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Summary

Ray tracing algorithms have long since been known as techniques capable of producing
very high degrees of realism in graphics, but at significant computational cost. As
a result, there has been a high degree of research spent on the acceleration of these
algorithms. One such area of research has been in the construction of Bounding Volume
Hierarchies (BVHs). These data structures are used in conjuction with ray tracing and
collision detection algorithms to drastically increase performance. They accomplish this
by helping to eliminate potential intersection candidates within a scene by omitting
geometric objects located in bounding volumes which are not intersected by the current

ray.

The fast and efficient construction of BVHs has been the subject of extensive research
as a result of their effectiveness. One relatively unstudied construction technique is Ag-
glomerative Clustering and in particular Approximate Agglomerative Clustering (AAC).
This research presents an implementation of the algorithm in the Intel Embree Ray Trac-
ing Kernels, which utilise the power of modern multicore CPUs and SPMD techniques.
Recent research advocates the exploration and comparison of new construction tech-
niques and this implementation shows AAC to be a viable option which demonstrates

many advantages over other solutions.
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Chapter 1

Introduction

1.1 Background

Ray tracing algorithms are known for producing highly realistic images, but at a signif-
icant computational cost. Ray tracing generates its images by tracing the light through
pixels in an image plane and simulating the effects of its encounters with virtual objects.
Very high visual realism, usually higher than scanline and rasterization rendering meth-
ods, can be achieved but at this greater computational cost. It is this cost that has led
to the research and implementation of various acceleration structures such as Bounding

Volume Hierarchies (BVHs).

BVHs are tree structures based on a set of geometric objects in a scene. Each object
is wrapped in “bounding volumes” that form the leaf nodes of the tree. These nodes
are then grouped as small sets and enclosed within larger bounding volumes. These,
in turn, are also grouped and enclosed within other larger bounding volumes in a re-
cursive fashion until a single bounding volume has been reached at the top of the tree
(see Figure 1.1). These data structures are then used in conjuction with ray tracing
and collision detection algorithms to drastically increase performance. They accomplish
this by helping to eliminate potential intersection candidates within a scene by omit-
ting geometric objects located in bounding volumes, which are not intersected by the
current ray. The spatial map provided by the structure is used for quickly culling away

superfluous intersection tests. Even though the structures must be rebuilt and updated
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Ficure 1.1: BVH Structure. The objects at the bottom of the image on the right

hand side represent the leaf nodes of the tree, and the smallest bounding volume boxes.

‘A’ represents the root of the tree with ‘B’ and ‘C’ being the disjoint subset of the root
node. [34]

over time while rendering dynamic scenes (the spatial map provided by the structure is
invalidated by scene motion), the efficiency of the structures has made them essential in

any interactive ray tracing system.

As building these BVHs represents a large proportion of the total time to image, there
has been a great deal of research directed at the goal of faster and more efficient BVH
construction. Much research has been on parallel construction on both multicore and
manycore platforms [3, 19, 31], where multicores represent a single component with two
or more independent processors or “cores” and manycores where the number of cores is
large enough (tens/hundreds/thousands of cores) that traditional multi-processor tech-
niques are no longer efficient. Research has demonstrated that a great deal of parallelism
is available and larger performance improvements over serial algorithms are achievable.
Other approaches such as specialised hardware devices have also achieved high perfor-
mance improvements by design of dedicated microarchitectures for the construction of

acceleration structures [3].

The construction algorithm bears as much importance as the architecture it is being
constructed on. Different algorithms such as the binned SAH (Surface Area Heuristic),

Spatial Splits or Morton builds are suited to different architectures and different scenes.
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1.2 Motivation

As research continues to pursue real time ray tracing, there is continued emphasis on
fast BVH construction. The Intel Embree ray tracing kernels are open-source and pro-
vide a framework for fast ray tracing on x86 CPUs and incorporate a number of BVH
construction algorithms and approaches. The kernels provide a great starting point to

implement new construction algorithms and analyse their efficiency and prospects.

1.3 Aims and Objectives

Approximate Agglomerative Clustering (AAC) is a relatively new and unstudied BVH
construction algorithm. This research presents an implemention of the algorithm in the
Embree Ray Tracing Kernels, taking advantage of the kernel’s highly optimised CPU
utilisation techniques. The effectiveness and potential of the algorithm within the kernels
will be observed and evaluated as well as how it may utilise the kernel’s features in order

to contend with other more established construction techniques.

1.4 Dissertation Structure

This report is structured as follows: Chapter 2 provides an outline and discussion of pre-
vious BVH construction approaches and algorithms and the current state of research.
The third chapter presents the Embree Ray Tracer and Kernels as well as the experi-
mental design and implementation of the AAC algorithm. The fourth chapter provides
an evaluation of the implementation and the algorithm. In the final chapter, Chapter 5,

future work in the area is discussed and final thoughts and conclusions are offered.
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State of the Art

BVHs have been extensively used for ray tracing and collision detection. This can be at-
tributed to the fact that they have been proven to represent a good compromise between
traversal performance and construction time. In addition, fast refitting techniques are

available for BVHs [18], making them highly suitable for deformable geometry.

BVHs are typically constructed of binary tress where each node of the tree represents
a bounding volume. The bounding volumes usually take the form of an Axis-Aligned
Bounding Box (AABB) which bounds some subset of the scene geometry. The AABB
corresponding to the root node of the tree bounds the entire scene. The two child nodes
of the root node bound disjoint subsets of the scene, and each scene primitive will be
present in exactly one of the children. The two child nodes can be recursively subdivided
in a similar fashion until a termination criterion is met. Typical termination criterion

involves terminating at a certain number of primitives, or at a maximum tree depth.

For ray tracing, many BVH construction algorithms follow a top-down procedure. Start-
ing with the root node which bounds the entire scene, nodes are split according to a
splitting scheme and child nodes are created. These nodes are further subdivided until
a leaf node is reached. The choice of how to split the nodes can have a profound effect

on rendering efficiency.

This section creates a context for the work of this dissertation by providing details of the

research to date on ray tracing acceleration structures, how they are constructed and in
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what sort of environments or architectures. This context and background research will

allow for a meaningful demonstration and evaluation of work in Chapters 3 and 4.

2.1 Acceleration Structures

Researchers have been achieving interactive ray tracing as early as the 1990s by using
massively parallel supercomputers [10, 21, 23]. Fortunately, the growing capabilities of
modern computers has meant that this compute power is becoming more widely available
and accessible through commodity architectures like GPUs and multi-core CPUs. Since
Reshetov et al.’s “Multilevel Ray Traversal” [24] in particular, ray tracers have been
able to achieve fully interactive frame rates in non-trivial scenes on multi-core desktop
PCs. Subsequently, near real-time performance in ray tracing has been demonstrated on
various different architectures and with a varety of different data structures and traversal

algorithms [29].

For ray tracers to achieve fast, real-time performance, they depend on the use of efficient
spatial data structures such as kd-trees, grids and BVHs. Although there has been a long
running debate as to which data structure is the best, by 2005, most fast ray tracers were
using the kd-tree. As kd-trees are quite costly to build and are not easily incrementally
updated, they are not very well suited to handling dynamic or animated scenes. As a
result, a lot of research has been spent on producing improved and more efficient data

structures which may support dynamic scenes.

This research has led to improved ray tracing of dynamic scenes by using faster and more
efficient data strcutures like the kd-tree, grids and BVHs. These different structures
share various performance-vs-flexibility tradeoffs. Of the three dominant ray tracing
data structures, grids are currently considered to be the fastest structure to build but are
somewhat less efficient for traversal and intersection. Kd-trees are considered the most
efficient for traversal and intersection but are the most costly in terms of construction.
BVHs lie somewhere in between in terms of build time and are close to kd-trees for
traversal performance and so are gaining prominance and favour in ray tracing solutions

and research.
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2.1.1 Kd-trees

Kd-trees are a space partitioning data structure which organises points in a k-dimensional
space. The structure takes the form of a binary tree in which every node is a k-
dimensional point. Every non-leaf node can be thought of as implicitly generating a
splitting hyperplane that divides the space into two parts known as half-spaces. Points
to the left of the hyperplane are represented by the left subtree of that node while points
to the right of the hyperplane are represented by the right subtree. The hyperplane di-
rection is chosen by first associating each node in the tree with one of the k-dimensions,
with the hyperplane perpendicular to that dimension’s axis. Then, for example, if for

[ [

a particular split the “x” axis is chosen, points in the subtree with a smaller “x” value
than the node’s will appear in the left subtree and all points with a larger “x” value
will be in the right subtree. The hyperplane would also be set by the x-value of the
point, and its normal would be the unit x-axis. Kd-trees have been well studied for a
long time and a lot of optimised approaches to replace the simple median splitting con-
struction method have been developed. The most popular of which involves partitioning
of nodes by the SAH [9]. Further research has been undertaken to optimize the SAH
kd-tree construction in areas related to performing sorted-order coordinate sweeps to

compute the SAH and maintaining this sorted order as the bounding boxes are moved

and subdivided [28].

