
Abstract

Memory Efficient Stream Reasoning on Resource-Limited Devices

by Dylan Armstrong

Supervisor: Declan O’Sullivan Assistant Supervisor: Wei Tai

Master in Computer Science (MCS)

2014

In sensor rich systems standard approaches usually attempt to perform reasoning on

a centralised machine, sending data from sensor devices through the web or by other

wired or wireless technologies. However, in some conditions this may not be feasible,

or may be restrictive. In these cases reasoning can be performed on the sensor device

nodes themselves. For this reason, the reasoning process must be memory efficient.

Previous work has seen the adaption of a static RETE based reasoner (COROR) into

a stream based reasoner (SCOROR). A streaming environment is commonly the sort of

environment that memory constrained sensor devices are used in. This research focuses

on finding an alternative reasoning algorithm for SCOROR that could offer improved

memory consumption. A comparison of the RETE, TREAT and LEAPS reasoning

algorithms is offered, with LEAPS proving the most promising for improved memory

consumption.

An in-depth design and implementation of the LEAPS reasoner is given, along with the

steps needed to modify the algorithm in order to support stream reasoning.

An evaluation of this reasoner found that the reasoning times for both RETE and LEAPS

reasoners were quite similar. The RETE reasoner outperformed the LEAPS reasoner

when there was a combination of a large ontology size with high expressivity. The

suggested reasons for this are the use of wild-card predicates in rules and the resetting

of saved iteration states due to the removal of temporal triples. Memory consumption

for the LEAPS reasoner was shown to be significantly reduced in comparison to the

RETE reasoner.

This research shows that the LEAPS algorithm can be implemented and modified to

perform in a streaming environment. Evaluation suggests that it is indeed the case that

a more efficient option in terms of memory consumption over the RETE implementation

exists in the form of this implementation.


