
Style Transfer for Interactive 3D

Environments

by

Jianghan Xue, B.Sc.

Dissertation

Presented to the

University of Dublin, Trinity College

in fulfillment

of the requirements

for the Degree of

Master of Science in Computer Science

University of Dublin, Trinity College

September 2014

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated, is

my own work.

Jianghan Xue

September 2, 2014

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Jianghan Xue

September 2, 2014

Acknowledgments

This project would not have been progressing successfully so far without the support of

my supervisor. I wish to express my gratitude to my supervisor, Dr. John Dingliana, who

was abundantly helpful and offered invaluable assistance, support and guidance.

I really appreciate the help from my friends, who have supported me over the last few

years.

Finally, I am indebted to my beloved parents and grandparents for their continuous,

selfless support and encouragement.

Jianghan Xue

University of Dublin, Trinity College

September 2014

iv

Style Transfer for Interactive 3D

Environments

Jianghan Xue, M.Sc.

University of Dublin, Trinity College, 2014

Supervisor: John Dingliana

After over 40 years of development on computer graphics, many problems of generating

photorealistic images by computer have been solved. In the early 1990s, some researchers

turned to a new area called Non-Photorealistic Rendering, which focuses on creating

digital art with a wide variety of artist styles, such as painting, and cartoon.

With so many NPR techniques available for various works at stylisation, we begin to

think about not only rendering a scene in a random style, but also transferring styles.

In the field of computer vision and 3D rendering, style transfer generally refers to the

transfer of characteristics from one image or 3D scene to another. The common charac-

teristics include colours, shapes, textures, brush-strokes, painting media, etc. An ideal

style transfer process could be used in 3D modelling to decrease the amount of manual

authoring work developing specific assets for 3D models. It could also help to blend a 3D

virtual scene and a stylised background together in a coherent style in a film.

This paper investigates the current states of style transfer, especially that applies the

artistic style of an image onto a target 3D scene. It verified the possibility of transferring

colours of a style image onto the textures of 3D objects based on their positions, and the

v

integration of watercolour rendering after transferring colours. But many problems are

still unsolved if we move onto transferring style-specific features.

vi

Contents

Acknowledgments iv

Abstract v

List of Tables x

List of Figures xi

Chapter 1 Introduction 1

1.1 Motivation . 1

1.2 This Dissertation . 2

Chapter 2 State of the Art 3

2.1 Definition of Style . 3

2.2 Image Processing . 4

2.2.1 Colour Model . 4

2.2.2 Colour Difference . 5

2.2.3 Image Clustering . 6

2.3 Style Transfer . 7

2.3.1 Colour Transfer between Images . 7

2.3.2 Colour Transfer from Image to 3D Scene 8

2.3.3 Style Rendering . 9

2.3.4 Style Identification . 10

vii

Chapter 3 Design 11

3.1 Method Overview . 11

3.2 Style Extraction . 12

3.3 Style Assignment . 13

3.4 Style Rendering . 15

3.4.1 Edge Darkening . 16

3.4.2 Toon Shading . 17

3.4.3 Colour Modification . 17

3.4.4 Three Pigment Density Variation 20

Chapter 4 Implementation Details 22

4.1 Platform . 22

4.2 Other Libraries . 24

4.3 Development and Runtime Environment 24

Chapter 5 Evaluation 26

5.1 Colour Transfer between Images . 26

5.1.1 Results . 26

5.1.2 Runtime Efficiency . 26

5.2 Watercolour Rendering . 28

5.3 Colour Transfer from image to 3D scene 28

5.3.1 Results . 28

5.3.2 Runtime Efficiency . 29

Chapter 6 Conclusion and Future Work 32

6.1 Watercolour Style Transfer . 32

6.2 Accurate Style Assignment . 33

Appendix A Abbreviations 35

viii

Bibliography 36

ix

List of Tables

4.1 Comparison of popular game frameworks and their features realated to this

project. 23

5.1 The average calculation time (unit: second) of colour transfer for different

resolutions and different steps. 28

5.2 The average calculation time (unit: second) of k-means given different

parameters. Sample image size is 1024*1024 31

x

List of Figures

3.1 The outline of the method designed for achieving the objective of this project. 11

3.2 The sample data passed to k-means function 13

3.3 Left: The style image before clustering. Right: The style image clustered

into 30 groups . 13

3.4 Colour transfer from a cluster in the style image (right) to the texture of a

corresponding object (left). 15

3.5 The watercolour rendering pipeline for the sample 3D scene. 16

3.6 Three-level ramp used in toon shading. 17

3.7 Darkening and brightening of a base colour C (0.90, 0.35, 0.12) given dif-

ferent density parameters d, using Bousseau’s original colour modification

formula . 18

3.8 Darkening and brightening of a series of colours given different density

parameters d (at the top of the figure), using Bousseau’s original colour

modification formula . 19

3.9 Darkening and brightening of a series of colours given different density

parameters d (at the top of the figure), using the improved colour modifi-

cation formula in this project. Note that pigment densities shown here is

still from 0 to 2, in order to be compatible with the previous figures. 21

3.10 Three pigment density variation textures. Left: pigment dispersion. Mid-

dle: turbulence flow. Right: paper grain 21

xi

5.1 Evaluation of colour transfer between images. Odd columns are style im-

ages, even columns are colour transfer results. Lenna is used as the original

image for every test cases. 27

5.2 Teddy bear model rendered in watercolour style. 29

5.3 Colour transfer from the image of a 3D scene to that scene (rendering in

watercolour style). 30

6.1 An ideal style extraction can extract three pigment density variation tex-

tures from the style image. 33

6.2 The current style assignment algorithm is not able to handle objects mostly

or completely occluded by others. 34

xii

Chapter 1

Introduction

After over 40 years of development on computer graphics, many problems of generating

photorealistic images by computer have been solved. Even very complex scenes with

a large number of highly detailed objects can be generated. In the early 1990s, some

researchers turned to a new type of quest. In contrast to traditional computer graphics,

they focus on creating digital art with a wide variety of artist styles, such as painting, and

cartoon. This new area of endeavour has become known as Non-Photorealistic Rendering,

or NPR for short. [1]

Many NPR techniques now exist and have already been implemented in some popular

games (e.g. The Legend of Zelda, XIII, Team Fortress 2, Prince of Persia 4), and movies

(e.g. Tarzan). It is also used for technical illustration, medical analysis, etc.

