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This dissertation details a prototype protocol for exposing a man-in-the-middle

attacker on Diffie-Hellman key exchanges at a scale where out of band

verification of matching shared secrets is infeasible. This verification is

accomplished by creating a hash value of the shared secrets as seen at each end

point and comparing the outputs, where a mismatch in hash values indicates a

potential man-in-the-middle. The exchange that each hash value must be able to

be identified without divulging the actual identities of the participants.

Two systems for this are created and evaluated, each using a different method of

identifying the exchanges in an online database and analysing the results of

comparing hash values. One version uses random integers as part of the

identifier, where the count of random value choice collision for matching hashes

can be compared with the expected count based on the size of the random range.

The second has servers create a UUID to record batches of DH exchanges and

later compares this local log with the online version, which includes client

versions of the exchange.

The random session version works well in the case where a number of

participants provide information, offsetting the inaccuracy of the random

numbers. While the number of exchanges under a particular range is up to an

operator to decide, little modification is required to the underlying protocol.

The UUID version works with fewer participants, though requires more

involvement of the operators and changes to the underlying protocol.
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1 Introduction

The Diffie-Hellman key exchange protocol is a widely used method for

communicating processes to create a shared secret key over an insecure channel,

where it is computationally infeasible for an attacker to calculate the secret key

with the transmitted data. In the unauthenticated and in some authenticated

models of Diffie-Hellman exchanges, an attacker can interpose themselves in the

key exchange and can then decrypt all transmissions as well as masquerade as

each user. This kind of attack is called a “Man-in-the-Middle” attack.

These attacks can be difficult to detect, as a successful Man-in-the-Middle

attacker will be transparent to each party and processes will see an encrypted

tunnel existing between the parties, despite an attacker being able to manipulate

the entire transaction. An opportunity to detect these kind of attacks at scale

may exist in verifying the shared secrets are identical, as a Man-in-the-Middle is

unable to guarantee that the shared secret at each end point is the same. The

secret values themselves do not have to be compared to each other directly, only

that the values are identical.

Comparing the shared secrets at scale is difficult, as the in-band communication

is always susceptible to modification if a Man-in-the-Middle exists. Several

protocols use an actual or virtualised out-of-band channel for users to verify the

matching of shared secrets, though these are highly coupled to the medium used.

There is a potential for a protocol to provide benefit if shared secrets can be

verified to be identical in a way that an attacker can not easily influence.

Especially if such a protocol can operate with a level of independence from the

underlying protocol.

This dissertation presents a design for such a protocol, details the development of

a prototype implementation and the evaluation thereof.
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2 State of The Art

In reviewing the state of the art relating to post-facto detection of eavesdroppers

in supposedly secure communication, several topics of research are useful to

consider. Particular areas of interest include;

• The design, implementations and limitations of Diffie-Hellman

• Existing protocols designed to expose eavesdroppers in communications

• The reasons for creating such a protocol

• Technologies and techniques of use in designing a new protocol

2.1 Diffie-Hellman Key Exchange

Diffie-Hellman (also called Diffie-Hellman-Merkle, DH) is an method for the

exchange of secret keys, proposed by Whitfield Diffie and Martin Hellman, with

contributions from Ralph Merkle in 1976 [7, 8].

The Diffie-Hellman algorithm allows two or more parties that have no prior

interaction to establish shared secret keys over an insecure channel, through

exchanging non-secret information created by a function computed on secretly

held random values. The generated secret key can then be used to symmetrically

encrypt further communications between the parties.

The Diffie-Hellman key exchange protocol operates as follows; The two

end-points, often referred to as Alice and Bob, agree on two non-secret, prime

numbers, g and p, where p is a large integer value and g is a primitive root mod

p. Alice and Bob independently choose large random integers, a and b, to use as

their private key, which is kept secret and never transmitted over the channel.
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With p and g, each party can compute a non-secret value as;

Alice: A = ga(mod p)

Bob; B = gb(mod p)

Alice and Bob can now share A and B with each other and use these to

independently create the shared key as;

Alice computes;

K = Ba(mod p) = (gb)a(mod p)

Bob computes;

K = Ab(mod p) = (ga)b(mod p)

The shared key K can be used in a symmetric cipher to encrypt further messages

exchanged between Alice and Bob [8, 30]. Figure 1 shows this exchange in a

flowchart.

Prior to the development of Diffie-Hellman, a secure out-of-band channel was

required to exchange key information, which required time and investment and

was therefore inapplicable to a range of use cases. At the time of the

development of Diffie-Hellman, a suggested use case was in automated teller

machines (ATMs), which needed to be able to create secure keys for the

transmission of bank data. As these ATMs could be installed in relatively remote

locations, it was seen as important to be able to dynamically change keys without

transmitting any secret information either from the ATM or the issuing bank. As

technology advanced, the Diffie-Hellman exchange protocol was included in many

Internet security protocol specifications, such as TLS, which are commonly used

in e-commerce and securing private and personal information online.

The security of the Diffie-Hellman key exchange is achieved due to the

complexity of calculating a discrete logarithm over a finite field, making it

computationally and time intensive for an eavesdropper to calculate the secret

3



Figure 1: Graphical representation of the integer Diffie-Hellman exchange

key from non-secret information. Despite advances in computing power since the

development of Diffie-Hellman, the discrete logarithm problem is still considered

complex enough to provide security for modern usage [30].

2.2 Elliptic Curve Cryptography

The standard implementation of Diffie-Hellman, described in section 2.1, uses

prime integers as part of the calculation for the shared secret and as is referred to

as integer Diffie-Hellman. A potential change in coming years involves the use of

Elliptic Curve Cryptography (ECC), an approach to public-key encryption based

on the mathematical complexity of plotting points on an elliptic curve in

addition to the discrete logarithm problem.

Alice and Bob can choose a publicly available elliptic curve pattern and a

non-secret fixed curve point, F.
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Alice can then compute respective private and public keys as;

Private Key: Aprv - Random integer

This integer is multiplied by the agreed fixed point, F, on the chosen elliptic

curve to calculate another point, Apublic, which is used as Alice’s public key.

Public Key: Apub = (Aprv ∗ F )

Alice and Bob can then calculate the same secret key K using the following

formula;

Alice computes;

K = (Aprv) ∗ (Bpub) = (Aprv ∗ ((Bprv)F ))

Bob computes;

K = (Bprv) ∗ (Apub) = (Bprv ∗ ((Aprv)F ))

[16, 15]

The proposed benefit of Elliptic Curve Diffie-Hellman (ECDH) is in providing

comparable security to integer Diffie-Hellman with smaller key sizes and

significantly faster computation of secret keys [19]. This feature could be useful

in providing efficient security in low power devices such as wireless sensor nodes

and barebones style computers such as the Raspberry Pi [21].

ECC has not yet been widely adopted due to patents and intellectual property

rights on some of the functions critical to the operation of the algorithm,

however, when the patents expire ECC is considered likely to be adopted [17].

ECC is unlikely to fully replace integer Diffie-Hellman as many applications will

require backwards compatibility, though new developments and packages may

provide support for changing key agreement function.
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Figure 2: Graphical representation of ECC Diffie-Hellman

While the method for calculating the public and private keys is different, the

outcome of the private key calculation still be used to create the artifact used to

verify that the shared secrets are the same. This can be achieved by treating the

key, or a subset of the key, as an integer data stream allowing the method by

which it is calculated to be abstracted away.
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2.3 Man-in-the-Middle Attacks on Diffie-Hellman

Petraschek, Hlvacs et al. [22] illustrate a thought experiment called the “Chess

Grandmaster Problem”, wherein a dishonest player could beat a grandmaster at

postal chess by having a second grandmaster play a separate game as the

opposite chess player to the first. The dishonest player would then show the first

grandmaster’s moves to the second as though it was the player had made the

moves and the vice versa to the second grandmaster, creating the illusion the two

participants at the end points are communicating directly to the other. This

provides an analogue to a Man-in-the-Middle (MitM) attack on a communication

between two parties.

During the secret exchange process, the Diffie-Hellman protocol is vulnerable to

an attack where the attacker interposes themselves between the processes and

participates in two separate key exchanges. The attacker can then set up an

encrypted tunnel from each process to themselves, giving the end-points the

impression of having a direct, secure connection to each other. If the attacker

achieves this, they will be able to decrypt, modify, create and encrypt messages

to and from each party and impersonate either user to the other.

Figure 3: Graphical representation of an MitM in the Diffie-Hellman exchange
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In the case of a Man-in-the-Middle attack, an attacker can set up shared secrets

between itself and each party in the communication, but cannot ensure that the

two shared secrets are the same. This affords a capability of comparing the

shared secrets in a way the attacker cannot stop or modify, i.e. an out-of-band

channel, in order to identify the presence of an eavesdropper. Several protocols

exist that allow for such checks to take place through either physically or

logically out-of-band channels, for example ZRTP, however at Internet-level

traffic, such channels are unlikely to scale effectively.

The issue of Man-in-the-Middle attacks has been exacerbated by the discovery of

widespread usage of such attacks by government agencies as revealed by Edward

Snowden. News outlets [11] report that a previously secret operation, believed to

be run by either the American NSA or British GCHQ, called FLYING PIG,

which appears to show a Man-in-the-Middle attack operating against a Google

router. The attack decrypts secret communications and copies meta-data about

the communication for the intelligence agencies.