2.1.2 Grids

Another spatial acceleration data structure are grids [1] which partition the space itself
into regions or voxels determined by a grid spacing metric. Each voxel has a list of objects
from the scene that are in the voxel. If an object spans several voxels the object is in
more than one list. When a ray is shot, the voxel where it originates is first inspected.
If the ray hits any objects inside the starting voxel list, the intersections are sorted and
the closest one is retained. If the intersection is in the current voxel there is no need to
intersect any other objects as the closest intersection has been found. If no intersection
is found in the current voxel or the object list is empty, the ray tracing is continued
and the ray is followed into a neighbouring voxel and that voxel’s object list is checked.

Ray tracing continues in this fashion until either an intersection is found, or the space
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partition is completely traversed. Since objects are intersected in roughly the order as
they occur along the ray and trivially reject objects which are far away from the ray, the
number of intersections that need to be performed is vastly reduced. Research has been
conducted on improving the representation and building of grid stuctures in recent years.
Compact and hashed representations and builds for the structures have been shown to
take several important advantages over alternative acceleration structures such as “short

build time, a short time to image, robust ray traversal, and easy implementation” [17].

2.1.3 Bounding Volume Hierarchy

BVHs are tree structures over a set of geometric objects. The leaf nodes encompass
single geometric objects in “bounding volumes”. The leaf nodes are grouped together
as small sets and are enclosed within larger bounding volumes. This grouping continues
until one node is left, representing the root of the tree and a single bounding volume
(see Figure 1.1). Although BVHs are efficient, they can be quite dificult to build. This
has led to efforts to avoid full rebuilding of the structure by relying on refitting the
BVH [18, 30]. Other proposed solutions include coupling refitting techniques with selec-
tive restructuring [36] or infrequent/asynchronous rebuilding [13, 18]. An area lacking in
research is fast rebuilding of BVHs from scratch. Solutions such as Wachter et al.’s [27]
fast spatial-median build have been proposed. The build was originally intended for
s-kd-tree (spatial kd-tree) like Bounding Interval Hierarchies (BIH) but it also applies
for BVHs. Despite allowing for fast rebuilds, the algorithm gives somewhat reduced
traversal performance as an SAH is not used to determine how to best build the hier-
archy, but instead splits are determined at the spatial median. Several properties are

desirable in an efficient BVH when designing for an application [4]:
e The nodes contained in any given subtree should be near each other. The lower
down the tree the nodes are, the nearer they should be together.
e Each node in the hierarchy should be of minimal volume.

e The sum of all bounding volumes should be minimal.



Chapter 2. State of the Art 8

e Greater attention should be paid to nodes near the root of the hierarchy. Pruning
a node near the root of the tree removes objects from further consideration than

removal of a deeper node would.
e The volume of overlap of sibling nodes should be minimal.

e The hierarchy should be balanced with respect to both its node structure and
its content. Balancing allows as much of the hierarchy as possible to be pruned

whenever a branch is not traversed into.

A BVH bearing these desirable properties may demonstrate more efficient build and

traversal times.

Other ray tracing acceleration structures may include BIHs (Bounding Interval Hierar-
chies) or BSP (Binary Space Partitioning) trees but the BVH will be the structure of

choice and focus for this dissertation.

2.2 Construction Techniques

There are three main categories of tree construction methods: top-down, bottom-up
and insertion methods. Both top-down and bottom-up techniques are considered to be
“off-line” methods as they require all scene primitives to be available before construction
starts. Some construction techniques can also be defined as either high-quality builders
or as fast builders, with each opting either for structure quality or the speed of the build,
although current research seeks to parallelise and speed up high quality build techniques

to get the best of both [14, 31].

2.2.1 Top-down

Top-down methods of tree construction begin by partitioning the input set into two or
more subsets. These subsets are then bounded. Subsets are recursively partititioned,
and bounded, into further subsets until subsets contain single primitives i.e. the leaf
nodes are reached. The resulting tree root contains the bounds for the full scene, with

subsets bounding smaller and smaller areas of the scene. Top-down methods are easy
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to implement, fast to construct and the most popular choice of construction techniques

but they do not result in the best possible trees in general.

Top-down build procedures are one of the most researched areas in BVH construction
with one of the most well known methods being the top-down, greedy surface area
heuristic build [20] which tries to maximise traversal efficiency by minimising the SAH
cost at every step. The most widely adopted simplification of the full top-down par-
titioning build is the binned SAH approach [29]. The build procedure begins with an
input of N primitives in a sub-tree that covers a 3D volume V. Assuming the subtree
gets partitioned into two halves L and R with number of triangles N;, and N and with

associated volumes V7, and Vg respectively, the traversal cost can be estimated as:

SAVL)
SA(V)

Ny + MNR) (2.1)

COSt(V%L,R) :KT+K[( SA(V)

where SA(V') represents the surface area of V, and Kr and K are some constants for

the estimated traversal step cost and triangle intersection [29].

The cost estimate is used to perform a greedy SAH build where possible partitions
are evaluated and the one with the lowest expected cost is selected and then recursed.
For a BVH, the “split” partitions the set of triangles into two subsets. As there are
2N — 2 possible partitions, testing them all would be intractable and so the build looks
at parititioning the triangles using planes similiar to the ones used for kd-trees to reduce
the number of partition tests. The planes make it possible to bin the triangles/primitives
into intervals between planes. By using the same techniques which have proven successful

for kd-tree build techniques, the same techniques proved, in many cases, to be even more

efficient for BVHs.

As BVHs can adapt poorly to non-uniformly tessellated scenes, construction algorithms
have also been presented to address these issues. Stich et al. [26] presented an approach
called the Split Bounding Volume Hierarchy (SBVH) which addresses these issues by
utilising spatial splitting similar to kd-trees and using the surface area heurisitc to control

primitive splitting during tree construction.

Other top down construction methods include Lauterbach et al.’s [19] morton code
builder. The technique “uses a linear ordering derived from spatial morton codes to

build hierarchiers extremely quickly and with high parallel scalability”.
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2.2.2 Bottom-up

Bottom-up methods require the leaves of the tree as the input set. The method starts by
grouping two or more of the leaves to form an internal node. Grouping continues in this
manner until everything has been grouped and a single node is left, the root of the tree.
Bottom-up methods are more difficult to implement than their top-down counterparts

but generally produce trees of a higher quality.

Although the preferred approach to BVH construction has been to build the hierarchy
top-down, efforts are being made to explore the viability of bottom-up algorithms [33].
Walter et al.’s approach examines the use of agglomerative clustering to build high-
quality BVHs. Agglomerative clustering is a greedy algorithm which is initialised with
the scene primitives as singleton geometry clusters. The nearest clusters are repeatedly
combined until a single cluster is left which represents all the primitives in the scene.
Although the technique can produce high-quality hierarchies its use has been limited by
its high cost which stems from nearest neighbour computations when joining clusters.
Walter et al. attempt to mitigate this cost by accelerating the search by storing remain-
ing clusters in a kd-tree “constructed using a low-cost, top-down partitioning strategy”
such as coordinate bisection. This means that a cheap, lower-quality hierarchical accel-
eration structure is being used to accelerate the construction of the final, higher-quality
one. The resulting structure can be of high quality but research of faster clustering

techniques is still underway [11].

