and its vector representation. The get collisions and add value function uses the sig-

nature of the input to hash into its hash-table and return the list at that entry. If the list length

is equal to the upper bound, then the first entry added to the list is removed to make room for

the new item. The signature is retrieved via a helper function get signature, shown in listing 3.

Listing 4.3: Function to calculate the signature

def get_signature(user_vector , rand_projs ):

res = 0

for p in rand_projs:

res = res << 1

val = numpy.dot(p, user_vector)

if val >= 0:

res |= 1

return res

The BucketManger class manages the L buckets in the LSH system. The logic for this class

was implemented in a single function: get nearest neighbour. This function first iterates through

each Bucket and collects the collisions with the input document vector. Next, the cosine distance

between the input document and up to the first 3L collisions is computed. This distance value

was implemented using a helper function available in the scipy.spatial.distance Python package.

Finally, the function returns a tuple of the input vector and the nearest neighbour, along with

the distance between them.

Listing 4.4: BucketManager Class for the LSH System

class BucketManager:

def __init__(self , l, k, num_features , max_values ):

self.buckets = tuple(Bucket(k, num_features , max_values)

for _ in xrange(l))

self.max_comparisons = 3 * l

def get_nearest_neighbour(self , tweetVect ):

set_of_collisions = chain (*[ bucket.get_collisions_and_add_value(

tweetVect)

for bucket in self.buckets ])
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max_comparisons = islice(set_of_collisions ,

0,

self.max_comparisons)

dist_and_tweetVecs = [( cosine(tweetVect.vect , collision.vect),

collision)

for collision in max_comparisons]

if len(dist_and_tweetVecs ):

return min(dist_and_tweetVecs , key=lambda x: x[0])

The Locality Sensitive Hashing component was designed to accept a value for k and L. The

values 13 and 20 were chosen respectively. A value of 13 for k was presented by Petrovic et al.

as a good “balance between time spent computing the distance and the time spent computing

the hash” [24]. A value of 20 for L was chosen empirically using the method described by Datar

et al. [21]. They suggested to first guess the value of L and use a binary search to improve it. A

value of 20 was found to provide a good balance between memory requirements and probability

of finding a nearest neighbour.

Once the nearest neighbour and distance score is computed by this component, they are sent to

the Cluster Manager process.

4.3 Cluster Manager

The Cluster Manager process was implemented in Python. Two classes were created: Cluster

and ClusterManager.

The Cluster class implementation has three data-structures which hold the information required

by the Cluster Manager process. Firstly, the frequencies default dictionary is used do store the

timestamps of the documents in the cluster. Each key refers to a unique timestamp and the

entry at that key is the number of documents in the cluster that have that timestamp. This was

implemented as a default dictionary of integer values. This type of collection returns a default

value (zero) if the key isn’t found in the dictionary. This logic is desirable for this implementation

because timestamps that don’t appear in the dictionary should automatically be added with a

value of zero.

Secondly, the tweet vects dictionary stores the TweetVect objects that are in the cluster, i.e.

the documents. Each key in the dictionary is a document id and the value at that key is the

TweetVect object with that key. The number of entries in this dictionary has an upper bound

of max values.
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Finally, the overflow tweets dictionary is used to store the ids of the documents that would

be tweet vects if it weren’t full. These ids must still be saved in the cluster because of potential

membership tests. Each key is a document id and the entry at that key is simply set to 1.

The entries are not important in this dictionary, the implementation only uses it to check if a

document is in the cluster. These data-structures were designed as hash-tables and are therefore

implemented with Python dictionaries.

The Cluster class implementation has six functions that are used by other objects. The add tweet vects

function first increments the appropriate entry in frequencies. Next, the entire TweetVect is

saved in tweet vects if the upper bound hasn’t been reached, otherwise its ID is added to over-

flow tweets. The has tweet vect function searches the tweet vects and overflow tweets dictionaries

for the input tweet. This function returns a boolean value depicting whether or not the input

document is in the cluster. The get age seconds function returns the age of the cluster. This was

implemented as the difference in seconds between the oldest and newest document in the cluster.

The get timestr function returns a string of the estimated time the event this cluster describes

occurred. This was implemented as the median timestamp of the documents in the cluster. The

get texts function returns a list representing the texts of the documents in the cluster. Finally,

the get growth rate function returns the growth rate of the cluster. This was implemented using

Algorithm 7.

Listing 4.5: Cluster class implementation

class Cluster:

def __init__(self , max_values ):

self.frequencies = defaultdict(int)

self.tweet_vects = {}

self.overflow_tweets = {}

self.max_values = max_values

def add_tweet_vect(self , tweetVect ):

timestamp = tweetVect.tweet.get(’created_at ’)

self.frequencies[timestamp] += 1

tweet_id = tweetVect.tweet.get(’id’)

if len(self.tweet_vects) < self.max_values:

self.tweet_vects[tweet_id] = tweetVect

else:

self.overflow_tweets[tweet_id] = 1

def has_tweet_vect(self , tweet_vect ):
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tweet_id = tweet_vect.tweet.get(’id’)

return tweet_id in self.tweet_vects or

tweet_id in self.overflow_tweets

def get_age_seconds(self):

sorted_times = sorted ([tweet.datetime_from_tweet_created_at(s)

for s in self.frequencies.keys ()])

return (sorted_times [-1] - sorted_times [0]). total_seconds ()

def get_timestr(self):

sorted_freqs = sorted ([s for s in self.frequencies.keys ()])

return sorted_freqs[len(sorted_freqs) /2]

def get_texts(self):

tweets = [v.tweet for k,v in self.tweet_vects.iteritems ()]

return [t.get(’text’). encode(’utf -8’) for t in tweets]

def get_growth_rate(self):

sorted_freqs = sorted ([s for s in self.frequencies.keys ()])

mid_time = sorted_freqs [-1] - (sorted_freqs [-1] - sorted_freqs [0])

first_half = sum([freq for time , freq in sorted_freqs

if time <= mid_time ])

second_half = sum([freq for time , freq in sorted_freqs

if time > mid_time ])

return float(second_half / first_half)

The ClusterManager maintains a list of Cluster objects. The logic for this process was imple-

mented using a constantly running thread. The Stream Processor process adds items into a work

queue for the ClusterManager. This implementation avoids deadlock and starvation between the

running processes. The ClusterManager thread performs three functions every second. Firstly,

it clears its work queue. This queue is a list of tuples consisting of new documents and their

nearest neighbours. Algorithm 8 was implemented to determine if a cluster should be created

or the document added to an existing cluster. The queue is emptied after each entry has been

processed. The second function of ClusterManager is to monitor the age of the clusters and

delete appropriate ones. This was implemented by iterating over each cluster, getting its age

and comparing it to a given threshold. If the age of a cluster exceeds the threshold then it is

deleted. Finally, the ClusterManager thread monitors the growth rate of the clusters. This was

implemented by iterating over each cluster and getting its growth rate. If this value exceeded
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a given threshold, then that cluster was classified as an event. The cluster is then sent to the

Event Recognizer process and deleted from the ClusterManager’s cluster list.