Various methods of mitigating or increasing the complexity of Man-in-the-Middle

attacks at run-time exist, such as password authenticated key exchange (PAKE)

and public key based operations, which allow processes to verify the identity of

the process they are communicating with. However, Callegati et al. [6] showed

that these methods have known issues, such as guessable passwords and

self-signed certificates tricking end users into erroneously accepting the forged

signatures. Certificate-based authentication is also vulnerable to corruption of

the signing authority, as was the case in the Diginotar breach, where signed

certificates were given to unauthorised users and exploited to gain access to

privately owned routers [11].
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2.4 Pervasive Monitoring

Pervasive monitoring is a term given to the widespread, non-targeted and often

warrant-less monitoring of large volumes of data, typically carried out by major

organisations, with or without the consent of the users, operators or owners of

the system. Concerns have been raised by human rights groups, Internet service

providers and the general public over the apparent lack of judicial oversight and

underhanded tactics in the collection of this data and implications to freedom of

speech and association. There has also been much investigation into how

complicit, willingly or otherwise, that major Internet Service Providers were in

the collection and sharing of such data. The scale of the surveillance and the

range of the affected parties created concern and much discussion among security

professionals, some stating that the issue of pervasive monitoring be treated as a

direct attack on the Internet. [29].

Evidence for the government’s use of pervasive monitoring of computer networks

has been mounting in recent years. In 2006, the Electronic Frontier Foundation

(EFF) received a testimony from Mark Klein, a former network engineer at

AT&T [27, 3, 2], stating that a fibre-splitter had been installed by the NSA in a

secure room, called “SG-3” or “cabinet 641a”. This fibre-splitter created a copy

of all of the Internet traffic coming through AT&T Internet services from its

customers. Once this data had been collected, it could be sorted and content

filtered according to user-defined rules and filters at the agent’s discretion,

implying that the original collection had not been targeted or limited as would

have been under an official warrant. The EFF went on to say that from Klein’s

testimonial and evidence of other AT&T-hosted NSA deployments, that the

equipment is far in excess of what would be necessary to monitor only overseas

traffic, and that the NSA could access around half of AT&T’s total

traffic [2].
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Revelations made by Edward Snowden to The Guardian [18] in 2013 state that

British GCHQ has a secret project, codenamed Tempora, wherein GCHQ taps

phone lines and Internet fibre-optic cable to collect, store and sort a vast amount

of traffic. As of the public discovery in 2013, the Tempora operation is alleged to

have been running for 18 months. Tempora is only a part of the far-reaching

surveillance program revealed by Snowden, with other operations targeted at

different social network platforms, service providers and hardware facilities such

as cloud hosting and the exchanges between them. Some of the data may have

been collected by the service providers for legitimate purposes, such as

accounting or auditing, then acquired by the intelligence agencies for other

purposes.

Other revelations made in the documents released by Edward Snowden included

the identities of countries involved, the United States, the United Kingdom,

Australia, New Zealand and Canada, to create the so-called “Five-Eyes”

partnership. This partnership included co-operation on a massive scale in order

to snoop on communications taking place over the transmission infrastructure in

their territories [2]. The EFF quote figures from journalist Glenn Greenwald to

illustrate the extent of the spying. These figures include; the NSA collecting 3

billion US telephone calls in 30 days, a single NSA “unit” collecting 97 billion

emails and 124 billion phone calls, and a total of 13.5 billion pieces of data from

India [27].

The large-scale tapping of fibre-optic cables is not a recent development, as

emails published by Cryptome [9] suggest that secret wiretaps may have been

installed on undersea cables as early as 2001. According to these emails, a

nuclear submarine would have been used to plant the wiretap on the cable,

indicating major support from military and government sectors over the

years.
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2.5 ZRTP

ZRTP is an extension for Real-time Transport Protocol, a method for the

Internet streaming of Voice-over IP (VoIP), which provides functions for

manually verifying that a Diffie-Hellman exchange took place without a

Man-in-the-Middle [33] attack. This technique uses a cryptographic hash

function over the shared secret, which the end users read and compare characters

from the output strings over the VoIP connection, using it similarly to an

out-of-band channel. If a Man-in-the-Middle is present, it is highly likely that

the shared secrets will differ, affecting the hash output and alerting the end

users [22]. The cryptographic hash must be short enough for human operators to

compare digits, but long enough to make guessing impractical. ZRTP using

base256 as the hash function results in an attacker having a 1 in 216 chance of a

correct guess. Much of the security afforded from ZRTP comes from the

real-time nature of the communication, wherein it is very difficult for an attacker

to interpose themselves quickly enough to avoid detection due to delays in

authentication responses.

Figure 4: Graphical representation of ZRTP

ZRTP is limited by its focus on VoIP, where the voice channel is considered a

separate channel to the connection initiation channel. In the case of text-based

communication over some transport protocol, a separate out-of-band channel is

unlikely to exist in a manner that will handle the scale of the proposed protocol.
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Petraschek, Hlvacs et al. [22] identify a number of vulnerabilities that exist where

the communication partners are not known to each other in advance. If the

end-users do not recognise the voice of the intended recipient, an active attacker

speaking in their own voice can more easily gain the trust if the end users and

pass off as legitimate. This attack, and others like them, rely on tricking or

confusing the end user, which is a concern in all security systems. A technical

attack, which may need to be taken into account in the design of the proposed

protocol is where an attacker forces the end user’s handset to verify every time,

annoying the user and complicating the process of differentiating legitimate users

from illegitimate ones.

Despite these limitations, many of the concepts covered in the design and various

implementations could be applied to the proposed protocol. The approach taken

in forming the hash for the authentication string could be useful, especially if the

string does not have to be human readable or memorisable.

2.6 Interlock Protocol

Rivest and Shamir [26] propose a protocol which creates a cryptographic

authentication code based on the shared secret that was created during the

initial exchange. This authentication code is sent in two parts between each

party encrypted with the other’s public key to be decrypted by the other party’s

private key. If an attacker is attempting to go without being detected, they will

attempt to avoid modifying any transmissions. If each party waits to receive a

half before sending the next half, the eavesdropper is unlikely to discover and/or

modify the authentication code quickly enough to avoid detection. The authors

state that an attacker should find it virtually impossible to create a message that

can be decrypted by each end point in time to avoid detection based on timing

differences in the exchange.
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Another stated benefit of this approach is that it forces an eavesdropper to act

non-transparently, which makes it more likely that they will be caught in the

long run. The authors claim that forcing the Man-in-the-Middle to take an active

role in modifying messages in stream would force them to reveal their presence

due to errors in either timing or authentication codes under separate security

methods. This kind of detection is especially useful in the case where an agency

carrying out the pervasive monitoring of Internet traffic wishes to avoid

detection, which is highly likely in most cases.

An issue with the interlock protocol is the necessity for 4n extra messages per n

Diffie-Hellman exchanges, which at Internet-scale becomes a large burden. This

is compounded by the necessity to wait for each half of the authentication code

before sending the next, causing longer latencies in carrying out Diffie-Hellman

exchanges and performance of the underlying protocol.

2.7 Cryptographic Hashes

One of the key aspects in computer security is verifying the integrity of the data

in storage or transmission [14, 23]; that the data has not been modified by an

unauthorised party or hardware or software fault. Cryptographic hashes are a

popular way of achieving this and are used in Transport Layer Security (TLS) as

message authentication codes, as digital signatures and for creating checksum

values for downloaded files.

A cryptographic hash function can take an input with an arbitrary length and

format to produce a fixed length output string. A secure hash function should

create outputs that significantly differ from each other, even if inputs are very

similar. For example even if two inputs only differ from each other by one bit,

the hash outputs should be very different. It should also be computationally

infeasible to craft a message that creates a specific hash, or to find two messages

that produce an identical hash value.
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Popular implementations of hash functions include MD5, SHA-1, SHA-2 and

SHA-3 [24, 23]. There is currently dispute in security circles over the efficacy of

MD5, as a potential crack has been found. While this crack is currently

theoretical, experts believe that it is worth deprecating use of MD5 in favour of

other available functions [31]. SHA-256 is currently the recommended standard

for new developments.

Cryptographic hashes are widely used to “scramble” data in a particular way for

storage, particularly of confidential user details such as passwords, so they are

not directly human-readable. However if an attacker obtains a copy of database

of the hashed data entries, they can perform an offline “rainbow table” attack. A

rainbow table attack is where a table of cleartext guesses are ran through an

identical hash function to identify hashed entries, as the hash outputs from two

identical inputs will be the same. To mitigate this threat, a non-secret “salt”

value can be stored alongside the hashed database entry [4]. When a user wants

to compare a cleartext entry to the salted and hashed database entry, they

combine the salt and the cleartext before running them through the hash

function. In order to perform the same type of attack, an attacker has to perform

the complete rainbow table attack with the salts for each entry, increasing the

time it takes to calculate every value in the database.

2.8 Anomaly Detection

The detection of anomalies within a dataset is a large area of study in the field of

mathematics, with technical implementations in on-the-fly and post-facto

analysis of potentially very large datasets. Hodge et al. [13] produced a survey of

various outlier detection methodologies based on Grubbs’s [12] definition of an

anomaly; “An outlying observation, or outlier, is one that appears to deviate

markedly from other members of the sample in which it occurs.”
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Outlier detection depends on the identification of patterns emerging in the data

set on which it operates, based on statistical analysis of subsets of the data.

Once these patterns have been established, any subset of the data can be

compared against the understood pattern to identify those that deviate from the

observed pattern. Detecting outliers in datasets can highlight areas in which

unusual activity took place, which can then be put to further investigation.

