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Summary
Fundamentally, this thesis is about trying to explain the variance in market prices better.

This variance present in the prices is not unexpected. Markets are part of a complex

economic system, and respond and reflect a large amount of different information sources.

Researchers can try to explain this variance using an information source from outside

the market, instead of using time series analysis.

Sentiment analysis has reached the stage where it can be expressed as a time series, and

as such incorporated into financial models. In particular, this work uses the sentiment

analysis system Rocksteady, developed here in Trinity College, University of Dublin.

(Ahmad et al., 2011) Rocksteady can work with online financial newspaper archives

and news blogs to create a market specific sentiment times series. It is the output of

Rocksteady that this thesis uses in it financial models.

The techniques used to model the possible relationship between sentiment and market

data were Vector Autoregression (VAR) and Granger Causality tests. VAR models

essentially create a linear equation for each of the variables in the model, using the

lagged values of all variables in the model for the equation for each variable. The

Granger causality test tests to see if a change in one variable occurs before a change in

another variable, looking for changes as cause and response relationships. The Granger

test fits well with VAR models, as in it based on many of the same assumptions (e.g.

linear models, stationarity)

The final part of this work is wavelet analysis. The wavelet transform adds frequency

information to the signal, but does not lose all time resolution, instead balancing the

trade-off between time and frequency resolution. This allows the wavelet transform to

show when in time events of certain frequencies occurred.

This behaviour allows the multiresolution analysis of a time signal. The time series can

be broken down into different time series that reflect activity of different timescales.

So market data can be split into daily and weekly and yearly trading, each time se-

ries orthogonal to the other. This allows sentiment and market returns to examined

on different timescales, and how the relationship might change with timescale. This

approach has been extensively used in economic research, uncovering relationships over

timescales that remain hidden if one only considers the sum of the different activities

i.e. the original time series.

That is a layout of the work this thesis attempts. The oil market was chosen as an

initial test-bed. It was felt a commodity market would be preferable to a stock market,
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as there it would be less likely to see the extreme volatility, and more likely to show a

relationship.

Where this thesis seeks to make a contribution is a closer look at the relationship between

sentiment and market. Combining the wavelet analysis discussed in section 2.1 we take

a robust approach to seeing if the relationship actually exists, and if so what shape it

takes and across what time-frames. This thesis sits well within the research done before,

and attempts to add to the growing knowledge of how news effects markets.

The main findings of the thesis are that at smaller timeframes, the daily and weekly

trading, sentiment does play a role in explaining returns. At timeframes longer then a

forenight, we found no evidence for sentiment having an influence on the market. While

we expected there to be a transition between short and long timeframes, that traders

operating on a forenightly basis were ignoring sentiment was a little surprising.

The other main finding related to the delays, with a over a week of delay in sentiment

appearing and the market responding. It seem that even daily traders take time to

process sentiment before acting upon it. Finally, the need to decompose the time series

was made evident that undecomposed, the signals showed that returns cause sentiment.

The method has proven to be able to uncover relationships between senitment and

markets, and sugestions for future work include using different kinds of sentiment and

exploring other types of markets.
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Chapter 1

Introduction

This thesis was completed for an M.A.I. for Electronic and Computer Engineering. Both

areas of engineering covered in the degree are part of this thesis. Through one lens, the

thesis is fundamentally about signal processing, filtering and comparing different signals.

Through the other, this is about computer modelling and automating a task that used

to only be done by humans - sentiment analysis of text. Both are valid interpretations

of the work, and the hope is that this work will be relevant to both areas.

1.1 Motivation

Sentiment analysis has in recent years become a well developed field reporting consid-

erable success. While there is certainly still work to be done, the results from the field

have become increasingly reliable and accepted.

Coupled with this establishing of sentiment analysis as a respected field is an abundance

of publicly available sentiment heavy texts on the internet. Of course, the internet is

older than the last five years, but with the emergence of social media including Twitter,

Facebook, blogs, message boards and forums, as well as the proliferation of the consumer

review driven by Amazon.

Given the time the research area came of age, it is unsurprising that many of the ap-

plications of sentiment analysis beyond academia are focused around social media and

the internet (Feldman, 2013). Classifying consumer reviews as positive or negative, or

sorting tweets about politicians running for election were the subject of this work.

1



Introduction 2

However, the applications are much broader than classifying tweets or Facebook statuses.

As laid out in section 2.2, using sentiment analysis to help financial models is a growing

body of research, with the more sophisticated methods now available seeing a greater

success in this area.

The idea that market sentiment would have an effect on market movements seems intu-

itive, and also seems to align with our discussion in section 2.3 about irrational traders

and the influences outside the market. The sentiment behind financial news seems like

the perfect candidate for an influence on these irrational traders.

Where this thesis seeks to make a contribution is a closer look at that relationship.

Combining the wavelet analysis discussed in section 2.1 we take a robust approach to

seeing if the relationship actually exists, and if so what shape it takes and across what

time-frames. This thesis sits well within the research done before, and attempts to add

to the growing knowledge of how news effects markets.

1.2 Outline of Work

Fundamentally, this thesis is about trying to explain the variance in market prices better.

Market prices show a high auto-correlation, with the price today largely depending on

the price yesterday. However, even ignoring the shocks spikes and falls that are part

of stock and commodity markets, prices still show large variance around the high auto-

correlation.

This variance can be clearly seen when working with the returns, the difference in

price data between one day and the next, rather then working directly with prices. This

variance present in the prices is not unexpected. Markets are part of a complex economic

system, and respond and reflect a large amount of different information sources.

Market price data is clearly a time series, and time series analysis has been used exten-

sively in the study of this area. Random walks, Holt-Winters smoothing, autoregression

models and various other techniques have to used to some success in modelling and fore-

casting financial data. None of these methods fully capture the behaviour of the data,

there remains improvements to be made.

The problem with time series analysis is only the market prices themselves are used

in the models. (Black, 1986) makes a good case as to why a financial data cannot

be regressed purely on itself - there are too many other factors at play. Contrary to
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the Efficient Market Hypothesis, market prices do not reflect all relevant information

instantaneously. (see 2.3 for a larger discussion on this.)

As mentioned in the motivation, sentiment analysis has reached the stage where it can be

expressed as a time series, and as such incorporated into financial models. In particular,

this work uses the sentiment analysis system Rocksteady, developed here in Trinity

College, University of Dublin. (Ahmad et al., 2011) Rocksteady can work with online

financial newspaper archives and news blogs to create a market specific sentiment times

series. It is the output of Rocksteady that this thesis uses in it financial models.

The techniques used to model the possible relationship between sentiment and market

data were Vector Autoregression (VAR) and Granger Causality tests. Both of these

techniques are used modelling economic variables, as modeling the relationship between

different variables plays a much larger role in economics then in financial modelling.

VAR models essentially create a linear equation for each of the variables in the model.

The difference between autoregressive models is VAR used the lagged values of all vari-

ables in the model for the equation for each variable. The Granger causality test tests

to see if a change in one variable occurs before a change in another variable, looking

for changes as cause and response relationships. The Granger test fits well with VAR

models, as in it based on many of the same assumptions (e.g. linear models, stationarity)

The final part of this work is wavelet analysis. The wavelet transform, like the Fourier

transform, adds frequency information to the signal at the expense of resolution of

the signal in time. Unlike with Fourier, the wavelet transform does not lose all time

resolution, instead balancing the trade-off between time and frequency resolution. This

allows the wavelet transform to show when in time events of certain frequencies occurred.

This behaviour allows the multiresolution analysis of a time signal. The time series can

be broken down into what are known as details - different time series that reflect activity

of different timescales. So market data can be split into daily and weekly and yearly

trading, each time series orthogonal to the other. This allows sentiment and market

returns to examined on different timescales, and how the relationship might change

with timescale.

This approach has been extensively used in economic research, uncovering relationships

over timescales that remain hidden if one only considers the sum of the different activities

i.e. the original time series.

That is a layout of the work this thesis attempts. The oil market was chosen as an

initial test-bed. It was felt a commodity market would be preferable to a stock market,
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as there it would be less likely to see the extreme volatility, and more likely to show

the relationship. However, there is no reason this analysis cannot be applied to stock

markets, and this topic is a suggestion for future work.

A final note on terminology. Given the mixed background of this thesis, sometimes

different terms are used to mean the same thing. In particular, ‘time series’, ‘process’

and ‘signal’ are all used interchangeably. They mean slightly different things in different

contexts, but within this work, they all refer to a data series where each datum has an

associated time of occurrence, in our case a date.

1.3 Project Objectives

• Multiresoltuion Analysis

The first objective is simply to breakdown the different time series, both sentiment

and returns on oil, into their wavelet details. This will allow us to use the modelling

techniques on compare the two variables on different timescales.

• Test for relationships between sentiment and returns using Granger

Once the two processes have been decomposed, we want to test for a relationship

between the two variables on corresponding levels. The initial test for a relationship

(i.e. sentiment causing returns, or vise versa) will be the Granger Causality test.

• Model any relationship found using VAR

If the Granger test shows a relationship, we want to model that relationship using

a VAR model. The Granger test only shows a relationship exists - we use a VAR

model to give a more detailed picture of the relationship, showing the delays and

direction (positive or negative) in the relationship.

• Learn the techniques used by Rocksteady

As mentioned, Rocksteady is a system of sentiment analysis developed here in

Trinity. As part of this project I would like to become familiar with the techniques

used by Rocksteady, and not leave it as a black box for me. If time allows, I may

try to develop something for the system, though given the amount of other work,

this may prove unlikely.

• Learn to use various financial software packages
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As part of this thesis, I want to improve my own skills in financial modelling.

Where possible, I intended to use different software packages and tools to imple-

ment different aspects of the work. Two that might prove useful are all the financial

tools implemented for use in Matlab, and the Gretl Open-Source statistics package.

1.4 Layout of Thesis

In Chapter 2, Literature Review, the state of research of the different techniques em-

ployed in this work is discussed. Section 2.1 outlines the different properties that make

the wavelet transform well suited to economic and financial study, before looking at

research in finance that has already taken advantage of those properties.

Section 2.2 turns to Sentiment Analysis and the state of research in that area. It lays out

the different techniques and methods developed so far, before again turning to research

done in the area of finance and economics that has used sentiment analysis already.

The final section in Chapter 2, 2.3 looks at financial and economic theory, as well as

behavioural science, to try find some possible mechanisms for out intuitive sense that

sentiment should influence markets.

Chapter 3 explores the method used by the work, and the theory behind the different

techniques and models. Section 3.1 discusses wavelets and the decomposition analysis.

It lays out the theory behind the wavelet transform and why it can be used to decompose

a signal into different timeframes.

The following section in Chapter 3, 3.2 looks at the sentiment analysis tools used by the

Rocksteady system, as well exactly how the input data for the system was curated.

Section 3.3 lays out the theory and implementation of the VAR models, as well as ex-

ploring the underlying assumptions and limitations of the model. The variations of the

VAR model, some of which were developed to deal with those limitations, are also dis-

cussed. The final section in the chapter 3.4 explains the theory and the implementation

of the Granger Causality test.

Chapter 4 is the Results chapter, where all the results of the thesis are presented. The

first section 4.1 describes exactly the data used by the project, before the following

section 4.2 displays the results of the wavelet decompositions of the various time series.

The following section 4.3 lays out the different relationships discovered and the models

fitted to those relationships. It goes through each of the different data-sets used in turn:
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original sentiment and decomposed returns, both sentiment and returns decomposed

and decomposed moving averages of sentiment and returns.

A brief discussion of follows each results of the Granger tests and VAR models, but the

final section, 4.4 is a through discussion of the results and their implications.

The final chapter is the Conclusion, which first 5.1 summarizes the whole work, laying

out what was done and how it was done. The next section 5.2 summarizes the main

findings of the thesis. The final section in the thesis 5.3 gives ideas for possible future

work based on this thesis, including items we would have liked to have done if time

allowed.



Chapter 2

Literature Review

2.1 Wavelets and Financial Series

In an economic system, there is a large number of participants all with decentralized

interactions and a wide range of different goals and ways to interact. These participants’

actions effect the whole system but they often make decisions based only on local (often

in time and space) information. And all the while the system as a whole is constantly

changing, as participants enter and leave the system and it reacts to external stimuli.

As such, it is unsurprising that a number of different tools of analysis and inference have

grown out of this field. One of the tools, wavelets and their associated filters certainly

do not solve all of economists’ problems. To quote directly from (Ramsey, 1999), page

2, talking about the ideal tool of economic analysis

Key issues to be considered by the putative analyst are robustness of

procedure to erroneous assumptions, flexibility of regression fit to deal with

imprecise model formulations, the ability to handle complex relationships,

efficiency of estimators to be able to make useful distinctions on a few data

points and simplicity of implementation. This, the econometrican’s Holy

Grail, may be impossible to achieve, but is nevertheless a worth while overall

objective

7
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2.1.1 Wavelet Properties

However, wavelets to provide a number of useful and interesting properties, especially

towards dealing with the third feature of Ramsey’s Holy Grail. We can identify three

key properties here:

• The ability to analyse non-stationary time series.

• Localisation in time

• Orthogonal time-scale decomposition of the data

Handling non-stationarity

The ability of wavelets to handle non-stationary processes comes from their fundamental

properties. As their name suggests, wavelets are waves with a finite support, with values

quickly returning to zero. (Gençay et al.) This means that as the descriptive statistics

of a time series change with time, different wavelets will change with them without being

influenced by the series’ earlier behavior.

Early work in this area started in biology, (von Sachs and MacGibbon, 1997), which was

an extension of an earlier paper (Johnstone and Silverman, 1997).

This ability is of obvious benefit to modelling and analyzing financial data, well known

to be non-stationary processes. The wavelet transform allows the meaningful extraction

of lower frequency events without undue influence of high frequency events that die

away quickly, and don’t effect the whole series. This is not a property of the Fourier

transform, for example.

Localisation in time

The finite support of wavelets also give the wavelets ability to express frequency infor-

mation localized in time. Non-stationary processes can feature events that appear for

only a certain length of time before dying away. Wavelet’s finite support allow that

event to be captured in the transform, as discussed above. However, in addition, the

wavelet retains some information as to when this event occurs.

No transform can give perfect resolution in time and frequency. (Hubbard) Wavelets

adapt the trade-off between time and frequency resolution, with greater time resolution
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as frequency increases. As these temporary events are more likely to be of a higher

frequency, wavelets manage this resolution trade-off well.

The ability to point to when events of certain frequency occur is a boon to economists.

It allows the identification of shocks and structural breaks in the system.

Time-scale decomposition

An important property is that wavelets of different frequencies do not affect each other.

Each time-frame or scale is isolated from the other. (Mallat, 1989) This allows a multi-

resolution analysis that separates a time series into different series, each explaining the

activity of the time series on different timescales. Wavelet transform allow these time

series to differ by a factor of two - one series explaining every day activity, another for

every 2nd day, every 4th day, every 8th day etc. These different timescales are referred

to as levels and/or scales in wavelet literature.

The multilevel view wavelets provide is important to economics is it allows work to

acknowledge what has long been known in the financial theory - that economic signals

are the summation of many different effects and events that operate on many different

levels.

The price of a stock is influenced both by the daily trading as well as so called “market

fundamentals”. Traders work on different levels as well, with day traders worried and

acting upon much different information then someone trading futures in commodity

markets. External stimuli to the economic system also operate on different time-scales:

compare the after effect of the Eyjafjallajökull to 9/11, or a long term civil war.

2.1.2 Applications of Wavelets in Finance

These properties of wavelets make them well suited to the area of finance, and many

papers have been published using and extending the techniques. Here we lay out three

of the largest areas of use of wavelets in economics.