1.1 Motivation

With so many NPR techniques available for various works at stylisation, we begin to think

about not only rendering a scene in a random style, but also applying the artistic style of

a painting onto a target 3D scene, in an efficient and optimised way.

In the field of computer vision and 3D rendering, style transfer generally refers to

the transfer of characteristics from one image or 3D scene to another. The common

1

characteristics include colours, shapes, textures, brush-strokes, painting media, etc.

An ideal style transfer process could be used in 3D modelling to decrease the amount

of manual authoring work developing specific assets for 3D models. It could also help to

blend a 3D virtual scene and a stylised background together in a coherent style in a film.

1.2 This Dissertation

Chapter 2 discusses the related work in field of art theory, colour theory, image processing,

style transfer, non-photorealistic rendering, and style identification.

Chapter 3 describes the details of the method designed for achieving the objective of

this project.

Chapter 4 discusses the options of implementation platform, the decision made, and

the reasons to justice the decision.

Chapter 5 evaluates the performance of every independent steps and the overall style

transfer process.

Chapter 6 concludes results and contributions. Challenges and future works is dis-

cussed in this chapter as well.

2

Chapter 2

State of the Art

2.1 Definition of Style

In the visual arts, the style of a painting is a ”distinctive manner which permits the

grouping of works into related categories.” [2]. Some categories are explicit:

• Implement: brush, pencil, sponge, knife, airbrush, etc. (and their size, shape, edge)

• Medium: oil, watercolour, pastel, ink (and their colour)

• Surface: canvas, paper, wall

• Object: figure, portrait, landscape, still life

• Specified purpose: poster, cartoon/comic/manga, illustration

Some categories are more subjective and difficult to describe, such as realism, impres-

sionism, abstract expressionism, surrealism, photorealism, etc.

3

2.2 Image Processing

2.2.1 Colour Model

Colour is the most basic style for an image. In order to store colours in computers, we

introduced Colour Space, which allows to reproduce colours from their representations

in the computers. A colour space is based on a colour model, an abstract mathematical

model describing the way colours can be represented. The most well-known colour spaces,

models and their features are listed below.

• RGB: an additive colour model, which mixes red, green and blue (three additive

primary colours) in different ratio to produce various colours. RGB colour model

is the most common representation used in digital devices to capture, store, and

display images.

• CMY: a subtractive colour model. The values of the cyan, magenta, and yellow are

subtracted from pure white in different ratio in order to get the required colour. For

this reason, it is often used as a colour space in printers where the white of paper

is the original colour.

• YUV: a colour model that originates from the early age of colour television [3].

The analogue signal of black-and-white television has only the Y (luminance, luma,

brightness) value. Colour television added U and V values as the chrominance

(colour) components, in order to be compatible with black-and-white.

• YCbCr: a compressed, shifted and digital version of YUV. As human vision system

is much more sensitive to brightness than chrominance, the size of Cr and Cb com-

ponents can be reduced. For this reason, YCbCr is often used in image and video

compression.

• HSL and HSV: representing RGB colours in a cylindrical-coordinate system. Colours

are represented as H (hue), S (saturation), and L (luminance) or V (value) values.

4

HSV is also called HSB (brightness). These two colour spaces are designed to be

more intuitive. We can tell a colour’s name easily by its hue, the most important

component of a colour. For this reason, these two colour spaces are often used in

colour pickers in image-editing software.

• Lab: a colour model designed to approach human vision system. L stands for

lightness and a and b for the colour component. The Lab colour space used in con-

temporary days is designed by CIE (the International Commission on Illumination)

in 1976, so it is also called CIE-LAB.

2.2.2 Colour Difference

Colour difference is a metric used to quantify the difference between two colours. Before

colour difference metric was introduced, only subjective adjectives can be used to describe

colour differences. The colour difference metric is very useful in image clustering, which

will be described in the next section.

CIEDE76 is the first colour difference formula that applies to colours in CIE-LAB

colour space. It is essentially the Euclidean distance between two colour vectors.

Given (L∗1, a
∗
1, b
∗
1) and (L∗2, a

∗
2, b
∗
2), two colors in CIE-LAB colour space, CIE76 defines

their difference ∆E∗ab as

∆E∗ab =
√

(L∗2 − L∗1)2 + (a∗2 − a∗1)2 + (b∗2 − b∗1)2

∆E∗ab ≈ 2.3 corresponds to a just noticeable difference.

Because CIE-LAB colour space turned out to be not as perceptually uniform as in-

tended, CIEDE76 is replaced by its successors CIE94 and CIEDE2000 [4], by introducing

several weights to the formula. However, the cost of more accurate colour difference is

the increase of algorithm complexity and calculation time.

5

2.2.3 Image Clustering

In the field of style transfer, image clustering can be used to find different objects which

has notably different colours in a simple image. Image clustering is the task of grouping

the pixels in an image in such a way that the colour of the pixels in the same group (also

called a cluster) are more similar to each other than to those in other groups.

k-means clustering is one of the most popular methods for image clustering. It is

created by several people independently [5] [6] [7]. It aims to group pixels into k (a user-

controlled parameter) clusters in which each pixel is closer to the mean of its cluster than

that of the others.

The standard algorithm of k-mean clustering uses an iterative refinement technique.