Hodge [13] also lists a variety of areas in which anomaly detection is used,

including; fraud detection, fault identification, image analysis and behaviour

monitoring. Zhang et al. [32] conducted a survey of anomaly detection in wireless

sensor networks, highlighting the role of machine learning and statistical

modeling in autonomous detection of outlier data. The focus on wireless sensors

is useful in this regard due to the necessity of low power consumption and

efficiency of computation as a result of low battery lifetime, where the principles

could be used to reduce the computational overhead against large datasets.

Furthermore, the unreliable nature of the devices used can be seen as analogous

to the unreliability inherent in Internet-scale data collection, submission and

analysis, with similar solutions useful in each case.

In the protocol proposed in this paper, expected operation of the Diffie-Hellman

protocol will be considered to produce baseline or “expected” readings, with

Man-in-the-Middle attacks being treated as outliers [10]. Causes of outlier

readings in the case of analysing cryptographic artifacts based on the

Diffie-Hellman exchange include;

• Clients (intentionally or otherwise) submitting erroneous data to the

database

• Pervasive MitM attack causing differences in collision rates

• Network failure

• Hardware or software failure
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The rates at which these are encountered are highly dependent on the use case

of the proposed protocol and the protocol that makes use of the Diffie-Hellman

exchange, so no one set of readings can be treated as a concrete baseline across all

implementations. Further details on causes of variations are listed in section 3.1.2.

There are also likely to be fluctuations in the patterns due to the bursty nature

of communication on the Internet and various hardware or software faults causing

ongoing differences, so human understanding is required to make a decision based

on the findings.
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3 Experiment Design

The experimentation is be split into two major areas;

• Developing a prototype post-facto detection protocol

• Simulating probabilistic detection of an MitM at scale

The proposed protocol has been given the title ”MAYBE”, a backronym for

”MitM- Are You Being Eaten?”. Developing an instance of the MAYBE protocol

will demonstrate the viability of capturing useful information, anonymising that

data to protect privacy and using that data to draw conclusions about the state

of the network.

Simulating the probabilistic detection will be used to judge if pattern analysis

the small scale of the experiment can be scaled to implementation at larger

deployments.

The MAYBE protocol has a number of key functional areas needed to operate

effectively. These include;

• Capturing information from the DH exchange to create a ”MAYBE tuple”

– A method of identifying data from the same exchange without divulging

participant identities. Hereafter referred to as a session ID

– An artifact of the DH exchange that can be used to verify the shared

secrets are the same. Hereafter referred to as a witness value

• Storage of data and interpretation of results

– Converting information in the database into an heuristic diagnosis of

the existence of an MitM

• Addressing vulnerabilities in the implementation of the MAYBE service
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A high-level overview of the construction of a MAYBE tuple can be seen in figure

5.

Figure 5: Structure and creation of a MAYBE tuple

3.1 Requirement Analysis

3.1.1 Creating Session IDs

As the database will contain a potentially very large set of information that

could be privacy-sensitive, security concerns regarding this data must be

considered in the design for the protocol. In a naive implementation, this

information could be used to infer the identities, volume of communications and

timing of communications of participants.

To protect the users providing information to the database, cryptographic hashes

could be used to create one-way hash of identifying data in a way that an

attacker is unable to easily infer data from, but act as a database search key for

users supplying the information to locate their entries in the database.
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Choosing the inputs to create this session ID is non-trivial, as any in-band

communication is susceptible to manipulation by a MitM, yet both end-points

should ideally calculate the same value. Several possibilities to create session

identifiers to use as a session ID were considered, illustrated below;

• IP/Port No. Using some combination of the Internet Protocol (IP) address

and port number of the communicating parties as a session ID, potentially

with an agreed salt or timestamp to differentiate multiple DH key

exchanges between two parties. Due to the common use of network address

translation (NAT), it is possible that either or both parties will see the

NAT-box IP address and port instead of the endpoint IP address and port,

resulting in mismatched Session IDs. IP addresses remain a valid choice if

it is known the parties communicating are not using NAT.

• DNS Name Potentially more resilient than using IP addresses, the Domain

Name System (DNS) name for the intended end-point servers or services

could be used similar to IP addresses detailed above. However, this relies

on the security of the DNS and its resilience to various attacks to provide

identical session IDs. However, if the parties are aware of the limitations of

using DNS entries, then using DNS names could be a useful solution for

small-scale implementations of the MAYBE protocol.

• Timestamp A timestamp would be useful as part of the generation of a session

ID, as it could be used to differentiate repeated DH key exchanges between

two endpoints. The granularity of these timestamps need to be set coarse

enough to deal with time synchronisation in distributed systems, yet fine

enough that the timestamp values are not easily guessable. The timestamp

must not be usable to infer the identities of the endpoints by comparing the

stored values with DNS lookup information.
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• Assigned UUID The operator of the MAYBE server could provide

participants with a set of difficult to guess Universally Unique Identifiers

(UUIDs) for use as part of their session ID, which could be concatenated

together to create a unique session ID over an TLS connection. This

creates additional computation and communication overhead on all parties,

and the endpoints must trust the MAYBE operator, who would have

information on the parties exchanging encryption keys. This could be

considered in organisation-scale use cases, where a network administrator

with some level of escrow is already accepted.

• Application Layer Protocol Some identifier from the protocol that the

Diffie-Hellman exchange process is protecting could provide a part

identifier, for example SSH or IMAP could have agreed ID. These IDs

cannot be used alone, as many protocols are reused between two parties.

• Random Integer Range Having each endpoint choose a random number

within an agreed range will not result in each party choosing the same

number every time, however, a MitM would be unable to influence the

decision. This method could scale better than the other options as there is

less processing, management and communication overhead. However, many

of the entries in a database in this system will be mismatched, so the

chance of detecting a specific instance of an MitM is lowered under this

system alone.

Ideally, a combination of the above methods could be used and the combined

information converted into a single hashed string. Potentially a combination of

timestamp, DNS names of participants and a short random could be used together

to make a session ID that has little chance of re-occurring, especially in a single

investigation period. The short integer is used to configure an ”expected”, or ideal

level of hash collisions of session IDs in the database.
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For the purposes of this prototype protocol, random integer ranges will be used to

create the session ID. This choice was made due to the constraints of this project

and to provide data which can be used to extrapolate the effectiveness of the hash

collision comparisons.

3.1.2 Random Session ID MAYBE

Throughout the document, the following terms will be used to describe the

results of comparing database entries that form tuple pairs that represent each

side of the Diffie-Hellman key exchange. For each of the tuples in the MAYBE

database, there could be four events;

True Positive MitM present & session IDs mismatch for same witness value

True Negative MitM NOT present & session IDs match for same witness value

False Positive MitM NOT present & session IDs mismatch for same witness value

False Negative MitM present & session IDs match for same witness value

Table 1: Possible tuple session ID comparison results for tuple pairs in the random

session version of MAYBE

Even in intended operation of the MAYBE protocol with no MitM present and

all exchanges uploading both sides of an exchange, most entries in the database

will be a false positive, as defined in table 1. This is expected and intentional, as

changes in the ratio of true negatives to false positives are key to the

probabilistic detection of a pervasive MitM.

A false negative in this scenario is considered unlikely unless the attacker

deposits multiple values in the database, which can be identified as a separate

attack. While such an attack is not directly indicative of a Man-in-the-Middle

attacker, it should arouse the suspicions of the database operator and the

contributing parties.
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Methods of detecting and preventing this kind of attack could include;

• Submitting to the MAYBE database requires a login

• More than the expected number of entries for a single witness value raises

an alert

• Unusual differences in timestamp values

• Unusually large amount of deposits from a single IP address or range

Other methods to protect databases available on the Internet should also be

considered, such as authentication (depending on use case) and Denial of Service

(DoS) protection methods.

In the case where a random session version of MAYBE is used, the randomness

in the search key means a false positive in a tuple pairing match is not only

possible, but relatively likely. Therefore, in order to draw conclusions on the

presence or absence of a man-in-the-middle, as statistical analysis must be

performed on a subset of the data, in order to ascertain the ratio of true and

false positives to true and false negatives. With a two party implementation of

Diffie-Hellman and a range of integers, I, the expected number of false positives

in a set of tuples representing T Diffie-Hellman key exchanges is calculated

as;

Expected No. Positives =
T

I

This formula assumes all tuples in the data set have used the same I and that

both parties have deposited their respective witness values. Values for I and T

will vary greatly depending on the deployment and scope of the MAYBE

deployment. Discovering the most effective balance of I to varying levels of T

will be a useful area of inquiry. The value of the expected number of positives

will also be referred to as the expected collision value (eCV).
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If the difference between the expected and actual number of positives found from

the data set varies by more than a certain tolerance, an alert should be raised.

Possible results of the comparison operation can be seen in table 2.

Condition Heuristic

Expected >Actual Possible database manipulation

Expected ≈ Actual “Expected” operation

Expected <Actual Possible pervasive MitM

Table 2: Database search results and heuristic rules for the random session version

of MAYBE

As the actual collision value will vary even when the number of Diffie-Hellman

exchanges, random range and upload success rate are the same, the threshold at

which heuristic decisions are made must be set accordingly. These threshold values

must be set at points where intended operation is unlikely to trigger an erroneous

MitM detection.

3.1.3 Session ID Alternative - CallMe

If participants are willing to relinquish some of the anonymity in using session

IDs as in section 3.1.1, additional information could be captured in the MAYBE

tuples to improve the quality of the detection methods. A variant using a string

identifier, termed a “CallMe”, as the session ID for a group of transactions to

create an identifiable subset within the data set. This CallMe can be changed

at intervals, and a range of identical CallMes used to identify a subset of Diffie-

Hellman exchanges, taking place under certain similar conditions, such as the same

server or the same domain.
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Figure 6: Graphical representation of client DH exchanges and MAYBE deposits

with heuristic detection in the CallMe version

CallMes can be seen as analogous to using UUIDs as described in section 3.1.1,

though with some level of delegation available in the choice and construction of

the string, depending on the implementation of the MAYBE system. It should

also be noted that this version requires changes to the protocol between the

participants carrying out the DH exchange, whereas the random session version

does not.