Listing 4.6: ClusterManager class implementation

class ClusterManager(threading.Thread ):

def __init__(self , max_values_per_cluster ,

old_cluster_secs , post_rate , recognizer ):

super(ClusterManager , self). __init__ ()

self.clusters = []

self.max_values_per_cluster = max_values_per_cluster

self.old_cluster_secs = old_cluster_secs

self.add_queue = []

self.post_rate , self.recognizer = post_rate , recognizer

def run(self):

one_second = timedelta(seconds =1)

while True:

wake_time = datetime.now() + one_second

self.clear_add_queue ()

self.delete_old_clusters ()

self.detect_events ()

sleep_seconds = (wake_time - datetime.now ()). total_seconds ()

if sleep_seconds > 0:

sleep(sleep_seconds)

def add_to_work_queue(self , tweet_vect , nearest_neighbour ):

self.add_queue.append ((tweet_vect , nearest_neighbour ))

def clear_add_queue(self):

for tweet_vect , nearest_neighbour in self.add_queue:

create_new = True

for c in self.clusters:

if c.has_tweet_vect(nearest_neighbour ):

c.add_tweet_vect(tweet_vect)

create_new = False

break

if create_new:
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new_cluster = self.create_new_cluster(self.max_values_per_cluster ,

tweet_vect ,

nearest_neighbour)

self.clusters.append(new_cluster)

del self.add_queue [:]

def create_new_cluster(self , max_values , *tweet_vects ):

new_cluster = Cluster(max_values)

for tv in tweet_vects:

new_cluster.add_tweet_vect(tv)

return new_cluster

def delete_old_clusters(self):

for c in self.clusters:

if c.get_age_seconds () > self.old_cluster_secs:

self.clusters.remove(c)

def detect_events(self):

for c in self.clusters:

if c.get_growth_rate () > self.post_rate:

self.recognizer.recognize_event(c)

self.clusters.remove(c)

The cluster monitoring logic was designed to be controlled by two thresholds: maximum age and

minimum growth rate. The maximum age parameter was set as sixty seconds. This value was

chosen empirically by investigating the tweet volumes of events during live sports games. Events

during a sports game are only discussed around the time of the event. Subsequent documents

usually refer to subsequent events that have occurred. Intuitively, if a cluster has documents more

than sixty seconds apart, the probability of that cluster being classified as an event is low. The

cluster is therefore deleted and associated memory is freed. This work includes the evaluation

of several values for the minimum growth rate parameter. Zhao et al. used a parameter of 1.7

when implementing a similar growth rate heuristic [36]. The list of parameters used and their

effects on the results of NEDISS can be found in chapter 5.

4.4 Event Recognizer

Listing 4.7: Event Recognizer class implementation

class EventRecognizer(threading.Thread ):

def __init__(self):
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super(EventRecognizer , self). __init__ ()

self.cluster_queue = []

self.cv = threading.Condition ()

self.data_output = DataOutput ()

def run(self):

while True:

self.cv.acquire ()

while not self.cluster_queue:

self.cv.wait()

for cluster in self.cluster_queue:

texts = cluster.get_texts ()

event = classify_list(texts)

if event:

named_entities = ner.get_named_entities(texts)

timestamp = cluster.get_timestr ()

self.data_output.output_event(event , named_entities , timestamp)

self.cluster_queue.remove(cluster)

self.cv.release ()

def recognize_cluster(self , cluster ):

self.cv.acquire ()

self.cluster_queue.append(cluster)

self.cv.notify ()

self.cv.release ()

def classify_list(self , texts):

votes = defaultdict(int)

for text in texts:

for event in predefined_events:

if any([term in text for term in event.lexicons ]):

votes[event] += 1

if len(votes ):

winner = max(votes.iteritems (), key=lambda (k,v):v)

if winner [1] > (len(texts) / 2):

return winner [0]
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The Event Recognizer process was implemented as a thread in Python. The thread sleeps until

the Cluster Manager process detects an event. Once this occurs, the cluster is placed on a work

queue for the thread and it awakes. This is controlled with a condition variable cv. The thread

waits on this condition variable if its work queue is empty. Clusters are placed into the queue by

the ClusterManager object via a call to the function recognize cluster.

Algorithm 9 was implemented in the function classify list to classify the cluster to a pre-defined

event. This function uses a predefined events data structure to classify the cluster. A vote is

assigned to each possible event by the texts that are classified as refering to it. This classification

is performed using lexicon-based keyword analysis. The cluster is classified as the event with

the highest votes, if > 50% of texts voted for it. Otherwise, the cluster remains unclassified.

Unclassified clusters are deleted from the Event Recognizer. This implementation alleviates some

of the false positives from the Cluster Manager process.

Once an event has been classified by the EventRecognizer thread, it is sent to a Named En-

tity Extractor object.

4.4.1 Named Entity Extractor

The Stanford NER4 implementation was used for the Named Entity Extractor. Various NER

implementations were tested and the Stanford one offered the most desirable results for tagging

entities that may be involved in events. In particular, tagging locations, people and organi-

zations. This was determined empirically through trial and error of various implementations.

The Stanford NER also provides various models through which to train the NER. The en-

glish.all.3class.caseless.distsim.crf.ser model was chosen for the following reasons. Firstly, it is

written in the English language which this work is focused on. Secondly, it only attempts to

recognize three classes of named entities: Location, Person or Organization. These classes rep-

resent the only named entities in an event that this work wishes to extract. Finally, it ignores

capitalization. This is important because of the absence of a guarantee that Twitter users will

properly capitalize the named entities in their tweets. The get named entities fucntion returns

the list of successfully tagged entities from the text, shown in listing 4.8.