2.2.3 Insertion

Insertion methods are considered to be “on-line” as they do not require all primtives
to be available before construction starts and therefore allow updates to be performed
at runtime. The tree is built by inserting one object at a time. The location of the
insert is chosen so that the tree grows as little as possible according to some cost metric.
On-line methods have been shadowed by the growing success of top-down and botton-up

construction algorithms.
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2.3 Approaches

As modern processors are becoming increasingly parallel, much of recent work has con-
centrated on parallel construction of BVHs on both multicore CPUs and GPUs in order
to achieve interactive per-frame hierarchy rebuilds. Unfortunately, hierarchy construc-
tion does not scale as well as ray tracing with multiple processors. The difficulty lies
in the fact that parallelisation is not easy to achieve in the first steps of top-down
build procedures. These construction algorithms can also become bandwidth limited
since memory bandwidth has traditionally not increased by Moore’s law like comput-
ing power. Many diverse apporaches to parallelised hierarchy construction have been
proposed to overcome these issues. The architecture the structure is being built on can

play a major role in its construction.

2.3.1 Construction on Multicore CPUs

Some of the first attempts made at parallel BVH construction were implemented on
multicore CPUs. Algorithms were often parallelised by assigning different threads to
work on different sub-trees as sub-trees are independant of each other. The drawback
of these approaches is that they need to have enough independant sub-trees to work on
which is not the case until a number of partitions have been made. In other words, at
the root of the tree, only one subtree is available to work on. After splitting the root,
only two sub-trees are available. Wald’s algorithm strategy to overcome this bottleneck
involves mixed horizontal and vertical work sharing [29]. He distinguished between
the upper and lower nodes of the tree, utilising a more data parallel approach for the
upper nodes and a task parallel per sub-tree scheduling for lower nodes. In addition to
construction, parallel refitting techniques for BVHs have been shown on multicore CPUs

which help to mitigate BVH quality degradation [18].

More recent work on multicore BVH construction can be seen in the Intel Embree set of
ray tracing kernels [5]. The kernels provide a number of build methods which are highly
optimised for modern CPUs and demonstrate ray tracing performance competitive with

popular GPU approaches.
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2.3.2 Construction on Manycore CPUs

Many researchers prefer more high-throughput architectures and so are turning towards
GPUs and more recent manycore CPUs like Intel’s Many Integrated Core (MIC) archite-
cure. While these architectures benefit from significantly higher compute power which
allow them to achieve higher performance they suffer in some other aspects. Their na-
ture of excelling at easy-to-parallelise and compute-intensive tasks like ray tracing and
shading hit points leave them off the pace of CPU performance when it comes to more

control-intensive tasks such as building complex ray tracing data structures.

Recent parallel BVH construction on manycore CPUs was presented by Wald et al. [31]
for the Intel MIC architecure. The MIC architecture consists of 32 x86 cores operating at
a frequency of 1GHz. Algorithmically, this implementation resembles earlier work [29]
by utilising a data parallel approach for large nodes, and task parallel per sub-tree
scheduling for smaller nodes/sub-trees. As addition to this, they use four key concepts to
maximise performance: “progressive 10-bit quantization to reduce cache footprint with
negligible loss in BVH quality; an AoSoA data layout that allows efficient streaming and
SIMD processing; high-performance SIMD kernels for binning and partitioning; and a

parallelisation framework with several build-specific optimizations”.

2.3.3 Construction on GPUs

High throughput GPUs have also found a place in ray tracing. GPU-based algortithms
can achieve build times, of regular data structures like grids, which are just as fast as
those of manycore CPU-based approaches. Although CPUs retain an edge when building
more complex data structures like BVHs with SAH, feasible SAH and similarly efficient
builds have been presented on GPUs.

A breadth-first parallelisation of binned SAH BVH construction has been shown to be
effective on GPUs by Lauterbach et al. [19]. A new thread in the build is generated for
each child node, allowing for a large number of concurrent threads to effectively utilise the
GPU, boosting parallelisation significantly. An alternative hybrid LBVH/SAH scheme
was also proposed to extract more parallelism at the top of the tree as the work at the

top of the BVH structure is inherently sequential. The authors extended this to the
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Hierarchical LBVH, to take greater advantage of data coherence [22]. Further research

on the HLBVH has produced faster and more efficient implementations [8, 14].

Another fast approach to binned SAH BVH construction on the GPU was proposed by
Sopin et al. [25]. Like other algorithms, nodes are differentiated by their size in order
to more efficiently assign tasks to the GPU. Sopin et al.’s approach utilises a larger
number of cores for upper nodes and assigns fewer cores per node as the nodes become
smaller. The proposed method demonstrated more than tenfold increases in performance
compared to other GPU implementations and as such is among the fastest published

implementations of the binned SAH BVH construction algorithms.

2.3.4 Construction on Dedicated Acceleration Architectures

Until recently, the aspect of dedicated microarchitectures for the construction of BVHs
has been largely absent in research with the majority of the research that does ex-
ist on the subject being focused on the traversal and intersection aspects of the ray
tracing pipeline. This is unfortunate as efficient and promising strategies have been
demonstrated by Doyel et al. [3]. Their custom microarchitecture for the construction

of binned SAH BVHs offers many benefits over alternative approaches:

e Acceleration of up to 10x for binned SAH BVHs compared to manycore platforms.

e Low memory bandwidth due to explicit management of on-chip buffers and local
register file, and the elimination of instruction fetches. A low memory footprint is

also observed.

e Consumption of minimal hardware resources, representing a large efficiency im-
provement over software BVH builds which typically engage almost the entire

chip.

e Indications of power efficiency which are likely to compare favourably to software

implementations running on manycore processors.

Aside from these observations, the microarchitecture does carry some disadvantages.
The design is fixed-function and also consumes a certain amount of hardware real estate.

However, the design is quite configurable in that many parameters of the build can be
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changed and could be coupled with programmable cores. The hardware real estate is

also comparable to previous traversal hardware.



Chapter 3

Experimental Design and

Implementation

This section will cover the high and low-level design of the Approximate Agglomerative
Clustering (AAC) algorithm and its implementation into the Intel Embree ray tracing
kernels [32]. An overview of the Ebmree renderer, kernels and the AAC algorithm will

be given before addressing the actual design and implementation.

To realise the AAC algorithm and investigate its value in an authentic system the Embree
ray tracer and kernels were chosen as a development environment. Although Embree
was not designed to fulfill the needs of a full featured global illumination renderer it
does form a useful basis for research and the kernels can be easily integrated into many
arbitrary CPU based ray tracers. The Embree system was adopted in order to undertake

the implementation and evaluation of the AAC algorithm.

3.1 Embree Renderer

Embree provides a fully functional path tracer to illustrate the performance of the ker-
nels. The photo-realistic renderer is provided in both scalar and vectorised variations
which interface with the kernels through an API (see Figure 3.2). It can be used to
demonstrate how Embree can be used in practice and to measure the performance

achievable by the kernels in realistic application scenarios.

15
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<<interface>>
Device

|ISPCDevice| ‘SingleRayDevice‘ |NetworkDevice ‘| COIDevice |

FIGURE 3.1: Renderer/kernel API device interface. The device API ensures that the
renderer does not have to worry about where the computation is taking place (Xeon,
Xeon Phi, local, remote etc.) [7].

The scalar path tracer is built on top of a set of vector types including vectors, points,
colours, which are automatically and transparetly mapped to low-level SIMD types and
intrinsics. These vector types allow for the implementation of high-level renderers whose
code appears to be scalar but still benefits from vectorization. Besides this, the renderer
contains no other vectorization code and rays are traced individually. The full renderer is
implemented through C++ and utilises several C++ features such as templates, virtual

functions and STL containers.

The path tracer integrator in Embree implements a unidirectional eye path tracer with
quasi-monte carlo sampling, russian roulette termination and local evaluation of direct
illumination. It also supports ambient, directional, point light sources and a HDRI
environment light source with 2D importance sampling. Several non-trivial materials
have also been included like brushed metal and multi-layered metallic paint. Materials
are composed of mutiple base BRDFs (Bidirectional Reflectance Distribution Function)

that can be combined or layered on top of one another.

Although the integrator is simple and does not support advanced techniques such as bidi-
rectional path tracing, photon mapping or multiple importance sampling, it is believed
to be sufficiently complex in code design, shading complexity, and ray distributions to

be representative of a real-world renderer.