24



Along with the CallMe value, the witness value and associated meta-data create

the MAYBE tuples in the public database similarly to the random session

version MAYBE database. Storing this information anonymises some of the

privacy-sensitive data, yet allows more granular analysis of the patterns in

deposits. These analyses could be used to identify pervasive man-in-the-middle

attacks or if an attacker is aware of the existence of the protocol, discourage the

opportunistic interception of transmissions.

The CallMe version is hypothesised to work in a more distributed manner than

random session, where many separate MAYBE servers can serve a subset of the

total transmissions in a network. Depending on the underlying protocol that

Diffie-Hellman exchange is being used to secure, different ratios of deposits from

server and client could be expected and these differences could be allowed for in

having different MAYBE servers for different protocols. The use of CallMes to

differentiate groups also allows the possibility to have different protocols

committing to the same MAYBE database, with the CallMes differentiating

between them.

The most important part of the protocol is that the server maintains a log of the

Diffie-Hellman exchanges, in particular the witness values, associated with each

CallMe that they have used. This log contains the local knowledge of the

exchanges that took place, which can then be compared to the MAYBE

database, and if available, the respective client tuples. While there are other

detection metrics available in this version, as described in section 5.2.1, this

comparison of local logs to the database is where the strength of using CallMes is

demonstrated.

The source of the CallMe strings could vary depending on the use case of the

MAYBE deployment. A MAYBE operator may choose to assign particular

CallMes to participating servers in order to manage their usage centrally,

allowing for easier detection of fraudulent CallMe data.
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However, centralised management does not scale well to Internet-level

deployment, though may still be applicable at the scale of organisations and

businesses. An alternative method is to allow server operators to assign and

manage their own CallMe strings, and treat the MAYBE database as simply an

external repository. This scheme delegates more authority and responsibility to

the participating servers to keep accurate logs and change CallMes appropriately,

though the delegation improves scalability.

Figure 7: Flow chart describing the the CallMe version, showing the processing

and interactions between the MAYBE server, participating DH exchange providers

and clients
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Using CallMes allows the MAYBE protocol to be used for different protocols

with different characteristics that would affect deposit rate, such as reliability of

connection, hardware and software heterogeneity and scale of deployment. This

would lead to variances in the tuple matching rate even without the interference

of a pervasive MitM.

Using the CallMes to identify sessions rather than the randomised integers in the

design proposed in 3.1.1 places different requirements on the users of the

MAYBE service, where the MAYBE participants providing DH exchanges keep a

count of how many DH exchanges occur under a given CallMe. This count, n,

can then be used as a base value upon which to perform various calculations on

collected datasets as table 3 illustrates.

DB count: CallMes Heuristic

≈(2n) Expected operation with fluctuation tolerance

n Only one party is contributing witness values

<(n) The database is being manipulated

>(2n) More witness values than expected, possible naive MitM

Table 3: Heuristic diagnoses based on possible results from comparing the total

number of DH exchanges under a given CallMe, n, and the number of records in

the MAYBE database for that CallMe.

These heuristics can be converted into SQL queries in a similar fashion to those in

the random session ID versions as described in section ??. As there is more meta-

data stored regarding each Diffie-Hellman exchange, more metrics are available to

detect a man-in-the-middle attacker across a data set, as well as making it more

difficult for any attacker to deposit fake values whilst avoiding detection.
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3.1.4 Hypothesised Threat Model

As discussed in section 2.4 on Pervasive Monitoring, the attack the proposed

protocol must address is the non-targeted, dragnet-style Man-in-the-Middle

attacks against large volumes of transactions. The agents responsible for this

kind of attack are likely to be well funded and supported, intelligent, motivated

and aware of the existence and operation of both the proposed MAYBE protocol

and the underlying protocol. Despite these advantages, in most cases the

attacker will also need to act transparently for periods of time and adapt to

avoid detection from a variety of actors, such as end-users, system

administrators, software developers and service providers. Most organisations

responsible for carrying out this kind of dragnet surveillance have a strong

motivation to remain undetected, as discovery has lead to public outrage and

political pressure in the case of the Snowden revelations and criminal prosecution

in others. Compounding this, if their target becomes aware that they are under

surveillance, they will likely change their behaviour or take technical, operational

or legal steps to avoid further interception of their communications.

As the proposed attacker is likely to be aware of the existence, operation and

even parameters of the MAYBE protocol, it is highly likely that they will take

steps to avoid detection in this manner. The agent or organisation could modify

their attacks in response to the parameters governing the operation of the

protocol, for example, choosing opportunistic attacks or attacking fewer total

Diffie-Hellman exchanges to lower their presence on the rate of session ID

matches. This could be considered beneficial, as the attacker must make guesses

as to the “safe” amount of traffic they can interfere with to avoid detection

instead of capturing everything and as such, a subset of the exchanges taking

place would take place without interference. However, some methods should be

put in place to further complicate this process for an a attacker and increase the

likelihood of detection.
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A relatively simple method could involve changing the values of I and T across

all parties participating in the MAYBE database at semi-random intervals,

though this has scaling issues in updating clients providing information to the

database. Regardless, forcing an attacker to take an active role in attempting to

avoid detection could be considered a minor victory, as it both increases the

complexity of the attack and makes an attacker more likely to be caught by other

measures.

An opportunity exists for operating a protocol with a low detection probability

(less than 1%) as a “canary”, a process that can be executed in a batch

operation to detect possible Man-in-the-Middle attacks on a very large amounts

of data. “Canary”, as used here, in reference to canaries in coal mines, where

their sensitivity to the harmful conditions served as an early warning of a

dangerous situation. As above, an attacker aware of this kind of collection of

data must take care that they do not affect enough of the participating parties to

be detected. However, without information about the volume of transactions to

be monitored or the expected percentages, an attacker has to make a

complicated series of guesses on a number of different variables affecting the ratio

of expected to actual collision values. This kind of operation could also benefit

from server operators with different instances of MAYBE using the same random

ranges to compare data sets offline without divulging information at run-time,

such as the timings of transactions.

3.1.5 Vulnerable Meta-data

Meta-data created during the Diffie-Hellman exchange must be protected, as this

information could be of use to an organisation carrying out pervasive monitoring

of communications. This meta-data could constitute a breach of a user’s privacy

even if the actual data exchanged remains secure. Pervasive monitoring agents

target this meta- data, such as the number, direction, pattern and duration of

connections to infer information that users would like to keep private [28].
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The format and content of the tuples in the MAYBE database should also take

into consideration the sensitive nature of the transmissions they are used to

protect and be designed appropriately to avoid revealing this information.

Therefore, information used for each field in the database should not offer a third

party any advantages in learning about the nature of the transactions. Section

3.1.1 details how the session ID is created and section 3.1.6 illustrates the details

of the witness value; the artifact of the secret exchange that can be publicly

posted and compared.

The meta-data fields associated with the session ID and witness value must also

be designed to not divulge privacy-sensitive information. The timestamp

associated with the MAYBE tuple must be set at a granularity that complicates

the process of comparing timestamps from the database with information such as

the timing information on DNS name lookups to correlate tuples with identifying

information.

3.1.6 Witness Value

The witness value that will be uploaded to the publicly viewable MAYBE database

is an artifact of the shared secret that is established during the Diffie-Hellman

exchange. As an MitM is unable to guarantee that the endpoints affected will

generate the same shared secret, the difference in the artifact produced will reveal

them or force them to act in a non-transparent manner to avoid detection [33].

This principle has been used successfully in other protocols, such as ZRTP as

described in section 2.5. A secure hash algorithm, e.g. SHA-256, will be used to

create a value that can be uploaded to a public database without compromising

the security of the key.
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3.1.7 Bulk Upload

The design of the MAYBE protocol allows for tuples to be uploaded after the

Diffie-Hellman exchanges have taken place, instead of during the key exchange

process itself. Clients or system administrators responsible for those clients may

choose to delay uploading to the database for a number of reasons, including;

• Delaying upload of recently used keys

• Avoiding busy times in their local network

• Efficiencies in authentication methods for uploads

• Various other management or administration concerns

This necessitates a mechanism for uploading files containing records of DH

exchanges, each record with the required information for the MAYBE tuple.

Common technologies used to implement bulk upload include XML files and

CSV files. Both of these require a pre-defined format for capturing and storing

relevant information for later upload even if the transaction has been finished

and the key deprecated.

Enabling bulk upload creates vulnerabilities that must be addressed, allowing an

attacker to affect the database in various ways, such as;

• Bulk upload of falsified information

• Replay attacks of previously observed CSV files

• Modifying legitimate CSV files in transmission

• Impersonating a MAYBE server to receive CSV files from legitimate clients

• False positives caused by difference in bulk upload times of participants
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Some of these concerns could be alleviated by having user authentication and

data integrity checks on bulk uploads. Using public key cryptographic techniques

for mutual authentication and message authentication codes could increase the

protocol’s resistance to these kind of attacks by ensuring the integrity of the

MAYBE information and the identity of the submitter. However, this requires

the participants provide some identifying data, even if only visible to the

MAYBE server operator, which may be undesirable in some use cases.