De-noising

Wavelets allow de-noising, as opposed to noise smoothing. When dealing with noisy

signals, the oft simple formula used as a starting point is separating the observed signal

into the actual signal plus some added noise:
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yt = ft + εt (2.1)

Often, the unstated assumption here is that the signal, ft, is smooth, unlike the noise. So,

in order to extract the signal for the observed data some kind of smoothing procedure is

used. However, any smoothing will be counter-productive if the underlying signal itself

is not smooth, or contains discontinuities. Much economic data is considered of this

type.

What is required instead is de-noising. Here, the principal idea is to set some noise

threshold - variations in the data below this threshold are considered noise, while vari-

ations greater are the signal. With a wavelet transform, we can analyze the wavelet

coefficients, which show variation in data, to set this noise threshold, and shrink the

coefficient accordingly, removing the noise.

We can shrink the wavelet coefficients using one of several formula. Soft shrinkage:

δs(w) =

{
0 if |w| ≤ c
sgn(w)(|w| − c) if |w| > c

(2.2)

and hard shrinkage

δh(w) =

{
0 if |w| ≤ c
w if |w| > c

(2.3)

or Brieman’s Garrote (Breiman, 1995)

δs(w) =

{
0 if |w| ≤ c
w − c2

w if |w| > c
(2.4)

where c is the noise threshold, and w is the wavelet coefficient.

Much of the early work done here was done by these two papers (Donoho and Johnstone,

1998) and (Donoho and Johnstone, 1995) An additional benefit of wavelets is they allow

this process to work on different scales, with different thresholds set for different scales.

This is especially useful, as noise in markets is associated with high frequencies, so it

seems obvious the wavelet coefficients of the lower scales would contain more of the

noise. In fact, pragmatically, the first scale of wavelet coefficients are usually entirely

associated with noise.
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(a) Original signals, all of which display non-
smooth behavior. (a) Blocks, (b) Bumps, (c)
Heavsine and (d) Doppler

(b) Signals with added noise

(c) De-noised using wavelets (d) De-noised using spline smoothing

The benefits of this approach can be seen in the diagrams, taken from (Donoho et al.,

1995).

Seasonalities

As already mentioned, economics studies a system that operates on many timescales,

with different processes making different decisions based on different information inte-

grating with each other. The ability of wavelets to decompose the aggregate activity

that is the fluctuations of prices and stocks into different time-frames is of great use in

economics.

A common problem noted in the literature is how the presence of seasonalities can

obstruct basic analysis of a time series. This can be illustrated with a simple example.

We can simulate a very simple signal, yt = 0.95yt−1 + εt. We expect this function to
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have very high auto-correlation at low lags, while dropping off exponentially as the lag

increases. This is confirmed by the diagram below.

However, if we alter the equation to add in seasonalities, we lose this high auto -

correlation.

yt = 0.95yt−1 +

4∑
s=1

[
3sin

(2πt

Ps

)]
+ εt (2.5)

with P1 = 3, P2 = 4, P3 = 5 and P4 = 6. Instead, the auto-correlation function shows

peaks corresponding to multiples of 6.

Figure 2.1: The high auto-correlation present in the signal is lost with added sea-
sonalities. Wavelets can recover the signal to reveal the high auto-correlation once

again

Using wavelets, we can create a wavelet smooth (see 3.1.4 for further explanation, but

breifly a smooth is the time series constructed using only the lower frequencies i.e. higher

scales of a wavelet decomposition) With this wavelet smooth, we can remove these higher

frequency seasonalities, leaving just the fundamental signal again. With this approach,

the auto-correlation of the signal reappears, as the diagram above shows.



Literature Review 13

Decomposition

Another application of timescale decomposition is the ability to examine economic rela-

tionships across different timescales. (Ramsey and Lampart, 1997) were the first to take

this approach, and really set the example many following works, including this thesis,

followed.

The author studied two classic economic relationships in two papers:

• Permanent Income; the hypothesis that temporary fluctuations in income have

little to no effect on consumer spending behavior, but consumption is instead only

a function of permanent income.

• Velocity, the relationship between income and money in an economy.

For ease, we focus on the paper dealing with income and consumption here. This

relationship had been and still is to an extent the subject to major debate, with the

exact nature of the relationship uncharacterized.

(Ramsey and Lampart, 1997) proposed the use of wavelets as a means of gaining insight

to the relationship. The timescale decomposition would play a key role in the study of

this relationships, as it was already posited that the relationship might change depending

on the time frame involved in making the decision. Indeed, that was the original idea of

Friedman when he proposed permanent income.

The paper used monthly data from the years 1960-1994, and decomposed the signals

into six scales - five details and the resulting smooth. They then used Granger causality

tests to examine the relationship between the economic variables. (see 3.3 for details on

the Granger Causality test). Their final results are presented below.

Results Null Hypotheses
M1 6⇒ NP1 NP1 6⇒ M1

D6 (5 lags) feedback 0.000 0.000

D5 (20 lags) feedback 0.000 0.000

D4 (19 lags) M1 ⇒ NP1 0.000 0.695

D3 (17 lags) M1 ⇒ NP1 0.023 0.193

D2 (23 lags) M1 ⇒ NP1 0.000 0.293

D1 (14 lags) NP1 ⇒ M1 0.089 0.000

log diff. (12 lags) inconclusive 0.892 0.186

Table 2.1: Table showing the results of Granger Causality tests on different wavelet
levels. The values shown are probabilities of keeping the Null Hypotheses.
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Note here how the relationship changes for different timescales. At lowest frequencies,

there’s feedback between the two variables. The monthly relationship shows that NP

causes M, but for all other scales the relationship was reversed. Note that, without

wavelet decomposition the interactions among the differing relationship are lost, leaving

them unexaminable.

Ramsey also uncovered that the delay between money and income were functions of the

state of the system, not constant as previously assumed. This was a major breakthrough

in economics, showing that the timing of the purchase was as much an economic decision

as the purchase itself. (Ramsey and Lampart, 1997)

But (Ramsey and Lampart, 1997) is not the only example of this approach. In (Gençay

et al., 2001) and (Gençay et al.), the authors explore the relationship between money

growth and inflation as well as the money-income relation across several countries. It

confirmed the complexity of these relations which without multiresolution and timescale

decomposition remainded hidden. The relationship between money growth and inflation

differed in strength across timescales, and even flipped in causality in Japan for one

timescale.

Forecasting

Wavelets contribute two new approaches to economic forecasting, both based on the

technique of decomposing the signal to be predicted into separate timescales. The first,

outlined in the paper (Ario, 1996) and developed in (Schlter and Deuschle, 2010) fits a

regular ARIMA model to each time scale and forecasts each scale independently. The

overall signal is obtained by a summation of the different predicted values. (Ario, 1996)

used Spanish concrete production and car sales and obtained some promising results.

The second method also decomposes the signal, but instead uses neural networks on

each component to produce an overall forecast after recombining the components. The

approach was first outlined in (Aussem and Murtagh, 1997) and developed further in a

Master’s thesis in (Tan and Pedersen, 2009).

A criticism leveled towards wavelet based forecasting is there is a problem in gathering

enough data, especially for the lower frequency components. However, this is an issue

for any non-causal filter, and not limited to wavelets. While still a valid criticism, if

enough data is available, wavelet based approaches are yielding promising results.
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Identifying Structal Breaks

The final interesting application we look at here is the ability of wavelet transform to

identify structural breaks and shocks in a time series. This application works better

with a continuous wavelet transform, but can be used with a discrete transform as well.

This technique takes advantage of wavelets’ ability to model non-stationary processes.

A common event in non-stationary series, especially in financial data, is a shock to the

system, where a abnormally large positive or negative change occurs. Wavelets can

capture these data changes and identify them, sometimes with indications before the

events occur.

Below are two diagrams taken from (Setz, 2011). The first is an artificial series, deriva-

tion of Brownian motion with artificial jumps and shocks added to the system, each

shock bigger then the last. The second is the log returns of real financial data, the

Commodities Research Bureau index, with historical events overlaid. The highlighted

red areas are regions where the power of wavelet coefficients is significantly higher than

what we would expect if we model the time series as a one-lag auto-regressive model.

Figure 2.2: Derivation of Brownian motion with artificial jumps and shocks added to
the system, with the CWT shown below. Areas of statistically high value are shown.

As can been seen in both diagrams, times around jumps and shocks to the time series

have vertical bands of areas where the wavelet coefficients are higher then we would

expect, spanning several scales. Sometimes, this rise in power actually starts before the

jump, suggesting some sort of predictive power may be possible.
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Figure 2.3: CRB Index from 1904-2010 with the CWT shown below. Areas of statis-
tically high value are shown.

2.2 Sentiment Analysis

The area of sentiment analysis has a basic objective. Any text will contain more then

the objective facts it is trying to convey. There will also be emotions, sentiment, affect,

opinions. There is a reason another name for this field is opinion mining. While humans

can pick up on if a movie review is positive or negative, it is a still a task that gives

computers trouble. Sentiment analysis draws from several other fields to help solve

its problems, including natural language processing techniques and machine learning

classification tools.

Sentiment analysis has seen a boon in recent years, with the advance of the Internet age.

It is easy to see why. More and sentiment laden texts are available quickly and easily

to researchers. Social media, such as websites like Facebook or Twitter, provide short

snippets of sentiment heavy text. Blogs on everything from politics to media abound.

Consumer reviews for products and brands are becoming increasingly important.

Companies and politicians are also seeking access to information that only sentiment

analysis can provide. Companies would like to know if it is possible to extract more com-

plicated opinions about their products then the simple star rating systems. Politicians

would like to distill social media concerning them and their campaign into real-time

sentiment information, to allow them to react quickly to their public. In the age of big
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data as well, sentiment analysis could provide more metadata to allow quicker searching

through reviews or blogs or other kinds of data.

The field of sentiment analysis has responded and risen to these challenges, as discussed

below. However, sentiment analysis is far from a solved question, and there is still plenty

of work to be done in the area.

This section gives an overview of sentiment analysis and some of the techniques used,

with a focus on finding affect in text, before moving on to look at its numerous applica-

tions in the financial world.

2.2.1 Overview

The desire to automatically extract opinion or emotion have a text is not new. Early

work that could be considered sentiment analysis tried to interpret a wide a range of

topics including belief, metaphor, narrative, point of view and affect. (Hearst, 1992)

(Carbonell, 1979) (Huettner and Subasic, 2000) Since the year 2001 there has been an

accelerated output from the field, with literally hundreds of papers published since then.

(Pang and Lee, 2008)

The rise in the field has been put down to, as already mentioned, the emergence of the

internet and the new datasets it brings and the need of corporations and other entities

to deal intelligently with these new datasets, as well as the improvement of machine

learning and natural language processing methods.

Sentiment analysis is a mix of natural language processing techniques and machine learn-

ing classification. The main paradigm of opinion mining is trying to learn to classify

texts based how they are written and what they contain. Natural language processing

provides the features of the text, from as simple as word frequency to identifying gra-

dation of adjectives. (Wiebe et al., 2005) Machine learning techniques can then learn

which of of those features are useful to classify the text as containing certain emotions

or sentiment. (Melville et al., 2009)

While there are many aspects of sentiment analysis, we focus here in this review on

affect, mainly because that is the area used in this thesis. Affect has generally been

broken down into three categories: positive, negative and neutral, especially in earlier

work. (Turney, 2002) This is referred to as “sentiment polarity”. Sometimes this is even

simplified further, into simply detecting if a text had strong affect or was simply neutral.

(Wiebe et al., 2005)
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There are still challenges within the field. Much of the early work that has seen success

was focused on reviews of products or movies, because of the given score attached to

these types of text (the star ratings). However, this means sentiment analysis sometimes

finds it difficult to deal with more complex texts, which may express multiple sentiments,

even within one sentence.

Another problem is when a text has more then one topic it is expressing an opinion

on. An example sentence that would prove a challenge to earlier work in the field is

”Jurassic Park is great as a book, lousy as a movie.” Work is being done to improve

these issues, borrowing from linguistics to gain more insight into the structure of texts,

as well as the words used. (Argamon et al., 2007)

2.2.2 Outline of Techniques

As mentioned previously, sentiment analysis is often broken into two areas - natural

language processing methods to extract features from texts, before feeding those features

into machine learning algorithms to learn patterns of classification or regression. While

some have questioned the basic assumptions behind this breakdown (Argamon et al.,

2007) it has yielded much success. For this discussion we use that breakdown, first

looking at the natural language processing before moving on to the machine learning

techniques.

Natural Language Processing

Probably the simplest model used to present a text is the Bag of Words model, which

a simply a count of each of the individual terms used in the text. This representation

couples well with the General Inquirer method (Stone et al., 1966) where the bag of

words in compared with a pre-defined sentiment lexicon, counting terms associated with

positive or negative sentiment. This approach has seen success, for example in (Tetlock

et al., 2008)

A similar approach is a vector based representation, with each text represented as a

vector (w1, w2, ...wN ) where wi is a Boolean variable indicating if the associated term is

contained in the text. The set of terms W1 to WN could come from a pre-defined lexicon,

or could be a list of all words in the corpus. For example, “Alice said hello”, “Bob said

hi”, “Carol yelled hello”. There are 7 words in this corpus: Alice, said, hello, Bob, hi,

Carol and yelled. If this is the order of the words, then the vectors that correspond to

these three documents are (1, 1, 1, 0, 0, 0, 0), (0, 1, 0, 1, 1, 0, 0) and (0, 0, 1, 0, 0, 1, 1).
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Complementary methods to ensure results are not confused are important to these tech-

niques that use simply the terms used in the text. First, a distinction needs to be made

as to the grammatical use of a word. The terms cannot simply be treated as strings -

the noun ”good” has much less sentiment value then the corresponding adjective. Senti-

ment analysis borrows lexicographical methods to identify words and their grammatical

contexts.

The second technique is known as stemming. This reduces words back to their stems,

removing much ambiguity around term matching. For example, both “positive” and

“positively” would be reduced to “positv”. This reduces the labour required in defining

the lexicons, removing the onus to enter every possible derivative word, and catches

many sentiment laden words that might otherwise be missed. This complements the

grammatical knowledge from above, sorting words from the the same stem but different

uses into different terms.

Finally, usually stopping words which rarely have sentiment attached, such as ‘the’ or ‘a’

are removed from the text, to avoid the machine learning algorithms misappropriating

significance. This can happen simply because such words are so prevalent the they make

up a significant proportion of any document.

As already said, these approaches have seen success, but they are obviously simple

approaches. They remove all information about the structure of the texts, or the relation

between words. There have been proposed improvements to these methods, trying to

retain some of this information.

An easy improvement is to the vector model. Instead of simple Boolean variables in-

dicating a word’s presence or not in the text, this can be changed to total number of

terms, or text frequency (the number of times the term is used divided by the total

terms in the text).

The most complicated version of the vector representation used in the literature is the

term frequency-inverse document frequency (TFIDF). (Chakrabarti, 2002) This is a

product of two terms: the term frequency as described before, and the inverse docu-

ment frequency, the inverse of the number of documents the terms appears in. The

idea behind this metric is words that appear often in different texts are less important

to classification, and should have reduced importance. However, (Pang et al., 2002)

questions whether any real benefit is gained with this approach.
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Approaches that try to include some information on the structure include Parts of

Speech, (Turney, 2002) which includes phrases, semantic orientation of phrases us-

ing Pointwise Mutual Information between words and phrases (Turney, 2002) and a

cohesion-based approach (Fellbaum, 1998). This latter representation builds a graph of

the text, with terms as nodes and edges based on relationships borrowed from linguistics

and lexical cohesion (Halliday and Hasan, 1976).

Machine Learning

Once the features are created from the text, these features are used as input to machine

learning algorithms. The first step of pre-processing on the features can help improve

the results.

Natural language processing techniques, by their nature, output a lot of features; some-

times the numbers of different terms used in the corpus. Given enough features, this

high dimensionality problem not only makes machine learning process slower, but it is

more likely for the output to be random rather than meaningful patterns. So some sort

of feature selection is required.