Listing 4.8: NER function

st = NERTagger(’english.all.3class.caseless.distsim.crf.ser.gz’,

’stanford -ner.jar’)

def get_named_entities(text):

tagged = st.tag(text.split ())

return [t for t in tagged if t[1] is not ’O’]

4http://www.nlp.stanford.edu/software/CRF-NER
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The list of named entities are returned to the EventRecognizer thread. The number of named

entities that were extracted could be compared against an expected figure for the event that

was detected. For example, a substitution event should have at least 2 named entities. If the

retured list of named entities has less than 2 elements, then this event can be rejected. This

implementation would improve the quality of the structured output. However, correctly detected

events could be rejected if the cluster texts aren’t detailed enough to extract the desired number

of named entities. The implementation in this work does not include such a check for this reason.

4.4.2 Data Output

The final task in the NEDISS system is to output the information in a structured format. The

Data Output component was designed for this task. This work implemented this component to

output a JSON file describing the event. The event name, time of event and the named entities

recognized are output. This function is shown in listing 4.9.

Listing 4.9: Data Output function

def output_event(event , named_entites , timestamp ):

json.dumps(dict(event=event ,entities=named_entities ,timestamp=timestamp ))

4.4.2.1 Sample Output

Figure 4.1: Sample output during the Manchester United Vs. Sunderland match

Figure 4.2: Sample Cluster Manager stats after the Manchester United Vs. Sunderland match
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4.5 Baseline System

As previously discussed, the SportsSense system presented by Zhao et al. [36] was implemented

as a baseline system. This implementation was done in Python and as described by the authors

in their paper.



Chapter 5

Evaluation of NEDISS

5.1 Introduction & Objectives

This chapter presents the evaluation of the NEDISS system. The objective is to evaluate the

performance of the NEDISS system. To accomplish this, the following experiments are presented.

The first and second experiment present a comparison between the results of NEDISS, a baseline

system and the real world events during a number of soccer matches. The first experiment was

performed on streams of documents from a single match, whereas the second experiment used

a stream consisting of multiple matches. These experiments provide a comparison between the

values for Recall, Precision, Accuracy and F1 for each of the systems. The third experiment

investigates the effects of the growth rate parameter of NEDISS. Four different values are used

for the growth rate and the Recall, Precision, Accuracy and F1 for each are presented. This

experiment also gives a comparison of the number of clusters classified as potential events by the

Cluster Manager process of NEDISS. The fourth experiment provides a comparison between the

use of a learned vocabulary and one which was provided explicitly. Again, the Recall, Precision,

Accuracy and F1 metrics are presented for each. The final experiment investigates the effect of

the Named Entity Extractor component of NEDISS. Along with the metrics already discussed,

this experiment presents some running time scores of NEDISS with and without the Named

Entity Extractor component. These experiments provide a thorough investigation into the per-

formance of NEDISS. The comparison between NEDISS, a baseline system and the expected

results provides a clear view of the accuracy and comparative accuracy of the system. Also,

the comparison between the various NEDISS configurations gives an indication of the effect the

various elements have on the system.

The remainder of this chapter is presented as follows. First, the baseline system is discussed.

Next, the experimental setup is presented. This section provides the details of the data and

metrics used, and the different configurations of NEDISS that are evaluated. Following that,

each of the experiments discussed previously are presented. Finally, this chapter concludes with
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a summary of the evaluations.

5.2 Baseline System

The evaluations presented in this chapter include comparisons between NEDISS and a baseline

system. The SportsSense system published by Zhao et al [36] was chosen. This system represents

the best existing system that focuses on event detection during sports games with the Twitter

stream. The reliance of this system on the highly published temporal heuristic, first presented by

Shakaki et al. [3], motivated the design of NEDISS. The authors also present values for Precision

and Recall, although in a different context to this work. The implementation of this system was

discussed in chapter 4.

5.3 Experimental Setup

This section outlines the experimental setup used during this evaluation. The training dataset,

experimental dataset, various systems and their configurations under evaluation, and the metrics

used are presented.

A training dataset was required to train the Vectorizer component of NEDISS. This dataset

was used to learn the initial tf · idf values and provide a learned vocabulary instance of the

Vectorizer. This dataset contains 1,094,502 raw tweets returned from the Twitter API. These

tweets were collected using the Streaming API with filtration parameters for matches during the

2013/2014 Barclay’s Premiership season. The data was collected between 1/3/2014 and 8/3/2014

(inclusive) and thirteen different matches were captured.

The experimental dataset is used during the evaluation experiments. This dataset was captured

with the objective of it being a representative sample of volume and events possible during soc-

cer games. Tweets during one hundred and seventeen matches between 1/4/2014 and 11/5/2014

(inclusive) were captured. For the proposes of the evaluations presented in this work, human

annotation is required to determine the actual events during the matches. As such, it isn’t fea-

sible to use an experimental dataset which covers a large number of soccer matches. Therefore,

the experimental dataset used consisted of twenty soccer matches. These twenty matches were

chosen because of the distribution of events that occurred and the different volume rates. This

dataset contains 5,063,668 tweets.

The evaluations presented in this chapter include 8 different system, 7 of which are variations of

the NEDISS system. The first system is the baseline system discussed previously. The other sys-

tems are variations of NEDISS, with different values for the growth rate parameter, vocabulary

used to train the Vectorizer and the inclusion/exclusion of the Named Entity Extractor (NER).

Table 5.1 gives an overview of these different configurations and a label for each.
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Label growth rate Vocabulary used NER?

NEDISS 1.7 Given No

NEDISS11 1.1 Given No

NEDISS25 2.5 Given No

NEDISS34 3.4 Given No

NEDISS40 4.0 Given No

NEDISSL 1.7 Learned No

NEDISSNER 1.7 Given Yes

Table 5.1: Different configurations of the NEDISS system under evaluation

The accuracy metrics used in these evaluations rely on True Positives (TP), False Positives (FP)

and False Negative (FN). In the context of this work, a TP is a correctly detected event, a FP

is a detected event that didn’t occur in the real world and a FN is a failure to detect an event.

Using these values, one can calculate the Precision, Recall, Accuracy and F1 metrics using the

following equations.

