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This dissertation presents a system that can classify an individual as wearing a backpack or not based 

solely on video footage of the individual from the front.  None of the published literature available 

has presented a reliable solution to this problem that will work in varying illumination conditions.  

Current video surveillance systems are handicapped by the sheer volume of footage they produce.  

The aim of this project is to aid operators in sifting through this volume by exploring several 

solutions that will find and highlight backpacks worn by individuals.  An exploration is made of the 

available literature to examine the approaches adopted to solve similar problems.  Following this 

several designs are developed that search for straps in the upper torso region of an individual.  As no 

suitable test data was available a set is constructed as part of this project to enable testing.  It 

consisted of several videos with subjects, garments, backpacks and locations chosen to attempt to 

accurately represent the population and scenes encountered by a real camera.  Each design was 

tuned to achieve maximum performance and results obtained against this test set.  The design 

process was iterative with later approaches addressing weakness that became apparent in earlier 

approaches.  The results generated are promising with the best approach achieving an accuracy of 

79.5%.  This demonstrates that computer vision can be used to detect backpacks within a scene.   
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Summary  
 

This dissertation documents the development and testing of several approaches to the task of 

identifying backpacks on individuals from video surveillance footage.  In particular this report looks 

at detecting a backpack from a front view only as previous work has concentrated mainly on side 

views.   

 

The first step in this project was an exploration of the available literature to document previous 

attempts at backpack detection.  Since there are very few published papers available on the subject 

the initial research focuses on general detection techniques and solution used to detect items similar 

to backpacks.  The research then focuses in on the area of detecting backpacks from side views as 

constitutes most of the published material.  These approaches are analysed to see if any of them can 

be applied to the process of detecting backpacks from the front.  However in the end it was 

concluded that these approaches were not suitable for the process of detecting from the front only 

hence any solutions developed would have to be done so explicitly.   

 

Before the process of developing new solutions could begin a way of verifying and benchmarking the 

performance of them needed to be devised.   The literature review and additional intensive 

searching has un-covered no suitable sources of test data.  All available test databases were too low 

in numbers to be accurately representative of a population or did not provide the full frontal views 

required for this project.  An ideal test set will represent the conditions that will be encountered by 

the average camera.  This would consist of numerous combinations of garments, scenes and 

backpacks to try and test the system as comprehensively as possible.   

 

Hence a new custom test data set was developed for the purposes of this project.  This involved the 

selection of as many people as possible to try and attain as high a diversity of gender and body 

shapes to ensure the tests were representative of the general population.  A variety of locations 

were then scouted out to ensure the system could cope well in both indoor and outdoor conditions 

under a variety of lighting conditions including twilight.  Different combinations of garments and 

backpack straps were used to try and simulate the variety that would be encountered in real life.  

The aim is to make this data set publishable so that other researches can use it to verify the results 

of this project and any subsequent publications as well as benchmarking their own systems against 

the test data.  It should be noted that the ability to benchmark a system against third party data is 

enormously beneficial to the field of computer vision.  It eliminates bias between the test data and 

system under test, an advantage not available to this project. 

 

Overall there were six main approaches that developed through iterative improvements made to 

each other.  These can roughly be divided into two groups the first based on colour space analysis 

and the second based on gradient (change in image intensity spatially) analysis.  All of them 

concentrated on locating the backpacks straps within the upper torso region of detected individuals.   

 

The first approach was colour space analysis applied to the whole image.  The colours within the 

image were clustered into approximately 3 groups (this number could be varied).  These groups 

were analysed statistically for properties such as their location, height to width ratio and symmetry.  

This initial approach proved to be a total failure as illumination changes in the image tended to 
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outweigh the colour changes causing in-correct clustering.  This was solved in the fifthi approach by 

concentrating on the fact that backpack straps give the strongest colour change response in the 

horizontal direction.  Hence by clustering along rows instead of the whole image the colour change 

would outweigh the illumination change and other irregularities.  When combined with statistical 

checks of the symmetry and strap width variance over the rows this proved to be a very successful 

method.  It was applied to the process of searching for only single straps in the sixth approach.     

 

The gradient based approaches all concentrated on trying to detect the edges of the strap as this 

usually produced a strong gradient response.  Like the colour space analysis this produced the 

strongest response along the x-axis hence only the gradient response in this direction was used.  

Approach two (the first gradient based approach) only took a localised snapshot of edge magnitude 

and direction for an arbitrary number of rows.  This proved unsuccessful as there was no check for 

continuity between each of these rows.  Approach three solved this by taking into account the 

spatial positioning and orientationii of edges and searched for parallel pairs.  This approach had a 

high recall rate usually detecting backpacks when they were present however it had a high false 

detection rate as it also detected backpacks that were not present.  This problem was addressed by 

approach four which analysed a colour histogram of the potential strap regions and compared them 

to the colour histogram for the non-strap regions to eliminate these false detections.   

 

Of these solution approach four and five represented the pinnacle of development for the two 

groups and achieved accuracies of 70.5% and 79.5% respectively.  All approaches produced several 

parameters that had to be tuned to produce optimal performance of the system.  This involved 

running against the test data several times for different values of one parameter to find the optimal.  

This process was then repeated for the remaining parameters and once they had been optimised the 

entire process was repeated iteratively until the results stabilised.   

 

At the end of this project a representative test set that can be used the verify he performance of 

frontal backpack detectors has been created.  In addition two very good approaches at detecting 

backpacks using colour analysis and gradient analysis respectively have been developed.  These 

show that computer vision can be used to detect backpacks on an individual in a variety of 

conditions.  These include twilight conditions in low level outdoor scenes, brightly lit indoor and 

outdoor scenes.  Striped garments have been checked against with good levels of success.  

Moderate success has also been encountered when looking for single strap backpacks.  A list of 

improvements that could be introduced to the systems to further improve their accuracy has been 

listed in the future work section of this dissertation.   

  

 

 
i
 Due to total failure of approach one colour space analysis was abandoned and not returned to until after the 
three gradient based approaches had been developed, hence the irregularity in jumping from approach one to 
five.    
ii
 Spatial Orientation refers to the angle the edge makes along its length with the x-axis as opposed to gradient 

orientation which indicates the angle the gradient at a specific pixel makes with the x-axis.   
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1 Introduction 
 

1.1 Motivation 
 

Modern surveillance systems arose from a need; security personnel were not able to keep an eye on 

everything at once.  Cameras were installed to provide extra sets of eyes both in real time and the 

ability to review events at a later date.  The sheer volume of footage produced by modern systems 

prevents their full potential from being realised.  The London Underground and Heathrow Airport 

each have over 5,000 individual cameras [2].  It has been estimated that the U.K. as a whole has be-

tween 4 and 5.9 million CCTV cameras [3].   Unless an operator is actually viewing a camera at a par-

ticular point in time it may as well not be there.  Even when the cameras record what they see, there 

will still be an immense volume of footage to sift through after an incident.  In 2011 52 analysts 

spent 14 days viewing 5,000 hours of footage collected after a post baseball game riot in Vancouver 

[4].  The analysts spent a significant portion of time classifying people as wearing baseball caps, jack-

ets backpacks and so on.  This was necessary to help link a view of an individual committing a crime 

to a view of their face in another scene for the purposes of court proceedings.   

 

Current surveillance systems are un-intelligent and un-able to recognise what they are seeing.  The 

ideal solution would be a system that can recognise and respond to what it sees without requiring an 

operator [2].  However the available technology is not yet at a stage where this can be implemented.  

One step that could be taken towards this ideal would be to only present the operator with footage 

of interest.  This would be achieved by classifying scenes as having people present or absent and 

classifying those people based on visually distinguishable features.     

 

There are solutions available that will automatically detect people and vehicles[5].  In addition work 

has already been done on detecting backpacks when viewed from the side [6].  This project is going 

to focus on detecting a backpack when viewed from the front.  This will complement current 

research as very little has been conducted in this area so far.  This will be a challenging task as only 

the two straps will be visible from the front.  The visibility and contrast of these straps will vary by a 

large amount depending upon the underlying garment, scene and illumination conditions 

encountered. 

 

Backpacks have been involved in two recent terrorist events, the London and Boston bombings both 

of which involved explosives being carried in backpacks on individuals in public locations [4, 7].  

Hence it would be of interest to the security world if they could be tracked reliably on individuals as 

they move around.  Another useful application of backpack tracking is to supplement existing 

systems that can detect abandoned and removed objects in a scene.  However if a person was going 

to plant a bomb for instance as in the Boston Marathon it would be easy to fool these systems by 

placing the bomb out of camera shot.  Detection by inference involves designing the system to note 

the presence of a backpack on a person as they walk through a scene.  Therefore we are able to 

notice if a person is wearing a backpack walking into a specific room and not wearing a backpack 

when they walk out of a room a while later.   
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1.2 Project Goals 
 

There are two main goals of this project: 

 

 To create a challenging and publishable dataset representative of the general population to 

enable testing of frontal backpack detection systems.   

 Design and evaluate several new techniques for detecting backpack straps within an image.   

 

The reasoning behind the first goal is due to the limited amount of test data currently available for 

video surveillance projects.  They do not contain enough scenes of people wearing a backpack 

walking towards the camera for this project.  To enable adequate testing of the methods developed 

for the second goal of the project will require the creation of a custom dataset.  Ideally this will be 

one that can be made publically available for other researchers to use.  In the field of computer 

vision it is standard practice to release the test data when publishing.  This enables other researchers 

to verify results and compare the performance of their own systems.   

 

To give respectable results the test data needs to recreate natural occurrences as much as possible 

and avoid being scoped towards one scenario.  Hence time and effort needs to be invested into 

producing scenes that are likely to occur in real world situations.  This will entail a variety of different 

test candidates, garments and backpacks to ensure test data that reliably represents real world 

conditions is created.  By making the data publically available for other researchers to use will make 

future research into the area of frontal backpack detection significantly easier and enable 

benchmarking of systems against third party data. 

 

The second goal of this project is to develop several explicit methods that look for the unique 

features of backpack straps within a video sequence.  The techniques will be designed from the 

ground up to keep them simple and hopefully achieve optimal performance.  Ideally these methods 

should be able to correctly classify a backpack as being present or not in only a few frames.  This 

classification should not be adversely affected by: 

 changing lighting conditions   

 individuals walking at a slight angle towards the camera 

 Different combinations of colours for the strap and underlying garment  

 

 

1.3 Outline 
 

The remainder of this dissertation is structured as follows: 

 

Literature Review – The main focus of this chapter is investigation of the currently available 

literature on how to detect objects within video sequences.   Starting off with general object 

detection the focus of the chapter narrows down to previous work on detecting backpacks from a 

side view.  This chapter does not serve to give the reader an introduction into the field of computer 

vision and a basic knowledge of computer vision techniques is assumed.  If the reader is not familiar 

with certain techniques explanations can be found in the appendix chapters. 
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Test Data, Ground Truth and Testing Process – The third chapter catalogues publically available test 

data that was considered for use in this project.  It then explains why it was concluded that none of 

these were adequate for the needs of this dissertation and the only alternative was to create a new 

dataset.  The chapter then looks at the methodology of obtaining the test data in such a way as to 

make it representative of the conditions likely to be encountered by the system.  It finishes of with a 

brief look at how this data was annotated with ground truth values to enable live evaluation of 

results. 

 

Design Requirements, Pre and Post Processing – The aim of this chapter is to give the reader the 

information they require to understand the subsequent chapters on each individual solution.  This 

enables the reader to proceed straight to the solution they are interested in without having to read 

all of the previous solutions.  The chapter starts with a look at the requirements that need to be 

satisfied for a computer vision based backpack detector to be considered successful.  It then explains 

the common pre-processing methods applied before any of the solutions are used.  It finishes off 

with a quick explanation of how results are obtained. 

 

Approach One:  Colour Space Clustering and Statistical Classification – Chapter five will begin with a 

high level design overview of the final method employed by solution one.  Following this will be a 

discussion of the theory of the methods used and the design decisions as to why these methods 

were chosen.  It will then present solution ones results explaining the successes and failure cases.  

The results will then be evaluated relative to the requirements that were laid down during the 

design phase. 

 

Approach Two:  Edge Gradient and Orientation Analysis – Identical in structure to chapter five.   

 

Approach Three:  Parallel Edge Analysis – Identical in structure to chapter five.   

 

Approach Four:  Parallel Edge and Colour Space Analysis – Identical in structure to chapter five.   

 

Approach Five:  Row by Row Colour Space Clustering – Identical in structure to chapter five.  

 

Approach Six:  Single Strap Detection – Identical in structure to chapter five.  

 

Conclusions and Future Work – The final chapter briefly compare the results obtained from all of 

the different approaches and states the conclusions of the project in light of the goals set in the 

section above.  It also presents the areas of the project that the author feels warrant further 

evaluation and investigation if the project were to be continued.   
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1.4 Terminology 
 

True Positive (TN) – Backpack detected when present 

 

False Positive (FP) – Backpack detected when not present 

 

True Negative (TN) – Backpack not detected when not present 

 

False Negative (FN) – Backpack not detected when present  

 

Dataset – Collection of videos which the system can be run against 

 

Training Dataset - Dataset used for training and tuning the system 

 

Testing Dataset – Dataset used exclusively for testing the system 

 

CCTV – Closed Circuit Television  

 

EKF – Extend Kalman Filter 

 

IMM – Interacting Multiple Model Filter  

 

UTR – Upper Torso Region 

 

MCC – Matthew Correlation Co-Efficient 
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2 Literature Review 
 

2.1 Introduction 
 

This chapter explores and categorizes state of the art literature relating to the utilisation of 

computer vision for the detection and classification of objects in surveillance footage.  It does not 

give the basic background to common computer vision operations nor does it expand on the 

algorithms used.  Further information on these two components can be found in the appendix 

chapter.   

 

There are vast amounts of literature available on the topics of detecting people within a scene and 

removing the background.  These two vital pre-processing steps are reviewed within sections 2.2 

and 2.3 respectively.  Section 2.4 examines current work on the detection and classification of 

objects similar to backpacks with the view to finding suitable techniques that can be applied to the 

process of detecting backpacks.  Significantly less literature is available regarding backpack 

detection.  The majority is based upon symmetry analysis of the human silhouette when viewed 

from the side and this area is examined in section 2.5.  A gap is present in the published literature 

when it comes to detecting backpacks from the front, an area that silhouette based detectors do not 

work in.   

 

 

2.2 Detection of People 
 

In order to classify an individual as wearing a backpack or not we first need to reliably detect that a 

person is present in a scene and locate them.  This field has been well studied and various solutions 

are available. 

 

 
Figure 1a:  Gradient space representation of a human created by compositing several hundred gradient images. 

Figure 1b: N*N blocks with intensity representing their weight, bright regions being important. 

Figure 1c:  Graphical representation of the orientations present in each N*N block (divided into orientation 9 bins), 

intensity represents the number of pixels that fall in that bin by their magnitude. 

Three images taken from [5] 
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Histograms of Oriented Gradients (HOG) as outlined in [5] is a technique that searches for the full 

human body.  Templates of how the average human being appears in gradient space have been 

compiled as shown in fig 1a.  The rectangular region around the person in the template is then split 

into N*M blocks of size P.  For each of these regions a histogram is created for the orientation of all 

the pixels within a block weighted by their magnitude.  The histogram for each of these blocks is 

then weighted by its position within the rectangle as more importance is given to blocks at the edge 

of the person as indicated in fig 1b.  This process is then repeated for several positions of the 

rectangle around the image as indicated in fig 1c.  The histograms obtained for these regions are 

then fed into a Support Vector Machine (SVM) using the templates histograms as ground truth.  If 

the SVM gives a strong enough response a bounding rectangle is given to indicate the location of the 

person.   

