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Summary

The first goal of this research was to determine which of two reasoning algorithms could

be adapted for use in a streaming reasoning system with memory constraints. The two

algorithms investigated were TREAT and LEAPS. Once achieved, the primary goal was

then to determine whether an implementation of the chosen algorithm provided a more

efficient option in terms of memory consumption in a resource constrained device in

comparison to an existing implementation of the RETE algorithm.

This paper first illustrates the motivation for this research by providing context for

why and when memory constrained devices are used in reasoning. Standard approaches

usually attempt to perform reasoning on a centralised machine, sending data from sensor

devices through the web or by other wired or wireless technologies. However, in some

conditions this may not be feasible, or may be restrictive. In these cases reasoning can

be performed on the sensor device nodes themselves. For this reason, the reasoning

process must be memory efficient.

Previous work has seen the adaption of a static RETE based reasoner (COROR) into

a stream based reasoner (SCOROR). A streaming environment is commonly the sort of

environment that memory constrained sensor devices are used in. This research focused

on finding an alternative reasoning algorithm for SCOROR that could offer improved

memory consumption.

A background on reasoning, both static and stream, is given. A background on SCOROR

is also provided so that the stream reasoning process can be understood in more detail.

The RETE, TREAT and LEAPS algorithms are explained in detail. A comparison is

offered, with LEAPS proving the most promising for improved memory consumption.

An implementation of the LEAPS algorithm was completed and integrated into SCOROR

so that comparisons to the RETE reasoner could be performed. An in-depth design and

implementation of the LEAPS reasoner is given, along with the steps needed to modify

the algorithm in order to support stream reasoning.

Finally, an evaluation was performed in order to compare the existing RETE reasoner

with the newly implemented LEAPS reasoner. The evaluation found that the reason-

ing times for both reasoners were quite similar. The RETE reasoner outperformed the

LEAPS reasoner when there was a combination of a large ontology size with high expres-

sivity. The suggested reasons for this are the use of wild-card predicates in rules and the
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resetting of saved iteration states due to the removal of temporal triples. Memory con-

sumption for the LEAPS reasoner was shown to be significantly reduced in comparison

to the RETE reasoner.

This research shows that the LEAPS algorithm can be implemented and modified to

perform in a streaming environment. Evaluation suggests that it is indeed the case that

a more efficient option in terms of memory consumption over the RETE implementation

exists in the form of this implementation.
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Chapter 1

Introduction

1.1 Motivation

In sensor-rich systems it is common for sensor data to be gathered from a multitude

of separate sources, for example in environmental observations [1] and hazard assess-

ment [2]. This data is often difficult to categorise and interpret. Semantic Web technolo-

gies have been a major source of interest in sensor-rich systems as a result of this [3] [4].

These technologies offer methods to aggregate and interpret this data. Standard ap-

proaches usually attempt to perform these operations on a centralised machine, sending

data through the web or by other wired or wireless technologies [1] [2].

However, in some conditions this may not be feasible. For example, consider monitoring

that may take place under water or in extreme weather conditions. Environmental

conditions are subject to dramatic change and can cause interference between nodes in

the network. Consider also the bottleneck that may arise in a system when hundreds

of sensors are attempting to push data to, and receive data from, the centralised node.

For these, and other reasons, it is not unheard of to manage data reasoning on the data

sensor devices themselves [5] [6].

When devices are resource constrained any algorithms that are to be used must be

extremely memory efficient. Previous semantic reasoners have been considered too ex-

hausting of resources for use on resource constrained devices [5] [7] [8].

1
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Attempts have been made to implement the RETE reasoning approach in a resource

constrained environment [5], but it may be possible to achieve further memory reductions

with the implementation of other algorithms, namely TREAT [9] or LEAPS [10].

TREAT is an optimised version of RETE in terms of memory consumption, but it is

known to sacrifice speed in some circumstances. It attempts to reduce memory usage

by storing a reduced amount of state information in between reasoning cycles.

LEAPS is a lazy evaluation reasoning approach. While RETE and TREAT both attempt

to find all solutions for a proposed question, LEAPS simply attempts to find the first

possible solution. It is known to offer linear space complexity, while it’s predecessors,

RETE and TREAT, offer exponential space complexity.

Previously mentioned research has mainly focused on static reasoning. To fully under-

stand and interpret data in sensor rich systems, reasoners must have the ability to quickly

and efficiently reason over high frequency data while considering background knowl-

edge [11]. The need for stream reasoning has been acknowledged in smart cities [12] and

robotics [13], in order to support situation awareness, execution monitoring and decision

making.

When the data set that needs to be processed is being updated with high frequency,

i.e. data coming from a stream, and this data needs to be processed quickly, a stream

based reasoning system is necessary. Recent work has seen the adaption of a stream

based reasoning system for use on resource constrained devices [14]. This system is an

expansion of the RETE reasoning approach implemented by Tai et al [5].

If either TREAT [9] or LEAPS [10] are to be adapted as a memory reducing replacement

for RETE, the chosen algorithm must be modified in order to support stream reasoning.

The first goal of this research is to determine which of the two above algorithms are

more suitable for use in a streaming system with memory constraints. Once achieved,

the primary goal is then to determine whether an implementation of the chosen algo-

rithm provides a more efficient option in terms of memory consumption in a resource

constrained device in comparison to an existing implementation of the RETE algorithm.
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1.2 Research Question

“In comparison to an existing implementation of the RETE algorithm, can

a more efficient approach, in terms of memory consumption, be developed

for stream reasoning on resource constrained devices?”

1.3 Dissertation Overview

A brief description of the following chapters is given in this section.

1.3.1 Background

The intention of this chapter is to give the reader an understanding of the concepts

associated with stream reasoning and the background, technologies and assumptions on

which this research is based on.

1.3.2 State Of The Art

This chapter discusses the research performed in the area of reasoning algorithms. A

description, analysis and comparison of relevant algorithms is performed.

1.3.3 Design

An in-depth description of the chosen algorithm is given in this chapter.

1.3.4 Implementation

The implementation of the chosen algorithm is discussed in this chapter.
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1.3.5 Evaluation

In this chapter an evaluation of the newly implemented algorithm is performed. Results

relating to the reasoning performance and memory consumption of the new algorithm

implementation are compared with the existing algorithm implementation.

1.3.6 Conclusion

Finally, a conclusion on the research and results found is offered.



Chapter 2

Background

2.1 Introduction

This chapter aims to give the reader a basic understanding of the field of research by

providing information on concepts associated with stream reasoning and the background

and assumptions on which this research is based on. Reasoning, stream reasoning and

the components of SCOROR, an existing stream reasoner, are discussed.

2.2 Previous Work

The research described in this work is based on initial work performed by Tai et al [5]

and a RETE based reasoner called COROR that was developed in conjunction with

their research. It is also based on research performed by Hardy [14], who converted this

reasoner into a stream based reasoner called SCOROR.

2.3 Reasoning

In this work reasoning is informally defined as going beyond the information that is given.

Reasoning systems are those which have the ability to take facts and rules as inputs

and come to some conclusion without the need for human input. Semantic reasoners

are commonly used in the Semantic Web. Many different categories of reasoners exist

5
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including rule-entailment, tableau and resolution-based. This research deals with rule-

based reasoning, where a rule is composed of at least one “if-then” condition element

and a resulting action. This action is performed if the condition elements of the rule

are met. Rules are contained in a rule set. Examples of rule-based algorithms include

RETE [15], LEAPS [10] and TREAT [9].

A reasoner generally draws facts from an ontology into a working memory. Facts in the

working memory are tested against the rule set. Performing the action of a rule may

result in further facts being inserted into the working memory, or indeed facts being

removed from the working memory.

A good analogy to convey the operations of a reasoning system is given by Miranker [9].

Miranker makes use of relational database terminology. The following is an adaption of

that analogy.

“If the working elements of a reasoning system are considered to be tuples of

some universal relationship in a relational database, then it becomes appar-

ent that the condition elements of a rule in a reasoning system is analogous

to a query in a relational database language. The constants in a single-

condition element may be viewed as a relational selection over a database of

the working memory. We say a working memory element partially matches a

condition element if it satisfies the select operators or the intra-condition el-

ement pattern constraints. Consistent bindings of pattern variables between

distinct condition elements may be regarded as a database join operation on

the relations formed by the selections. The conflict set is the union of the

query results of each of the rules in the system.”

The three previously mentioned algorithms can also be classed as forward-chaining rea-

soning algorithms. Forward-chaining indicates an incremental procedure, where rules

and facts are used to deduce new facts. In turn, these new facts are used to deduce fur-

ther facts. This process continues until no further facts can be deduced by the current

rule set and the current set of facts in the working memory.

The alternative of forward-chaining is backward-chaining. Backward-chaining algo-

rithms, implied by the name, usually work backwards in order to satisfy a goal. In



Background 7

this case, the goal is to find facts that satisfy a particular outcome of a rule. Therefore

a query is needed to perform backward-chaining.

There are advantages and disadvantages for both approaches. Forward-chaining offers

quicker delivery of results at query time due to the fact that all deductions have already

been produced. The disadvantage of this approach is the amount of memory used

to hold these deductions. In contrast to this, backward-chaining produces deductions

at querying time resulting in minimal memory usage. The disadvantage here is that

reasoning must occur at query time, resulting in a much slower response.

Reasoners are designed to have a specified ontology language, usually defined generally

by a frame language. A specific mark-up language (OWL [16], RDF [17], RDFS [18])

is then used to implement general concepts defined by the frame language. OWL, RDF

and RDFS are based on description logic. These languages have been used frequently

by researchers in recent times, as they are used regularly in the Semantic Web. Indeed,

these are the languages used by the reasoner implemented in SCOROR.

The W3C created the specification of Resource Description Framework (RDF) which

was then built upon by RDF Schema (RDFS) and Web Ontology Language (OWL) to

create a more complete model for structuring data in a way that could be reasoned over.

2.3.1 RDF Structure

RDF structures data as triples. Triples consist of a subject, object and predicate. The

predicate is a relationship that relates the subject to the object. For instance if a class A

is a sub class of a class B it is possible to create a statement to represent this information

by using the subject A, the predicate “rdfs:subClassOf” and the object B. OWL adds the

ability to give the data implicit knowledge by offering predicates that model relationships

such as transitive and inverse properties.

In this research, a fact is then simply a triple. A rule is composed of at least one condition

element. A condition element is modelled as a triple, where the subject, predicate and

object have specific values. In a condition element it is also possible that the subject,

predicate and object are variables, and may be satisfied with any value.
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An example of a RDF rule is given below. The left hand side represents two condition

elements for this rule. The right hand side represents the action. The question marks

represent variables.

(?a rdf :type ?b), (?b rdfs:subClassOf ?c) − > (?a rdf :type ?c)

In this case, if a triple exists in the working memory that has the predicate “rdf:type”,

then that condition element of this rule is considered to be satisfied. If a second triple

exists in the working memory that has the predicate “rdfs:subClassOf”, and the object

of the first triple matches the subject of the second triple, then this condition element

of the rule is considered to be satisfied. As both condition elements are satisfied, the

rule is satisfied. The action of the rule is then performed. In this case, this results in

a new fact being added to the working memory. This new fact is composed of the first

fact’s subject as the subject, the second fact’s object as the object and the new predicate

“rdf:type”.

2.3.2 Introducing State

To return to the relational database analogy put forward by Miranker [9], a database

system usually computes a single query at a time over a relatively large database. It is

possible to think of a reasoning system as computing many queries, as many as there

are rules, over a slowly changing, modest size database.