Precision =
|TP |

|TP |+ |FP |
Recall =

|TP |
|expected TP |

Accuracy =
|TP |

|TP |+ |FN |+ |FP |
F1 =

2 ∗ Precision ∗Recall
Precision+Recall

These scores are computed over each event category individually and on a global scale, i.e.

macro-averaging and micro-averaging. Macro-averaging scores are influenced heavily by rare

events and micro-averaging scores are heavily weighted on the performance with common events.

Both methods are used to provide additional information and not be subject to the flaws of ei-

ther. The events considered for each method are outlined in table 5.2. These events were chosen

because they represent the major events during a soccer game and exhibit different volume spikes.

Micro-averaging Macro-averaging

GOAL GOAL

PENALTY YELLOW CARD

YELLOW CARD SUBSTITUTION

HALF-TIME

FULL-TIME

SUBSTITUTION

Table 5.2: Events under consideration for accuracy metrics
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In addition to the metrics above, this work presents two significance tests for comparing systems.

Specifically, the Micro sign test (s-test) and Macro sign test (S-test) presented by Yang et al.

are used [40]. These significance tests compare two systems, A and B, using values for n and

k. For the s-test, n is the number of times the two systems differ in their classifications, and k

is the number of times A categorizes correctly when B doesn’t. For the S-test, n is the number

of times the F1 score per category differs between the system, and k is the number of times A’s

per category F1 score is higher than B’s. The null hypothesis for both tests is k = 0.5n, or k

has a binomial distribution of Bin(n, p) where p = 0.5. The alternative hypothesis states k has a

binomial distribution of Bin(n, p) where p > 0.5. In other words, the null hypothesis states that

A isn’t significantly better than B, and the alternative hypothesis states that A is significantly

better. The 1-sided P-value for each test is calculated using the following equations.

if n 6 12 and k > 0.5n:

P (Z > k) =

n∑
i=k

(
n

i

)
× 0.5n

if n 6 12 and k ≤ 0.5n:

P (Z 6 k) =

k∑
i=0

(
n

i

)
× 0.5n

Otherwise, the P-value can be computed using the standard normal distribution:

Z =
k − 0.5n

0.5
√
n

The s-test and S-test are widely used throughout the text classification domain.

5.4 Experiments

5.4.1 Comparison between NEDISS, Baseline and Actual Events in a

Single-match Stream

5.4.1.1 Objectives

The objectives of this experiment are as follows:

1. Provide accuracy metrics for the NEDISS system.

2. Compare the accuracy of NEDISS to a baseline system.

3. Determine if NEDISS performs statistically better than the baseline system.
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5.4.1.2 Experimental Method

This experiment compares the NEDISS17 configuration and the baseline system to annotated

real world events during soccer matches. The experimental dataset previously discussed was

used and both systems operated on single match streams. Recall, Precision, Accuracy and F1

score metrics were computed on both a macro-averaging and mirco-averaging scale for these two

systems. The events outlined in table 5.2 were used to calculate these metrics. Finally, an s-test

and S-test was computed between the baseline and NEDISS17.

5.4.1.3 Experiment Results

Table 5.3 displays the Precision, Recall, Accuracy and F1 score metrics for the baseline system

and NEDISS17. Figure 5.1 shows these values in a bar chart. These metrics were computed

over the experimental dataset by means of micro-averaging .

Baseline NEDISS17

Precision 0.92 0.85

Recall 0.27 0.53

Accuracy 0.26 0.49

F1 0.42 0.65

Table 5.3: Single-stream micro-averaged metrics for Baseline and NEDISS17
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Figure 5.1: Bar chart of micro-averaged metrics for baseline and NEDISS17

Table 5.4 displays the same metrics as shown previously between the two systems. However,

they are split into GOAL, YELLOW CARD (Y) and SUBSTITUTION (SUB) macro-averaged
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values. Figures 5.2, 5.3 and 5.4 show each category graphically.

GOAL Y SUB

B N B N B N

Precision 0.96 0.86 0 0.86 0 1.00

Recall 0.88 0.99 0 0.75 0 0.06

Accuracy 0.85 0.86 0 0.66 0 0.06

F1 0.91 0.92 0 0.80 0 0.11

Table 5.4: Single-stream macro-averaged metrics for Baseline and NEDISS17
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Figure 5.2: Bar chart of GOAL macro-averaged metrics for baseline and NEDISS17
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Figure 5.3: Bar chart of YELLOW CARD macro-averaged metrics for baseline and NEDISS17



42

Precision Recall Accuracy F1

0

50

100

Accuracy Metric

P
er

ce
n
ta

g
e

Baseline
NEDISS

Figure 5.4: Bar chart of SUBSTITUTION macro-averaged metrics for baseline and NEDISS17

Finally, a value of p ≤ 0.01 was computed by both the s-test and S-test statistical significance

tests.

5.4.1.4 Experiment Findings

The findings of this experiment can be summarized as follows:

NEDISS :

• has a lower Precision than the baseline.

• has a higher Recall, Accuracy and F1 score than the baseline.

• detects lower volume events significantly better than the baseline system.

• is a significant improvement over the baseline system.

The accuracy metrics for NEDISS are as expected when comparing to the baseline system. Recall

and Accuracy exhibit an ≈ 2× increase over the baseline system. However, the Precision value

is lower than the baseline. This can be attributed to the more sensitive event detection design

of NEDISS. Overall, the baseline system has a very low false positive count and therefore shows

a high Precision value. The increased coverage of events detected by NEDISS naturally leads to

more false positive potentials and explains why the Precision value is lower than the baseline.

This increased coverage is evident by the improvements in each of the other accuracy metrics.

The macro-averaged accuracy metrics for the two system provide some interesting analysis. Both

systems preform equally well for the high volume event, i.e. GOAL. However, there is a drastic

difference between the two systems the lower volume events, i.e. YELLOW CARD and SUBSTI-

TUTION. The baseline system failed to correctly detect a single one of these events throughout

the experimental dataset. This is as expected, as the baseline system relies on document volume

to detect events, and these events do not cause a significant rise in document volume. On the

other hand, NEDISS performs well for these events. The accuracy scores for YELLOW CARD

events are significantly higher than those for the SUBSTITUTION events. This can be explained
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by the real world importance of these events. Yellow cards are simply more discussed than sub-

stitutions during soccer matches. Also, there is a limited vocabulary used when a yellow card

occurs and is easy to classify. However, people dramatically differ in the vocabulary they use

when discussing substitutions. These two factors explain why there is a large difference between

these accuracy scores.