When Embree was designed, almost all real-world renderers were tracing single, individ-
ual rays so Embree was also designed for single-ray SIMD kernels. When building for

an 8 or even 16 wide SIMD renderer, a purely scalar approach becomes problematic:

e Addition of extra SIMD lanes to a single-ray SIMD kernel produces diminishing

returns.
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e Even if the single-ray SIMD traversal could be accelerated, Amdahl’s law tells us
that the overall time to frame could never get faster than the scalar renderer can

generate and shade the rays.

To address both issues, the renderer must also be vectorised. This would reduce time

spent on shading and enable the renderer to use faster packet/hybrid kernels.

To this end, an additional SPMD-vectorised version of the path tracer was added to
the Embree system. This path tracer demonstrates the true performance of Embree’s

packet /hybrid kernels for incoherent rays.

A “Single Program, Multiple Data” (SPMD) approach was taken to add a vectorised
path tracer to the renderer. Implementing fast ray tracers can be difficult and imple-
mentations often don’t perform optimally on Intel architectures. This is why the Intel
SPMD Program Compiler (ISPC) was also chosen for the system which is a compiler
for a C-like language with extensions for SPMD programming. The compiler allows for
linking, recursion, function pointers and a programming model that mixes both scalar
and vectorized data. All shading and sampling is written through the ISPC language
and the resulting renderer links to the Embree library where the kernels are accessed

through ISPC bindings in the API layer.

3.2 Embree Ray Tracing Kernels

Embree’s core consists of a set of low-level, high-performance kernels which are specifi-
cally designed for performing two operations: building data structures, and tracing rays.
Simultaneously, the tracing of rays is internally split into two types of kernels: traversing
an acceleration structure and intersecting primitives. These kernels are templated over
a specific primitive representation which means the use of the same traversal kernel is

allowed for different primitive types.

3.2.1 Primitives and Data Structures

The kernels operate exclusively on BVHs which allow for fast single-ray queries by testing

multiple nodes in parallel. A branching factor of four in the structure is currently the
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working standard within the kernels. In particular, a quad BVH (BVH4) is employed
which allows both packet and single-ray kernels to concurrently operate on the same

data structure.

BVH4 Spatial Index Structure

struct Noded {
ssef minx, miny, minz;
I I I I I ssef maxx, maxy, maxz;

/ \ Noded* child[4];
}

\ struct Triangled {
ssef vO0x,v0y,v0z;

Iélélél—l ssef elx,ely,elz;
ssef e2x,ely,el2z;

ssef Nx,Ny,Nz;
ssei 1id0,idl;

FIGURE 3.2: Quad BVH (BVH4). Each node of the structure contains four children
which point to another node or a leaf (e.g. Triangle4 primitive) [35].

Embree also abstracts the definition of a “primitive” from its implementation. This
enables the construction of a BVH in which the leaf nodes contain one or more triangles
defined as vertex indices or pre-gathered/pre-computed vertex data. Structures like the
bvh4i store indices to primitives in their leaves while the bvh4 stores pointers. For a
triangle{1,4,8}{i,v,n} primitive, the first set set of braces represent either 1, 4, or 8
triangles in a SIMD friendly layout while the second set of braces represents whether
the primtive is a record that stores either the vertex indices (i), the actual vertices (v),

or some preprocessed edge and normal data (n).

3.2.2 Traversal and Intersection Kernels

To keep the number of kernels required for traversal and intersection to a minimum,
many features (different BVH and primitive representations, ISAs, intersection tests,

packet vs single-ray queries) are handled through compile-time flags.
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For single-ray SIMD triangle intersection on 4-wide SSE-based architectures, both tri-
angleln and triangledn layouts are supported. The kernels use an improved variant of
the Moller-Trumbore test [16] for intersection. With the triangleln layout, SSE is used
to process x, y, and z in parallel in the same SSE vector. For triangledns, each SSE
vector lane processes a different triangles intersection test and then, a final reduction is
performed to determine which potential hit is the closest. This is generaly faster then

the triangleln approach.

For 8-wide AVX/AVX2-based architectures, triangle8ns are supported which can inter-
sect 8 triangles in parallel. As AVX and AVX2 are also backwards compatible to SSE,

the existing triangle4n variants on AVX can still be used.

On 16-wide Xeon Phis, operations take place on four triangles in parallel using algorithms
described by Benthin et al. [2]. 16-wide SIMD registers of the Xeon Phi are treated as
if they were four parallel 4-wide SIMD units, and processes four different triangles’ (x,
y, z) tuples in parallel. As the Xeon Phi is powerful enough to work on four different

trianglelns for intersection, a special triangle4n data layout is not needed.

For single-ray BVH traversal on architectures with Intel Streaming SIMD extensions
4.1 (SSE 4.1), four child nodes are always tested in parallel. The BVH4 node layout is

designed to efficiently support this and exploit available parallelism.

On architectures with Intel Advanced Vector Instructions (AVX/AVX2), there is no
easy way of exploting 8-wide SIMD when testing four boxes so instead, the kernels use
the same 4-node algorithm as for SSE. The triangle8n representation and new AVX2

instructions like the fused multiply add are also exploited.

An improved version of Benthin et al.’s approach is implemented for single-ray BVH
traversal on the Xeon Phi. The flexibility of the Xeon Phi ISA is exploited to perform

four box tests with x, y, and z in parallel [2].

Embree’s packet kernels are conceptually trivial, compared to the single-ray kernels
which require careful mapping of computations to SIMD lanes. The packet kernels have
all lanes operate on the same triangles respectively while quad-nodes allow for more

efficient control flow as well as spreading of computations out across SIMD lanes. There
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are different implemenations for each of the ISA’s different SIMD widths and kernels in

4, 8, and 16-wide variations.

Hybrid single-ray and packet traversal can be accomplished when using the same data
structure for both packet and single ray queries. This allows for traversal routines to
use packets until a case where rays become too incoherent for packet tracing, in which
case, traversal falls back to single-ray traversal. The hybrid single-ray/packet scheme
ensures the renderer will perform quickly for incoherent rays and fall back to single-ray

kernels for incoherent work even when used by vectorised renderers.

3.2.3 BVH Construction Kernels

Embree exploits a number of different build procedures which are utilised under different
circumstances based on mesh complexity or thread availability for example. Embree
differentiates between high-quality and high-performance builders although all builders

are parallelised, which means that even the high-quality builders are quite fast.

High quality BVH builds are achieved through a combination of object partitioning
and spatial splits [26]. The partitioning is accomplished by SAH binning [29]. At the
top of the tree, a max of 32 bins are used. This number is gradually decreased as the
build moves further down the tree. For the spatial splits, only one plane is tested at
the spatial centre of each dimension. This reduces the SAH quality but is significantly
faster compared to multiple split based approaches [26]. This method also still allows
for splitting the long, diagonal triangles which are the main source of problems for non

spatial split based BVH builders.

Fast BVH builds operate with the SAH binning exclusively and manage triangles using
ranges inside a single array. Binning and partitioning are performed by all threads in
parallel. Once the size of a partitioning task drops below a threshold, it is handled by
a single thread alike to Wald et al. [29].

FEmbree also implements a high-performance morton-code builder following Lauterbach
et al. [19]. The builder exploits task parallelism by using all threads to cooperatively
compute centroid bounding boxes and calculate the list of morton codes which are stored

as 64-bit key/value pairs. Once the morton codes are determined, they are sorted using
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Embree’s own radix sort procedure. The construction of the BVH structure is then
carried out by searching for differences in the morton bits. The construction begins by
having all threads build entire levels of the tree. When enough sub-trees are available,
the second phase begins in which a single thread is assigned per sub-tree. The builder

creates a leaf node as soon as a sub-tree has less than 4 triangles.

3.2.4 Embree Kernel API

The Embree API offers users a thin and straightforward interface for using the kernels.
The low-level nature of the API allows it to support a host of features:
e Defining and committing geometry.

e Building acceleration structures over geometries and defining their type options

e.g. performance VS compactness.

e Performing ray queries and defining their type e.g. single-ray vs 4, 8, and 16 wide

packets.
e Static and dynamic scenes.

Motion blur.

The API abstracts the majority of technical details from the user which means high
performance and fast ray tracers can be built without needing a deep knowledge of the
kernels. The API is also implemented in both C+4 and ISPC to allow for the use of the
vectorised version of the ray tracer. The ISPC version is almost identical to the C++
version with the exception of ISPC specific uniform type modifiers and limiting of ray

packets to native SIMD sizes which the ISPC code is compiled for.