 

 
 

Figure 2a:  Haar Wavelet Shapes used in Viola and Jones Face detector, [8]. 

Figure 2b:  Haar wavelets being applied to an image of a face,[8]. 

 

Another approach for detecting people is to detect faces as they approach the camera.  This solution 

has the drawback that it only works when the person is facing the camera, a drawback not 

applicable to detecting backpacks from the front.  Detecting faces is advantageous in a crowded 

scene where parts of the body would be occluded behind others causing a full body detector such as 

the HOG to fail.  [9] discusses a method for detecting faces based upon intensity differences within 

images based upon regions defined by Haar Wavelets as shown in fig 2b.  The reasoning is that if one 

of these regions is placed over a feature, such as the eye and cheek, the overall intensity of the eye 

region will evaluate as darker than that of the cheek.  Individually a classification such as this is 

incredibly weak and almost guaranteed to fail.  However by combining hundreds of these 

classifications in stages using a process known as AdaBoost the combined classification can be quite 

strong.  The system developed in Viola and Jones [9] checked 6,000 features over 38 stages.  As with 

the HOG the classifier needs to be trained with significant amounts of ground truth, [10] mentioned 

that 5,000 positive samples were used and a similar number of negative samples.  The detector can 

be trained to detect whole faces, only face silhouettes, eyes, ears and other specific features.  An 

extended discussion and explanation of Haar Wavelet based detection can be found in appendix A1. 

 

A slightly less accurate but computationally superior approach to the Haar wavelet detector is Local 

Binary Patterns (LBP) as discussed in [11].  The idea of checking many weak features and combining 
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them into stages is the same as used with the Haar.  However instead of classifying features by Haar 

wavelets LBP is used.  LBP classifies a pixel as being either a 1 or a 0 depending on its greyscale 

representation relative to all of the pixels around it.   

 

 

2.3 Foreground Segmentation  
 

 
Figure 3:  Original image on left, a mask showing the detected foreground regions in white on the right with shadows in 

grey. 

 

Another necessary step in the process of detecting backpacks on a person is to remove the 

background from the scene.  This ensures that later classification steps do not end up evaluating 

pixels that do not belong to a person or backpack.  The simplest approach is background subtraction 

where a single image is taken of only the background scene with no moving objects present.  This 

image is then subtracted from future frames leaving foreground objects behind as shown in Figure 3.   

 

Needless to say this model is overly simplistic and has been expanded upon, one approach is a 

Gaussian Mixture Model (GMM) as proposed by [12].  Here a model of the background is built up 

over several frames.  For each pixel in the image several Gaussian distributions are created, one for 

each of the common values that the pixel can have.  For all subsequent frames each pixel is 

compared against the Gaussians to see if the value of the pixel fits one of them.  If it fits one of the 

models it is considered a background pixel otherwise it is considered a foreground pixel.   

 

One of the main issues encountered when using a GMM or any other form of background 

subtraction is that shadows cast by foreground objects can result in those region being incorrectly 

classified as foreground regions.  Hence [13] developed a method where the GMM is adaptive and 

can differentiate pixels not fitting the model due to being a foreground object or merely a shadow 

cast by a foreground object. 

 

[14] proposes a version of GMM that can cope with variable lighting conditions.  The algorithm was 

developed to respond to the problem of background subtraction in an atrium lit by a skylight.  A 

robust foreground subtraction method will be required that can work in a variety of conditions 

including indoor and outdoor with changing lighting environments.   

 

 

2.4 Object Detection and Classification 
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Due to the absence of literature available on detecting backpacks from a frontal view it is advisable 

to examine several techniques that have been used in other more general object detectors.    

 

 
Figure 4:  Deformable Part Model being applied to a bicycle, red box is the root filter and blue boxes are the feature 

detectors 

 

Several computer vision based systems make use of a deformable part model as described by [15].  

This finds an overall root match for the whole object within a frame.  It will then try to find matches 

for distinguishable features of the object as shown in fig. 4.  If enough of these features are found 

the correct distances from each other the item will be determined as a match.  The advantage of 

using this approach is that the detection criteria can be made very sensitive with high detection 

rates ensuring all instances of an object are caught.  It is the low probability of the root detector and 

several features being falsely detected that ensures the accuracy of the system.  This option also 

copes quite well with objects that will change appearance as they change orientation relative to the 

camera.  Take for instance a bicycle at 45 degrees and at 90 degrees relative to the camera, the 

same features can be seen in both.  In the 45 degree case they will be closer together but still visible.     

 

[16] have augmented this with an Extended Kalman Filter (EKF) to enable the tracking of bicycles as 

they move through a 3D environment.  This was extended further with the use of an Interacting 

Multiple Model Filter (IMM) in.  The IMM filter is better suited to scenarios where the direction of an 

object is changing rapidly.  However this comes with additional computation cost as the IMM is a 

multi-model filter versus the simpler single mode EKF.     

 

[16] [17] implemented a system that makes use of either an Extend Kalman Filter (EKF) or an 

Interacting Multiple Model Filter (IMM) to track the location of bicyclists relative to a moving 

vehicle.  This makes use of a HOG detector to detect bicycles within the scene as well as AdaBoost to 

improve the classification accuracy and speed.    
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One of the more interesting applications was present in [18] with the interesting problem of how to 

differentiate between bicycles and motorbikes.  They adapted the strategy of searching for specific 

combinations of Gabor wavelets in the Y direction only as these were produced by the peddling 

motions of a cyclist.  Their overall system made use of a deformable part model with a HOG to 

recognise the individual parts followed by a SVM classifier to differentiate between people, bicycles 

and motorbikes.  This study was able to correctly detect 99.6 of bicycle/motorbike objects and 100% 

of pedestrian objects.  However when an attempt was made at differentiating bicycles from 

motorbikes the correct detection rate was 40.9% for the former and 61.7% for the latter.   

 

In my view these papers show that a good strategy to adopt when detecting general objects is to 

make use of a Haar or HOG wavelet detector with a deformable part model using a weak root filter 

and stronger features to ensure false positives are minimised.   

 

 

2.5 Side on Backpack Detection 
 

If we take a look at pre-existing work into the field of detecting backpacks we can see that there has 

been some investigation into the area.  However all of these methods require the main body of the 

backpack to be visible to the observing camera and protruding from the wearers’ silhouette.  Hence 

all of these methods only work in the case of side on viewing.   

 

One of the earliest and best known examples is Backpack [19] which is based upon the W4 person 

detector[20].  Many approaches have been based on this pioneering 1999 system which extracts 

silhouettes from the background and then analyses their symmetry, segmenting out asymmetrical 

portions.  The periodicity of each asymmetrical segment is compared to that of the overall silhouette 

over a human gait cycle [21].  If the periodicity of a segment is very close to the overall body.  It is 

classified as part of the body (for instance an arm or leg swinging back and forth).  When the 

periodicity is significantly different the segment is classified as a carried object.   

 

 
Figure 5:  Symmetry Analysis of a Silhouette showing determination of the centreline (top) and asymmetrical regions 

(bottom) [HARITAOGLU ‘99] 
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The backpack method was expanded upon by [22] to work on thermal images in a night time 

environment using more advanced gait curves to work out the asymmetry as shown in fig. 5.  The 

advantage of this system was that it could be tuned to re-move the backpack from the human 

silhouette and classify the person based upon their gait curve.  When running the system against the 

CASIA night database [23] a successful classification rate of up to 95% was obtained under controlled 

conditions.    

 

 
Figure 6:  Gait curves for three different subjects.  The mean gait curve is marked in red. [CHIRAZ ‘02] 

 

Gait analysis was expanded upon by Chiraz BenAbdelkader [24] to determine if a person was 

carrying a backpack or not based upon motion analysis, fig. 6.  This method centres on the fact that a 

person’s gait cycle will change if they are encumbered with heavy objects such as a backpack.  Their 

stride will shorten and the frequency their feet make contract with the ground will increase.  When 

run against 41 sequences the system achieved a successful detection rate of 85% and a false alarm 

rate of 12%.  This was supplemented in [25] by the examination of Gabor wavelets to improve gait 

detection.   

 

 
 

Figure 7:  Method of backpack detection where a temporal template is constructed of the walking person and compared 

to an exemplar of an un-encumbered person to find protruding regions.  [DAMEN ‘08]. 
 

Another silhouette based approach was presented in [26], shown in fig. 7.  Instead of analysing the 

symmetry straight off silhouettes were concatenated over a human gait cycle.  This was compared to 

a 3D Maya model which was constructed from exemplar templates created by observing eight 

people walking without any carried objects in eight directions.  This exemplar model is then scaled 

and rotated to find the best fit relative to the concatenated silhouette image and the two are then 

compared to find protruding regions.  This addressed some perceived weaknesses that caused 

failures in Backpack:  

 

 Human gait periodicity changes due to the weight of the carried object.   
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 The displacement of the central axis of symmetry due to the pixel mass of the 

protruding carried object.   

 Other errors related to the calculation method that may distort the gate and periodicity 

leading to incorrect classification of asymmetric regions.   

 

 Precision  Recall 

Thresholding 39.8 % 49.4 % 

MRF - Prior 50.5 % 55.4 % 

 

When run against the PETS2006 database the above results were obtained.  Analysis revealed that 

false positive detections were caused by protruding body parts and pieces of clothing, extreme body 

proportions as well as incorrect and noisy template matches and duplicate matches.  False Negatives 

were caused by bags with little or no protrusion, dragged bags separate from the individual, carried 

objects not segmented from background, two protruding regions merging into one, swinging 

objects, object being carried between legs as well as noisy and incorrect templates and shadows 

being miss-detected.   

 

An extended version of this system [27] had periodicity analysis incorporated into the system to try 

and improve the detection rate.  In addition the system was now run over both the PETS2006 data 

set and the LEEDS 2009.  The latter aimed to address perceived weaknesses of the former which 

focused mainly on indoor locations.  However there does not seem to have been a significant change 

to the results presented.   

 

 
Figure 8:  Interaction between two people where one individual runs away afterwards.  [28] 

 

I will finish this subsection with a brief explanation of two novel security based systems.  First a theft 

detection system [28] that uses colour histogram analysis of detected people.  When two tracked 

individuals come together in a scene the colour histograms of each individual before and after 

interaction is compared.  If change in both histograms indicates an item was exchanged between the 

individuals it is investigated further.  The actions of both people are then fed into a finite state 

machine.  If one of them runs away the system considers the exchange as a theft and raises an alarm 

fig. 8.  If both walk away it considers it as a normal acceptable exchange of a bag.  

 

The second [29] makes use of neural networks in monitoring archaeological sites in Egypt.  This 

system aims to identify when people are carrying certain classes of objects such as pic-axes and 

shovels that can be used for activities such as grave robbing.  Hence it helps to reduce grave crime in 

Egypt. 
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The main issue with all of the systems presented so far is that they require the bag to be visible 

directly to the observing camera.  Hence large amounts of errors have been caused by protruding 

cloths or body parts or objects being too small or flat to stand out from the silhouette.  In particular 

all of these systems require the person to be viewed side on to the camera.  Most of them will fail to 

cope with a person walking directly towards the camera.  Hence frontal backpack detection will be 

my next area of investigation.   

 

 

2.6 Frontal Backpack Detection 
 

There is only one recent paper that has partially addressed the issue of detecting a backpack when 

viewing an individual walking directly towards or away from the camera.  This was published after 

this project implementation was underway [30].  It examines the possibility of detecting single strap 

bags and backpacks on people from multiple angles in crowded environments.   

 

The system starts out by tracking human heads using LBP and HOG avoiding the need for the full 

human body to be visible.  The upper torso region of the person is then estimated based upon head 

position.  This estimate is refined by applying colour histograms and K-Means clustering to the 

temporary upper torso region to remove any portion of the lower body included.  

 

 
Figure 9:  Head detected with yellow box at top, initial and refined estimates in blue and red boxes respectfully.  

Thresholded upper torso region shown on right. 

 

Adaptive thresholding is used to segment the upper torso region into two regions as shown in fig. 9.  

This paper works on the assumption that the darker region is the strap and the brighter region is the 

underlying garment.  The system works for two cases: 

 Single Strap Sling Bags 

 Double Strap Backpacks 

 

Single straps are located by two means, first geometrically and secondly using Canny edge detection.  

The geometric method analyses the darker regions of the thresholded image to look for blobs that 
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have a very high length to width ratio indicating a strap as shown in fig. 9.  However this can often 

fail so two parallel edges indicating a strap are searched for again by running a Hough detector over 

an edge image created using Canny.  This is done in two passes with the geometric search first and 

the Canny/Hough approach only used if the first method fails to detect a strap.  A person is classified 

as wearing a sling style bag if one strap is found from any angle.   

 

 
Figure 10:  Silhouette of Backpack when viewed from behind.  Note the three V-shaped concavities indicated by the 

green circles. 

 

When searching for a backpack what is visible will be different depending on whether the individual 

is being viewing from the front, rear or side: 

 From the front the single strap method is modified slightly to classify the individual as 

wearing a backpack if it detects two straps.   

 From the rear the geometric method is extended by also finding the convex hull of the dark 

region.  A typical backpack will produce three V-shaped concavities, one at the top and one 

on each side as shown in fig. 10.  Only two of these need be detected for a backpack 

classification to be applied. 

 From the side only either the left or right V-shaped concavity need be detected. 
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Figure 11:  Several Failures cases labelled a-f respectfully 

       

 

 

 

This system fails due to several cases: 

 Texture differences between the underlying garment and the backpack straps such as 

checked shirts as indicated in fig. 11c.   

 Hair occluding the straps and or merging with the underlying garment is another major 

issue that causes failures of the system as shown in fig. 11d & e.   

 Asymmetric strap sizes as indicated in fig. 11f. 

 



15 
 

 
Figure 12:  Examples of Backpack used as test data. 

 

Upon evaluation it appears to that the test data used by this study is biased.  It appears that most of 

the footage was collected from an airport in a warm climate.  Hence most of the garments worn are 

t-shirts and shirts with a light colour.  A sample of the test data used can be seen in fig. 12.  The 

publication does not present anything darker than the brown t-shirt in the middle of the bottom 

row.  Hence all of the straps have a high level of contrast relative to the underlying garment.  This is 

in contrast to the conditions the author observed while obtaining test footage in Ireland on a 

February morning where the majority of clothing worn was dark coloured coats and jackets giving 

very low levels of contrast relative to the straps.  Hence I believe this publication’s results would not 

be so high if the study were repeated in our climate during the winter or using the test data set 

provided later in this paper.   
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Additionally all of the test data was obtained from a well-lit indoor terminal building.  As will be 

presented later in this paper systems can often encounter difficulties when poorer more variable 

lighting conditions are encountered outdoors.   

