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Telemedicine is an important practice that removes the necessity for physical en-

counters between patients and physicians. Combined with the capabilities of re-

mote monitoring systems, a patient can be monitored using physiological sensors

which seamlessly gather data. Using an Internet of Things (IoT) model, non-

invasive physiological sensors that capture a patient’s current health status can

be exposed through a Telemedicine platform. By closely monitoring patient’s vi-

tal signs, physicians can capture a snapshot of a patient’s well being. This is an

important factor in the lives of palliative care patients, where focus is placed on

quality of life.

This dissertation outlines a secure, cloud-enabled Telemedicine solution aimed at

the field of palliative medicine. This dissertation plans to expose the Bluetooth

4.0 protocol in order to provide a multi-stream data transmission protocol of low

and high bit-rate data. Use of an adaptive data stream enables efficient sensor

traffic with capabilities of complex sensor data transmission in emergency situa-

tions and low bandwidth data that can provide episodic updates. Each patient

sensor makes use of a gateway to transmit information to a cloud based service,

which publishes current and historic data for individual patients. Secure storage,

access and transmission of patient data is also an important concern. This dis-

sertation outlines two security mechanisms using a combination of symmetric and

asymmetric cryptography.
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Chapter 1

Introduction

With the technological advancement in Telemedicine in recent years, new concepts

such as wireless body area networks (WBANs), pervasive health monitoring and

management services have become increasingly popular [5]. With the support of

Cloud Computing, WBANs can be enhanced as the cloud offloads complex oper-

ations and provides a scalable and accessible framework that can be made easily

available to care-givers. This paper features research into the design of a system

to provide remote palliative care of patients by highlighting the methodologies

for transmitting vital sign data from Bluetooth sensors through a gateway to the

cloud by using energy-efficient transmission of variable bit rate streams, and data

security mechanisms.

The system architecture integrates three components:

� Wireless Body Area Sensor Network - A network of energy efficient wireless

physiological sensors used to provide the basis for remote patient monitoring

� Gateway - Exposes the sensor network to the wider Internet in order to

expose patient data to the cloud and receive sensor control information

� Cloud application and secure data store - Ubiquitous access and control over

the sensor network and patient data, whilst ensuring data confidentiality and

integrity.

1
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From this, the main areas of research focus are:

� The co-existence of Bluetooth Classic and Bluetooth Low Energy protocols

to act as variable bit rate streams for simple and complex medical sensors

� A Cloud Computing model to provide a central repository for live and his-

toric patient health records

� Secure transmission and storage of patient data to ensure confidentiality

� Share-ability of information - through permissions and leases of patient in-

formation

1.1 Research Problem

The problem addressed by this dissertation is combining the use of variable bit

rate Bluetooth protocols to provide energy efficient transmission of data, which

is published to cloud services through a Bluetooth 4.0 and Internet Protocol (IP)

enabled gateway. The focus is to design a system that caters towards patients

of palliative care that can be used to deliver means of care whilst maintaining a

high quality of life. This necessitates a focus on low power wireless technologies

to provide a non invasive network of biomedical sensors.

Through the Cloud Computing paradigm, the system enables an Internet of Things

(IoT) model over the remote sensor network so that sensors can be individually

addressed and controlled via a ubiquitous platform that also offers access to secured

patient information.

1.2 Motivation

The author of this research was inspired to conduct this dissertation primarily

because of personal experience. Whilst researching the field, Bluetooth 4.0 was

identified as a suitable protocol focus for sensor data transmission in the context of

health care. Its combined use of a dual protocol under the Bluetooth Smart Ready

brand supported the area of palliative medicine because of its multi transmission

capabilities. As a result, the Bluetooth 4.0 protocol became the focus of the

research.
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1.3 Desired Outcomes

The main objective of the proposed solution is to design a Telemedicine system

that aids the care and the preservation of quality of life of patients in palliative

care. The focus of the design is:

• A energy efficient transmission protocol using Bluetooth Low Energy as

a control channel with Bluetooth Classic and Bluetooth Low Energy as

concurrent-capable data channels. Patient data can be transmitted over

different communication channels to ensure timely care can be delivered by

medical professionals.

• To provide a means through which care-givers can access patient data streams,

for example, to control the level of detail in the information gathered from

sensors or how frequently sensors need to publish information, etc. Further-

more, to provide a centralised service that exposes clinical data that can be

accessed by a patient’s carers.

• To ensure access, transmission, and storage of patient data is secured at all

times. A local gateway is used to securely route each biomedical data stream

to the cloud where all information is stored in encrypted form.

The desired outcome is a system that can be used as an effective Telemedicine

platform for terminally ill patients in order to maximise quality of life.

1.4 Document Structure

Chapter 2 will cover the background research that formed the foundation of this

dissertation. Chapter 3 focuses specifically on the Bluetooth 4.0 protocol and

introduces the main focus of the research. Chapters 4 and 5 covers the design and

implementation of the multi-tier telemedicine system and its corresponding proof

of concept. All system performance evaluations are detailed in Chapter 6. Finally,

the document concludes with Chapter 7 following a discussion of future work.



Chapter 2

State of the Art Review

With an overall focus in the context of palliative care, this chapter covers the

detailed research required to design a Telemedicine system introduced in Chapter

1.

This chapter begins by examining the current state of Telemedicine to determine

its role in palliative care, along with its potential benefits and barriers. To provide

the source of biomedical data, wireless medical sensors are then considered to

determine what can be achieved in modern day with small sensors, and what

information can they provide to those who care for palliative care patients.

In order to form a network of sensors, research of wireless body area networks

is carried out to determine their properties to aid care in an energy efficient and

non-invasive manner. To provide transmission capabilities of captured sensor data,

wireless transmission protocols are studied to determine their versatility, through-

put capabilities, energy efficiency, and reliability. Combinations of multiple wire-

less protocols are also explored.

To expose physiological parameters to the Internet, gateways are investigated to

determine their reliability, mobile capabilities and their compatibility with existing

wireless transmission protocols. The Cloud computing model is explored as a

ubiquitous access and control hub of patient data and sensor control operations.

Finally, this chapter looks at how to ensure the confidentiality and integrity of

medical information in a Telemedicine system.

4



Chapter 2 State of the Art Review 5

2.1 Telemedicine

Telemedicine is the use of IT for remote medical consultation. It involves the pro-

vision of clinical services at a distance, removing the need for physical encounters

between patients and physicians, which instead can be replaced by images, video,

data, and voice services. [6]

Palliative care is an area of healthcare that focuses on the quality of life of a

patient when there is no expectation of a medical cure. This typically means that

a patient resides at home and is cared for by a primary carer - a family member or

local palliative care nurse. Symptom control, pain relief and psychological support

are the typical services provided during palliative care. These services may require

frequent visits from a local palliative care nurse/doctor or visits to hospital[7].

Palliative care acts as a support system to help patients live as comfortably as pos-

sible until death and also to help the patient’s family cope during the illness and

during bereavement. Palliative care is predominantly used in instances of symp-

toms caused by cancer. Relief from physical, psychosocial and spiritual problems

can be achieved in over 90% of advanced cancer patients through palliative care.1

There are multiple challenges faced in situations of palliative care:

• Patients may still require visits to hospitals, specialists, etc. to receive addi-

tional care. In some cases, this is made difficult by patients living in isolated

communities and remote regions.

• Having multiple sources of care also can potentially result in the segregation

of patient data as there is no shared central repository of historical clini-

cal data. In some cases this may lead to misinformation shared between

physicians.

• Providing a high quality level of symptom treatment whilst maintaining best

quality of life

1http://www.who.int/mediacentre/factsheets/fs297/en/

http://www.who.int/mediacentre/factsheets/fs297/en/
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The use of Telemedicine in a situation of palliative care provides benefits such as:

� A patient is not required to travel from their home in order to receive medical

consultation, which reduces the need for outpatient visits, thus reducing the

overall cost of healthcare. Patients can instead conduct regular health exams

at home. Physicians can view the data and perform analysis in real time or

at a later stage

� If the Telemedicine service is coupled with a remote monitoring system,

there is no longer a requirement for manual vital sign entry which results in

decreased workload and less chance for error.

� A centralised IT system can provide a medium for collaboration between

medical staff.

� Data collected over long periods of time in a patient’s natural environment

offers a clearer view of the patient’s health to medical professionals com-

pared to short stays at a hospital [8]. This could also give rise to formal

electronic health records (EHR) of patients, which can form the basis for

future research.

When the medical focus becomes about quality of life, measures to ensure such

whilst still providing health services in a way that is non-invasive is hugely im-

portant. [9] outlines a cancer reporting and monitoring Telemedicine system that

focuses on maximising HRQoL (health-related quality of life). The approach uses

cloud computing services to facilitate data access and future collaborative can-

cer research. Alternatively, Telecare and Telediagnosis platforms can be used to

transmit information in the event of an urgent case detection or when required by

the medical personnel [10]. This demonstrates the basis for a Decision Support

System (DSS), where unnecessary data transmission is avoided.

There are however many challenges faced when it comes to Telemedicine [11]:

Infrastructural Issues - Poor bandwidth in some areas while cost expensive in

others.

Viability Issues - In order to implement Telemedicine, training is needed for

medical professionals and IT staff.
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Acceptance Issues - For patients, using high end technology may be too ob-

structing. However, once the benefits are seen, the acceptance rate will

likely be high such as has been seen with mobile telephony and rural Inter-

net services.

Regulations - Restricting laws that govern medical practice. Costs associated

with obtaining licensure.

Financial Barriers - Lack of reimbursement

The application of specialised Telemedicine has shown to improve patient treat-

ment quality and efficiency in various settings [12, 13, 14]. However, there has

been much concern about the quality of research concerning Telemedicine. As

part of a systematic review carried out in 2010 to determine the effectiveness of

Telemedicine [15], it was found that 21 reviews concluded that Telemedicine is

effective, 18 found evidence that Telemedicine is promising but incomplete and 41

that evidence is limited and inconsistent. The problematic themes were nature of

economic analysis, the benefits for patients, and telemedicine as a complex and

ongoing collaborative system. The result found was that information on how best

to use Telemedicine in health care is still lacking - ”Large studies with rigorous de-

signs are needed to get better evidence on the effects of telemedicine interventions

on health, satisfaction with care and costs”. In 2011, the same authors conducted

a review of the methodologies used for assessing Telemedicine systems [16] (50 re-

views). It was found that more comprehensive studies are recommended to provide

evidence for a system’s effectiveness as evidence for effectiveness of Telemedicine

is the primary knowledge gap.

In a traditional Telemedicine patient monitoring system, a patient is equipped

with medical sensors that are capable of transmitting health information to an

external monitoring station. This allows care-givers to analyse, interpret and treat

patients remotely. These devices can be low powered, meaning they do not require

frequent battery changes. For patient’s with a need for more complex biomedical

data, high powered sensors can be used in times of need - for instance, EMG, EEG,

etc. For example, one Telemedicine system outlines a non-invasive, wearable neck-

cuff system capable of real-time monitoring and of physiological signals using a

stethoscope and multiple oximeters. [17]
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(a) Polar H7 heart rate sensor 2 (b) Pulse sensor designed for the Arduino plat-
form 4

(c) Zebris EMG Bluetooth Measuring System
for Recording Muscle Activity 6

(d) Equivital wireless physiological monitor
including ECG and respiratory waveforms 8

Figure 2.1: An example of medical sensors available on the market

2.2 Medical Sensors

In many cases the well being of a person can be determined through the measure-

ment of certain vital signs such as body temperature, heart rate, ECG, EEG. With

the advancement in sensor technology, these vital signs can be retrieved through

very small electronic sensors attached to a body (wearable or implantable), which

are capable of transmitting the information wirelessly to a remote medical data

store.

2http://www.polar.com/us-en/products/accessories/H7_heart_rate_sensor
4http://pulsesensor.myshopify.com/
6http://www.zebris.de/english/medizin/medizin-emg-messung.php
8http://www.equivital.co.uk/

http://www.polar.com/us-en/products/accessories/H7_heart_rate_sensor
http://pulsesensor.myshopify.com/
http://www.zebris.de/english/medizin/medizin-emg-messung.php
http://www.equivital.co.uk/
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There are a number of sensors available on the market that can be used to provide

meaningful health information (see Figure 2.1). This physiological data can take

the form of temperature readings, heart rate, skin conductance, etc. These types of

readings typically require small amounts of information at a time. Other medical

information such as ECG, EMG, etc. demand much higher data rates (see Table

2.1). ECG is a physiological measurement of the rate and regularity of heartbeats.

Its readings provides more detailed information concerning the operation of the

heart compared to a simple heart rate sensor. For patients with cardiovascular

problems, ECG would be a necessary consideration when determining a diagnosis.

As palliative care caters for many different illnesses, it is imperative to support a

variety of sensors. Therefore in order to successfully support different sensor data

rates, appropriate communication capabilities are required.

There are also a variety of sensors that can are now used in different ways to

provide new information to care-givers. For instance, traditional medical tech-

nologies such as Electroencephalography (EEG) have recently been investigated

to provide new diagnostics such as assessing pain within a patient who is unable

to communicate [18]. Similarly, galvanic skin response readings have been shown

to measure distress levels [19]. With these capabilities, it is of interest to build

solutions to provide new means of care. Combining the advances in electronic

sensor technology with traditional health care provides a new way for patients to

be cared for.

Application Data rate Bandwidth (Hz) Accuracy (bits)
ECG (12 leads) 288 kbps 100-1000 12
ECG (6 leads) 71 kbps 100-500 12

EMG 320 kbps 0-10,000 16
EEG (12 leads) 43.2 kbps 0-150 12

Blood saturation 16 bps 0-1 8
Glucose monitoring 1600 bps 0-50 16

Temperature 120 bps 0-1 8
Motion sensor 35 kbps 0-500 12

Cochlear implant 100 kbps - -
Artificial retina 50-700 kbps - -

Audio 1 Mbps - -
Voice 50-100 kbps - -

Table 2.1: Different medical sensors and their corresponding data rates [1]

In order to use medical sensors in a way that is non invasive, they not only have

to be wearable or implantable, they have to consume as little power as possible
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Figure 2.2: Placement of different types of medical sensors on a person [1]

while still providing as much useful physiological data as possible. It would not

be acceptable to assume that a terminal patient would forgo their comfort and

mobility for the sake of remote monitoring. This eliminates sensors that require

frequent charging and/or cumbersome cables/wires. Therefore in order to build a

suitable network of medical sensors, there are some important considerations:

• Duty cycle - How often are sensors active?

• Protocol efficiency - What work is carried out when they are active?

• TX power - How much is the cost of transmission?

• How long do they have to transmit when they are on?

• How much energy does the signal processing consume?

A lot of this is determined by the wireless protocol chosen (see Section 2.4 for

description of wireless protocols). As a result, most radios designed at a low

energy market have been designed to minimise air time.

2.3 Wireless Body Area Networks

A Body Area Network (BAN) encompasses communication between devices that

are supposed to be carried or worn on the body. This includes mobile phones,
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watches, headsets, medical sensors. In a health care context, a BAN consists of

multiple electronic sensors placed strategically on a person. In a wireless body

area sensor network (WBASN), these sensors are wireless and form the basis of

remotely monitoring and tracking information. A WBASN is ideal in the instance

of health care as it can provide a non-invasive method of collecting patient data,

offering greater physical mobility.

However, a WBAN is limited by multiple factors such as memory, interference,

power, computation, communication capabilities. For the purpose of this disserta-

tion, the most important focus of the WBAN is ensuring low power consumption,

high availability, reliable communication capabilities through a wireless protocol.

WBANs can be extended through gateways in order to interface with the cloud.

This means that information formed at a BAN can be transmitted to the wider

Internet/cloud. This is referred to as a cloud-enabled BAN. Health care devices

within a cloud-enabled BAN can send physiological data to a gateway device. [20]

describes a system consisting of an unobtrusive wireless body area network and a

localised health server. Time-stamped patient information is periodically uploaded

the home server, which may integrate this information into a local database for

user’s inspection or it may forward the information further to a medical server.

Other research describes a cloud-enabled WBAN architecture for pervasive health-

care systems using energy-efficient routing, cloud resource allocation, and data

security mechanisms to provide the seamless integration between Mobile Cloud

Computing (MCC) and WBANs [5].

There are many different technologies used in a BAN in order to provide com-

munication between the network of devices. An investigation was carried out to

determine the best protocol capable of to use to providing long term non-invasive

care whilst supporting multi sensor capabilities.

2.4 Wireless transmission protocols

This section is dedicated to covering the most relevant wireless transmission pro-

tocols viable for use in the context of Telemedicine (see Figure 2.2). The protocol

must be capable of outputting physiological data at data rates required for a range

of medical sensors such as ECG and EMG. Moreover, the protocol must offer low
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power consumption capabilities in order to support non invasiveness at a sensor

level by not obstructing the user.