In order to reduce the recalculating of comparisons that may occur on different cycles,

reasoning systems usually retain some state across cycles. Three types of state informa-

tion which are commonly found in reasoning systems have been identified by McDermott,

Newell and Moore [19]. These are listed below.

1. Condition Membership: Associated with each condition element in the reasoning

system is a running count indicating the number of working memory elements

partially matching the condition element. A match algorithm that uses condition

membership may ignore those rules that are inactive. A rule is active when all of

its positive condition elements are partially satisfied.
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2. Memory Support: An indexing scheme indicates precisely which subset of working

memory partially matches each condition element. By analogy, memory support

systems explicitly maintain a representation of the relations resulting from the

select operations.

3. Condition Relationship: Provides knowledge about the interaction of condition

elements within a rule. By analogy this corresponds to explicitly maintaining the

intermediate results of a multi-way join.

2.4 Stream Reasoning

In this research stream reasoning refers to the means of reasoning over a continuous flow

of data. While reasoning in general and the RETE reasoner described by Tai et al [5]

usually deals with a static knowledge base of facts, stream reasoners deal with a rapidly

changing knowledge base. Hardy [14] expanded on the work carried out by Tai et el to

convert their reasoner into a stream reasoner.

It is not feasible to store all data that arrives on a stream as this could overload a fast

complex system quite easily. Alternatively, it does not make sense to store a single item

of information without context of the other data in the stream. For this reason, a window

based approach is usually used to limit the data that is inserted into the reasoner at a

given time.

As has been mentioned before, incremental reasoning is based on re-using the deduced

data to continuously generate more data. The process is beneficial as it reduces reasoning

time by using previous results. With stream reasoning there is a continuous flow of data

being reasoned over and consequently this would result in an ever expanding amount of

data being held in the reasoners working memory and inner data structures. Removing

older data frees computing resources, i.e. memory and processing power, to react to

newer information in a timely manner. Further, in streaming real-time environments it

is often assumed that older data becomes irrelevant as time goes on [11].

Hardy implemented a window based approach using C-SPARQL that sets an interval on

the stream. At a given time, whatever items are within the interval are considered valid.

The items are then added to the working memory of facts and the normal reasoning
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approach can be applied. These facts are referred to as “temporal facts” and are marked

with a time-stamp. Consequently, any deduced facts are also marked with a time-stamp.

After a certain period these temporal facts are removed from the working memory and

reasoner data structures to ensure that stream reasoning may continue.

2.5 C-SPARQL

SPARQL [20] is the standard querying language that allows for the retrieval and mod-

ification of data that is stored in the RDF format. It provides a means to extract

meaningful information from large collections of data. Is is akin to SQL for relational

databases.

A simple SPARQL query consists of a set of triples where the subject, object or predicate

may be variables. The result of the query would be any existing RDF triples in the

ontology that match the input triples and that satisfy any variables.

C-SPARQL [21] (Continuous-SPARQL) is an extension of SPARQL that provides the

ability to perform continuous queries over complex streams of RDF data. C-SPARQL

queries allow the user to specify a window over the stream of data. A window can be

configured so that it returns all triples within a specific time frame (a logical window)

or so that it simply returns a set number of triples (a physical window). In the case of

a physical window, the set of triples returned is simply the last N triples which have

arrived on the stream, where N is the size of the window. Once the set of triples has

been determined, normal querying is performed using other parameters provided in the

original query.

An example C-SPARQL query taken from [22] is shown in Figure 2.1.

Figure 2.1: Example C-SPARQL Query

This is a simple query used in a mock social networking scenario, with a user “John”.

The query counts, among the friends of John, the number of movies that each friend
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has liked in the last 30 minutes. The stream provided is simply a list of triples that

represents movies that John’s friends have “liked”. This query is executed every five

minutes, and makes use of a logical window to extract any triples that have been added

to the stream in the last thirty minutes.

2.6 RETE

The implementation of the RETE algorithm in a stream reasoner forms the basis of

inspiration for this research [14]. The algorithm is considered efficient in terms of speed,

but further memory optimisations are desirable.

The RETE algorithm makes use of both memory support (Alpha networks) and condi-

tion relationship (Beta networks). In its fundamental form, the RETE algorithm can

be explained as follows. For each rule that the data is to be tested against, a tree like

matching network (referred to as a RETE network) is created. This network is itself

separated into two networks, the Alpha and Beta network. The Alpha network is com-

posed of Alpha nodes which represent the condition elements of the rule. For example,

consider the rule below.

(?a rdf :type ?b), (?b rdfs:subClassOf ?c) − > (?a rdf :type ?c)

This rule would result in the creation of the Alpha nodes shown in Figure 2.2.

Figure 2.2: Alpha Nodes

Now consider we have two facts:

(Ford rdf :type Car)



Background 12

(Car rdfs:subClassOf V ehicle)

When a fact is passed into the RETE network it is referred to as a token. Each Alpha

node stores the tokens that satisfy that particular condition element, thus forming the

memory support part of the algorithm.

This would be represented in the Alpha network as seen in Figure 2.3.

Figure 2.3: Alpha Nodes with values

Following the Alpha network are two-input test nodes that test for consistent variable

bindings between condition elements. These are referred to as Beta nodes and combined

they form the Beta network.

The Beta network joins input tokens into combinations stored in Beta nodes. Beta nodes

can have inputs composed of tokens, or of a token and an existing Beta node. Inputs

with consistent variable bindings are then stored in the Beta node.

The above rule would result in the creation of the Beta node shown in Figure 2.4.

Figure 2.4: Alpha Nodes with Beta Node
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When a combination propagates from the last Beta node, it must satisfy all the condi-

tions of a rule. This is called a “rule instantiation”. The instantiation is then added to

the conflict set. The conflict set is a set of the rules which are scheduled to perform their

action. A rule performing its action may result in the addition or removal of facts in the

working memory. In our example, the new fact below would be added to the working

memory.

(Ford rdf :type V ehicle)

RETE attempts to take advantage of two empirical observations.

1. Temporal Redundancy: The firing of a rule usually changes only a few facts, and

only a few rules are affected by each of those changes.

2. Structural Similarity: The same condition element often appears in the left-hand

side of more than one rule. Structural similarity means that the algorithm can

take advantage of node sharing, reducing memory consumption.

2.7 SCOROR

As the RETE algorithm and stream reasoning have both been introduced, it is now

possible to describe SCOROR in more detail. SCOROR consists of two main compo-

nents, namely the Stream Processor and the Reasoner component itself (COROR), see

Figure 2.5 taken from [14]. There is also a Stream Generator. The Stream Generator

is a simple component that generates triples that are appropriate for the current base

ontology. The triples are placed onto a stream with a speed that can be specified by

the user. It is important to note that the Stream Generator is purely used to gener-

ate streams for the testing of SCOROR and has no operation in the actual reasoning

process. Therefore the memory usage of the Stream Generator is not included in the

memory usage of SCOROR.
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Figure 2.5: SCOROR Components

2.7.1 Stream Processor

The Stream Processor component is the component that makes use of C-SPARQL to

query the incoming stream. As discussed earlier, C-SPARQL can be used to query the

current triples on the stream. The results of this query compose the set of triples that

will be inserted into the reasoner. These triples are assigned time-stamps before they

are inserted into the reasoner, and are referred to as temporal triples once inserted. At

the end of each reasoning cycle, the reasoner can then remove any temporal triples that

have expired. This includes temporal triples that have been deduced due to the insertion

of a now expired triple. The reasoner must also remove any associated tokens or other

data held in data structures that is associated with expired triples. This time-stamp

entailment approach to stream reasoning, which is used in SCOROR, was inspired by

work by Barbieri et al [23].

SCOROR makes use of a C-SPARQL query that utilises a tumbling window query. Put

simply, C-SPARQL returns all triples that arrive on the stream in 1 second intervals.

The Stream Processor then assigns time-stamps to these triples based on the current

window size. It is important to note that this window size is separate from the notion

of the C-SPARQL window. An example is given for a 5 second window below.

The reasoner is started and C-SPARQL returns all triples for the first second inter-

val. These triples are passed to the reasoner at time 0s and so have the time-stamp
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0+5=5s. The next interval is returned from C-SPARQL and these triples are passed to

the reasoner at time 1s and so have the time-stamp 1+5=6s. At time 6, all triples with

time-stamp 5s will be removed from the reasoner.

2.7.2 Reasoner

Reasoning as a whole has been discussed above. The reasoner in SCOROR makes use of

a static ontology to first complete any initial reasoning. This static collection of triples is

never removed from the reasoner and is used in conjunction with the incoming temporal

triples to deduce further temporal triples. The current reasoner in SCOROR makes use

of the RETE algorithm.

2.8 Summary

This chapter has explained what is meant by stream reasoning and has discussed the

background work on which this research is based on. The individual components of

SCOROR, and their role in stream reasoning, have been explained, including the RETE

algorithm. The next chapter, State of the Art, discusses possible replacements for the

RETE algorithm.



Chapter 3

State Of The Art

3.1 Introduction

This chapter performs an in depth discussion of two algorithms which could potentially

replace the RETE algorithm in SCOROR. The algorithms are TREAT and LEAPS.

Both algorithms are discussed and relevant advantages and disadvantages are offered in

the hopes of determining which algorithm is more suitable for use in a streaming system

with memory constraints.

3.2 Alternate Algorithms

The initial goal of this research was to determine whether an alternate algorithm could

be used in place of RETE in SCOROR. The algorithm would need to be suitable for use

in a streaming environment. The desired outcome was that an algorithm that offered a

more efficient option in terms of memory consumption could be found. Two algorithms

were considered for this task, TREAT [9] and LEAPS [10]. Both algorithms will be

described and relevant advantages and disadvantages will be discussed.

3.2.1 TREAT

One of the algorithms which was considered for a resource constrained environment was

the TREAT algorithm put forward by Miranker [9]. TREAT is an optimised version of

16
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RETE in terms of memory, but it is known to sacrifice speed in some circumstances [24].

The motivation for TREAT arose when some observations were made about the RETE

algorithm:

1. It is possible for some Beta nodes to redundantly store the same information.

2. Much of the information stored in the Beta network is also available in the conflict

set.

3. A deletion of a fact from working memory is a costly procedure as it involves

removing associated Beta nodes.

To illustrate the first point, consider the example discussed earlier in Section 2.6. The

rule has been expanded with an additional condition element, as shown below.

(?a rdf :type ?b), (?b rdfs:subClassOf ?c), (?c rdfs:subClassOf rdfs:Resource)

− > (?a rdf :type ?c)

There is also a new fact to satisfy this condition.

(V ehicle rdfs:subClassOf rdfs:Resource)

RETE would produce the network shown in Figure 3.1.

Clearly there is a redundant store of data in the two Beta nodes that are generated by

the rule.

The second point refers to the final Beta node in a network. This node holds the final

data that makes up the instantiation. The data is then duplicated in the conflict set.

As a result of these findings TREAT does not generate Beta networks and attempts to

exploit conflict set support. Conflict set support is an additional type of state informa-

tion which was identified by Miranker [9].
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Figure 3.1: Extended RETE Network

• Conflict Set Support: The conflict set is explicitly retained across reasoning system

cycles. By doing so, it is possible to limit the search for new instantiations to those

instantiations that contain newly asserted working memory elements.

The algorithm still makes use of memory support (Alpha network), and also makes use

of condition membership. To exploit conflict support, two observations must be made.