The main data type provided by the API core is the “RTCScene”. RTCScene is a “con-
tainer for a set of geomtries of potentially different types” [12]. A new scene is created by
calling the “rtcNewScene” function and destroyed by calling “rtcDeleteScene”. Once a
call has been made to create a scene, Embree internally chooses the best combination of
data structures and kernels to use based on condition flags which are provided at scene

creation. These flags specify the type of scene that can be created (e.g. static, dynamic)
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and the type of ray query operations that can be performed on the scene. For static
scenes, a single BVH4 is built over the entire scene and constituent meshes and the prim-
itive layout is based on compactness and coherence flags specified by the user. Dynamic
scenes are treated differently and involve the implementation of a two-level hierarchy.
First, a BVH4 is built for each individual mesh in the scene. Then, a top-level BVH4 is
built over these BVHs. The builder used for each stage depends on the specified flags.
Each mesh uses either standard binned SAH for static meshes, the refitting kernel for
deformable meshes, or the morton code builder for truly dynamic meshes. The top-level

builder constructs the over-arching tree using each meshes’ BVH4 root nodes.

3.3 Approximate Agglomerative Clustering

Agglomerative clustering is a greedy algorithm which is initialised with the scene primi-
tives as singleton geometry clusters. The nearest clusters are repeatedly combined until
a single cluster is left which represents all the primitives in the scene. Although the
technique can produce high-quality hierarchies, its use has been limited by its high cost
which stems from nearest neighbour computations when joining clusters. Walter et
al. attempt to mitigate this cost by accelerating the search by storing remaining clus-
ters in a kd-tree “constructed using a low-cost, top-down partitioning strategy” such as
coordinate bisection. This means that a cheap, lower-quality hierarchical acceleration
structure is being used to accelerate the construction of the final, higher-quality one.
The resulting structure can be of high quality but research of faster clustering techniques

like AAC has been underway [11].

Approximate Agglomerative Clustering has been introduced by researchers Gu et al. [11]
as an efficient and easily parallelisable algorithm for generating high-quality bounding
volume hierarchies. The main idea of the AAC algorithm is to “compute an approx-
imation to the true greedy agglomerative clustering solution by restricting the set of
candidates inspected when identifying neighbouring geometry in the scene”. Gu et al.
report that the structures produced by the AAC algorithm are often of comparable or
higher quality than those of top-down, full sweep SAH builds and can be constructed in
less time than the widely used fast SAH builds with “binning” [29].
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The AAC algorithm was developed as a result of interpreting the weaknesses of locally-
ordered or heap-based agglomerative clustering [33]. These techniques suffer from ex-
pensive computation costs at the beginning of the construction process when the number
of clusters to combine is very large. This weakness is a result of initialising one cluster
per scene primitive which means, at the bottom of the tree, each nearest neighbour
search requires a global operation over all primitives “incurring cost at least O(logN)”.
This cost represents a large portion of the total computation and operations to reduce

this cost would speed up the overall procedure exponentially.

Gu et al.’s approach stems from this idea of reducing the computational cost of finding
a cluster’s nearest neighbour. The algorithm restricts the nearest neighbour search to
small subsets of neighbouring scene elements/clusters, reducing the number of elements
which need to be tested on each search. Gu et al. shows that “this approximation
minimally impacts resulting BVH quality but significantly accelerates the speed of BVH

construction”.

The main concept of AAC is to quickly organise the scene primitives into a binary
tree based on recursive coordinate bisection. The leaf nodes of the resulting tree (the
constraint tree) each contain a small set of scene primitives (singleton clusters) which
are relatively close in proximity (see Figure 3.3). BVH construction via agglomerative
clustering then proceeds up with the constraint tree controlling which primitives can be
clustered together. At each node of the tree, a set of un-combined clusters is generated
by taking the union of the set of un-combined clusters of its children. This set is then
greedily reduced and passed up the tree. This continues until the root of the constraint

tree has been reached and the clusters are reduced to a single cluster.

The AAC method follows three distinct phases which include a sorting phase, a “down-

ward phase”, and an “upward phase”.

In the sorting phase, Morton codes are first generated for the scene primitives in relation
to their bounding box centres. The Morton curve, also known as a z-order curve is used
for ordering primitives. The binary fixed-point representation of each coordinate is taken
and expanded and interleaved to form a single binary number. The leaf nodes of the
tree can then be determined by assigning Morton codes to each object in the scene (see

Figure 3.4).
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Interior node:
|P | primitives
CombineClusters(C,U C,.|P|)

Leaf node:
P|<§

FiGURE 3.3: AAC Constraint Tree. “Constraint Tree” with § primitives at the leaves.

At each node, clusters from that node’s children get combined through agglomerative

clustering. At the top of the tree, all clusters have been combined into one cluster
which represents the BVH root node. [11].

~N
1

code= 101011110010

FI1GURE 3.4: Morton Curve and Code Construction. Binary fixed-point representation
of coordinate is taken and expanded and interleaved to form a single binary number. A
Morton curve of the representative points in the scene can be found on the right [15].
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The primitives are sorted by the differences contained in their Morton codes. Gu et al.
prefer a variable-bit raix sort for the operation which is easily parallelised and cheap to
compute. Once the primitives are sorted by their Morton codes they are then used to

construct the BVH in the next two phases (see Algorithm 1).

Algorithm 1 AAC(P)

Input: list of all scene primitives P
Output: BVH containing primitives in P

Compute Morton code for centers of P;
RadixSort P by Morton code;

C = BuildTree(P);

return CombineClusters(C, 1);

The “downward phase” of the algorithm comprises of constraint tree traversal. The
constraint tree, implicit in the morton codes, is traversed recursively through the function
BuildTree. The BuildTree function organises the primitives for clustering as it descends
the constraint tree. At each node or traversal step, the current spatial extent is split
based on the next bit in the morton code (Algorithm 2, line 6). The BuildTree function
is then called on these new child nodes and the phase continues in this way until the

termination criterion has been met (Algorithm 2, line 1).

Algorithm 2 BuildTree(P)

Input: subset of scene primitives P
Output: at most f(|P) clusters containing primitives in P

if (|P|] <) then

Initialise C' with P;

return CombineClusters(C, f(0));
end if
(Pr,, Pr) = MakePartition(P);
C = BuildTree(Pr) U BuildTree(Pr);
return CombineClusters(C, f(|P|))

The final “upward phase” involves the actual bottom-up clustering (see Algorithm 3).
This stage begins once the number of primitives in clusters in the downware phase has
dropped below the threshold §. Once this has occurred, the CombineClusters function
begins the work of clustering primitives as it traverses back up the tree organised by
the BuildTree function. Each call to CombineClusters combines the clusters returned

from the left and right constraint tree nodes. This recombination phase continues up
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the tree until one cluster remains. This reduction of clusters results in the root of the

BVH which contains all primitives in the scene.

Algorithm 3 CombineClusters(C, n)

Input: list of clusters C
Output: list of at most n clusters

1: for all C; € C do

2: C;.closest = C.FindBestMatch(C;);

3: end for

4: while |C| > n do

5: Best = o;

6: for all C; € C do

7: if d(C;, C;.closest) < Best then
8: Best = d(C;, Cj.closest,

9: Left = Cy; Right = Cj.closest;
10: end if

11: end for

12: ¢ = new Cluster(Left, Right);

13: C = C — {Left, Right} + {c};

14: d.closest = C.FindBestMatch(C;);

15: for all C; € C do

16: if Cj.closest € {Left, Right} then
17: C;.closest = C.FindBestMatch(C;);
18: end if

19: end for

20: end while
21: return C;

Once the root of the constraint tree has been reached, the clusters are reduced to a

single cluster (see Algorithm 1, line 4).

The parameters of the AAC algorithm also play a significant role in the speed of con-
struction and quality of the BVH. The two parameters consist of the “cluster count
reduction fuction 7 and the “traversal stopping threshold §”. These parameters affect
how much of the agglomerative clustering is approximated, which in turn affects the

construction cost and the BVH quality.
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3.4 Implementation

The implemenation of the AAC algorithm meant delving into the innards of Embree’s
construction kernels. The kernels use many different classes with quite a bit of ab-
straction which first had to be discerned. The numerous code paths for using different
construction and intersection kernels controlled by the compile time flags also had to be

clearly understood.