Technology Datarate Operatingspace Peakpower Topology Jointime
Bluetooth Classic 1–3 Mb/s 1–10 m 45mA @ 3.3V Scatternet 3s

Bluetooth Low Energy 1 Mb/s 1–10 m 28mA @3.3V Piconet, Star <100ms
ZigBee 250 kb/s 10–100 m 16.5mA @1.8V Star, Mesh 30 ms
ANT 1 Mb/s 10–30 m 22mA @3.3V Star, tree, or Mesh -

Table 2.2: A comparison of wireless protocol technologies [3]

2.4.1 Bluetooth

Bluetooth is a technology used for exchanging data wirelessly over short distances.

Bluetooth version 4.0 was conceived in 2010. It is made up of two components –

Bluetooth Classic and Bluetooth Low Energy. Bluetooth Low Energy technology is

ideal for applications requiring episodic transfer of small amounts of data. Where

streaming or real time data transfer is required, Classic Bluetooth technology is

the preferred choice as it achieves substantially greater throughput than Bluetooth

Low Energy technology. Both protocols can co-exist in Bluetooth hardware which

is referred to a ”dual mode” or Bluetooth Smart Ready device.

A major advantage with Bluetooth is that billions of mobile phones and PCs have

already embraced the technology. Using a Smart Ready chip, an infrastructure

of billions of devices will quickly become available. Furthermore, combined as a

single chip, a Bluetooth Smart Ready module can save space in an already space

constrained smartphone device. This gives Bluetooth Low Energy a ’free-ride that

will lead to economies of scale for chip vendors, and a vibrant ecosystem of devices

for products to connect to’ [21] - page 176. By 2018, more than 90 percent of

Bluetooth enabled smartphones are expected to be Smart Ready devices9. Ad-

ditionally, the total shipments of Bluetooth 4.0 devices are expected grow to 2.9

billion per year by 2016, with a cumulative shipment figure of over 20 billion by

2017, according to ABI research[22].

The throughput of Bluetooth Low Energy is lower than Bluetooth Classic for

continuous communications, since Bluetooth Low Energy is based on attributes

transfer instead of offering a communication session where data can be transmitted

in as many packets as required, without any size constraint. Therefore, it is

necessary to perform data compression when the amount of data to send is too

9http://www.bluetooth.com/Pages/Mobile-Telephony-Market.aspx

http://www.bluetooth.com/Pages/Mobile-Telephony-Market.aspx
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large to be stored in a Bluetooth Low Energy attribute [23]. Other research

demonstrates a successful approach using an 2-lead ECG sensor with Bluetooth

Low Energy [24]. The approach uses an RS232 connection to collect the ECG data

(a rate of 250 samples per second) through a signal processing unit. The signal

processing unit then converts the data into a Bluetooth profile and transmits the

information to a mobile device for analysis. [25] outlines a portable and low-cost

system for non-invasive and real-time measurement of heart beat, blood pressure,

blood flow and arrhythmias for athletes through the use of Bluetooth. The system

uses an Android smartphone to provide data concerning the response of the body

to fatigue.

In order to obtain maximum benefit from Bluetooth Low Energy, its parame-

ters require fine tuning depending on its use cases [26]. The research provides

experimental results on Bluetooth Low Energy performance evaluation by inves-

tigating the impact of its adjustable parameters. These parameters, connInterval

and connSlaveLatency, represents the time between the start of two consecutive

connection events and the number of consecutive connection events during which

a slave device is not required to listen so that the radio can be powered down.

There is a full chapter dedicated to all research carried out on the Bluetooth

protocol - see Chapter 3.

2.4.2 ANT and ANT+

ANT is a ultra-low power (ULP) wireless protocol that runs in the 2.4 GHz ISM

band. It is designed for ultra-low power, ease of use, efficiency and scalability in

sectors such as sports, fitness, and health. The protocol uses the concept of device

profiles to communicate. Ant have published a list of device profiles online that

can be used within devices. Some examples are blood pressure, muscle oxygen,

and heart rate10. The ANT protocol has been shown to demonstrate the concept

of non-invasive wearable jewellery consisting of heart-rate, galvanic skin response,

and nicotine sensors [27].

ANT+ is an interoperability function that can be added to the base ANT pro-

tocol which provides the collection, transfer, and tracking of sensor data, whilst

10http://www.thisisant.com/developer/ant-plus/device-profiles

http://www.thisisant.com/developer/ant-plus/device-profiles
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maintaining all ULP features of the base protocol. It represents the agreed upon

definitions for what the information is transmitted over the ANT network.

2.4.3 ZigBee

ZigBee is a low-cost, low-power, wireless technology built on top of 802.15.4 MAC/-

PHY. It is designed for small devices of limited processing and memory capabili-

ties, such as wireless sensors. As a result, ZigBee is highly optimised for low-duty

cycle operation of sensing devices (IE a sensor can shut off its radio majority of

the time). This is in contrast to Bluetooth Classic, where a slave needs to keep

synchronisation to the master, resulting in much longer radio on time, and hence

much higher average power consumption [3]. However other research analyses

power consumption for the ANT, ZigBee, and Bluetooth Low Energy protocols in

a cyclic sleep scenario and found that Bluetooth Low Energy achieved the lowest

power consumption, followed by ZigBee and ANT [28]. In some cases it is also

possible to combine two protocols into one solution. For instance, a prototype

referred to as BlueBee acts as a gateway tool that combines the functions and

capabilities of both Bluetooth and ZigBee [29].

2.5 Routing Protocols

In this instance, the term routing protocols refers to the concept of managing

two or more concurrent channels of information that use different protocols. This

provides some useful benefits such as combining capabilities of multiple protocols,

and also heightens its interoperability features. A scheduler and a control protocol

that can manage both Bluetooth Low Energy and ANT wireless protocols at the

same time has been demonstrated [30]. Similarly, [31] demonstrates the concurrent

use of Bluetooth and ZigBee for high capacity multimedia data streams.

Routing protocols for WBANs used in a Telemedicine system must provide:

• Low end to end delay

• Low packet drop rate

• Low energy consumption
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• A throughput to support a variety of sensor devices

2.6 Internet Gateways

A gateway is a link between two devices that facilitates the sharing of information

when no common communication protocol exists between both parties. Gateways

can be used to expose a private network of sensors to the wider Internet, by bridg-

ing the gap between the sensor’s transmission protocol and the Internet Protocol

(IP). Middleware in the gateway can access each sensor device directly as if it were

a collector talking to it locally, while also being capable of receiving IP packets.

For example, using a Bluetooth 4.0 enabled device, a patient’s vital information

can be captured at a WBAN and transmitted to the cloud in order to provide

medical information to care-givers. The gateway acts as an intermediary between

the sensor network and the cloud application, with a responsibility of transferring

the information securely (see Security Section 2.8) via WiFi to the cloud, and re-

laying received commands to an individual or group of sensors. In order to ensure

the longevity of the gateway’s battery, any processing of the information is left

up to the cloud application. As long as the gateway device is in close proximity

of the wearable sensors, the sensors can transmit their data and also receive com-

mands in order to adapt to the requirements of the care-givers. For instance if the

patient’s Bluetooth Smart Ready smartphone acts as the WBAN gateway, data

can be monitored 24/7 as long as the phone is within the vicinity of the sensor(s).

However compared to a laptop/PC, smartphones are limited in computational

capacity and power consumption. For instance, the technical performance of an

Android smartphone as a wireless personal area network (WPAN) has been inves-

tigated [32]. The research concludes that smartphones are capable of functioning

as a gateway in an mHealth context while also simultaneously performing normal

operations, with battery power being the limiting factor.

2.6.1 Internet of Things

The Internet of Things (IoT) refers to the concept of uniquely addressable devices

within the Internet. It is based on the idea that the Internet Protocol could be
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applied to even the smallest of devices. This is an idea that would eliminate the

requirement for gateways in systems operating throughout the Internet.

Standards are being developed for generic gateways and for connecting sensors

directly to IPV6. On December 4th 2013, Bluetooth Special Interest Group (SIG)

announced Bluetooth version 4.1 which provided a software update to all existing

Bluetooth 4.0 hardware. The specification improved integration with Long-Term

Evolution (LTE) and shows an increased interest in pushing Bluetooth into the

area of IoT by laying the groundwork for IP-based connections. The Bluetooth

SIG have also published a white paper describing of RESTful APIs. These APIs,

implemented in a gateway, can allow an Internet client application to find, connect

and operate Bluetooth Smart servers.

6LoWPAN (IPv6 over Low power Wireless Personal Area Networks) is a protocol

definition that enables the transmission of IPv6 packets in low power wireless net-

works, specifically IEEE 802.15.4 [33]. 6LoWPAN is a developing standard from

the Internet Engineering Task Force (IETF). The 6LoWPAN WG is developing

a specification for the transmission of IPv6 packets over Bluetooth Low Energy

[34]. Glowbal IP [35] is an example which provides homogeneous access to devices

through IPv6. It offers a reduction in the overhead of 6LowPAN networks and

the integration of legacy systems that cannot implement IP protocols. Similarly,

ZigBee IP is a scalable architecture that offers end-to-end IPv6 networking capa-

bilities using ZigBee hardware. ZigBee IP enables the IoT without the need for

intermediate gateways.

2.7 Cloud Computing

Cloud Computing refers to the ubiquitous provision of computational resources

across the Internet [36]. Cloud Computing has become a widely accepted com-

puting paradigm. Furthermore, it has been established as a suitable health ap-

plications model for its cost effective services (including data management and

storage, and computational resources) and features (portability, reliability, and

scalability).

• Portability - Data can be accessed and shared globally
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• Reliability - Cloud service providers offer 24/7 monitoring and automatic

updates

• Scalability - Dynamic provisioning of resources based on customer’s needs

Health care related Cloud Computing solutions are grouped into five categories:

• Emergency Medical System (EMS)

• Health Cloud eXchange (HCX)

• Health ATM Kiosks

• Digital Imaging and communications in Medicine (DICO)-based system

• HealthCloud [11]

In the context of palliative care, two models are most relevant:

EMS - Provides access to patient health records and helps to provide care when

required

HCX - A distributed Web interactive system for sharing health records on the

Cloud. HCX also facilitates the sharing of health records between EHR

systems. [37]

The Cloud acts as a perfect medium for Telemedicine, allowing health professionals

to communicate and provide healthcare services through the Cloud application.

Similarly, WBASNs are resource constrained and yet have high demands for real-

time data transmission and processing. These requirements can be met using a

Cloud Computing model by providing processing and storage on demand.

Cloud Computing has had a revolutionary effect on Telemedicine. Serving in-

formation through the Cloud enables better data availability and the sharing of

patient data to authorised parties. This information can form the basis of a pa-

tient’s treatment and also can form insight into things such as disease evolution,

rehabilitation process, the effects of drug therapy etc. However, data security and

legal issues may be the strongest resistance to the adoption of Cloud Computing

in the health IT sector [38].
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Decision support systems can be used to provide automatic actions based on cer-

tain recorded events. For instance, [39] creates an association between patient

data and data levels that indicate an urgent status, which can then be used to

alert care-givers.

2.8 Security and Privacy

When concerned with people’s well being and one’s personal information, con-

fidentiality is a very important consideration. There are a number of security

challenges faced in a Telemedicine system [40]:

• How to ensure the privacy and integrity of the patient’s data, given that the

wireless channel at the BAN and the medical data stored in the cloud are

easily subject to many forms of attack?

• How to ensure that only those who are authorised can access the data?

• How to prevent someone from using captured sensors to recover sensitive

medical information or inject false information?

• How to prevent outsiders from committing replay attacks?

2.8.1 Bluetooth and WBAN Security

It is a challenge to implement traditional security infrastructures in such lightweight

networks, since they are by design limited in both computational and communi-

cation resources. Key management of a WBAN has been identified as a crucial

component to support the security architecture, which is an area not very well

explored [1].

An efficient and energy saving approach known as SEKEBAN has been identified

where the generation and distribution of symmetric cryptographic keys to con-

stituent sensors of a WBAN are managed [41]. Other approaches have utilised the

human body as a medium through which to provide secure inter-BASN commu-

nication [42]. The approach uses the human body as the authentication identity

or the means of securing the distribution of a symmetric cipher key.
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Existing work [43] has provided a review of recent studies in the analysis of Blue-

tooth security issues. Other work [4] classifies a range of threats against the

Bluetooth 4.0 protocol (see Figure 2.3) and provides steps that can be taken to

attempt to reduce the threats as much as possible. The security issues of the

Bluetooth-enabled devices have also been highlighted by demonstrating the pos-

sibility of injecting or recording sounds in Bluetooth enabled headphones without

an authenticated connection. [44].

Surveillance Blueprinting, bt audit, redfang, War-nibbling,
Bluefish, sdptool, Bluescanner, BTScanner

Range extension BlueSniping, bluetooone, Vera-NG
Obfuscation Bdaddr, hciconfig, Spooftooph

Fuzzer BluePass, Bluetooth Stack Smasher, BlueS-
mack, Tanya, BlueStab

Sniffing FTS4BT, Merlin, BlueSniff, HCIDump, Wire-
shark, kismet

Denial of service Battery exhaustion, signal jamming,
BlueSYN, Blueper, BlueJacking, vCard-
Blaster

Malware BlueBag, Caribe, CommWarrior
Unauthorized data access Bloover, BlueBug, BlueSnarf, BlueSnarf++,

BTCrack, Car Whisperer, HeloMoto, btpin-
crack

Man in the middle BT-SSP-Printer-MITM, BlueSpooof, bthid-
proxy

Table 2.3: Bluetooth attacks [4]

According to the Bluetooth 4.0 Core Specification, the security provided through

Bluetooth transmission is 128-bit AES, meaning that all information transmitted

from a Bluetooth device to another is secured. In the context of a Cloud enabled

WBASN, the secured information received from a sensor by the Internet gateway

is then left unprotected.

2.8.2 Gateway security

With the majority of smartphones being both WiFi and Bluetooth enabled, a

smartphone can function as a gateway device for a Bluetooth sensor network (See

below list of Bluetooth Smart Ready enabled phones available on the market).

Functioning as a mobile device, the gateway can be carried around with a patient
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to provide a continuous snapshot of their vital signs. This means that the sys-

tem is not restricted to a patient’s home. A patient can carry out their day to

day activities whilst being monitored seamlessly in the background. This is an

important aspect of palliative care.

Bluetooth Smart Ready smartphones on the market:

• Apple iPhone (5s, 5c, 5 & 4s)

• Google Nexus 5, Nexus 4

• BlackBerry Q10, Z10

• HTC One, One Max

• Motorola Droid RAZR, Ultra, Maxx, Mini, Moto G, Moto X

• Samsung Galaxy Series

• Sony Xperia Series

Depending on the security model used, the gateway may be responsible for en-

crypting all received data traffic. This requires a keystore mechanism. [45] iden-

tifies a Subscriber Identity Module (SIM) card as a potential solution for key and

credential storage for smartphone devices.

2.8.3 Cloud security

With an application hosted in the Cloud, reliability and security become very big

concerns. Trust must be placed in Cloud hosting providers to supply sufficient

security measures. Security issues such as Distributed Denial of Service attacks

(DDoS), confidential data leakage, data ownership and access control are consid-

ered the biggest issues involved in the data storage and sharing of information

through a cloud platform [46].

One model has been identified that does not require trust to be placed in a Cloud

provider - A Host Proof model. No confidential information is ever exchanged

with the cloud in plain text, so any breaches could not expose any secret user

information. However, key management remains one of the limiting factors [47].
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Key management is a critical aspect of a security system. Using a Cloud Com-

puting model, there are multiple options for where secret keys may be stored [5].

Centralised in the Cloud provider

• Advantages - Utilises the scalable computational and network resources

of the Cloud. Relies upon the direct user-to-cloud link.

• Disadvantages - Requires trust in the Cloud provider to not decode

encrypted user data stored on its servers

Centralised in a trusted authority outside of the Cloud domain

• Advantages -Does not require trust in the Cloud provider. May control

access to Cloud data as an intermediary node.

• Disadvantages - Requires maintenance of a scalable authority server by

the client, or trust in a third -party guardian as a paid service

Fully decentralised among users

• Advantages - Requires no additional network elements. Key sharing

may utilise cheap local links such as WiFi or Bluetooth

• Disadvantages - Obtaining keys may require arbitration by an authority

which entails additional traffic. Revocation is inefficient.

2.9 Summary

This chapter has presented a state of the art research into the design of a com-

prehensive secure Telemedicine system that supports the care of palliative care

patients. The following chapter will provide an in depth look at the wireless trans-

mission protocol used to capture physiological data formed at a WBAN through

variable bit rate streams - Bluetooth 4.0.
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Bluetooth

This dissertation describes a wireless body area network solution for palliative care

based on Bluetooth 4.0 technology. Specifically, the proposed solution combines

the use of Bluetooth Classic - for high data-rate, real-time sensor data - and

Bluetooth Low Energy for - low-bit-rate, episodic data and control signalling for

the sensor network. This chapter provides an overview of Bluetooth and will form

the basis for the design and implementation described in later chapters.