3.2 Security Considerations

An important trade-off in the design and implementation of MAYBE is the need

and desire for privacy versus identification of parties submitting to the database

for auditing and authentication. Therefore, careful consideration must be taken

over vulnerabilities that may be created in developing and deploying the

MAYBE protocol and how best to address these.

The security considerations addressed in this section cover both protecting the

MAYBE database against attackers and protecting confidentiality of the

participants and their respective Diffie-Hellman exchanges.

3.2.1 Database Security - Depositing Witness Values

A basic attack against a naive implementation of a protocol similar in intent to

MAYBE, would be for an MitM attacker to deposit session IDs and witness

values for the attacked endpoints. This is addressed using session ID with a long

enough random range that an attacker would need to deposit a large number of

guesses in order to match the real session ID. Spamming the database in this way

is not directly indicative of a MitM attack, but will arouse a great deal of

suspicion, something an agency engaged in pervasive monitoring will wish to

avoid.
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Methods for detecting these kind of attacks exist in technical implementations

for protecting Internet accessible databases as discussed in section 3.1.2. This

kind of attack could also be detected if a single witness value has more than the

expected number of entries with different session IDs, especially if the

timestamps are close together.

3.2.2 Database Security - Random Database Spam

Similar to depositing witness values with different session IDs, spamming the

database even with completely fabricated data will create an overhead on the

database, as a large number of tuples could be inserted in a short period of time.

Due to the suspicious nature of an attack like this, an alert should be raised to

the MAYBE database operator. It may also be beneficial to have an automated

defence, preventing overload while retaining log information that could be used

in an investigation. Many server technologies provide some level of functionality

for detecting and dealing with spam.

However, the defences need to be balanced against an attacker firing many

requests and stopping any legitimate requests from being added to the database.

Again, the techniques discussed in section 3.1.2 will be useful in mitigating these

kind of attacks. Key properties in choosing the specific technique will be focused

on detecting and discarding fraudulent data while allowing legitimate users to

continue as intended.

If the users are willing to surrender some anonymity to increase the accuracy of

the data, different methods could be implemented to authenticate users and

make differentiation of legitimate submissions easier. Even if this data is not

stored, complicating the process of mass uploading tuples could dissuade

opportunistic attacks of this nature.
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3.2.3 Database Security - Prevent Database Read/Write

If an attacker is able to prevent MAYBE protocol users from writing their data

to the database, they may be able to avoid detection based on session ID/witness

value comparisons. This is a much more active attack but could be used by

various entities in parallel with MitM attacks, especially in the proposed case

where the agency responsible for the pervasive MitM attack is well funded and

supported. Attacking the MAYBE database, or the path from the users to the

database is a completely different kind of attack with various additional

difficulties, though not insurmountable to a skilled and dedicated attacker.

Evidence of this kind of attacks could be seen in the timestamps of the session

tuples, where a sudden gap in otherwise regular updates could be seen. This is

dependent on the usage of the underlying protocol that is being protected by the

Diffie-Hellman exchange, as the bursty nature of many communications may

make this kind of prediction difficult or impossible.

If clients keep records of the data that they have uploaded, or at least believe to

have uploaded, querying the database for that specific tuple would show if the

information had been uploaded and saved successfully. If data is removed from

the data for legitimate reasons, such as database size management, querying for a

deleted tuple should not cause a false alert.

3.2.4 Database Operators - False Alarms

A common attack against any security protocol is to repeatedly cause false alarms

in the hope that the operator will disable or weaken parts of the security service

out of sheer frustration. In this scenario, if an attacker can mask their identity

and intention could repeatedly cause minor “nuisance” alerts, they could reduce

trust in facets of the MAYBE system.
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Examples of this kind of annoyance attack include;

• Annoying a MAYBE operator into relaxing tolerances on detection methods

• Annoying clients into ignoring or withdrawing from the MAYBE system

• Causing dynamic variables such as tolerance values to creep up or down

Reducing the total volume of alerts is a key element of mitigating these kind of

attacks, as well as a keen understanding of the threat model the protocol will be

encountering. As in section 3.2.2, an automated method of catching repeated

entries into the database is needed, as well as alerting the system operators to a

possible side-channel attack.

Participants and MAYBE operators should be informed as to the nature and

capabilities of the attackers and the tactics that they may use in order to affect

the MAYBE service. This is especially important as the adversary will likely be

well aware of the existence of the MAYBE protocol and seek to find ways of

reducing its effectiveness.

3.3 Design Choices

3.3.1 MAYBE Database Implementation

For the purposes of this experiment, the database will be implemented as a

monolithic entity, hosted separately to the parties taking place in the

Diffie-Hellman exchanges. This choice is made to reduce the overhead of

managing a distributed solution and focus on the key feature of probabilistic

detection of pervasive MitM attacks based on available data. This

implementation is less likely in an Internet-scale deployment, where replication,

security, availability and performance are key concerns, but may be seen at

organisation or corporate level.
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Further research could consider how distributed system principles could reduce

the load on individual database operators, as well as make it more difficult to

coerce the operators of the database.

In a real-world implementation, this monolithic database could be operated by

an existing organisation that is trusted by many parties, such as the Electronic

Frontier Foundation. The choice of host would be important, as the reputation of

the operator will affect the public’s trust in the results from the MAYBE

calculations. The database operator must also be trusted to not add falsified

data or remove legitimate data in order to affect the calculations.

The database used in the experiment could also represent a MAYBE

implementation where each MAYBE database acts separately from other

MAYBE databases, where different Diffie-Hellman transactions go through

different databases.

3.3.2 Source and Range of Random Integers

The source and the range of the random integers from which the participants

select a session identifier is highly dependent on the use case of the MAYBE

protocol and the nature of the participating communications. The parameters of

the random range as well as the frequency of changing this is a decision left to

the MAYBE database operator, who should consider the operation environment

of the participating clients. The factors to take into consideration include;

• Volume of Diffie-Hellman exchanges

• Risk factor of a pervasive MitM

• Ability to update participants (uptime, dissemination of information)

• Existence and operation of collaborating MAYBE servers

36



The random range could be set by the database operator or set dynamically

based on the number of the entries coming into the database, with wider ranges

corresponding to a higher volume of Diffie-Hellman exchanges.

Changing the range and volume of tuples included in the calculation could be

beneficial to prevent the attacker from being able to ascertain a comprehensive

model of the MAYBE calculation.

3.4 Simulation Parameters

To simulate probabilistic detection at scales larger than the prototype protocol

can create, a larger data set will be extrapolated from the data captured during

testing the prototypes. This data set will mimic as closely as possible the results

of the protocol if it were to be ran over a longer period of time than is available

for this project. The statistical analysis process will also be emulated against the

large data set, with all the benefits and limitations of the knowledge as would be

experienced in a full implementation with a number of clients.

Firstly, a control group will be created, based on the contents of the MAYBE

database during intended operation of the protocol, where an MitM attacker is

not present and all parties deposit correct tuples. Analysing the results of the

same statistical modeling processes as in the prototype will identify if the

patterns and detection heuristics apply at larger scale. This control group will

also serve to provide a baseline with which to compare the results of further

iterations with alternative datasets.

The data set will then be modified to simulate the results of a pervasive MitM

attacker affecting varying percentages of Diffie-Hellman exchanges as seen in the

MAYBE database.
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As in the control group, the same analysis will be performed on the modified

dataset to test the efficacy of detection with different levels of interference from

unintended parties. Comparing these results to the results acquired from analysis

of the control group, analogous to comparing expected and actual collision value,

will illustrate the level of penetration that a MitM attacker can operate at

without arousing suspicion through heuristic methods. The hypothesised results

are that the greater the penetration of the attacker throughout the data set, the

greater the difference between the expected and actual collision value will be.

The control group will then be modified to simulate the case wherein less than

100% of Diffie-Hellman exchanges have both tuples uploaded to the MAYBE

database, i.e. a key exchange occurred and only one parties information was

uploaded and stored correctly. The hypothesis is that the reduction does not

hugely affect the statistical modeling, though it is accepted that some of the

“resolution”, or the precision of the degree to which the expected and actual

collision value differ.
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4 Implementation

The prototype MAYBE protocol developed in this project is divided into several

interoperating sections, corresponding to different agents in the MAYBE system;

• The MAYBE servers and databases

• Participating servers carrying out Diffie-Hellman exchanges

• Clients in the DH exchange

Each section comprises of various technologies and functional areas, the most

important of which are detailed below.

4.1 Deployment Details

4.1.1 MAYBE Server and Database

For both variations of MAYBE, the data was stored and queried in a MySQL

database, running on an Apache server using PHP and JavaScript to interface

between the client, the web server and the MAYBE web server. This technology

stack is a common deployment in the real world, and all the technologies listed

are widely used for a variety of applications. PHP and MySQL are known to

scale well, allowing the MAYBE database to operate at Internet-scale. The above

technologies are also largely platform independent and content delivery over

HTTP allows the Diffie-Hellman exchange and MAYBE protocol to operate on a

variety of devices and operating systems. Where HTTP, JavaScript and/or PHP

are unavailable, a native implementation of MAYBE would be required, though

perhaps only in the modules where the provided languages do not function

effectively.
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Using a combination of HTTP, JavaScript, PHP and SQL, the MAYBE server

can accept and process MAYBE tuples from clients and servers, extract and

parse the data and add it to the relevant database. The reporting page uses the

same technologies to return information extracted from the database in response

to queries from the participants.

To simplify installation, the WampServer package [1] was used to create a

deployment configuration with close similarity to real-world implementations

where WAMP or LAMP (Linux/Unix, Apache, MySQL, PHP) are widely used.