Finally, NEDISS is a significant improvement over the baseline system. A value of p ≤ 0.01

was computed by both s-test and S-test. Both null hypotheses can be rejected and therefore

NEDISS is a significant improvement over the baseline system on both a macro and micro scale.

5.4.2 Comparison between NEDISS, Baseline and Actual Events in a

Multi-match Stream

5.4.2.1 Objectives

The objectives of this experiment are the same as before:

1. Provide accuracy metrics for the NEDISS system.

2. Compare the accuracy of NEDISS to a baseline system.

3. Determine if NEDISS performs statistically better than the baseline system.

5.4.2.2 Experimental Method

This experiment uses the same methods as before, with one variation. Both systems are run with

a stream of documents from multiple soccer matches at once. This is in direct contrast to the

previous experiment where the systems were detecting events during a single match stream.

5.4.2.3 Experiment Results

Table 5.5 displays the Precision, Recall, Accuracy and F1 score metrics for the baseline system

and NEDISS17. Figure 5.5 shows these values in a bar chart. These metrics were computed

over the experimental dataset by means of micro-averaging .

Baseline NEDISS17

Precision 1.00 0.92

Recall 0.05 0.38

Accuracy 0.05 0.37

F1 0.01 0.54

Table 5.5: Multi-stream micro-averaged metrics for Baseline and NEDISS17
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Figure 5.5: Bar chart of micro-averaged metrics for baseline and NEDISS17

Table 5.6 displays the same metrics as shown previously between the two systems. However,

they are split into GOAL, YELLOW CARD (Y) and SUBSTITUTION (SUB) macro-averaged

values. Figures 5.6, 5.7 and 5.8 show each category graphically.

GOAL Y SUB

B N B N B N

Precision 1.00 0.83 0 1.00 0 1.00

Recall 0.23 0.77 0 0.50 0 0.04

Accuracy 0.23 0.67 0 0.50 0 0.04

F1 0.37 0.80 0 0.67 0 0.08

Table 5.6: Multi-stream macro-averaged metrics for Baseline and NEDISS17
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Figure 5.6: Bar chart of GOAL macro-averaged metrics for baseline and NEDISS17
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Figure 5.7: Bar chart of YELLOW CARD macro-averaged metrics for baseline and NEDISS17
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Figure 5.8: Bar chart of SUBSTITUTION macro-averaged metrics for baseline and NEDISS17

Finally, a value of p ≤ 0.01 was computed by both the s-test and S-test statistical significance

tests.

5.4.2.4 Experiment Findings

The findings of this experiment can be summarized as follows:

• Both systems experience a dramatic decrease in performance Vs. a single stream context.

• Precision is perfect for lower volume events.

• NEDISS performs better than the baseline in this context.

As expected, there is a dramatic increase in each accuracy metric in comparison to the systems

performance in the single stream context. This can be attributed to the increased noise in the

stream and the difficulty of document separation into different matches. It is clear that NEDISS

performs better at this. The use of document vectors leads to separate clusters for documents

that describe different match-event pairs. On the other hand, the baseline system perform poorly

in each accuracy metric. This can be attributed to the reliance on the temporal bursts of activity

in the stream. With a multi-stream context, these bursts are harder to detect and multiple event

occurrences at the same time cause false negatives.
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The NEDISS results indicate a high Precision metric for lower volume events, which directly

implies a low number of false positives. The increased stream volume with the multiple matches

results in an increase of clusters which do not get classified as events. The increased number of

clusters being created directly decreased the ability of the system to detect lower volume events,

as their clusters are smaller and deleted more aggressively. This results in lower true positive val-

ues for these events and thus decreased false negative. In brief, if a lower volume event manages

to get detected during this multiple match stream, it is highly likely to be an accurate detection.

Thus the high and low Recall values for these events.

Finally, NEDISS is again a significant improvement over the baseline system. A value of p ≤ 0.01

was computed by both s-test and S-test. Both null hypotheses can be rejected and therefore

NEDISS is a significant improvement over the baseline system on both a macro and micro scale.

This is intuitive from the results shown, as the baseline system performed badly during this

experiment.

5.4.3 Comparing different growth rate parameters for NEDISS

5.4.3.1 Objectives

The objectives of this experiment are as follows:

1. Investigate the effects of the growth rate parameter on the accuracy of NEDISS.

2. Investigate the effects of the growth rate parameter on the number of clusters that are

classified as potential events.

5.4.3.2 Experimental Method

This experiment compares different values for the growth rate parameter. From table 5.1, the

NEDISS11, NEDISS17, NEDISS25, NEDISS34 and NEDISS40 systems are evaluated in this

experiment. These systems have growth rate values of 1.1, 1.7, 2.5, 3.4 and 4.0 respectively. The

experimental dataset previously discussed was used and each system operated on single match

streams. Recall, Precision, Accuracy and F1 score metrics were computed on both a macro-

averaging and mirco-averaging scale for each. The events outlined in table 5.2 were used to

calculate these metrics. Finally, an s-test and S-test was computed for each system pair.

5.4.3.3 Experiment Results

Table 5.4.2.4 displays the Precision, Recall, Accuracy and F1 score metrics for each system.

Figure 5.9 shows these values in a bar graph. These metrics were computed over the experimental

dataset by means of micro-averaging .
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NEDISS11 NEDISS17 NEDISS25 NEDISS34 NEDISS40

Precision 0.83 0.85 0.83 0.89 0.94

Recall 0.49 0.53 0.32 0.25 0.16

Accuracy 0.45 0.49 0.30 0.24 0.16

F1 0.62 0.65 0.46 0.39 0.28

Table 5.7: Micro-averaged metrics for various NEDISS configurations
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Figure 5.9: Growth rate and Accuracy metric bar chart

Table 5.8 displays the accuracy metrics for each NEDISS configuration, for each of the macro-

averaged events. Figures 5.10, 5.11 and 5.12 show these values graphically.
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NEDISS11 NEDISS17 NEDISS25 NEDISS34 NEDISS40