 

 

2.7 Summary 
 

A video surveillance system designed to detect backpacks on people needs to be able to cope with 

any angle a person may be visible from.  As can be seen a lot of work has been done on locating and 

tracking multiple individuals as they walk through a scene.  Significant work has also been done on 

segmenting foreground objects from the background.  There are already systems available that 

detect backpacks in side views based on their protrusion from the human silhouette.  However a 

surveillance system will need to cope with cases where the backpack itself is not visible such as 

when the person is walking directly towards a camera.  While one paper has laid out basic work in 

this area it needs to be expanded to increase robustness and reliability, particularly for the more 

difficult illumination conditions encountered outdoors.  This area is a gap in the available knowledge 

that this thesis will attempt to answer.       
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3 Test Data, Ground Truth and Testing Process  
 

3.1 Introduction 
 

When publishing in the field of computer vision it is standard practice to include a sample dataset as 

supporting evidence of the system’s performance.  The purpose of this is twofold; first it provides 

support for the presented results and enables them to be verified.  Secondly it allows other 

researchers to benchmark the performance of their own systems against the outcome of this project.  

As there was not enough existing test data for the purposes of this project new data had to be 

created.   This will contribute to currently available data and save other researchers the time and 

effort of having to create their own data and provide them with the advantage of having a test set 

created by a third party available.   

 

This chapter begins by looking at the requirements for a test set to ensure it adequately represents 

real world conditions and test the system.  Section 3.3 explores the currently available data sets and 

states why they do not satisfy the requirements of this project.  Section 3.4 looks at the construction 

of a custom data set for the purposes of this project.  The task of annotating this data set with 

ground truth is discussed in section 3.5   

 

 

3.2 Requirements of Test Data 
 

The ideal test data set will have been produced by a reputable external source and be publically 

available [31].  This ensures that the test set and system were developed separately and avoids the 

introduction of bias.  Being publically available enables the test set to be used as a benchmarking 

piece of data.  This enables easy comparison between systems as they will have results based upon 

the same dataset.   

 

A good test set will also span a broad range of conditions to ensure it tests as many of the situations 

the system is likely to encounter as possible.  In addition to obtaining a wide range of cases a good 

test set will also feature more examples of commonly occurring conditions than un-common ones.  

This means obtained results will reflect accurately on how the system will perform in the real world.  

Often the best test data has been recorded naturally without participants having any knowledge the 

recording was taking place or any attempt made to alter the conditions present within the scene. 

 

Here is a list of the some of the different requirements needed to ensure that test data is broad 

enough in its scope to cover as many different aspects as possible: 

 

 Having a wide variety of locations is necessary to ensure that specific features present in the 

background of one scene do not affect the results.  It also increases the chance of a 

weakness within the system to certain kinds of background being highlighted.  For instance 

in one of the locations used there was a tendency for table legs to occasionally be confused 

as people.   
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 Using video data that has both indoor and outdoor scenes is extremely beneficial.  A system 

that performs well under controlled lighting conditions indoors may fail in the variable 

illumination conditions encountered outdoors.     

 When detecting backpacks on individuals we want to have as many different combinations 

of backpacks and underlying garments as possible.  It will be fairly easy to detect backpacks 

with high contrasting straps relative to underlying garments and near impossible for straps 

with no contrast difference.  However the real test will be how the system handles straps 

with a low contrast that are still visible to the human eye.  In addition it will be interesting 

to see how the system can handle different combinations of texture and patterns on the 

garments.  Vertical stripes on a garment may cause confusion and trick the system into 

classifying them as containing a backpack.   

 We would like the test data to contain people being viewed from several angles.  A person 

wearing a backpack walking towards the camera will display two perfectly symmetrical 

straps.  However if they are walking at a slight angle relative to the camera the strap on the 

far side will become narrower than the near side strap from the cameras perspective.  This 

could confuse the system and will be beneficial to test against.   

 Occlusion – In crowds the straps can become occluded by other people, in addition people 

may carry objects which cover the straps or people may have two bags on at once.   

 Odd Carrying Arrangements – Often people will wear a backpack with only one strap over a 

shoulder.  This could confuse the system as it will only see one strap. 

 Open and Closed Jackets – Garments with zips are likely to cause extra edges to appear in 

the middle of a garment which may confuse an observing system.   

 

 

3.3 Currently Available Test Data 
 

As was stated in the requirement section using test data that is already publically available and 

created by a third party will increase the reputability of the results and save time.  There are several 

publically available data bases that may fulfil this role.  Below are listed the data sets that came the 

closest to fulfilling the requirements of this project. 

 

 
Figure 13:  PETS 2006 database 
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 PETS 2006 – This is a dataset based in a large train station in England aimed at examining left 

luggage.  However the camera angles presented are not directly in the line of pedestrian 

flow presenting very few frontal views.  Hence this dataset is more suited to a system 

searching for a backpack from the side.  There are also very few scenes that focus on 

backpacks as the data set focuses on left luggage in general such as suitcases and hold all’s.   

 

 PETS 2007 – This was a collection of test samples taken from a busy airport however many 

of the people appearing on screen appeared at a resolution that was too low nor where they 

on screen for long enough.   

 

 PETS 2009 – This was an artificial scene of several people walking around a crossroad in 

Birmingham University.  It came closer than any of the other databases to providing useful 

test data as several people were wearing backpacks and walking directly towards the 

camera.  However the cameras were positioned very far away from the crossroad resulting 

in a low pixel width of individuals.  Hence the number of pixels representing the straps was 

too low for evaluation.  There was also very little variety present in the combinations of 

garments and backpacks encountered.  Mainly dark colours on dark colours and hard for 

even a human observer to see.     

 

 
Figure 14:  PETS 2009 image showing low contrast backpack on the individual on the right at too low a resolution. 

 

 CASIA Gait Database Dataset C – This was different to the previous datasets as it contained 

individuals recorded using thermal imaging cameras.  Unfortunately this dataset is not 

publically available and only the silhouettes can be downloaded.  This would be useful for 

analysing side on based backpack detection as discussed in the literature review but not for 

the purposes of this project.   

 

After searching as many test databases as possible using sources such as Engineering Village, Web of 

Science, Google Scholar and IEEE no suitable test data could be found.  Therefore the only solution 

available was to construct a custom one for the purposes of this project.   
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3.4 Construction of Test Data Set 
 

This thesis is looking at the task of detecting backpacks when viewed from the front only.  It is not 

looking at cases where the person is walking side on to the camera or away from the camera.  Nor is 

it trying to improve on person location or background subtraction techniques any more than has 

been achieved in other publications.  To avoid creating situations that may cause a failure of these 

methods and to concentrate solely on the challenge of detecting backpack straps, the test 

sequences were kept simple.  These all consisted of one individual walking either directly towards 

the camera or at a slight angle to the camera.  For each person the clip was taken three times, once 

with both straps of the backpack on, once with only one strap on and finally without the backpack 

on.  When testing the system against the data, either only the single strap or double strap positive 

sequences would be used to preserve the balance between positives and negatives.  This ensured 

that the number of sequences that should return a negative was equal to the number of sequences 

that should return a positive.  It is important to keep an equal number of both scenarios to avoid 

masking a system that has a tendency to give false positives or vice versa.   

 

Before filming could begin ethical approval had to be obtained from the school of computer science 

and statistics.  Once this was obtained the test sequences subjects were chosen from students of 

Trinity College Dublin.  There was a mixture of ethnicity and gender to ensure the system was tested 

on a diverse range of people and to avoid the system becoming biased to certain body types, for 

instance tall males.  As wide a range of garment and backpack combinations as possible was tried in 

order to increase the chance of a combination that caused the system trouble being detected.   
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Figure 15:  Examples images from the test data created for use in this project. 

 
 

Video Number Flags Garment Backpack 

Positive Single 

Strap 

Negative P S A   

714 - 713 M1 I1  Black jacket Black Straps 

717 - 716 M1 I1  Red/white polo shirt 

horizontal stripes 

Black Straps 

719 - 718 M1 I1  Dark Brown jacket Black Straps 

737 - 733 M2 O1  White/grey pull over 

horizontal stripes 

Black Straps 

738 - 733 M2 O1  White/grey pull over 

horizontal stripes 

Single Black Strap 

736 - 735 M2 O1  Black Jacket with open 

zip above white/grey 

pull over horizontal 

stripes 

Single Black Strap 

740 - 739 M2 O1  White/grey pull over 

horizontal stripes 

Black Straps 

746 745 744 F1 I2  Olive Green shirt with 

red scarf 

Black Straps 

753 749 754 M3 I1  White Jumper Black Straps 

756 757 755 M4 I1  Navy Blue Jumper Black Straps 

760 768 765 M5 I2  Dark Green Jacket Black Straps 

761 766 764 M6 I2  Grey Hoodie Black Straps 
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769 771 773 M6 I2  Grey Hoodie with red 

scarf 

Black Straps 

770 772 774 F1 I2  Olive Green Shirt Black Straps 

792 793 794 M7 O2  Dark Grey Hoodie Black Straps 

796 795 797 M3 O2  Grey Hoodie w text Black Straps 

798 800 799 M1 O2  Red/grey hoodie Black Straps 

801 801 803 M7 O3  Dark Grey Hoodie Black Straps 

804 805 806 M1 O3  Red/grey hoodie Black Straps 

815 816 817 F2 O4  Navy hoodie Maroon Straps 

849 850 851 M1 I3  Blue t-shirt Black/Maroon Straps 

856 857 858 M1 I3  Red/white horizontal 

striped polo shirt with 

black and grey scarf 

Black/Maroon Straps 

 

Table 1:  Details of Videos contained in Test Data 

 

Images from some of the test sequences are included in fig. 14Figure 15 as well as more detailed 

information in Table 1.  In total there were 22 cases for a total of 44 videos when testing the double 

strap case.  16 of these cases also had an additional single strap case that could be used when 

evaluating the ability of the system to detect single straps.   There were seven male test subjects and 

two female test subjects.  Three different indoor scenes were used and four different outdoor 

scenes.  These sequences were all recorded with a 14.1 megapixel camera and converted into video 

at a resolution of 1280 by 720. 

 
 

3.5 Annotation of Test Data with Ground Truth 
 

The purpose of annotated data is to provide a reference to evaluate the performance of the system 

against.  The annotated data provides information on the actual presence of a backpack within a 

system.  There were two annotation systems used in this project, the first was a more complex 

system that provided information on the presence of a backpack within each frame as well as the 

location of the backpack within the frame.  It required the author to go through each video recorded 

and mark the presence of a backpack and straps for each frame as well as draw bounding boxes.  

The information provided by this annotation system was fond to be greater than necessary to 

generate results.  In addition the complexity of the annotation system made it time consuming to 

annotate each frame of every video and also increased the potential for annotation errors due to 

operator fatigue.  Additional information is available on this annotation system in appendix A3. 

 

To reduce the time needed to annotate videos and increase reliability a second annotation scheme 

was created that annotated whole videos rather than individual frames.  This system gave each 

video one of four classifications: 

1. Backpack Present  

2. Backpack not Present 

3. Occluded Backpack Present 
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4. Fake Backpack Present  

The third classification was used if there was a backpack within the sequence that was hidden under 

another item such as a scarf or there was a single strap bag crossing over the backpack straps.  The 

fourth classification was used if there was an item present within the scene that would confuse the 

backpack detection method into thinking there may be a backpack such as a scarf.   

 

 

3.6 Testing Process and Result Generation 
 

Presenting results for a binary classification system such as this one is not as straightforward as it 

initially seems.  Depending upon the requirements of the system either false positives or false 

negatives may be considered more severely than the other.  Hence this subsection will examine 

several measures of accuracy that take both of these errors into account.  It will then detail how the 

system was tuned and tested against the test set to maximise performance using these measures.  

The actual results are presented for the four systems individually in subsequent chapters before 

being compared in chapter 11. 

 

3.6.1 Measures of Accuracy 

 

The binary classification system presented in this thesis will give two possible results: either a 

backpack is present or it is not.  There may in fact be a backpack in the scene or there may not.  This 

leads to four possible outcomes when evaluating binary classification results as shown in the 

confusion matrix below.   

 

 
Figure 16:  Confusion Matrix 

 

There are many basic measures of the performance of binary classification systems, most of them 

are simple combinations of the above four parameters.  This report will concentrate on accuracy, 

precision and recall however there are others available such as sensitivity and specificity as used in 

medical research.   

 

 Accuracy – This measures how many predictions were correct relative to the overall number 

of tests:       
     

           
 

 Precision – The number of predicted backpacks that are correct:     
  

     
 

 Recall – The number of actual backpacks that were detected:  R = 
  

     
 

 

The latter two can be graphed as a P-R curve as shown in appendix B4.  The precision and recall 

values of different approaches can be compared using such a curve as various parameters are tuned 
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to try and achieve maximal performance.  The goal is to try and get points in the top right of the 

curve as neither a high precision or recall value is beneficial if the other is too low.   

 

However for the purposes of tuning the system it will be easier if there is only one value 

representing the accuracy of the system to compare to.  The basic accuracy measure detailed above 

does not take into account the ratio between false positives and false negatives.  It will give the 

same accuracy value to a result set with an even distribution of both as it does to one with twice as 

many false positives and no false negatives.   

 

A more complex measure of accuracy that takes both precision and recall into account is the F1 

score:       
   

   
 

    

          
.  The F1 score gives a value of 1.0 for a perfect system and a 

score of 0.0 for the worst imaginable system.   

 

However the F1 score still does not take into account the True Negative rate.  A much better 

measure is the Matthews Correlation Co-efficient which is a balanced measure of binary 

classification systems that was introduced in 1975 [32].  It returns a value of 1 for perfect 

classification, 0 for classification equal to random and -1 for classification that is worse than random 

classification.        
           

 (     )(     )(     )(     )
 

 

3.6.2 Testing Process 

 

To generate the result values for TP, TN, FP and FN from which all other scores were generated the 

approach under test was run against all of the video sequences in the test data.  This is done in a 

linear fashion with all of the 44 videos being played one after the other as due to the processing 

requirements no more than one video can be run at a time.  For each video the tests results are 

recorded and compiled with the results from all of the other videos.  One run took about 15 minutes 

to complete on the lab machines being used which had 3.4 GHz Sandybridge quad core processors 

and 16GB of RAM. 

 

3.6.3 Tuning Parameters  

 

Each of the approaches had several parameters that could be tuned to improve the performance of 

the system.  Changing the setting of one parameter will change the optimal setting of other 

parameters.  Hence the system had to be tuned one parameter at a time in an iterative process.  

Once an optimal value had been chosen for each parameter in the first round the process had to be 

repeated with all parameters set to the new values.  Ideally this was continued until all of the 

parameters settled at optimal values.  The parameters were all tuned relative to the Matthew 

Correlation Co-efficient with the aim of achieving a value as close to 1 possible.   

 

For each run, 5 values were tried for each parameter which took around 1.5 hours.  A script was 

used that allowed 6 different parameters to be checked in one night on one machine.  To expedite 

the process the simulation was run simultaneously on several computers in the lab.  This process 

could only be completed at night as the PCs had to be available for students to use during the day 

time.  
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3.7 Summary  
 

This chapter has detailed the important steps required to ensure that the system is adequately 

tested.  The creation of test data was a major step in this process as there was no pre-existing test 

data that could be used to ensure the system functioned as intended.  Hence the author had to 

invest significant time to create a test set that was as representative as real data as possible.  This 

has been achieved and additionally candidates have agreed to make the test data publishable which 

will provide a useful resource for other researchers.  They will be able to benchmark the 

performance of their systems against the test set and compare their results.  In addition this means 

that the results of this system can be verified by other researchers.  This test set has been created to 

closely represent expected real life conditions as much as possible.   

 

The annotation of this test data with ground truth has also been discussed.  This is an important step 

as it ensures that the system can automatically be tested in a very efficient manner.  It should be 

noted that the reliability of the annotation system was ensured by the development of a second 

simpler ground truth annotation system.        