Using this kind of package solution is a major factor in convincing end users to

participate in the MAYBE protocol, where quick install, minimal configuration

and low operation overhead are considered necessary to encourage widespread

adoption.

4.1.2 Sample Participant Web Servers

The servers providing the Diffie-Hellman key exchange are running on Apache

servers and written in PHP and HTML. Constructing Diffie-Hellman key pairs in

PHP was accomplished using the crypt_DiffieHellman package from PEAR [5].

This package allowed users to construct entirely new keys and to create key

values based on received non-secret data. These calculations are based on integer

Diffie-Hellman, though as discussed in section 2.2, the method for creating the

secret key is abstract for the purposes of the MAYBE protocol. As long as the

key can be treated as an abstract block of data to be calculated in the witness

value function, the calculation function, key length, programming language and

implementation can be changed as required.

In order to simulate the CallMe version, five web servers were created with

separate CallMe identifiers that would accept client requests to perform a

Diffie-Hellman key exchange. The client can connect to the server and request

the respective server’s CallMe and initiate a Diffie-Hellman exchange.
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As the server calculates the Diffie-Hellman values necessary to calculate the

shared secret and the non-secret values, the server can create the witness value

for upload to the database. The non-secret values can then be sent to the client

and the Diffie-Hellman exchange continues as normal. The server’s side of the

MAYBE data can then be uploaded either immediately or stored for later upload

as part of a batch operation.

In addition, the MAYBE data is appended to a log file on the web server in a

comma-separated value (CSV) format, which can be kept and used to query the

MAYBE database through the reporting page.

An alternative way of implementing CallMe requests is to have a well-known

uniform resource identifier (URI) as defined in RFC 5785 [20] for web clients to

request the CallMe string. This would allow a single URL to be used for clients

to request the web server’s CallMe string by making an HTTP or HTTPS

request for; https://www.[website-address]/.well-known/get-CallMe.

4.1.3 Web Clients

To model the heterogeneous nature of devices and communications on the

Internet, various clients were used to connect and request DH exchanges under

the MAYBE system. These included;

• Laptop running Windows 7 connecting to a locally hosted server

• PC running Windows 7 connecting to a remote server

• Android mobile device connecting to a remote server
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The client systems allowed experimentation and testing with a selection of

popular web browsers, such as;

• Mozilla Firefox 31.0

• Google Chrome 36.0

• Microsoft Internet Explorer 11.0

Using the above hardware and software configurations, the client connected to a

particular web server and requested the web page to begin a key exchange. The

server would provide the relevant page containing the information necessary for

the client to carry out the Diffie-Hellman calculation and produce the necessary

MAYBE information. In both versions of MAYBE, once the key exchange has

been completed the client, using embedded JavaScript, uploads their part of the

MAYBE tuple pair to the MAYBE database.

The random session MAYBE version has the client decide on a safe prime and a

generator and send it to the server over an insecure HTTP POST message. The

server then calculates the shared secret based on the received value from the

client as well as their non-secret key, which is returned to the client by another

insecure HTTP request. The web client can then take the received public key

from the server and calculate the shared secret key for the Diffie-Hellman

calculation. The client process will the calculate the witness value based on the

calculated secret key, choose a value from the random range and upload their

tuple to the MAYBE database.

In the CallMe version, the server will provide the CallMe to be used, available on

the HTTP page as delivered, and a mechanism for the client to request a

Diffie-Hellman key. As in the random session version, the server will calculate

and upload their part of the Diffie-Hellman calculation and return the non-secret

key to the client over an insecure HTTP form.
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The client can then calculate the secret key and continue with the Diffie-Hellman

exchange and whichever cryptographic processes it was being used for. The

witness value can then be created based on the secret key, appended to the

CallMe string and associated meta-data and uploaded to the MAYBE database.

Both versions make extensive use of JavaScript code embedded on the web page,

which requires that client’s web browser plug-ins and permissions must be set to

allow JavaScript to be executed. Knowing the proportion of clients using the web

service that allow and disallow scripts becomes very important as this too will

affect the ratio of server submitted MAYBE tuples to client submitted MAYBE

tuples.

This method of carrying out DH exchanges was chosen to emulate the TLS DH

exchange, without having to modify the web browsers, as would be the case if

adhering to RFC 5705 [25]. The emulated version has the client choose a prime

using JavaScript on the web page and post the DH non-secret data to the server

in an HTTP message. In the real world, the browser itself carries out the TLS

DH exchange and only a TLS extractor value is used for the MAYBE

information.

4.1.4 Changes Required to MAYBE Participants

A key principle guiding the design and development of both versions of the

MAYBE protocol was to avoid creating additional requirements on existing

processes and services that could participate in exchanges. To achieve this,

processes outside of the probabilistic detection were treated as abstract and as

far as possible were treated simply as data sources arriving through the MAYBE

application programmable interfaces (API).
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The MAYBE protocol could be seen from an external developers perspective as a

set of APIs or remote procedure calls (RPCs), meaning the developer of an

application wishing to take part in the MAYBE service has little input or

configuration to do with the MAYBE system itself. As long as the developer can

provide a value based on the Diffie-Hellman exchange to use as the seed for the

witness value and set random ranges or CallMes as appropriate, the protocol can

operate effectively.

In the CallMe version, the web service provider must be able to create or receive

the CallMe identifier strings and record how many Diffie-Hellman exchanges take

place with a particular CallMe. In addition to this, the server must also keep an

approximate record of how many of those clients are likely to have issues

uploading their part of the MAYBE tuple, such as those with JavaScript

blocking or clients that appear to fail during the exchange process. This record

can be useful when comparing the local data with the MAYBE database to

identify where suspected client failure caused the tuple pair mismatch, which is

separate from a pervasive MitM attack.

4.1.5 Deployment Summary

Figure 8 shows the technical architecture of the MAYBE system. Both the

random session and CallMe versions use the same technologies to provide the

different functionalities. Many of the technologies outside of the MAYBE server

can be replaced without changing the functionality of the system as a whole.

The technologies were chosen to support a level on heterogeneity between

instances of the protocol, where different technologies can be used without

modification to other major parts of the system. Using HTTP and HTTPS

requests for communication between parties allows the scripting languages and

database interactions to be changes without modifications to unrelated modules

of the MAYBE system.
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Figure 8: Technical architecture of the CallMe version

For example, the clients and servers in figure 8 could be reprogrammed in Java

and communicate using SOAP objects for the Diffie-Hellman exchange, as long

as the MAYBE server receives the relevant MAYBE information, the data can be

parsed and added to the database.
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4.2 Overview of Functional Areas

4.2.1 Database Design

The design of database to store the MAYBE tuples from participants was a key

part of the design of MAYBE system as a whole. As sections 3.1.1, 3.1.2 and

3.1.3 show, the database is key to storing and querying the MAYBE data from

the participants and for each type of statistical analysis. The database should be

designed with the following criteria in mind;

• Independent of data origin

• Able to store large quantities of data

• Efficient to query

• Highly scalable

Using MySQL and Apache servers provides technical solutions for scaling and

replicating the MAYBE database, where additional instances of the server and

database can be created. Therefore, the database structure must be created in

such a way to make updates, querying and management as easy and efficient as

possible.

The structure of the database table for the random session version of MAYBE is

described as;

maybe_list[pk_maybe, session_id, witness_value, upload_timestamp]

And the CallMe version;

maybe_list[pk_maybe, callme, witness_value, timestamp, from_server]
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The tables described above are enough for the bare bones operation of each

version of MAYBE, but lacks authentication or assigned CallMe functionality.

Figures 9 and 10 show the database tables and data types as implemented in the

MySQL server.

Figure 9: Database structure for random session version

Figure 10: Database structure for CallMe version

Both databases have several fields in common that store data that are necessary

for each version of MAYBE;

• pk_maybe - The database primary key

• witness_value - The witness value as described in section 3.1.6

• timestamp - The timestamp associated with the upload of MAYBE data to

the database
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The purpose of these fields is to increase the complexity of an attacker, not

necessarily a man-in-the-middle, to modify or remove tuples from the database

without detection. These fields could also be of assistance in detecting if an

attacker is interfering with deposits to the MAYBE server before they arrive, as

detailed in sections 5.2.1 and 5.2.1.

While the database remains a vulnerable target for any attacker, including

MitMs, wishing to cause problems for the operator, the methods of detecting and

defending against attacks on the database are better understood and

implemented. The MAYBE database operator should investigate any attack on

the MAYBE database or its communications, as these will likely be used in

tandem with other attacks on the participants.

The fields directly used for the probabilistic detection differ in each version of

MAYBE. The session_ID in the random session version is used to store the

calculated value for each party, while the CallMe version uses callme, the

received CallMe and from_server, a Boolean variable denoting if the tuple was

deposited by the server. These values can be queried by the server to detect

differences between the results of the expected operation and the operation in the

case of a man-in-the-middle.

4.2.2 Reports Created

Depending on the version of MAYBE used and the level of features implemented,

different reports will be available form the submitted data. Furthermore, the

MAYBE database operator will be responsible for deciding on the accessibility

of these reports and the data from which it was produced. Various use cases will

demand different handling of access requests; for example a totally public MAYBE

database may only allow users to view reports on total data and only query the

database for specific witness value and session ID/CallMe pairs.
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Once data had been entered in the database, a variety of SQL commands are

executed to analyse the patterns in the data and provide a heuristic diagnosis of

a pervasive man-in-the-middle. The reports generated contain statistical

information such as the total number of records in the database, the number of

Diffie-Hellman exchanges seen and the difference between expected and actual

hash collision vales. This information can be delivered through an HTML page

that can either be posted publicly or held within an organisation running their

own MAYBE service.