It must be noted that these observations assume that negative rule conditions that test

non-existence are not supported.

Firstly, if the action of a rule only results in the addition of a new fact to the working

memory then the conflict set remains the same as before except for the addition of any

new instantiations that contain tokens for the new working memory fact.

Secondly, if the action of a rule only results in the removal of a fact from the working

memory then no new instantiations are added to the conflict set, but some instantiations

may become invalid i.e. those that contain tokens for the deleted working memory fact.

This essentially means that additions to the working memory can be used as seeds in a

constrained search to determine what are the new instantiations.

Deletions of facts from working memory are then straightforward, as the algorithm

simply searches the conflict set for any instantiations that contain the data to be deleted

and removes them from the conflict set. However, this means that an addition of a token
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requires the full computation of all the joins that would otherwise have been present in

the Beta network, resulting in a decrease in speed.

3.2.1.1 Negative Rule Condition Support

The addition of negative rule conditions that test non-existence pose a problem and

complicate the algorithm.

Imagine a new token is added and instantiations that are based on the non-existence of

this token are in the conflict set. The conflict set can’t simply be searched for instantia-

tions to remove, as tokens only represent the presence of data items. In these cases, the

algorithm must treat negative conditions as positive, build the new instantiations and

then remove any instantiations in the conflict set that match.

Imagine also the situation when a non-existence condition is satisfied by the removal of

some token. Again the conflict set can’t be searched, and TREAT must re-compute the

intermediate Beta nodes to add any instantiations.

3.2.1.2 Condition Membership

Condition membership is suggested by Miranker [9] with the introduction of a unique

Condition Element Number (CE-num) for every condition element in the reasoning

system. A running count indicating the number of working memory elements partially

matching the condition element can be retrieved from an array using the CE-num as an

index.

If a rule has a condition element that has a CE-num of zero, the rule can be considered

as inactive and thus does not to be included in the reasoning process.

3.2.1.3 Join Optimisation

When searching for consistent variable bindings between Alpha nodes the nodes can be

considered in any order. This is due to the fact that the join operation is both com-

mutative and associative. Miranker [9] describes an additional seed-ordering approach

where recently changed Alpha nodes are considered first. This approach was favoured
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above a static-ordering approach that considered Alpha nodes based on the lexical order

of condition elements.

3.2.1.4 Comparison to RETE

The main advantage of RETE over TREAT is that the large amount of stored state data

(Beta networks) drastically minimizes the chances of two working memory elements be-

ing compared. However, there are many disadvantages when using the RETE algorithm

in comparison to TREAT:

1. When a fact is removed from working memory, the Beta network states must be

unwound, often requiring the same operations that were required on its addition.

2. Beta memories may grow exponentially.

3. Join operations for the Beta network must be performed in a specific order, and

this order must be determined statically at compile time.

4. Extensive computation may be performed for rules that may not be active with

regard to the working memory facts.

With regards to the last disadvantage, Tai et al [5] developed a selective rule loader that

determines what rules to include from the rule set by analysing the working memory

facts. Unfortunately, this feature is not available for stream reasoning as it is not possible

to know what rules will be required as the facts will be arriving by stream and are

constantly being updated.

As discussed, the RETE algorithm maintains sufficient state to guarantee that no com-

parison of two working memory elements is recalculated at a later cycle. However, if

large changes to working memory are made, a large overhead is incurred maintaining

the state information. A system is considered temporally redundant if after each cycle

proportionally small changes are made to working memory. The TREAT algorithm at-

tempts to take advantage of this by constructing the Alpha networks and storing the

conflict set between cycles, but ignoring the use of Beta networks. As the algorithm

is to be used in a streaming environment, it is safe to assume that the system is not

temporally redundant as the working memory will be continuously updated.
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The key question surrounding TREAT is whether the number of comparisons performed

by TREAT while searching for instantiations exceed the number of comparisons per-

formed by RETE while processing deletions. The results of an empirical study per-

formed by Miranker [9] indicate that TREAT outperforms RETE in this regard. It is

also noted that this does not even consider the additional cost of maintaining the Beta

networks.

Clearly the TREAT algorithm would be preferable in place of RETE as it offers bet-

ter performance with regard to space complexity. With the additional seed-ordering

approach, TREAT can also outperform RETE in terms of time complexity.

3.2.2 LEAPS

It has been claimed that the LEAPS approach is better in terms of time and space

complexity than both RETE and TREAT [10] [24] [25]. LEAPS makes use of a lazy

evaluation approach when reasoning and so does not fully enumerate the whole conflict

set but instead processes a single rule instantiation per cycle. LEAPS actually began as

a production system compiler for OPS5 rule sets based on research performed by Mi-

ranker et al [25]. The approach is based on both complex data structures and complex

search algorithms. The analogy given by Miranker in Section 2.3 makes use of relational

database terminology to describe the operations of a reasoning system. Unfortunately,

the LEAPS algorithms have been known to be difficult to comprehend due to the in-

ability of relational database concepts (i.e. relations and select-project-join operators)

to capture critical lazy-evaluation features of the approach.

Batory [26] states how the approach is difficult to understand due to a lack of high

level abstractions appropriate for expressing the details of the algorithms. However,

the approach is described by Batory [10] in terms of the container-cursor programming

abstractions of the P2 data structure compiler. It should be noted that even if the

LEAPS algorithms had an elegant expression in a chosen language, the code would have

to be very efficient to compete with the original LEAPS system.

An attempt is made below to describe the algorithm (examples taken from Batory [10])

in general programming terms and concepts.
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3.2.2.1 Composite Containers

A container is simply a collection of elements of a single data type maintained in a

sequence. Containers provide cursors which allow for the iteration over the elements

within the container. The elements can be referenced and updated by the cursor.

A sample of a container would be a collection of a type “EMPLOYEE TYPE”, sym-

bolic of an employee. The cursor for this container would then provide access to all the

employees in the container. Additional constraints are usually allowed on cursor defi-

nitions to limit the elements referenced by the cursor. The example uses a department

number field, “dept.no”, to limit the employees referenced by the cursor to employees

in department 10. See Figure 3.2.

Figure 3.2: Example Collection, Cursor and Selective Cursor Declarations

LEAPS makes use of composite containers. Composite containers model complex rela-

tionships across multiple containers. Consider three containers C1, C2, C3. A relation-

ship between the containers is the set of triples, where a triple is defined as (e1,e2,e3),

where ei is an element of Ci.

Figure 3.3: Example Composite Container Relationships

As an example Figure 3.3 illustrates the following triples formed from the three contain-

ers A, B and C.

(a3, b1, c1), (a3, b1, c3), (a1, b2, c4), (a2, b3, c2), (a2, b3, c4)
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A composite cursor provides access to all n-tuples that can be produced from a rela-

tionship between containers. A composite cursor is then actually an n-tuple of cursors,

one cursor per container. By advancing the composite cursor, successive n-tuples can

be retrieved.

Selective composite cursors can also be declared. Figure 3.4 shows an example where

a composite cursor c is defined that joins elements of the department and employee

containers into 2-tuples if the “dept.no” field of both elements is equal.

Figure 3.4: Example Composite Cursor Declaration

It is also possible to “seed” a composite cursor declaration. This is done when tuples that

contain a particular element at a particular position are the only tuples needed. Using

the example in Figure 3.3, it is possible to define a composite cursor that only returns

triples that contain the element b3 from container B, i.e. (a2,b3,c2) and (a2,b3,c4).

3.2.2.2 Algorithm

LEAPS maintains a Last In First Out (LIFO) stack of handles for working memory facts.

Whenever a fact in working memory is inserted or deleted a time-stamp is associated

with it. A handle for this insertion/deletion is then pushed onto the stack. LEAPS does

not update elements, instead old versions are deleted and new versions are re-inserted.

The reason for this is explained in a later section.

The handles in the stack are then iterated over one by one. When a handle is at the

top of the stack, it is referred to as the dominant object (DO). The next step is the

seeding of rule selection predicates. Relevant rules for checking are determined based on

the predicate in the DO, i.e. only rules that have a condition element that contains the

predicate are considered. This could be thought of as a form of condition membership.

Rules may also be ordered by the number of positive condition elements that appear in

the rule.

Essentially, a composite cursor is created with the DO as the seed. Each condition

element of the rule corresponds directly to a container that is to be joined. In this

case a container holds all the facts that match the type of the predicate in the relevant
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condition element in the rule. It is important to note that the composite cursor has

a restriction so only facts that have time-stamps less than or equal to the DO are

considered. This is in the interest of fairness so that no n-tuple can fire a rule more than

once.

An instantiation for the rule is then sought after by iterating through the composite

cursor tuples. If the DO does not satisfy the relevant condition element of a rule i.e. no

tuples are in the composite cursor, the next rule is considered.

When an instantiation is found, the current state of the search is stored on the stack

and the resulting action is fired straight away. Processing then resumes with a new DO

(which was added to the stack by the executed action) or the previous DO with the

stored state. Once the DO has run out of rules to check, it is popped from the stack and

the next handle becomes the new DO. Reasoning is completed when the stack is empty.

3.2.2.3 Deletion and Negative Rule Conditions

As discussed earlier, negative condition elements represent disqualification filters. The

LEAPS interpretation of negation is depicted in Figure 3.5.

Figure 3.5: LEAPS Interpretation of Negation

A fact, e, is created at time t0 and is used to seed an n-tuple by advancing a composite

cursor at times t1...t4 . Let P be the predicate of a negative condition element and t be

the time of a composite cursor advancement. LEAPS determines if P is true at time t

or at any time since e has been created.

For this approach to work, LEAPS must contain a history of facts so that time can be

“rolled back” to evaluate P. Therefore, for every container C in the system there is also

a “shadow” container S. When a fact is removed from C, it is inserted into S and a

new handle is placed onto the stack. As stated previous, every fact has a time-stamp

associated with it. When the fact is in container C the time-stamp indicates when the
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fact was inserted, when the fact is in container S the time-stamp indicates when it was

deleted. Elements in S are never modified.

For negated condition elements the following steps must be performed. Firstly, the

container of the negative condition element is tested for any fact that satisfies predicate

P of the negative condition element. Secondly, the corresponding shadow container is

tested for any fact that satisfies P and whose time-stamp is greater than the dominant

time-stamp. If either of the two steps return a fact that qualifies, the negative condition

element fails.

It has been mentioned that handles for deleted facts are placed on the stack. It is

clear what the intention of seeding of rule selection predicates with non-deleted facts is,

however seeding with deleted facts is not immediately obvious.

The presence of a fact in a container may block the satisfaction of a negative condition

element. With the deletion of the fact, previously blocked n-tuples may now be un-

blocked. As a result, when a deleted fact handle is at the top of the stack, the rule is

modified for the search by changing the negative condition element to a positive condi-

tion element. The shadow container fact is then used to seed the resultant composite

cursor.

The LEAPS approach can be characterized by lazy evaluation to avoid materialising

tuples unnecessarily, by depth-first firing, and by the introduction of timestamps to set

up temporal constraints, which can be used for handling deletion efficiently [27].

3.2.2.4 LEAPS Example

A brief example of the LEAPS algorithm is given to demonstrate the basic functionality.

For simplicity, this example assumes the use of one rule which is shown below.