 

The testing process and measures of accuracy have also been detailed in the section.  A consistent 

testing process is necessary to ensure that the accuracy of the system remains consistent and does 

not vary from test to test.  Hence results can be reliably compared.   
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4 Design Requirements, Pre and Post Processing 
 

4.1 Introduction 
 

The purpose of this chapter is to lay out the requirements of the design as well as the common pre 

and post processing steps.  The idea is that this chapter will give the reader enough knowledge on 

the shared components of the system to jump straight to the approach they are interested in 

reading about.  It is highly recommended that the reader reads the pre-processing steps in Section 

4.4 

 

The section will start off by taking a look at the features that would be required in a backpack 

detection module if implemented in a video surveillance system.  The development environment will 

then be briefly discussed in section 4.3.  Section 4.4 explains in detail the common pre-processing 

steps required for all subsequent approaches.  This is followed by the common post-processing steps 

in Section 4.5.   

 

 

4.2 Requirements  
 

The requirements of a real world backpack detection module will be extensive as it has to cope with 

un-controlled conditions and a wide variety of people and backpacks.  Many of these requirements 

such as the ability to track a person in multiple cameras have already been solved in other studies 

[33].  Hence I will only concentrate on the specific requirements to detecting backpacks in particular 

the elements that are not solved or have not been solved well at this point in time.   

 

 Detecting and Tracking an Individual – To successfully track a backpack throughout a scene 

relies upon the successful tracking of the individual wearing it.  There are several 

algorithms already developed that extract the human body from a scene and track it such 

as HOG [5].   

 Isolating the Upper Torso Region – Backpacks are secured to the wearer by straps that will 

only be present in the upper torso region.  To ensure accurate classification the system 

should evaluate only this area and cut out unnecessary information from the rest of the 

body and background. 

 Detecting a Backpack from All Angles – In an airport, large station or any other open space 

people will be walking in several directions.  A backpack will appear differently to a camera 

depending upon the angle.  For instance the front of a person displays only two straps, the 

rear of a person displays a large blob with two short sections of strap visible on top.  From 

the side only the rear of the backpack is visible protruding from the person’s body and in-

between these angles the system will have to cope with a combination of two of these 

views.  There is already significant work available on detecting a backpack from the side [6] 

and one paper covering detection from the front and rear [30].  This thesis will concentrate 

efforts on filling the current gap in knowledge by detecting a backpack more robustly from 

the front.  This will be a useful angle to concentrate on, as cameras positioned above a 

doorway that people are streaming into will only receive a front view.  This is also likely the 
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first angle a camera will capture an individual at when they enter a building with many 

cameras such as an airport terminal.   

 Detecting a Backpack in Different Illumination Conditions – Many systems such as those 

indoors in large airports as noted in [30] will have the benefit of controlled lighting.  

However cameras positioned at the outdoor entrances to buildings and around public 

squares will not have this benefit.  Cameras positioned outdoors will have to cope with 

different lighting changes as clouds obscure the sun on some days and rain causes 

interference on other days.  In addition they will have to handle dawn and dusk conditions.  

There are even studies examining the use of thermal vision cameras for observation at 

night time [22].   

 Detecting a Backpack with Low Contrast – Depending upon the colour of the backpack and 

the material worn by the person there can be great differences in the contrast of material.  

Predictably distinguishing backpacks and straps with a high contrast relative the underlying 

garment is going to be an easy task.  However other backpacks and items of clothing may 

have a low level of contrast.  Hence the system needs to be able to cope with these low 

contrasting backpacks or it will fail to detect people in certain scenarios.   

 Detecting a Backpack when the underlying Garment is patterned – If the garment 

underneath the backpack has a distinctive or repetitive pattern such as checkers or stripes, 

it may confuse the system into thinking there are straps present when there not.  Other 

types of pattern may also mask straps and make them harder for the system to pick out.   

 Unusual Wearing Conditions – While backpacks are usually worn with two straps many 

people only wear one strap.   

 Occlusion – If the system were to be used in large crowds there is the danger that people 

will start to occlude each other blocking the camera’s view of the person.  In addition 

depending on what way the person holds another item such as when carrying a coat or 

second bag it may block parts of the backpack that were used for recognition.  Hence a 

successful real world system will need to cope with occlusion.   

 

 

4.3 Development Environment 
 

This backpack detection system has been developed using the language C++ with the OpenCV 

computer vision library version 2.4.6.  It was developed with two versions of Visual Studio, 2010 and 

2012 both on the Windows 7 operating system.  The working application has been tested on two 

different machines.  First a Dell Inspiron 15R SE laptop with an Intel Core i7-3612QM 2.1 GHz quad 

core CPU and 8 GB of RAM.  Secondly a Dell OptiPlex 9020 desktop with an Intel Core i7-4770 3.4 

GHz quad core CPU and 16 GB of RAM.  Needless to say significantly higher run speeds were 

encountered on the desktop.   
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4.4 Pre-Processing:  Isolation of Upper Torso Region  
 

All of the approaches used to detect a 

backpack upon a person required the same 

initial steps to isolate the upper torso region 

for further analysis.  This involved tracking 

an individual through a scene, background 

subtracting and then location of the upper 

torso region.  This section first gives an 

overview of the design with the following 

subsections giving a more detailed 

description of each step.     

 

1. Individual Tracking – The full 

resolution input image was 

searched for human bodies.  The 

full human body was easier to 

detect particularly when the pixel 

width of the individual was low.   

2. Background Subtraction – This 

system is only interested in 

detecting backpacks on moving 

individuals.  Hence we eliminate the 

background and stationary objects 

from consideration creating a 

foreground mask for the whole 

image.  Detected shadows are not 

included in the foreground mask. 

3. Foreground Mask Smoothing – 

Opening and Closing operations are 

applied to the foreground mask to 

eliminate noise.  This noise is 

caused by individual pixels being in-correctly classified.   

4. Gap Filling – All holes within the mask are filled along with horizontal gaps between any two 

elements of the foreground mask.  Such holes and gaps are usually due to background 

subtraction failure and we want them to be considered as foreground.  Vertical gaps are left 

unfilled as they tend to destroy the boundary between foreground and background objects 

in the neck region of the image.   

5. Upper Torso Isolation – The top of the individuals head and both shoulders are located using 

the background subtracted image.  From these positions a region of interest is statistically 

generated centred upon the upper torso region.  This region is then used for further analysis 

in subsequent methods.   

 

Figure 17:  Pre-processing flow chart 
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4.4.1 Detection and Tracking of People 

 

The aim of this step was to take the un-altered full resolution input image and locate any individuals 

present within the scene.  As detailed in previous sections this needs to be able to work in crowded 

locations where occlusion would be a real concern and at varying distances.  The initial design choice 

was to use a Histogram Oriented Gradient Detector (HOG) to scan the scene for any potential human 

like objects and return a bounding box around the location.  This produced a number of false 

positives which were dealt with by re-scanning within the box using a Haar detector as described in 

appendix A1 to look for faces.   

 

However this did not work as intended as the HOG relies on the full outline of the person being 

visible hence this method does not work when the person is occluded or comes very near the 

camera and their legs disappear from the scene.   

 

To try and get around this the Haar was used on its own however it tended to generate a lot of false 

positives.  The solution to this problem was to run two classifiers, one looking for the overall outline 

of the face and the second looking for a pair of eyes within the face.  Both were required to signify a 

face and this reduced the number of false positives.  At the other end of the scale when the person 

is more distant from the camera the number of pixels representing their face is quite low.  This 

causes the Haar detector to fail.  Hence the range of either the HOG or Haar detector on its own is 

not appropriate for the task.  The range where both worked together was even smaller and too 

constrained for a real world application.   

 

Hence the ideal solution adopted was a combination of both two methods with either one of them 

detecting a person triggering detection.  This had the advantage of the long range of the HOG being 

able to detect individuals in the background while the Haar could detect individuals very close to the 

camera and individuals within a crowd.  The Haar was also replaced with the slightly less accurate 

but much less computationally intensive LBP detector to speed up the approach.  This approach 

minimised the number of failed detections at the expense of letting a higher number of false positive 

detections through.  This change was reverted as additional run time was not significant while using 

the Haar.  During the process of testing and tuning parameters the run time of the system was found 

to be too great.  Analysis showed that the Haar was the main performance drag on the system and 

this was removed from the system.  The HOG function fine on its own for test clips with single 

people in them such as the ones used here however the Haar should be re-enabled if the system is 

to be used in crowded situations. 

 

4.4.2 Foreground Segmentation 

 

The aim of this step was to take the full resolution un-altered input image and segment it into the 

foreground region and the background region.  As this system was designed with a stationary 

camera in mind, this problem was suitable for solving with a background model based method.  This 

involves initialising a background model over several frames of just the background.  Foreground 

objects transitioning through the scene can then be determined by comparing the current frame to 

this model.   
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Background subtraction is a challenging step as the method needs to cope with changing 

illumination in the scene, slight movement of the camera and other effects.  These effects will result 

in a change in pixel value which must not be mistakenly classified as foreground.  However when a 

new foreground object enters the scene, the method needs to successfully detect all of these pixels 

that are part of this object, while separately classifying any shadow introduced by the object as part 

of the existing background.    

 

 
Figure 18:  Clockwise from top left: original input image, background subtraction using method of; Kaewtrakulpong '02, 

Zivkovic '04 and Godbehere '12 

 

The results of three different background subtractors based upon [12], [13] and [14] are shown in 

fig. 18 respectively.  The 2004 method was selected for continuation as while the 2012 worked 

better in variable lighting conditions, it often detected too many pixels and had very blurred edges 

as can be seen there is significant destruction of the neck region.   

 

However due to the challenging nature of image segmentation there would inevitably be 

misclassified pixels, holes within the object and noise like pixels over most of the image.  The noise 

like pixels can be removed from within the foreground region by performing a closing operation 

appendix where the region is first dilated by a certain amount of iterations and then eroded by the 

same number of iterations.  This was followed by a smaller closing operation, the inverse of an 

opening, to remove noise pixels from the background of the image.  These were conducted in this 

order to preserve the extent of the foreground region which was strengthened by the opening 

operation.  Opening and closing operations could only deal with the removal of small noise like 

misclassification as the number of iterations has to be kept low to avoid destroying the edge 

information.  Solving larger misclassifications is dealt with in the next subsection.   
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4.4.3 Foreground Restoration  

 

As can be seen in fig. 19a the foreground image can have holes caused by pixels being incorrectly 

classified as is evident by the right strap.  This can be seen extended a step further where the head 

visible in fig. 19r has been detected as several blobs.  This can be solved by tracing contours around 

the detected foreground regions.  These can then be analysed and any region completely enclosed 

by another can be eliminated removing holes from the foreground region.   

 

To solve large gaps that are not completely enclosed such as the blue regions in fig. 19 the following 

method was used.  A convex hull was drawn around each contour region, indicated by the red line in 

fig. 19.  The original foreground region was subtracted from this to leave the region shown in white 

in the image below.  All of the pixels within this white region were analysed and if they lay 

horizontally between two the edges of the foreground region rather than the convex hull they were 

added to the foreground region, the blue region in fig. 19.  This was only done in the horizontal 

direction as it was found performing this operation in the vertical direction destroyed the edges of 

the neck region.   

 

 
Figure 19:  On the left is the original image with filled in regions shown in blue.  On the right we can see how the dis-

joint regions around the head have been combined. 

 

As can be seen in this image the head has been badly segmented and is represented by three blobs.  

This problem was solved by analysing all foreground regions within the image and if they were close 

enough together relative to the width and height of the larger contour they were joined as can be 

seen on the right.  This would be run subsequent to hole filling but before the previous method 

hence why we can see the blue regions applied to this contour.   

 

4.4.4 Isolation of Upper Torso Region 

 

As we now have the bounding rectangle for either the full body or the head location and a 

background subtracted image we can isolate the upper torso region for further analysis.  As further 

analysis and classification will be based upon this step it is important that this region is accurately 

located.  It also needs to include the top of the shoulders as backpack straps will extend over them.   
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Figure 20:  Locating the top of the shoulders using the foreground mask. 

 

The location method achieves this by first locating the top of the head and shoulders.  An initial 

bounding rectangle of the upper torso region is devised by taking the top half of the bounding 

rectangle for the person produced by the HOG.  This is shown as the green box overlaying half of the 

red box produced by the HOG.  Starting at the centre top pixel of this bounding rectangle every pixel 

along the magenta line in fig. 20 is checked until we hit the first pixel in the foreground region.  This 

is taken to be the top of the head.  From this height we iterate down ten other lines positioned 

roughly where the shoulders should be, indicated in yellow and cyan.  The median height at which 

these ten lines find the foreground regions is taken to be the top of the shoulders.   

 

As long the height of the head is above the shoulders a new estimate of upper torso position can be 

made.   This starts from just above the shoulder estimate and has a height scaled from the original 

height of the person.  The width of this new upper torso region is scaled from the width of the 

person. 

 

 

4.5 Post Processing:  Combining Individual Frames  
 

The four approaches that will be discussed in subsequent chapters all deal with the determination of 

a backpack within a single frame.  However for a video sequence we need more than one positive 

frame before we return an overall positive result.  This section starts with a high level overview of 

the steps used in determining the classification of the whole video before a more detailed discussion 

in the next sub-section.   

 

1. Count Appearances of Backpack – Each frame a backpack is present in increments a 

counter.  This is only recorded if the location of the individual in this frame is within a certain 
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distance of their previous location, as a person can only move a relatively small distance 

between frames.   

2. Adjacent Frames – In other situations, as indicated by the video above the backpack may be 

detected very well and give a continuous response, however it may only be visible to the 

detector for a relatively small amount of frames.  In these cases once a consecutive number 

of frames had been detected with a backpack, the sequence was classified as a true positive.  

This minimum number of frames was given by the tuneable parameter MIN_FRAMES. 

3. Percentage of Appearance – Some of the harder to detect backpacks within the test data 

would not trigger N consecutive frames.  However there overall percentage of frames a 

backpack was detected in would still be quite high as indicated by sequence 769 in fig. 20.  

Hence as the video progressed, a high local average of detected frames was searched, for 

instance four out of five frames.  The optimal percent was determined by the tuneable 

parameter FRAME_PERCENT. 

 

 

 
Figure 21:  There two traces indicate all of the frames detected for videos 717 and 769 respectively.  The dots indicate 

frames where a person has been detected but no backpack, the starts indicate frames a backpack was detected in. 
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4.5.1 GUI Window 

 

 
Figure 22:  Example of GUI window for approach five. 

 

A GUI window was designed for approaches three and four and is shown above in fig. 22.  The aim of 

this GUI was to demonstrate the system and the underlying detection methods rather than to 

provide a working interface for an end user.  Several elements are common to both GUI designs: 

 A – The input window shows a reduced resolution (640 x 360 pixels) version of the original 

camera input.   

o Aa - A red box indicating any detected people is overlaid on this image.  If a strap is 

detected within this frame  

o Ab – If a strap is detected a green box is drawn around the strap 

 B – A progress bar indicates the detection result for each frame.   

o Ba - Frames that have not yet been processed are shown in grey (). 

o Bb - If a person is not detected a frame is rendered as black after it has been shown. 
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o Bc - If a person is detected but not a backpack the frame is rendered as red. 

o Bd – If a person is detected and a backpack the frame is rendered in green.   