3.1 Background

In 2010, the Bluetooth Special Interest Group (SIG) published their Core Specifi-

cation 4.0. It represents two technologies, both designed with different capabilities

[48, 2, 49]:

� Bluetooth Classic - designed as a continuation of the previous versions of

Bluetooth (V1.0 - V3.0), with a focus on high data rates and high throughput

� Bluetooth Low Energy - an entirely new Bluetooth protocol stack aimed at

very low power applications that run off a coin cell battery or similar power

source. This new low energy technology provides a low power alternative to

previous Bluetooth versions, which focused on feature enhancements or an

increase in throughput. As a result, Bluetooth Low Eenergy is not backward

compatible with the previous Bluetooth versions.

22
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SpecificationV ersion ReleaseDate KeyFeatures
1.0 and 1.0a Jul 1999 These were the very first versions of the

Bluetooth specification. The primary
objective was to replace the serial ca-
bles with a wireless link.

1.0b Dec 1999 This version added minor updates to
fix some issues.

1.1 Feb 2001 Bluetooth was ratified as IEEE
802.15.1.1-2002 standard.

1.2 Nov 2003 This release of the Bluetooth standard
added new facilities including Adap-
tive Frequency Hopping (AFH) to pro-
vide better resistance to interference in
noisy environments and Extended Syn-
chronous Connection Oriented (eSCO)
links were added to provide better voice
quality. This was also ratified as IEEE
802.15.1.1-2005. This was the last ver-
sion issued by IEEE and after that
Bluetooth technology evolved indepen-
dently.

2.0 + EDR Nov 2004 This release of the Bluetooth stan-
dard introduced enhancements to the
throughput using Enhanced Data
Rates (EDR). The previous versions of
the standard supported a throughput
of 721 kbps. This version increased it
to 2.1 Mbps. This made it suitable
for applications that required fast data
transfers like file transfer, browsing,
printing, etc.

2.1 + EDR Jul 2007 This version brought in several en-
hancements and add SSP (Secure Sim-
ple Pairing) to both simplify the pair-
ing mechanisms and to improve secu-
rity.

3.0 + HS Apr 2009 This version provided a significant in-
crease in throughput (24Mbps) by in-
troducing the support for multiple ra-
dios.

4.0 Jun 2010 This version went into a completely dif-
ferent direction compared to the pre-
vious versions. While in the previ-
ous versions the main focus was to
introduce new features and enhance
the throughput, this version addressed
the markets where the need was not
for high throughput but of ultra-low
power. This was referred to as Blue-
tooth Low Energy.

Table 3.1: Evolution of the Bluetooth technology [2]
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The Bluetooth 4.0 specification permits devices to implement either or both of

the Bluetooth Low Energy and Bluetooth Classic systems. Those that implement

both are known as Bluetooth 4.0 dual-mode devices, or Bluetooth Smart Ready

devices. On the other hand the term Bluetooth Smart indicates an Bluetooth

Low Energy-only device. A Bluetooth Smart device features a single mode radio,

meaning it only supports Bluetooth Low Energy connections, thus requiring either

a Smart Ready or another Smart device in order to function. Bluetooth Classic

implementations are single-mode devices.

3.2 Bluetooth Classic

Originally introduced in 1994 at Ericsson labs, Bluetooth was conceived as a wire-

less ad hoc peer to peer protocol used to replace RS-232 serial data cables. Operat-

ing in the 2.4 GHz radio frequency, Bluetooth creates a short-range network ideal

for applications requiring streaming capabilities. Since version 1.2, the technology

is defined and maintained by the Bluetooth SIG in its “Core Specification,” which

serves as a uniform structure for devices to inter-operate. Over the years its uses

have grown to support file exchange, voice/audio streaming, GPS, etc. As a result

there are multiple different data rates achievable by the protocol depending on the

protocol version.

� Bluetooth 1.0 - BR (Basic Rate) → supports a maximum data rate of 721

kbps

� Bluetooth 2.0+EDR (Enhanced Data Rate) → supports a maximum data

rate of 2.1 Mbps

� Bluetooth 3.0+HS (High Speed) → further increased throughput to a rate

of 24 Mbps

[Note: Hereafter, Bluetooth Classic will be referred to as BR/EDR. This term is

often used to refer to a device that supports Bluetooth Classic capabilities. Simi-

larly, the Bluetooth Low Energy protocol will be denoted by the term LE]

A BR/EDR use case might be to establish a hands-free connection that persists for

a long period of time to ensure low latency for potential incoming calls. Another
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use case might be to maintain a connection between an external device such as a

mouse peripheral to a PC. There must be low latency between the two Bluetooth

end points, so as not to impact the user experience.

3.2.1 Key Features

Ad hoc - Does not rely on pre-existing infrastructure

Wide range - A range of 10m up to 100m that does not require line of sight

Low power - 10 µA in standby, 50mA while transmitting.

Secure - 128-bit encryption that offers protection against data eaves dropping

Profiles - Availability of real world profiles such as heart rate, proximity, and

alert notification

Interoperable - Operates in the open, license free 2.4 GHz frequency band

3.2.2 Architecture

The Bluetooth architecture comprises multiple layers:

� Controller - Typically a physical device which performs low level operations

such as device discovery, initiating connections, exchanging data packets,

security, low power modes, etc.

� Host - Is exposed to the functionality of the controller in order to perform

serial port emulation, splitting of packets, data streaming, etc.

� Profiles - Responsible for providing a specific use case model for communi-

cating Bluetooth devices

� Applications - Provides the user with the capability of interacting with the

Bluetooth functionality to enable a use case.

The primary Bluetooth functionality can be considered to be split into two logical

parts for each Bluetooth device - the Host and the Controller. The Host executes
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Figure 3.1: Bluetooth classic protocol stack [2]

the upper layers of the Bluetooth protocol stack, typically on a CPU or micro-

controller of a phone/PC etc. The Controller executes the lower layers of the

Bluetooth protocol stack and is typically embedded into the Bluetooth chip. The

Host Controller Interface (HCI) provides an interface between the Host stack and

the Controller. This communication typically happens over UART, RS-232, SD

or USB.

For example, in the scenario of a Bluetooth dongle attached to a PC:

PC → where the Host executes

USB cable → the HCI interface is provided through USB

Bluetooth Dongle → the Bluetooth chip in the dongle represents the Controller

The software for both Host and Controller are independent, meaning that devel-

opment for both can occur simultaneously. Furthermore, the host from one vendor

is fully compatible with the controller of another vendor. This is how USB Blue-

tooth dongles from different vendors are capable of offering Bluetooth functionality

through a PC.
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Communication over the HCI interface occurs in the form of packets. There are

four types of packets that can be sent over the HCI interface:

1. HCI Command Packet → used for sending commands from the host to the

controller.

2. HCI Asynchronous Data Packet → used to exchange data between the host

and controller

3. HCI Synchronous Data Packet → used to exchange synchronous data be-

tween the host and controller

4. HCI Event Packet→ used by the controller to notify the host when an event

has occurred

BR/EDR Stack

This section will cover the BR/EDR protocol stack - see Figure 3.1 for overview.

At a Radio Frequency (RF) level, within the ISM band of 2.4000-2.4835 Ghz,

BR/EDR divides the spectrum in 79 evenly spaced 1 MHz channels. To prevent

interference, BR/EDR uses Frequency Hopping Spread Spectrum (FHSS) where

hopping between frequencies leads to the use of time-slots to control communi-

cation between devices (see Figure 3.2). The Bluetooth Radio is responsible for

transmitting and receiving packets of information on the physical channel. The

radio transforms a stream of data to and from both the physical channel and the

Link Controller.

The Link Controller performs a variety of functions:

• Management of physical channels

• Formation of the piconet and scatternet

• Formation of packets

• Providing Bluetooth radio with packets

• Carrying out an inquiry

• Carrying out a connection and page scan

• Security
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Figure 3.2: Frequency Hopping Spread Spectrum (FHSS) causes the Blue-
tooth device to switch the 1 megahertz (MHz) wide channel 1600 times per

second across all 79 channels available to Bluetooth [2]

• Power management

The Link Manager controls and negotiates the operation of a Bluetooth connection

between two devices. This includes the setup and control of logical transports and

logical links, and for control of physical links. The Link Manager Protocol is used

to communicate between the Link Managers (LM) on the two devices connected

by the Asynchronous Connection Oriented Logical Transport (ACL). The ACL is

used to carry signals, user data and broadcast traffic.

The protocols within Bluetooth can be grouped into two categories: Core and

Adopted Protocols (see Figure 3.1). The Core protocols refer to are the pro-

tocols central to the Bluetooth technology, whereas the Adopted protocols have

originated from existing standards which have been adapted to the Bluetooth

protocol.

The L2CAP protocol (a core protocol) sits above the Baseband layer and provides

data services to the upper layer protocols using ACL links. Communication with

the L2CAP is based on the concept of Channels, where a Channel represents a

data flow between entities. L2CAP performs a variety of major functions:

1. Protocol and Channel Multiplexing

2. Per channel flow control
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3. Error control and retransmissions

4. Streaming channels

5. Quality of Service (QoS)

6. Group Management

There are three main protocols which are used to move data between applications

and the L2CAP layer – RFCOMM, MCAP and AVDTP. Two profiles – HID and

AVDTP – include their own protocol transports and interact directly with L2CAP.

The RFCOMM protocol is the most widely used protocol and is derived from the

GSM 07.10 serial multiplexing protocol. It presents a virtual serial port. This is

covered in detail in Section 3.2.3.

Communication

BR/EDR compatible devices can either function as a Master or Slave. Communi-

cation between a Master and Slave is based on two network topologies - Piconet

and Scatternet.

Piconet - The smallest unit of Bluetooth communication which can consist of a

single Bluetooth Master and up to seven Slaves (see Figure 3.3(a))

Scatternet - Consists of two or more piconets connected with a shared device

(see Figure 3.3(b))

In order to setup a Bluetooth communication between two devices A and B:

• One of the devices (for example B) needs to need in a mode what it can be

found by another device - discoverable

• The other device (A) must be capable of searching for Bluetooth devices

nearby - inquiry

• In order to connection the devices, B must be connectable

• Once a connection is made - paging occurs - device A becomes the Master

and device B becomes the Slave - connected

• In order to finalise communication - disconnection - can be initiated by either

Master or Slave
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(a) Piconet1

(b) Scatternet2

Figure 3.3: Bluetooth BR/EDR Topologies

3.2.3 Profiles

In order to setup a network of communicating Bluetooth modules, both devices in-

volved require defined behaviour and interoperability guidelines. As the technolo-

gies are tailored for different use cases, both subsets of Bluetooth 4.0 use different

profile and service architectures. The Generic Access Profile (GAP) defines the

way in which Bluetooth devices discover each other and make their connections.

It is the most basic of Bluetooth profiles, but is used by every other profile as the

foundation for establishing the link.

1http://www.wirelessdevnet.com/channels/bluetooth/features/bluetooth.html
2http://www.summitdata.com/blog/ble-overview/

http://www.wirelessdevnet.com/channels/bluetooth/features/bluetooth.html
http://www.summitdata.com/blog/ble-overview/
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SIG specifications offer profiles ready for mainstream adoption:

• Serial Port Profile (SPP) - RS-232 serial communication

• Hands Free Profile (HFP) - Hands free phone communication

• Health Device Profile (HDP) - Medical devices

• Dial-up Networking Profile (DUN) - Dial-up Internet connections

• Advanced Audio Distribution Profile (A2DP) - Audio streaming

• Object Exchange (OBEX) - Generic data exchange

The SPP is the simplest of the Bluetooth profiles, which emulates an RS-232 serial

port connection using RFCOMM between two peer devices. A serial port is a nine

pin I/O port that exists on many PCs and can be emulated through USB. It is a

quick and simple way to add wireless connectivity to a device that has an existing

serial port. However, its simplicity is due to the fact that neither the data protocol

nor the data formats are defined. The effect of this is that there is no higher-level

application interoperability within SPP implementations. Designers are required

to define their own protocols and formats.

3.2.4 Security

There are four security modes for Bluetooth access between two devices where a

security mode is determined by the vendor of each device.

1. Non-secure

2. Service level enforced security

3. Link level enforced security

4. Link level enforced security with encrypted key exchange

Devices and its services have different security levels. For devices, there are two

levels - trusted device and untrusted device. A trusted device is a paired device,
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and has unrestricted access to all services. An untrusted device is an unpaired

device, and therefore access is restricted.

Available service security levels depend on the security mode. Services have three

security levels:

• Services requiring authorisation and authentication

• Services requiring authentication only

• Services open to all devices

Bluetooth uses a process in which two devices need to be paired to communicate

with each other. This process, referred to as pairing. The process involves the

exchanging of a 4-digit passkey once two devices have agreed to communicate with

each other. This passkey can be considered as a secret password that is shared

between the two Bluetooth devices. For example, if two mobile phones wanted

to communicate, the user must input the passkey on both devices. The passkey

is then used to create a link key, which is subsequently used for authentication

between the two devices. Once a pairing has been established it is remembered

by the device, eliminating the need to enter the passkey again in the future.

Secure Simple Pairing (SSP) is another pairing process which was introduced to

make the pairing procedure easier for the user. The main goals of SSP was to

protect against passive eavesdropping and man-in-the-middle (MITM) attacks.

Passive Eavesdropping protection - The introduction of 16-digital alphanu-

meric passkeys meant a stronger link key. SSP uses Elliptic Curve Diffie

Hellman (ECDH), which provides very good defence against eavesdropping.

MITM protection - SSP provides two mechanisms to prevent MITM attacks -

Numeric Comparison and Passkey Entry.

Numeric Comparison - The user is required to determine whether two

6-bit numeric codes appear the same on both devices. If the user enters

yes on both devices, then pairing is initiated.

Passkey Entry - The passkey mechanism is used when one device has input

capability and no display capabilities but the second device has display
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capabilities. Similar to Numeric Comparison, the user is required to

input a 6 digit number from the display capable device to the input

capable device. Again, pairing is successful if both numbers match.

In order to provide encrypted communication between two paired Bluetooth de-

vices (authentication/pairing is mandatory in this case), both Master and Slave

must agree. If agreed, all data exchanged is encrypted with an encryption key,

which can be of length 8-bits to 128-bits.

A process known as ‘Just Works’ allows pairing two devices seamlessly and without

any PIN code entry. This can be used in the cases where security is not required

as it provides no authentication. This leaves communication susceptible to MITM

attacks.

3.3 Bluetooth Low Energy

Bluetooth Low Energy (originally Bluetooth Wibree) is a wireless personal area

network technology that became apart of the Bluetooth Standard in 2010, after

having originally been developed by Nokia in 2006. The main goal of this technol-

ogy was to create a protocol with very low energy consumption and low latency.

It achieves this through the design of low duty cycles with burst transmissions.

Although features of the BR/EDR protocol are inherited in the technology, LE is

completely independent of BR/EDR and instead is targeted at new market seg-

ments that haven’t previously used open wireless standards. This typically refers

to use cases where data is required from once a second to once every week or more.

There are many different use cases for the Bluetooth LE technology. Some are:

� Health care - devices such as thermometers, glucose monitors

� Sports and fitness - speedometers, GPS

� Smart homes - presence detection, central heating controls

� Mobile payments - electronic wallet applications

� Locator - pet tracking
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3.3.1 Key Features

Low power - Providing up to years of operation on coil cell batteries. Peak

Current - tens of mA, Idle Mode Current - tens of nA, Average Current

∼µA (assuming <1% duty cycle)

Throughput - Maximum of 305 kbps (in typical use cases however, devices will

not require such a high data rate)

Short range - Supports a typical range of 30m - 100m

Low cost - Cheaper radio chipsets

Robust - Uses a strong 24 bit CRC on all packets ensuring the maximum ro-

bustness against interference and uses frequency hopping to secure a robust

transmission

Very low latency - Connection setup and data transfer can be achieved as fast

as 3ms. In LE it is faster to re-establish a connection instead of keeping a

connection alive like in BR/EDR

Secure - AES-128 for both authentication and encryption

3.3.2 Architecture

LE maintains a layered architecture like BR/EDR and in many ways is very similar

to architecture defined by Bluetooth Classic systems. Both Host and Controller

remain the primary protocol components. The LE stack modifies some of the

existing components such as the L2CAP layer and GAP profile, and also replaces

some layers in an effort to gain power savings.

LE Stack

The LE radio is constrained by the requirement that it can be implemented using

the same Radio Frequency (RF) chain already present in a BR/EDR chip. Like

BR/EDR, it uses the 2.4 GHz ISM band, with (Gaussian frequency-shift keying)

GFSK modulation. It divides the spectrum into 40 channels, each 2 MHz wide,

and incorporates FHSS to avoid interference. Three of these channels are used for

advertising, initiating connections and broadcasting, while the remaining 37 are

used for data transfer during an active connection (see Figure 3.5). The maxi-

mum/peak power consumption is set to less than 15 mA and the average power
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Figure 3.4: Bluetooth low energy protocol stack [2]

consumption is at about 1 µA. A foundation for the low energy consumption is

the very fast connection set-up (few ms) and use of short messages.