It first chooses k pixels as the initial centres of k clusters. The centres can be selected

randomly, or through a well-designed algorithm like k-means++ [8]. The algorithm then

assigns each remaining pixel to a nearest cluster according to the distance between the

pixel and the cluster centre. The distance between two pixels can take into account both

the spatial distance and the colour difference. It then recalculates the mean of the cluster

to be the new cluster centre.

After a few iterations, the process is terminated once it meets one of the termina-

tion criteria: a) the algorithm converges (the accuracy is smaller than a user-controlled

threshold), or b) the maximum number of iterations is reached. The accuracy V of the

clustering is defined as

V =
∑k

i=1

∑
xj∈Si

(xj − µi)2

where k is the number of clusters, Si is the set of pixels in cluster i, xj is a pixel in Si,

µi is the mean (centre) of pixels in Si.

6

2.3 Style Transfer

2.3.1 Colour Transfer between Images

Colour transfer between images aim to apply a colour palette, mood or style from one

image to another [9]. One of the earliest paper in this field is published by Reinhard et al.

[10] in 2001. This paper introduced a global colour transfer method. They use a simple

statistics analysis method to impose one image’s colour characteristics on another. The

images are firstly converted from RPG colour space to lαβ colour space [11]. After then,

they compute the images’ mean and standard deviation, and use them to globally shift

the target image’s colour.

They chose lαβ colour space instead of RGB because different channels’ values are

correlated in RGB, as well as many other colour spaces. For example, in RGB space,

most pixels will have large values for the red and green channel if the blue channel is

large. This feature means if we want to change the appearance of a colour coherently, we

must modify all channels together.

Given the assumption that decorrelated colour spaces would perform better, Reinhard

et al. published another paper [9] in 2011, discussing more detailedly about the correlation

of various colour spaces. The chosen colour spaces are L, CIE-LAB (using both D65 and E

illuminants), Yxy, Yuv, Yuv, XYZ, RGB and HSV. They use about 350 images altogether

in four categories as the sample. They then transfer the colours of the images in different

colour spaces and calculate the covariance matrix and the average covariance to measure

the degrees of channel correlation of colour spaces.

As the conclusion, they found the covariance of a colour space with respect to a set

of images, is a good measure of how well such a space is likely to perform better colour

transfer. More importantly, they found CIE-LAB, used with illuminant E as the white

point, showed the best performance on average, giving a plausible colour transfer in about

77 % of all tested samples, followed by, CIE-LAB (D65; 73% success) and L (71%) success.

All other chosen colour spaces do not perform acceptably well in their tests.

7

The shortcoming of CIE-LAB, however, is the cost of conversion. Because RGB colour

model is device-dependent, it has to be transformed to a specific absolute colour space,

such as sRGB, which is device-independent, allowing data to be converted to CIE 1931

colour space and then to CIE-LAB. For this reason, other colour spaces like YCbCr [12]

are seen to be used.

2.3.2 Colour Transfer from Image to 3D Scene

Nguyen et al. [13] implemented the colour transfer techniques between 2D and 3D. They

extract multiple Phong materials (ambient, diffuse and specular colour [14]) from the

source image and assign the materials to 3D objects based on statistical cost-based func-

tions taking into account the positions and the shapes of objects.

While extracting the materials, they first split the style image into diffuse and specular

radiance using the specular highlight removal method of Yang [15]. The diffuse radiance

is then split into a base and a texture part using the fast bilateral filtering of Durand [16].

The base part of diffuse pixels are then clustered using k-means, applying the CIEDE2000

colour difference metric. After merging similar neighbour clusters, one material is gener-

ated for each cluster. The diffuse colour of the material is specified by the colour of the

cluster.

For the material assignment, they introduced a cost function d(A, V):

d(A, V) = widi(r(A, V)) + wgdg(A)

where A is an material assignment, V is a camera view, di is an image cost function

that calculates the histogram difference of the cluster and the object under view V, dg is

a view-independent geometry cost function that compares the shapes, wi and wg are the

relative weights between di and dg respectively.

According to the definition of the cost functions, the smaller d is, the more similar

the object and the cluster are, under assignment A and view V. The material assignment

8

stage in their paper is to loop through all Cartesian products of clusters in the style image

and objects in the 3D scene, and to find the pairs with the smallest cost for every objects.

2.3.3 Style Rendering

In Nguyen’s paper, after extracting and assigning Phong materials, they render the 3D

objects using Phong lighting, which is a basic photorealistic rendering technique. On the

other hand, there are many non-photorealistic techniques available, suitable for rendering

objects in artistic styles.

One of the most basic NPR techniques is toon shading (also called cel shading) [17],

which is used to mimic the lighting style of a comic book or cartoon. In comic books,

the part of an object that is facing the light source is generally brighter, and the part

that is back to the light source is darker. In order to mimic this feature, toon shading

calculates the angle between the normal of a vertex and the light direction, classifies the

angle into several levels of brightness from black to white, and modifies the colour of the

pixel accordingly.

Another example of a basic NPR technique is silhouettes and outlines [18]. They

are used to emphasise the edges of an object in comic books. They can be achieved by

darkening the vertices whose corresponding points in the depth map or the normal map

change significantly from their neighbours.

These two basic NPR techniques can serve as the starting point of other advanced

techniques, like oil, ink, pastel, and watercolour rendering.

In 1997, Curtis et al. [19] described the specific features that make watercolour style so

distinct among painted media, and they introduced a model to simulate the physical flow

of pigment and the impact of paper to reproduce watercolour painting. Different types

of pigment effects, like drybrush, edge darkening, backruns, granulation, flow effects, and

gazing, are generated in different layers. They are merged together to create the final

effect of watercolour.

9

The shortcoming of Curtis’s method is the complexity of calculation. In the original

paper, they stated that it took them 7 hours to generate a watercolour painting that

consists of 11 glazes, using a total of 2750 iterations of the simulator, rendered at a

resolution of 640 by 480 pixels on a 133 MHz SGI R4600 processor.