 C – The video number is displayed  

 D – The frame length of the video is also displayed 

 E – The annotated data for the whole video is also displayed as one of three values:  No 

Backpack present, double strap backpack or single strap backpack. 

 F – The number of frames a backpack has been detected in 

 G – The first frame a backpack was detected in 

 H – The last frame a backpack was detected in 

 I – The range of frames a backpack was detected in 

 J – The result of the system, if a backpack is detected it will be displayed in green 

 

  

4.6 Summary  
 

This chapter has documented the pre and post processing steps used by all of the systems.  It is very 

important that the pre-processing steps are conducted as robustly and accurately as possible.  Any 

error introduced at this stage will propagate throughout the system and reduce the ability of later 

steps to accurately determine if a backpack is present or not.   
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5 Approach One:  Colour Space Clustering and Statistical 

Classification 
 

This approach clusters the entire image in colour 

space and extracts connected regions to check if 

they are representative of the straps using 

statistical means.    

 

5.1 Design Overview 
 

1. Colour Space Analysis – All of the pixels 

that lie within both the region of interest 

and the foreground mask are grouped into 

an appropriate cluster depending on their 

RGB values.   

2. Connected Region Analysis – Each of the 

clusters is considered separately and 

connected pixels within each cluster are all 

grouped into regions.  

3. Region Statistical Analysis – Every region 

within the image is statistically 

analysed to determine if it is a strap or 

not based on its length to width ratio and location 

within the image. 

 

 

5.2 Colour Clustering  
 

For approach one K-Means clustering was applied to the full 

resolution three channel colour image.  K-Means clustering is a 

method for grouping data points with similar properties 

together [34].  It is often used in image processing to reduce the 

number of colours in an image as it is easier to retrieve 

information if it is in a more ordered format.  For instance, take 

a three channel eight bit colour image, it has 2563 possible 

colour combinations.  This is simply too much information 

and we may wish to reduce the number of colour present.  K-

Means can be used to reduce the number of colours present 

to two, three, four or any other number we wish.  K-Means 

works as follows: 

1. The initial cluster centres are seeded using either 

random values or user supplied information. 

2. Data points are grouped according to their closest cluster centre. 

Figure 23:  Flow Chart for Approach One 

Figure 25:  3D Colour Based Clusters, [1] 

Figure 24:  K-Means cluster centres 
changing over iterations, image from [1] 
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3. The cluster centres are then re-positioned to be 

at the centre of all the points assigned to them.   

4. Step 3 is repeated until the centres stop moving 

by a pre-defined level of accuracy or a 

maximum number of iterations is exceeded.   

5. The compactness of the clustering is 

determined as: 

 ∑ ‖                       ‖
 

   

 

While the algorithm has been described above as 

working on three channels in RGB space it can also 

operate on any number of channels in several colours 

spaces.  These colour spaces are discussed in appendix 

A2.  Several factors had to be taken into account when 

tuning the K-Means algorithm: 

 

 K-Means is an iterative process as the centres 

of the cluster move on each iteration, to 

prevent the process from continuing 

indefinitely two termination criteria are set.  

The first was an accuracy based criteria with the process terminating when the cluster 

centres stopped moving by more than a specified level of accuracy.  Due to the low number 

of clusters this could be quite coarse and was set to 10.0.  The second was an overall cap on 

the number of iterations.  A value of 10 was chosen to prevent excessive clustering from 

slowing down execution time. 

 A bad set of initial cluster centres can prevent the algorithm from returning the correct 

values.  Hence random selection of initial clusters is not a good idea.  Initial seeds were 

generated using the k-means++ method developed by [35] and explain in appendix A2.   

 The algorithm can be run several times with different k-means++ seeds generated each time.  

The run with the lowest level of compactness would be used. 

 The number of clusters could also be varied.  From the process of applying K-Means to the 

overall image it was found that as backpack straps are usually of one or two uniform colours 

a low number of clusters are ideal.  With more than five clusters the boundaries between 

straps and underlying garments tended to be given its own cluster which would trigger 

multiple responses for a strap.  Even worse was that the boundaries between different 

garments could be given their own cluster which tended to trigger false positives.   

 

 

5.3 Statistical Analysis  
 

In Approach One each of the clusters was segmented into its own image.  In each of these images 

the pixels were analysed to find connected region as indicated in fig. 27.  Each of these connected 

regions could then be statistically analysed to see if it fitted the profile of a strap as follows: 

 

Figure 26:  Original image on top clustered into three 
clusters.  The middle image shows the clusters using 
representative colours while the bottom image uses 
more contrasting colours. 
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1. A minimum bounding rectangle was applied to all connected 

regions.  From this the height width ratio was calculated and 

compared against a threshold.   

2. If the centre point of the connected region is left of the centre 

line and it passed step 1 it is placed into a bin of left straps, 

alternatively if it’s centre is right of the centre line it is placed in a 

bin of right straps 

3. All combinations of left and right straps are compared to see if 

they are positioned symmetrical between both sides of the 

image and in a sensible location corresponding to likely strap 

locations.   

 

5.4 Results 
 

 
Figure 28:  The height/width ratio is varied, a ratio of 1.4 is found to be the optimal.  (Please note the Matthews is on 

the right y axis). 

 

Approach One has the lowest accuracy, F1 and 

Matthews scores of any of the approaches.  As can 

be seen in fig. 28 it has low detection rate (TP & 

FP).  This is reflected in fig. 29 which shows that 

the recall value is very low at 34%.  The precision is 

also low as barely over half of the positives are 

correct.  There were two tuneable parameters 

used in approach one: 

 CONNECTED_REGIONS – This governs the 

threshold for which the height/width ratio is 

compared against.  A value of 1.4 was found to be 

the optimal. 

 CLUSTER_COUNT – This governs the 

number of clusters used in the K-Means process 

Figure 27:  Clustered Region split into 
separate channels for each cluster. 

Figure 29:  Best Results for Approach One 
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5.5 Evaluation  
 

 
Figure 30:  Too few clusters (left).  Too many cluster (centre).  Straps extracted with additional regions (right). 

 

Given such low scores it is clear this approach is a failure, the results indicate it is only slightly more 

accurate than simple random classification.  The main reason for this failure is that clustering has 

been applied over the whole image.  Depending upon the diversity of the colours within the image 

this can result in there being too few clusters causing the straps to be clustered with neighbouring 

parts of the garment.  Alternatively there may be too many clusters leading to the top and bottom of 

the straps being placed in different clusters.  The clustering was heavily influenced by illumination 

changes as well as colour changes.  This factor caused incorrect segmentation of the straps from the 

image as indicated in fig. 30.  Hence the height width ratio would fail to evaluate correctly.  As has 

been documented in appendix A2 attempts were made to classify images based on different colour 

spaces however these attempts proved un-successful.   

 

 

5.6 Summary 
 

This approach was the least promising of any approach and in the authors opinion is not suitable for 

use alone within a system.  Some of the statistical means employed may have a place supporting 

other methods but not as a stand along system.  To try and reduce the systems susceptibility to 

illumination changes clustering should in future be applied to a more localised area.   
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6 Approach Two:  Edge Gradient and Orientation Analysis  
 

This approach is based on edge analysis of the 

image and looks for orientation combinations that 

signify a strap being present.    

 

 

6.1 Design Overview  
 

1. Greyscale Conversion – The image is 

converted into greyscale, the edge 

detection used does not take account of 

colour information.   

2. Gaussian Smoothing – Edge detection 

works better when the noise levels within 

the image are reduced, hence Gaussian 

Smoothing is applied to the greyscale 

image.   

3. Horizontal Edge Detection – Backpack 

straps are usually represented by vertical 

lines hence we are only interested in 

detecting edges in the horizontal direction.  

Edge detection is applied to the whole 

image as the gradient values for pixels at 

the edges of images are calculated using 

pixels from the surrounding region, parts of 

which will be outside the mask.   

4. Non-Maxima Suppression – NMS is applied to the image in the horizontal direction only to 

give a single pixel wide edge which can be used to pin-point its location. 

5. Thresholding - The edge image is then thresholded to remove weak edges below a certain 

magnitude value.  This avoids secondary edges from disrupting with detection.    

6. Foreground Mask – The foreground mask and region of interest masks are then applied to 

the edge image so that we are only taking into consideration edges within the upper torso 

region.     

7. Row Analysis – For rows at evenly spaced intervals along the image we count along the row 

looking for edges and their orientation.  If the correct combinations of negative and positive 

orientations are encountered that indicate two straps and arm edges we conclude that there 

is a backpack on that row.   

8. Whole Image Analysis - If a sufficient number of the rows agree we conclude that there is a 

backpack present in this frame. 

 

 

 

Figure 31:  Flow chart of Approach Two 
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6.2 Edge Detection  
 

The purpose of this step is to take a greyscale version of the full resolution input image and return a 

map of the main edges for the entire image.  There are numerous full edge detectors already 

implemented in OpenCV however they all detect gradients based on both the X and Y direction.  For 

this application the assumption is being made that the input image will always be oriented so that it 

is the correct way up.  Hence when searching for backpack straps we are only interested in edges 

oriented along the y-axis with a gradient change in the x-direction.  Hence a new edge detector was 

implemented loosely based upon the Canny edge detector in the x-direction only.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2.1 Gradient Analysis  

 

This sub-step takes the input greyscale image and returns the gradient in the x-direction across each 

pixel.  Before this takes place Gaussian Blurring is applied as indicated in the top right of fig. 32 to 

the greyscale image.  This reduces noise due to wrinkles in the clothing, small logos, buttons and 

Figure 32:   Top Row:  Colour Upper Torso Region, Greyscale Upper Torso Region, Gaussian Bluring Applied  Middle Row:  
1st Derivative Sobel in x-direction, Thresholding applied, Non-Maxima Suppression Applied 

Figure 33:  Left:  Top row shows intensity of pixel and bottom row shows gradient intensity.  Right: Green Pixels 
have strongest response and are kept, while red pixels are suppressed during NMS.  Both images from [1] 
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other items as can be seen for the logo in the top right of the torso.  Eradicating these sources of 

short edges enables us to concentrate our analysis on only the more prominent edges. 

 

A first derivative edge detector was chosen as it gave a high enough level of accuracy for the edge 

while also giving directional information about the pixel.  A second derivative detector in theory can 

give a more accurate location but does not contain directional information about the edge.  This is 

computed using a single Sobel mask as indicated in fig. 32.  For each pixel the mask is centred on 

that location and all the weights applied to the surrounding greyscale pixels and summed up to 

obtain the gradient intensity of that pixel.  By experimentation, I found that the best size for the 

sobel mask was 7x7 as indicated in fig 34.   

 

A signed Sobel was used, which gave us both the directional and magnitude responses for the 

gradient within the image, as can be seen in the bottom left of fig. 32.  The direction information 

was preserved as the two edges of a strap tend to be in the opposite direction.  A threshold was 

then applied to this gradient image which eliminated all pixels below a certain magnitude.  The 

result of this can be seen at the centre of the bottom row where only strong responses remain.  In 

effect we have now isolated the edges.   

 

 

 
Figure 34:  Left is a Sobel window for the x-direction, image from [1].  Right are six gradient images creating using a 1st 

derivative Sobel (top row) and 2nd derivative Sobel (bottom row).  Both are in the x-direction only using window sizes of 

5, 7 and 9. 

 

6.2.2 Non-Maxima Suppression  

 

Non-Maxima suppression was then employed in the x-direction only.  As we were only using one 

edge this could be simplified compared to the conventional NMS algorithm.  We could look at all 

pixels connected horizontally in a line and select only the strongest response.  This is shown in fig. 34 

for a 45 degree orientation, this would take place in the x-direction on in this solution.  This reduced 

the edges to only one pixel wide which gave us a local maxima where we could define the edge 

location as can be seen in the bottom right of fig. 32.   
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6.3 Orientation Analysis  
 

The classification system employed in approach two is quite 

simple, counting across an arbitrary number of rows in the 

oriented edge image.  On each of these rows it is looking 

for 3 edges with a specific combination of orientations.  

These edges represent the edge of the arm and the two 

edges of a strap as all three of these give a strong response 

in most images.  The possible orientation combinations that 

satisfied these conditions are show in fig. 35.  The method 

required the finding of two straps on both sides of the 

image before giving a positive classification for that row.  10 rows were checked per image and the 

number of positive rows required for a positive classification could be varied between 6 and 9.   

 

 

6.4 Results 
 

 
Figure 36 

Figure 35:  Coloured pixels represent edges 
encountered as rows are counted across 



44 
 

 
Figure 37:  the number on the x-axis represents the number of negative rows that can be discarded while still giving a 

positive response for the detection of a backpack within the overall image.  (Please note the Matthews is on the right y 

axis). 

Tuneable Parameter: 

 LINE_COUNT – This represents the number of 

lines that can be discarded from consideration. 

 

Approach Two has a very high detection rate as 

indicated by the high recall value present in fig. 36.  

However precision is still low as this method is also 

detecting a lot of false positives.  The accuracy scores 

are low but giving better results than approach one.  

Increasing the number of lines that may be discarded 

from the result has the effect of increasing the values of 

recall and precision as can be seen in the graph in fig. 

37.  The increase in recall makes sense as having more 

discards results in greater levels of detection.  The 

increase in precision suggests that the ratio of correct 

detections to false detections is also increasing.   

 

However the Matthews value starts to vary a lot, decreasing and then increasing.  Accuracy and the 

F1 ratio tend to follow the trend of the Matthews value.  (Please note that the Matthews is on the 

right vertical axis while all other values are on the left vertical axis.)   To better understand these 

results and the varying Matthews value we need to look at the True Negative Rate (TNR), Positive 

Prediction Value (PPV) and Negative Prediction Value (NPV) as can be seen in the left graph.  These 

can all be seen to decrease as the number of discards is increased.  Particularly alarming is the rapid 

descent of the TNR.  This suggests that increasing the number of discards is allowing significantly 

more false positives.  It should be noted that the Matthews is much better than the other values at 

Figure 38:  Best results for Approach Two 
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taking into account the ratio between true and false positives as well as true and false negatives 

than any of the other values, so it’s results should carry more weight. 

 

6.4.1 Successes  

 

 

 

 

  
Figure 39:  Successful Detection of backpacks using Approach Two 
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6.4.2 Failures 

 

 

 

 
 

Figure 40:  Failures of Approach two.  Left show the lapels being detected as a backpack giving a false positive.  Right 

shows shadows being detected as a False Positive 

6.5 Evaluation 
 

Generally this method’s weakness is its reliance on the edges generated by the straps of the 

backpack and edges of the arm extending down the full length of the upper torso region.  This is 

often not the case and false negatives are caused when several of the rows do not detect a 

backpack.  Increasing the number of discards to compensate for this, weakens the system, as it will 

now rely on relatively few rows for classification.  In addition there is no check to ensure continuity 

between what is being detected in one row or another.  Hence as can be seen in the right sequence 

of fig 40 some of the short edges introduced by the blurred logo in the upper torso region are being 

detected as parts of straps.  In addition, in the left sequences, parts of the yellow jacket lapels are 

also trigger a response.   