Figure 3.5: LE technology, like BR/EDR, features adaptive frequency hopping
in order to secure a robust transmission even in harsh industrial environments3

The LE link layer is responsible for the maintenance of the physical link. LE uses a

very simple link layer with only 5 states to maintain low silicon space and low power

consumption. There are two communication roles defined at the LE link layer -

3http://www.connectblue.com/press/articles/shaping-the-wireless-future-with-low-energy-applications-and-systems/

http://www.connectblue.com/press/articles/shaping-the-wireless-future-with-low-energy-applications-and-systems/
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the Master and the Slave. During an active connection, these devices can assume

either initiator or advertiser. A device that transmits advertising packets is called

an advertiser. The advertising process occurs through advertising channels which

occurs in time intervals referred to as advertising events. In order for a device to

be discoverable, an advertiser must transmit a short messages three times every

few seconds (three times because three frequencies are used for robustness - a

compromise between robustness and low power). A connection between devices is

established through an asymmetric procedure by which an advertiser announces

through the advertising channels that it is connectable. The initiator listens for

such advertisements. When an initiator finds an advertiser, it may transmit a

connection request to the advertiser, thus creating a point-to-point connection

between the two devices.

In order to limit power consumption, slaves are in sleep mode by default and wake

up periodically to listen for potential packet transmission from the master. The

master determines when slaves are required to listen, and thus control access to

the medium using a Time Division Multiple Access (TDMA) scheme [26].

The HCI interface provides communication capabilities between the Bluetooth

Host and Controller (discussed previously in BR/EDR’s Section 3.2.2). It is com-

mon for BR/EDR and LE. However, LE reuses the specification for BR/EDR and

extends it with its own functionality. Similarly with the L2CAP layer, LE reuses

the functionality utilised in BR/EDR and simplifies it with modifications to suit

its own purposes - by supporting a limited number of Channel Identifiers.

While having borrowing some of the original Bluetooth functionality, LE incor-

porates some reductions in functionality such as no support for scatternet (only

supports a single piconet). Through a piconet, LE allows a single master device

to connect with up as many slaves as needed. Additionally, LE is not required to

implement both transmitter and receiver - LE can be either or both.

3.3.3 Attribute Protocol

The Attribute Protocol (ATT) is a mechanism used for name discovery, service

discovery, and reading and writing attributes of remote devices. As previously
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mentioned, the behaviour of a Bluetooth connection is determined by the Blue-

tooth profiles a device has implemented. The ATT provides the means for in-

teracting with attributes of a remote device. It follows a client-server model, in

which the server publishes a set of attributes and a client can discover, read and

write those attributes. The server is also capable of notifying or indicating the

client about an updated attribute.

An attribute represents a piece of data and is made up of four parts. An example

of an attribute might be a heart rate reading, a person’s current temperature,

whether or not a sensor is active, etc.

� Value - represents value of the attribute, e.g. heart rate in BPM

� Type - represents the attribute type so that a remote device knows how to

gain access

� Handle - uniquely identifies an attribute

� Permissions - defines access (read/write/both)

Generic Attribute Profile (GATT) is a service framework for using Attribute Pro-

tocol for discovering services and reading/writing attribute/characteristic values

3.7. There is a short set of terminology required to understand how the GATT

framework functions.

A Client is a device that initiates GATT commands and requests, and accepts

responses (for example an Internet gateway device). A Server is a device that

receives GATT commands and requests, and returns responses (for example an

LE sensor). A Server (slave) is connected with a Client (master), but does not

initiate any complex procedures as it is intended to be simplistic so as to ensure

low cost, low energy, low power. Any complexity is left up to the Client. See

Figure 3.6 for example of GATT interaction.

[Note: Some terminology commonly used: Master ↔ Slave, Client ↔ Server,

Peripheral ↔ Central]

A Characteristic refers to a data value transferred between client and server (a

patient’s heart rate, body temperature etc.). A Service represents a collection

of related characteristics, which operate together to perform a particular function
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(for instance an ECG service, supplying various information concerning a patient’s

heart measurement) - see Figure 3.7. Finally, a descriptor provides additional

information about a characteristic. All services, characteristics, and descriptors

are identified by a UUID.

Figure 3.6: A GATT server transmitting heart rate information to a GATT
client4

There are multiple options available for a client to access the attributes of a server:

Write Request → Request the server to write the value of an attribute and send

an acknowledgement as a response. This command requires an attribute

handle and attribute value as parameters. (The response from the server is

known as a Write Response)

Write Command → Similar to Write Request but does not make use of ac-

knowledgements

Notifications → The client may request a notification for a particular charac-

teristic from the server. The server can then send the value to the client

whenever it becomes available and will periodically transmit to the client

when the value changes. This avoids the need for the client to poll the

server, which would require the server’s radio circuitry to be constantly op-

erational. This command requires an attribute handle and attribute value

as parameters.

4https://developer.apple.com/library/ios/documentation/NetworkingInternetWeb/

Conceptual/CoreBluetooth_concepts/CoreBluetoothOverview/CoreBluetoothOverview.

html

https://developer.apple.com/library/ios/documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth_concepts/CoreBluetoothOverview/CoreBluetoothOverview.html
https://developer.apple.com/library/ios/documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth_concepts/CoreBluetoothOverview/CoreBluetoothOverview.html
https://developer.apple.com/library/ios/documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth_concepts/CoreBluetoothOverview/CoreBluetoothOverview.html
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Indications → An indication is similar to a notification, except that it requires

a response from the client, acknowledging that it has received the message.

This command also requires an attribute handle and attribute value as pa-

rameters.

Figure 3.7: GATT architecture5

Bluetooth SIG provide listings for generic GATT services to enable the devel-

opment of interoperable Bluetooth products. Here is an example of the Blood

Pressure GATT profile:

<!-- Copyright 2011 Bluetooth SIG, Inc. All rights reserved. -->
<Profile name="Blood Pressure">

<Role name="Blood Pressure Sensor">
<Service type="service.blood_pressure">

<Declaration>Primary</Declaration>
<Requirement>Mandatory</Requirement>

</Service>
<Service type="service.device_information">

<Declaration>PrimarySingleInstance</Declaration>
<Requirement>Mandatory</Requirement>
<Characteristic type="characteristic.manufacturer_name_string">

<Requirement>Mandatory</Requirement>
</Characteristic>
<Characteristic type="characteristic.model_number_string">

<Requirement>Mandatory</Requirement>
</Characteristic>
<Characteristic type="characteristic.system_id">
<Requirement>Optional</Requirement>
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</Characteristic>
</Service>

</Role>
<Role name="Collector">

<Client type="service.blood_pressure">
<Requirement>Mandatory</Requirement>

</Client>
<Client type="service.device_information">

<Requirement>Optional</Requirement>
</Client>

</Role>
</Profile>

3.3.4 Security

All LE security functionality is provided through the Security Manager (SM) - pair-

ing, authentication, and encryption. LE borrows terminology from the BR/EDR

protocol and also some of its security mechanisms. LE uses the same pairing

process that is used for the Secure Simple Pairing (SSP) in BR/EDR.

Authentication occurs during initial pairing process. This involves entering a pass

key into one or both devices (similar to BR/EDR). Devices are said to be bonded

when shared secrets are stored. When reconnecting with a device having previously

bonded with, a signed command is sent to the device to authenticate that it knows

the shared secret that was used previously. In order to prevent replay attacks,

part of the command must be a counter that is incremented for each message sent.

After reconnecting, either party can initiate encryption where for each packet sent

a message integrity check (MIC) is included in order to authenticate the sender.

For encryption, LE symmetric cryptography - AES-128 is used to provide keys,

to encrypt and provide integrity checks. There are five main cryptographic keys

used:

1. Temporary Key - used during the pairing procedure

2. Short-Term Key - used as an encryption key the first time the pairing process

occurs. The Short-Term Key consists of the Temporary Key and two random

numbers (contributed by both Slave and Master to provide further security)

5https://developer.apple.com/library/ios/documentation/NetworkingInternetWeb/

Conceptual/CoreBluetooth_concepts/CoreBluetoothOverview/CoreBluetoothOverview.

html

https://developer.apple.com/library/ios/documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth_concepts/CoreBluetoothOverview/CoreBluetoothOverview.html
https://developer.apple.com/library/ios/documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth_concepts/CoreBluetoothOverview/CoreBluetoothOverview.html
https://developer.apple.com/library/ios/documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth_concepts/CoreBluetoothOverview/CoreBluetoothOverview.html


Chapter 3 Bluetooth 41

SingleMode DualMode Classic
Single Mode LE LE none
Dual Mode LE Classic Classic

Classic none Classic Classic

Table 3.2: Bluetooth version compatibility [2]

3. Long-Term Key - used to encrypt the link in circumstances where a device

is reconnected to a previously paired and bonded device

4. Identity Resolving Key - used to provide a device (who knows a peer device’s

Identity Resolving Key) with the ability to resolve a device’s identity

5. Connection Signature Resolving Key - used to give the receiver the ability

to use the signature to authenticate the sender of the message

In LE, every connection that is made uses a different signature - that has no

correlation to any identifying information of the communicating devices. It is not

possible to identify through packet sniffing. In terms of error detection, CRC is

used to protect against all 1, 2, 3, 4, 5 and all odd bit errors.

3.4 Bluetooth Smart Ready

Bluetooth Smart Ready devices feature a dual mode radio, which supports both

BR/EDR and LE wireless connections. A Bluetooth Smart Ready device provides

the functionality of a peripheral and also is capable of initiating a connection, and

again is able to communicate with all older versions of Bluetooth. However for

single mode devices, both LE and BR/EDR, there are some compatibility issues

(see Table 3.2).

As discussed in the previous sections, architectures for both BR/EDR and LE are

similar. Thus, in a dual mode configuration, the implementation of some of the

Bluetooth layers can be shared (see Figure 3.8).

The previous sections have shown that both Bluetooth 4.0 technologies are two

very different protocols with different capabilities and use cases. At its most sim-

plest, BR/EDR is aimed at episodic data transmission whilst LE is tailored towards

episodic communication. When both technologies are combined in a dual-mode
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Figure 3.8: A high level view of the different Bluetooth stacks combined to
make the dual mode architecture (Bluetooth Smart Ready) [2]

implementation, one can for instance, in parallel, connect a number of single-mode

BR/EDR modules as well a number of single-mode LE modules to a Bluetooth
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dual-mode module. This configuration has scope for some interesting health care

use cases.

� Sensors requiring high data rate streams can be transmitted over BR/EDR

(ECG, EMG, etc.) and low data rate over LE (heart rate, body temperature,

etc.).

� To maintain low power consumption, Bluetooth Low Energy can be used in

standby mode

� In a situation of emergency, the most pertinent information is transmitted

over BR/EDR. This ensures that caregivers have the most up to date infor-

mation as quickly as possible.

A dual mode module can use both mediums to receive information - SPP for

continuous streaming data and episodic data transferred via GATT. This idea

forms the basis of a smart sensor that is capable of communicating through multi

bit rate channels.

Figure 3.9: High level view of Bluetooth Smart Ready gateway being used to
expose Bluetooth enabled sensors to the wider Internet

3.5 Summary

This chapter covered both technologies of the Bluetooth 4.0 protocol. Both Blue-

tooth Classic and Bluetooth Low Energy were detailed to establish the basis for
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a prototype that can be used to combine both protocols capabilities under a

Telemedicine platform. This chapter has established the concept of a multi-channel

Bluetooth specification that serves as the foundation of the system design, which

is covered in Chapter 4.



Chapter 4

Design

This chapter covers the design of a Telemedicine system that is used to provide

remote palliative care of patients. The chapter outlines the use of profile driven

medical sensors that make use of a gateway to publish information to a cloud based

service. The cloud service provides access to current and historic data of patients

and forms the basis for a decision support system offering granular control of the

patient sensor network. Security is also an important concern for the system. In

this chapter, two models are discussed.

This chapter begins with a high level design of the system. The following sections

will introduce each component of multi-tier architecture, the communication pro-

tocol and the security mechanisms used to demonstrate a proof of concept for this

dissertation.

4.1 System Overview

The system can be considered as three distinct parts - A sensor network, Internet

gateway and Cloud application (see Figure 4.1).

The sensor network is a WBAN that consists of non-invasive wearable/im-

plantable Bluetooth 4.0 enabled sensors. These sensors can be Bluetooth Smart

or Bluetooth Smart Ready devices. Using a customised GATT profile model, each

sensor can be made accessible to the cloud through a gateway. Each sensor is

independent and communicates with the gateway via Bluetooth when required.

45
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The Internet gateway operates as a Bluetooth Smart Ready hub that routes

individual sensor data streams to the cloud once initiated by the gateway. As a

dual mode device, the gateway is capable of receiving both high (BR/EDR) and

low (LE) bit rate data streams concurrently. In order to control the functionality

of the sensors and the data streams, the gateway operates over a low bit rate

channel once instructed by the Cloud application.

The Cloud application serves as a central service that provides secure access to

current and historic patient information and leverages control over the operation

of the sensor network, which is made accessible through user accounts.

In order to secure all transmission and storage of patient data, two security models

are proposed - both of which combine the strengths of symmetric and asymmetric

cryptography.

4.2 Communication Protocol

As can be seen from Figure 4.1, all tiers of the system are connected via com-

munication links. This requires the design of a message protocol to communicate

from the sensor network all the way to the cloud and vice versa. All communi-

cation is initiated from the cloud application and is thus controlled by the user.

These commands are used to control the current operation of the sensor network.

Through these commands the user is capable of:

� Controlling what sensors transmit over the high and low data rate streams

� Controlling what sensors are currently active or inactive
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Figure 4.1: Sensors ↔ Bluetooth Smart Ready ↔ Internet Gateway
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4.2.1 Packet Design

In order to provide the sensor control requirements the following information is

required:

1. What sensors to select

2. Whether to activate or deactivate a particular sensor

3. Use of BR/EDR (high bit rate) or LE (low bit rate) stream for a specified

sensor

The easiest way to specify an individual sensor is by its Bluetooth characteristic

handle*. [Note: BR/EDR capable sensors do not feature the concept of handles as

they are terms specific to the LE protocol - however as the sensor network’s control

messages are sent using LE, each Bluetooth Smart Ready sensor is assigned a flag

in its GATT profile to control the stream. See Section 3.3.3]. As items 2 and 3

can each be represented by a Boolean value, a single digit is used where 0 denotes

false and 1 denotes true.

* This is defined by the GATT attribute handle of the sensor measurement value.

Due to adoption of generic Bluetooth profiles by SIG - discussed in Section 3.3.3

- characteristic handles may not be unique across multiple patients of the system.

Thus in order to successfully identify a patient stream at a gateway level, more

information may be required. This design assumes handles are unique.

In order to separate the different sections of a message:

SEPARATOR (’:’) to separate the different pieces of information in a message

TERMINATOR (’,’) to concatenate multiple commands into a single message

END (’;’) to denote the end of a command sequence

A single command will therefore take the form:

Handle + SEPARATOR + Active + SEPARATOR + HighDataStreamAc-

tive + TERMINATOR + END

For example: 0x0018:1:0:,;
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The application user also has the option to specify multi-commands to transmit

at once. For example: 0x0018:1:1:,0x0024:1:0:,;. This allows for greater network

throughput.

Handle Active HighDataStream
0x0018 1 1
0x0024 0 0

Table 4.1: Examples of sensor command packets

4.2.2 Cloud → Gateway

Once a message is formed on the cloud server through the application interface, it

is transmitted to the gateway via a messaging server. The gateway, like the cloud

application, acting as a client of the messaging server will be able to receive each

command. This channel between the cloud server and gateway is used as a unidi-

rectional communication pipe. In order for the gateway to initiate communication

with the cloud, it instead uses HTTP.

In order to register with the messaging server, the gateway must have a pre-existing

”profile”. This consists of login credentials (username and password) that must

be configured with the server. The cloud must also complete registration with the

messaging server in the same way. The username and password used for access

to the cloud application is reused for the messaging server. Thus, every time a

user logs in to the application, they are automatically signed in to the messaging

server. As the gateway is also a user of the cloud application, the process is the

same.

To allow communication to occur between a gateway and the cloud application

user, they must both agree on profiles they are willing to communicate with. This

is to ensure that no user is transmitting to a non intended gateway. This step

requires the knowledge of a client’s username (email address). A client can then

request communication access to another client by supplying the username to the

messaging server. To grant this request, the requested client can accept, thus

allowing correspondence between both parties.

In the event of conflicting sensor network commands originating from the different

users at once, the messaging server can alert both users of the occurrence. The

messaging server can keep maintain a record of each last received control message
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for each patient. This information is timestamped so should any messages arrive

in quick succession, the messaging server can detect a potential conflict and warn

both users of the occurrence. These types of scenarios were considered out of

scope.