4.2.3 Comma-Separated Variable Files and Comparison

Each version provides support for participating servers to capture MAYBE

tuples as calculated by the server in a log file, stored on their web server for later

review and comparison with the data submitted to the central MAYBE database.

This allows the server operator to execute a query against the MAYBE database

to ensure that the tuples have been correctly deposited and not modified in

transit or storage. This is an important part of the detection heuristics as

variances in the local log and the database could indicate an attack on the

pathway between participating web server and the MAYBE database.

Depending on the storage and deletion parameters of the MAYBE database as

defined by the database operator, a scenario could be possible for data to be

removed from the database legitimately and then for a query requesting the

information to be executed by a third party. This scenario could lead to the

incorrect belief that an error is occurring in their upload to the MAYBE

database. This occurrence could be ameliorated either through end users of the

MAYBE database being aware of the parameters regarding information deletion

or through technical means identifying queries for data that has been stored and

later expunged from the database.
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5 Evaluation

Evaluating the MAYBE system is divided into two sections, covering the

different key features of the project.

Firstly the prototype protocol is evaluated, covering the overhead incurred in

both communication and storage of operating the protocol and identifying the

potential points of failure in the system.

The second part of the evaluation covers the efficacy of the detection metrics

based on the available MAYBE data with different data sets, emulating scenarios

that occur MAYBE database.

5.1 Evaluation of Prototype Protocol Deployment

5.1.1 Communication Overhead

Random Session

Depending on the configuration of the MAYBE protocol, the tuples will either be

uploaded as they are created during the Diffie-Hellman exchange, resulting an

additional connection from each participant. Depending on the frequency of

Diffie-Hellman exchanges on the clients, this may be negligible, but in cases of

high frequency exchanges the usage of secure communication channels may cause

unacceptable load.

Using secure transmission methods to upload the data is deemed necessary due

to the high importance of ensuring MAYBE tuple information is uploaded

without modification. However, the comparison of log data to MAYBE

information could be performed over unsecured HTTP in some cases, though

HTTPS may be preferred in various use cases.
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The MAYBE server will have to be able to accept secure communication channels

to receive data from clients, which may require obtaining a certificate allowing

them to authenticate themselves to clients. These channels will also require various

defensive measures against common attacks such as distributed denial of service

and SQL injection attacks.

CallMe

Participants in the Diffie-Hellman exchange will have more choice in when and

how to upload tuple information. Participants with a high level of uptime and

communication reliability, or clients with a method of storing that data offline

until a more opportune moment for uploads can make better use of bulk uploads.

Otherwise, single uploads from many users could become computationally

intensive, especially at Internet scale, where many connections causing the

MAYBE server to hold state, create secure keys and interact with the database

result in overload and performance degradation.

5.1.2 Storage Overhead

Random Session

In both instant upload and batch upload, storage is required to record information

of the MAYBE exchange for later comparison with database values. This can be

relatively small, as data such as the witness value and the session ID can be stored

as raw text files, and will be short strings and integers, respectively. Therefore,

the size of the files will be highly dependent on the participant’s configuration,

with more regular uploads reducing the storage size required.

51



CallMe

Participating servers in this version will need to keep a record of the CallMes

they have used and the MAYBE information associated with these CallMes,

including the number of exchanges and the witness values associated with each.

The server operator should also have an approximation of the percentage of

clients that may upload their section of the tuple pairing, based on server-side

detection of events that would affect client upload, such as JavaScript errors or

terminated connections.

Clients will have a very variable level of storage required, where some may wish

to record information of all Diffie-Hellman and MAYBE data exchanges that

they have taken part in for future, one-to-one comparison with the online

MAYBE database. Others may only store a subset of these to ensure that a

sufficient percentage of their tuples are uploaded and stored successfully. Others

still may have no interest in later comparing the data and will only hold onto

data as long as is required to upload it to the database.

5.1.3 Bottlenecks and Points of Failure

Random Session

The system is highly centralised around the MAYBE web servers and database

hosts, where problems with accessibility, response time, security and errors are

common. Some of this can be mitigated using distributed system concepts such

as replication of the MAYBE database, either in total or in delegation of

responsibility of certain subnets. Collaboration or co-operation of MAYBE

servers may also improve the resilience and reliability of the protocol, but

requires more management and configuration by the system operators.
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In certain implementations within organisations where the MAYBE server is kept

within the company behind a firewall, the vulnerability is further reduced, though

this version of MAYBE is designed to be used in Internet level traffic. The server

is still a bottleneck and various methods to protect it still must be taken, though

the attack vectors are reduced.

CallMe

While the MAYBE databases are still the bottlenecks in this version of MAYBE,

the more distributed approach lowers the demands on each particular server as

compared to the random session version.

5.2 Evaluation of Probabilistic Detection Metrics

5.2.1 Control Group

Random Session

In order to simulate a database containing MAYBE tuples from participants, a

set of integer values representing the witness values were created, with session

IDs selected from the variable random ranges. Once these had been created, the

metric as designed were executed against the data with various parameters to

identify areas of false positive and negatives.

This data set consisted of 1,100 rows representing 550 Diffie-Hellman exchanges,

extrapolated from the data gathered in operating the prototype protocol. While

this volume of data is much lower than the expected number of entries in a

large-scale MAYBE deployment, this evaluation is focused on the efficacy of the

probabilistic detection based on the available MAYBE information.
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To create a set of readings to use as a control group, statistical analysis was

carried out on a MAYBE data set as would be seen if for each participant in a

Diffie-Hellman exchange had contributed a tuple entry, which would correspond to

intended operation of the MAYBE protocol. The data set also assumes every party

contributing to the database has used the correctly-sized range for the random

session value.

Figure 11: Subset of the analysis of on the control data set. Each iteration with

the same random range has different random session IDs for each witness value,

causing varying number of hash collisions

Calculating the standard deviation of the session ID collision rate for different

iterations with a particular random range showed useful data regarding cases where

outlier collision rates, due to random chance, could be erroneously interpreted as

an indicator of an MitM attacker. This sudden raise was often caused by one

or more of the iterations having an unusually high or low difference between the

expected collision value and the actual collision value, due to the random nature

of session ID collision.
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CallMe Version

The CallMe version of MAYBE introduces different meta-data and different

methods of detecting the presence of a pervasive MitM. The data set used to

analyse the detection is similar in many regards to the data set to the random

session version, though modified to reflect the different meta-data used.

Figure 12: Subset of the control dataset for CallMe version

This kind of data set could be seen in certain cases where a high rate of tuple

matches is expected, especially if very few exchanges take place within time

period under investigation. An example of this is communications between

MTAs, where transmission links are highly reliable and the servers and services

well managed.
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5.2.2 Pervasive Man-in-the-Middle - Attempts MAYBE

Random Session

A pervasive MitM that is aware of the existence and operation of the MAYBE

protocol may try to upload falsified data to the MAYBE database in order to

confuse the heuristic detection algorithms. In order to mask their presence in the

a data set, the attacker could upload their version of MAYBE tuples for each

party that has been affected. In order to ”win”, or successfully avoid detection in

differences in the expected and actual collision values, the attacker must ensure

that the tuples they have uploaded do not cause significant changes in the ratio

of expected to actual collision values.

As the attacker is expected to know the random range in use in the particular

MAYBE database to which they are attempting to participate with, they can

create their own MAYBE data with the witness values from each end point and

their chosen random data. However, as the random value is only part of the

session ID, the attacker is unable to ensure that they have calculated a ”correct”

number of guesses.

Detecting this kind of spam attack against the MAYBE database is important,

and requires a separate approach from detecting attacks solely on the

Diffie-Hellman exchanges. Other heuristics that could be also help to identify

this kind of attack include;

• Noticing unusual volumes of traffic from single IP Address ranges

• Unusual patterns of uploads

• Appearing “artificial”; a pattern that is unlikely to appear in operation

• The number of DH exchanges in an interval is much higher than expected
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A related issue is where an attacker can block either or both end parties from

uploading their respective MAYBE tuples to the correct database. If the attacker

is successful in this, they can prevent the affected communications from appearing

in the data set and therefore in the heuristic analysis. This is different to an MitM

attack, requiring more active attacks on the affected end points, potentially at

different times to the original DH exchange. This could be caught through the use

of publicly signed certificates on the MAYBE server, where the participating users

can verify the identity of the MAYBE server with which they are communicating.

Furthermore, a participating client who believes they have uploaded data could

query the database for that information and become suspicious if no results are

returned.

CallMe Version

For an attacker to avoid detection in the CallMe version, participating in the

MAYBE exchange in an attempt to avoid detection is more complex than in the

random session version. For an attacker to influence the database in a way to

affect the MAYBE comparisons, they have two main options;

• Submit MAYBE tuple pairs with an invented CallMe

• Submitting MAYBE tuples with a stolen CallMe

If the operator knows the CallMes that are being used by legitimate users of

the MAYBE system, they can quickly discover any tuples that do not match

the CallMes from these users. Unknown CallMes could identify issues such as

unregistered servers submitting to the database, incorrectly configured participants

or an attacker depositing fraudulent information to affect the detection metrics.

This method is most effective in implementations where the participants have a

high likelihood of depositing each tuple and relatively few CallMes are used.
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Finding these tuples could indicate any of;

• Supernumerary parties in an Diffie-Hellman exchange

• An attacker impersonating a server and submitting data to the database

• Fault in configuration or auditing logs

Deploying a MAYBE implementation with knowledge of all used CallMes is

difficult at Internet scale. Complex issues that must be addressed include the

balance of privacy to authentication, the distribution of the MAYBE servers and

methods of creating and issuing secure CallMes.