 

6.6 Summary 
 

This method presents results that are better than approach one’s results but still not great.  This 

method has a fairly high detection rate and therefore has a problem with detecting backpacks when 

they do not exist.  Potential improvements to the system would be to try and increase the continuity 

between what is detected on each row.  Currently the system only looks for combinations of edges 

but does not account for their orientation relative to each other or if the same edges are being 

detected in every row.    
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7 Approach Three:  Parallel Edge Analysis 
 

The aim of this approach was to try and capture 

more information about pairs of parallel edges 

that form potential candidates for straps.  Better 

classification could then be made using the full 

length of the edges as well as their orientation 

being taken into account.  This is in contrast to 

approach two which only takes localised 

snapshots on pre-defined rows.  As the initial 

stages of approach two and three are identical 

the reader should read section 6.1 from approach 

two’s chapter before proceeding further.   

 

The chapter will start off with a high level 

overview in section 7.1.  The method of finding 

parallel contours will be discussed in section 7.2. 

 

 

7.1 Design Overview  
 

Steps 1.5 are identical to those found in approach 

two.   

 

1. Greyscale Conversion – The full 

resolution input image is converted into 

greyscale. 

2. Gaussian Smoothing – Edge detection 

works better when the noise levels within 

the image are reduced hence Gaussian 

Smoothing is applied to the whole input 

image.   

3. Horizontal Edge Detection – Backpack 

straps are represented by vertical edges 

hence we are only interested in gradient 

changes in the horizontal direction.  Hence 

edge detection will be along the x-axis only.  

This step is applied to the whole image as 

the gradient values for pixels are calculated 

using neighbouring pixels that may be 

outside of the upper torso region.   

4. Non-Maxima Suppression – NMS is applied 

to the image in the horizontal direction only 

Figure 41:  Flow Chart for Approach Three 
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to give a single pixel wide edge which can be 

used to pin-point the location of the edge.   

5. Thresholding - The edge image is then 

thresholded to remove weak edges below a 

certain gradient value.  This avoids 

secondary edges from disrupting 

calculations.    

6. Foreground Mask – An eroded version of the 

foreground mask combined with the region 

of interest mask was applied to the edge 

image.  The erosion prevented edges at the 

edge of the region of interest from being 

considered as straps.   

7. Connected edges – This method searches for 

long chains of connected edge pixels.  It 

extracts their length, orientation and 

location of both ends.   

8. Remove Short Edges – Edges below a certain 

length are not likely to be considered 

backpack straps and are removed from 

consideration.  

9. Parallel Edges – If two edges have their ends 

within a specified distance of each other and 

have an orientation that is within a certain 

angle of each other they can be considered 

as parallel.  These parallel edges are designated as a strap.   

10. Backpack Detection – If we have two parallel straps in roughly symmetrical locations on 

either side of the upper torso region we consider this to be a backpack.   

 

 

7.2 Parallel Contour Extraction 
 

This step takes the x-direction edge image visible in fig. 42 and applies the upper torso region 

foreground mask.  This mask is shrunken slightly in the x-direction to remove any edges that belong 

to the outside of the arm.  This method also disregards the orientation information about edges.  

This was found to be un-reliable in approach two and for a mere two edges will not provide much 

useful information. 

 

Each chain of pixels that is connected together is considered as a contour representing an edge.  

Extra short edges are often produced by lapels and logos.  These short edges are eliminated from 

consideration, by simply disregarding any contour with a length less than a certain percentage of the 

overall height of the upper torso region of interest.    

Figure 42:  From Top to Bottom:  Original Upper Torso 
Region, Greyscale, Gradient Image, Edge Image, Upper 
Torso Region, UTR eroded in the x direction, edges 
filtered for sensible strap locations, parallel pairs 
identified, symmetrical parallel pairs identified 
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7.3 Symmetry Analysis  
 

All of the contours are compared to each other looking for pairs with a similar orientation or the 

inverse orientation (+/- 180 degrees).  The orientation is determined as the angle of a line between 

the start and end point of the contour relative to the x-axis.  All pairs that have a similar orientation 

are checked to see how close together they are relative to their total length.  If they are close 

enough the pairs are considered as a strap object and stored for further analysis.   

 

Approach three finishes off by searching for two symmetrical straps on either side of the upper torso 

region.  If two are found of roughly similar size they are considered as a found backpack.    

 

 

7.4 Results 
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Approach Three contained several tuneable 

parameters: 

 DIST – This governed the allowable distance 

between two contours.  If this value was exceeded the 

contours where no longer considered as a potential 

strap.  The optimal value for this was found to be 0.14 

times the length of the longer contour.   

 ORI – This governed the allowed orientation 

distance between two contours.  If this value was 

exceeded the contours were no longer considered as a 

potential strap.   

 SOBEL_MIN_RANGE – This governed the 

sensitivity of the thresholding of the gradient image.  It 

was found that for this solution a relatively high value 

was desirable for the threshold to enable consideration 

of only the best candidates for edges.   

 X_ERODE – This governed the amount by which the upper torso region was eroded in the x-

direction.  Once again a surprisingly large value was favoured with the ideal erosion being 

around 0.1 times the width of the upper torso region on either side.  

 

7.5 Evaluation  
 

Taking into account the full length of the edge as well as its orientation has greatly increased the 

accuracy of the system.  It ensures that when the system indicates a strap it has at the very least 

located two parallel edges.  This alleviates previous failures caused in approach two by random 

edges causing an arbitrary number of rows to appear to have straps on them.  

 

7.6 Summary 
 

Approach Three’s strength was its high detection rate and low false negative rate.  The main 

weakness was the high level of false positives caused by the high detection rate.  This requires 

setting thresholds to high values to try and reduce the level of false positives.  This has the negative 

factor of introducing more false negatives as backpacks are missed.  However even when these two 

issues are taken into consideration, this approach has still had the best results yet and is 

considerably better than simple random classification.  

 

To improve this system will require incorporating an additional method to try and reduce the high 

rate of false positives enabling the lowering of the Sobel edge detection threshold.   

 

 

 

  

Figure 43:  Best results for Approach Three 
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8 Approach Four:  Parallel Edge and Colour Space Analysis 
 

This is an extension to approach three, to try and 

resolve the weaknesses of that approach.  

Approach Three had a tendency to miss certain 

backpacks as they would not satisfy one or other 

of the requirements.  However if these 

requirements were lowered it resulted in too 

many false positives.  To enable the lowering of 

these requirements without compromising on 

the false positive rate the colour histograms of 

straps and surrounding regions are analysed for 

similarity.  It is assumed the reader is familiar 

with approach three before they commence 

reading.  

 

This chapter starts off with a high level overview 

of the design.  The theory of the colour 

histogram analysis is discussed in section 8.1.  

Results are presented in section 8.2, evaluated in 

8.3 and conclusions drawn in 8.4.  

 

 

8.1 Design Overview 
 

1. Join Parallel Straps – Contours were 

drawn around parallel strap pairs to 

define the strap region.   

2. Designate Garment Region – The region 

between the inner edge of the strap and 

the centre line of the upper torso region 

is defined as the garment region.  This 

was combined with its neighbour for the 

opposite strap to give one garment 

region and two strap regions.   

3. Colour Histogram – A colour histogram 

of each region was generated.  

4. Comparison of Histograms – These histograms were then analysed to see how similar they 

were.  Ideally strap regions would be similar to each other as would non-strap regions to 

each other.  However strap and non-strap regions should present a very low level of 

similarity.  If these values were above and below certain thresholds respectfully the system 

would confirm the presence of a backpack.   

 

 

Figure 44:  Flow chart for Approach Four 
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8.2 Colour Histogram Analysis  
 

The reasons behind using colour histograms are 

simple.  Edges can be created by shadows, zips 

and other artefacts that could trick the system 

into thinking a strap is present.  However a real 

strap is likely to have a different colour 

composition to the underlying garment.  Hence 

comparing colour histograms should eliminate 

false potential straps.    

 

When defining the strap region the two 

contours representing either side of the strap 

are joined together.  Inevitably some of the 

edge pixels would be from the garment due to 

the detected edge locations not being perfect.  

Hence the strap regions were slightly eroded to 

eliminate these discontinuities.   

 

The centre regions are defined as all pixels 

between the inside edge of strap and the centre 

line for all rows that have a strap.  When 

creating colour histograms the values for all pixels within the regions are split into their R, G and B 

channels.  For each of them a histogram is created showing the number of occurrences of each value 

within each region.  Three colour histograms are 

generated, one for the left strap, one for the 

right strap and one for the centre region. 

 

 

8.3 Comparison  
 

Unlike approach three this solution does not look for symmetrical pairs of straps.  All potential straps 

on the left side of the image are compared to all potential straps on the right side of the image.   

 

The colour histograms are compared separately for the red, green and blue colour channels.  The 

comparison is made using a simple correlation calculation between the two histograms: 

 

    (     )  
   (     )

      
 

∑ (  ( )     )(  ( )     ) 

√∑ (  ( )     )
 

 ∑ (  ( )     )
 

 

 

 

Figure 45 From Top:  Upper Torso Region, potential straps in 
cyan and potential backpack in magenta, left strap, left 
garment, right garment, right strap, green indicates garment 
region and red indicates strap region, colour histograms for 
left strap, centre garment and right strap region. 
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Alternative comparisons were also tried such as the Chi-Square, Intersection and Bhattacharyya 

distance.  However the correlation co-efficient was found to give the best classification value after 

experimentation.  If the co-efficient returned by the comparison between the left and right strap 

regions is greater than both the co-efficient between, a) left strap and central garment region as well 

as b) right strap and central garment region, the presence of a strap is confirmed.  If multiple 

potential backpacks are located within the upper torso region, the one with the greatest difference 

between the co-efficients will be selected. 

 

8.4 Results 

 
Figure 46 

 

 
Figure 47 
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Approach Four retained the tuneable parameters used in 

Approach Three: 

 DIST – This governed the allowable distance 

between two contours.  If this value was exceeded the 

contours where no longer considered as a potential 

strap.  The optimal value for this was found to lie 

between 0.27 and 0.3 for this approach, as opposed to 

0.14 for approach three.   

 ORI – This governed the allowed orientation 

distance between two contours.  If this value was 

exceeded the contours were no longer considered as a 

potential strap.  The optimal value for this was found to 

be the same as in approach three. 

 SOBEL_MIN_RANGE – This governed the 

sensitivity of the thresholding of the gradient image.  The 

optimal value of this was found to be significantly lower 

than in approach three.     

 X_ERODE – This governed the amount by which the upper torso region was eroded in the x-

direction.  The optimal value was found to be very similar to the value used for approach 

three.  

 

Approach Four can be configured to have high recall or precision values, but struggles to achieve 

both in the same solution.  This is evident in FIG. 45 where the recall starts of high but the precision 

low as the minimum distance between parallel contours is small.   

 

 

  

Figure 48:  Best Results for Approach Four 
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8.5 Evaluation  
 

8.5.1 Successes  
 

 
Figure 49:  Backpack being detected 

 

 

 
Figure 50:  Backpack being detected 
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Figure 51:  No backpack detected and none present 

 

 

 
Figure 52:  No backpack detected and none present 
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8.5.2 Failures 

 

 
Figure 53:  Logo causing false detection 

 

 

 
Figure 54:  Red garment and background subtraction failure causing red patches at edge of garment to be considered as 

straps 
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This method is relatively good at detecting backpacks when they are visible within a scene as can be 

seen in fig. 49 & 50.  It is relatively easy to isolate potential straps and classify them as being actual 

backpack straps.  This system is also much better at not detecting backpack’s when they are not 

present as is visible in fig. 51 & 52. 

 

However this method can still fail when there are regions of similar colour and shaped like straps 

present in an image.  As can be seen in fig. 53, the red regions of the garment have passed the 

colour histogram check as they have a different colour to the inside garment.  These potential straps 

should have been removed before the method even reached the stage of colour checking, as some 

of the detected edges are too close to the edge of the upper torso region.  However, the background 

subtractor has included parts of the area around the foreground mask as foreground.  Hence these 

edges are far enough away from the edge to not be excluded by background subtraction.   

 

An additional failure can be seen in fig. 54 where the logo regions are being classified as potential 

straps as they consist of letters with long vertical arms of a different colour to the underlying 

garment.   

 

The combination of looking for parallel edges and combining this process with another method to 

increase the accuracy has enabled the lower of the Sobel based edge detector threshold by a 

significant margin.   It has been reduced from an optimal of 134 (given a pixel range of 256) for 

approach three, to an optimal of 40 for approach four.  This ensures that more edges are picked up 

and analysed leading to a reduction in the number of false negatives.  Addition false positives 

created due to the lower threshold are caught by the colour histogram checking method.   

 

There are several weaknesses in this system that could potentially eliminated by further 

improvements.  For instance, there are several cases, where a background subtraction failure has 

left regions at the edge of the real upper torso region being considered as straps.  A potential 

solution to this problem would be to segment out the garment region between the outside of the 

strap and the edge of the upper torso region.  This could then be compared using colour histograms 

to ensure it matched the garment region between the straps.  An additional check would be to 

ensure that it was also of a different colour composition to the straps themselves.  This would catch 

cases as shown in fig. 54.  However, care would have to be taken with such a method, as any 

inclusion of the background within the foreground region would result in the outer garment region 

having a different colour composition when compared to the inner garment region.  This could fail 

true positives that would otherwise have passed the detection criteria.   

 

Additionally, statistical means could be introduced to provide additional checks upon strap location, 

by ensuring they progressed over the tops of shoulders and so on.  The symmetry checks used in 

approach three, that were removed from approach four, could be re-introduced, to eliminate cases 

such as those visible in fig. 53 that eliminate logos from detection.   

 

 

 



59 
 

8.6 Summary 
 

Approach four has the highest Matthews and accuracy results seen by any approach yet.  This 

demonstrates that checking the result of approach three with another method enables greater 

detection precision.  This suggests that combining methods enables the elimination of weakness in 

one method.   
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9 Approach Five:  Row by Row Colour Space Clustering  

  
This chapter examines the fifth and most 

successful approach.  This takes the colour 

clustering techniques discussed in chapter 5 

and applies them to every row instead of the 

whole image.  Needless to say the statistical 

analysis applied to each is very different to that 

used in the first approach.  The reader should 

read section 5.2 of approach one to obtain an 

understanding of the K-Means clustering 

algorithm used in this chapter. 

 

The rest of this chapter contains a high level 

overview of the design in section 9.2.  The 

analysis used to determine if each row matches 

the conditions for a backpack, is in section 9.3.  

The combination of information from all of the 

rows is discussed in section 9.4.  Section 9.5 

looks at the additional checks that were applied 

to the image to further enhance the accuracy 

of the detection method.  The results are 

presented in section 9.6, analysed in section 9.7 

before a summary in section 9.8.  

 

 

9.1 Design Overview  
  

1. Row Analysis – For every row within 

the region of interest we applied the 

background subtraction mask so that 

we only had pixels relating to the 

foreground object. 

2. Colour Clustering – The pixels of this row were clustered depending upon their RGB values 

using K-Means clustering. 

3. Row Classification – This row was then analysed looking for connected chains of pixels 

within the same cluster.  The centre point, length and left/right boundaries of these chains 

are recorded.    

4. Symmetry Analysis – Each of these rows is analysed, looking for pairs of chains with similar 

length positioned symmetrically a similar distance from the centre line of the upper torso.  If 

such a pair of chains is found, this row is returned as having a potential backpack present 

and the bounds of the strap are recorded.   

5. Percentage of Rows – When all rows have been individually analysed, a check is made to see 

if an adequate number of them have returned a candidate for a backpack.  If the localised 
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percentage of rows with a potential backpack is above a threshold percentage we continue 

analysing.        