One common criterion used for feature selection is information gain. Borrowing from

Shannon’s information theory, we can define the entropy of a system where we are trying

to classify texts as positive or negative as

H(D) = −pDlog(pD − (1− pD)log(1− pD) (2.6)

where D is the set of documents, pD is the probability of finding a random text of D

has positive sentiment. The entropy variesx between 0 and 1, as the probability of a

random text being classed positive increases.

We want to select features that gain a lot of information, reducing the entropy of our

set. Remaining with the information framework, we can define information gain as

IG(D,x) = H(D)− |D0|
|D|

H(D0)−
|D1|
|D|

H(D1) (2.7)

where x is a feature, D0 and D1 are two sets the feature splits the larger set D into. An

example of how this feature might split D is with the Boolean vector representation is

simply if x is 1 or 0. We can then choose features that maximize this measure of IG.
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With the features chosen, an array of machine learning algorithms can classify texts.

Support Vector Machines, K-Nearest Neighbours and Naive Bayes have all been used,

and are well suited to the binary classification problem. Supervised machine learning

algorithms have two stages - training, where they build the different models based on

subset of the data that have been humanly labeled; and testing, where the models are

evaluated with unlabeled (to the algorithm) data.

Naive Bayes classifies documents by estimating the joint probability of the words in a

text and the different categories. The naivety comes from the assumption that all words

are independent of each other. This assumption makes the calculation process much

quicker and more efficient. This model can be extended to beyond two categories of

positive and negative, and has been used for a broader range of emotion. Naive Bayes

has been used extensively for sentiment analysis. (Xia et al., 2011) (Melville et al., 2009)

Support Vector Machines (SVM) in their simple form can only handle the binary clas-

sification problem, but is one of the best performers in the field. The SVM creates

a decision plane separating the data into two classes. The algorithm creates a plane

between the “support vectors”, individual texts selected from the corpus. The support

vectors are chosen in such a way that the fewest data are is placed on the wrong side of

the plane i.e. misclassified and then the distance between the support vectors is max-

imised. Examples of the use of SVM in the field include (Xia et al., 2011) (Prabowo and

Thelwall, 2009). SVMs can be expanded to non-linear and multi-classification problems

using kernels, which has been tried in sentiment analysis. (Xu et al., 2011)

K-Nearest Neighbours (KNN) is an example of a system that does not define a explicit

model for each category. Instead, in simply applies a label to an unclassified text which

is the majority of the labels of a user specified K nearest of the texts from the training

set. “Nearest” is a flexible definition, but often the simple Euclidean distance is used,

combined with the vector representation from the NLP techniques. See (Tan and Zhang,

2008) for use of KNN in sentiment analysis.

There are of course a number of other machine learning methods, including unsupervised

learning which do not need human provided labels to build models of the data. As this

is not a review paper, we will not cover them all here, but this provides an insight to

the work of machine learning. Studies have been done comparing the different machine

learning methods, and these generally find SVM models come out on top (Tan and

Zhang, 2008) (Ye et al., 2009).
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Sentence Level Challenges

All the discussion so far has been focused on document based sentiment analysis, where

an entire body of text is given one classification, whether in the binary positive/neg-

ative or a more complicated classification structure. Inherent in this approach is the

assumption that the text only expresses one kind of sentiment or opinion about one

entity. While sometimes this assumption can be reasonable, even in something like a

product review it is often the case that multiple sentiments are being expressed about

the one entity. “X is great because of this, this and this. However, that and that could

be better.”

This gives rise to the need to break a text into smaller pieces, each of which is given a

separate classification. The pieces the text is broken into are usually sentences or clauses

of sentences. This new lens comes with its own challenges, the main one being that not

all sentences have a sentiment. While this is also true of documents, the objective

sentence (one without sentiment e.g. Ireland has a land mass of 84,421 km2) is much

more common and more difficult to identify.

Generally, the approach had been to use supervised machine learning to classify sentences

into objective and subjective, before further processing the subjective sentences into

positive/negative or more complicated classifications. This comes with a large amount

of man hours, as any decent sized corpus will have thousands of sentences that would

all need to be classified by a human.

Work has been done to try save that large about of labour, with (Riloff and Wiebe, 2003)

suggesting a bootstrapping approach to cut down the labeling required. (Pang and Lee,

2004) suggests using a minimum cut approach, with their underlying assumption being

that neighbouring sentences should tend to have the same labeling.

Once all the sentences are classified as objective or subjective, the focus then becomes

assigning sentiment labels. The approach here is much like the document based level,

with NLP providing features for machine learning algorithms to classify. Recent research

has suggested an interesting modification to this approach, where instead off applying

the same strategy to each sentence, instead the algorithm adapts to different sentence

types. (Narayanan et al., 2009)

Sentence based sentiment analysis can also easily provide a document level classification,

by simply assigning the document label the majority of the sentence labels (or average

if the classification is a regression).
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New Research

This is a broad field with many different aspects to the study. Two interesting pieces

of research are worth mentioning here to show the array of challenges being tackled.

(Jindal and Liu, 2006) is making ground on the study of comparative sentiment. A very

common sentiment expressed in reviews is comparing the subject of review to one or

more products of a similar type. This paper found using a list of comparative words

following a simple rule set, they were able to extract 98% of comparative opinions. The

list included only comparative adverbs (more, less, words ending in ‘er’), superlative

adjectives and adverbs (most, least, words ending with ‘est’ and nine other phrases,

including ‘exceed’ and ‘prefer’).

Another topic of research is mining for opinions on aspects of a main topic of sentiment.

Reviewers often express opinions on different aspects of a product, not just the product

itself. The main difficulty in Aspect-based sentiment analysis, as it is known, is identi-

fying all the different aspects referred to by the review. One approach is to identify all

noun phrases (borrowed from linguistics) and keep all that appear in the text above a cer-

tain defined frequency are kept as aspects (Popescu and Etzioni, 2005). An alternative

approach is to keep noun phrases used in conjunction with certain known sentimental

phrases. These phrases would have to be identified with a phrase dependency parser

(Wu et al., 2009).

2.2.3 Sentiment in Finance

Attempting to incorporate the information provided by financial news into models of

those same financial systems that news is reporting on has a long history. (Niederhoffer,

1971) analysed twenty years of New York Times headlines, classified by him into nineteen

different categories to try see how markets reacted to good or bad news. His main finding

was that markets do react to news, but bad news seemed to have a more pronounced

and long term effect than good.

The advance of computers saw more work in this area. Without sentiment analysis at

a stage where it could provide meaningful evaluations of sentiment in financial news,

studies used proxies instead. The proxies had to be easily quantifiable aspects of the

news, and included news arrival, type, provenance and volume (Cutler et al., 1989)

(Mitchell and Mulherin, 1994).
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Some even turned to market based proxies to emulate news: (Engle et al., 1993) used

abnormal stock returns (as defined using a Fama-French model) instead of news, and

studied the impact of these abnormal events. Indeed, this proxy influenced this industry,

and even newer research focusing on this aspect of the market e.g. (Tetlock et al.,

2008) following the number of abnormal returns following news stories, or (Azar, 2009)

reversing the direction of information, using abnormal returns to classify financial news

rather then assigning human labels.

With the advance of sentimental analysis, this work continued, seamlessly incorporating

actual news sentiment now that it could be quantified. There were two, slightly different

approaches using the new methods. Some worked with whole classified texts, labeling

news stories as negative or positive and looking at how markets reacted to a number of

news articles. The alternative is to work with summation of total negative or positive

features used in the news articles.

This area of research has grown in tandem with the advance of sentiment analysis.

(Tetlock et al., 2008) is an oft cited paper in this area. It worked with both classified

news articles and the number of sentiment terms used in the news. It had only two

sources of news - the Dow Jones News Service and the Wall Street Journal over a period

from 1984 to 2004. It used the General Inquirer method to count the number of negative

and positive terms, as well as a self defined lexicon of words associated with a firm’s

fundamentals. The paper used both the term frequency and the z-score of sentiment

terms as input to their models.

The paper studied the reaction of two market variables: abnormal returns and standard-

ized analyst forecast error. It used simple regression models to examine how a firm’s

stock reacted to the values extracted by sentiment analysis. They also modeled the

firm’s behavior just prior to and just after the release of negatively or positively labelled

news stories. They focused on the cumulative abnormal returns as proxies for a firm’s

behavior. See the diagram below.

The paper’s main finding was that a firm’s stock did react badly to frequency of negative

terms used in firm-specific news stories, even more so when those news stories the stories

had a high frequency of firm fundamental terms.

Another paper (Oh and Sheng, 2011) turned to the mircoblogging site StockTwits to

see if firm performance could be modeled using tweets with the firm’s stock ticker. This

paper not only studied returns on a firm’s stock, but also market adjusted returns,

to compensate for whole market movements. This avoids the misjudgment where a

particular firm’s stock overall sees negative returns after positive mentions on Twitter,
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Figure 2.4: A graph showing a firms abnormal event returns from 10 trading days
preceding a news storys release to 10 trading days following its release. All news stories
focus on S&P 500 firms and come from either Dow Jones News Service (DJNS) or The
Wall Street Journal(WSJ). Also shown is the difference between the reaction to positive

and negative news stories for each source. From (Tetlock et al., 2008)

but this return was due to a overall negative movement of the market. The adjusted

returns simply compare the behaviour of a firm’s stock to the market as a whole, rather

than in isolation.

The reason for choosing mircoblogs is succinctness, allowing for easy sentiment analysis;

high volume, giving confidence in statistics like average negative term frequency; and the

real time aspect of the information. The paper fitted two models - one based simply on

the volume of tweets, and another with sentiment information added. The sentiment was

slightly different from positive/negative, instead classifying tweets as bullish or bearish.

The paper found that volume of tweets alone was good enough to give predictive power

of markets adjusted returns, but including sentiment data increased the accuracy, and

could include unadjusted returns as well. Furthermore, they found that tweets with

bearish sentiment had more predictive accuracy that bullish tweets, reflecting somewhat

the result from (Tetlock et al., 2008) that negative sentiment played a larger role in the

models.
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A interesting alternative approach is studied in the thesis by (Azar, 2009) Perhaps

because the main goal was to train models to classify other types of texts, this thesis

reversed the direction of information gain. Instead of using sentiment of financial news to

help model financial data, they use abnormal returns to provide labels to news articles.

Articles published on days of abnormal negative returns are labelled as negative, and

similarly for positive.

The paper then uses the previously discussed NLP and machine learning techniques

to learn classifiers for texts. While the paper failed in its goal of using these models

to classify movie reviews, they also implemented a hypothetical stock buying strategy.

Training on only articles from the previous year, the trading strategy was if a news

article came out about firm i, it would buy or short that firm’s stock if the news was

positive or negative respectively. 2.5 shows the results of this strategy, showing several

of the classification mehtods making positive returns.

Figure 2.5: Mean returns for different classifiers using the strategy outlined. From
(Azar, 2009)
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2.3 Possible Mechanisms

2.3.1 Efficient Market Hypothesis

If a trader reads in the Financial Times a news article favourable towards a certain firm,

this will raise his evaluation of the firm’s stock. They will quickly try to buy its stock,

in expectation of a rise in the current price to his new greater evaluation of the firm.

However, sellers of the stock presumably also read the Financial Times, and have also

seen this favourable article. As they and the trader are rational actors, their evaluations

will agree, and the trader will be forced to buy at this higher price.

There is a body of economic theory that delineates the above intuitive grasp of how fi-

nancial news interacts and influences markets. The Efficient Market Hypothesis (EMH)

states that the price of any stock or commodity immediately reflects all available infor-

mation. In a world of rational buyers and sellers with perfect information, there is no

way to “beat the market” and make a greater return then the market overall.

There are three versions of the EMH: weak, semi-strong and strong.

The weak form states that no profit can be made by looking at transaction information

- previous prices, volume levels etc. If true, it negates the possibility of finding patterns

in past prices and asking bids. It makes no allowances for information from outside the

market.

The semi-strong version takes a harder line, stating that any public information, past or

current, is already summarized by the current price. It might still be possible to make

money with private information, but this kind of information is either expensive and/or

illegal to obtain, due to insider trading laws.

The strong version states that it is impossible to make a profit greater then the market

as a whole no matter what information one holds. This is because, despite laws to the

contrary, insider trading takes place anyway, and the market price changes to reflect this

trading.

2.3.2 Fischer Noise

Of course, the real world is not as simple as EMF supposes. There are all sorts of

complications to the underlying assumptions to EMF. An asymmetry of information,

even if it is public, irrational traders and imperfect communication all cut against EMF.
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In addition, there is also basic noise in the market. (Black, 1986) is probably still the

best work on noise in financial markets. Fischer identified several sources of noise -

future tastes and technology down to traders following their gut instead of rational.

Noise makes it possible to make profit in trading on the market, but also makes it difficult

to take advantage of inefficiencies and make that profit at all. When working in the real

world, traders still react to financial news, but their evaluations will not always agree

or be totally rational. Sentiment in financial news is fundamentally about uninformed

people trying to make sense of the noise in the market.

Traders can over or under react to news, or have a delayed reaction once confirma-

tion from another source comes in. See the different reactions to good and bad news

(Niederhoffer, 1971). The sentiment is not always rational either - journalists are no

better then traders when it comes to rationality. The interaction of sentiment, which

may or may not be rational, with traders, of equally questionable rationality, can have

profound effect.

A common approach is to split traders into informed traders and noise traders. Informed

traders (De Long et al., 1990) know the true value of a good or firm, and they make

profit from irrational mispricing of stock or goods by the noise traders (Koski et al.,

2004). Of course, noise prevents one from knowing which trader is which with certainty.

Noise traders do not necessarily lose on their trades in the short-term, nor do informed

traders necessarily win. (Black, 1986)

Sometimes noise traders can have such an influence on the market that is overpowers

the checking nature of the informed traders, and the irrational strategies can make short

term profit. This over or undervaluing of the market cannot be sustained however, and

the bubble eventually pops. One of the ways this state of affairs can come about is

discussed in the next section.

2.3.3 Herd Behaviour

The term ‘Herding’ used in the context of in financial markets means following the crowd

with your investment decisions. A trader has been influenced by the herd if they make

an investment they otherwise would not have made upon hearing a number of other

traders have made that investment, or visa versa. Herd behaviour is inherent bias that

has been studied in behavioural psychology. (Asch, 1956) It is often of major benefit to

us outside the financial world. If everyone you encounter does not do a certain activity,

it is probably not a good idea to engage in such. Following the crowd also has a social



Literature Review 29

aspect, as resisting group opinion can create tension and lead to isolation of the rebelling

individual.

Where sentiment starts to play a role is providing the initial push to get a herd going.

In market equilibrium, noise traders’ over-optimism/pessimism is kept in check by the

informed traders. However, if a particularly damning or laudatory article, or series

of articles, is published that does not reflect reality, it can change behaviour. If this

convinces enough noise traders to move in one direction, informed trader will start to

doubt themselves, wanting to follow the crowd. If enough people follow, it can create a

bubble, and short term gains soon turn into a long term crash.

2.3.4 Feedback

There is the possibility that the relationship discovered will not be one way between

sentiment and market prices, but instead see some feedback. As much as financial news

contains information, objective and subjective, to form opinions and trading strategies,

financial articles also contain sentiment trying to make sense of the market noise. This

can be as simple as a news report on the bad showing of a firm’s stock in the past

week/quarter. Journalists are also subject to herding mentality, where a rational jour-

nalist changes the sentiment in their article to match how the crowd of their peers are

writing.



Chapter 3

Method

3.1 Decomposition Analysis

Wavelets and the wavelet transform were first developed for geophysical applications

(Goupillaud et al., 1984) but have since found a wide array of applications in vari-

ous fields, including finance, geology, atmospheric science and the study of turbulence

(Gençay et al.).

This section will give an overview of wavelet theory and the mathematics behind the vari-

ous transformations and techniques, in addition to providing some of the most prominent

applications. It borrows from (Gençay et al.), while (Burrus et al.) was also useful.