Before beginning the work, some setup had to performed to get Embree up and running.
First, the Intel SPMD Program Compiler (ISPC) had to be installed which is used
to compile the vectorised version of the Embree pathtracer. Once ISPC was correctly
installed on the machine, the Kernels and Embree renderer had to be installed and
correctly configured for use which involved some tedious library linking and project

properties arrangement through both the System variables and Visual Studio, the IDE.

Once the working environment for Embree was up and running and a working knowledge

of the kernels was achieved, implementation work could begin.

The Morton code builder of the kernels was the most suitable place to begin development
as some of the functionality required for the AAC algorithm was already present. To test
the AAC algorithm with different scenes during development, the code path selection

was restricted to lead the kernels to use the AAC builder for construction of BVHs.

An AAC_build function was implemented which can be called instead of the Morton

code build. All three of the AAC stages occur in this function.

For the first phase of the AAC algorithm, the computeMortonCodes and radizSort func-
tionality was exploited which was already in place for the pure Morton builder in the

kernels.

The second phase of the algorithm involves travseral of the constraint tree (implicit in the
Morton codes) and splitting of primitives and nodes. This is where the implementation
for AAC diverges from the kernel code. In the other Embree builders, primitives are
represented by the SmallBuildRecord class which stores the start and end of a set of
primitives, the depth of this record as a node, and a reference to its parent node. The

use of Embree data types is exploited by passing an initial SmallBuildRecord to the
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main build function, BuildTree, with all scene primitives similar to the pure Morton

code builder. The beginning of the downward phase can be seen in Listing 3.1.

// Pass initial build record to BuildTree()
SmallBuildRecord br;

br.init (0, numPrimitives);

br.parent = &bvh—>root;

br.depth = 1;

nodeAllocator.reset () ;
primAllocator.reset () ;
_aligned (64) Allocator nodeAlloc(nodeAllocator);

__aligned(64) Allocator leafAlloc(primAllocator);

BuildTree(br, nodeAlloc, leafAlloc, RECURSE, threadIndex);

LisTING 3.1: Beginning of Downward Phase

Once the BuildTree function begins, the input build record primitive count is checked
against the traversal threshold. If the primitive count is above the threshold, the build
record is split into four smaller build records/children which are assigned the current
build record as their parent node. Each of these children are then passed as parameters

to a further BuildTree call as can be seen in Listing 3.2.

// Primitives and Nodes are split

// Each child is passed to another BuildTree() call

for (i = 0; i < numChildren; i++){
children[i].parent = &node—>child(i);
children[i].depth = P.depth + 1;

Clusters[i] = BuildTree(children[i], nodeAlloc, leafAlloc, mode, threadID);

combine (C, Clusters[i]) ;
Clusters[i].depth = P.depth + 1;
node—>set (i, Clusters[i].bounds);

Clusters[i].parent = &node—>child(i);

LisTING 3.2: Primitive and Node Splitting

The algorithm continues in this fashion until the traversal threshold has been reached.

At that point, a Cluster class is instantiated and initialised with the input primitives and
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their bounds. The Cluster class is an implementation of the AAC cluster structure which
contains the same attributes as a SmallBuildRecord with the exception of its vector of
SmallBuildRecords, SBRClusters, representing the clusters in the structure. The Cluster
class also has a number of functions related to it such as FindBestMatch which is used
for calculating a cluster’s nearest neighbour by examining the Morton codes of clusters,

or the combine function which takes the union of two clusters.

In the third stage of the algorithm, the upward clustering begins. At the bottom of the
tree, or when the splitting threshold has been reached through stage two, a cluster is
initialised with those primitives and passed to the CombineClusters function as can be

seen in Listing 3.3.

// Cluster C at bottom of tree initialised with primitives in P
// C passed to CombineClusters ()
Cluster C;
C.bounds = empty;
if (P.size() <= TRAVERSAL_THRESHOLD){
C.SBRClusters.resize(P.size());
unsigned int end = P.begin + P.size();
int j = 0;
for (size_t i = P.begin; i < end; i++){
C.SBRClusters[j] = P;
C.SBRClusters[j].begin = i;
C.SBRClusters[j].end = i + 1;
C.SBRClusters[j].
jt++;

depth P.depth;

}

C.parent = P.parent;
return CombineClusters (TRAVERSAL_THRESHOLD, C, nodeAlloc, leafAlloc, 1, «
threadID);

LisTING 3.3: Cluster Initialisation and Beginning of Bottom-up Clustering

In the Combine Clusters function, the clusters are paired with their nearest neighbour
using the FindBestMatch function which examines the Morton codes of the clusters’
primitives for changes. Once each cluster’s nearest neighbour is calculated, the clusters
are combined together until n clusters remain (n represents the clustering threshold as
opposed to the splitting threshold delta used in the downward phase of the algorithm).

The clusters are combined by choosing the pair of clusters with the shortest distance
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between them and combining them together. The list of cluster’s nearest neighbours are
then recalculated after the change. This procedure of cluster combination continues until
a threshold n has been reached. When this happens the cluster is returned. The clusters
returned from this function are combined using the Cluster class’ combine function and
this cluster’s bounds are then assigned to the current node. This procedure continues
until all clusters have been combined and only a single cluster remains, representing the

root node of the tree.

Figure 3.5 represents a graphical interpretation of the AAC implementation in the ker-
nels. The image describes the splitting of the nodes and primitives in the second phase
of the algorithm and the synthesis of the node bounds and recombination of clusters on
the way back up the tree. The blue areas of the derivation tree represent the downward
phase while the red areas represent the upward phase. The input to the downward phase
is the inital SmallBuildRecord containing the scene’s Morton ordered scene primitives
and BVH root node. The upward phase produces the finished BVH structure as a result

of the recursive clustering and bounds assignment to the internal nodes of the BVH.

The initial implementation of the AAC algorithm was quite slow and a number of areas
of the code had to be debugged in order for a correct hierarchy to be built for the kernels.
A modified version of refit_toplevel function in the Morton builder was used to run over
the constructed tree to calculate correct bounds and test if at least the tree structure
was correct. Once the program was producing correct trees, some simple optimisations
were made to make the build times more acceptable. Following this, the implementation
was further examined and some initial evaluations of the hierarchies were taken in order

to improve the quality of the trees produced and the performance of their construction.

3.4.1 Parallelisation

The first implementation of the AAC algorithm was performed in a single-threaded
fashion. Once the correct trees were being produced and at a reasonable pace, an
attempt at parallelising the procedure was made. In similar fashion to the Morton
builder, parallelisation was found by assigning different threads to work different sub-

trees as sub-trees are independant of each other. This occurs in the downward phase
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(_]Ulp\_ll cluster C containing primitives in P,

Input: scene primitives P, ! - amnin
BVH containing primitives in P

BVH root node

BuildTree
CombineClusters
Primitives

Cluster

Constraint tree traversal
Bottom-up clustering

FicUure 3.5: AAC Derivation Tree. The scene primitives and BVH root node are
passed in a SmallBuildRecord as input to the algorithm and the downward phases
(blue). The clusters are initialised with primitives at the bottom of the tree and are
passed as input to the upward phase of the algorithm (red) to be clustered, resulting

in the final BVH at the top of the tree as output.

once the number of subtrees available has grown sufficiently large to keep all threads

busy.

At the root of the tree, only one sub-tree is available to work on. After splitting this

sub-tree, only two, or four in this implementation’s case, are available to work on. A

single thread continues to work on the downward phase until a sufficient amount of

sub-trees are created to work on.

Before parallelisation, the BuildTree function was called from the build_sequential AAC

function. For parallelisation, a new build_parallel_AAC function was introduced. BuildTree

is also called in this implementation but the parameters are slightly different. A param-

eter representing the mode type of the build procedure is passed the enum variable

CREATE_TOP_LEVEL which signifies that the BuildTree should be building the “top

level” of the BVH tree only. The BuildTree function was also modified for parallelisation.