Bousseau et al. [20] decreased the complexity of the algorithm by introducing several

pre-generated textures that filters the colours of 3D model in fragment shader and during

post-processing. Pre-generated textures turned out to be adequate to replace the physical

simulation of watercolour pigment for reproducing most of the distinct watercolour effects

defined by Curtis. In their paper, Bousseau et al. also proposed two methods to produce

temporally coherent animations that keep a uniform pigment repartition while avoiding

the shower door effect.

2.3.4 Style Identification

No general-purpose style extraction technique has been proposed so far. The current

style extraction techniques are targeting colours or a specified style, like watercolour. For

this reason, we need to manually specify what kind of style we want to extract from an

image. Theoretically the specification can be done by algorithms, which is called style

identification or classification.

The work of Shamir et al. [21] shows that ”the automatic computer analysis can group

artists by their artistic movements, and provide a map of similarities and influential links

that is largely in agreement with the analysis of art historians”. Their method is based

on WND-CHARM scheme [22], which contains a set of 4027 features that reflects many

aspects of the visual content, such as shapes, textures, edges, colours, etc.

10

Chapter 3

Design

This chapter describes the details of the method designed for achieving the objective of

this project: applying the artistic style of an image onto a target 3D scene.

3.1 Method Overview

Figure 3.1: The outline of the method designed for achieving the objective of this project.

11

The process of this method can be classified into three stages: style extraction [13],

assignment [13], and rendering. See Figure 3.1

1. Style Extraction: Clustering the style image into several groups and extracting a

set of rendering parameters, like colours, from each cluster.

2. Style Assignment: Finding the corresponding 3D objects in the original scene for

each cluster, and transferring the colour to the textures of the 3D objects.

3. Style Rendering: Rendering objects with given parameters in a specific style.

3.2 Style Extraction

First of all, the RGB values in the style image are converted from RGB to CIE-LAB colour

space using OpenCV built-in functions. The reason of choosing CIE-LAB is described in

Section 2.3.1 Colour Transfer Between Images.

The style image is then clustered using k-means provided by OpenCV.

Before clustering, the pixels should be transformed in order to meet the requirement

for better result of clustering. CIE-LAB values are scaled to the range from 0 to 1. In

order to taking into account positions, the parameters passed to k-means function should

also include the position coordinates, which scaled to the range from 0 to 1 as well by

dividing the width or height of the image.

For each pixel, two position coordinates and three channels of CIE-LAB values form

a five-element vector. All pixels form a list of vectors, which serve as the samples and are

then passed to the k-means function. See Figure 3.2.

We choose k-means++ [8] as the centre initialization algorithm. Other parameters

include maximum iteration 100, epsilon 0.1, and 5 attempts. The number of clusters k is

a user-controlled parameter.

In Nguyen’s paper [13], CIEDE2000 is used as the colour difference metric during

clustering. But considering the cost of calculating CIEDE2000 formula, they are not

12

(x0, y0, l0, a0, b0)
(x1, y1, l1, a1, b1)
(x2, y2, l2, a2, b2)
(x3, y3, l3, a3, b3)

......
(xn, yn, ln, an, bn)

Figure 3.2: The sample data passed to k-means function

applied in this project. Instead, CIE76 colour difference, which is essentially the Euclidean

distance between two colours, is applied.

Figure 3.3 shows the style image before and after being clustered.

Figure 3.3: Left: The style image before clustering. Right: The style image clustered into
30 groups

After clustering, the mean and the standard deviation are calculated for each cluster.

These 2 parameters will be used in the following stages.

3.3 Style Assignment

In this stage, we first loop through all objects in the scene.

According to the screen position of each object, we find the corresponding cluster that

13

the object belongs to in the style image. The corresponding position (xstyle, ystyle) in the

style image is calculated the formula:

xstyle =
xorig
worig

wstyle

ystyle =
yorig
horig

hstyle

where (xorig, yorig) is the screen position of the object, (worig, horig) is the resolution of

the original texture, (wstyle, hstyle) is the resolution of the style image.

Once we find the cluster, we know the mean and the standard deviation of the pixels in

that cluster. We then take the main texture of the object, convert it into CIE-LAB colour

space, and shift each pixel by the mean and the standard deviation of the corresponding

cluster, using the method in the paper of Reinhard et al. [10]. The shifting algorithm is

described below.

We first subtract the mean from the colour of the original texture:

l∗ = l − lorig

a∗ = a− aorig

b∗ = b− borig

Then, we scale the colour by the ratio of the standard deviation of the style image

and that of the original texture, and we add the mean of the style image.

l′ =
σl
style

σl
orig

l∗ + lstyle

a′ =
σa
style

σa
orig

a∗ + lstyle

b′ =
σb
style

σb
orig

b∗ + lstyle

where

• (l′, a′, b′) is the result colour of the pixel in the original texture after transferring,

• (l, a, b) is the original colour of that pixel,

• σlstyle, σastyle, σbstyle: the standard deviation of three channels in the style image,

14

• σlorig, σaorig, σborig is the standard deviation of three channels in the original texture,

• lorig, aorig, borig is the means of three channels in the original texture.

After transferring, the texture is converted back to RGB colour space. Figure 3.4

shows the process of style assignment and transfer.

Figure 3.4: Colour transfer from a cluster in the style image (right) to the texture of a
corresponding object (left).

3.4 Style Rendering

This project uses a similar method to Bousseau et al. [20] to render the scene in wa-

tercolour style. Figure 3.5 shows the watercolour rendering pipeline for the sample 3D

scene.

15

Figure 3.5: The watercolour rendering pipeline for the sample 3D scene.

3.4.1 Edge Darkening

The first step of watercolour rendering is edge darkening. Edges are detected on farme

buffer in GPU using a fast, symmetric, first derivative edge detector:

δ1(i, j) = px−1,y − px+1,y

δ2(i, j) = px,y−1 − px,y+1

and the gradient of each channel is computed by:

∆(px,y) = |δ1(i, j)|+ |δ2(i, j)|

16

The average of the gradients of three channels is used as the overall gradient of a pixel.