6. Row Continuity – For each row from the top to the bottom we computer the difference in 

horizontal location between the centre points, left boundary and right boundary of each 

strap.  These differences are all added together and combined to produce an overall fit value 

for the whole image.  If this fit value is above a pre-defined threshold the frame is rejected. 

7. Strap Width Variation – The standard deviation of the strap widths over all of the rows is 

computed to ensure it is below a certain threshold.  If it is we consider this frame to have a 

backpack present.    

 

 

9.2 Clustering Individual Rows  
 

 
 

 
 

 
Figure 55:  Clustered Image with selected row bounded by yellow bars (top).  Un-clustered and enlarged image of that 

row (middle). Row after K-Means clustering has been applied and truncated to only the region within the UTR (bottom). 

 

Backpack straps present long vertical edges that are more easily detected by analysing the image in 

the horizontal direction than the vertical direction.  Hence, by K-Means clustering the image along 

rows as opposed to the whole image, the boundaries of the strap will be picked up by the clustering 

process.  If we observe fig. 55 which demonstrates clustering over the whole image, we can see how 

the strap’s edges are poorly detected as opposed to fig. 55 where the strap boundaries have been 

picked up much more clearly.  The ideal number of clusters was found to be 3 after parameter 

tuning, as this roughly left one cluster for the strap, one for the background region and another for 

portions of the image that don’t fit the other clusters.  2 clusters increased the chance of straps and 

the underlying garment being assigned to the same region.  4 or more clusters did not provide any 

improvement and increased the probability of each strap being assigned to different clusters or 
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slightly darker regions of the underlying garment being in-correctly classified as straps as shown in 

fig. 53.   

 

 

9.3 Statistical Analysis of Individual Rows 

 

As we are looking for double strap backpacks we want to find two regions in each row that both 

belong to the same cluster.  We want both of these to be within a similar length of each other as a 

large asymmetry in size suggests that they are not from the same object.  In addition pairs of 

backpack straps are usually found in symmetry with each other, the same distance from the torso 

centreline.  Hence we will only look for straps that are symmetrical.  If two regions that satisfy this 

requirement can be found in a row it will be labelled as having a potential backpack.  In fig. 53 all the 

rows that meet this requirement have had the outer bound of each strap coloured yellow and the 

inner bound coloured cyan for the left strap and magenta for the right strap.  The middle and 

bottom rows show the process of clustering being applied to a single row and shows the two black 

regions identified as being symmetrical in width and distance from the centre line.   

 

 

9.4 Statisitcal Analysis of All Rows 
 

As can be seen in fig. 56 there will be 

a certain amount of incorrectly 

classified rows as indicated by the 

lone cyan, magenta and yellow dots 

that do not align to the strap 

boundaries.  However as long as 

there are a great enough number of 

rows within the upper torso region 

these errors can be ignored as they 

will not affect the result of the overall 

classification. 

 

Additional checks are applied to 

reduce the number of false 

detections.  The system finds the 

uppermost row that has returned a 

backpack and the lowermost row 

that has returned a backpack.  This 

gives the length of the backpack 

straps which is compared to the pre-

defined minimum length.  This check 

was introduced to prevent lapels, fig. 

56, shirt pockets and other items 

from triggering false detections.  A backpack strap will 

Figure 56:  False detection due to short straps 
(top).  False detection due to un-aligned regions 
(upper middle).  False detection due to widening 
scarf (low middle).   
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usually be detected over most of the upper torso region and hence will have a greater length.   

 

 

9.5 Additional Statistical Checks 
 

As indicated in Fig. 56 there were occasion when many rows would returned potential candidates 

for backpacks that did not line up with other rows.  These were clearly not backpacks however they 

resulted in false detections.  The easiest way to rid the system of these errors was to check how the 

boundaries produced by each row lined up with each other.  This was done by simply adding the 

horizontal distance between each boundary on one row with its position on the next row.  These 

distances were averaged over all of the rows.  If the position of the boundaries varied by a large 

amount as shown in fig. 56 the produced total would be rather large and the straps eliminated. 

 

A second group of failures was caused by other regions being evaluated as straps such as the top of 

the scarf as indicated in fig. 56.  Backpack straps tend to have roughly similar width over their entire 

length; hence we can discard items with a varying width over the length.  The standard deviation of 

backpack strap width is calculated over all of the rows and compare to a threshold for this purpose.    

 

 

9.6 Results  
 

 
Figure 57:  Graphs for Approach Five 

 

Approach Five gives the best results of any of the approaches with a high level of true detections and 

a low number of false detections.  There were 6 tuneable parameters used in this approach: 

 ROW_WIDTH_VARIATION – This governs the allowed amount of variation in the width 

between two chains being considered as potential straps on a row.  It is a value given 

relative to the width of the longer potential strap.  During the process of tuning, the optimal 

value was found to be 0.5. 

 THRESH_NUM_ROWS – This governs the minimum percentage of rows that must indicate a 

potential backpack strap along the length of the suspected strap.  During tuning the optimal 

value was found to be quite low at 40%. 
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 MIN_WIDTH – Defines the minimum width 

that a potential strap can have before it is not 

considered.  The value is given relative to the width 

of the upper torso region.  During tuning this was 

found to be an un-necessary hindrance to the 

system and ended up being set close to 0 at 0.005. 

 STRAP_SYMMETRY_VARIATION – Optimally 

two straps will be positioned symmetrically around 

the centre line.  Inevitably there will be some 

variation to this ideal and this parameter controls 

the maximum allowed variation between the two 

potential straps distance from the centre line before 

they are considered to not be straps.  This value is 

given relative to the width of the upper torso region 

and during tuning it was found that the optimum 

value was 0.2. 

 ROW_LINE_UP – This threshold governs the 

level to which the strap boundaries on each row 

must line up with each other.  During tuning it was found that the optimal value was 8.0. 

 SD_VAR – This is the allowed standard deviation of the strap width for all rows that report a 

potential strap.  Through tuning it was found that the optimum maximum value was 120. 

 

9.6.1 Successes and Failures  

 

35 of the videos ran successfully, there were 3 cases of false positives caused by: 

 Jacket lapels being detected as straps.  A background subtraction failure prevented rejection 

due to their position at the edge of the upper torso region fig 60 top.    

 Small Boundary region between scarf and underlying garment due to the tuning process 

setting the minimum width of a strap to be small. 

 Shadows occurring across a two toned garment causing clustering to create two strap like 

regions as shown in fig 60 left. 

There were 6 false negatives caused by: 

 In 2 cases not enough individual frames were detected. 

 In 2 cases a scarf worn by a test subject caused occlusion of the underlying straps as shown 

in fig. 60 right. 

 In 1 case the arms were included in the background region, causing the straps to be located 

at the edge of the foreground region and hence classified as not straps. 

 In 1 case a two-toned garment prevented the straps from being clustered correctly. 

There were 35 successful videos as seen below. 

 

 

Figure 58:  Best results for Approach Five 
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Figure 59:  Successes 
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Figure 60:  Failures 

 

 

9.7 Evaluation  
 

The false positive rate is very low for this method with a value of 0.136.  The system was tuned until 

a maximal value of the Matthews correlation co-efficient was obtained.  However another run was 

obtained that had an even lower false positive rate of only 0.045.  The parameters used in this run 

traded a small reduction in the number of detections for increased precision within those 

detections.  Depending upon the requirements of the system a lower false positive rate may be 

more desirable, particularly if the false negative rate is not as important.  However in other 

situations the reverse may be true, for instance if the system is highlighting footage for an operator 

to review a false positive will be recognised by the operator however they will never view the false 

negative case.   

 

The false positive caused by the scarf is quite annoying to the author as extra code was specifically 

written to eliminate potential straps whose width varied too much along their length.  The scarf 

widens towards the end which would trigger this code causing a correct true negative.  However as 

the minimum width of a strap evaluated as very low value during parameter tuning the boundary 
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between scarf and underlying garment is now being detected as a strap.  Increasing the minimum 

width could eliminate this failure however it will also re-introduce failures as it takes the parameters 

away from their optimum setting.  To eliminate this failure would require looking down the 

minimum width parameter and re-tuning the system to optimise its performance.   

 

The false positive visible in fig 60 left is notoriously hard to eliminate and has caused numerous 

failures during the system development relating to the two toggles and zipper which are all assigned 

to their own cluster in many rows.  The boundaries caused by the zipper, two toggles and red 

patches of the garment, perfectly segment the white region into two strap proportioned regions.  It 

is very hard for the detection system to correctly eliminate these.  Potentially a colour histogram 

check, as used by approach four, could be re-implemented as an add on to this approach to check 

for cases, where a shadow accidently classifies the main region of the garment as two strap regions.  

However even this may not work for this particular video as the red garment may confuse the 

system into thinking the white of the fake straps was in fact, actually a different garment type. 

 

In terms of the false negatives: 

 

In the two cases shown in fig. 60 occlusion by scarfs is causing the K-Means clustering to fail to 

correctly cluster the straps.  The first case is going to always be hard to eliminate if not impossible, 

as the scarf is covering the straps themselves.  Hence we cannot expect the system to correctly 

classify cases such as this one.  The second case could potentially be eliminated if the system was 

designed to, not take into account the centre region of the torso.  This would work for double strap 

backpacks; however, it would introduce problems when trying to detect singe strap bags that go 

across the torso.   

 

In fig. 60 the white lines indicate the edges of the upper torso region detected by the system.  As can 

be seen these exclude the arms from consideration placing the straps at the edge of the detected 

region.  Hence the straps are eliminated from contention for detection as a strap.  This failure is 

caused by a background subtraction failure due to the similarity between the white garment and the 

white walls behind the object.  This failure could potentially be eliminated with further tweaking of 

the background model or a more advanced background subtraction model.  Neither of these items 

are the primary focus of this thesis.         

 

The last false negative is caused by the two-tone garment ironically the same two-one garment 

caused a false positive when viewed on its own without a backpack.  In this case the darker colour is 

blending in with the backpacks during the clustering process.  This results in the straps not being 

detected at the optimal locations present at the top of the upper torso region.   

 

 

9.8 Summary 
 

In my view this approach works very well and has the ability to detect straps with a low level of 

contrast relative to the underlying garment.  Most of the failure cases are related to pre-processing 

steps or are very difficult to solve even using other approaches.   
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Potential improvements to the this approach would be to incorporate a colour histogram check of 

detected straps, as detailed in approach five, to try and eliminate some of the false positives.  

Currently this approach used absolute location checks, for instance, a potential strap is classified as 

being too close to the edge of the upper torso region to be a strap or not.  This could be replaced 

with a weighting system that would allow out of position straps to be classified as backpacks if they 

satisfied other criteria to a significant enough extent.   
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10 Approach Six:  Single Strap Detection  
 

As approach five achieved the best results, it was used as the basis for a single strap detection 

approach.  This was a very basic modification with parts of the algorithm relating to finding two 

straps removed.  Instead of running the whole solution over the entire upper torso region it is called 

twice, once for each half of the region.  Only one of these needs to find a strap for the upper torso 

region to be classified as containing a single strap bag.  This chapter will open with a high level 

design overview in section 10.1, with the differences relative to approach five detailed in section 

10.3, before moving onto results in section 10.2 and evaluating them in section 10.3.  It is assumed 

the reader will have read approach five for comprehensive understanding of this chapter.   

 

10.1 Design Overview  
 

1. Row Analysis – For every half row within the region of interest, we applied the background 

subtraction mask so that we only had pixels relating to the foreground object. 

2. Colour Clustering – The pixels of this half row were clustered depending upon their RGB 

values using K-Means clustering. 

3. Half Row Classification – Each half row was then searched for a connected chain of pixels 

that satisfied the requirements for minimum and maximum width of a strap.   

4. Position Analysis – This connected chain was analysed to ensure that it was positioned 

roughly in the centre of the half region, as backpack straps do not usually reside at the edge 

of a torso or in the middle of the torso.   

5. Percentage of Rows – When all rows have been individually analysed we check to see if an 

adequate amount of them have returned a candidate for a backpack.  If the local percentage 

of rows with a potential backpack is above a threshold percentage we continue analysing.        

6. Row Continuity – For each row from the top to the bottom we computer the difference in 

horizontal location between the centre points, left boundary and right boundary of each 

strap.  These differences are all added together and combined to produce an overall fit value 

for the whole image.  If this fit value is above a threshold the frame is rejected. 

7. Strap Width Variation – The standard deviation of the strap widths over all of the rows is 

computed to ensure it is below a certain threshold.  If it is we consider this frame to have a 

backpack present.    

 

10.2 Differences from Approach Five 
 

Most of this approach is identical to approach five; however, we can no longer rely on the symmetry 

of two straps to use as an eliminating factor.  Instead this approach places greater emphases on the 

minimum and maximum width of potential straps.  It also relies on the position of the strap within 

the upper torso region to a greater degree than approach five.     
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10.3 Results  
 

 
Figure 61:  Minimum width being tuned for Approach Six 

 

Approach Six was developed late in the development 

cycle and hence, the time could not be afforded to tune 

it.  Hence, these results were obtained using the 

parameter values from approach five since they shared 

many of them.  Performance would be significantly 

improved if the parameters could be tuned specifically 

for this approach.     

 

The parameter that could be tuned as the minimum 

width of the strap as is shown in the graphs presented 

in Figure 61. 

 

 

 

 

 

 

 

 

  

Figure 62:  Best Results for Approach Six 
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10.3.1 Successes and Failures 

 

 
Figure 63:  Successful detection of a single strap (left) and a single strap of a double strap backpack (right) 

 

10.4 Evaluation  
 

Considering how little modifications were made 

to approach five to enable it to detect single 

strap backpacks the performance is surprisingly 

good.   The lower level of accuracy that was 

present was because the system could not be 

tuned as much as the other systems due to the 

limited time available and the decision to 

priorities the double strap methods.  This could 

probably be restored to at least the accuracy of 

approach five if the time needed was available.   

 

The types of failure are much more varied as 

there is not second strap to perform a 

symmetry check against.  Hence false detections 

are much higher for this method than they are 

for approach five.   

 

10.5 Summary 
 

This approach has shown that it is possible to re-apply the double strap methods employed in 

previous approaches to the task of detecting single straps.  While there is a performance drop this is 

more likely due to the low amount of tuning that was applied to the system due to time constraints.   

 

  

Figure 64: False detection caused by strap like regions 
created during the clustering process.  This was introduced 
by the bad illumination conditions present in the room.  
White line indicates the divide between left and right 
clustering region. 
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11 Conclusion and Future Work 
 

11.1 Introduction 
 

At the outset of this project the goal was to investigate and test methods to detect backpacks from 

frontal views of individuals in surveillance videos.  This was a challenging task as at the beginning of 

the project there was no published literature available on the problem nor did publically available 

third party test data exist.  Hence the test data and methods used had to be developed from scratch.  

The testing portion of the goal has been achieved through the creation of a representative test set 

that enables benchmarking of systems.  The goal of detecting individuals has also been successfully 

achieved with six approaches of varying accuracy produced.  The results obtained for these six 

approaches are summarised and compared in section 11.2.  From this the overall conclusions of the 

project are drawn and discussed in section 11.3.  Potential areas that this project can be continued 

on from are outlined in section 11.4. 

 

 

11.2 Comparison of Approaches 
 

 
Figure 65:  The best results obtained for each approach after tuning. 

 

This section summaries and compares the results of the six approaches developed to find 

complimentary solutions.  First off it should be noted that approach six designed to only detect 

single straps while the other five methods were all designed to detect double strap backpacks.  