(?a rdf :type ?b), (?b rdfs:subClassOf ?c) − > (?a rdf :type ?c)

The example also makes use of the working memory facts in Table 3.1.
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(a rdf:type C1)

(b rdf:type C1)

(C1 rdfs:subClassOf C2)

(c rdf:type C2)

(d rdf:type C3)

(C2 rdfs:subClassOf C3)

(C3 rdfs:subClassOf C4)

Table 3.1: LEAPS Example Working Memory Facts

The two condition elements will result in the creation of two containers. Initially these

containers are empty. Once each working memory fact has been added, they become

populated.

The stack is also initially empty. Each time a fact is added a new handle is pushed

onto the stack. In this case the latest handle will relate to the last item added,

(C3 rdfs:subClassOf C4) with the time-stamp 7. This is now the DO.

The current state of the containers, working memory and stack can been seen in Fig-

ure 3.6. Note the number to the left of the fact indicates the time-stamp associated with

the fact and reflects the order in which it was added.

Figure 3.6: Populated Containers, Working Memory and Stack

The next step is to retrieve the relevant rules for this DO. As there is only one rule for

this example, this rule will always be the rule considered.

Next, the composite cursor is created with the DO as the seed. The first cursor in the

composite cursor is for the “type” container. This cursor will be pointing at the latest

added fact to this container which is the (d rdf:type C3) fact with the time-stamp 5.

The second cursor in the composite cursor will be fixed on (C3 rdfs:subClassOf C4) as

this is the DO.
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This first tuple happens to satisfy the rule and so this search is paused and the current

state of the search is pushed onto the stack with the handle. The result of the rule firing

is the addition of a new working memory fact, (d rdf:type C4). This also causes a new

handle to be pushed onto the stack for this fact. See Figure 3.7.

Figure 3.7: Updated Containers, Working Memory and Stack

This new handle will relate to the last item added, (d rdf:type C4) with the time-stamp

8. This is now the DO.

The next step is to create the composite cursor with the DO as the seed. In this case the

first cursor in the composite cursor will be fixed on (d rdf:type C4) as this is the DO. The

second cursor in the composite cursor is for the “subClassOf” container. This cursor will

be pointing at the latest added fact to this container which is the (C3 rdfs:subClassOf C4)

fact with the time-stamp 7.

This tuple does not satisfy the rule and so the composite cursor steps forward by moving

the second cursor onto the next fact, (C2 rdfs:subClassOf C3) fact with the time-stamp

6. Again this does not satisfy the rule, and neither does the next fact with the time-

stamp 3. This search is said to be exhausted, and so at this stage the next rule would be

checked. As only the one rule is being considered in this example, this handle is popped

from the stack and the next handle is considered.

The next handle is actually the first handle that was encountered, the handle that

fired the action and was paused. The search resumes from the point where it stopped.

(C3 rdfs:subClassOf C4) is again the DO, and the first cursor in the composite cursor

now points at (c rdf:type C2) with the time-stamp 4. Recall that only facts with time-

stamps lower than or equal to the DO are considered. This fact does not satisfy the rule

and neither does the next two facts with time-stamps 2 and 1 respectively. This search

is exhausted and so the handle is popped.
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The next handle will relate to (C2 rdfs:subClassOf C3) with the time-stamp 6. This is

now the DO.

Again, the next step is to create the composite cursor with the DO as the seed. The

first cursor will be pointing at the first fact in the container with a time-stamp less than

the DO, which is (d rdf:type C3) with the time-stamp 5. This does not satisfy the rule

and so the next fact is considered, (c rdf:type C2) with the time-stamp 4.

This tuple happens to satisfy the rule and so this search is paused and the current state

of the search is pushed onto the stack with the handle. The result of the rule firing is

the addition of a new working memory fact, (c rdf:type C3). This also causes a new

handle to be pushed onto the stack for this fact.

This process continues until no handles remain on the stack. The final view of the system

can be seen in Figure 3.8.

Figure 3.8: Final Containers, Working Memory and Stack

3.2.2.5 Comparison to RETE

The LEAPS algorithm offers the advantage of lazy evaluation. The RETE and TREAT

algorithms are inherently slow, as they materialize all tokens that satisfy the predicate

of a rule. These materialized tokens are stored in data structures and have a negative

impact on performance as they must be updated as a result of executing rule actions.

A fundamental contribution of LEAPS is the lazy evaluation of tuples, i.e. the tuples

are only materialised when needed. This approach drastically reduces both the space

and time complexity of the reasoner and provides LEAPS with its phenomenal increase

in rule execution efficiency [10].
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3.2.3 Conclusion

The LEAPS algorithm can provide stronger performance guarantees than its predeces-

sors, the TREAT and RETE algorithms, due to reduced asymptotic algorithmic com-

plexity [28]. In particular, LEAPS requires only linear space versus exponential space

for TREAT and RETE [25]. These properties are very important when considering the

algorithm for use in a resource constrained environment.

While LEAPS may be significantly more difficult to implement compared to TREAT,

it too can also retain the operational semantics defined by the RETE algorithm. This

suggests that once implemented it can be integrated into SCOROR without much diffi-

culty.

The reasons above lead to the decision to choose LEAPS as the algorithm to be imple-

mented in this research.

3.3 Summary

This chapter has given an in depth discussion on two reasoning algorithms, TREAT and

LEAPS. Both algorithms were discussed in detail, with advantages and disadvantages

for both approaches in relation to RETE given.

The discussion lead to the conclusion that LEAPS could offer a more interesting replace-

ment for RETE in SCOROR due to its stronger performance guarantees.

The next chapter will discuss the design of the LEAPS algorithm so that it may be

integrated into SCOROR.
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Design

4.1 Introduction

This chapter gives a high level design of the LEAPS algorithm. The aim of the chapter

is to provide the reader with a design which illustrates the key concepts of the approach

and that may enable the implementation of the LEAPS algorithm in a chosen language.

At this stage it is important to note that the rules used in SCOROR and the research

performed by Hardy did not support the use of negative condition elements. For this

reason, and in the interest of comparing the implementation of the RETE algorithm

to the chosen algorithm accurately, negative condition support was not included in this

research implementation of LEAPS.

4.2 LEAPS

The LEAPS algorithm and the concepts associated with it have been described in the

State Of The Art chapter. The basic outline of the intended implementation will be

given in this section, with specific implementation details given in the Implementation

chapter.
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The design of the LEAPS algorithm implementation is taken from DROOLS [29].

DROOLS is a business rule management system (BRMS) with a forward chaining infer-

ence based rules engine. The project is open-source and offers a reasoning system which

currently uses the RETE algorithm.

The complete stream reasoning process is as follows: initial rule loading, insertion of

static ontology triples, reasoning cycle, insertion of current triples in stream window,

reasoning cycle, sweeping of reasoner. The final three steps are repeated continuously

until the stream or the reasoning process is stopped.

4.2.1 Rule Loading

The first phase of the reasoning process is to load the rules into the reasoner that will

be used for reasoning. This process is currently already performed by COROR and is

independent of what reasoning algorithm is being used. This is as simple as parsing well

defined rules from a text file. As an aside, the required rule composition is given below.

The rules used in this research are given in Appendix A.

4.2.1.1 Rule Composition

An example of a rule is given below.

(?a rdf :type ?b), (?b rdfs:subClassOf ?c) − > (?a rdf :type ?c)

Rules consist of both condition elements and actions. Any number of both components

is allowed, as long as each pattern is enclosed within brackets and each pattern is comma

separated. The condition elements should be separated from the actions with a simple

arrow pattern, composed of a hyphen and a greater than symbol.

It has been mentioned that COROR supports a selective rule loading mechanism. This

algorithm examines the base ontology and determines what rules will be needed in
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the reasoner. This can help reduce the overall reasoning time as less rules need to be

examined. Unfortunately, this is not suitable for a streaming environment as there is no

way to know what sort of triples may arrive on the stream.

Although COROR performs the initial rule loading, there is a conversion process in place

that converts the rule into a format which is used by the LEAPS approach. This must

be performed to examine if there are any variables in place within the rule condition

elements. If there are, variable bindings and relevant conditions must be set up for the

rule. Take the following rule for example:

(?a rdf :type ?b), (?b rdfs:subClassOf ?c) − > (?a rdf :type ?c)

In this case, two triples could be found that satisfy the two condition elements indepen-

dently. However, a third condition would need to be in place to ensure that both the

object of the first condition element and the subject of the second condition element

have the same value.

For example, the triples in Table 4.1 may exist in working memory.

(C2 rdfs:subClassOf C3)

(C1 rdfs:subClassOf C2)

(a rdf:type C1)

Table 4.1: Example Working Memory Facts

If the facts are inserted into the reasoner in descending order from how they appear

in the table, the final fact, who’s predicate is “type”, will be considered as the DO.

The relevant rules will return the rule given above, and the DO will seed the search by

satisfying the first condition element (?a rdf:type ?b).

The two facts considered for the second condition element will be the facts with the

predicate “subClassOf”. The newest fact, (C2 rdfs:subClassOf C3), will be considered

first. Clearly this fact does satisfy the second condition element as the predicates match

and the other values are variables. However, the values given for the b variable by the

two facts will differ. For this reason an additional check to ensure matching variable

bindings for different condition elements must be performed. This can be done by
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maintaining a record of each variable used in the rule and how many times this variable

is referenced. When a fact is considered to satisfy a condition element, any variables

satisfied should store the relevant value so that this variable reference can be checked

against other variable references in the rule. The final variable value may also be used

in the rule’s actions.

The actions of the rule must also be expressed in a way that makes sense in the LEAPS

environment. In this case, an action would need to be in place that inserts a new triple

with the values that have been bound to the a and c variables. Using the above example,

this would be the triple below.

(a rdf :type C2)

The rule loading process is also important due to the fact that it is responsible for

setting up the data structures which are used in the reasoning process. Once reasoning

begins, the first step in the algorithm is to use the DO predicate to determine what rules

are needed for checking. This information is gathered at this stage by examining the

predicates in each rule condition element as each rule is loaded.

The rule loading process should construct a collection of rules for each unique predicate.

This collection should hold all the rules that reference that particular predicate, and

should indicate which condition element referenced the predicate. When a fact is then

determined as the DO, relevant rules can be retrieved from the collection.

For example, consider the rules in Table 4.2.

(?a rdf:type ?b), (?b rdfs:subClassOf ?c) -> (?a rdf:type ?c)

(?a rdf:type rdf:Property) -> (?a rdfs:subPropertyOf ?a)

(?a owl:equivalentClass ?b) -> (?a rdfs:subClassOf ?b)

Table 4.2: Example Rules

As each rule is loaded, a new collection is created for each unique condition element

predicate that is encountered. The collections are illustrated in Figure 4.1. The relevant

condition element is highlighted.
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Figure 4.1: Rule Containers

A wild-card flag is also used to indicate if a wild-card predicate is encountered, that

is to say a rule where the predicate is a variable. If a single rule contains a wild-card

predicate, this flag should be set. This flag is later used in the triple insertion stage.

4.2.2 Insertion of Ontology Triples

The next step in the reasoning process is the insertion of the triples contained in the

static ontology. COROR takes full advantage of information gathered in the rule loading

stage for further efficiency.

There are two possible cases. The first case is that there is at least one rule that contains

a wild-card predicate. The second case is that all predicates that appear in rules are

known. In the first case the wild-card flag will be set and the reasoner must insert all

triples from the ontology, as it is possible for the wild-card predicate to be satisfied by

any of the triples. However, in the second case the reasoner must only insert triples that

contain predicates that have been already observed in the rules.