If the gradient is larger than a user-controlled threshold, we use a specific outline colour

to darken the pixel.

This edge detector is clearly focusing on the efficiency. Other gradient computations

can be used to get better edge detecting result but with the cost of efficiency decrease.

3.4.2 Toon Shading

We first calculate the dot product d of the vertex normal n and the light direction l:

d = n · l = |n||l|cos(θn,l) = cos(θn,l)

The value range of d is the range of cosine which is -1 to 1. We then multiply d by

0.5 and add 0.5 to change its range to 0 to 1.

d′ = d× 0.5 + 0.5

The larger d′ is, the closer the pixel is facing the light source. We then create a

three-level ramp texture to modify the colour of pixels. See Figure 3.6.

Figure 3.6: Three-level ramp used in toon shading.

3.4.3 Colour Modification

In order to decrease the complexity of physical simulated watercolour rendering, Bousseau

et al. [20] introduced three pre-generated textures that modify the colours of pixels for

17

reproducing most of the distinct watercolour effects defined by Curtis.

These three textures are designed to mimic pigment dispersion, turbulence flow and

paper grain respectively. Each texture is a grey-scale image whose intensity T ∈ [0, 1]

gives the pigment density d = 1 + β(T − 0.5), where β is a global parameter specifying

the weight. Pigment density is used to modify the brightness of the original colour. The

larger (whiter) the intensity or the pigment density is, the darker the brightness will be.

Pigment density 1 (Intensity 0.5) yields the original colour. See Figure 3.7.

Figure 3.7: Darkening and brightening of a base colour C (0.90, 0.35, 0.12) given different
density parameters d, using Bousseau’s original colour modification formula

Bousseau’s paper calculates the result colour C ′ from the original colour C using the

formula:

C ′ = C(1− (1− C)(d− 1))

= C − (C − C2)(d− 1)

Although this formula is quite efficient, it has a serious flaw: it does not work for

colours of which all the three channels are either 1 or 0, for example red (1, 0, 0). The

reason of this flow is that 1 or 0 makes (C − C2) always equals to 0, which means the

formula always gives the original colour. Figure 3.8 shows a few examples of colours

modified by the original formula.

The other flaw of this formula is that it adds 1 to T to get d: d = 1 + β(T − 0.5), but

it always subtract 1 from d again to modify the colour C ′ = C − (C − C2)(d− 1).

The improved colour modification method used in this project solves the problem. We

convert colours into HSL colour space, and modify lightness values according to the given

density. The details of the conversion and the modification are described below.

18

Figure 3.8: Darkening and brightening of a series of colours given different density param-
eters d (at the top of the figure), using Bousseau’s original colour modification formula

We first calculate the pigment density d similarly: d = β(T − 0.5), and convert RGB

values on the object textures to HSL using the following formula: [23]:

h =

0◦ if max = min

60◦ × g−b
max−min + 0◦, if max = r and g ≥ b

60◦ × g−b
max−min + 360◦, if max = r and g < b

60◦ × b−r
max−min + 120◦, if max = g

60◦ × r−g
max−min + 240◦, if max = b

l = 1
2
(max+min)

19

s =

0 if l = 0 or max = min

max−min
max+min

= max−min
2l

, if 0 < l ≤ 1
2

max−min
2−(max+min) = max−min

2−2l , if l > 1
2

We then modify the lightness channel:

l′ = l + d

and convert HSL values back to RGB [23]:

q =

l × (1 + s), if l < 1

2

l + s− (l × s), if l ≥ 1
2

p = 2× l − q

hk = h
360

tR = hk + 1
3

tG = hk

tB = hk − 1
3

if tC < 0→ tC = tC + 1.0 for eachC ∈ {R,G,B}

if tC > 1→ tC = tC − 1.0 for eachC ∈ {R,G,B}

As Figure 3.9 shows, the improved colour modification formula not only modifies the

colours smoothly like the original formula, but also supports ”pure” colours.

3.4.4 Three Pigment Density Variation

As discussed in the previous section, Bousseau introduced three textures to mimic pigment

dispersion, turbulence flow and paper grain respectively. Bousseau called these three

watercolour effects as pigment density variation.

20

Figure 3.9: Darkening and brightening of a series of colours given different density pa-
rameters d (at the top of the figure), using the improved colour modification formula in
this project. Note that pigment densities shown here is still from 0 to 2, in order to be
compatible with the previous figures.

We are free to choose any kind of grey-level textures for the three effects. Bousseau

found it plausible to use a sum of Gaussian noises at different scales for pigment dispersion,

Perlin noise textures [24] for the turbulence flow, and scanned paper for the paper grain.

Figure 3.10: Three pigment density variation textures. Left: pigment dispersion. Middle:
turbulence flow. Right: paper grain

21

Chapter 4

Implementation Details

In this chapter we discuss various implementation platforms, their advantages and short-

comings. We also describe all the development and runtime environments we use.

4.1 Platform

As this project needs to use the techniques of 3D rendering and computer vision, it requires

the support of related libraries. Many frameworks can be used as the rendering platform.

Because of the difficulty in investigation, there are not many formal researches into the

exact market shares of the frameworks. Table 4.1 and the following list show some of the

most popular options and their features related to this project.

• Low-level graphics APIs, for example OpenGL, DirectX, Cg, and Mantle. The

advantages of using low-level graphics API include high performance, richness of

third-party libraries. But the shortcomings are very notable as well, which is mostly

about low development efficiency. Developers have to write lots of redundant code to

implement basic functionalities, like model loading, shader creation, shader property

assignment, etc. Additionaly, the lack of an interactive editor makes it hard to create

and debug scenes, animations, and GUI.