Precision 0.76 0.86 0.78 0.89 0.92

Recall 1.00 1.00 0.84 0.64 0.48

Accuracy 0.76 0.86 0.68 0.59 0.46

F1 0.86 0.93 0.80 0.74 0.63

(a) GOAL

NEDISS11 NEDISS17 NEDISS25 NEDISS34 NEDISS40

Precision 0.83 0.86 0.67 0.88 0.75

Recall 0.63 0.75 0.25 0.44 0.19

Accuracy 0.56 0.66 0.22 0.41 0.18

F1 0.71 0.80 0.36 0.58 0.30

(b) YELLOW

NEDISS11 NEDISS17 NEDISS25 NEDISS34 NEDISS40

Precision 1.00 1.00 0 0 0

Recall 0.05 0.06 0 0 0

Accuracy 0.05 0.06 0 0 0

F1 0.10 0.11 0 0 0

(c) SUBSTITUTION

Table 5.8: Macro-averged metrics for various NEDISS growth rates
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Figure 5.10: GOAL event: Growth rate and Accuracy metric bar graph
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Figure 5.11: YELLOW event: Growth rate and Accuracy metric bar graph
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Figure 5.12: SUBSTITUTION event: Growth rate and Accuracy metric bar graph

Figure 5.13 shows the number of clusters classified as potential events for each of the systems

during a selection of the experimental matches.
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Figure 5.13: Number of clusters classified as events for various NEDISS configurations

Finally, table 5.9 outlines the results of the significance tests: s-test and S-test.



50

NEDISS11 NEDISS17 NEDISS25 NEDISS34 NEDISS40

NEDISS11 done ≥ 0.1 ≤ 0.01 ≤ 0.01 ≤ 0.01

NEDISS17 ≥ 0.1 done ≤ 0.01 ≤ 0.01 ≤ 0.01

NEDISS25 ≥ 0.1 ≥ 0.1 done 0.01 ≤ p ≤ 0.05 ≤ 0.01

NEDISS34 ≥ 0.1 ≥ 0.1 0.05 ≤ p ≤ 0.1 done 0.01 ≤ p ≤ 0.05

NEDISS40 ≥ 0.1 ≥ 0.1 ≥ 0.1 0.01 ≤ p ≤ 0.05 done

(a) s-test

NEDISS11 NEDISS17 NEDISS25 NEDISS34 NEDISS40

NEDISS11 done ≥ 0.1 ≤ 0.01 ≤ 0.01 ≤ 0.01

NEDISS17 ≥ 0.1 done ≤ 0.01 ≤ 0.01 ≤ 0.01

NEDISS25 ≥ 0.1 ≥ 0.1 done ≥ 0.1 ≤ 0.01

NEDISS34 ≥ 0.1 ≥ 0.1 ≥ 0.1 done p ≥ 0.1

NEDISS40 ≥ 0.1 ≥ 0.1 ≥ 0.1 0.01 ≤ p ≤ 0.05 done

(b) S-test

Table 5.9: P-values of various combinations of NEDISS growth paramater systems

5.4.3.4 Experiment Findings

The findings of this experiment can be summarized as follows:

• The growth rate parameter has a dramatic effect on the performance of NEDISS

• Precision is proportional to the growth rate

• Recall, Accuracy and F1 metrics are inversely proportional to the growth rate

• There is an exponential distribution between number of clusters classified as potential events

and the growth rate

• A value of 1.7 performs the best of the different values tested

The growth rate parameter has a dramatic effect on the performance of NEDISS. A value that

is too low results in high values for the accuracy metrics, but a large number of clusters are

classified as potential events. This results in a large number of duplicate events being detected

and extra computational time necessary to determine the duplicity.

The results indicate that the Precision metric is linearly proportional to the growth rate. This

is as expected since the higher the growth rate rate, the less clusters will be classified as events.

Therefore, less false positivies will be produced by the system and the Precision metric will rise

accordingly.
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The other accuracy metrics are inversely proportional to the growth rate. Again, this is as

expected. A large value for the growth rate will result in few clusters being classified as poten-

tial events. This leads to increased missed events, or false negatives. An increased number of

false negatives directly results in lower values for Recall, Accuracy and F1.

As per figure 5.13, there is an exponential distribution between the number of clusters clas-

sified as potential events and the growth rate. Again, this is as expected since the growth rate

parameter directly controls whether or not a cluster is marked as an event. A high value will re-

sult in no clusters getting classified, while a zero value results in every cluster becoming classified.

The P-values in table 5.9 show the results of the significance tests between each possible pair

of systems. Using these values to test the null hypothesis that there isn’t a significant difference

between the performance of each system, one can infer the following regarding the growth rate:

• A value of 1.1 is better than 2.5, 3.4 and 4.0 on a macro and micro level.

• There is no significant difference between 1.1 and 1.7.

• A value of 1.7 is better than 2.5, 3.4 and 4.0 on a macro and micro level.

• A value of 2.5 is better than 3.4 on a macro level, and 4.0 on a macro and micro level.

• There is a strong presumption that 2.5 is also better than 3.4 on a micro level.

• Values of 3.4 and 4.0 aren’t significantly different.

With the findings above, it is clear that a value of 1.7 is the best of the values evaluated.

Although 1.1 preformed equally well, a higher value should always be preferred because of its

affect on the number of clusters being classified as events and therefore computation running

time. The findings of this experiment highlight the importance of experimentation to determine

the optimal value for the growth rate based on the desired accuracy and performance of the

system.

5.4.4 Comparing a learned and given vocabulary for NEDISS

5.4.4.1 Objectives

The objective of this experiment is to determine if a learned vocabulary or a provided vocabulary

is better for the Vectorizer component of NEDISS.

5.4.4.2 Experimental Method

This experiment compares two different NEDISS configurations: NEDISS17 and NEDISSL as

per table 5.1. The provided vocabulary was discussed previously in chapter 4 and can been

found in Appendix A. The learned vocabulary was determined as the 0.05% of the most frequent
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words used throughout the training dataset. The experimental dataset previously discussed was

used and both systems operated on single match streams. Recall, Precision, Accuracy and F1

score metrics were computed on both a macro-averaging and mirco-averaging scale for these two

systems. The events outlined in table 5.2 were used to calculate these metrics. Finally, an s-test

and S-test was computed between each system.

5.4.4.3 Experiment Results

Table 5.14 displays the Precision, Recall, Accuracy and F1 score metrics for the NEDISS17 and

NEDISSL systems. Figure 5.15 shows these values in a bar chart. These metrics were computed

over the experimental dataset by means of micro-averaging .