For example, consider the rules from Figure 4.1 have been loaded. In this case, the

wild-card flag would not be set as there are no wild-card predicates used in any of the

condition elements. Only facts that contain the predicates that have been referenced
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would need to be inserted. If the facts from Table 4.3 were to be inserted, the triples in

bold could safely be ignored, as they could not possibly satisfy any condition elements.

(b rdfs:domain C1)

(C2 rdfs:subClassOf C3)

(C1 rdfs:subClassOf C2)

(a rdf:type C1)

(d rdfs:range C3)

(c rdf:type C3)

(C2 owl:equivalentClass C4)

(e rdf:type C4)

Table 4.3: Further Working Memory Facts

This simple step avoids the insertion of triples which, when used as the DO, would have

no rules to consider. These triples would consume space and time during reasoning.

The insertion process also involves the creation of the collections which hold all facts

for a certain predicate type. These collections are the containers that allow for the

creation of composite cursors, discussed in Section 3.2.2.1, whose use is described in

Section 3.2.2.2.

As each fact is inserted, a new collection is created for each unique predicate that is

encountered. The collections generated for the facts in Table 4.3 are illustrated in

Figure 4.2.

As each triple is added into the reasoner, a handle for the triple is also placed onto the

LIFO stack. The stack for the facts in Table 4.3 is illustrated in Figure 4.3.

4.2.3 Reasoning

Reasoning then proceeds as discussed in Section 3.2.2.2. Each handle on the stack is

considered in this process. When a handle is at the top of the stack it is referred to as

the DO. The relevant rules can now be retrieved by using the predicate in the fact the

handle represents and the rule containers which have been created in the rule loading

stage. The DO is then used as a seed for the composite cursor. The composite cursor
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Figure 4.2: Fact Containers

Figure 4.3: LIFO Stack

consists of N cursors, where N is the number of condition elements in the rule (the cursor

for the DO is fixed on the DO fact). Each of the other cursors then iterates over the

relevant container of facts for their respective condition element predicate. These fact

containers were created in the triple insertion stage.

For example, consider the stack in Figure 4.3, the rule containers in Figure 4.1 and the

fact containers in Figure 4.2.

The first DO is then the (e rdf:type C4) fact. The relevant rules to check can then be

retrieved from the “rdf:type” container. The first cursor will be fixed on the DO fact,

the second cursor will iterate over the “rdf:subClassOf” fact container to attempt to find

an instantiation. If none is found, the fact container cursor is reset and the next rule in

the rule container is considered. When no rules are left, the handle is popped from the

stack and the next handle becomes the DO.
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When an instantiation is found the handle is pushed back onto the stack, and the current

iteration state of the composite cursor (i.e. the positions of the individual cursors) is

retained within it. The rule’s action is then executed. New insertions result in the

pushing of new handles onto the stack.

When a handle reaches the top of the stack and an iteration state already exists, the

search continues from the saved state.

Once initial reasoning over the base ontology has finished, stream reasoning may begin.

Any triples inserted and deduced will now be considered temporal triples. When tem-

poral triples are inserted they are still added to the relevant fact container. As discussed

in Section 2.4 these temporal triples must be removed once their associated time-stamp

is deemed invalid. This is explained in further detail in the next section.

4.2.4 Temporal Triple Requirements

When expanding COROR to support stream reasoning Hardy [14], based on the ap-

proach by Barbieri et al [23], identified 7 main requirements for a stream based RETE

reasoner. The requirements are listed below.

1. Computes the entailments derived by the inserts.

2. Annotates each entailed triple with an expiration time.

3. Eliminates from the current state all copies of derived triples except the one which

has the highest time-stamp.

4. All tokens placed in RETE network must be removed at expiration time.

5. Products of joins between two temporal tokens must output a temporal token

with the minimum time-stamp of its two parents. The product of a triple with a

temporal triple must output a product with time-stamp of its temporal parent.

6. Facts contained in the base ontology should not be replaced by temporal versions

of themselves.
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7. Tokens, similar to triples in the ontology, must be updated in the case of duplicate

tokens arriving into the RETE network if we are to preserve correctness in our

joins.

The requirements are highly relevant for the design of the LEAPS reasoner. The re-

quirements, as well as the explanations, are presented below to reflect the needs of the

LEAPS approach.

1. Computes the entailments derived by the inserts.

The first requirement is a basic reasoning requirement, the reasoner must be able

to take a set of facts and be able to deduce the appropriate entailments.

2. Annotates each entailed triple with an expiration time.

By labelling entailments with the minimum time-stamp of the facts used to deduce

them, triples can be safely removed from the graph based on their time-stamps

without having to worry about figuring out their consequences and seeing if they

should be removed.

3. Eliminates from the current state all copies of derived triples except

the one which has the highest time-stamp.

This prevents the reasoner from having multiple duplicates of triples with different

timestamps. The absence of this requirement would lead to large amounts of

unnecessary computation and memory usage.

4. All temporal handles placed on the LEAPS stack must be removed at

expiration time.

Once a temporal triple has been removed from the reasoner, it is only logical that

its associated handle is removed.

5. Triples that have been deduced with the use of temporal triples must

receive the minimum time-stamp of all temporal triples involved.

This is an intuitive step that is needed for deductions that are joined from multiple

facts that may expire. If there is a conclusion Z that has been derived from facts

X and Y, then it is necessary that Z’s expiration time should be the minimum of
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X and Y, as once one of the facts that is necessary for Z to exist expires, then Z

should expire as well.

6. Facts contained in the base ontology should not be replaced by temporal

versions of themselves.

If a fact does not have a time-stamp originally then it is persistent data and should

not be removed. This can lead to significant performance gains because if a base

ontology fact is allowed to be changed to a temporal fact, then all of the conclusions

that were derived from it will also become temporal. This can sometimes lead to

large amounts of an ontology becoming temporal, which can greatly increase the

overhead of the reasoning process.

7. Handles, similar to triples in the ontology, must be updated in the case

of duplicate handles arriving into the reasoner.

If a temporal triple is replaced by a duplicate temporal triple with a higher time-

stamp, the relevant handle must be removed from the stack and pushed onto it

again.

Thus restrictions are in place when inserting new triples that have been deduced using

temporal triples. The triple must have the minimum time-stamp of all temporal triples

that have been used in its deduction. If the triple is already in the working memory, and

is not a temporal triple, it is not inserted. If the existing triple is a temporal triple, a

check must be performed so that only the triple with the highest time-stamp is permitted

to exist.

An extra step is also added to the reasoning process. This step is referred to as the

“sweep” stage. During this step, the working memory, fact containers and stack are

“swept” over. Any expired data is then removed from the reasoner. This step is per-

formed after each reasoning cycle.

4.3 Summary

This chapter has given a high level design of the LEAPS algorithm. The significant

concepts of the approach have been discussed in detail with examples given to illustrate
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the approach.

The next chapter will explain how this design was implemented in Java and integrated

into SCOROR.



Chapter 5

Implementation

5.1 Introduction

The existing stream reasoner, SCOROR, was implemented in Java. Thus, the LEAPS

approach was implemented in Java. This chapter will discuss SCOROR at two levels,

Graph Level Implementation and LEAPS Level Implementation.

The Graph level is independent of which reasoning algorithm is in use. The Graph

handles how triples are managed in working memory, independent of the actual reasoner.

When a triple is added to working memory it is first added to the Graph, before being

passed into the reasoner. Any deduced triples are then passed back to the Graph.

The Graph level provides a means to illustrate clearly the initial ontology size and the

resulting deduced Graph size. Changes were made by Hardy [14] at Graph level to

support stream reasoning. These changes will be discussed here.

LEAPS level relates to the specific implementation of the LEAPS approach. This in-

volves the construction of data structures and also the search algorithms that are used

in reasoning. Modifications to the LEAPS level that were needed to support stream

reasoning are also discussed.
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5.2 Graph Level Implementation

COROR makes use of multiple graphs during its operation. When triples are first

inserted they are inserted into an instance of the RawGraph class, which is used to

represent the base ontology. Deduced triples are inserted into an instance of Deduc-

tionsGraph. These are both members of InfGraph, which models a complete cycle of

inference containing both the initial triple set and the result set.

Hardy added a new graph to InfGraph called fadd. The purpose of this graph is to hold

all triples from the current stream window. These triples are added to the graph from

the stream processor. Originally COROR only had the ability to reason over a static

ontology. There was no functionality which allowed for the insertion of triples into a

reasoner which had already reasoned over the static ontology. Subsequent calls on the

reasoner would result in the complete process being performed again. This includes the

rule loading, the construction of the RETE network and the static ontology insertion.

With the addition of the fadd graph and some simple logic, SCOROR was given the

ability to perform incremental reasoning. On the initial call to the reasoner the rules

are loaded and the relevant reasoner data structures are constructed. The base ontology

(RawGraph) is then passed into the reasoner and normal reasoning is performed.

On subsequent calls, there is no need to reconstruct data structures. Triples which have

been extracted from the current stream window (fadd) are then inserted into the reasoner

as temporal triples. Upon completion of reasoning, the “sweep” call is performed. This

call removes any triples from both the RawGraph and the DeductionsGraph whose times-

stamps are below the current time. This cycle can then be repeated indefinitely.

To support temporal triples, Hardy extended the simple Triple class into the Tempo-

ralTriple class. This new class simply includes a time-stamp. To prevent duplicate

temporal triples a simple test is performed upon insertion into a graph. The test checks

if the graph already contains the triple. If it does not, the triple is added. If it does but

the contained triple is a temporal triple, the time-stamps are compared. If the contained

triple has a higher time-stamp, it is left in the graph. If not, it is removed and the new

triple is inserted. This was implemented into the base graph class graphImpl to ensure

that all graphs enforce the behaviour.
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5.3 LEAPS Level Implementation

The core functionality of the LEAPS implementation is contained within the LeapsWork-

ingMemory and LeapsRule classes. These classes are integrated with the existing SCOROR

project through the LeapsEngine class.

These classes can be seen in Figure 5.1.

Figure 5.1: LeapsRule, LeapsEngine and LeapsWorkingMemory Classes

When SCOROR is started, it must first reason over the static base ontology before

stream reasoning can begin. Firstly, SCOROR initialises the LeapsEngine class and

passes in the rules which have been read in from the rule text file. A call to the “init”

method is then made, which passes in the base ontology facts to be inserted, which have

also been read in from a text file. A boolean parameter indicates that this is the first time

“init” has been called and so the “compile” method is then called to perform further rule

loading and generate the rule containers discussed in the Design chapter. The “fastInit”

method is called to insert the base ontology facts into the reasoner, and generate the

fact containers also discussed in the Design chapter. Finally, the “fireAllRules” method

of the LeapsWorkingMemory class is called which initiates the reasoning process.

Once this reasoning has finished, further calls to “init” will bypass the “compile” method

as the data structures needed will already have been generated on the first call. The

facts which are passed into the method on these calls represent the facts from the current

stream window. The “fastInit” method will be called with these facts, followed by the

“fireAllRules” method. Once reasoning has complete, the “sweepLeaps” method is called

in order to remove any invalid temporal triples and associated data.
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Each of the above steps will now be discussed in detail.

5.3.1 Rule Loading

In COROR a rule is modelled with the Rule class. This was extended into the LeapsRule

class. When the “compile” method from the LeapsEngine is called, the rules which have

been passed to the method are iterated over and converted into the LEAPS format using

the method “convertToLeapsFormat” of the LeapsRule class. This rule is then added to

the rule set in the LeapsEngine.