Despite issues of deployment at Internet-scale, independent organisations may be

able to manage this kind of infrastructure, allowing them to manage the MAYBE

configuration for their own networks.

5.2.3 Pervasive Man-in-the-Middle - Avoids MAYBE

Random Session

In contrast to where an attacker attempts to directly affect uploads to the

MAYBE database, an attacker could avoid the MAYBE server and decline to

upload tuple data for the exchanges they have affected. While an intelligent

adversary is more likely to at least attempt to modify their signature on the data

set, legacy implementations of MitM attacks could be caught, forcing agencies to

withdraw and redesign existing attacks.

To investigate the efficacy and resilience of MAYBE to MitMs avoiding

participation, analysis was then carried out on the efficacy and rate of correct

detection of a pervasive Man-in-the-Middle.
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The control data set was modified to represent the outcome if an MitM attacker

had been present during the Diffie-Hellman exchanges and had not submitted

data to the MAYBE database.

To evaluate the efficacy of detecting interference from a pervasive MitM by

calculating the the actual and expected collision values, the MAYBE heuristics

were performed on data sets with varying levels of interference from an MitM.

Each level of MitM interference was calculated with random ranges of 5, 10 and

15, with five iterations of each, with differing session IDs for each witness value.

The difference between expected and actual collision values becomes more

pronounced as the ratio of attacked transmissions increases against the number

of unaffected key exchanges. After calculating the absolute difference between

the expected and actual collision value, this figure can be divided by the

expected collision value to identify the degree to which they differ. A sample of

the results can be seen in table 4.

% MitM-ed Expected CV Actual CV Difference

0% 37 35 4.3%

20% 37 24 34.6%

30% 37 19 49.2%

50% 37 14 62.7%

80% 37 6 82.7%

Table 4: The results of the MAYBE expected and and actual collision value

calculations based on the control data set as modified with varying levels of

interference from an MitM
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CallMe Version

Detecting an MitM attack from records in the database for the CallMe version is

slightly different to the random session version, as it benefits from additional

data to make better decisions. A pervasive man-in-the-middle attacker can have

the following signatures as seen from database queries;

• Removed tuples - If a participant compares the tuples in the database to the

Diffie-Hellman exchanges it participated in and uploaded to the MAYBE

server, differences could indicate an MitM attacker preventing or modifying

tuple uploads.

• Entry from client only - An entry from a client that does not have a matching

deposit from a server could indicate an MitM affecting the shared secret and

therefore the witness value, issues with the server uploading to the MAYBE

database or a spam attempt on the database.

• Unrecognised CallMe string - While this requires knowledge of the expected

CallMe strings in the data set, any string that does not match expected values

could indicate either an error in the configuration of a MAYBE participant,

or an attacker forging CallMe strings.

• More tuples than can be accounted for - An attacker that has attempted to

upload their MAYBE tuple data as well as the client, results in more tuples

than would result from normal interaction. This could be at micro scale,

where more tuples exist than should exist for a particular CallMe, or at a

macro scale, where there are more tuples in a data bset than can be

accounted for.

Depending on the meta-data available in the instance of the MAYBE installation,

some of the listed detection methods may or may not be available.
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Comparing local data with the MAYBE database

The expected use case of the CallMe version is for servers or clients providing

data to the database to be able to search for the data they have uploaded to

verify that both a matching tuple from the intended other party has been

uploaded and their tuple has been stored without modification. Participants can

query the database for entries matching the CallMes they used with and receive

the tuples matching that value. Comparing these to the Diffie-Hellman

exchanges that they have records of actively participating in can identify any

instances where either an attacker has been imitating the server’s CallMe or

there are an unusual amount of client responses.

To simulate this, a participant’s MAYBE data for a series of Diffie-Hellman

exchanges is created and compared with the data in the database for any

inconsistencies between the two. Modifying a tuple in the database to cause a

mismatch in the witness value/CallMe pairing will imitate an exchange that had

interference from an MitM. The client’s comma-separated variable file represents

four Diffie-Hellman exchanges with different CallMe strings for each. The client

can search for the matching tuples from the server, based on either or both of the

values stored. Searching by the CallMes only returns all exchanges carried out

for each CallMe value, which returns data about all users of the system, which is

not desirable in all cases. Searching by both values only returns any tuples that

match both and therefore only the tuples that that user has participated in,

assuming they have been uploaded by the server without interference of an

MitM.

Depending on the configuration of the database, the participant may be forced to

upload both the CallMe and witness value in a query and only receive results

that match both values, so as to preserve privacy of other users in the database.

This search could be done with a lower tolerance value as the client will likely

know if they have submitted their tuples, so any mismatch could be suspicious.
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Figure 13: Search results for a witness value/CallMe pair, as would be seen by a

client searching for their own data

Figure 13 shows the results of searching for the witness value and CallMe

pairings from one client against the databases where the protocol worked as

intended with no MitM affecting the exchange at either end in any transaction.

Any modification to either the CallMe or witness value causes a mismatch, and

the affected results to not be returned. In this case, further heuristic analysis

could be carried out, for example checking that the requested information has

not been removed from the database due to expiry or the server has simply not

uploaded it yet. Alerts could also then be raised to the MAYBE database

operator and the server administrator for any affected tuples, informing them of

the error, along with any pertinent information.

Fewer Tuple Pairings

Depending on the underlying protocol, there will be variations in the number of

tuples that have a corresponding entry representing the other side of the

Diffie-Hellman exchange.

In order to simulate fewer tuple pairings than in the control dataset, a subset of

the data is deleted, along with related meta-data such as the primary key. This

modified data set is then analysed to identify the hash collision rate, which will

be much lower, and how the probabilistic detection functions with fewer

legitimate hash collisions. In the MAYBE database, this will be noted as there

being fewer witness value pairings than would otherwise be expected, resulting in

a lower total amount of tuples in the database as well as a lower results from an

SQL query to count the witness value matches.
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As the expected collision value is based on the number of complete tuple pairings,

the lack of a certain number of matches does not affect the detection significantly.

However, the reduced number of tuple matches does reduce the fidelity of the

probabilistic detection by lowering the number of tuples that can be considered for

the expected collision value. Depending on the underlying protocol, the amount of

incomplete tuple pairings may be cause for concern, though not a direct indicator

of an MitM over the data set.

5.3 Evaluation Summary

The evaluation shows that while both versions of MAYBE are effective, the

CallMe version can be considered better suited to the requirements of

Internet-scale deployment, due to its more hierarchical and distributed nature.

Ultimately, both versions serve to provide probabilistic detection of MitM attacks

and the version used will depend on the operator’s choice based on the

underlying protocol and the nature of the participating clients.

An operator wishing to run a MAYBE service must choose the version and the

parameters that best meets their requirements in regard to storage space,

management overhead and participant willingness to provide information.In basic

terms, the random session version requires less management overhead on

operators and participants, while the CallMe string version requires more

meta-data collection and modification to participants.
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6 Conclusion

The need for techniques and technologies to detect a Man-in-the-Middle attacker

across large volumes of data has been illustrated throughout this project. Each

version of MAYBE described, designed and evaluated show potential for

post-facto detection of a pervasive MitM attack in large volumes of data. While

the prototype MAYBE implementation is limited in regards to the security of

uploads and authentication, the preliminary results indicate that the MAYBE

statistical modelling can expose the existence of an MitM. A deployment based

on the prototype protocol could be used in smaller implementations in corporate

or organisation-size networks, though unable to scale to Internet levels of traffic.

As an agency engaged in pervasive monitoring will likely try and avoid being

detected by any methods, so the counter-measures they might use and the

signatures of which must be understood. In many security spheres, an

“arms-race” scenario is encountered, where each development in security

measures is matched by attacks and vulnerabilities. This kind of scenario is

highly likely in the MAYBE deployment, where the adversary is intelligent,

well-funded and wishing to avoid detection. Therefore, understanding the

possible methods by which an attacker could attempt to interfere with the

detection metrics over time will be important during the deployment of MAYBE.

MAYBE could also be useful in acting as a ”canary”, where even if the data

cannot lead to a conclusive finding about the existence of an MitM, the fact that

a “doubt” exists could alert the operator to take further action.
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Limitations exist in the deployment of each version of MAYBE. A level of

standardisation would be needed, with a level of management overhead in

delegation and management. In both versions, having a concrete well-known URI

for various parts of the intercommunication in the system could allow for greater

deployment, due to the decoupling of some of the message passing from the

calculations. Further integration with the web browsers is needed, and the

deeper integration with other technologies that could take place in the MAYBE

system, in order to reduce the barriers to entry for participants. An example of

this kind of integration could be creating an extension for open-source browsers

like Mozilla Firefox or Google Chrome, taking TLS extractor values from the

browser’s DH exchange and using that for MAYBE information.

Further research and development in this area would be beneficial before a major

deployment. Topics of research could consider topics such as;

• Heterogeneous implementations of MAYBE participants contributing to a

single MAYBE server

• The use of public key cryptography to create CallMes

• Different topologies for the distribution of hardware and software resources

Particularly in the CallMe version, understanding the benefits and characteristics

of different technical and functional infrastructure deployments as they relate to

hierarchical structures of CallMe and heuristic analysis would be beneficial.

Deploying CallMes, and the analysis thereof, in a hierarchical manner could

reduce the computational and storage overhead on individual servers.

Overall, the MAYBE system has potential in detecting a pervasive

man-in-the-middle attack against a number of Diffie-Hellman exchanges, though

further work is needed before mass deployment.
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