3.1.1 Time and Frequency Resolution

When processing signals, typically the raw signal is some time series - voltage across

a component, stock prices or a speech signal are typical examples. It is well known

that extra useful information about that signal relating to its frequency components

are available through it Fourier transform. The Fourier transform gives the frequency

representation of a time signal, exploiting the fact that any signal can be represented as

a sum of different sine and cosine waves.

The choice of basis functions for the Fourier transform (sine and cosine) give a complete

resolution in frequency as they have a value across all times. This makes the Fourier

transform ideal for representing stationary time series. The unchanging repetitive signals

can be easily represented with a small number of frequency components.

30
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Figure 3.1: The original time series of price data on the right, with the Fourier
transform on the left. The Fourier transform captures the large drop in price in 2001

in the high frequency component, but gives no indication when it occurs.

However, many real world signals are not stationary, including two of the examples given

above, speech recordings or stock prices. These real world signals contain events and

parts that are localized in time - they appear, influence the signal and die away again.

Or even more fundamentally, there is no “underlying” signal, but the signal is made up

of a series of smaller (in time) signals e.g. speech.

With the Fourier transform, these extremely time-localized signals have an influence

on the entire Fourier transform. Indeed, these events are difficult to capture with a

Fourier transform, requiring a combination of a large amount of sines and cosines to

be expressed. It can be the case that these signals drown out the underlying signal (if

present) in the Fourier plot, obscuring analysis.

Another drawback of the Fourier transform is thet for prefect frequency resolution it

must give up time resolution entirely. A high-frequency time-localized part of the signal

will be captured by the transform, but no indication can be given was to when in time

that high-frequency component occurred.

These drawbacks were well known in academia, and various attempts were made to

overcome them, including the Short-Time Fourier Transform (STFT) (Gabor, 1946) This

technique involves taking a sliding window across a time series, and only applying the

Fourier transform to the part of the signal that falls within the window. An immediately

obvious drawback is this will fail to capture events that appear within the width of the

window. However, the technique does still provide extra information then usin just the

Fourier transform, and continues to be used today, for example in speech processing.

(McAulay and Quatieri, 1986)
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Wavelet transform goes some way to solving these problems. The wavelet transform

adapts the trade-off between time and frequency resolution depending on the frequency.

Lower frequency events can be resolved with less time resolution, and vice versa for high

frequency events. This is what makes wavelets well suited to studying economic signals

- the high frequency events are highly localized in time, and are captured by the wavelet

transform with their times intact, thanks to the high resolution in time. The diagram

below gives a good summary of how different transforms deal with time and frequency

resolution trade-off.

Figure 3.2: Diagram taken from (Gençay et al.) showing the difference resolutions in
time and frequency for different transforms.

3.1.2 Wavelets

The underpinnings of the wavelet transform and all associated techniques are the wavelets

themselves. There are many different kinds of wavelets, but they all obey a basic rule,

called the admissibility rule:
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Cψ =

∫ ∞
0

|Ψ(f)|
f

df <∞ (3.1)

where Ψ(f), a function of frequency f , is the Fourier transform of the wavelet, ψ(t).

Fulfilling this condition ensures that the integral of the wavelet across all time must

equal zero and the wavelet has unit energy. In effect, the wavelet must have non-zero

values but positive values are cancelled out by negative values. Wavelets do not have

full support across time, but are instead localized.

ψ(t) is often called the mother wavelet and all wavelets used in the transform are scaled

and/or time-translated versions of this mother wavelet, as explained in the following

section. Below is a diagram outlining some commonly used mother wavelets.

The different wavelets have different properties and typical uses but, as discussed in

(Ramsey and Lampart, 1997) and (Michis, 2011), the choice of wavelet has little impact

on the type of application used in this thesis, so long as the wavelet is relatively smooth.

As such, we will not go into that topic here, but (Gençay et al.) has an interesting

discussion on the subject. For this work we used Coiflet (5), Daubechies (4) and the

Mexican Hat, with the choice having no influence on the results. The results presented

in Chapter 4 are from the work using Coiflet (5).

Figure 3.3: Different types of wavelets
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3.1.3 Transforms

Continuous Wavelet Transform

The actual wavelet transform itself is a projection of the signal x(t) through the wavelet

ψ. The equation

W (u, s) =

∫ ∞
−∞

x(t)ψu,s(t)dt (3.2)

gives that projection. This is the Continuous Wavelet Transform (CWT). ψu,s(t) is the

transformed version of the mother wavelet, given by

ψu,s(t) =
1√
s
ψ
( t− u

s

)
(3.3)

Note how the transform is a function of two variables, u and s. u is obviously related

to time - it translates the wavelet by u along the time scale. s is referred to as the

scale of the wavelet, and it is the part of the transform related to frequency. Scale is

inversely related to frequency - at larger scales, the wavelet it dilated by a factor of s,

expanding its range. This wider range allows the capture of lower frequency events. The

wavelet adaptation with scale is what gives the transform its varying time and frequency

resolution.

Below is a visualization of how the wavelet is scaled and shifted when used for the

transform.

Discrete Wavelet Transform

In theory, the CWT has a value for every combination of u and s, though of course

any computer based implementation is going to be discrete at some level of granularity.

However, CWT contains a lot of redundant information for signal representation. The

signal can be fully reconstructed using only a sample of the information contained in

the CWT. Much like the Discrete Fourier Transform, the Discrete Wavelet Transform

(DWT) can be thought of as removing much of the redundant information by a sampling

of the CWT.
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Figure 3.4: A wavelet dilated and shifted with respect to the time series to be trans-
formed

A critical sampling (one that still allows a prefect reconstruction of the signal with a

minimum number of coefficients) is obtained by sampling at s = 2j and u = k2−j where

j and k and integers representing the set of discrete dilations and translations. 1

Of course, the actual implementation of DWT does not involve sampling the CWT -

that would negate the computational savings made. The DWT is very similar to the

implementation of the CWT however, so it is explained only briefly here.

Again our basis is the wavelets themselves. The DWT uses discrete versions of wavelets,

which must follow similar discrete versions of the wavelets used in CWT. Namely the

wavelet must sum to zero

L−1∑
n=0

h[n] = 0 (3.4)

1It should be pointed out here that this is not the only choice of critical sampling, but the one most
often used.
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Figure 3.5: Diagram taken from (Gençay et al.) showing the critical sampling of the
time frequency plane, taking the minimum number of points to allow the signal to be

perfectly reconstructed

and have unit energy

L−1∑
n=0

h[n]2 = 1 (3.5)

In addition to these conditions, discrete wavelets must be orthogonal to its even shifts

i.e.

L−1∑
l=0

h[n]h[n+ 2l] = 0 for all nonzero integers l (3.6)

These conditions ensure that the wavelet coefficients obtained from the DWT are or-

thogonal to each other. The DWT is then, like the CWT, obtained by projecting the

signal through different dilations and transposes of the mother wavelet. However, in the

discrete case, this projection is much more easily expressed as convolutions.

Think of the wavelet as a filter. When convolved with the signal for different ks, we

filter out all parts of the signal with frequency higher then our scale 2−j .

yhigh,j [k] =
∑
n

x[n]h[2k − n] (3.7)
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Our wavelet is, in effect, a high-pass filter. This wavelet filter gives the wavelet coef-

ficients for the level j. A natural complement to a high pass filter is a low-pass filter,

called in this context the scaling filter, g[n]. The signal convolved with the scaling filter

ylow,j [k] =
∑
n

x[n]g[2k − n] (3.8)

gives the signal with those higher frequency components removed from the signal.

The process can now be repeated on the resulting ylow,j [k] to extract yhigh,j+1[k] and

ylow,j+1[k] i.e. the wavelet coefficients for level j + 1. Before subsequent filtering, the

signal is sub-sampled. This is the process that changes the scale - the wavelet and scaling

filters themselves are unchanged. This sub-sampling retains the desired orthogonality.

Note how this is direct contrast to the MODWT, discussed below. ylow,j [k] This process

is repeated for as many levels as required. The figure below helps visualize this process.

As the level increases, the coefficients are being calculated on lower frequency data i.e.

longer in time. This means, for a given signal x[n], the higher levels will have less data to

sample from, simply because the wavelet is becoming larger with the scale. This directly

leads to less coefficients on each level. If we follow the critical sampling suggested above,

the number of coefficients halve with each increase in level, as our scale is doubling.

Note the result of our process is J+1 vectors of coefficients, where J is the total number

of levels specified by the user. These vectors can be gathered into one length N vector

w = [w1, w2...wJ , vJ ] where wj is the vector of coefficients at level j, and vJ is the result

of the final scaling filter, and is equal to the averages of the signal at a scale 2J .

Maximum Overlap DWT

The DWT gives up a number of desirable features to retain orthogonality. DWT cannot

handle time series of arbitrary length N, but instead must be some multiple of 2J . DWT

coefficients also have an odd relationship in time with the original time series - events in

the original time series may not exactly align with events in the multiresolution details

(see 3.1.5) and the DWT is not invariant to time shifts or circular-shifting of the original

time series. (Gençay et al.)

To get around these problems, the Maximum Overlap Discrete Wavelet Transform

(MODWT) gives up orthogonality by dilating the wavelet and scaling filtering instead of

sub-sampling the signal at each step. In MODWT, hj [n] = h[n]/2j and gj [n] = g[n]/2j

where h[n] and g[n] are analogous to the mother wavelets used in CWT.
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Figure 3.6: Diagram taken from (Polikar, 1999) showing filter implementation of the
DWT

The flexibility of MODWT means it is the most widely used of the wavelet transforms,

and is the transform used in this thesis. Care must be taken when making inferences

based on the transform, due to the lack of orthogonality. See 3.1.5 for details.

3.1.4 Wavelet Details

An important extension to the DWT and the MODWT is an additive decomposition

of the original time series. Using the wavelet coefficients, J different signals can be

constructed, each the same length of the original times series.

These vectors are called wavelets details, dj and are constructed via the following for-

mula:
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dj [n] =
∑
k

wj [n]hj [2k − n] (3.9)

where dj is the wavelet detail associated with level j and corresponding scale, s. As

can be seen by the formula, the details are simply linear combinations of the scaled and

translated wavelet. The final detail, dJ+1 uses vJ , the result of the final scaling filter.

These details can be linearly combined to reconstruct the original signal. We can define

the signal as

x[n] =
J+1∑
j=1

dj [n] (3.10)

These details are the isolated activity of the original signal on the particular scale, 2j .

Analogously, we can define a wavelet smooth, sj which is the cumulative sum for the

wavelet details from j+1 to J+1. As j increases, the smooth loses more of the higher

frequency activity, and becomes smoother as a result. sJ is the representation of the

lowest frequency activity in the original signal.

3.1.5 Multiresolution Analysis

Multiresolution Analysis is use of these details to view the signal decomposed over differ-

ent scales. Since the different scales correspond to different timescales, the details allow

analysis to be focusing only on events of a particular frequency, without the influence of

other events.

This isolation of particular frequencies is of great practical use in many fields, particularly

economics and finance, but also areas like image and audio processing. After the first

paper on the subject (Mallat, 1989), multiresolution analysis saw an immediate adoption

by the financial industry. See 2.1 for more details.

The reason the multilevel view wavelets provide is important to economics is it allows

work to acknowledge what has long been known in financial theory - that economics

signals are the summation of many different effects and events that operate on many

different levels. The price of a stock is influenced both by the daily trading as well as

so called “market fundamentals”.

Multiresolution analysis allows the analysis of one without having to consider the other.
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Figure 3.7: Example of details and smooth obtained from a 5 level DWT of returns
of Oil sport prices

3.1.6 Analysis of Variance

With any transform, care must be taken with the assumptions made and their foreseeable

implications. As discussed before, the main difference between DWT and MODWT is

that DWT retains orthogonality at the expense of flexibility in dealing with signals

of different sizes and invariance to time shifts. This difference has implications when

considering the variance of the details obtained using the two methods.

In DWT, orthogonality is retained, as already stated. This means that energy is pre-

served by the transformation i.e. ‖x‖2 = ‖w‖2. This is easily proven below.

‖x‖2 = xTx = (Ww)TWw = wTW TWw = wTw = ‖w‖2 (3.11)

where W is DWT represented in matrix form. (see (Burrus et al.) for details on this

matrix representation). This is precisely the orthogonality of the transform that allows

the substitution of the identity matrix for W TW .

This relationship carries over to the details, allowing us to decompose the energy of the

signal across the different levels like so:
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‖x‖2 =
J∑
j=1

‖dj‖2 + ‖sJ‖2 (3.12)

Since variance is proportional to energy, this result indicates variance of each detail

accurately represents the proportion of the overall variance attributable to the level of

events making up the signal.

Sadly, this relationship does not carry over to the MODWT. To distinguish from the

DWT, allow the vector of wavelet coefficients obtained by the MODWT to be represented

as w̃, with details and smooths using similar notation, d̃ and s̃.

(Percival and Mofjeld, 1997) showed that in fact the first relationship still holds - energy

is retained across wavelet coefficients i.e.

‖x‖2 =

J∑
j=1

‖w̃j‖2 + ‖ṽJ‖2 (3.13)

but the second relationship, the decomposition of energy across wavelets does not. This

is because a relationship exploited in DWT, ‖dj‖2 = ‖W Tw‖2 = wTWW Tw no longer

holds. In fact, (Percival and Walden) shows that ‖dj‖2 ≤ ‖wj‖2. As such, when report-

ing variances of different levels, care must be taken to report the variances of MODWT

coefficients, not the details. All reported variances in this thesis naturally come from

the coefficients.

3.1.7 Thesis Implementation

All work with wavelets done with this thesis was implemented in Matlab 2013a using the

Wavelet package. No code was written - instead the work was done using the package’s

implemented GUI. As such there is no source code in the Appendix.

3.2 Sentiment Analysis

3.2.1 General Inquirer Method

The natural language processing (NLP) technique used by this thesis is the General

Inquirer method, developed by (Stone et al., 1966). This method translates the text
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into a Bag of Words format, where the number of each word is simply counted, all

relational information removed. The sentence “Billy saw the nicest green field in the

world” will look like the following in Bag of Words format: Billy:1, field:1, green:1, in:1,

nicest:1, saw:1, the:2, world:1.

While Bag of Words does remove the relation information from the sentence, it can be

made more complicated to retain certain information of the grammatical context. The

sentence “Billy saw a saw” would count the verb ‘saw’ as different from the noun.

General Inquirer method takes Bag of Words format and compares it to human defined

dictionaries of words that have been associated with certain categories. (Stone et al.,

1966) defines two lists of words for the most common results of affect in sentiment

analysis: 1915 words for Positive and 2291 words for Negative. There are many more

than two defined dictionaries, and as we will see later in section 3.2.3, local user defined

dictionaries are in use.

The General Inquirer method simply gives the number of times a term in the dictionary

appears in the text. Modifications used by Rocksteady, the NLP system used by this

thesis, improve the approach, but this is the bedrock of our sentiment analysis.

3.2.2 Curating the Data

We need a source of data to perform sentiment on. This thesis used the news aggregater

LexisNexis. LexisNexis has access to a large number of online newspaper archives and

news blogs from around the world. It allows users to define search terms to appear

in different parts of the text, define which news sources to consider and across which

timelines.

We included only the terms ”Crude Oil” within the headline or opening three paragraphs.

This was our only criteria to ensure the news articles had some relevance to crude oil

spot prices (see 4.1) We wanted this criterion to remain broad however, as we theorized

the kind of news that would impact on oil prices would be a broader then directly related

news with ‘Oil’ in the title.

We also limited the timeline of news from Jan 2000 to Feb 2014, during which we could

remain confident of online news’ reliability and coverage.