When a rule is converted it must be examined in order for variable bindings, conditions

and actions to be put in place. The Rule class splits the rule into two components: the

body, which is made up of the condition elements, and the head, which is made up of

the actions. Each condition element in the body is given an index, as is each action in

the head. Each condition element and action must be an instance of the TriplePattern

class, and this is enforced when the rules are loaded. The TriplePattern class ensures

that each instance has a subject, predicate and object, each represented by an instance

of a Node class. The Rule class also assigns an index to each variable in the rule.

For example, examine the following rule:

(?a rdf :type ?b), (?b rdfs:subClassOf ?c) − > (?a rdf :type ?c)

The body would consist of two elements: (?a rdf:type ?b) and (?b rdf:subClassOf ?c).

These elements would have the indices 0 and 1 respectively. The head would consist of

the single element: (?a rdf:type ?c), index of 0. The variables would be assigned the

following indices: a=0, b=1 and c=2.

Also associated with each condition element in the rule is an iterator. When a search for

an instantiation is being performed each iterator gets set so that it may iterate over a fact

container. This fact container is usually the fact container for the predicate contained

in the condition element. This will be discussed in more detail later.

For each condition element in the body, the “addConditionElement” of the LeapsRule

is called. The operations performed in this method are described below.



Implementation 45

5.3.1.1 Variable References

Each condition element is checked for variables in the subject, predicate and object

positions. If a variable is found, a reference is stored in a collection called varReferences

in the LeapsRule instance. The key for the reference is the variable index, while the

value is an instance of the Pair class (see Figure 5.5) which contains the index of the

condition element and the attribute the variable is contained in, i.e. subject, predicate

or object. Obviously, a variable can be referenced multiple times in a rule so a key may

return multiple pairs. The above rule would result in the references in Table 5.1 being

stored.

Var Index Pair: (CE Index, Attribute)

0 (0, SUBJECT)

1 (0, OBJECT)

1 (1, SUBJECT)

2 (1, OBJECT)

Table 5.1: Example Variable References

If a predicate is a variable, the wild-card flag in the LeapsEngine is set. Otherwise, the

predicate value is added to a predicatesUsed collection contained in the LeapsEngine.

This information is later used in the triple insertion process as discussed in Section 4.2.2.

5.3.1.2 Conditions

The next step is to enforce the actual condition element. For each condition element a

LeapsCondition is registered. These conditions are then tested during reasoning time.

Each LeapsCondition contains an “isAllowed” method that must ensure that the current

triple pointed to by the condition element’s iterator passes the condition element by

matching the pattern of the condition element.

A triple matches a pattern by matching the value for each of the three positions: subject,

predicate and object. If any of the three is a variable, any value may pass as a match.

This value is stored in another collection in the LeapsRule instance, varBindings, so that

the value may be used in the rule’s actions.
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If the triple is a temporal triple, its time-stamp is stored (if it is less than a previously

stored time-stamp) so that it may be used by the actions for the insertion of a new

triple.

Pseudo code of this operation is given in Figure 5.2 and Figure 5.3. The “isAllowed”

method makes use of the “checkMatching” method in the LeapsRule instance.

Figure 5.2: “isAllowed” Pseudo Code

Figure 5.3: “checkMatching” Pseudo Code

5.3.1.3 Variable Bindings

An extra condition is also added for each variable in the rule that has more than one

reference. This is determined using the varReferences information described above. If a

variable has more than one reference an additional LeapsCondition is put in place using

the “addVariableCondition” method of the LeapsRule instance.
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This LeapsCondition makes use of the information in varReferences to determine all of

the condition elements that reference the variable in question. Recall that the informa-

tion also indicates what attribute the variable is in in the condition element i.e. subject,

predicate or object.

Using this information, the triples pointed to by each condition element’s iterator can be

obtained and checked against each other. This ensures that all references to a variable

contain the same value. If this is so, the condition passes and this variable’s value is

updated in the varBindings collection.

Pseudo code for this operation is given in Figure 5.4 and Figure 5.5. The “isAllowed”

method makes use of the “getTripleAttributeValue” method in the LeapsRule instance

and the Pair class, which are also shown.

Figure 5.4: “isAllowed” Pseudo Code

5.3.1.4 Actions

The next step in rule loading is to set the actions of the rule. The rules which are

used by COROR do not include removal of triples as actions. All actions result in the

insertion of one triple, however the LEAPS implementation can support any number

of insertions. This is done by setting a LeapsConsequence. Every consequence has an

“invoke” method which is executed when the rule is satisfied.
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Figure 5.5: “getTripleAttributeValue” and Pair class Pseudo Code

The method simply iterates through the head and performs an insertion with the values

specified in the relevant action. If a variable is present in the action the value for the

variable can be retrieved from varBindings.

Pseudo code for this operation is given in Figure 5.6.

Figure 5.6: “invoke” Pseudo Code
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5.3.1.5 Creation of RuleTables

Finally, the rule is added to the rule set. At this stage it is important to explain some

of the more complex data structures which are used in this implementation. One such

structure which is heavily used is the LeapsTable. This is a custom data structure which

is based on a TreeMap. It allows for the addition and removal of objects which are always

maintained in a sequential order. This order is based on the order in which objects are

inserted, but can be given a comparator parameter when created which defines how

objects are sorted. For example, this could allow for the rules to be sorted by some

measure of complexity.

The LeapsTable structure also offers iterators which allow for iteration over the objects

contained in the structure. These iterators can be given parameters which allow for the

iterator to start and end at particular objects. It should be evident that the LeapsTable

structure is an implementation of the Container concept introduced in Section 3.2.2.1.

In fact, a structure called a FactTable extends LeapsTable and is used to store fact-

handles for all the facts for a certain predicate type. A structure called a RuleTable,

which also extends LeapsTable, is used to store rule-handles for all the rules that reference

a particular predicate type. Each RuleTable instance is actually contained within the

relevant FactTable instance. The FactTable then provides methods to add a rule to the

RuleTable, and to fetch the next rule-handle.

These classes can be seen in Figure 5.7.

Figure 5.7: LeapsTable, LeapsFactTable and LeapsRuleTable Classes
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With these structures explained, it is possible to return to the rule loading process. As

each rule is added to the rule set a new FactTable for each unique condition element

predicate is created and stored in the tables collection in the LeapsWorkingMemory

class. When all rules have been loaded, there will exist a FactTable and RuleTable for

each unique predicate. This RuleTable table will contain a rule-handle to all the rules

that reference this particular predicate. Each rule-handle will also contain the index of

the condition element the predicate was referenced in. The rule-handle must hold this

information so that when it is used in the reasoning process, the DO will know which

condition element to seed.

For example, consider that the following rule has been loaded.

(?a rdf :type ?b), (?b rdfs:subClassOf ?c), (?c rdfs:subClassOf rdfs:Resource)

− > (?a rdf :type ?c)

Firstly, a new FactTable, and subsequently a new RuleTable, for the predicate “rdf:type”

would be created. A rule-handle would then be added to the RuleTable using the

“addRule” method. The rule-handle would contain a reference to the LeapsRule object

itself, and the index 0.

Secondly, a new FactTable, and subsequently a new RuleTable, for the predicate

“rdfs:subClassOf” would be created. A rule-handle would then be added to the RuleTable

using the “addRule” method. The rule-handle would contain a reference to the Leap-

sRule object itself, and the index 1.

Lastly, a rule-handle would be added to the RuleTable for the predicate “rdfs:subClassOf”.

The rule-handle would contain a reference to the LeapsRule object itself, and the index

2.

It is important to note that a RuleTable may exist for the wild-card predicate.
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5.3.2 Insertion of Ontology Triples

When the “fastInit” method is called, facts are inserted at the graph level and also at

reasoner level. The “addTriple” method in the LeapsEngine class is called, which in

turn calls the “addFact” method of the LeapsWorkingMemory class.

When facts are inserted a new FactTable for each unique predicate is created unless it

already exists from the rule loading stage. This table will contain a fact-handle to all

the facts that contain this predicate. A fact-handle is a simple object that contains a

reference to the relevant Triple object.

A new LeapsToken is created for each new fact-handle. A token maintains a reference to

the fact-handle that created it. It also contains a resume flag which indicates whether

its fact has been considered as the DO yet or not. It also contains a reference to the

last rule-handle used in the search with the token, and stores the saved iteration state

of the search.

This token is pushed onto the stack. The stack is implemented as a TreeSet which orders

inputs based on their insertion. A TreeSet was chosen over a standard Stack class as

it can be faster for removing tokens for retracted facts. Although COROR does not

support rule actions that remove triples, temporal triple removal is needed for stream

reasoning.

5.3.3 Reasoning

5.3.3.1 Reasoning Cycle

When a token is at the top of the stack, the relevant FactTable is retrieved from tables

using the predicate from the fact. The resume flag states whether it is resuming a search

or if this is the first time the fact is being used as the DO. If the flag is set then the

search continues from the saved iteration state which is stored in the token.

The first time a token reaches the top of the stack the first rule-handle is retrieved from

the LeapsRuleTable and is set as the current rule-handle for the token. The “Seek”

method is then called for the rule referenced by the rule-handle. If an instantiation for

the rule is found, the iteration state is saved onto the token. The resume flag for the
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token is then set. The resulting action will have inserted a new fact, so the new token

on the top of the stack is now considered as the DO.

However, if no instantiation is found, the next rule-handle is retrieved from the Leap-

sRuleTable. When there are no more rule-handles available from the LeapsRuleTable, a

new LeapsRuleTable may be used which represents rules that contain wild-card pred-

icates. This depends on whether the wild-card flag is set or not in the rule loading

stage. When all possible rule-handles have been considered, the token is popped from

the stack. This process repeats until there are no tokens left on the stack.

5.3.3.2 Seek Method

The Seek method is used to find instantiations for a rule which has been seeded with a

DO. The method is called for a particular rule when a rule-handle which is associated

with the rule is chosen in the reasoning cycle. As mentioned earlier, each rule-handle

also contains the index of the condition element the predicate was referenced in. This

condition element is the element that is seeded.

It was also mentioned earlier that each condition element in a rule has an associated

iterator. The first step in the method is to set these iterators so that they iterate over

the relevant LeapsFactTable instance so that facts that satisfy the condition elements

can be found. Obviously, the iterator for the condition element that is seeded by the

DO is restricted to just the DO fact. This iterator is retrieved using the “dominantOb-

jectIterator” method from the LeapsFactTable class.

If the search is resuming the iterators can be set back to the state they were in at the

end of the last search using the saved iteration state in the token. If the saved iteration

state points to a fact that has been removed from a LeapsFactTable since the last search,

the iterator may need to be reset to prevent these facts from being considered. Once the

iterators have been set, a simple check can be performed to ensure there are no empty

iterators. If there is, the method can return reporting that no instantiation is found.

The next step is to cycle through the iterators attempting to find facts that satisfy the

condition elements. Starting with the first iterator, the relevant LeapsConditions’ “isAl-

lowed” methods are called using the “evaluateConditions” method for the LeapsRule.
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If the method returns that the conditions have passed, the search can proceed to the

next iterator. Once the last iterator has found a fact that satisfies the conditions, the

current iteration state of the iterators is saved in the token, the consequence is invoked

using the “invoke” method and the “Seek” method returns stating an instantiation has

been found.

If an iterator fails to find a fact to satisfy it and has no more facts to check, it is reset

and the algorithm moves back to the previous iterator which moves onto the next fact.

If the first iterator contains no more facts to check, the search can return reporting that

no instantiation has been found.