Chapter 3. Ezperimental Design and Implementation 32

At the start of the method, the mode parameter is checked. If the mode is to create the
top level of the tree and the number of primitives in the input P is less than a top level
item threshold, P (representing a subset of primitives) is assigned to an index in an array
of build records in the builder “state” class. Once the top level has been created, the
BuildTree function returns to build_parallel_AAC. The new task task_buildSubAACTrees
is then dispatched to the thread scheduler of the kernels. In buildSubAACTrees, the
SmallBuildRecords (primitive subsets) assigned to the build record array previously are
passed to the BuildTree function again, except this time, with a mode set to the enum
variable RECURSE. A thread is assigned to each of these build procedures so as to

construct the sub-trees in parallel (see Listing 3.4.

void BVH4BuilderMorton::buildSubAACTrees(const size_t threadID, const size_t <«

numThreads)

__aligned(64) Allocator nodeAlloc(nodeAllocator);
__aligned(64) Allocator leafAlloc(primAllocator);
while (true)
{
const unsigned int taskID = scheduler.taskCounter.inc();
if (taskID >= g_state—>numBuildRecords) break;
BuildTree(g_state—>buildRecords |[taskID], nodeAlloc, leafAlloc, RECURSE, <«
threadID);
g_state—>buildRecords [taskID|.parent—>setBarrier();

g_state—>workStack.push(g_state—>buildRecords [taskID]) ;

LISTING 3.4: Sub-tree Thread Assignment.

Once the tree is constructed, the top level of the tree structure is refitted using the

Morton builder’s refit method and the threads are released.

3.4.2 Integration with the Kernels

In terms of the actual AAC builder, the biggest problem was to get it cleanly integrated

with the existing build infrastructure, because that infrastructure wasn’t designed for
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agglomerative clustering. There also isn’t any explicit “scalar-only” code path for build-
ing in the kernels at the time of writing. As a result, it took some time to establish how

the builders were working.

3.4.3 Kernel Features Utilisation

A great advantage of implementing AAC in the Embree kernels is that a number of

features and CPU utilisation techniques that the kernels have to offer could be exploited.

One major utilisation of Embree features is the exploitation of the BVH4 structure.
By splitting the primitives and nodes of the tree into four, a quad BVH structure is
used which allows the hybrid packet traversal kernels to be used, meaning both packet
and single-ray kernels can concurrently operate on the same structure which optimises

performance in cases where rays may become too incoherent for packet tracing.

By exploiting Embree’s leaf creation functionality the leaves of the hierarchy can also
employ the kernels primitive abstractions, Triangle{1/4/8}{i/v/n}, which allow for more
efficient SIMD utilisation.

Parallelised and optimised approaches for constructing and sorting Morton codes in
the Morton code builder kernel were also utilised. The implementations of the Morton
code construction and sort algorithms provided in the kernels are highly optimised for
x86 CPUs and thread parallelism and as such, provided a great starting point for the

implementation of the AAC algorithm.
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Evaluation

All results are computed on a 2.80GHz Intel Core i7-4900MQ CPU with 4 cores and 8

threads using the vectorised Embree pathtracer compiled through ISPC.

All implemented code was written in C++ in the Embree kernels. Exhaustive optimsa-
tions were not performed (e.g. alternative to vectors for cluster grouping) and as such
build times for the AAC implementation are not fully representative of actual achievable
times. Fast build times for AAC have been documented by Gu et al. [11] Although build
times are not as fast as possible, they are sufficient enough for comparing the relative

merits of the different BVH building strategies.

The Embree kernels provide some statistical analysis functionality for analysing BVH
hierarchy built times, primitive count, vertices count, SAH, leaf SAH, tree depth and
memory consumption statistics. These features were employed to compare the AAC
algorithm against Embree’s SAH builder, Spatial Splits builder, Morton builder and
Refit builder. The algorithms are compared to one another in a number of different

scenes with different mesh complexities.

At the time of writing, Embree does not support features for using build times as a
precursor to acceleration structure builder choice. As a result, tests are not very well
suited for animated scenes as the type of builder is currently chosen based on whether
a mesh is static, dynamic or deformable alone e.g. if the mesh is deformable, Embree
will use the Refit kernels; if the mesh is dynamic the Morton builder will be used; if the

mesh is static a binned SAH or Spatial Splits approach will be taken.

34
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Model No. Primitives
Gold Sphere 19802

Dragon Bust 422820
Dragon 871322
Demon 935252
Buddha 1087467
Woola 1281039
Imperial Crown of Austria | 4868924
Dragon Bust B 8704016

TABLE 4.1: Model Complexity

(E) Buddha (F) Woola (@) Crown (1) Dragon Bust B

To exploit Embree’s statistical measurements functionality “-rtcore verbose = 27 is
passed at the command line, and the Embree builder prints the surface area heuristic
cost and other useful information after construction. These costs and statistics are

calculated in the bvh4_statistics.cpp file.

Drawing the generated bounding boxes is not supported, however the Embree tutorials
support some cost visualization modes where the number of clock cycles for each pixel

are visualized which can be enlightening.

The models chosen for the evaluations range from quite simple meshes to complicated
ones with primitive counts of up to nine million. The Imperial Crown of Austria is
available on the Embree website courtesy of Martin Lubisch (http://www.loramel.
net). There are a number of scenes included with the Embree package, one of which
is the Gold Sphere scene which was used for evaluation. The models “Dragon” and
“Buddha” were acquired from http://graphics.cs.williams.edu/data/meshes.xml
while the rest of the models were taken from http://www.turbosquid.com/ (Dragon
Bust, Demon, Woola, Dragon Bust B). The primitive counts for each model used can

be seen in Table 4.1 as a measure of complexity.


http://www.loramel.net
http://www.loramel.net
http://graphics.cs.williams.edu/data/meshes.xml
http://www.turbosquid.com/
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As the imperial crown was the only model shipped with the kernels to contain a scene,
the cornell box scene (included with Embree) is used as a container for the rest of the
models for examining both correct lighting of models and correctness of form as a result
of their BVH acceleration structures. The Imperial Crown of Austria and its scene can
be seen in Figure 4.2. The Dragon Bust B model can be seen in the cornell box scene

in Figure 4.3.

R e
‘-...,,~naan-c‘ig

F1GURE 4.2: Imperial Crown of Austria & Scene Render. BVH constructed using AAC
algorithm.

F1GURE 4.3: Dragon Bust B & Cornell Box Scene Render. BVH constructed using
AAC algorithm.
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Running the Embree pathtracer through the command line, the verbose setting is passed
in order to print out BVH construction information. The pathtracer was run with each
model and with each builder in the kernels for a complete comparison to be put together.
The results of hierarchy construction performance and structure quality are presented

in the following sections.

4.1 BVH Build Times

The first evaluations which were made involved looking at the build performance between
the sequential AAC implementation and the parallelised implementation. Figure 4.4
shows a graph of build times in milliseconds plotted against the scene primitive counts
in relation to both implementations of AAC. This allows us to see what impact the

parallelisation of the implementaiton had to the construction of the hierarchies.

The rest of the evaluation work excludes the sequential implementation of the AAC
algorithm and solely compares the parallelised version to the rest of the Embree builders.
A comparison of build performance can be see in Figure 4.5 which once again plots build
times in milliseconds against scene primitive counts in relation to the different build

procedures.

4.2 BVH Quality

The Surface Area Heuristic (SAH) is widely used as a predictor for ray tracing perfor-

mance as it gives the expected cost of tracing a ray through the scene.

Using the SAH, the expected number of box and triangle intersections for a random
line is computed based on the surface areas of the clusters in the BVH tree. SAH
measurements on the constructed BVH for each of the algorithms and scenes are shown

in Figure 4.6.

As well as calculating the BVH structures overall SAH, Embree provides analysis of
hierarchy leaf SAH values also. Leaf quality information can be seen for each of the

algorithms and scenes in figure 4.7.
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FIGURE 4.4: BVH Build Times (AAC)

Model SeqAAC | ParAAC
Gold Sphere 63.5ms 49.8ms
Dragon Bust 433.6ms | 133.1ms
Dragon 916.7ms | 264.4ms
Demon 1161.9ms | 342.7ms
Buddha 963.6ms | 318.4ms
Woola 1285.9ms | 401.4ms
Imperial Crown of Austria | 1720.8ms | 1233.8ms
Dragon Bust B 7470.9ms | 2469.0ms

TABLE 4.2: BVH Build Times (AAC)

4.3 Discussion

The goal of this paper was to examine the effectiveness and merits of the Approximate

Agglomerative Clustering algorithm in relation to more established BVH construction

techniques. These tests and figures recorded provide a good point at which the different

algorithms can be compared.