We limited our search to three main news sources: The New York Times, The Wall

Street Journal and the Financial Times. These are three extremely well respected news

institutions, known to be followed by Wall Street and beyond, with a worldwide coverage.

http://www.lexisnexis.com/
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The reason we limited to just these three sources was because of data constraints. Lex-

isNexis only grants ordinary users the use of a search that yields less than 3000 results,

and then only download 500 at a time. Even with only three sources, with our time-

line ranging from 2000 to 2014 our search yielded 35397 articles, and took two days to

download in 500 article size blocks.

A key part of dealing with news data is removing reprints. Articles and pieces can be

reprinted for a number of reasons: the paper’s need to correct or update details, the

story original comes from another source or one story developing live through the day

may re-publish extended older articles as “new”.

Thankfully, LexisNexis provides an option to check for similarity between different arti-

cles, and automatically removed duplicates. The setting chosen when obtaining this data

was to remove articles of ”High Similarity”, to avoid the algorithm being too general.

The similarity scores between two articles is based on the number of word changes to

make two articles exactly the same, so this algorithm should not impact on our sentiment

analysis.

3.2.3 Rocksteady

Rocksteady is a affect analysis system developed here at Trinity College, Dublin, Ireland.

(Ahmad et al., 2011) Rocksteady uses a General Inquirer Method, with some modifi-

cations to add robustness. The system can interact directly with a LexisNexis corpus,

parsing the database for meta-data and the actual text.

The first thing LexisNexis can do is to drop articles based on certain criteria. Articles

below a given length can be removed, as well as articles with fewer than a certain number

of dictionary terms in the text i.e. the text is overall neutral. This work dropped articles

with fewer then twenty total terms or five Positive, Negative or Crude Oil (see below)

terms total, as suggested by (Tetlock et al., 2008)

The second pre-processing step Rocksteady takes after this basic sanitation is aggregate

all the articles into a chosen time-frame, ranging from hourly to yearly. This thesis used

daily data, to align with the daily data obtained for oil prices.

Finally, Rocksteady generalizes the dictionaries to included derived words. For example,

if “bad” is in the dictionary, Rocksteady will add “badly” if the word is not already

there. The grammatical knowledge the dictionary provides makes this task relatively
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easy. This process ensures Rocksteady captures many of the negative or positive terms

that it might otherwise have missed.

Rocksteady then calculates the number of total terms appearing in any one day (in our

case) as defined by our dictionaries. We used three dictionaries: (Stone et al., 1966)

Positive and Negative dictionaries, as well as a locally defined Crude Oil dictionary.

This latter dictionary was used simply to confirm out articles were indeed relevant to

our chosen market.

Rocksteady then calculates the percentage of total terms of the dictionary-defined terms

for each day, and finally the z-score for each dictionary i.e. p = P−µP
σP

where P is the

total number of positive terms used in a day, µP is the mean of P and σP is the standard

deviation of P.

(Tetlock et al., 2008) uses z-scores in their analysis, but this thesis uses percentages.

While it may by a topic of future work to use the z-scores, we felt there was a danger

in trying to model sentiment as a Gaussian function. Sentiment reacts to real world

shocks and unexpected events, and trying to model such as Gaussian have proved futile

in the past. (Taleb) We expect sentiment to fluctuate widely, rendering the z-score a

misleading statistic.

3.2.4 Final Pre-processing

The final pre-processing required was to take the output of Rocksteady and remove

sentiment data for the dates for which no oil prices exist because the market was closed.

While editing the data somewhat, this was felt to be a better solution to inserting values

into the oil prices when the market was closed. While Rocksteady does add data from

after the market closes to the data for the following day, it cannot take into account

Bank Holidays or other miscellaneous market closures.

3.3 VAR Model

With these two types of data, the returns on oil prices and the negative terms from the

associated sentiment analysis, there is now a need for a model to test the basic question

of the thesis - what is the relationship between the two time series. The model chosen

here is the vector autoregression (VAR) model, a commonly used model in econometrics,

as it conforms well to the theory of economic variables.
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An assumption often made in economic analysis is past values of an economic variable

contain information for modelling the current (and future) values of that variable. This

assumption comes both from experience and theoretically based on variable’s autocor-

relation with trends and seasonalities.

This view can be expressed as

ŷt = f(yt−1, yt−2, ...yt−ρ) (3.14)

where yt is the value of some variable at time t, and ŷt is our estimate of the variable at

time t. A univariate time series analysis could propose an autoregression model, which

uses a linear function for f(.)

yt = c+ α1yt−1 + α2yt−2 + . . .+ αρyt−ρ + et (3.15)

where et is the model error, ŷt − yt. We can write this more succinctly as

yt = c+

ρ∑
j=1

αjyt−j + et (3.16)

(Sims, 1980) expanded this model into a multivariate system. With K economic vari-

ables, yk, each could be explained as linear combinations of the past values (or lagged

versions, as they are often called in terms of VAR models) of itself and all the other

variables under consideration. That is, any variable yk could be modeled as

yk,t = ck +

ρ∑
j=1

αk1,jy1,t−j +

ρ∑
j=1

αk2,jy2,t−j + . . .+

ρ∑
j=1

αkK,jyK,t−j + ek,t (3.17)

which, again, can be expressed more succinctly as

yk,t = ck +

K∑
i=1

ρ∑
j=1

αki,jyi,t−j + ek,t (3.18)

This representation lends itself to vector and matrix notation. Since it will also help

explain hope to solve for the regression coefficients later, we will rewrite the last equation

in matrix form. We gather the values of all K economic variables at time t into a
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vector, yt, and similarly for all constants and error terms: c = (c1, . . . , cK) and et =

(e1,t, . . . , eK,t). Then, if we collect all the regression coefficients αk, j into a matrix

Aj =


α11,j · · · α1K,j

...
. . .

...

αK1,j · · · αKK,j

 (3.19)

we can rewrite the VAR model as

yt = c+

ρ∑
j=1

Ajyt−j + et (3.20)

This paper’s motivation was dealing with what it termed “incredible” identification prob-

lems with autoregression and structural models. It seems obvious that in the economic

system, different variables interact and contain information about each other. However,

autoregressive models ignore other variables, instead using only past values of itself

to model any variable. VAR models are an attempt to incorporate those interactions

between variables within models.

VAR models also provide an additional benefit of describing those inter-variable rela-

tionships. With the discovered regression coefficients, economists can describe whether

the correlation between variables is positive or negative, and a sense of the multiplica-

tive factor. And, providing our data fits our assumptions, we can perform standard

statistical tests to see the significance of these relationships.

3.3.1 Assumptions

As with any model, there are certain underlying assumptions behind VAR models. The

basic assumptions are that the data is stationary and normal. These assumptions ensure

our models are well built and that our tests for significance are sane.

The error terms give us an easy way to check if the variables conform to these assump-

tions. They should have the following properties:

• E(et) = 0 - all error terms should have zero mean

• E(et, et − k) = 0 for any non-zero k - There is no serial correlation for any of the

error terms
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• E(ek,tei,t) = Ω - the contemporaneous covariance matrix is positive semi-definite.

This last property can be changed to equal zero with an adjustment to the VAR model

- see Recursive VAR models below.

This is why we work with the log returns of the oil prices instead of the prices themselves.

Like most economic variables, the straight prices violate the stationary assumption -

there is a clear trend in the data. The log part of the log returns removes trends and

gives some sense of stationarity.

Of course, the log returns of many economic variables still violate the stationary con-

dition - their second order dynamics, such as volatility, vary with time. In this case,

we need to consider the interaction between the variables. If variables are cointegrated

(see 3.4.1 for explanation), we need to change to a Vector Error Correction model. (see

3.3.5)

If the variables are not cointegrated, we simply need to difference the variables d times,

where d+1 is the max order of non-stationary. For economic variables, d typically is 1,

hence why we work with log returns.

3.3.2 Estimating the regression coefficients

As with autogression, the regression coefficients are estimated using ordinary least

squares criteria. This procedure is described below.

To help with ease of notation, let us first write out the VAR model in what is called

General Matrix Notation. If we have in total T observations of each of K variables and

we are modelling with ρ lags. If in addition, we have ρ pre-sample observations, y−ρ+1

to y0 we can define

Y = [y1 . . . yT ] =


y1,1 · · · y1,T

...
. . .

...

yK,1 · · · yK,T



B = [c, A1 . . . Aρ] =


c1 a11, 1 a12, 1 · · · a1K,1 · · · a11,ρ a12,ρ · · · a1K,ρ

c2 a21, 1 a22, 1 · · · a2K,1 · · · a21,ρ a22,ρ · · · a2K,ρ
...

...
...

. . .
...

. . .
...

...
. . .

...

cK aK1, 1 aK2, 1 · · · aKK,1 · · · aK1,ρ aK2,ρ · · · aKK,ρ
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Z = [Z0 . . . Zt . . . ZT − 1] =


1 1 · · · 1

y0 y1 · · · yT−1
...

. . .
...

y−ρ+1 y−ρ+2 · · · yT−ρ



=



1 1 · · · 1

y1,0 y1,1 · · · y1,T−1

y2,0 y2,1 · · · y2,T−1
...

...
. . .

...

yK,0 yK,1 · · · yK,T−1

y1,−1 y1,0 · · · y2,T−1

y2,−1 y2,0 · · · yK,T−1
...

...
. . .

...

yK,−1 yK,0 · · · yK,T−1
...

...
. . .

...

y1,−ρ+1 y1,−ρ+2 · · · y2,T−1

y2,−ρ+1 y2,−ρ+2 · · · yK,T−1
...

...
. . .

...

yK,−ρ+1 yK,−ρ+2 · · · yK,T−ρ



U = [u1 . . . uT ] =


u1,1 · · · u1,T

...
. . .

...

uK,1 · · · uK,T


With these matrices, we can rewrite our VAR model as

Y = BZ + U (3.21)

or as

vec(Y ) = vec(BZ) + vec(U)

= (Z ′ ⊗ IK)vec(B) + vec(U) (3.22)
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where ⊗ is the Kronecker product, vec(A) is the vectorization of any matrix A and IK

is the identity matrix of size K. In which case, the ordinary least squares estimate for

vec(B) minimizes

S(vec(B)) = vec(U)′(IT ⊗ Σu)−1vec(U)

= vec(U)′(IT ⊗ Σ−1u )vec(U)

= [vec(Y )− (Z ′ ⊗ IK)vec(B)]′(IT ⊗ Σu)−1[vec(Y )− (Z ′ ⊗ IK)vec(B)]

= vec(Y −BZ)′(IT ⊗ Σu)−1vec(Y −BZ)

= tr[(Y −BZ)′Σu)−1(Y −BZ)]

= vec(Y )′(IT ⊗ Σ−1u )vec(Y ) + vec(B)′(ZZ ′ ⊗ Σ−1u )vec(B)

− 2vec(B)′(Z ⊗ Σ−1u )vec(Y ) (3.23)

Differentiating with respect to vec(B) and equating to zero gives us the estimator for B

v̂ec(B) = ((ZZ−1 ⊗ Σu)(Z ⊗ Σ−1u )vec(Y )

= ((ZZ−1Z ⊗ IK)vec(Y )

= Y Z ′(ZZ ′)−1 (3.24)

This method is specific to the basic VAR model laid out previously, but is easily adapted

to the models described below. This derivation is laid out in full here as this basic model

was the one used for this thesis.

3.3.3 Selecting ρ

Up to now, we have been ignoring ρ, the maximum number of lags to be considered in

the model, taking it as a given. Called the order of the VAR model, it is a user defined

parameter (within the limits of the data, of course), and its choice must be addressed.

Of course, if ρ is a correct summary of the variables, ρ+ 1 will also be a valid model, as

the last variable can always be ignored. We therefore generally look for the minimum ρ

that explains the data well.
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Choosing ρ is essentially a model comparison choice. Fit different VAR models to the

variables of order 1 to some chosen N, and use a model comparison statistic to chose

the best order. N is typically chosen from eight to ten, and rarely greater than twenty.

There are a number of model comparison metrics that fit well with the assumptions

underlying the VAR models. Common choices are the Akaike Information Criterion

(AIC), the Bayesian Information Criterion (BIC) and the Log Likelihood Ratio Test.

AIC can be expressed as 2k− 2 ln(L) where k in the number of parameters in the model

and L is the likelihood of the model. The criterion is based on the trade-off between

likelihood of model against complexity and overfitting. In our context, AIC is given by

AIC = ln |Σ̂u|+
2ρK2

T
(3.25)

where Σ̂u is an estimate of the error terms covariance matrix. The best model will

minimize its AIC.

3.3.4 Types of VAR Models

There are three main kinds of VAR models, with some additional variations covered in

3.3.5 The kind discussed so far is called the reduced form. The reduced form is the

simplest version, and easiest to implement. One of its drawbacks is that if the variables

being modeled are correlated, the error terms at any time t will also be correlated. This

correlation in the error terms prevents certain kind of analysis, such as the study of a

response of other variables to a shock in one variable.

The recursive form removes this correlation by including contemporaneous terms of some

of the other variables into the model of each of the variables. (Clearly, it makes no sense

to include the contemporaneous term of a variable itself in its own model.) However,

if we include all other variable’s contemporaneous terms, we will no longer be able to

estimate the regression coefficients using OLS, as the error terms will now be correlated

with the regressors.

To see this, for simplicity say we have two variables, income and interest rates, and we

choose ρ = 1. The VAR model with contemporaneous values would be
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yt = −ayrrt + αyr,1rt−1 + αyy,1yt−1 + e′y,t

rt = −aryyt + αry,1yt−1 + αrr,1rt−1 + e′r,t (3.26)

The correlation between Y and the error term is given by

cov(yt, e
′
r,t) = cov(−ayrrt + αyr,1rt−1 + αyy,1yt−1 + ey,t, e

′
r,t)

= cov(−ayr(−aryyt + αry,1yt−1 + αrr,1rt−1 + e′r,t)

+ αyr,1rt−1 + αyy,1yt−1 + ey,t, e
′
r,t)

= ayrarycov(yt, urt)− ayrσ2ur

=
−ayr

1− ayrary
σ2ur (3.27)

a non-zero value, unless −ayr is equal zero.

The recursive VAR model gets around this problem by recursively setting those values

to be zero. It is easiest explained with an example:

If we have a three-variable VAR, with inflation, unemployment rate and interest rates.

In the first equation of the recursive VAR for inflation, only lagged values of the variables

are used, no contemporaneous values. In the second equation for unemployment rate

lagged values of all three variables are also used, plus the current value of the inflation

rate. The final equation for interest rate includes lagged values and the current values

for both inflation and the unemployment rate. Estimation of each equation by OLS

produces residuals that are uncorrelated across equations.

Yes, the recursive VAR does depend on the order of the variables, and in general there

are K! different models for a given chosen ρ.

The third type is the structural VAR. This allows the inclusion of some previously know

economic knowledge or theory to set parameters of the model. One example, taken from

(Stock and Watson, 2001) could be the “Taylor Rule”, where the Federal Reserve sets

the interest rate based on output gap and inflation. This would change our model for

interest rate to

Rt = r∗ + 1.5(π̄t − π∗)1.25(ūt − u∗) + laggedvaluesofR, π, u+ e′t (3.28)
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where r∗, π∗ and u∗ are the desired values of interest, inflation and output gap respec-

tively and π̄t and ūt are the average values of inflation and the output gap of the past

four quarters.

3.3.5 Variations

As mentioned previously, there are several variations on the VAR model that incorporate

additional features or handle different kinds of data.

VAR Moving Average (VARMA) incorporates a moving average aspect to the model,

using lagged versions of the error terms to help explain the data. The VARMA equation

becomes

yt = c+

ρ∑
j=1

Ajyt−j +

q∑
j=1

Bjet−j + et (3.29)

This model gets rid of the requirement that error terms be sequentially uncorrelated,

and instead actually takes advantage of this correlation to help explain the data. A

stable and invertable VARMA can always be represented as a pure VAR or MA model.