NEDISSL NEDISS17

Precision 0.84 0.85

Recall 0.39 0.53

Accuracy 0.36 0.49

F1 0.53 0.65

Figure 5.14: Micro-averaged metrics for NEDISSL and NEDISS17
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Figure 5.15: Bar chart of micro-averaged metrics for NEDISSL and NEDISS17

Table 5.10 displays the same metrics as shown previously between the two systems. However,

they are split into GOAL, YELLOW CARD (Y) and SUBSTITUTION (SUB) macro-averaged

values. Figures 5.16, 5.17 and 5.18 show each category graphically.
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GOAL Y SUB

NEDISSL NEDISS17 NEDISSL NEDISS17 NEDISSL NEDISS17

Precision 0.80 0.86 1.00 0.86 1.00 1.00

Recall 0.80 0.99 0.44 0.75 0.03 0.06

Accuracy 0.67 0.86 0.44 0.66 0.03 0.06

F1 0.80 0.92 0.61 0.80 0.03 0.11

Table 5.10: Macro-averaged metrics for NEDISSL and NEDISS17
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Figure 5.16: Bar chart of GOAL macro-averaged metrics for NEDISSL and NEDISS17
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Figure 5.17: Bar chart of YELLOW CARD macro-averaged metrics for NEDISSL and NEDISS17
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Figure 5.18: Bar chart of SUBSTITUTION macro-averaged metrics for NEDISSL and NEDISS17
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Finally, a value of p ≤ 0.01 was computed by both the s-test and S-test statistical significance

tests.

5.4.4.4 Experiment Findings

This experiment found that a provided vocabulary performs better than a learned one. This

conclusion can be drawn from the improved values for each accuracy metric and the indication of

the significances tests. This is as expected, since the provided vocabulary was designed specifically

to describe documents that would correlate to events during these matches. Irrelevant documents

score lowly using a vectorizer object trained on this vocabulary. On the other hand, the learned

vocabulary was learned via a noisy Twitter dataset. The increase in irrelevant terms in the

vector space increase the difficulty of clustering similar documents. This is most evident with

the performance of NEDISSL with the lower volume events. There is a significant decrease in

its performance in comparison to the provided vocabulary. An explanation for this would be

the intuition that the terms used during these low volume events may not occur in the learned

vocabulary due to their low frequency in relation to the entire term set.

5.4.5 Investigating the runtime cost of Named Entity extraction

5.4.5.1 Experiment Objectives

The objective of this experiment is to investigate the runtime cost incurred when named entity

extraction is integrated into NEDISS.

5.4.5.2 Experimental Method

This experiment compares the running time of two different NEDISS configurations: NEDISS17

and NEDISSNER as per table 5.1. Each system was run with the experimental dataset in a

single match stream context. The UNIX time utility was used to capture real, user and sys

values. Due to the varying sizes of the match streams, the relative difference between the two

systems was calculated and averaged across all matches.

5.4.5.3 Experiment Results

The results of this experiment are displayed below in table 5.11.

real user sys

2.38× 3.81× 33×

Table 5.11: Speedup difference for NEDISS17 compared to NEDISSNER
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5.4.5.4 Experiment Findings

This experiment has found that there is a significant running cost when integrating named entity

extracting into NEDISS. The user and sys speedups are most relevant. The 3.81× increase for

the user running time indicates a significant increase in the amount of time executing code within

the process that isn’t making kernel calls. The 33× increase for the sys is a dramatic result.

This shows the large number of kernel calls required when using a state of the art named entity

recognizer. These increases indicate that a system should carefully consider whether named

entity extraction is necessary. In the case of NEDISS, it is simply used to improve the output

by adding named entities that were involved in the events. This is not crucial to the overall goal

of the system which is to detect events. Given that NEDISS operates with high volume social

streams, it is critical that the system has an efficient running time. Therefore, this experiment

has shown that a named entity extractor should not be integrated with the system.

5.5 Summary of experiments

This chapter presented 5 experiments which evaluate the performance of the NEDISS system.

The first experiment used accuracy metrics and significance tests to compare NEDISS to a base-

line system, when operating in single match streams. The experiment concluded that NEDISS

represents a significant improvement over the baseline system, particularly in the detection of

low volume events.

The second experiment used accuracy metrics and significance tests to compare NEDISS to

a baseline system, when operating in multiple match streams. Again, the experiment concluded

that NEDISS represents a significant improvement over the baseline system.

The third experiment presented an evaluation of the growth rate parameter of NEDISS. Five

different values were used: 1.1, 1.7, 2.5, 3.4 and 4.0. This experiment showed the relationship

between each accuracy metric and the growth rate, and showed the exponential distribution

between it and the number of clusters classified as potential events. The experiment concluded

that 1.7 was the best value tested and gave evidence of the necessary experiments needed to

determine a growth rate parameter when building a similar system.

The penultimate experiment compared the performance of NEDISS17 and NEDISSL. These

systems differ only in the vocabulary used to train the Vectorizer component. The experiment

concluded that the system with the provided vocabulary performed significantly better than that

with the learned.

The final experiment analyzed the running cost involved with named entity extraction. The
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real, user and sys running time metrics were captured for NEDISS17 and NEDISSNER. The

difference in running time was dramatic and the experiment concluded that named entity extrac-

tion is too costly in this context of this work.

As a final note, Appendix A.3 contains some confusion matrices with values obtained from the

various systems during individual matches.



Chapter 6

Conclusion

6.1 Introduction

This chapter concludes this report. Each of the objectives outlined in the introduction is revisited

and the outcome is discussed. Next, the key contributions of this report are summarized. Finally,

indications for future work are given.

6.2 Objectives Revisited

To perform a survey of the state of the art in the area of on-line NED and social

streams.

This objective was achieved with chapter 2. The survey presented various key techniques in

use throughout NED. Firstly, a background of the information retrieval techniques used in the

NED task, such as the vector space model and tf · idf , was presented. The methods through

which these techniques are used to produce clusters of documents was then discussed. The state

of the art in clustering algorithms to solve the NED task was then presented. The chapter

then proceeded to survey the NED task in an on-line social stream setting. The key technique

utilized here is the temporal property introduced by Shakaki et al. [3]. The survey continued

on to discuss how various authors used locality sensitive hashing to solve the nearest neighbour

problem and thus making clustering algorithms feasible in the on-line social stream context. The

NED section of the survey concluded with a discussion of the use of semantics to improve system

performance. The Twitter stream was then surveyed. Its properties and the challenges it brings

to the NED task were discussed. Various state of the art systems that operate with Twitter

were then presented. Finally, chapter 2 concludes with a discussion of the baseline system and a

critical analysis of the survey.
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To create an on-line NED system that operates with social streams and is capable

of detecting structured live events.