The build performance differences between the sequential AAC implementation and the

parallelised version were first looked at to measure the impact that the parallelisation

had. The effect of splitting the BVH construction work up by assigning threads to

different sub-trees of the hierarchy had a significant effect on build performance with

the parallelised implementation showing more than a 60% decrease in build time for the

Dragon Bust B model and the growth of the graph suggests that gap would increase
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FIGURE 4.5: BVH Build Times

Model SAH Spatial Splits | Morton | Refit ParAAC
Gold Sphere 12.5ms 28.4ms 14.1ms | 29.9ms 49.8ms
Dragon Bust 99.3ms 190.1ms 82.6ms | 1374 133.1ms
Dragon 192.6ms | 302.1ms 101.2ms | 263.6ms | 264.4ms
Demon 213.1ms | 361.9ms 130.8ms | 318.3ms | 342.7ms
Buddha 239.1ms | 408.8ms 119.2ms | 312.5ms | 318.4ms
Woola 263.4ms | 500.6ms 155.0ms | 450.1ms | 401.4ms
Imperial Crown of Austria | 1134.4ms | 2526.5ms 671.0ms | 753.7ms | 1233.8ms
Dragon Bust B 2321.1ms | 3297.1ms 941.3ms | 2531.8ms | 2469.0ms

TABLE 4.3: BVH Build Times

with further model complexity. Even at relatively low poly counts, the overhead for
handling the threads was worth the speedup achieved as the parallelised version beat
the sequential implementation in all cases. For the rest of the tests the parallelised AAC

algorithm was used to compare against the other builders.

The AAC BVH construction performance was evaluated by comparing its build times
against that of the alternate builders (binned SAH, spatial spltis, morton, refit). Each
of the builder kernels have undergone substantial optimisation and are well knitted
with the rest of the kernels and their features, unlike our implementation of the AAC
algorithm which is quite simple in its implementation and is relatively unoptimised.
Considering this, the AAC algorithm’s performance results show it to be just as fast as

the binned SAH approach and this would suggest that it would be significanlty faster
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FIGURE 4.6: BVH Build Quality
Model SAH | SpatialSplits | Morton | Refit | ParAAC
Gold Sphere 2.22 | 2.22 4.98 4.12 4.94
Dragon Bust 12.47 | 12.61 20.14 19.05 | 20.62
Dragon 8.98 | 8.91 15.05 14.56 | 16.19
Demon 14.41 | 15.23 25.08 23.32 | 24.54
Buddha 9.18 10.54 14.95 14.54 | 16.04
Woola 15.39 | 16.41 24.47 25.52 | 24.63
Imperial Crown of Austria | 10.35 | 10.00 19.44 17.76 | 18.40
Dragon Bust B 17.45 | 16.84 27.66 26.76 | 25.00

TABLE 4.4: BVH Build Quality

after optimisation. The AAC algorithm also performed better than the Spatial Splits
builder which is another high quality builder as the SAH. These three builders were below
the pure Morton and Refit builders performance times which was expected as they are
designed for high performance and speed. Our AAC approach could also benefit from
some modifications to the implementation such as an alternative approach to storing

clusters as vectors.

In terms of build quality the AAC algorithm’s hierarchies are on par with or slightly
below the Refit and Pure Morton builds with mesh primitive counts of one million and

below. Once the model or scene’s complexity exceeds the one million mark the AAC
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FIGURE 4.7: BVH Build Quality (Leaves).

Model SAH | SpatialSplits | Morton | Refit | ParAAC
Gold Sphere 0.91 | 0.91 1.90 1.92 1.78
Dragon Bust 3.66 | 4.46 7.60 8.19 5.06
Dragon 4.19 | 4.15 11.16 6.62 4.50
Demon 3.89 | 5.64 9.90 10.79 | 6.37
Buddha 2.67 | 4.28 6.59 6.88 4.61
Woola 3.65 | 4.74 9.22 10.06 | 5.90
Imperial Crown of Austria | 2.47 | 2.14 6.73 7.43 3.40
Dragon Bust B 4.39 | 4.87 8.70 9.53 5.04

TABLE 4.5: BVH Build Quality (Leaves)

algorithm’s build quality also begins to rise and surpasses one or both of the high perfor-
mance builders in the three most complex scenes that were tested. Though still a step
below high quality builders like the binned SAH and Spatial Splits, this paper’s simple
implementation could benefit substantially in terms of build quality from some optimi-
sation and tweaking of algorithm variables or the algorithm’s nearest neighbour search
procedure. As Gu et al. [11] report that the AAC-Fast implementation (thresholds or-
ganised for fast build) sacrifices a surprisingly small percentage of quality for increased
performance, AAC was tested with thresholds which represent a fast build. Experimen-

tation of these thresholds could potentially increase the quality of the hierarchies.

The SAH figures recorded for the leaves of the hierarchies are also positive for the AAC
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algorithm. As our implementation creates leaves with single primitives and does not
have a splitting threshold like the pure Morton builder for example, the leaf SAH values
are surprisingly high while the overall SAH could be higher. The splitting threshold used
in builders like the pure Morton builder means the splitting stops once this threshold
is reached and leaves are then created with the primitives in this group, meaning there
are less nodes created (lower tree depth), decreasing overall ray cost, but meaning the
leaf intersection will be generally higher as they are not as well defined as the AAC
implementation. Our implementations beats the leaf quality of the two high performance
builders and is just short of the high quality builders leaf SAHs with all scenes and

models.

Overall, a relatively unoptimised implementation of the AAC algorithm can be seen to
produce BVH structures of a competitive quality at a surprisingly efficient rate compared
to other more established algorithms. Our AAC implementation has shown consistency
in both its performance and its build quality and with some optimisation, could be
significantly faster than the high quality builders and produce hierarchies of similar

quality.
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Conclusion

5.1 Future Work

In terms of future work, there are many avenues which could be taken in order to
improve the Approximate Agglomerative Clustering algorithm within the Embree ray
tracing kernels. The full utilisation of the kernel feature set could significantly increase

construction performance as well as build quality.

Much of the algorithm’s potential may also have been stifled by our own personal im-
plementation. It would be very be interesting to see what performance improvements
could be achieved by replacing the cluster vector approach with something more elegant
and by thoroughly optimising the procedures of the algorithm. It would also be inter-
esting to see the effects that tweaking the algorithm thresholds may have on both build

performance and quality.

As well as making improvements to our own implementation, Gu et al. [11] suggest
the investigation of a “lazy” variant of the AAC algorithm where it may be possible to

leverage the top-down bisection process of the build to achieve laziness.

In terms of evaluation of the work, the AAC algorithm could be tested in an animated
scene using refits and periodic full rebuilds once the build time of the refits has become
greater than that of a full AAC rebuild. Unfortunately this scenario was not readily
available to produce within Embree but is something that would be interesting to look
at in future.

43
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5.2 Conclusion

As Approximate Agglomerative Clustering is a relatively new and unstudied BVH con-
struction algorithm, this research presents an implementation of the algorithm in the
Embree ray tracing kernels in order to observe and evaluate the effectiveness and poten-
tial of the algorithm within the kernels and how it may utilise the kernel’s features in
order to contend with other, more established construction techniques. These aims were
achieved by analysing some important statistical figures of the BVHs that the imple-
mentation produced such as the build times and the SAH of the produced hierarchies.
These figures were compared against a number of different algorithms and a number of

different models to achieve a well-rounded evaluation.

The findings in the evaluation of this implementation suggest AAC to be a promising
algorithm which should continue to be researched and considered a significant competitor

to other construction techniques.

Although BVH hierarchies of the same quality reported by Gu et al. [11] were not
achieved, many avenues for improvement are available, through the Embree kernels and
otherwise, and quality could be improved. As well as a positive outlook on BVH quality,

the performance of the builder was also very competitive.

This paper has shown that a straightforward implementation of the Approximate Ag-
glomerative Clustering algorithm can produce BVH structures of competitive quality
and with efficient performance compared to more established techniques. The AAC im-
plementation presented has demonstrated consistency in both its performance and its
build quality and with some optimisation, could be significantly faster than some of the
high quality builders and produce hierarchies of similar quality. As a result, this research
has shown that Approximate Agglomerative Clusering and Approximate Clustering in
general is a promising BVH construction technique with a lot of potential which the

research community and practitioners should be aware of.
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