5.3.4 Temporal Triple Management

In order to support stream reasoning, some additional functionality had to be employed

in order to support the insertion and removal of temporal triples.

When a temporal triple is inserted, a check is done to assess whether the triple is already

contained in the InfGraph. Inserting a duplicate triple into the graph will result in the

duplicate being handled as discussed in Section 5.2. When inserting a temporal triple

in the reasoner, a search of the InfGraph is first performed in the “addTriple” method

in the LeapsEngine class. If the triple already exits, the “addFactTemporal” method of

the LeapsWorkingMemory class is then called.

The existing triple’s fact-handle can be retrieved using a hashing technique and the new

triple object. All fact-handle objects must be stored with their corresponding hash for

this approach. If the existing triple is not a temporal triple, no action is performed.

However, if the existing triple is a temporal triple the time-stamps must be compared.

If the existing triple has a higher time-stamp, the existing fact-handle is left in the

LeapsFactTable and the respective token in the stack. If not, it must be removed from

the LeapsFactTable and the token must be removed from the stack. The new temporal

triple’s fact-handle is then re-inserted into the relevant LeapsFactTable and a new token

is pushed onto the stack.

Section 4.2.4 briefly mentioned the “sweep” stage involved in the reasoning process. It

has been stated above how this is dealt with at Graph level. At LEAPS level, this
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involves iterating through all instances of LeapsFactTable and removing any fact-handle

that has a time-stamp that is below the current time. The corresponding token must

also be removed from the stack.

5.3.5 Difficulties Encountered

The removal of fact-handles during the sweep stage was initially problematic. While

iterating over the LeapsFactTable, a removal would cause the iterator to throw an ex-

ception as it tried to move onto a recently removed element. A simple solution for this

problem was to add each element into a temporary collection and then remove each

element individually once all elements that were to be removed were known. Removing

an element from a collection once iterating over the collection has finished allows for the

safe removal of the element.

To determine if a triple already exists in a LeapsFactTable, a simple hashing technique

was used as mentioned earlier. Using the new triple object a unique hash for the subject,

predicate and object of the triple is obtained. This can then be used as a key in a

hashtable in order to determine if an existing matching triple exists in the reasoner and

to retrieve the existing triple if necessary.

The implementation of functions as condition elements also proved difficult. Various

rules used in SCOROR make use of functions as condition elements. A simple imple-

mentation was attempted and worked for very small ontologies. However, for larger

ontologies the implementation dramatically reduced reasoning times. The reason for

this is still unknown, but further work could expand on this implementation.

5.4 Summary

This chapter has discussed the implementation of the LEAPS approach. The concepts

which were introduced in the Design chapter were described in further detail and further

examples were given.

The next chapter will assess this implementation of a LEAPS reasoner in comparison to

the existing RETE reasoner in SCOROR.
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Evaluation

6.1 Introduction

Evaluating a stream reasoner is a complicated task due to the high amount of variables

associated with the process. Hardy [14] performed a series of experiments in order to

gain an understanding of how different factors influenced SCOROR’s performance. In

the interest of comparing the implementation of the RETE algorithm to the chosen al-

gorithm accurately, it must be assumed that the same rule set and ontologies used in the

evaluation are identical. Unfortunately, some rules which include functions could not be

included in experiments as the LEAPS implementation does not fully support functions

yet. Another factor to consider is the varying nature of performance on different ma-

chines. Results can vary significantly. As a result of the above facts this evaluation has

performed the following experiments on both the RETE and LEAPS implementation in

SCOROR in order to give a more authentic comparison.

Initial experiments to ensure the correct operation of the LEAPS implementation were

also performed. These experiments are not documented here, but were conducted in

order to ensure that both reasoners generated identical deductions given identical rule-

sets and facts.

All experiments were performed on a Dell XPS L502X. Memory: 6144MB RAM, Pro-

cessor: Intel Core i5-2450M CPU, 2.5GHz.

The rule set used is given in Appendix A.
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6.2 Experiments

Initial experiments performed by Hardy made an attempt to measure the throughput of

SCOROR. Throughput is an important factor as the reasoner must be able to complete

reasoning over the recently inserted triples before the next window of triples is available

to be inserted. If the reasoner fails to complete the reasoning in this period, the number

of triples which get inserted on the next iteration will be increased (assuming a constant

stream speed). When these triples are inserted, the reasoning time will only increase

resulting in a continuous cycle of reduced performance. This is referred to as the reasoner

becoming overloaded.

These initial experiments clearly illustrated that the number of triples needed to overload

the reasoner varied depending on the ontology used.

Further experiments illustrated that the re-reasoning time (reasoning time for an iter-

ation) varied based on a number of factors. The most notable factors included initial

static ontology size and window size. The reasons behind these factors are quite logical.

A larger ontology size results in a more facts permanently contained in the reasoner.

A larger window size results in a slow collection of temporal facts which are eventually

removed, only to be replaced by more temporal facts.

The conclusion of the experiments by Hardy is that each of these factors must be consid-

ered with relevance to the setting in which the reasoner is to be employed. The amount

of predefined data (static ontology size), reducing relevance of data (window size), input

of data (peak stream speed) and reasoning outcome trends should be examined in order

to determine whether the reasoner can adequately reason over the incoming data and

the reasoner’s overall capability for a particular setting.

The experiments have been performed again not in an attempt to determine conclu-

sions which challenge those put forward by Hardy but in order to compare the two

implementations, RETE and LEAPS. All times are given in milliseconds.
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6.2.1 Experimental Ontologies

Various ontologies were used in experiments in order to truly compare the reasoning

capabilities of both implementations. This is due to the fact that ontologies can vary in

both size and expressivity, which can be significant factors in reasoning times.

The ontologies used in the experiments are listed in Table 6.1. These ontologies were

used in the experiments by Hardy and were taken from Tai et al [5].

Ontology Expressiveness Size (Triples)

Teams ALCIN 87

Beer ALHI(D) 173

Mindswapper ALCHIF(D) 437

Mad cows ALCHOIN(D) 521

Biopax ALCHF(D) 633

Food ALCOF 924

University SIOF(D) 169

Koala ALCON(D) 147

Table 6.1: Experimental Ontologies

A full explanation of the expressivity naming convention can be found at [30].

6.2.2 Throughput Experiment

The throughput of the reasoners was examined using a window size of 1 second. In

this case, it is required that re-reasoning is completed within 1 second before the next

window is available for insertion. The stream speed was increased gradually so that

the number of triples inserted rose in a sequence of steps with the intention that the

re-reasoning time would pass the 1 second mark. This experiment was performed with

two ontologies, the Teams and Biopax ontologies. These ontologies were used as they

represent a rather simple ontology (Teams) and a more complex ontology (Biopax).

Figure 6.1 and Figure 6.2 show the throughput for the Teams ontology for both the

RETE and LEAPS implementations respectively. Figure 6.3 and Figure 6.4 show the

throughput for the Biopax ontology. In the following charts re-reasoning time for a
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particular iteration is given on the y-axis in milliseconds. This is the time taken to

complete reasoning over the recently inserted triples. The number of triples inserted for

this iteration is given on the x-axis.

Figure 6.1: RETE Teams Throughput

Figure 6.2: LEAPS Teams Throughput

The re-reasoning time can be seen to vary for the same number of triples inserted. It

should be made clear that the work that needs to be performed will vary based on the

actual triples that are inserted and is not solely based on the number of triples inserted.
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The data used in the figures has been collected over a number of iterations in order to

give a good sample of re-reasoning times.

Figure 6.1 shows the 1 second re-reasoning time is breached at around 100 insertions for

the RETE implementation. Figure 6.2 shows the 1 second re-reasoning time is breached

at around 300 insertions for the LEAPS implementation.

Figure 6.3: RETE Biopax Throughput

Figure 6.4: LEAPS Biopax Throughput
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Figure 6.3 shows the 1 second re-reasoning time is breached at around 28 insertions for

the RETE implementation. Figure 6.4 shows the 1 second re-reasoning time is breached

at around 36 insertions for the LEAPS implementation.

From the above figures it can be clearly seen that both reasoners offer a linear relationship

between re-reasoning time and the number of triples that are inserted. The LEAPS

implementation performs better than the RETE implementation in the two cases given.

The RETE reasoner becomes overloaded with a smaller number of insertions than the

LEAPS reasoner in both cases.

6.2.3 Window Variability Experiment

Window size directly influences the number of the temporal triples that are stored in the

reasoner at any given time. A larger window size will result in temporal triples being

contained for a longer period. This obviously results in a larger working memory and

results in a longer re-reasoning time.

This experiment was conducted by setting a fixed stream speed of 10 triples per second.

The ontology used was the Teams ontology. The window size was then tested at 2, 5,

10 and 20 seconds.

Figure 6.5 and Figure 6.6 show the results for the Teams ontology for both the RETE

and LEAPS implementations respectively. In the following charts re-reasoning time for

a particular iteration is given on the y-axis in milliseconds. This is the time taken to

complete reasoning on the recently inserted triples. The number of triples inserted for

this iteration is given on the x-axis.

Both figures show quite disperse reasoning times for the same number of triples added.

Again, the amount of reasoning that is performed will vary based on the actual triples

that are inserted and is not solely based on the number of triples inserted.

It is difficult to identify any clear trends in reasoning times with respect to window size

in the RETE implementation. However, while there are clear outliers in the LEAPS

implementation, there is also a clear trend. The 2 and 5 second windows seem to offer

similar reasoning times while the 10 second window offers slightly longer reasoning times.

The rise in reasoning times for the 20 second window is more noticeable.
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Figure 6.5: RETE Window Sizes

Figure 6.6: LEAPS Window Sizes

In general, the LEAPS implementation again shows lower reasoning times.

6.2.4 Differing Ontology Experiment

Hardy found that static ontology size had a clear impact on re-reasoning times. In order

to compare the two implementations, the average re-reasoning time for all ontologies was
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obtained over 13 iterations. This experiment was conducted by setting a fixed stream

speed of 10 triples per second and a fixed window size of 10.

Figure 6.7 illustrates the results. Average re-reasoning time over 13 iterations is given

on the y-axis in milliseconds.

Figure 6.7: RETE vs LEAPS Ontology Re-reasoning Times

Figure 6.8 illustrates the results with respect to ontology size.

Figure 6.8: Re-Reasoning Time vs Ontology Size
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It is quite clear that the RETE implementation outperforms LEAPS by a large margin

for both the food and mad cows ontologies. The reason for this seems to be the com-

bination of a large ontology size and a high expressivity. While Hardy determined that

expressivity was not a large factor in the reasoning time, it is clear that for the LEAPS

implementation it seems to play a large part when coupled with a large ontology size.

The other ontologies all have similar reasoning times with LEAPS performing better on

the teams and beer ontologies and more noticeably on the mindswappers and biopax

ontologies. RETE performs slightly better on both the koala and university ontologies.

The explanation put forward is that the LEAPS approach is not designed for use with

wild-card predicates. When a condition element contains a wild-card predicate all facts

in the working memory must be considered. Clearly this significantly effects reasoning

time as all facts must be iterated over for each condition element that contains a wild-

card predicate. High expressivity can result in changes propagating widely through an

ontology due to properties such as transitivity. The coupling of these two factors has a

clear effect on the reasoning times in the LEAPS implementation.

A second factor that may have a consequence on the reasoning time is the resetting of

the iteration state for a rule-handle. The Implementation chapter describes how the

iteration state may be reset if it is detected that the state points to a fact that has been

removed since the last search. Since temporal triples are removed on every cycle after

the cycle which is numbered the window size, this could be a factor in the reasoning

time for larger ontologies.