This objective was fully achieved. NEDISS represents a NED system that is capable of detecting

structured live events in an on-line social stream setting. The system was designed and imple-

mented using the state of the art survey. The focus of this work was to detect events during live

soccer matches using the Twitter stream, and NEDISS was implemented and evaluated within

this area. The system architecture and implementation was entirely the work of the student.

To evaluate this system in comparison to a highly published baseline system.

Chapter 5 presents the evaluations that fulfill this objective. The SportsSense [36] system was

chosen as the baseline system because of its reliance on the highly published temporal heuristic,

first presented by Shakaki et al. [3]. The student implemented this system entirely as described

by the authors. The experiments presented in chapter 5 represent a comprehensive evaluation of

NEDISS. A comparative study was preformed between NEDISS and the baseline system, using

an experimental dataset with annotated real world events. Furthermore, various aspects of the

NEDISS design were evaluated. Firstly, a comparison between various growth rate parameters

was performed. Secondly, the use of a learned vocabulary versus a provided one was investigated.

Finally, the runtime effects of integrating named entity extraction into the system were presented.

The experiments included a discussion of common accuracy metrics and significance tests were

preformed where appropriate. The findings and conclusions drawn from this evaluation are

significant and should aid future researchers with their similar NED systems.

6.3 Contributions

The contributions of this work can be summarized as follows. Firstly, NED systems should not

use the temporal heuristic presented by Shakaki et al. [3] on a global scale. Rather, this heuristic

should be used on a much more granular level, ideally per event. This conclusion can be drawn

from the evaluations between NEDISS and the baseline system. Secondly, this work presents a

comprehensive study on the effects of cluster growth rate within a social stream setting. The

significant differences between the performance of the system with varying values for the growth

rate should motivate further researchers to carefully select their growth rate values. Again, this

difference is evident with the evaluations presented in this work. Finally, this work presents

a real implementation of an on-line NED system with Twitter using locality sensitive hashing.

The techniques surveyed in the state of the art were used and a comprehensive evaluation was

performed. Future researchers can use the values and evaluations in chapter 5 to compare their

work to NEDISS.
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6.4 Future Work

This report concludes with a discussion of potential future work. Firstly, various authors have

reported success applying semantic analysis not utilized in this work. For instance, Petrovic et

al. [27] used paraphrases to improved NED with Twitter. They also use locality sensitive hashing

and the Twitter stream. It is likely that the use of paraphrases would improve the detection of

low volume events which don’t have a concrete vocabulary associated with them. An example

from this work would be SUBSTITUTION events, as evaluated in chapter 5. Secondly, other

authors have used Out-Of-Vocabulary (OOV) processing to improve the quality of Twitter doc-

uments. Again, it is likely this will improve the output of a system like NEDISS due to the poor

grammar and vocabulary used by Twitter users during live events.

Another area of future work would be in machine learning to create a topic-conditioned classifier.

Yang et al. [13] presented the idea of first separating documents into broad event categories before

performing event detection. They report promising results and this approach lends itself nicely

to structured live events. The idea would be to have the documents separated to each possible

event (GOAL, PENALTY, etc.) before entering the NED system. There is then the potential to

use different NED systems per event, offering finer granularity on the algorithm designs.



Appendix A

Sports Game Keywords

A.1 Soccer Team Keywords

arsenal afc gunners gooners coyg

aston villa villa villans avfc cardiff city

bluebirds cardiffcity cardiff chelsea blues

cfc crystal palace palace eagles cpfc

everton toffees efc coyb fulham

cottagers ffc londonsoriginal hull city hull

tigers utt liverpool reds lfc

pool ynwa manchester city manchester citizens

mcfc manchester united red devils manunited united

manu man u mufc man utd manutd

newcastle united newcastle magpies nufc norwich city

norwich canaries ncfc southampton saints

saintsfc stoke city stoke potters scfc

sunderland black cats safc redandwhitearmy swansea city

swansea swans tottenham hotspur spurs lilywhites

tottenham hotspur coys west bromwich albion west brom

baggies wba west ham united west ham hammers

whufc

Table A.1: Soccer Team names, abbreviations, nicknames and common hashtags
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A.2 Soccer Terminology

goal half time penalty score goals

bpl scored scores offside full time

fulltime halftime yellow card red card sub

substitution replaced by sent off change for corner

premierleague premier league offside off side freekick

free kick handball hand ball

Table A.2: Soccer game terminology

A.3 Confusion Matrices for Various Soccer Mathes

Actual Results

T
e
st

O
u
tp

u
t

Goal Penalty Yellow Red HT FT Sub Null

Goal 1

Penalty

Yellow 2

Red

HT

FT

Sub

Missed 1 1 4

Table A.3: NEDISSL: Swansea Vs. Southampton

Actual Results

T
e
st

O
u
tp

u
t

Goal Penalty Yellow Red HT FT Sub Null

Goal 6 3

Penalty 1

Yellow 3

Red

HT 1

FT

Sub

Missed 2 1 5

Table A.4: NEDISSL: Liverpool Vs. Crystal Palace
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Actual Results

T
e
st

O
u
tp

u
t

Goal Penalty Yellow Red HT FT Sub Null

Goal 1

Penalty 1

Yellow

Red

HT

FT

Sub

Missed 2 1 1 4

(a) Basline System

Actual Results

T
e
st

O
u
tp

u
t

Goal Penalty Yellow Red HT FT Sub Null

Goal 1 1

Penalty 1

Yellow 2

Red 1

HT 1

FT

Sub

Missed 1 4

(b) NEDISS System

Table A.5: NESISS Vs. Baseline: Swansea Vs. Southampton
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Actual Results

T
e
st

O
u
tp

u
t

Goal Penalty Yellow Red HT FT Sub Null

Goal 1

Penalty

Yellow

Red

HT 1

FT

Sub

Missed 3 1 6

(a) Basline System

Actual Results

T
e
st

O
u
tp

u
t

Goal Penalty Yellow Red HT FT Sub Null

Goal 1 1

Penalty

Yellow 3

Red

HT 1

FT 1

Sub 1

Missed 5

(b) NEDISS System

Table A.6: NESISS Vs. Baseline: Manchester United Vs. Sunderland
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