Hence the test data used by approach six is slightly different to the other five methods.  This means 

that the figures available for approach six can’t be directly compared to the other five approaches.  

In addition as this was the last approach developed it was not as well tuned as the other systems.  

Therefore the following analysis will concentrate mainly on the first five approaches.  

 

The initial approaches for both colour and gradient analysis (approaches one and two respectively) 

have the poorest results.  Not surprising the best results came from the later developments of these 

methods (approaches four and five).  Colour space analysis produced better results than gradient 

based edge analysis.  This was due to the ability of the colour based approach to detect straps with a 

low level of contrast relative to the underlying garment.  Additionally small edges created by jacket 

lapels, pockets and logos and other items were more likely to confuse the edge analysis.  The row 

based colour space analysis was much better equipped to discard these items as they would not 

appear on enough rows to be considered as a strap.   

 



73 
 

All three of the gradient based methods had higher levels of recall than precision.  This was reversed 

when the two colour based methods are analysed as seen in fig. 66.  This suggests that gradient 

analysis methods developed in this dissertation are more likely to produce false positives while 

colour analysis methods are more likely to produce false negatives.  Hence it suggests that the 

gradient and colour analysis methods are complimentary to each other and could be used to re-

enforce each other’s results and improve overall accuracy.  A basic implementation of this was 

already used in approach four which had an underlying edge based detection method tuned to be 

extra sensitive.  A colour histogram check was then employed to confirm or reject these results 

leading to an improvement in the systems accuracy.  It would be a useful exercise to repeat this 

process with a colour clustering technique as well as a colour histogram technique to see if further 

improvements can be achieved. 

 

 
Figure 66:  Precision, Recall, Accuracy, F1 and Matthews values for the best results of all six approaches. 

 

 

11.3 Conclusion 
 

The main goal of this project has been met as a system has been developed that can detect 

backpacks on individuals in surveillance footage.  Currently surveillance operators can be 

overwhelmed by the hours of footage they have to view.  This can be drastically reduced by a system 

such as this which aids by highlighting footage that contains items of interest such as backpacks.  

This system looked to achieve this by searching for straps in front views of the individual, an area not 

well covered in current literature.  There is no published work available on the subject of detecting 

backpacks from a front view of an individual in outdoor environment, a situation covered by this 

project.    

 

As part of this dissertation a test database was created that will fill a gap that is currently present in 

publically available test data.  This was built with the aim of being publically releasable to enable 

verification of the results for this dissertation.  Hence it will hopefully represent a contribution to the 

available test data and can be used to benchmark other frontal backpack detection systems.  It 

should be noted that the only paper that has addressed the issue of frontal backpack detection did 

not make its test data set publically available. 

 

The system, in particular solution five, is successful at detecting straps that have a low contrast level 

relative to the underlying garment.  This is superior to the performance given in [30] where a high 

level of contrast was assumed.  The authors of that publication also made the assumption that the 
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strap would be darker than the underlying garment.  All of the solutions here will function equally 

well with either the straps or underlying garment being darker relative to the other.  In addition the 

test data of that publication was taken from inside a brightly lit airport.  The test data created as part 

of this project is a combination of indoor and outdoor footage in varying conditions.  As can be seen 

in fig 59 the system managed to perform in twilight conditions under a street lamp.    

 

The system has two main limiting factors; the first is that none of the solutions developed can cope 

with situations where there is no contrast between the straps and underlying garment.  This issue 

will be very difficult to solve using computer vision as without contrast even the human eye cannot 

distinguish the strap from the underlying garment as shown in fig 59.  Generally computer vision 

systems are considered unable to detect items that cannot be distinguished by the human eye [36].  

Unfortunately this situation was found to be quite common when the author analysed garment and 

backpack combinations worn by pedestrians entering Trinity College during two February mornings.   

 

The second limiting factor of the system is that it cannot cope with occlusion of the backpack straps.  

This is also a difficult problem to solve as there are many different ways the straps can be occluded 

either partially or fully.  A problem such as this would require several techniques to solve and once 

again runs up against the general rule that the straps can only be detected as long as they are visible 

to the human eye.   

 

Despite these deficiencies in the system I believe that it can be combined with the already available 

solutions for detecting backpacks from the sides [19] and back [30].  This would produce a system 

that is able to detect humanly visible backpacks on pedestrians from several angles.  This would be 

of benefit, helping security personnel to narrow down the hours of footage they have to review.  It 

should be noted that as with any binary classification there is still some levels of inaccuracy present 

in the system.  As has been noted in the evaluation sections for each approach this is going to be 

difficult to totally eliminate as scenarios can always be encountered that will trick the system.  The 

next section details improvements that can be made to the system to increase its reliability and 

improve its detection rate.   

 

To put the results achieved in this project in perspective keep in mind that frontal backpack 

detection has not been addressed outdoors or in variable illumination conditions to date.  Due to the 

limitations of computer vision it is also not possible to detected cases that can’t be easily 

distinguished by the human eye.  For instance black straps on black jackets will be nearly impossible 

to detect.  Detection of these items will require an alternative method such as thermal spectrum 

analysis as advised in the future work section.  Other publications have achieved similar levels of 

accuracy such as [26] which achieved a precision rate of 50.5% and a recall rate of 55.4% when trying 

to detect carried items on individuals in a train station in Leeds.   

 

Computer vision systems barely ever consist of just one stand-alone component.  The solution 

presented in this paper would be merely one part of an overall backpack detector that detects from 

several angles using several methods to ensure reliability.      
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11.4 Future Work 
 

As solutions four and five had the highest detection rates, future improvements to the system 

should be applied to these methods.  There is merit in keeping both of them, as they analyse video 

footage in gradient space and colour space respectfully complimenting each other.  There are 

several cases where a false detection in one is correct in the other.  A potential area for further 

investigation would be to work out how to combine these two methods so that when they disagree 

the classification is made using the system that performs best given the local frame conditions.  

Approach four made use of this technique however only with colour histograms.  It would be 

interesting to integrate otherwise fully stand-alone gradient and colour based approaches.   

 

As mentioned in section 3.4 the test data set is relatively small and hence may not test the system as 

comprehensively as would otherwise be possible.  Future research should look to expand this data 

set and analyse the performance of the current system.   With more data the cases that cause the 

most false detections can be identified.  Additional statistical checks can they be added to the 

system to counteract these failures and improve the robust and reliable behaviour of the system.  

Additionally if multiple parties contribute to the data set it should provide a greater variety of scenes 

and clips which will increase the effectiveness of the data set.  

 

A larger data set will also enable more reliable tuning of the system.  The tuning employed in this 

project involved manually comparing the results obtained from several automated runs with 

different parameter values to achieve the highest Matthews score.  This process could be automated 

to reduce the time spent on it and gain better results for the system.   

 

As detailed in chapter 10 the system has the ability to detect a backpack if only a single strap is 

worn.  However this was a quick modification made to the two strap version of approach five and 

applied twice on both sides of the image.  An improvement to this would be a re-implementation of 

approach five that only needs to be applied once over the whole upper torso region and can detect 

both double and single straps.  Both single straps that cross the upper torso region to go over a 

shoulder opposite the bag and vertical single straps such as handbags need to be considered in this 

approach.  As approach four detects single straps while searching for pairs of parallel contours an 

approach         

 

The main limitation of the system is its inability to detect straps that do not contrast with the 

underlying garment, an issue that is hard to solve in the conventional BGR colour space.  A potential 

solution to this problem would be to detect the presence of backpacks using a thermal imaging 

camera.  As the strap will be made of a different material than the underlying garment it will have 

different thermal properties and emit heat at a different rate.  Approach five uses colour 

classification and may not work as well in this instance.  Approach four is based upon edge detection 

and should still perform as well in the thermal spectrum.  Thermal spectrum analysis may also have 

the potential to detect a backpack underneath a garment such as a rain poncho, provided the 

garment is thin enough to not dissipate heat being radiated through it by too great a degree.   

 

A. a 
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A. Methods 
 

A.1 Haar Face Detector 
 

To robustly detect the players face haar-like feature detection was used.  The haar classifier works 

by looking for rectangles with distinctive patterns as indicated in figure 1.  In a human face certain 

regions are darker than others, the eyes for instance are much darker than the check region.  Hence 

rectangle (a) laid over an eye check paid in a face would be a better fit than (b) or any of the other 

rectangles.  Two, three and four region Haar classifiers have been defined. 

 

 
Figure A1  Haar Features left and the how to computer the intensity of a region using integral images on the right [1]. 

 

To work out if a certain Haar-like feature is present within the image integral images were 

computed.  This consists of a matrix where each value is the sum of the intensity of all the pixels 

above and to the left of the current pixel.  Hence to work out the intensity of a certain rectangular 

region within the image we only need to access and store four values as indicated below.   

 

                  ( )   ( )   ( )   ( ) 

 

This greatly increases the computational speed of working out the intensity of a region.  A two 

region haar classifier only needs six look ups, a three region needs eight look ups and a four region 

classifier only needs nine lookups.   

 

Work has been done on using additional Haar-classifiers tilted at 45o such as indicated by (c) and (d) 

in the edge features in fig. 1 by Lienhart and Maydt.  This was found to reduce the false positive rate 

in the region of 10%-12.5% at the expense of computing a second integral image as indicated in 

figure 2.  This integral image is identical to the first except everything now rotated by 45 o.  This 

integral image is used with two and three region haar-features but not four region ones.   
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Figure A2  Tilted 45 degree Haar Calculation [37] 

 
Further work was done one enabling haar-features to be calculated at any angle by Messom and 

Barczak however it was found to be computationally expensive.  In addition detection algorithms 

then to use low resolution images resulting in rounding errors preventing the use of rotated haar 

classifiers.     

 

This is known as a weak classifier as it will not always be correct as rectangles laid over a coloured 

image will not directly correspond to a perfect black and white rectangle.  Hence we only get a 

confidence value for how well each rectangle fits the image.  By setting a threshold and accepting 

confidence levels over a certain value we are quite likely to get in-correct classifications.  These 

inaccuracies can be heightened by changing levels of light and interfering background colours.  In 

addition some of these patterns are likely to occur naturally in the background.   

 

To make the classifier more robust we turn it into a strong classifier using a method known as 

adaboost.  This checks for multiple features and only returns a classification if all of them agree on 

the object.  This reduces the number of in-correct classifications however to compute all of the haar 

features for a 24x24 subpixel region would require examining upwards of 30,000 features.   

 

Hence we combine all of the haar features into a cascade lf several stages.  For each region the 

computationally light haar classifiers are checked first.  Following this more computational intensive 

features are checked for only on the regions that passed the initial test.  By combining into several 

stages we can keep the computation down to a minimum for an image with an haar feature 

returning false eliminating that region from more checks.   

 

 

A.2 Colour Spaces  
 

Unlike gradient based methods which were analysed using only the luminance channel of an image 

K-Means takes place on a colour image.  Hence there are several different colour spaces that can be 

used for clustering.  As clustering can be applied to one, two or more channels various combinations 

of different colour spaces and different channels were tried to try and find the best cluster 

classification.  

 BGR – This is the standard colour space and uses three channels to represent the intensity of 

the blue, green and red components of an image respectively.   
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 XYZ – This three channel colour space is designed to represent pixel values in a way the 

human eye better understands them.  The Y channel is the luminance of the image, Z is 

approximate to the blue stimulation perceived by the human eye and X is a mix of the 

remaining values chosen to be non-negative.   

 YCbCr – This three channel colour space is represented by the luminance channel Y.  Cb and 

Cr are the differences of the blue and red components within the image with respect to Y.  

As shadows had a tendency to cause two clusters as shown in fig. 66 in BGR images, 

clustering was attempted using only the Cb and Cr channels of an image in YCbCr. 

 Luv and Lab and similar to YCbCr but derived from the XYZ colour space instead of the BGR.  

Once again cluster was attempted using only the ab and uv channels. 

 HSV and HLS – These are two colour spaces that attempt to represent information about a 

pixel with respect to colour and luminance more intuitively.  Hue is a circular representation 

of the colour space values of a pixel.  Saturation is the intensity of that colour, for instance is 

it a light or dark green.  The third channel is Lightness or Value both of which represent 

luminance information, the difference is that lightness goes from black to white with the 

maximum value of colour in the midpoint while Value goes from black to the maximum 

value of colour.  Clustering was attempted using only the hue channel of both of these image 

to see if straps could be differentiated by only their colour value. 

 

After experimentation clustering only selected channels of an image was found to provide no benefit 

to the system over conventional RGB or XYZ clustering.  Clustering using the relative colour 

information from YCbCr, Luv and Lab as shown fig. 66 even failed to remove clusters aligning to 

shadows rather than actual colour changes in the image.  Clustering using the Hue channel only was 

a complete failure as shown by the last two images    
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Figure 67:  Clustering in different colour spaces, Clockwise from top left:  Input, BGR, YCbCr, Luv, HSV, HLS, Lab, XYZ. 

 

 

A.3 K-Means++ 
 

The standard K-Means algorithm requires cluster canters to be 

seeded.  If the user has time to process the data they can provide 

custom seeds for the algorithm.  However this is not beneficial for 

fully automated systems which are more likely to make use of 

random cluster seeding.  The K-Means algorithm is vulnerable to bad 

initial seeding and will not always reach optimal clustering for an 

image.  For instance take a rectangle which its major axis aligned to 

the x-axis and its minor aligned to the y-axis.  If there are four points 

at each corner an optimal clustering would put the left two points in 

one cluster and the right two in the second.  However if the initial cluster canters were at the 

endpoints of the minor axis K-Means would converge with the top two in one cluster and the 

bottom two points in a second cluster.  In addition bad clusters will increase the execution time of 

the algorithm as it takes more iterations to correct the bad clusters.   

 

To solve this problem [35] develop an initialisation algorithm to choose better initial clusters.  The 

algorithm works of the principle that spreading out clusters results in good initial seeds and operates 

as follows: 

1. The initial cluster centre is chosen randomly from all data points. 

2. The next cluster is chosen from the remaining point with probability proportional to the 

square distance of each point to the nearest cluster centre.  

3. Step 2 is repeated until all clusters are assigned.   

 

According to the literature this significantly reduces the likelihood of K-Means producing bad centres  

 

 

A.4 Detailed Annotation System 

 
The first system stored for each frame the number of backpacks present and for each backpack the 

following information: 

 bool:  Is left strap visible 

 bool:  Is left strap occluded 

 bool:  Is right strap visible 

Figure 68:  Bad initial seeds for K-
Means clustering 
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 bool:  Is right strap occluded 

For every twentieth frame two points indicating the top left and bottom right of a bounding 

rectangle around the number of present straps for the backpack.  

 

As unique test data was created for this project the annotations for this data also had to be created 

from scratch.  This required the creation of a custom program that would play through each video 

frame by frame requiring the author to manually input all of the information for the required flags.  

This was a time consuming process and also extremely prone to operator error due to fatigue 

relating to time required to process all videos.  It was also an unnecessary amount of information to 

be creating for each video.   

 
 

A.5 Attached CD 
 
Please Find attached the source code from the project as well as sample success and failure videos. 
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B. b 

B. Results 
 

B.1 Parameter Tuning Approach Four 
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B.2 Parameter Tuning Approach Five 
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B.3 Best Results for Each Approach 
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B.4 PR Curve Approach Four 
 

 
 

B.5 P-R Curve Approach Five 
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