6.2.5 Memory Consumption Experiment

Clearly the memory consumption of the reasoner is quite important in resource con-

strained devices. The main inspiration for this research was to determine whether a

suitable replacement for the RETE algorithm could be found. Thus an experiment

to measure the memory consumption of the reasoner was performed in order to assess

whether the LEAPS algorithm offers better performance in this area.

This experiment was conducted by setting a fixed stream speed of 10 triples per second

and a fixed window size of 10. All ontologies were tested.
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Figure 6.9 illustrates the results. Average memory consumption over 25 iterations is

given on the y-axis in bytes.

Figure 6.10 illustrates the results with respect to ontology size.

Figure 6.9: RETE vs LEAPS Ontology Memory Consumption

Figure 6.10: Memory Consumption vs Ontology Size

The results reinforce the conclusions of Hardy that original ontology size has a large

part to play in memory consumption. There is an obvious linear relationship between
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ontology size and memory consumption. The results also clearly show that LEAPS

outperforms RETE for all ontologies. It should be noted that the majority of memory

consumption in SCOROR is due to the use of the C-SPARQL stream processor. In the

interest of comparing the two reasoners more clearly, the average memory consumption of

the stream processor was also recorded and deducted from the total value. Figure 6.11

illustrates these results. Figure 6.12 illustrates the LEAPS memory consumption for

each ontology as a percentage of the RETE memory consumption.

Figure 6.11: RETE vs LEAPS Ontology Memory Consumption (Isolated Reasoner)

These results highlight the difference in memory consumptions somewhat more clearly.

There is a significant difference in most cases. Such reductions could be vital in a

resource constrained device.

6.3 Summary

A direct comparison between the existing RETE stream reasoner and the newly im-

plemented LEAPS stream reasoner has been performed in this chapter. Experiments

considered the number of triples inserted into the reasoner at each reasoning cycle, the

effect of the window size, and the base ontology used for reasoning.
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Figure 6.12: LEAPS Memory Consumption as percentage of RETE Memory Con-
sumption

Both reasoners offer a linear relationship between re-reasoning time and the number of

triples that are inserted. The LEAPS implementation performs better than the RETE

implementation for the two ontologies tested.

The LEAPS implementation offers a clear trend in reasoning times based on the varying

window size. This trend is not so clear in the RETE implementation. This suggests

that the LEAPS implementation may offer a more reliable performance.

It is quite clear that the RETE implementation outperforms LEAPS by a large margin

when there is a combination of a large ontology size and a high expressivity. Reasons for

this have been explained in detail above and can be summarised as the use of wild-card

predicates and the resetting of saved iteration states due to the removal of temporal

triples. Given further time, future experiments would be performed to examine the

effect of these factors in the throughput and window variability experiments.

The LEAPS implementation offers a clear improvement in terms of memory consump-

tion. The best case measured offered a 40% improvement, while the worst case offered

11%, still a significant improvement. Such reductions could be vital in a resource con-

strained device.

Table 6.2 offers a brief summary of the results in an easily digestible manner.
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Experiment Variable Outcome

Throughput Number of triples inserted RETE reasoner becomes over-
loaded with a smaller number of
insertions than LEAPS reasoner.

Window Variability Window Size Clear trends in reasoning times
with respect to window size ob-
served in LEAPS, unclear with
RETE.

Differing Ontology Base Ontology Similar reasoning times for on-
tologies (exception of large size
and high expressivity).

Memory Consumption Base Ontology LEAPS reasoner offers signif-
icant memory reductions over
RETE reasoner.

Table 6.2: Summary of Experiments
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Conclusion

7.1 Objectives Achieved

The first goal of this research was to determine which of two possible algorithms would

be more suitable for use in a stream reasoning system with memory constraints. The

primary goal was then to determine whether an implementation of the chosen algo-

rithm provided a more efficient option in terms of memory consumption in a resource

constrained device in comparison to an existing implementation of the RETE algorithm.

The State of the Art research performed highlighted the two algorithms as TREAT,

a memory conscious adaption of RETE, and LEAPS, a lazy evaluation approach for

reasoning. It was noted that LEAPS would be significantly more difficult to implement,

but it was chosen as the algorithm to be implemented. This was due to the fact that

evidence suggested that the approach could provide stronger performance guarantees

over RETE and TREAT.

The paper describes the design and implementation of the LEAPS approach based on the

DROOLS [29] design, and the modification of this implementation in order to support

stream reasoning. As of writing, this is the first known adaption of the LEAPS algorithm

into a stream reasoning environment.

The implementation was evaluated in SCOROR [14] as a possible replacement for a

RETE based reasoner developed by Tai et al [5].

68
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Evaluation of the LEAPS reasoner found that the reasoning times for most base ontolo-

gies are quite similar to that of the RETE reasoner. Notable exceptions are when there

is a combination of a large ontology size with high expressivity. The suggested reasons

for this have been explained in the Evaluation chapter as the use of wild-card predicates

and the resetting of saved iteration states due to the removal of temporal triples.

Memory consumption for the LEAPS reasoner was shown to be significantly reduced

with comparison to the RETE reasoner. As predicted, memory consumption increases

with base ontology size.

7.2 Contribution of Research

Analysis and comparison of both TREAT and LEAPS has been offered and the outcome

illustrates that both algorithms would be favourable above RETE for stream reasoning

on memory constrained devices.

This research has also shown that the LEAPS reasoning approach can be modified to per-

form in a streaming environment. It also has demonstrated how it can be implemented to

provide a memory efficient option for stream reasoning on resource constrained devices.

The evaluation of this implementation of the LEAPS approach has highlighted how the

LEAPS reasoning approach may not be ideal in situations when wild-card predicates are

being used in rules. Large ontologies combined with wild-card predicates will result in

all facts in working memory being considered for any condition element with a wild-card

predicate.

7.3 Future Work

7.3.1 Negative Condition Support

Rules used in SCOROR and the research performed by Hardy [14] did not support the

use of negative condition elements. For this reason, and in the interest of comparing

the implementation of the RETE algorithm to the LEAPS implementation accurately,

negative condition support was not included in this research implementation of LEAPS.
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However, the requirements for negative condition support have been discussed in the

State of the Art chapter. Further work could see the implementation of these require-

ments so that additional rules could be included in the reasoning process. This would

allow for the use of alternative ontologies which allow for further use of OWL specifica-

tions.

7.3.2 Function Support

Similar to the above functionality, function support could be included in condition ele-

ments. A naive approach to the inclusion of functions was implemented for this research

but proved too slow for larger ontologies. Further work could expand on this implemen-

tation so that functions may be included.

7.3.3 Indexing

For the removal of temporal triples SCOROR must search through all facts in the graph

and also in the LeapsFactTable instances. The time consumed for this search could be

reduced using some sort of indexing and could result in a reduction in reasoning time.

A simple example could be to place temporal triples in a collection based on the time-

stamp and simply remove this collection when the time-stamp expires.

7.4 Final Remarks

The research question put forward by this paper is again given below.

“In comparison to an existing implementation of the RETE algorithm, can

a more efficient approach, in terms of memory consumption, be developed

for stream reasoning on resource constrained devices?”

This research investigated two possible alternatives to the RETE algorithm. The TREAT

and LEAPS approaches were discussed and compared in detail. LEAPS was chosen as
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the approach to be implemented due to the the conclusion that it could provide stronger

performance guarantees over RETE and TREAT.

The LEAPS implementation included modifications in order to support stream reasoning

efficiently. Evaluation of the LEAPS reasoner found that the reasoning times for most

base ontologies were quite similar to that of the RETE reasoner, with some exceptions.

Memory consumption of the LEAPS reasoner always outperformed the RETE reasoner

by some margin.

Thus several factors should be considered when determining what reasoner to use in

SCOROR. If re-reasoning time is the most important factor and the base ontology is

large and complex, perhaps RETE is the best option. However, the primary goal of

this research was to determine whether a more efficient option in terms of memory

consumption in a resource constrained device could be found.

This research has shown that the LEAPS algorithm can be implemented and modified

to perform in a streaming environment. Further evaluation suggests that it is indeed

the case that a more efficient option in terms of memory consumption exists in the form

of this implementation.
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Rule Set

[rdf1: (?v ?p ?w) ->(?p rdf:type rdf:Property)]

[rdfs2: (?p rdfs:domain ?u), (?v ?p ?w) ->(?v rdf:type ?u)]

[rdfs4a: (?v ?p ?w) ->(?v rdf:type rdfs:Resource)]

[rdfs5: (?v rdfs:subPropertyOf ?w), (?w rdfs:subPropertyOf ?u) ->(?v rdfs:subPropertyOf ?u)]

[rdfs6: (?v rdf:type rdf:Property) ->(?v rdfs:subPropertyOf ?v)]

[rdfs7x: (?p rdfs:subPropertyOf ?q), (?v ?p ?w) ->(?v ?q ?w)]

[rdfs8: (?v rdf:type owl:Class) ->(?v rdfs:subClassOf rdfs:Resource)]

[rdfs9: (?v rdfs:subClassOf ?w), (?u rdf:type ?v) ->(?u rdf:type ?w)]

[rdfs10: (?v rdf:type owl:Class) ->(?v rdfs:subClassOf ?v)]

[rdfs11: (?v rdfs:subClassOf ?w), (?w rdfs:subClassOf ?u) ->(?v rdfs:subClassOf ?u)]

[rdfs12: (?v rdf:type rdfs:ContainerMembershipProperty) ->(?v rdfs:subPropertyOf rdfs:member)]

[rdfs13: (?v rdf:type rdfs:Datatype) ->(?v rdfs:subClassOf rdfs:Literal)]

[rdfp2: (?p rdf:type owl:InverseFunctionalProperty), (?u ?p ?w), (?v ?p ?w) ->(?u owl:sameAs ?v)]

[rdfp4: (?p rdf:type owl:TransitiveProperty), (?u ?p ?v), (?v ?p ?w) ->(?u ?p ?w)]

[rdfp5a: (?v ?p ?w) ->(?v owl:sameAs ?v)]

[rdfp7: (?u owl:sameAs ?v), (?v owl:sameAs ?w) ->(?u owl:sameAs ?w)]

[rdfp9: (?v rdf:type owl:Class), (?v owl:sameAs ?w) ->(?v rdfs:subClassOf ?w)]
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[rdfp10: (?p rdf:type rdf:Property), (?p owl:sameAs ?q) ->(?p rdfs:subPropertyOf ?q)]

[rdfp12a: (?v owl:equivalentClass ?w) ->(?v rdfs:subClassOf ?w)]

[rdfp12c: (?v rdfs:subClassOf ?w), (?w rdfs:subClassOf ?v) ->(?v owl:equivalentClass ?w)]

[rdfp13a: (?v owl:equivalentProperty ?w) ->(?v rdfs:subPropertyOf ?w)]

[rdfp13c: (?v rdfs:subPropertyOf ?w), (?w rdfs:subPropertyOf ?v) ->(?v owl:equivalentProperty ?w)]

[rdfp14a: (?v owl:hasValue ?w), (?v owl:onProperty ?p), (?u ?p ?w) ->(?u rdf:type ?v)]

[rdfp15: (?v owl:someValuesFrom ?w), (?v owl:onProperty ?p), (?x rdf:type ?w), (?u ?p ?x) ->(?u

rdf:type ?v)]
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