4.2.3 Gateway → Sensor Network

When a command is received at the gateway, it is placed into a buffer. From here,

the message is deconstructed into segments that can be rearranged to be configured

as an LE command. For instance the incoming command 0x0024:1:0:,; requests

a sensor represented by handle 0x0024 to be activated and to communicate via

the low data stream. In order to control the sensor network in a way that is

efficient, has low overhead, all control messages are sent using LE. [Note: It is

possible to send commands over the serial port - but this was changed in favour

of a lower power approach. However, this is useful in order to support BR/EDR

only devices.]

Once commands are received and parsed, the next step is to separate the BR/ER

commands from the LE commands because both require separate types of Blue-

tooth commands:

Low data rate requested → activate GATT notification command using the

information provided by the cloud

High data rate requested→ enable GATT high data rate characteristic (Write

No Response)

In order to route the Bluetooth messages to their destination, the last piece of

information required by the gateway is the MAC address of each sensor device.

Therefore the gateway holds a mapping from sensor handle to each hardware

address.

Handle MACAddress
0x0018 00:11:22:33:44:55
0x0024 00:11:22:33:44:55
0x003A 11:22:33:44:55:66

Table 4.2: Each sensor handle is mapped to its corresponding hardware ad-
dress
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At this stage, all information required to exert control over the sensor network is

available.

4.2.4 Sensor Network → Gateway

Each sensor stream is individually routed to the gateway once activated by the

gateway. As previously mentioned, both Bluetooth protocols use different mech-

anisms to reach the gateway. BR/EDR communicates with gateway via a serial

port and LE communication occurs using GATT. The gateway can receive both

protocol streams concurrently.

In order to receive BR/EDR data, the gateway must be listening on the serial

port, which buffers all received bytes until the packet’s END (’;’) character. Given

complete control over the protocol that occurs over the SPP, the sensor data

messages are designed to be very simple. Their format is as follows:

HANDLE : DATA ;

Each LE data packet is received through a GATT notification loop. This mecha-

nism does not rely on the gateway polling the sensor as the sensor will transmit

to the gateway whenever new data is available. Unlike the serial port, the LE

protocol is abstracted (uses GATT, which does not offer as much protocol control

as SPP) so the received commands must be parsed in a separate manner. (The

specific format is discussed in Chapter 5’s Section 5.2.2).

Rather than all communication originating from the cloud, sometimes it is useful

for a patient to submit data manually. For instance in a situation of distress, a

wearable panic button can be used by a patient to submit an alert to the cloud.

Any button activity can be registered and transmitted in the sensor data packet

format. The only information this would require is a way to uniquely identify

the event on the cloud server. This could be achieved using a pre defined unique

sensor handle. Receipt of this event on the cloud would signify a panic button

alert. From this point, a decision can be made to alert the users of the abnormal

sensor reading. For instance, send warning email to medical staff supplied with

latest health readings and/or send a text message to the primary carer.
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4.2.5 Gateway → Cloud

All data received at the gateway are parsed and repackaged as JavaScript Object

Notation (JSON) and subsequently transmitted to the cloud application via HTTP

POST. The handle is included in the POST URL as opposed to the message

(the reasoning for this is explained in the security section - see Section 4.6). For

example, if the gateway receives a heart rate reading, the gateway will create the

JSON message:

[

{

"timestamp" : 1399135769 ,

"data" : 72

}

]

. . . and POST to: https:. . . /sensors/data/heartRateHandle

In the situation of server unavailability, the gateway can alternatively write the

data packets to local storage until the server becomes available. On wake up, the

gateway can replay these messages to ensure that no patient information is lost or

unavailable at the cloud.

4.3 Sensor Architecture

The sensor network is made up of one or more Bluetooth Smart/Smart Ready

enabled sensor devices. Each sensor device can be any vital sign measuring device

such as ECG, EMG, heart rate, temperature, etc. that is capable of providing a

digital output. Each sensor device is an individual endpoint and transmits as an

independent stream to the gateway device.

There are two potential models for each sensor that participates within the sensor

network. The chosen model depends on their Bluetooth capabilities and require-

ments. Sensors that require only episodic, low-bit rate data only require LE while

sensors that require higher bit-rate streams would use BR/EDR. All sensor func-

tionality must be exposed to the gateway through a GATT profile in order to

successfully control the network. This section will illustrate the different models

used for different Bluetooth sensors.
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4.3.1 Generic Sensor Model

For every Bluetooth Smart and Bluetooth Smart Ready device participating in the

network, a simple model profile is agreed upon. As LE is the common technology

for both Bluetooth Smart and Bluetooth Smart Ready devices, the profiles take

the form of a GATT profile. This provides compatability for sensors that use

only LE or both LE and BR/EDR. For a single mode classic device, it is possible

to initiate communication from the gateway through serial port. However, this

requires more complexity at the sensor microcontroller.

<profile type="SmartReady">

...

<service name="MedicalSensor" uuid="abcdef">

<characteristic name="MedicalSensorReading" uuid="12345"></characteristic >

<characteristic name="HighDataRateStreamControl" uuid="23456">

</characteristic >

<characteristic name="" uuid=""></characteristic >

</service >

...

</profile >

<profile type="Smart">

...

<service name="MedicalSensor" uuid="abcdef">

<characteristic name="MedicalSensorReading" uuid="12345"></characteristic >

<characteristic name="" uuid=""></characteristic >

</service >

...

</profile >

MedicalSensorReading - A notification characteristic which represents the con-

trol of the LE stream.

HighDataRateStreamControl - A Write No Response characteristic which fa-

cilitates control over the high and low data streams.

It is also possible to add other characteristics to add more behaviour to each sensor.

For instance, if more granular timing control of sensors were required, a charac-

teristic could be added to denote the period of delay between each sensor reading

transmission over the low bit rate channel. This might be useful in situations such

as a doctor requiring hourly updates of a patient’s symptoms.
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4.4 Gateway

The gateway is intended to function as a simple interoperable lightweight device

with a sole responsibility of operating as an intermediary between the cloud and

the sensor network. This means that all Bluetooth messages are communicated to

the cloud via the gateway, and all sensor network commands are communicated

to the sensors via the gateway.

The gateway is designed to be interoperable so that it can function as a gateway

to any patient of the system. This means that the gateway requires the following:

• A mapping of each sensor handle to its device’s MAC address - this is to

ensure that for each cloud command that arrives, the gateway knows what

device to initiate communication with.

• The correct serial port to use to connect with BR/EDR capable sensors

• What cloud application users to receive commands from

The gateway is designed to be as portable as possible, thus requiring low power

consumption. In order to help achieve this:

No complexity in the software design - No complicated processing step re-

quired to route data or commands.

LE control channel - LE is used as the sensor network control channel

Use of GATT notifications - In LE terms, the gateway acts as a client and

each sensor is an individual server. All LE communication occurs over the

air through GATT notifications. The onus is therefore on each subscribed

sensor to send all new patient data. This removes the need for the gateway

to poll individual sensors.

Buffering - All BR/EDR data received at the gateway is buffered to optimise

performance (see Section below).

As both Bluetooth protocols are inherently different by design and in terms of

their transmission capabilities, their respective sensor streams require separate

processing. For BR/EDR, all serial received data is placed in a fixed sized queue.
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This is necessary in order to optimise the stream as the throughput of BR/EDR

is much higher compared to LE, which would cause a bottleneck at the gateway.

Once the queue has reached full capacity, the queue is flushed of its contents, where

each packet is then combined into a single message and submitted via HTTP to

the cloud server. The interaction with the cloud server is designed to asynchronous

so as not to slow down the serial channel events.

The gateway functions as a user of the cloud application. However it differs from

other users in that it has its own set of permissions and roles which permits access

the cloud. With access to the cloud, the gateway can submit data streams that

are received, for each patient. There is no user interaction designed directly with

the gateway as its primary purpose is to act as a mobile intermediary between

the cloud and sensor network. It can therefore be run as a background service on

a smartphone device. A patient can go about their life whilst being monitored

seamlessly in the background. This is an important focus of palliative care.

In order to initially configure the gateway of the system to establish a white list

of allowed devices, it must be capable of scanning for nearby devices, reading

advertisement data and/or profile information. This information could be provided

to the cloud application, where a user can then determine what sensors to associate

with the patient.

In the instance of multiple gateways, for example in the context of a nursing

home environment where multiple patients are within range of multiple gateways,

a stream may be accepted by two or more gateways - leading to wasted bandwidth

and data duplication in the database. This type of scenario is considered as future

work (see Section 7.1).

4.5 Cloud application

The cloud application acts as a central hub of control and access to the system.

It functions as a rich feature-driven application, providing the user with multiple

capabilities to monitor and deliver care for palliative care patients. This is pro-

vided through a central repository for historic and live patient information, which

is made easily accessible to the patient’s carer, medical professionals and any im-

mediate family. Being accessible through the Internet gives caregivers easy access
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to important patient information in order to ensure proper patient care and man-

agement. The cloud application also offers control of patient worn sensors. This

control can also be applied automatically by the application logic. This proves

useful in ambulatory situations, where for example a low data stream sensor has

transmitted an abnormally high/low reading. As a result, the cloud can auto-

matically decide to dynamically enable that sensor over the high bit rate channel,

providing care-givers with the most up to date information.

The cloud application offers:

Control - Determine the operation of the sensor network in real time

Analysis - Viewing and sharing of real time or past patient data (EHR) with

medical staff

Security - Secure access to application and provision of confidentiality

Decision support - Customisable events that are triggered when certain criteria

is met IE abnormal sensor thresholds reached

Access - Multiple permissions providing granular control over all aspects of pa-

tient care - combined with a capability of adding/revoking permissions

As the application is the sole way of providing the user with access to the system,

it is designed to be UI centric. This inspired the use of the Model View Controller

(MVC) software design. MVC is a software pattern used in UI-driven applications.

The pattern is made up of three parts:

� Model → Manages the behaviour and data of the application domain, re-

sponds to requests for information about its state (usually from the view),

and responds to instructions to change state (usually from the controller)

� View → Manages the display of information

� Controller → Interprets the mouse and keyboard inputs from the user, in-

forming the model and/or the view to change as appropriate

Access to the cloud application is granted through user profiles. A user is required

to sign up - by entering a username and password pair, along with some patient
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Figure 4.2: Model View Controller design1

information. This process creates a primary carer account. To create further

accounts of different profiles (family, nurse, etc.), they can be created from the

primary carer account. Therefore initial full access to the application is granted to

only the patient’s carer. Any further access is granted through leases. For instance

a palliative care team may be given access for a certain time frame, whereas for

example the oncology consultant may have 24/7 access.

When receiving patient data on the cloud as JSON, it is immediately stored in

the database. In order to allow the user to visualise patient data, a graphing UI

tool is used to plot health information requested by the user. To capture a real

time physiological snapshot, data is periodically fetched from the database and

updated on the view.

4.6 Security

This section details the provision of security mechanisms in the system. Two

security models are outlined, which provide methods for authentication and for

ensuring the privacy and integrity of patient data.

1http://en.wikipedia.org/wiki/File:MVC-Process.png

http://en.wikipedia.org/wiki/File:MVC-Process.png
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Security at Sensor level

Other than the level of protection already provided by both Bluetooth protocols,

this dissertation does not contribute any extra security features at a sensor network

level.

Security at Gateway and Cloud levels

There are two separate approaches taken towards the system’s security at the

gateway and application layers. Both approaches provide a trade-off between data

protection and application fragility:

1. Trusted server model - Symmetric and Asymmetric keys will exist in

memory on the server when required for encryption/decryption purposes,

but the patient data store is encrypted at all times

2. Host proof model - No trust is placed in the server and therefore all secret

keys exist only on the client. Like the previous model, all patient data is

stored in encrypted form

This section will begin by introducing some of the technologies used in both ap-

proaches.

4.6.1 Symmetric Key Cryptography

Symmetric encryption is a type of encryption where data can be encrypted and

decrypted using the same key. The key acts as a shared secret between two or

more parties, meaning that all communicating parties must possess the same key,

thus requiring an initial exchange of the key. This exchange can be achieved using

another form of cryptography known as asymmetric key cryptography.

4.6.2 Asymmetric Key Cryptography

Asymmetric encryption is a type of encryption that relies on the existence of two

keys - a public and a private key pair. Both keys are mathematically related,

however it is computationally infeasible for a private key to be determined from

its corresponding public key due to the difficulty of factoring large integers.

2http://www.ia.nato.int/images/nia/pki/smime-01.jpg

http://www.ia.nato.int/images/nia/pki/smime-01.jpg
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Figure 4.3: Simple illustration of symmetric key cryptography2

The public key is a non-secret key which can be made publicly accessible without

compromising security. In contrast, the private key is a secret key and should be

not be shared or made public. Unlike symmetric key cryptography, asymmetric

key cryptography does not require all communicating parties to possess a shared

secret.

For example, if Alice wants to talk to Bob and both possess an asymmetric key

pair, then Alice uses Bob’s public key to encrypt the message. Bob then uses his

private key to decrypt Alice’s message (see Figure 4.4). This approach can be used

in reverse to achieve digital signatures to provide message authentication.

4.6.3 Hypertext Transfer Protocol Secure

Hypertext Transfer Protocol Secure (HTTPS) refers to the use of the Hypertext

Transfer Protocol (HTTP) on top of the Secure Sockets Layer (SSL)/Transport

Layer Security (TLS) protocol. The aim is to prevent wiretapping and man-in-

the-middle attacks. It is typically used to provide an encrypted session between a

server and a client, most typically a web server and a browser.

Protocol: The server transmits a copy of its asymmetric public key to the client.

Once received, the client creates a symmetric key, encrypts it with the server’s

public key and transmits the result to the server. The server decrypts the data

with its asymmetric private key to retrieve the symmetric session key. Both server

and client can now encrypt and decrypt all transmitted data with the symmetric

3http://www.networkworld.com/subnets/cisco/chapters/1587052423/graphics/

02fig02.jpg

http://www.networkworld.com/subnets/cisco/chapters/1587052423/graphics/02fig02.jpg
http://www.networkworld.com/subnets/cisco/chapters/1587052423/graphics/02fig02.jpg
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Figure 4.4: An example of encryption, decryption, and authentication using
Asymmetric Key Cryptography3

session key. This allows for a secure channel because only the server and the client

know the symmetric session key. The session key persists only for that session,

where a new session key is created every time.

This protocol model is used as the basis for security in the system. The next

section outlines the two different security models which can be used to enable a

secure link between the gateway and the cloud server.

[Note: It is assumed that all interaction between the user’s browser and the server

occurs over HTTPS. This ensures that all traffic between the browser and the server

is completely encrypted.]

4.6.4 Trusted Server model

This model requires both symmetric and asymmetric key cryptography. However,

what makes it distinct from the other security model is that secret keys exist
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in plain text for a time on the cloud server. This is because any non-encrypted

value or waiting to be encrypted value is stored in memory in plain text, which

poses potential security risks. For instance, if an attacker has physical access

to the hosted machine they can potentially read keys directly out of memory.

This model therefore requires trust in the cloud service to prevent any malicious

attacks against the machine’s RAM. In some instances, there are ways to protect

the contents of memory. For example, in the .NET framework the SecureString

class allows data to be encrypted in memory. However the key to decrypt will

necessarily also be in memory, so at most it provides another level of obfuscation.

Protocol: The gateway possesses a symmetric key K. For each data stream re-

ceived by the gateway, it is encrypted using K (the sensor handle is not encrypted

because it is required in plain text at the server in order to successfully store the

patient data). When this information is received at the cloud server, it is un-

touched and stored in its encrypted form. This means that even if the database

is hijacked, no data is exposed.

To allow the patient data to be accessible from the cloud application, the cloud

server requires access to the symmetric key K. In order to achieve this in a secure

fashion, the cloud application user possesses asymmetric keys. To supply the

cloud with symmetric key K the gateway acquires the public key and encrypts the

symmetric key K with the public key and stores the result in the Cloud database.

In order to view the patient data, the private key is used to decrypt the encrypted

symmetric key, which is then used to decrypt the data.

The public key is stored in the database as it should be made publicly available

to anybody who wants to communicate with the cloud. The private key is stored

in a cloud configuration file, in a form that can only be decrypted by the owner

(encrypted with the user’s password). When a user is logged in, the private key

is decrypted and stored in the user’s session and persists only for the duration of

the user’s session. The user’s session is safe from sniffing as long as the interaction

occurs over HTTPS. To further mitigate the changes of a successful attack, the

private key might only be stored in memory when it is required, rather than the

duration of the user’s session.

In order to provide secure communication from cloud to the gateway, each com-

mand is encrypted with the symmetric key K. Additionally, in order to guarantee

authenticity at the gateway level, the cloud digitally signs each command. Once
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received at the gateway, the command is authenticated by the decrypting it with

cloud’s public key. To gain access to the command data itself, the symmetric is

used to further decrypt the data.