We can also introduce exogenous variables. So far we have only discussed models that

deal with endogenous variables - ones included in the model. These exogenous variables

are not included in the model, but are still theorized to have some effect. In economic

terms, exogenous variables are generally seen as “outside” the market in some way -

unexpected weather or other natural occurrences, for example. A VARMA model with

exogenous variables is shown below.

yt = c+Xtb+

ρ∑
j=1

Ajyt−j +

q∑
j=1

Bjet−j + et (3.30)

where Xt is a k by r matrix, where r is the number of exogenous variables at time t. b

is a vector of regression coefficients to be learned.

Mentioned before is that VAR models can only deal with stationary processes. If a

process is not stationary, the are ways of processing the data to give it stationarity.

These techniques leave the relationships we are studying intact, unless the variables are

cointegrated. While a full discussion of what cointegrated means can be found in section
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3.4.1, here we will lay out how to adapt a VAR model to a Vector Error Correction (VEC)

model, which can handle this kind of data.

The VEC assumes all variables have an equilibrium relationship to each other, where

they would remain if there were no changes. The key idea in a VEC model is modelling

the speed at which different variables return to this equilibrium after a change in another

variable. As the number of variables grow, it becomes harder to isolate changes in one

variable, and thus estimates of these speeds becomes more difficult.

It is easiest again to explain with an example: Our two variables are two prices of the

same good in different markets, y1 and y2. Assume at equilibrium, y1t = βy2t. If we

assume for simplicity we include only one lag in our model,

∆y1t = α1(y1,t−1 − β1y2,t−1) + e1t. (3.31)

and similarly for y1t. If we expand this to include changes of both variables, we have a

VEC.

∆y1t = α1(y1,t−1 − β1y2,t−1) + γ11,1∆y1,t−1 + γ12,1∆y2,t1 + e1t. (3.32)

For a more in depth discussion of all the points covered here about VAR models, see

this excellent book on the topic (Lütkepohl, 1991).

3.4 Granger Causality Tests

The Granger Causilty test is a test to try to move from correlation towards causation.

It was first proposed in (Granger, 1969) and is a test for a simple idea. If a variable y1

causes another variable y2, any change in y1 should be seen before y2. Putting this in

similar terms we used to describe VAR models, lagged values of y1 should help model

the current value of y2. We can write very similar formal equations as we did for the

VAR model
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y1,t = c1 +

ρ∑
j=1

a11,jy1,t−j +

ρ∑
j=1

a12,jy2,t−j + e1t

y2,t = c2 +

ρ∑
j=1

a21,jy1,t−j +

ρ∑
j=1

a22,jy2,t−j + e2t (3.33)

where the error terms have similar properties that they did for VAR models. Note how

both sums consider the same amount of lagged values.

This gives us two null hypotheses. The first is

H0 : a12,1 = a12,2 = . . . = a12,ρ (3.34)

which states that y1 does not Granger cause y2. The second

H0 : a21,1 = a21,2 = . . . = a21,ρ (3.35)

states that y2 does not Granger cause y1. In order to say that y1 Granger causes y2, we

must not only reject the first null hypothesis, but not reject the second, and vice versa.

If both null hypotheses are rejected, we say there is feedback between the variables. If

neither is rejected, the results are inconclusive.

It should be noted that Granger hedged his bets with his test, not calling his test a test

for complete causality. Two variables that were both caused by a third variable could

pass the Granger causality test if one responded quicker than the other. Instead, he

and further researchers would refer to Granger causality, and state one variable Granger

caused another. Only knowledge about the variable and the environment can establish

true causality.

As should be obvious, the Granger test is very similar to the VAR model. The Granger

Causality test can be performed using a series of F-tests on the VAR model, testing

each pair of variables. This is why the Gretl software performs Granger causality tests

automatically when asked to fit VAR models.
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3.4.1 Cointegration

One important topic to both VAR models and the Granger causality test is the idea of

cointegration. This idea is simple - if there exists some linear combination of a set of

variables that is stationary, they are said to be cointegrated. This does not exclude the

idea that the variables are individually integrated i.e. a linear combination of lagged

versions of itself is stationary.

A classic example of cointegration variables is the price of one good in two separate

markets. If two variables are cointegrated, they share a common stochastic drift, and

move together in some way. The two individual variables might exhibit random walk

behavior, but still be cointegrated, see the diagrams below for examples of this.

Figure 3.8: Two artificially generated random walks overlain. Diagram taken from
(Lütkepohl, 1991)

The main test for cointegration is the two step Engle-Granger test (Engle and Granger,

1987). If two variables are cointegrated, y1,t − βy2,t = ut and ut would be stationary,

by definition. However, we do not know β, so the first step is estimating it by ordinary

least squares. We can then run one of a number of stationary tests on ut, for example

the Dickey-Fuller test. (Dickey and Fuller, 1979) The test is calculated as

∆yt = c+ bt+ (γ − 1)yt−1 +

ρ∑
i=1

∆yt−i + et (3.36)
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Figure 3.9: A bivariate cointegrated time series. Diagram taken from (Lütkepohl,
1991)

where ∆yt = yt − yt−1. If the null hypothesis of γ = 1 is not rejected, the variable is

stationary.

The adjustment needed to change the VAR model to VEC in the case of conintegration

has already been explained. The Granger Causality test gets a similar adjustment, with

an added term to each equation.

y1,t = c1 + δ1(y1,t−1 − y2,t−1) +

ρ∑
j=1

a11,jy1,t−j +

ρ∑
j=1

a12,jy2,t−j + e1t

y2,t = c2 + δ2(y1,t−1 − y2,t−1) +

ρ∑
j=1

a21,jy1,t−j +

ρ∑
j=1

a22,jy2,t−j + e2t (3.37)

where δ1 and δ2 represent the speed of adjustment of both variables. The null hypotheses

both change slightly as well - they now both must check their respective δ = 0 as well

to hold.

(Engle and Granger, 1987) is the work that brought to attention that this required

adjustment, and the hazards of trying to fit linear models to cointegrated variables.
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3.4.2 Thesis Implementation

The VAR models and the Granger causality tests were implemeneted using the Open

Source statistics software package Gretl. Like with the wavelet transformations and

Matlab, there was no code written. Once the output of the wavelet transformations

were input to Gretl, the models and tests were built using the software’s various GUIs.

Three main functions were used within Gretl. First, Gretl provides a cointegration test,

implementing the two step Engle-Granger test. The second is the VAR lag select tool,

used to select the best ρ for the VAR model. Gretl builds a different model for the

values of ρ between one and N (in our case ten) and calculates the best fit model. Gretl

provides three separate model criteria for comparison: Akaike Information Criterion,

Schwarz Bayesian Criterion and Hannan-Quinn criterion. The model with the best AIC

was chosen for our model.

The third function actually fit the VAR models, as well as automatically computing the

Granger causality tests for each pair of variables.
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Results and Analyis

In this chapter the results of various stages of the process are presented. In section 4.2

the decomposition of various time series into different timeframes using the methods

described in 3.1.5 are shown. Section 4.3 deals with the results of the different vector

autoregressive (VAR) models fit to the wavelet decompositions, and finally covers the

Granger Causality Tests done using the VAR models.

4.1 Data Used

The oil prices used were the Cushing, OK WTI Spot Price FOB (Dollars per Barrel) ob-

tained from the United States Energy Information Adminsitration (Government, 2014).

The infromation was from January 2nd 1986 until January 27th 2014, though only data

from January 4th 2000 was used in this work. As discussed before, the work was not

done on the prices directly, but instead used the log returns as a basis.

This is because reliable online news data is only available from 2000. As previously

mentioned, the news aggregater site LexisNexis was used to get raw news articles for

this project. The search was limited to three news sources: The Finanical Times, Wall

Street Jounral and The New York Times. The timeline matched the one used for the

oil prices, January 4th 2000 until January 27th 2014. The only search terms used were

“Crude Oil”, which could appear anywhere in the headline or body of the article.

58
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www.lexisnexis.com
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4.2 Wavelet Decompositions

Using wavelets to decompose our time signals into seperate processes is crucial to this

thesis. As already discussed in 2.1 there is good reason to think that economic rela-

tionships in particular will not remain constant across different timeframes, and these

dynamics will be lost when looking at the overall time series.

The decompositions here use maximum overlap discrete wavelet transform (MODWT)

to obtain the wavelet coefficents, before using those values to create the wavelet details,

as laid out in 3.1.5.

The figure 4.1 shows the decompostion of the returns on the oil spot prices down to ten

levels. We used ten levels to show the full range of activity in the market, from daily

trading to the yearly business cycle (level ten shows activity of the order 29 = 512days ≈
1.5 years)

Figure 4.1: Details obtained using the DWT of the returns of oil prices. The top
graph, s, is the original signal, a10 is the level 10 smooth and the rest of the graphs

show the details in decending level.

The results presented here and below used the Coiflet (5), though work was done using

the Daubchies (4) and Mexican Hat wavelets. The figure 4.2 shows the same results but

using the Daubchies (4) wavelet. As can be seen, the produced details do vary, espeically

at higher levels, but as mentioned previously, the use of different smooth wavelets do

not effect the overall outcome of the VAR and Granger Causality tests.
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Figure 4.2: Details obtained using the DWT of the returns of oil prices using the
Daubchies (4) wavelet.Graphs are laid out as above

Next we present the decompostion of the negative sentiment to the same amount of

levels as the oil returns.

Figure 4.3: Details obtained using the DWT of the negative sentiment

The details of the two different time series look as we might expect them to. The lower
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levels are more noisy with their high frequency data, whereas the higher scales and

smooth show much smoother behaviour.

Note how the period of high volatility in the oil returns between day 2000 and 2500

appears in details 1 to 4, but not in the higher levels. This shows the power of timescale

decompostion - that event can be clearly seen to be caused by short scale activity with

this decomposition.

Finally, we present the wavelet decomposition of the moving average of both the oil

returns and negative sentiment, used to try to remove some of the outliers in the time

series, such as the spike of negative sentiment towards the end of the signal.

Figure 4.4: Details obtained using the DWT of the moving average of the returns of
oil prices.

For tables describing all individual values of the wavelet details, please see the Appendix.
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Figure 4.5: Details obtained using the DWT of the moving averager of the negative
sentiment
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Descriptive Statistics

We can take a closer look at the oil returns decomposition using descriptive statistics.

As discussed previously in section 3.1.6, any statistics of higher order than the mean use

the wavelet coefficents rather the details.

Summary Statistics for oil returns 2000/01/04–2014/01/24

Variable Mean Median Minimum Maximum

D1 2.67e–6 0.000140 −0.157 0.122

D2 −5.66e–6 −0.000101 −0.110 0.121

D3 4.28e–6 6.90e–05 −0.0764 0.0807

D4 1.41e–5 3.82e–05 −0.0659 0.0845

D5 1.91e–5 0.000148 −0.0222 0.0163

D6 3.04e–5 0.000132 −0.0190 0.0126

D7 3.83e–5 0.000189 −0.0107 0.00657

D8 7.85e–5 0.000105 −0.0163 0.00771

D9 0.000146 2.16e–5 −0.00163 0.00276

D10 0.000261 −1.15e–5 −0.00211 0.00430

Returns 0.000374 0.00123 −0.171 0.164

Summary Statistics for oil returns, 2000/01/04–2014/01/24 continued

Variable Std. Dev. Mean/Std. Dev. Skewness Ex. kurtosis

D1 0.0178 1.50e–4 −0.122 6.17

D2 0.0124 −4.57e–4 0.0147 11.3

D3 0.00843 5.08e–4 0.00567 12.2

D4 0.00621 2.269e–3 0.533 23.2

D5 0.00378 5.046e–3 −0.687 3.46317

D6 0.00275 0.0110 −0.835 4.89

D7 0.00177 0.0216 −0.997 4.20

D8 0.00222 0.0354 −2.09 11.9

D9 0.000661 0.222 0.952 1.10

D10 0.00100 0.260 1.41 2.47

Returns 0.0247 0.0151 −0.246 4.84



Results and Analyis 64

If we look at the ratio of mean to variance, we see that as you go up the levels the details

become more mean dominated. The activity at lower frequencies is more predictable with

less variance. We can interpert this as details of D6 and higher become less susceptible

to outside influences, and will mostly continue to their patterns.

This makes intuitive sense - the detail at level 6 corresponds to activity of 32 (25)

days, or roughly monthly data. The data is moving away from the higher frequency

and variablity of daily traders, and toward more market fundementals. While we might

expect sentiment to have an impact on lower level details, we would be surprised if levels

higher then this showed influence, mean dominated processes that they are.

4.3 VAR Models and Granger Tests

In this section, the results of fitting the VAR models and the Granger Causality tests

are presented. Three types of data had VAR models fitted: the wavelet decomposition

of the returns compared with the raw negative sentiment series, the decomposition of

both the returns and the negative sentiment and finally the decomposition of a sixty

day moving average calculation of both returns and negative sentiment.

Each subsection below deals with these data types in turn. Of course, not all results are

shown here. Each subsection fits ten separate VAR models, and showing each here would

be excessive. Instead, a choice of the VAR models are presented here for illustration.

However, the full set of the VAR models are available in the Appendix.

The subsections all follow a similar structure. First, the test for the choice of best number

of lags is shown. Secondly, the results of the Granger Causality tests are presented,

indicating where a relationship between sentiment and the market exists. Thirdly, the

results of the VAR models themselves, including which of the regression coefficients are

statistically significant, are presented. Finally, a brief discussion on what those results

indicate completes each subsection. The justification of why these sets of data were used

is given in this discussion.

Note that this is not the order of the method, where VAR models are fit before the

Granger Causality tests are done, as once the VAR models are fitted the Granger Causal-

ity tests are simply F-tests on the regression coefficients. The results are presented this

way as not all ten sets of VAR coefficients are presented here, as this would take up too

much space. Instead, the VAR models are shown based on the Granger tests, as they
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show a closer look of the nature of the relationship the Granger tests have discovered.

This was felt to be the most intuitive way to present the results.

All variables were tested for cointegration using the Engle-Granger test, outlined in 3.4.1,

and no pairing showed signs of cointegration. As such, VAR models were used instead

of Vector Error Correction, and Granger Causality tests could be used unaltered. Since

all tests for cointegration were negative, this is not mentioned again below.

4.3.1 Just Returns Decomposed

In this subsection, we look at the relationship between the prices and sentiment by

decomposing the data on the oil returns into ten levels, but leaving the sentiment as the

raw untransformed data.

Choice of Lags

First, the choice of lags results from Gretl. As discussed in 3.4.2, Gretel provides the

Akaike criterion, Schwarz Bayesian criterion and Hannan-Quinn criterion as criteria to

choose the best number of lags. Up to a maximum number of ten lags were checked, to

avoid overfitting. Besides one exception, all levels suggested the maximum ten lags as

the best model. Typical examples were level 1 and level 9. The stars indicate the best

choice, based on the different criteria.

Best Lag Selection for VAR System, Maximum order 10. Variables: Negative

Sentiment and Detail 1 of Oil Returns

Lags AIC BIC HQC Choice

1 −1.75 −3.74 −3.75

2 −4.06 −4.04 −4.05

3 -4.243 -4.22 -4.23

4 -4.36 -4.33 -4.35

5 -4.46 -4.42 -4.44

6 -4.53 -4.48 -4.51

7 -4.57 -4.52 -4.55

8 -4.60 -4.54 -4.58

9 -4.64 -4.57 -4.62

10 -4.67 -4.59 -4.76 ***
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Best Lag Selection for VAR System, Maximum order 10. Variables: Negative

Sentiment and Detail 9 of Oil Returns

Lags AIC BIC HQC Choice

1 -18.38 -18.37 -18.38

2 -19.52 -19.49 -19.51

3 -19.48 -19.46 -19.47

4 -19.56 -19.53 -19.55

5 -19.57 -19.54 -19.56

6 -19.62 -19.58 -19.61

7 -19.63 -19.58 -19.61

8 -19.63 -19.57 -19.61

9 -19.64 -19.57 -19.62

10 -19.68 -19.61 -19.66 ***

The exception was the VAR model using the level six, for which the different criteria

choose different lags.