• Ogre. Like many other open source game engines, Ogre provides a set of API that

22

Table 4.1: Comparison of popular game frameworks and their features realated to this
project.

Functionalities Interactive Ed-
itor

Learning Curve Scripting Lan-
guages

Low-level APIs From scratch
or 3rd-party
libraries

No Steep C, C++

Ogre Good No Fair C++
Cocos2d-x Good Yes Fair C++, Lua,

JavaScript
XNA Fair No Gradual C#
Unreal,
CryEngine

Excellent Yes Steep C++, C#, Un-
realScript

Unity Good Yes Fair C#, Boo,
JavaScript

encapsulates basic functionalities, which hugely increases developers’ efficiency. The

interactive editor, however, is still missing for most of the open source game engines

like Ogre. Another shortcoming of Ogre is that it is only a graphics library, which

lacks many other important functionalities, like physics, AI, GUI, audio.

• Cocos2d-x is also an open source game engine. Unlike others, it has its own IDE,

which was released on March 2014.

• XNA is a free proprietary game engine provided by Microsoft. Due to its simplicity

and light weight, it is very popular among beginners. But it is not as feature-rich

as other game engines. One of the most important missing component is object

management. Interactive editor is not provided as well. Moreover, no new versions

have been released since 2010.

• Unity is a proprietary game engine, released under both free and commercial licenses.

It has been very popular especially in the field of mobile game and indie game

development. It is a game development solution rather than a graphics middle-

ware, as it supports lots of common functionalities adequate for small and medium

game development. Unity also provides an interactive IDE, which allows developers

23

to not only create scenes, animations interactively, but also to debug program at

runtime. It supports C# as the scripting language, which is very useful for rapid

development. But this trade-off decreases its runtime performance. The cost of the

interpolation between managed and native code is quite high.

• Unreal Engine, and CryEngine are two of the most successful commercial game

engines that target high-end games. They support lots of advanced rendering tech-

niques and provide a full solution of game development. UDK and CryEngine Free

are their free versions respectively. But both of them have a steep learning curve.

Beginners need to have a clear understanding of the two large frameworks.

Taking into account development efficiency, runtime performance and supported func-

tionalities, we excluded the options except Unity and Cocos2d-x. After the overall con-

sideration of popularity, support, and developer community, we finally chose Unity as our

implementation platform.

4.2 Other Libraries

OpenCVSharp is used as the image processing library in this project. It is a .Net wrapper

of OpenCV, one the most popular libraries in the field of computer vision.

OpenCV is cross-platform, free for use, and open-source under BSD license. It sup-

ports lots of common image processing algorithms, for example colour space conversion,

noise generation and smoothing, histogram calculation, edge detection, corner detection,

feature detection, etc. It began to support CUDA in 2011.

4.3 Development and Runtime Environment

• CPU: Intel(R) Core(TM) i7-3610QM CPU @ 2.30GHz (8 CPUs) 2.3GHz

• GPU: NVIDIA GeForce GTX 660M

24

• OS: Windows 7 Home Premium SP1

• Programming language: C#, ShaderLab, Cg

• Frameworks and libraries:

– Unity 4.5.1f3

– .Net 2.0 Subset

– OpenCVSharp 2.4.9.20140719 (wrapper of OpenCV 2.4.8 for .Net Framework)

– Visual Studio Tools for Unity

– Git 1.8.4 and BitBucket

• Assets: Free Furniture Props, Lenna

25

Chapter 5

Evaluation

In this chapter, we evaluate the performance of every independent steps and the overall

process of style transfer.

5.1 Colour Transfer between Images

5.1.1 Results

Figure 5.1 shows several test results obtained by the colour transfer technique imple-

mented in this project.

5.1.2 Runtime Efficiency

The most time-consuming steps of this process are:

• converting the style and the original image from RGB to CIE-LAB

• calculating the statistics of the style and the original image

• shifting the original image

• converting the result image from CIE-LAB to RGB

26

Figure 5.1: Evaluation of colour transfer between images. Odd columns are style images,
even columns are colour transfer results. Lenna is used as the original image for every
test cases.

All these steps are done by the CPU. Table 5.1 shows the average calculation time

in seconds for different resolutions and different steps. The specifications of the testing

machine can be found in Section 4.3 Development and Runtime Environment.

We can see from the table that the calculation time is linearly dependent to the

resolution of image. Statistics calculation consumes the most time among the four colour

transfer steps. Shifting is the least time-consuming step. It takes more time for converting

27

Table 5.1: The average calculation time (unit: second) of colour transfer for different
resolutions and different steps.

Resolution RGB to CIE-
LAB

Statistics Shifting CIE-LAB to
RGB

512*256 0.085 0.1634 0.0213 0.1071
512*512 0.1560 0.3098 0.0392 0.1835
1024*512 0.3195 0.6210 0.0749 0.3740
1024*1024 0.6403 1.2353 0.1485 0.7728
2048*1024 1.3507 2.6259 0.2560 1.5795
2048*2048 2.7255 5.3816 0.9102 3.3840

CIE-LAB to RGB than the other way around.

For 1024*1024 resolution, we find that the mean calculation costs 0.5399s (43.5%)

and the standard deviation costs 0.7016s (56.5%). It seems that the multiplication in

calculating standard deviation does not significantly increase the calculation time.

5.2 Watercolour Rendering

Figure 5.2 shows the results of a teddy bear model rendering in the watercolour style

implemented in this project. All the five steps of watercolour rendering are done in GPU

in real-time and they are designed to focus on efficiency. For the Stanford dragon model,

which has 101,256 triangles, the rendering pipeline runs at an average of 497 FPS for 60

seconds. As the comparison, the Phong lighting shader runs at average of 628 FPS, and

the diffuse shader runs at 646 FPS.