This model may present some security vulnerabilities, however it is important to

note that it is not easily exploited:

� Different instances of the same application can easily have different keys, so

a compromise of one will not automatically spread to all others.

� File system security on a web server is quite well-understood

� System compromises that allow full file system access statistically occur less

than application or database break-ins

However the primary problem with this approach is that if the server is compro-

mised in a way, the attacker is capable of reading any file. There is no way to fully

prevent the attacker from accessing memory/application binary. The attacker can

then perform offline dictionary attacks in order to uncover the private key. Simi-

larly, the gateway stores its symmetric key K locally. As a local application, it is

not accessible from network attacks. However, as the gateway encrypts all infor-

mation with a single key, if the key is compromised, then the all data transmitted

through the gateway is susceptible to attack.

Optionally, security can be provided on a per sensor or per stream basis, thus

requiring multiple symmetric keys. To provide security on a per sensor basis, the

gateway generates a key, which is then associated with a specific sensor handle.

The gateway can then access each key, by using the sensor handle contained in each

received sensor data packet. Alternatively, the sensor device itself may encrypt

its own information before transmitting. While this would provide end to end

encryption from each sensor to the cloud, it would also mean that an original

exchange of each symmetric key with the cloud would be necessary. If a different

key was used per stream, the gateway would require as many symmetric keys as

there are streams. However, the remaining limiting factor is the lack of a reliable

key store.
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4.6.5 Host-Proof model

A host-proof application is an application in which the user is not required to

trust the host. All user data is encrypted and decrypted on the client side, and

the server only ever has access data in its encrypted form. This provides the benefit

of a cloud application (accessible from anywhere) while retaining the security of

only having access to one’s own personal information. This means that even if

the server is compromised, all data is completely secured as no secret information

exists on the server.

Figure 4.5: Host proof design model - Information is stored in encrypted form
and all data decryption occurs locally4

Typically a user navigates around a website by clicking on hypertext links which

instruct the browser to load a new page. However the new page doesn’t remember

any of the state of the previous page. It is therefore the server’s responsibility to

maintain state through the use of cookies and the user session. For a host-proof

application this presents some issues as the users initial password is usually used

as the secret key to the initial encryption and decryption. In order to work in a

typical fashion, the user would need to re-enter their password after every page

load, making the system very cumbersome to use. To combat this the user is

prevented from changing pages and instead XML HTTP Requests (AJAX) are

used to fetch the next page’s content from the server. This way the secret details

4http://librairie.immateriel.fr/fr/read_book/9780596101800/ch17s03

http://librairie.immateriel.fr/fr/read_book/9780596101800/ch17s03
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can persist in a variable in JavaScript and at the same time allow the user to

change pages.

Protocol: A user’s public and private key are generated via the client. A further

secret key is created by concatenating the user’s username (email address) and

password together, which is then run through a cryptographic hash function. This

key is used to encrypt and decrypt the private key. The public key is stored in

database and the private key is firstly encrypted with the secret key and then

stored in the database. Both keys remain in memory in the client side JavaScript

code.

Like the previous model, the gateway uses the user’s public key to exchange the

symmetric key K. When requesting access to patient data via the application, all

data is returned to the client in encrypted form, along with the encrypted sym-

metric key. Using client side decryption with the user’s private key, the symmetric

key can be used to gain access to the patient data.

This approach offers the benefit of never exchanging secret information with the

server. Any attacks on the server would be incapable of retrieving any private

information in plain text. However the reliance of AJAX results in a fragile appli-

cation. Although the technology is used to guide the user appropriately, there is

no way to force a user to not use the browser functions. In this case, the applica-

tion can break down with the loss of the user secrets, requiring the user to repeat

the login process. As a result the application may be found cumbersome to use.

4.7 Summary

This chapter has introduced the system design by providing a detailed insight

into how each tier of the system is composed and and how they are connected

through a message protocol. Two security models were also outlined, capable of

providing secure communication between the gateway and cloud application. The

next chapter uses the design concepts presented in this chapter to demonstrate a

proof of concept.
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Implementation

This chapter continues from the previous chapter by providing detail on how the

system was taken from a design specification to a working prototype. This chapter

covers specific technologies used to implement each piece of the system and dis-

cusses the rationale behind each choice. Figure 5.1 presents a full system overview,

detailing the transition from design to implementation. See Figure 4.1 of the pre-

vious chapter for comparison.

5.1 Sensor Network

The sensor network is made up of one or more Bluetooth Smart/Smart Ready

sensors, which host a customised GATT profile, allowing the gateway to control

their functionality. To demonstrate the prototype, two faked sensors sources were

used - a heart rate and ECG combination functioning through a dual mode de-

vice and a body temperature sensor acting as a single mode device. The heart

rate is capable of communicating over the low bit rate channel and as the ECG

requires higher throughput, it operates over the high bit rate channel. The body

temperature sensor transmits only over the low bit rate channel.

65
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Figure 5.1: Full system implementation
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5.1.1 Hardware

To emulate a medical sensor, a simple electronic prototype was built using the

Arduino platform along with Bluetooth peripherals *. An Arduino Uno microcon-

troller combined with a Red Bear Lab BLE shield and a Connect Blue OBS421

BR/EDR module formed the basis of the sensor network acting as a Bluetooth

Smart Ready sensor (combined heart rate and ECG). An additional Arduino Uno

combined a Red Bear Lab shield was used to act as a Bluetooth Smart sensor

(body temperature).

* Sensor data was emulated instead of using medical hardware as it meant faster

prototyping.

Arduino Uno

Arduino is an open source electronics prototyping platform introduced in 2005.

It was intended to provide a more accessible and inexpensive way to work with

electronics as well as way to quickly prototype and test ideas. It is packaged with

an Integrated Development Environment (IDE) in order to write software for the

hardware in either C/C++. The Arduino Uno is one example of the Arduino

family.

The Arduino microcontroller provides UART TTL (5V) serial communication,

which is available on digital pins 0 (RX) and 1 (TX). These pins are referred

to as the Hardware Serial pins. An ATmega16U2 on the board channels the

serial communication over USB, which appears as a virtual com port to software

on the computer. The Arduino software includes a serial port monitor which

allows simple textual data to be sent to and from the Arduino board. This serial

port monitor and its corresponding SoftwareSerial library provides all required

BR/EDR functionality to send high bit rate data from a sensor to the gateway.

However, in order to transmit low bit rate data over the LE channel, a separate

tool is required. This tool is discussed in Section 5.1.2.

Connect Blue OBS421

The Connect Blue OBS421 is a dual mode Bluetooth Serial Port module. The

module permits serial data to be sent using both BR/EDR and LE technologies
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using BR/EDR’s native SPP and Connect Blue’s custom Low Energy Serial Port

Service. However for the purposes of this research, full use of the standard LE

protocol was required. This was instead achieved through an Arduino LE shield

with an SDK, allowing full customisation of the GATT protocol.

Some features of the OBS421:

Wireless MultidropTM - Simultaneous connections to both Bluetooth low en-

ergy and Classic Bluetooth devices *

Extended Data ModeTM - Separated multipoint data channels (different data

can be sent to/received from each slave)

Throughput - Supports up to 1.3 Mbps

Simultaneous slaves - Maximum number of simultaneous slaves: 7 using BR/EDR

only, 3 using BR/EDR and LE

* Initially, the OBS421 seemed to promise all required functionality to emulate a

dual mode Bluetooth sensor. However, the inability to host custom GATT profiles

meant a lack of information that was required to remotely control the sensors.

In order to configure the OBS421 to communicate successfully with the Arduino

through the hardware serial pins, the module has to be connected to the Arduino

through a series of wires (see Figure 5.5). Furthermore, the module’s serial settings

had to be configured in order to successfully communicate through the Arduino’s

hardware serial pins. This was achieved using Connect Blue’s Toolbox Utility

software. This software allows the device to be completely reconfigured by offering

granular control of such things as the device’s security, its advertisement data, and

its discoverability options.

Figure 5.2: Connect Blue OBS421 module1
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Red Bear Lab BLE Shield

The Red Bear Lab BLE shield* is a single mode module designed to work with the

Arduino platform (see Figure 5.3). It is based off the Nordic nRF8001 integrated

circuit (IC), which operates in slave (peripheral) mode only (see Figure 5.4). The

nRF8001 features a simple serial interface referred to as the Application Controller

Interface (ACI). This allows an application controller such as an Arduino Uno to

communicate with the nRF8001 chip. The nRF8001 implements the lower stack

layers, while a host microcontroller (Arduino) must implement the GATT services.

* A shield is a board that can be attached on top of an Arduino PCB to ex-

tend its capabilities. In this particular case, the Red Bear Lab shield offers LE

functionality.

Figure 5.3: Red Bear Lab BLE Shield2

A → nRF8001 Reset Button

B → Factory Testing Pins

C → Power On LED

D → Default Handshaking Switch

E → Nordic nRF8001

F → Antenna

1http://www.connectblue.com/fileadmin/Connectblue/Web2006/Images/Press_Image_

downloads/cB-OBS421-antenna-options.jpg
2http://redbearlab.com/
3http://www.nordicsemi.com/eng/Products/Bluetooth-R-low-energy/nRF8001

http://www.connectblue.com/fileadmin/Connectblue/Web2006/Images/Press_Image_downloads/cB-OBS421-antenna-options.jpg
http://www.connectblue.com/fileadmin/Connectblue/Web2006/Images/Press_Image_downloads/cB-OBS421-antenna-options.jpg
http://redbearlab.com/
http://www.nordicsemi.com/eng/Products/Bluetooth-R-low-energy/nRF8001
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Figure 5.4: nRF8001 chip - Nordic Semiconductor’s implementation of the
LE stack. Its main physical features are the Bluetooth low energy PHY and

stack that handles the Link Controller and Host3

Hardware Prototype

Figure 5.5 shows the configuration of the customised Bluetooth dual mode de-

vice. This device combines all three previously mentioned pieces of hardware to

demonstrate a device that is capable of concurrent BR/EDR and LE transmission.

5.1.2 Software

In order to provide control over the sensors and to apply customised GATT profiles,

each Arduino runs a customised C++ sketch. Nordic Semiconductor provide an

SDK for the Nordic nRF8001 chip which allows for full control over the chip’s

Bluetooth stack. They also provide a Windows visual editor application nRFgo

Studio used for creating customised GATT profiles for the nRF8001, thus allowing

one of the standardised GATT models defined in Section 4.3.1 to be applied to

each sensor.

nRF8001 SDK

As previously mentioned, interfacing with the Nordic nRF8001 relies on an ab-

straction called ACI. The default way of providing this is by polling for updates
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Figure 5.5: Bluetooth Smart Ready prototype - Connect Blue OBS421 + Red
Bear Lab Shield + Arduino Uno (connected via Hardware serial)

over the ACI communication channel. An aciloop function is called usually once

per cycle in the Arduino sketch’s loop. This function dispatches any queued mes-

sages to the shield and polls for any messages from the shield. Inside the aciloop

function the ACI Event’s code is used to determine if that message indicates a

change in status, receipt of data, an error, etc. See Figure 5.6 for a full overview

of ACI.

In order to create a GATT profile, nRFgo Studio creates a services.h file with
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a GATT configuration once designed from the UI. This file defines a number of

named pipes, each of which are uni-directional. A single characteristic (read, write,

write with response, notify, etc.) has individual pipes for each mode. These pipe

identifiers are used to determine for which characteristic data was received, or

through which characteristic to transmit data to the client. When a client writes

to the BLE shield or the BLE shield notifys the client, the data sent/received is

ephemeral and the shield acts as an intermediary. However, characteristics that

can be read maintain that value in the memory of the BLE shield and requests for

that value are delivered directly from the shield without involving the application

controller (the Arduino).

Here is an example of a heart rate sensor GATT profile generated by the applica-

tion:

<Profile Version="1.3">

<SetupId>1</SetupId>

<Device>nRF8001_Dx</Device>

...

<Service Type="local" PrimaryService="true">

<Name>Heart Rate</Name>

<Uuid>180e</Uuid>

<Characteristic>

<Name>Heart Rate Measurement</Name>

<Uuid>2a37</Uuid>

<DefaultValue></DefaultValue>

<UsePresentationFormat>0</UsePresentationFormat>

<MaxDataLength>19</MaxDataLength>

<AttributeLenType>2</AttributeLenType>

<ForceOpen>false</ForceOpen>

<Properties>

<WriteWithoutResponse>false</WriteWithoutResponse>

<Write>false</Write>

<Notify>true</Notify>

<Indicate>false</Indicate>

<Broadcast>false</Broadcast>

</Properties>

<SetPipe>false</SetPipe>
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<AckIsAuto>true</AckIsAuto>

<PeriodForProperties/>

</Characteristic>

<Characteristic>

<Name>HighBitRateEnabled</Name>

<Uuid>2a3a</Uuid>

<DefaultValue>0</DefaultValue>

<UsePresentationFormat>0</UsePresentationFormat>

<MaxDataLength>1</MaxDataLength>

<AttributeLenType>1</AttributeLenType>

<ForceOpen>false</ForceOpen>

<Properties>

<WriteWithoutResponse>true</WriteWithoutResponse>

<Write>false</Write>

<Notify>false</Notify>

<Indicate>false</Indicate>

<Broadcast>false</Broadcast>

</Properties>

<SetPipe>false</SetPipe>

<AckIsAuto>false</AckIsAuto>

<PeriodForProperties/>

</Characteristic>

</Service>

...

</Profile>

Interaction over the ACI interface (see Figure 5.6):

• 1 - ACI commands sent from the application to the nRF8001 are placed at

the tail of the ACI Command queue.

• 2 - When a command is placed in the command queue, the REQN line to

the nRF8001 is pulled low.

• 3, 4 - The RDYN line interrupt handler reads ACI commands from the head

of the ACI command queue and and places ACI Events that are received in

the tail of the ACI event queue.
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Figure 5.6: ACI queue interface4

• 5 - An interrupt is configured in the AVR to interrupt the CPU when the

RDYN line is LOW. The SPI clockout, sending of an ACI command and

receiving of an ACI event with the nRF8001 is done in the RDYN line

interrupt.

• 6 - The ACI events are pulled out from the ACI Event queue and the appli-

cation can then process each ACI Event.

5.1.3 Security

Security of the OBS421 is configured through the Connect Blue Toolbox Utility

application. It offers the capability to select any BR/EDR security levels. For the

implementation, the Just Works protocol was used. Similarly, the Red Bear Lab

4http://www.nordicsemi.com/eng/Products/Bluetooth-R-low-energy/nRF8001

http://www.nordicsemi.com/eng/Products/Bluetooth-R-low-energy/nRF8001
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BLE shield does not enforce any security mechanisms. As security at a WBAN

level is not the focus of this research, the security mechanisms provided by Blue-

tooth are assumed in a real world scenario.

5.2 Gateway

The gateway provides the sensor network with a view of the wider Internet, with

a responsibility of sending sensor network data to the cloud and also executing

sensor commands received from the cloud. Although a smartphone would be an

ideal candidate in a real life scenario, the proof of concept demonstrates the use

of a Bluetooth Smart Ready enabled laptop to function as the gateway.

The Processing language combined with Java and the Bluetooth stack provides

all functionality of the gateway5. Ubuntu was the chosen operating system6 due

to its feature-rich Bluetooth stack available - Bluez package.

5.2.1 Hardware

The Laird BT820 is a V4.0 dual mode Bluetooth USB dongle. It is based on

the BT800 chipset, which in turn is based on CSR8510A10 dual mode chip. The

CSR8510A10 is a single-chip radio with on-chip Low-dropout (LDO) regulators

and baseband IC for Bluetooth 2.4 GHz systems including EDR up to 3 Mbps.

The Bluetooth dongle works on both Windows and Linux distributions - in this

case it was used on Ubuntu client 12.04.

5.2.2 Software

The Bluetooth dongle requires configuration in order to communicate over a serial

port with the OBS421 and to initiate GATT commands against the Red Bear Lab

shields. This is achieved through use of the Linux Bluetooth stack. This section

will cover the software requirements used to construct the gateway.

5http://processing.org/
6http://www.ubuntu.com/

http://processing.org/
http://www.ubuntu.com/
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Processing

Processing is an integrated development environment (IDE) and open source pro-

gramming language based on the Java language. It was originally intended to

function solely as a way to teach programming through the use of visual feedback.

However it has since become a very popular tool for prototyping especially when

used in conjunction with the Arduino platform. As a result, Processing provides

good serial interface support - a very simple Serial library7which allows for reading

a writing data to and from external devices.

For each serial connection made, a serialEvent
()

synchronous callback function is

associated with that serial port, which listens for any data that might be received.

The function can be set with bufferUntil
()

to only trigger after a specific character

is read - in this case the data packet’s END character ’;’, allowing full packets to

be received at a time.