Best Lag Selection for VAR System, Maximum order 10. Variables: Negative

Sentiment and Detail 6 of Oil Returns

Lags AIC BIC HQC Choice

1 -11.34 -11.33 -11.33

2 -12.07 -12.05 -12.06

3 -12.10 -12.08 -12.09

4 -12.14 -12.11 -12.13

5 -12.16 -12.21 -12.15 *(BIC)

6 -12.28 -12.12 -12.21 *(AIC) *(HQC)

7 -12.21 -12.16 -12.19

8 -12.22 -12.15 -12.19

9 -12.22 -12.16 -12.20

10 -12.22 -12.16 -12.19

The decision made was to use the AIC to determine which lag order to use i.e. six.
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Granger Causality Tests

Presented in the table below are the Granger Causality tests for each level of the de-

composed returns with the negative sentiment values. The probability of retaining the

null hypothesis of no causality indicates how statistically significant the relationship is.

S in the table refers to sentiment, R returns, DX is the detail of level X.

Results Null Hypotheses
S 6⇒ R R 6⇒ S

D10 (10 lags) inconclusive 0.429 0.191

D9 (10 lags) inconclusive 0.131 0.623

D8 (10 lags) inconclusive 0.879 0.906

D7 (10 lags) inconclusive 0.710 0.248

D6 (6 lags) inconclusive 0.396 0.487

D5 (10 lags) inconclusive 0.729 0.906

D4 (10 lags) inconclusive 0.901 0.288

D3 (10 lags) inconclusive 0.974 0.586

D2 (10 lags) inconclusive 0.130 0.382

D1 (10 lags) inconclusive 0.566 0.758

Table 4.1: Table showing the results of Granger Causality tests on different wavelet
levels. The values shown are probabilities of keeping the Null Hypotheses.

VAR Models

The tables below show the VAR models for some of the levels. Each VAR model gen-

erates two linear equations; one for each variable. Shown in the table is the regression

coefficient for each of the lagged values used in the equation. The number of lags for

the value is indicated in the brackets. This is followed by the standard error, a t-test

and its statistical significance, represented as the probability (p-value) of the null hy-

pothesis that the coefficient is used in the equation is. Statistically significant values

are shown for ease of reading with stars - One star for significance of confidence 10%,

two for confidence of 5%, and three for confidence of 1%. All tables of VAR models will

follow similar structures. To save space, sometimes only the equation for one variable is

shown, if this is enough to illustrate the point. But of course each VAR model creates

two equations, one for each variable

As can be seen, the Granger Causality tests show no significant causal relationships

at any level. When there is no Granger causality between two variables, the VAR

model generally like table 4.2 Only lagged values of the variable itself have statistically
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significant regression coefficients, with lagged values of the of variable ignored in the

model.

Equation 1: Returns Level 8
Lagged Value Coefficient Std. Error T-ratio P-value Significance

Constant 2.70e-6 4.45e-6 0.608 0.5434

Return (1) 1.73 0.0165 104.6 0.00 ***

Return (2) 0.812 0.0328 24.76 0.00 ***

Return (3) 0.301 0.0352 8.53 2.03e-17 ***

Return (4) 0.471 0.0355 13.28 2.71e-39 ***

Return (5) 0.492 0.0361 13.62 3.58e-41 ***

Return (6) 0.256 0.0361 7.07 1.86e-12 ***

Return (7) 0.0747 0.0355 2.10 0.0355 **

Return (8) 0.297 0.0351 8.45 4.15e-17 ***

Return (9) 0.438 0.0327 13.38 7.79e-40 ***

Return (10) 0.202 0.0165 12.24 9.35e-34 ***

Neg Senti (1) 1.09e-6 1.22e-6 0.893 0.372

Neg Senti (2) 6.20e-7 1.22e-6 0.504 0.613

Neg Senti (3) 3.55e-7 1.23e-6 0.288 0.773

Neg Senti (4) 7.43e-7 1.23e-6 0.600 0.548

Neg Senti (5) 9.40e-7 1.23e-6 0.760 0.447

Neg Senti (6) 6.43e-7 1.23e-6 0.519 0.603

Neg Senti (7) 1.25e-6 1.23e-6 1.01 0.311

Neg Senti (8) 9.27e-7 1.23e-6 0.751 0.452

Neg Senti (9) 1.11e-6 1.22e-6 0.904 0.366

Neg Senti (10) 7.32e-7 1.22e-6 0.599 0.549

Table 4.2: Table showing the equation detail 8 of oil returns from the fitted VAR
model.

However, this is not always the case. Some VAR models showed some lagged values of

the other variable were significant in the created equation, but usually only one and at

a low significance level. This shows that there are cases where it cannot be said with

confidence that one variable causes another, but that does not rule out some values

playing a role in explaining the variable. But those roles are not statistically significant

to say one variable causes the other. An example of this is the VAR for level five of

returns and sentiment, where the nine lagged and ten lagged values of detail 5 of the oil

returns are significant values in the equation for negative sentiment 4.3.

Discussion

The data used here goes against the procedure in (Ramsey and Lampart, 1997) and

(Gençay et al., 2001), which decompose both variables being studied. This is covered

in the next section. The thinking here was that the raw sentiment data, which is the



Results and Analyis 69

Equation 1: Negative Sentiment
Lagged Value Coefficient Std. Error T-ratio P-value Significance

Constant 0.614 0.0612 10.02 2.51e-23 ***

Returns (1) 17.4 16.0 1.09 0.274

Returns (2) 39.0 29.7 1.31 0.189

Returns (3) 24.8 31.7 0.783 0.433

Returns (4) 18.0 32.0 0.560 0.575

Returns (5) 16.7 32.6 0.511 0.609

Returns (6) 6.09 32.6 0.186 0.852

Returns (7) 9.15 32.0 0.285 0.775

Returns (8) 34.2 31.6 1.07 0.280

Returns (9) 53.2 29.6 1.79 0.073 *

Returns (10) 26.8 16.0 1.67 0.094 *

Neg Senti (1) 0.113 0.0168 6.73 1.92e-11 ***

Neg Senti (2) 0.108 0.0169 6.39 1.78e-10 ***

Neg Senti (3) 0.101 0.0170 5.96 2.64e-9 ***

Neg Senti (4) 0.0436 0.0171 2.547 0.011 **

Neg Senti (5) 0.0926 0.0170 5.418 6.44e-8 ***

Neg Senti (6) 0.0712 0.0170 4.169 3.13e-5 ***

Neg Senti (7) 0.0575 0.0171 3.364 0.001 ***

Neg Senti (8) 0.0418 0.0170 2.455 0.014 **

Neg Senti (9) 0.0408 0.0169 2.408 0.016 **

Neg Senti (10) 0.0514 0.0169 3.049 0.0023 ***

Table 4.3: Table showing the equation for negative sentiment from the fitted VAR
model of itself and detail 5 of oil returns.

sum of the activity at different levels, might have a direct effect on the market. After

all, this is what the trader would interact with. The market data was decomposed to

see how that effect might differ with timescales.

However, as the results show, the effect of the negative sentiment does not come through.

The different timeframes of the sentiment interact with the different timeframes of the

market differently, as we shall see below, and without decomposition these relationships

are lost.

4.3.2 Both Returns and Sentiment Decomposed

The data used in this section is decomposed versions of both the oil returns and negative

sentiment. Ten VAR models were built comparing corresponding levels, plus one more

comparing the original raw time series.
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Choice of Lags

Again, up to a maximum ten lags were considered for all VAR models, and again all

tests showed the maximum ten lags was the best choice with one exception, which was

the original untransformed time series. The results from this test are shown in the table

below.

Best Lag Selection for VAR System, Maximum order 10. Variables: Negative

Sentiment and Oil Returns

Lags AIC BIC HQC Choice

1 -2.75 -2.74 -2.75

2 -2.80 -2.78 -2.79

3 -2.83 -2.80 -2.82

4 -2.83 -2.80 -2.82

5 -2.85 -2.81 -2.84

6 -2.86 -2.814 -2.84 *(BIC)

7 -2.86 -2.81 -2.85

8 -2.86 -2.81 -2.847 *(HQC)

9 -2.86 -2.80 -2.85

10 -2.870 -2.79 -2.84 *(AIC)

These results do not show a clear choice for the number of lags to use in the VAR model.

However, having fit the VAR model with all three of the suggested number of lags, the

result of Granger causality test is the same for all three. With this in mind, the results

of the model using ten lags is shown below, though the other results are in the appendix.

Granger Causality Tests

Displayed in table 4.4 are the results of the Granger causality tests. The table is laid

out as before.

The interesting results are naturally the levels that show a result other than inconclusive.

Below a closer look at the VAR models of these levels is presented.
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Results Null Hypotheses
S 6⇒ R R 6⇒ S

D10 (10 lags) inconclusive 0.999 0.997

D9 (10 lags) inconclusive 1.000 1.000

D8 (10 lags) inconclusive 0.998 0.999

D7 (10 lags) inconclusive 1.00 0.999

D6 (10 lags) inconclusive 1.00 1.00

D5 (10 lags) inconclusive 0.974 0.753

D4 (10 lags) Feedback 0.000 0.082

D3 (10 lags) inconclusive 0.999 0.984

D2 (10 lags) inconclusive 0.359 0.797

D1 (10 lags) S ⇒ R 0.048 0.329

Overall (10 lags) R ⇒ S 0.342 0.035

Table 4.4: Table showing the results of Granger Causality tests on different wavelet
levels. The values shown are probabilities of keeping the Null Hypotheses.

VAR Models

Here the VAR models for all the relationships that show Granger Causality. The tables

follow the same format as before.

Lagged Value Coefficient Std. Error T-ratio P-value Significance

Constant 8.22e-7 0.000168 0.00488 0.996

Neg Senit D1 (1) 0.000454 0.000807 0.562 0.573

Neg Senit D1 (2) 0.00113 0.00137 0.825 0.409

Neg Senit D1 (3) 0.00174 0.00186 0.937 0.348

Neg Senit D1 (4) 0.00392 0.00220 1.78 0.074 *

Neg Senit D1 (5) 0.00491 0.00238 2.06 0.039 **

Neg Senit D1 (6) 0.00667 0.00238 2.80 0.005 ***

Neg Senit D1 (7) 0.00718 0.00220 3.26 0.001 ***

Neg Senit D1 (8) 0.00585 0.00186 3.13 0.001 ***

Neg Senit D1 (9) 0.00451 0.00137 3.27 0.001 ***

Neg Senit D1 (10) 0.00211 0.000807 2.61 0.009 ***

Returns D1 (1) 1.41 0.0166 85.16 0.000 ***

Returns D1 (2) 1.75 0.0283 62.01 0.000 ***

Returns D1 (3) 1.85 0.0391 47.21 0.000 ***

Returns D1 (4) 1.78 0.0470 37.98 0.000 ***

Returns D1 (5) 1.59 0.0511 31.24 0.000 ***

Returns D1 (6) 1.33 0.0511 26.09 0.000 ***

Returns D1 (7) 1.01 0.0470 21.56 6.40e-97 ***

Returns D1 (8) 0.708 0.0391 18.09 5.75e-70 ***

Returns D1 (9) 0.412 0.0283 14.59 7.26e-47 ***

Returns D1 (10) 0.161 0.0160 9.64 9.26e-22 ***

Table 4.5: Table showing the equation for detail 1 of oil returns from the fitted VAR
model of itself and corresponding detail of negative sentiment.
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Rather then waste room showing the entire data for each VAR equation for level four

and the overall series, which are available in the Appendix, for the other Granger signif-

icant models we will simply list which lagged values have statisical significance in each

equation. This is a adequate summary of the VAR model, as the coefficents themselves

are not of great concern of this thesis, but instead which lagged values are significant in

the equations.

Equation for detail 4 of oil returns.

• Negative Senitment D4 lagged values 8-10. (All of 1% confidence level)

• Returns D4 lagged values 1-6. (All of 1% confidence level)

• Returns D4 lagged values 8-10. (All of 1% confidence level)

Equation for detail 4 of negative sentiment.

• Negative Senitment D4 lagged values 1-6. (All of 1% confidence level)

• Negative Sentiment D4 lagged values 8-10. (All of 1% confidence level)

• Returns D4 lagged value 8. (At 5% confidence level)

• Returns D4 lagged value 9. (At 1% confidence level)

Equation for original negative sentiment series.

• Constant (At 1% confidence level)

• Negative Senitment lagged values 1-3. (All of 1% confidence level)

• Negative Sentiment lagged value 4. (At 5% confidence level)

• Negative Sentiment lagged values 5-8. (All of 1% confidence level)

• Negative Sentiment lagged value 9. (At 5% confidence level)

• Negative Sentiment lagged value 10. (At 1% confidence level)

• Returns lagged value 2. (At 1% confidence level)

• Returns lagged values 5. (At 10% confidence level)

• Returns lagged values 8. (At 10% confidence level)



Results and Analyis 73

Discussion

With the wavelet decomposition, the relationships that were hidden in the previous

subsection using the raw negative sentiment series now appear. What is interesting is

that this relationship changes across different levels, as other relationships studied using

this method have also done (Ramsey and Lampart, 1997).

At level one, the daily activity shows that sentiment causes returns, but this relationship

falls away at higher levels two and three. This seems to suggest that daily traders do put

signifance in the sentiment of financial news of their market, but here they are heeding

the quick-fire daily reporting. The slightly longer recap reports of two or four days are

not significant enough to hold sway.

It is not an immediate reaction to the news articles either - only the lagged values

between four and ten lags of sentiment are significant in the VAR created linear equation.

Traders wait between four and ten days before moving on the financial news. This does

not conflict with our observation that twice daily activity (level 2) is unaffected by

sentiment. The distinction between longer timescale activity, and daily activity from

the past, muist be kept clear. This is the distinction drawn above between quickfire

news and longer recap reports.

The feedback at level four is interesting. This scale is the activity of the timrscale 23 = 8

days, or approximatly a week. This seems like the intutative scale where such feeback

would happen. At this timescale, news paper articles are being printed about the week

in review, detailing how the market has performed this week. There may also be a kind

of trader who would repsond to those longer, more thoughtful articles, instead of the

daily quickfire reports. The reporting on how the market repsonds to the reporting also

influences the market.

It is also interesting that both directions of causailty, returns causing sentiment and

sentiment causing returns, are delayed by about a little over a week, 8-10 days. This

is a longer delay than the daily activity, where four days was the shortest wait. This

would seem to fit what we might expect for the longer timescale activity at level 4 -

traders and journalists that consider a week’s worth of information would need a week

to consider before acting on sentiment or returns.

Longer term activity, i.e. from levels five and up, all show no signs of Granger Causality.

This confirms our hypothesis that sentiment mainly effects the variance in the market,

which is mainly captured at the higher frequency lower levels. Data from longer time-

frames are unaffected by sentiment, instead moving with market fundementals. The
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hypothesis would be that by the time a news article would report on a change in a

market fundemental, the change would already be seen in the price.

The fact that the original time series of returns Granger causes sentiment shows how

the sum of the activities of different timescales, which is what the undecomposed time

series is, it does not nessacrily display the same relationships as those at the decomposed

levels. This has already being discussed in relation to (Ramsey and Lampart, 1997) and

(Michis, 2011). Their result showed no relationship for the overall time series, even

though relationships exisited at different timescales.

Here, we can see the relationship discovered between the overall time series does not

hold at the different timescales. This does not mean we ignore this result, or the results

of the wavelet details. They are both valid, and show that the relationship between

economic variables is complicated.