5.3 Colour Transfer from image to 3D scene

5.3.1 Results

Figure 5.3 shows a test case of colour transfer from image to 3D scene. The style image of

this case is created by rendering the 3D scene with diffuse shader. The colours of objects

are randomly generated. The final style image is watercolourised using PhotoShop. As we

28

Figure 5.2: Teddy bear model rendered in watercolour style.

can see from the result, most objects successfully find their corresponding colours. The

reason of some failure style assignment will be discussed in Section 6.2 Accurate Style

Assignment.

5.3.2 Runtime Efficiency

The runtime efficiency of colour transfer from image to 3D scene consists of two parts, 1)

style extraction and assignment 2) style rendering.

Style extraction and assignment is pre-processed before rendering. The most time-

consuming steps of this process are:

• clustering the style image using k-means

• converting the style image and the object textures from RGB to CIE-LAB

• calculating the statistics of the style image and the object textures

• shifting the object textures

• converting the object textures from CIE-LAB to RGB

29

Figure 5.3: Colour transfer from the image of a 3D scene to that scene (rendering in
watercolour style).

The efficiency of the last four steps is already discussed in the previous sections. Here

we only talk about the efficiency of k-means. As Figure 5.2 shows, the number of attempts

significantly influences the runtime efficiency. Once the number of attempts is doubled,

the calculation time is almost doubled as well, except when the number of attempts

changes from 1 to 2. The reason may be when the number of attempts is small, the major

part that costs time lies in the creation of sample matrix instead of the k-means iteration.

Maximum iteration and epsilon are two correlated values. When maximum iteration is

large enough, epsilon becomes the salient parameter, vice versa. The number of clusters

has relatively minor but still notable impact on the efficiency.

The efficiency of style rendering of a scene is similar to that of a model. The key

30

Table 5.2: The average calculation time (unit: second) of k-means given different param-
eters. Sample image size is 1024*1024

Number of
Clusters

Maximum Iter-
ation

Epsilon Attempts Calculation
Time

30 100 0.1 4 8.7960
15 100 0.1 4 6.7413
10 100 0.1 4 5.7911
5 100 0.1 4 4.8873
1 100 0.1 4 3.8269

30 100 0.1 4 8.7960
30 50 0.1 4 8.7510
30 10 0.1 4 8.6738
30 1 0.1 4 8.6504

30 100 1 4 8.1751
30 100 0.2 4 8.5927
30 100 0.1 4 8.7960
30 100 0.05 4 9.8669
30 100 0.02 4 11.5927
30 100 0.01 4 13.4533
30 100 0.001 4 32.4842

30 100 0.1 8 15.5912
30 100 0.1 4 9.5641686
30 100 0.1 2 6.6043
30 100 0.1 1 5.2713403

influence is the number of triangles in the 3D models.

31

Chapter 6

Conclusion and Future Work

This project verified the possibility of applying the colours of a style image onto the

textures of 3D objects based on their positions in the image and the scene. Watercolour

style can be integrated to render the scene after transferring colours.

6.1 Watercolour Style Transfer

One of the major problems of this style transfer process is that style extraction does not

extract style-specific parameters, for example the three pigment density variation textures

used in watercolour rendering, which means it can only affect the colour of the final results

but not the style of watercolour.

Extracting watercolour-specific textures is different from most previous work in the

field of texture synthesis, like feature guided texture synthesis proposed by Xie et al.

[25]. Those texture synthesis method can only generate one texture per style image, but

generating watercolour-specific texture requires the algorithm to somehow split different

pigment effects into different layers and generate one texture per layer. It is hard even

for skilled human painters.

32

Figure 6.1: An ideal style extraction can extract three pigment density variation textures
from the style image.

6.2 Accurate Style Assignment

The current style assignment algorithm has many flaws. Firstly it is not able to handle

objects mostly or completely occluded by others. A possible improvement to this flaw is to

add another camera and determine object position by taking both cameras into account.

This method can handle partially occluded objects to some extents, but is incapable for

completely occluded objects.

Secondly, this method requires the object positions in the style image and the scene

to be highly correlated. But it is usually not the case. Very few style image and 3D

scene are created together. This method can be improved by introducing object shape

matching, which links objects in the similar shape even if their positions are very different

in the style image and the 3D scene. A simple implementation would be matching the

2D shapes of objects in a static view. An advanced shape matching may take 3D shapes

into account, as Ma et al. [26] introduced.

Thirdly, this method cannot handle moving object. As the style assignment is pre-

processed before rendering and is done only once, any position or other state change of

the object will not affect the assignment result. This requires objects to be static or be

located at the right position at the beginning. But sometimes we also want to assign styles

33

to objects that move into the camera later. If we just simply do the style assignment in

every frame, the styles would be incoherent as time goes on.

Figure 6.2: The current style assignment algorithm is not able to handle objects mostly
or completely occluded by others.

34

Appendix A

Abbreviations

Short Term Expanded Term

CIE International Commission on Illumination (French:

Commission internationale de l’clairage)

CMY Cyan-Magenta-Yellow colour model or space

CPU Central Processing Unit

FPS Frames Per Second

GPU Graphics Processing Unit

HSB Hue-Saturation-Brightness colour model or space

HSL Hue-Saturation-Lightness colour model or space

HSV Hue-Saturation-Value colour model or space

IDE Integrated Development Environment

NPR Non-Photorealistic Rendering

RGB Red-Green-Blue colour model or space

35

Bibliography

[1] T. Strothotte, Non-photorealistic Computer Graphics: Modeling, Rendering, and An-

imation. Morgan Kaufmann, 2002.

[2] E. C. Fernie, Art history and its methods: a critical anthology. Phaidon Press Ltd.,

July 1995.

[3] V. Hlavac, M. Sonka, and R. Boyle, Image Processing, Analysis, and Machine Vision.

Nelson Engineering, international ed of 4th revised ed edition ed., Jan. 2014.

[4] G. Sharma, W. Wu, and E. N. Dalal, “The CIEDE2000 color-difference formula:

Implementation notes, supplementary test data, and mathematical observations,”

Color Research & Application, vol. 30, pp. 21–30, Feb. 2005.