Each serially received data packet is parsed to extract its contents - the sensor

handle and its corresponding sensor reading. During the parsing stage it is also

time-stamped. Ideally, time-stamping would occur at each sensor at time of cap-

ture, but this would require clock synchronisation with the gateway as the Arduino

has no real-time clock. Thus this was avoided for the purposes of this implemen-

tation.

In order to buffer the high frequency BR/EDR packets, Java provides a Block-

ingQueue class8 which is a thread-safe fixed size queue designed for situations of

the producer-consumer model. Once a data packet is received at the gateway, the

BlockingQueue’s offer method is utilised - inserts the specified element into the

queue if it is possible to do so without violating capacity restrictions, returning

true upon success and false if no space is currently available. If the queue is full,

the contents of the queue are emptied and prepared as a HTTP packet.

An asynchronous thread safe HTTP client is used (CloseableHttpAsyncClient -

Apache Commons library 9) to provide interaction with the cloud interface. This

allows one to defer the transmission of the HTTP response back to the client

in order to reduce latency incurred by HTTP communication with the cloud.

7http://www.processing.org/reference/libraries/serial/
8http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/BlockingQueue.

html
9http://hc.apache.org/httpcomponents-asyncclient-4.0.x/httpasyncclient/

apidocs/org/apache/http/impl/nio/client/CloseableHttpAsyncClient.html

http://www.processing.org/reference/libraries/serial/
http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/BlockingQueue.html
http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/BlockingQueue.html
http://hc.apache.org/httpcomponents-asyncclient-4.0.x/httpasyncclient/apidocs/org/apache/http/impl/nio/client/CloseableHttpAsyncClient.html
http://hc.apache.org/httpcomponents-asyncclient-4.0.x/httpasyncclient/apidocs/org/apache/http/impl/nio/client/CloseableHttpAsyncClient.html
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CloseableHttpAsyncClient provides three callback methods - completed
()

, failed
()

and cancelled
()

. In the event of a failed HTTP delivery, the transmission in

reattempted. Any subsequent failures are ignored as the protection of the loss

of patient data is considered as future work. All other response callbacks can be

ignored.

In the implementation, BR/EDR data is only ever received from the serial inter-

face, while all LE data is received through a Linux utility called Gatttool. As the

control channel occurs solely over LE, the gateway also uses Gatttool to communi-

cate with the sensors (see Section 5.2.2). To control Gatttool from the processing

sketch, Java’s ProcessBuilder class was used to initiate the process from within

the Processing sketch and redirect its output into an InputStreamReader.

[Note: No concurrency is exploited within the gateway software. This is due to the

single core laptop that was used to host the gateway’s service, which would offer

no performance gain.]

BlueZ

BlueZ is the the official Bluetooth stack for Gnu/linux. BlueZ includes a utility

known as hcitool, which is used to configure Bluetooth connections and send special

commands to Bluetooth devices. It includes another software utility known as

Gatttool that allows one to connect, gather advertised data, and execute other

GATT-specific LE operations. Gatttool is the primary way of controlling a LE

module through GATT using Linux. There is a list of commands provided in order

to interact with a LE enabled device (see Table 5.1).

As communication with BR/EDR takes place over a serial port, a connection

between the dongle and the serial port is required so that data sent from the

sensor network can be received by the gateway. Bluez provides a configuration

file /etc/bluetooth/rfcomm.conf that provides this functionality, which provides

automatic serial binding from gateway to sensor.
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#
# RFCOMM configuration file.
#

rfcomm0 {
# Automatically bind the device at startup
bind no;

# Bluetooth address of the OBS421
device 00:12:F3:1C:25:DC;

# RFCOMM channel for the communication
channel 1;

# Description of the connection
comment "Custom serial port with OBS421"

}

The command rfcomm connect 0 will then automatically connect the Bluetooth

dongle to the OBS421, which must be active and discoverable. If permissions are

blocked from using the serial port, the following command will give permission to

the specified user: sudo chown username:users /dev/rfcomm0

Command Description
gatttool -b 〈MAC Address〉 –primary Discover available services
gatttool -b 〈MAC Address〉 –characteristics Discover characteristics
gatttool –b 〈MAC Address〉 –char-desc Discover characteristic descriptors
gatttool -b 〈MAC Address〉 –char-read –
uuid=XXXX

Read characteristic values

gatttool -b 〈MAC Address〉 –char-write –
uuid=XXXX –value=XXXX

Write to characteristic values

gatttool -b 〈MAC Address〉 –char-write-req
–handle=0xXXXX –value=0100 –listen

Enable notifications

gatttool -b 〈MAC Address〉 –char-write-req
–handle=0xXXXX –value=0200 –listen

Enable indications

gatttool -b 〈MAC Address〉 –interactive Enter interactive mode

Table 5.1: Gatttool commands10

To communicate with each sensor from the gateway, each sensor adopts one of

the standardised model GATT profiles discussed in Section 4.3.1. To initiate data

communication with a sensor, a GATT notification command is executed from

the gateway. Once a notification is executed through Gatttool, the sensor response

is in the following form:

”Notification handle = 0xXXXX value: XX XX”

10http://www.lairdtech.com/Products/Embedded-Wireless-Solutions/

Bluetooth-Radio-Modules/BT800-Series/BT820/

http://www.lairdtech.com/Products/Embedded-Wireless-Solutions/Bluetooth-Radio-Modules/BT800-Series/BT820/
http://www.lairdtech.com/Products/Embedded-Wireless-Solutions/Bluetooth-Radio-Modules/BT800-Series/BT820/


Chapter 5 Implementation 79

The gateway is then responsible for acquiring each response (through InputStream-

Reader as previously mentioned), and extracting the necessary information so that

it can be prepared for a HTTP packet. The process of preparing the information

is the same for that of received serial information.

To control operation the high and low streams, the gateway can simply access the

control characteristic by executing a GATT Write No Response command through

Gatttool (01 to activate and 00 to deactivate). To disable a low bit rate stream,

Gatttool must issue a command to disable the current notification. However, the

Red Bear Lab shield blocks any incoming connections with the following response

- connect: Device or resource busy (16). In order to disable the notification the

device must be manually reset. Alternatively, another option is to amend the

GATT profile so that LE sensor can be read by the client periodically, opposed to

the server initiating the transmission through notifications.

5.2.3 Security

Two security models were discussed in the previous chapter’s Section 4.6. The

Trusted Server model (see Section 4.6.4) was the chosen model for the implemen-

tation.

The gateway utilises a combination of both symmetric and asymmetric cryptog-

raphy in order to encrypt traffic and provide secure communication. Symmetric

key cryptography is implemented using the Advanced Encryption Standard (AES)

using a 256-bit key and Asymmetric key cryptography is implemented using the

Rivest, Shamir and Adleman (RSA) cryptosystem using a 1024-bit key. All secu-

rity mechanisms were provided through the Java Crypto library 11.

In the implementation, the gateway functions as a device intended to be used for

a single patient. However, the design outlines that the gateway is transparent and

can be associated with multiple patients once configured through the messaging

server. This is due to restrictions imposed by the gateway’s messaging client. As

a result, the gateway possess a single symmetric key, which is used to encrypt all

outgoing data and decrypt all incoming data.

11http://docs.oracle.com/javase/6/docs/technotes/guides/security/crypto/

CryptoSpec.html

http://docs.oracle.com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html
http://docs.oracle.com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html
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When the gateway initialises the following steps are taken:

• Login to the cloud application

• Login to the messaging server

• Use associated user’s public key to encrypt the symmetric key. In order to

acquire the user’s public key, the user can transmit this information from

the cloud to the gateway through the messaging server following successful

account creation, which is then persistently stored. Alternatively, the gate-

way can request the public key from the cloud by providing a user identifier.

Once the symmetric key in encrypted, the information is published in the

cloud so that the user can gain access to encrypted data

• The symmetric key is stored locally on the device, encrypted with a password.

Each sensor network command received at the gateway is digitally signed and en-

crypted by the cloud. With access to the user’s public key, the gateway can authen-

ticate the message through the digital signature. If authenticated, the command

can be fully decrypted using the gateway’s symmetric key.

5.3 Cloud Application

The cloud application provides users with capabilities to view biomedical data and

to control remote sensors. As the application is the only way a user can access

the system, it is designed to be a rich, secure, user interface (UI)-centric, and

scalable application. It is built using a combination of modern Java enterprise

web technologies. To support a UI driven application, the software adheres to a

modular MVC design.

5.3.1 Software

Java

Java was chosen as it was the programming language the author was most adept

in. It was also due to the large number of comprehensive frameworks available
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that provide a lot of required functionality to build large scale web applications.

The Java version used was Java 1.6.12

Spring

Spring is an open source Java framework and inversion of control (IoC) container.

Spring is designed as a layered architecture allowing developers to use specific

modules that they require. The modules used in the prototype system are as

follows:

• Spring MVC

• Spring Security

• Spring IoC

• Spring Data Access

Spring MVC

Spring has its own MVC module, which acts as the web component of Spring’s

framework. See Section 4.5 of the previous chapter, which details the pattern

design.

Spring MVC is designed around a central request-driven servlet (DispatcherServlet)

that is responsible for delegating control to the various interfaces during the exe-

cution phases of a HTTP request. The DispatcherServlet is completely integrated

with Spring IoC container and is exposed to all features of the Spring framework.

Spring MVC offers a number of advantages such as:

• Clear separation of roles

• Reduces amount of code

• Customisable handler mapping

Here is an example of the capabilities of Spring MVC by demonstrating the process
of user creation:

12http://docs.oracle.com/javase/6/docs/api/

http://docs.oracle.com/javase/6/docs/api/
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<!-- View Layer -->
<form:form commandName="user">

<table>
<tr>

<td>Username:</td>
<td><form:input path="username" /></td>

</tr>
<tr>

<td>Password:</td>
<td><form:input path="password" /></td>

</tr>
<tr>

<td><input type="submit" value="Submit" /></td>
</tr>

</table>
</form:form>

// Controller method found @ /signup through HTTP POST
// ModelAndView is an object that holds the model objects
// as well as the view to be rendered
@RequestMapping(value="/signup", method = RequestMethod.POST)
public ModelAndView signup(ModelAndView model, UserDetails userDetails) {

User user = null;
try {

user = userService.createUser(userDetails.getUsername(),
userDetails.getPassword());

} catch (Exception e) {
// Check to see if the email address is already used.
result.rejectValue("username", "Email address already registered");

}

if (user == null || result.hasErrors()) {
return signup(model, userDetails);

}

// Automatically log them in.
userService.login(user, userDetails.getPassword());

return new ModelAndView("redirect:dashboard/index");
}

//Service layer
@Override
public User createUser(String username, String password) {

User user = new User();
user.setUsername(username);
user.setPassword(encodePassword(password));

entityService.save(user, patient);

return user;
}

// Model including ORM annotations
@Entity
@Table(name = "users")
public class User {

@NotNull
@Column(nullable = false, unique = true)
private String username;

@NotNull
@Column(nullable = false)
private String password;
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public User(String username, String password) {
this.username = username;
this.password = password;

}
}

Spring Security

Spring Security provides a highly adaptable authentication and access control

framework. All user access functionality is provided by the Spring Security pack-

age. It facilitates a multi permission system, which is used to provide custom

application multiple profiles - primary carer, secondary carer, medical profession-

als, etc. Each of which offers granular control over application accessibility. For

example,

<http auto-config="true">
<intercept-url pattern="/admin*" access="ADMIN" />
<intercept-url pattern="/sensorControl*" access="PRIMARY_CARER" />
<intercept-url pattern="/patientData*" access="PRIMARY_CARER, NURSE" />

</http>

Spring security also manages secure access through system login/logout, through

the user session (Figure 5.7 illustrates how Spring handles a user authentication

request). Spring also provides automatic hashing and salt of passwords upon user

login.

Spring IoC

IoC or dependency injection is a term which refers to when a developer is not

required to instantiate objects manually in the code. Instead, only a description

of how they should be created is required. Furthermore, components and ser-

vices are not manually connected by the programmer, instead an IoC container

is responsible for tying everything together. There are three different types of

dependency injection - constructor, setter and interface, where dependencies can

be marked through annotations. Note below how MessageService is never instan-

tiated - demonstrating the use of a service layer object operating in a controller.

@Controller
@RequestMapping("/messages")
public class MessagesController {

@Autowired
private MessageService messageService;

@RequestMapping(value = "/send", method = RequestMethod.POST)
public void send(@RequestBody String message) {

messageService.sendMessage(message);
}

}
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Figure 5.7: Spring security authentication13

The use of dependency injections provides several benefits such as a reduction in

the amount of code, the facilitation of lazy loading, and the promotion of loose

coupling.

Spring Data Access

Spring Data Access provides a framework to access databases by decoupling code

from the access mechanisms. The sole purpose of Spring’s Data Access framework

is to provide ease of access to different kinds of persistence stores, permitting

interoperability between both relational database systems and NoSQL data stores.

The framework is used heavily in conjunction with Spring’s IoC container to reduce

the software’s complexity.

13http://asahu05.wordpress.com/category/adobe-flex-tech/

http://asahu05.wordpress.com/category/adobe-flex-tech/
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At a persistence level, Spring provides good integration support with Object Re-

lational Mapping (ORM) framework Hibernate. Hibernate forms the basis for all

application data storage.

Hibernate

Hibernate is an Object Relational Mapping (ORM) framework for the Java lan-

guage. Hibernate provides a mapping for an object domain to a traditional rela-

tional database model IE mapping Java classes to database tables, and Java data

types to SQL data types. Hibernate also provides query and retrieval capabili-

ties. MySQL is the technology used for the database. MySQL is a an open-source

Relational Database Management System that uses Structured Query Language

(SQL).

Here is an example of how Hibernate can map Java classes to database tables:

@Entity
@Table(name = "sensors")
public class Sensor {

@NotNull
@Column(nullable = false)
private String name;

@NotNull
@Column(nullable = false)
private Boolean active;

@NotNull
@Column(nullable = false)
private Boolean smartReady;

@NotNull
@Column(nullable = false, unique = true)
private String handle;

@OneToMany(mappedBy = "sensor")
private List<SensorData> sensorData;

...
}

ORM frameworks are useful as they can provide many benefits for application

developers:

• Productivity - relieves developers from writing a lot of SQL so that focus

can remain on business logic

• Maintainability - reduces the amount of code
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• Portability - portable to all supported SQL databases

Application Database Model:

Figure 5.8 outlines the database model of the application, which helps to provide

an overview of the entity relationships within the system.

Figure 5.8: Database table relationships and dependencies

User - represents a system user. A user can have different roles and permissions

which detail application access capabilities. These are defined by a carer, a

family member, or a medical professional.

Patient - represents a single patient. A single patient can be associated with

multiple users, where users (primary carer, extended family, an oncology

team, etc.) can share access to the same patient. However a user is associated

with a single patient. This is a current implementation restriction, which

results in some limitations. For instance, a palliative care nurse’s account is
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only associated with a single patient instance. This means that for every of

the nurse’s patients, she would have to manage multiple accounts. Ideally

a local palliative care nurse (user) could access the electronic records of

multiple of his/her patients.

Sensor - represents an individual sensor. Its handle is used to identify sensors

within the sensor network. Other fields capture the current operation of the

sensor IE whether its active/inactive, the current transmission stream its

using, etc. A sensor object can have one or more SensorData objects.

SensorData - represents a data capture from a sensor. Each SensorData is tied

to a single Sensor object.

XMPP

Extensible Messaging and Presence Protocol (XMPP) is a real-time message pro-

tocol, based on Extensible Markup Language (XML). It was originally developed

to provide a decentralised real-time instant messenger (IM). The protocol has since

been used for many different scenarios such as file transfer, Internet of Things, and

social networks.

XMPP is used as the message protocol to provide all communication capabilities

from the cloud to gateway. As a open and decentralised technology, there is no

central master XMPP server, therefore anyone can run their own XMPP server in-

stance. This allows a server to be hosted locally, isolated from the public network,

thus protecting it from network attacks.

An XMPP server instance is hosted through the Openfire library14. Openfire

provides an admin console which allows the user to control the operation of the

XMPP instance. It is through the console that user profiles are created for the

gateway and a user (using the same credentials used for the cloud application).

Spark is a XMPP IM service15 that was used to connect the two profiles so that

communication could occur.

Smack16 is a Java XMPP client that is used to provide communication capabilities

from the cloud application to the XMPP server. The XMPP client instance for the

14http://www.igniterealtime.org/projects/openfire/
15http://www.igniterealtime.org/projects/spark/
16http://www.igniterealtime.org/projects/smack/

http://www.igniterealtime.org/projects/openfire/
http://www.igniterealtime.org/projects/spark/
http://www.igniterealtime.org/projects/smack/
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gateway is provided by jabberlib17. When both user and the gateway initialises,

they connect to the messaging server and initiate a chat. Due to limitations of

the jabberlib library implementations, only one chat can be active at any given

time. This means that the gateway can only have a single active communication

link with a cloud application user.