4.3.3 Moving Average Decomposed

In this subsection, before doing any wavelet transformation, a simple sixty day moving

average was taken of both negative sentiment and oil returns. This was done using the

formula:

ŷt =
60∑
i=1

yt−i
60

(4.1)

As the formula suggests, the moving average shortens the data length by 60, as the

formula is only valid at t=61. This was an attempt to remove any outliers in the data,

such as the 9/11 data or the spike of negative sentiment at day 3520. The diagrams

below show the results of the taking the moving average of the data.

The moving averages were then decomposed to ten levels using the wavelet transform,

and corresponding details were then compared, as well as the undecomposed moving

averages. For a discussion of the merits and pitfalls of using moving averages, see 4.4

Choice of Lags

As before, up to a maximum ten lags were consider for all VAR models. This time the

maximum number of lags ten proved to be the best model, without exception.
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Figure 4.6: The moving average of negative sentiment in blue, with the original series
in red.

Figure 4.7: The moving average of oil returns in blue, with the original series in red.

Granger Causality Tests

Displayed in table 4.6 are the results of the Granger causality tests. The table is laid

out as previously. Again, the next subsection looks at the VAR models for relationships

that showed Granger causality.

VAR Models

Here we take a closer look at the the relationships discovered by the Granger causal-

ity tests. While we again save space as before by just listing which coefficents were

significant, it is worthwhile to look at only complete discription of a VAR equation.
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Results Null Hypotheses
S 6⇒ R R 6⇒ S

D10 (10 lags) inconclusive 0.996 0.999

D9 (10 lags) inconclusive 0.999 0.999

D8 (10 lags) inconclusive 0.999 0.999

D7 (10 lags) inconclusive 0.999 1.00

D6 (10 lags) inconclusive 1.00 1.00

D5 (10 lags) inconclusive 0.962 0.480

D4 (10 lags) S ⇒ R 0.012 0.994

D3 (10 lags) S ⇒ R 0.004 0.577

D2 (10 lags) S ⇒ R 0.050 0.195

D1 (10 lags) inconclusive 0.862 0.107

Overall (10 lags) R ⇒ S 0.558 0.012

Table 4.6: Table showing the results of Granger Causality tests on different wavelet
levels. The values shown are probabilities of keeping the Null Hypotheses.

Lagged Value Coefficient Std. Error T-ratio P-value Significance

Constant 2.26e-8 9.047e-7 0.0250 0.980

Neg Senit D3 (1) 4.51e-5 0.000284 0.158 0.873

Neg Senit D3 (2) 3.50e-5 0.000419 0.08357 0.933

Neg Senit D3 (3) 4.75e-5 0.000400 0.118 0.905

Neg Senit D3 (4) 0.000816 0.000402 2.029 0.042 **

Neg Senit D3 (5) 0.00101 0.000490 2.067 0.038 **

Neg Senit D3 (6) 0.000459 0.000491 0.934 0.349

Neg Senit D3 (7) 0.000184 0.000403 0.458 0.646

Neg Senit D3 (8) 0.000170 0.000401 0.424 0.671

Neg Senit D3 (9) 0.000360 0.000420 0.857 0.391

Neg Senit D3 (10) 0.000151 0.000284 0.532 0.594

Returns D3 (1) 1.327 0.0152 87.28 0.000 ***

Returns D3 (2) 0.608 0.0223 27.19 0.000 ***

Returns D3 (3) 0.150 0.0213 7.050 2.15e-12 ***

Returns D3 (4) 1.049 0.0214 48.93 0.000 ***

Returns D3 (5) 1.313 0.0258 50.86 0.000 ***

Returns D3 (6) 0.626 0.0257 24.27 0.000 ***

Returns D3 (7) 0.0955 0.0213 4.465 8.28e-6 ***

Returns D3 (8) 0.721 0.0213 33.86 0.000 ***

Returns D3 (9) 0.911 0.0223 40.84 0.000 ***

Returns D3 (10) 0.451 0.0151 29.81 0.000 ***

Table 4.7: Table showing the equation for detail 3 of oil returns from the fitted VAR
model of itself and corresponding detail of negative sentiment.

For the other Granger causal relationships, here are lists of the significant lagged values.

Equation for detail 2 of oil returns.
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• Negative Senitment D2 lagged value 9. (At 5% confidence level)

• Returns D2 lagged values 1-10. (All of 1% confidence level)

Equation for detail 4 of oil returns.

• Negative Senitment D4 lagged value 8. (At 5% confidence level)

• Negative Senitment D4 lagged value 9. (At 1% confidence level)

• Negative Senitment D4 lagged value 10. (At 10% confidence level)

• Returns D4 lagged values 1-6. (At 1% confidence level)

• Returns D4 lagged values 8-10. (At 1% confidence level)

Equation for original negative sentiment series.

• Constant (At 1% confidence level)

• Negative Senitment lagged values 1-3. (All of 1% confidence level)

• Negative Sentiment lagged value 4. (At 5% confidence level)

• Negative Sentiment lagged values 5-8. (All of 1% confidence level)

• Negative Sentiment lagged value 9. (At 5% confidence level)

• Negative Sentiment lagged value 10. (At 1% confidence level)

• Returns lagged value 2. (At 1% confidence level)

• Returns lagged values 5. (At 10% confidence level)

• Returns lagged values 8. (At 10% confidence level)

Discussion

The brief discussion here will focus on the actual results of the moving average decom-

position in isolation. A comparision between these results and those obtained without

using the moving average, see section 4.4 below.

These results seem to answer the thesis question. On three seperate timeframes of

activity, sentiment causes returns with varying levels of significance. The reason the full
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VAR model for level three was shown above is because it shows that a large number

of the lagged values need not be significant for Granger causality. The equation for oil

returns has two lagged values of negative sentiment detail, but these have a large enough

influence on their own for sentiment to Granger cause returns on level three.

It is interesting to see which lagged values are significant at different levels. At level two

and four, there is a delay of at least nine days before the reaction of the markets. At

level three however, the response is much quicker, with a delay of only four to five days.

Again, the result for the overall undecomposed series does not reflect the direction

of causality of different levels. This is still explained by noting again that the sum

of activities on different levels does not nessacrily reflect the individual levels. The

benefit of breaking the time series into different timeframes is not to explain the overall

relationship, but to see how that realtionship changes with those timeframes, information

lost in the sum of those activities.

4.4 Discussion

4.4.1 Need to decompose

From all these various results, one thing is clear - to discover the full nature of the

relationship between two variables, there is a need to decompose the signals by timescale.

Even decomposing one of the variables is not enough, as the first section of results

show. Like must be compared with like. The overall time series of sentiment cannot be

compared with activities of only one time scale of the returns.

4.4.2 Longer timeframes unaffected

Something all sets of results agree upon is that there is no relationship between the two

variables at higher timescales i.e. lower frequencies. For level five up, no set of data

revealed any kind of relationship. Level five corresponds to 24 = 16 days, roughly a

fortnight. While we would not have been surprised if this timescale would have seen

a relationship, we would have if level eight (roughly half a year) or higher had seen a

realtionship. At activities at this timescale, senitment from news articles would not have

much effect, as traders are now thinking long into the future, and basing thier activities

on more concrete data, such as the objective information in finanical news, or other

market variables.
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In fact, it is a noteworthy result from this thesis that by the time traders act on timeframe

greater than a week, they start ignoring sentiment that used to play a role in weekly

down to daily data. This conforms to our hypothesis that sentiment has more to do with

the variance in the returns signal than the mean. The lower levels of timescale contain

much more the the variance of the signals. These results seem to confirm the hypothesis

that sentiment is largely an output of people trying to understand the variance in the

market.

4.4.3 Delays in reaction

Another common element across datasets is that when there was a relationshio between

the two variables at any level, there was a delay in the reaction. While the VAR mod-

els do not contain contemporous values, it is interesting to see that these delays were

often substantive, up to ten days between the original change in one variable before the

response in the other.

In fact, only two relationships, detail three of the moving average dataset and detail

one without the moving average, had a delay of less then 8 days. It makes intuitive

sense that the daily data would have faster responses, as these traders work on smaller

timescales. It would be interesting to see, if the data were available, how sentiment

impacted minute by minute. Perhaps the delays there would be much smaller?

4.4.4 Undecomposed relationship

The final common element between the different sets of data in the undecomposed sig-

nals, moving average or not, ts that returns Granger cause senitment. This result seems

to indicate that overall, more sentiment filled articles are printed about the movements

of markets then the markets move to those articles, and it is necessary to break down

the time series into different time frames to see when the causality moves the other way.

4.4.5 Moving average

The big difference in results that must be addressed is between taking the decomposition

of the moving average verus using the original time series. The relationship between the

two variables at the daily time scale disappears using the moving average, along with

the feedback at level four becoming Granger causality in one direction only. In addition,

relationships at levels two and three can be seen where the results were inconclusive
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before. The lack of realtionship at the higher levels and the returns causing sentiment

on the undecomposed signals were the only common features of both data sets.

Taking the moving average of any dataset removes the outliers in the dataset, but also

removes much of the variance. While we performed this operation to acheive the former,

it can clearly be seen in figures 4.7 and 4.6 that the latter effect also happened. Given

much of the work is around explaining the variance in the market, it might seen counter-

intutitive to make this operation.

However, there were clear outliers in the data we were working with, and ignoring the

effects their presence could have is also a road to failure. We could have tried to replace

the outliers with other data, but such manual selection of what consitutes an outlier is

problematic at best. Taking the average at the expense of losing some of the variance

was seen as the best comprimise.

Our interpertation of the two sets of results is as follows: Level one contains most of the

variance of the two signals, and as such would be most affected by the moving average

procedure. We feel at this level the benefit of removing outliers will be outweighed by

the removal of much of the variance. This was also felt to be the case at level two.

However, some of the variance remains in the signal after taking the moving average,

and it was felt that enough was left to be caught by the higher levels, three to four. On

these levels the benefit of removing outliers would be seen, so for these levels the results

after taking the moving average were valid.

We acknowledge that this interpertation is open to debate, and it is why both sets of

results are presented here. One of the suggestions for future work is an robust exami-

nation of the effect of taking a moving average on the data, which unfortunately there

was no time for in this work.

4.4.6 Summary of Results

In summary, sentiment does Granger cause returns in the oil market; at least when

the activity on a daily, every fourth day and weekly timeframe (levels one, three and

four) are considered. At longer timeframes, the sentiment is largerly ignored by the

market. Showing the complications of relationship of economic variables, the original

undecomposed signals, returns Granger cause sentiment. These results agree with the

analysis done in section 4.2, where we only expected sentiment to have an impact at the

variance dominated lower levels.
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There was an interesting indication of feedback between sentiment and returns at the

weekly level, but the moving average results seem to suggest that this result was unre-

liable, and based on outliers in the data.

So, the answer to the thesis’ main question is yes: sentiment causes returns, but only

on short timeframes. The sum of the different timescales, the realtionship is reversed,

and returns cause sentiment



Chapter 5

Conclusion

5.1 Summary

This work fits alongside a growing body of work of using data provided by sentiment

analysis to try better financial models. The goal of any work trying to incorporate

sentiment in this area is trying to better explain the variance in the market prices by

incorporating information from a source outside the market. The past values of the price

itself does not provide enough information to adequately model the data.

Sentiment seems like a good outside source for our models. It makes intuitive sense

that markets should be influenced by the news reporting on them, and there is a body

of theory as to how that influence might be felt. There is also a chance sentiment is

influenced by the markets, perhaps creating a feedback loop. This would not have been

a surprising result.

Sentiment comes from uninformed people trying to makes sense of a noisy market, and

could be used in turn by people that influence the market. This has been recognized

before sentiment analysis techniques became sophisticated enough to provide the kind

of information required by financial modelers. Now sentiment analysis can distill a

document of text to a value of positive or negative sentiment using natural language

processing and machine learning, quantifying sentiment in a way in can be used in

models.

The models this thesis used to incorporate sentiment were VAR models, testing for

relationships between the two variables using Granger Causality tests. VAR models

represent the data a linear equations of lagged values of the variables, and provide a
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flexible approach to relating two or more variables. These models were used to give a

better picture of relationships pointed to by the Granger tests, which simply state if a

relationship exists between two time series.

Fitting models to economic or financial variables can often lead to inconclusive results,

or show no evidence of a relationship. However, variables of this kind are the cumulative

effect of numerous activities, all operating on different timeframes. Some traders operate

on a daily basis, whereas others plan six months or a year in advance.

It is possible to decompose these time series into different constituents, each relating

only to activity within a certain timeframe using the wavelet transform. Doing this

allows the two processes, sentiment and returns, to be compared on these different

timetables. This multiresolution analysis gives a better view of the relationship between

two complicated variables, and shows how that relationship changes with timeframes.

(Ramsey and Lampart, 1997)

5.2 Main Findings

Here we summarize the main findings of the thesis.

• In shorter timeframes, sentiment does cause returns

At the lower levels of 1, 3 and 4, the relationships found using the Granger Causal-

ity test showed that sentiment does indeed Granger cause returns. The results for

levels 1 and 2 are from not using the moving average, but higher levels are from

the moving average results.

• The longer timeframes showed no relationship

At levels 5 and higher, the Granger Causality tests showed no evidence of a rela-

tionship between the two variables. This and the previous finding agree with our

analysis of the descriptive statistics of the each detail of the decomposed return

signal. If sentiment had an influence, we expected it to be at the lower levels,

where the variance dominated over the mean.

• Undecomposed, returns cause sentiment The cumulative sum of the activities of

different timeframes show a relationship in the opposite direction of lower levels,

where instead returns cause sentiment. Why returns might cause sentiment has

been discussed. One reason is that articles are written that comment on the

movements of the market.
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• Moving Average reveals relationships

Taking the moving average of the two signals before decomposing them using

wavelets revealed relationships on levels 2 and 3, while it changed the relationships

found without using the moving average at levels 1 and 4. The relationship found

at levels 2, 3 and 4 were that sentiment causes returns, with no relationship found

at level 1.

The moving average was taken to try remove outliers, but also removed variance

from the signals. This removal of variance would have a greater affect at lower levels

of the decomposition, as this is where the variance of the signals is concentrated.

For this reason the results of the moving average were ignored for levels 1 and 2.

It has been acknowledge this distinction is arbitrary, and a suggestion for future

work is defining exactly when the moving average results are reliable.

• There is a need to decompose the signal

Without decomposing the two signals, the relationships between these two signals

would have remained hidden. Decomposing just returns is not enough as well - like

must be compared with like. The is no point of comparing the overall sentiment

activity with daily return timeframe data. Multiresolution analysis is important

in this study.

• Delays in reaction

The response in returns to sentiment were surprisingly long, with the delay at

level 1 and 4 over a week long. Considering level one show daily trading activity,

a delay this long shows unexpected consideration from day traders.

5.3 Future Work

The first recommendation for future work would be a robust analysis of the exact nature

of the effect of taking moving average of the two time series. The interpretation taken

in this thesis does seem reasonable, but there is a need for a statistical analysis of the

proposed effects. The limit of ignoring the results of the moving average at levels one

and two is somewhat arbitrary. A method for identifying the tipping point between the

benefits of removing outliers against removing the variance we are trying to study needs

to be formulated.

Other future work could take the method developed in this thesis and apply it to other

contexts. An obvious context would be to look at positive instead of negative sentiment.
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It would be interesting to see if the result from (Niederhoffer, 1971) of negative sentiment

having a larger affect agreed with this analysis. It could also use more complicated

dictionaries. Perhaps the locally defined Rocksteady dictionary for Crude Oil has some

correlation with the oil market, though this would seem to be a return to just news

volume.

Another extension could be looking at other markets. We choose a commodity market

for its comparative lack of volatility, but there is no reason stock markets could not be

explored with this analysis.

A final suggestion is looking at other types of sentiment sources. Using mircoblogs such

as Twitter or StockTwits has seen some success in the literature. One area of research

would be to see if bringing wavelet analysis to the table would gain much benefit for

such a quick and frequent data source.



Appendix A

Data Used

Please see provided CD for all wavelet details and full Vector Autoregression tables.
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