5.3.2 Security

Security for the cloud application is tied to the security provided at the gateway

level. As previously mentioned whilst discussing gateway security in Section 5.2.3,

the chosen security model is the Trusted Server (see Section 4.6.4). Similar to the

gateway, the Java Crypto library 18 is used to provide all security functionality on

the cloud and AES and RSA are the algorithms used to provide symmetric and

asymmetric cryptography functionality.

When sending control messages to the sensor network via the gateway, XMPP

provides multiple levels of security:

• Concept of a contact list, which is similar to concept of pairing in Bluetooth.

This requires two parties to have identified each other as future contacts

• All communication with the cloud is digitally signed and encrypted

• The connection occurs over SSL

As previously mentioned in Section 5.3.1, Spring Security modules provides all

required functionality for providing secure access to the user application.

Due to the security implementation of the system, a few restrictions are imposed.

For instance, can no longer provide the support for alerts. This would require

unencrypted patient data to be received at the cloud so that threshold levels could

be determined in real time. Alternatively, the responsibility could be placed with

the gateway. However, this adds more complexity to the device, weakening its

design strengths.

17http://go.yuri.at/jabberlib/
18http://docs.oracle.com/javase/6/docs/technotes/guides/security/crypto/

CryptoSpec.html

http://go.yuri.at/jabberlib/
http://docs.oracle.com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html
http://docs.oracle.com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html
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5.4 Summary

This chapter has demonstrated the implementation of a system outlined in Chapter

4.

This chapter introduced a prototype Bluetooth Smart Ready sensor that is capa-

ble of transferring ECG and heart rate information to another Bluetooth Smart

Ready device acting as an Internet gateway over two separate data rate channels

in parallel. The chapter also discusses the implementation of a cloud application

that demonstrates a system of access and control over patient care by using a real

time message protocol to transmit control information from the UI to the sensor

network.

A gateway can provide encryption of information to the cloud, and authentication

of cloud instructions was also detailed, demonstrating secure communication and

key exchange between with the gateway and cloud through a Trusted Server model.

The next chapter provides an evaluation of the system implementation and hard-

ware prototype through multiple experiments.
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Evaluation

This chapter is dedicated to providing an evaluation of the system implementation.

This chapter will cover a number of experiments aimed to provide a performance

evaluation in various sections of the system. To conclude the chapter, some addi-

tional metrics are discussed.

There are number of interesting performance metrics that can be used to evaluate

a software system:

Throughput - In the context of this dissertation, throughput refers to the rate

of successful message delivery, which is usually measured in bits per sec-

ond or packets per second. Throughput in an important consideration as

it determines the level of detail the system can provide in a given time, for

instance, the rate at which the prototype sensor can transmit information

to the cloud.

Responsiveness - Refers to the ability of a system to complete a particular task

within a given time. In a system designed to adapt transmission according

to live patient information and professional intervention, the responsiveness

of the system is an important measurement.

It is important to note the proof of concept’s hardware limitations. The OBS421

(BR/EDR module) that facilitated the high bit rate channel offers a maximum

of 1.3 Mbps throughput. This is a long way off the Bluetooth 4.0 specification

of 24 Mbit/s that was introduced in Bluetooth V3.0 + HS. Conversely, the Laird
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BT820 (Bluetooth Smart Ready dongle representing the gateway) has a maximum

capability of 3 Mbps.

It is assumed for each experiment that:

Packet size - 10-11 bytes

Distance between Bluetooth endpoints - 1m (worn on body)

6.1 Experiments

Experiment 1

Aim: Determine the responsiveness of the high bit rate channel by measuring the

round trip time (RTT) between enabling high bit rate channel through the UI

until the first data packet is received and saved in the database.

Methodology : When the command request is received by the application, a times-

tamp is generated and stored. The request then continues uninterrupted. When

the first data packet is received by the cloud, a second timestamp is generated and

stored. By subtracting the initial timestamp from the second, the result indicates

the difference between the initial request and the first data packet receipt time.

This process was repeated and the difference summed for each iteration. Finally,

an average was taken according to the resulting difference total and the number

of iterations.

In order to provide the test automation, a Firefox plugin Selenium1was used to

write automated browser scripts.In order to measure time, Java provides a method

- currentTimeMillis() - which returns the current time in milliseconds2.

Result :

Mean (ms) 1708.4
Sample Size (iterations) 100

Standard Deviation 438.22
95% Confidence Interval ±85.89

Gateway Buffer Size 1,024

Discussion: As a result of the experiment it was found that an average of roughly

1,708 ms was required to establish the high bit rate channel and to receive the

first 1,024 data packets.

2http://docs.oracle.com/javase/6/docs/api/java/lang/System.html
1http://docs.seleniumhq.org/

http://docs.oracle.com/javase/6/docs/api/java/lang/System.html
http://docs.seleniumhq.org/
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Experiment 2

Aim: Determine the responsiveness of the low bit rate channel, by measuring the

RTT between enabling the low bit rate channel through the UI until the first data

packet is received and saved in the database.

Methodology : This experiment is very similar to Experiment 1, with the only

difference being the testing of the low bit rate channel as opposed to the high bit

rate channel. The test setup remained the same.

Result :

Mean (ms) 5805.43
Sample Size (iterations) 112

Standard Deviation 402.11
95% Confidence Interval ±74.47

Discussion: The experiment identified an average RTT of 5805 ms is required

between initiating the low bit rate channel from the UI and saving the first data

packet in the database (note that the low bit rate channel does not buffer packets

at the gateway, so only one packet is ever received by the cloud at once).

Compared to the responsiveness of the high bit rate channel (1708.4 - result ob-

tained from Experiment 1), the low bit rate channel takes 4097.03 ms more on

average to complete.

Experiment 3

Aim: Determine the overhead incurred by the security mechanisms of the system,

by repeating Experiment 1 but removing all security functionality.

Methodology : All security functionality was removed from both the gateway and

cloud implementations. The remainder was simply a repeat of Experiment 1. To

determine the overhead of security, the result was compared with the result ob-

tained from Experiment 1

Result :

Mean (ms) 1541.43
Sample Size (iterations) 100

Standard Deviation 286.71
95% Confidence Interval ±56.19

Gateway Buffer Size 1024

Discussion: Using the result obtained this Experiment (1541.43 ms) and sub-

tracting it from the result from Experiment 1 (1708.4 ms) - the result indicates

an average performance cost incurred by security (in terms of time required to
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enabled the high bit rate channel). The result was a difference of 166.97 ms,

illustrating that on average a RTT for enabling the high bit rate channel without

using security will provide a speed up of 166.97 ms.

Experiment 4

Aim: To investigate the throughput capabilities of the prototype sensor’s low data

rate channel by measuring the inter-arrival packet time at the gateway.

Methodology : Measure the average inter-arrival time of low data rate sensor pack-

ets arriving at the gateway over a total of 100 packets.

Result : 2000ms

Discussion: The low bit rate channel was very strict in its timing and over a

sample of 100 transmissions it did not diverge. As a result, the prototype sensor’s

low bit rate channel is capable of a 0.5Hz sample rate - 1 packet arriving every 2

seconds at the gateway. It is important to note that this result is directly related

to the specific Bluetooth stack implementation of the nRF8001 chip. It is not to

be considered as a system-wide limitation. It merely indicates that for the given

prototype, the current throughput performance of LE notifications is limited to

1 packet every 2 seconds. The low bit rate channel is designed for episodic data

transmission.

This experiment was conducted to demonstrate the rate at which LE notifications

are received at the gateway for the sensor prototype. In reality, LE is used for

periodic state updates over long periods of time.

Experiment 5

Aim: To determine the transmission rate of the prototype sensor’s high bit rate

channel by measuring the inter-transmit time at the sensor.

Methodology : Calculate the average inter transmit time for a total of 10,000

BR/EDR packets, where inter-transmit time refers to the time between the trans-

mission of data packets.

Result :

Mean (ms) 0.889532
Sample Size (iterations) 10,000

Discussion: Each data packet is sent from the sensor at an average rate of

0.889532 ms. The rate of packets per second is therefore 1 / 0.889532 =

1.12418665 - one packet is transmitted by the sensor every 1.12418665 ms.
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Experiment 6

Aim: To investigate the throughput capabilities of the prototype sensor’s high

data rate channel by measuring the inter-arrival packet time at the gateway.

Methodology : Measure the inter-arrival time of high data rate sensor packets ar-

riving at the gateway for a total of 10,000 packets. The chosen gateway buffer size

was 1,024.

Result : Over an average of 10,000 packet receipts, the inter packet arrival time at

the gateway for high bit rate channel was measured at 983570 ns / 0.983570

ms

Discussion: The system’s high bit rate channel is capable 1 packet receipt every

0.983570 ms at the gateway.

It is important to note that this figure does not represent a maximum bandwidth

that can be achieved. Given an alternative sensor implementation or sufficient data

buffering at a sensor level, this value could be significantly improved. Therefore

this is not to be considered a generalised result for the system’s limitations. This

result is considered for the evaluation of the prototype sensor, which provides as

a basis figure used in later experiments.

The inter-transmit time at the sensor is 0.889532 ms, and the inter-arrival time at

the gateway is 0.983570. This results in a difference of 0.094038 ms.

Experiment 7

Aim: An experiment to determine the inter-response time from the cloud after

submitting data from the gateway.

Methodology : Calculate the inter-response time for a total of 102,400 high data

rate packets with a buffer size of 1,024 (100 requests). Inter-response time refers

to the time between the cloud returns a HTTP status code to the gateway to

indicate the success or failure of the request. Each data packet size is between 10

or 11 bytes. This meant that each request to the cloud was 1,024 * 10 bytes = 10

kilbytes.

Result : An average of 1034 ms inter-response time over 100 HTTP requests with

1,024 data packets per request.

Discussion: Note that the HTTP client used in this instance is asynchronous

Experiment 8

Aim: To determine the optimal size for the gateway buffer, by measuring the inter

arrival time of packets at the cloud
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Methodology : As previously mentioned in Chapter 4’s Section 4.4, the gateway is

responsible for buffering high bit rate data to prevent a network latency induced

bottleneck at the gateway. Determining the an optimal size for the gateway buffer

was achieved through measuring the rate at which packets are received at the

cloud for a variety of different buffer sizes.

According to the result of Experiment 5, each data packet sent over the high bite

rate channel from the sensor is transmitted at an average rate of 0.889532 ms.

The gateway was configured to buffer a number of packets before delivering them

to the cloud service, as described in Section 4.4. This experiment evaluates the

rate at which packets can be delivered to the cloud for buffer sizes ranging from

32 to 8,192 (incrementing in powers of two). The average buffer inter-arrival time

at the cloud service was calculated.

What remained constant between different buffer size tests:

• Number of data packets - The experiment calculated the average for a total

of 32,768 packets

• Packet size - (between 10 or 11 bytes)

• Rate of sensor transmission - Experiment 5 denotes a single packet is pro-

duced by the sensor every 0.897475 milliseconds.

Varying between tests:

• Buffer sizes - 32 to 8,192 (in powers of 2)

Result :

The packet receipt rate (per second) was calculated dividing by the gateway buffer

size by the inter arrival time (in seconds).

Discussion: The inter-arrival time of high bit rate data was measure at 0.983570

ms (result from Experiment 6).

Using the result obtained from experiment 7 (1034 ms) and using the inter transmit

time at the gateway (912 - this figure was calculated when calculating the inter

arrival time at the cloud), by subtracting 912 from 1034, the result shows the
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Figure 6.1: Line chart showing average rate of packets received per second by
the cloud with the corresponding gateway buffer size

BufferSize InterArrivalT ime(ms)
32 140
64 118

128 136
256 227
512 458

1024 914
2048 1838
4096 3405
8192 7300

Table 6.1: Each buffer size with its associated inter arrival time

average time spent waiting for response from the cloud for a buffer size of 1,024 -

122 ms.

Comparing this to information to Table 2.1 of Chapter 2 - the prototype sensor

is capable supporting throughput for complex sensors such as 12-lead ECG and

EMG.

Best performance was shown using a buffer size of 4,096 results with a data receive

rate of 1,134 ms. Buffer sizes less than 32 resulted in a bottleneck at the gateway,

causing the software to crash.
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There are a number of additional metrics that would have formed useful discussion

for the project:

1. CPU usage of gateway - determining CPU usage during multiple execution

stages. For instance, measure the CPU usage during high bit rate channel

vs low bit rate channel. This may give an expectation of what a smartphone

device will require to support the gateway’s functionality

2. Bandwidth - monitor the Bluetooth network (can be provided by tools such

as Wireshark 3)

3. Power consumption - measurement of OBS421 and Red Bear Lab shield’s

power consumption during operation VS at rest (when sending data VS when

not sending data). In order to maintain a non-invasive network of sensors,

a study of the power consumption is crucial.

6.2 Summary

This chapter provided an evaluation of the system by demonstrating aspects of

the performance of the system.

The prototype sensor’s high bit rate channel was evaluated, demonstrating its

capabilities of providing data rates required for complex medical sensors. The

system’s responsiveness was also evaluated by measuring the time taken to enable

a high and low bit rate channels through the application interface until the first

packets arrive at the cloud.

The overhead incurred by the system’s security mechanisms (encryption and de-

cryption on cloud and gateway) was measured, demonstrating a slight performance

impact. Finally, a range of different gateway buffer sizes was explored to deter-

mine the optimal size to provide maximum performance. The following chapter

offers a conclusion to the document and discusses the potential for future work.

3http://www.wireshark.org/

http://www.wireshark.org/
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Conclusion

This chapter presents final remarks to the dissertation and concludes with a dis-

cussion of potential future work in the field.

This dissertation outlines a system to provide remote palliative care of patients

using an adaptive multi-stream data transmission protocol of low and high bit-rate

sensor data using Bluetooth Smart Ready technology. The system demonstrates a

physiological sensor prototype that can be used in a real life scenario by palliative

care patients to non-invasively monitor during episodic time intervals to provide

frequent health updates, while also facilitating high quality medical information

through a high bit rate stream. Using a IP enabled gateway, a patient’s biomedical

data can be captured and published in the cloud.

A cloud service model was designed to provide a means through which care-givers

can access some or all of the sensors used by a patient and control those sensors,

for example, to modify the level of detail in the information gathered from sensors.

The cloud also hosts secured patient information, which forms the basis of a central

repository of shared knowledge between care-givers.

Two different security models were discussed which both provide secure trans-

mission and storage of patient data. Both mechanisms combine the strengths of

symmetric and asymmetric cryptography to securely exchange secret keys between

parties to gain access to relevant data. A Host Proof option provides a security

solution that shares no secret information with the cloud server in plain text,

retaining sole access to one’s own personal information.
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This dissertation has defined a multifunctional pervasive telemedicine system suit-

able for use in the context of palliative care, providing high bit rate transmission

in times of patient distress or carer request and low bit rate transmission to pro-

vide periodic updates of patient data. The proof of concept demonstrates the use

of an emulated ECG and heart rate combined sensor by combined two separate

Bluetooth radios through the Arduino platform. Once integrated into a full sys-

tem comprising an Internet gateway and Cloud application, the sensor formed the

basis for a Telemedicine system for patients of palliative care. More broadly how-

ever, the system provides a framework, which forms as a basis for any application

to provide information through adaptive streams.

7.1 Future Work

The implementation of the system design necessitated the creation of a sensor

prototype which demonstrated the concurrent use of BR/EDR and LE protocols.

There is currently no hardware on the market that provides this capability in a

single solution. Focus should be placed on the invention of a dedicated module

that features both Bluetooth radios controlled by a microcontroller, offering control

over the module’s software operation, with both radios offering feature capabilities

according to the latest Bluetooth specification.

The implementation currently features a security model discussed in Section 4.6.4.

Instead the system’s security might be replaced by a Host Proof paradigm detailed

in Section 4.6.5. Similarly, to provide an end to end security model, sensors could

be investigated to provide encryption at a WBAN level. To optimise performance

for greater throughput, buffering at a sensor level should also become an important

focus. This work however would increase the complexity at a sensor level and may

affect the power consumption levels which are required to remain low to facilitate

non-invasiveness.

The proof of concept demonstrates the use of a Bluetooth Smart Ready enabled

laptop through a USB dongle. To measure the capabilities of the Telemedicine

system as a mobile implementation, a smartphone should replace the current role

of the gateway. This would also require a more robust key management mechanism

at the gateway to protect symmetric keys. Similarly, as a decentralised service,
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XMPP could be evaluated to perform real time communication from the cloud to

the gateway in place of HTTP.

The cloud application is a rich web application designed to provide features that

offers caregivers maximum support to provide care for patients. The current imple-

mentation does not support multi patient/user association. Enabling this would

provide a more rich interaction between medical staff and their patients. To fur-

ther improve the cloud service, support should be made for implementations which

use multiple gateways.

Barriers to entry are typically very high in the healthcare sector due to regula-

tions and laws regarding the safety, quality and efficacy of medical products. A

qualitative system evaluation involving real palliative care nurses and patients to

reveal underlining system qualities and characteristics would be an important step

in bringing the solution closer to market.
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