[5] J. Macqueen, “Some methods for classification and analysis of multivariate observa-

tions,” in In 5-th Berkeley Symposium on Mathematical Statistics and Probability,

pp. 281–297, 1967.

[6] H. Steinhaus, “Sur la division des corp materiels en parties,” Bull. Acad. Polon. Sci,

vol. 1, pp. 801–804, 1956.

[7] S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf. Theor., vol. 28,

pp. 129–137, Sept. 2006.

[8] D. Arthur and S. Vassilvitskii, “K-means++: The advantages of careful seeding,”

in Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algo-

36

rithms, SODA ’07, (Philadelphia, PA, USA), pp. 1027–1035, Society for Industrial

and Applied Mathematics, 2007.

[9] E. Reinhard and T. Pouli, “Colour spaces for colour transfer,” in Computational

Color Imaging (R. Schettini, S. Tominaga, and A. Trmeau, eds.), no. 6626 in Lecture

Notes in Computer Science, pp. 1–15, Springer Berlin Heidelberg, Jan. 2011.

[10] E. Reinhard, M. Ashikhmin, B. Gooch, and P. Shirley, “Color transfer between

images,” IEEE Comput. Graph. Appl., vol. 21, pp. 34–41, Sept. 2001.

[11] D. L. Ruderman, T. W. Cronin, and C.-C. Chiao, “Statistics of cone responses to

natural images: implications for visual coding,” Journal of the Optical Society of

America A, vol. 15, pp. 2036–2045, Aug. 1998.

[12] G. Li, “Image fusion based on color transfer technique,” in Image Fusion and Its

Applications (Y. Zheng, ed.), InTech, June 2011.

[13] C. H. Nguyen, T. Ritschel, K. Myszkowski, E. Eisemann, and H.-P. Seidel, “3d

material style transfer,” Computer Graphics Forum, vol. 31, pp. 431–438, May 2012.

[14] B. T. Phong, “Illumination for computer generated pictures,” Communications of

the ACM, vol. 18, no. 6, pp. 311–317, 1975.

[15] Q. Yang, S. Wang, and N. Ahuja, “Real-time specular highlight removal using bi-

lateral filtering,” in Computer Vision ECCV 2010 (K. Daniilidis, P. Maragos, and

N. Paragios, eds.), no. 6314 in Lecture Notes in Computer Science, pp. 87–100,

Springer Berlin Heidelberg, Jan. 2010.

[16] F. Durand and J. Dorsey, “Fast bilateral filtering for the display of high-dynamic-

range images,” in Proceedings of the 29th Annual Conference on Computer Graphics

and Interactive Techniques, SIGGRAPH ’02, (New York, NY, USA), pp. 257–266,

ACM, 2002.

37

[17] A. Lake, C. Marshall, M. Harris, and M. Blackstein, “Stylized rendering techniques

for scalable real-time 3d animation,” in Proceedings of the 1st International Sympo-

sium on Non-photorealistic Animation and Rendering, NPAR ’00, (New York, NY,

USA), pp. 13–20, ACM, 2000.

[18] A. Hertzmann, “Introduction to 3d non-photorealistic rendering: Silhouettes and

outlines,” in Non-Photorealistic Rendering, SIGGRAPH Course Notes, 1999.

[19] C. J. Curtis, S. E. Anderson, J. E. Seims, K. W. Fleischer, and D. H. Salesin,

“Computer-generated watercolor,” in Proceedings of the 24th Annual Conference on

Computer Graphics and Interactive Techniques, SIGGRAPH ’97, (New York, NY,

USA), pp. 421–430, ACM Press/Addison-Wesley Publishing Co., 1997.

[20] A. Bousseau, M. Kaplan, J. Thollot, and F. X. Sillion, “Interactive watercolor render-

ing with temporal coherence and abstraction,” in Proceedings of the 4th International

Symposium on Non-photorealistic Animation and Rendering, NPAR ’06, (New York,

NY, USA), pp. 141–149, ACM, 2006.

[21] L. Shamir and J. A. Tarakhovsky, “Computer analysis of art,” J. Comput. Cult.

Herit., vol. 5, pp. 7:1–7:11, Aug. 2012.

[22] L. Shamir, “Evaluation of face datasets as tools for assessing the performance of face

recognition methods,” International Journal of Computer Vision, vol. 79, pp. 225–

230, Sept. 2008.

[23] J. D. Foley and A. Van Dam, Fundamentals of Interactive Computer Graphics.

Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1982.

[24] K. Perlin, “An image synthesizer,” in Proceedings of the 12th Annual Conference on

Computer Graphics and Interactive Techniques, SIGGRAPH ’85, (New York, NY,

USA), pp. 287–296, ACM, 1985.

38

[25] X. Xie, F. Tian, and H. S. Seah, “Feature guided texture synthesis (FGTS) for

artistic style transfer,” in Proceedings of the 2Nd International Conference on Digital

Interactive Media in Entertainment and Arts, DIMEA ’07, (New York, NY, USA),

pp. 44–49, ACM, 2007.

[26] C. Ma, H. Huang, A. Sheffer, E. Kalogerakis, and R. Wang, “Analogy-driven 3d style

transfer,” Computer Graphics Forum, vol. 33, pp. 175–184, May 2014.

39

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter 1 Introduction
	1.1 Motivation
	1.2 This Dissertation

	Chapter 2 State of the Art
	2.1 Definition of Style
	2.2 Image Processing
	2.2.1 Colour Model
	2.2.2 Colour Difference
	2.2.3 Image Clustering

	2.3 Style Transfer
	2.3.1 Colour Transfer between Images
	2.3.2 Colour Transfer from Image to 3D Scene
	2.3.3 Style Rendering
	2.3.4 Style Identification

	Chapter 3 Design
	3.1 Method Overview
	3.2 Style Extraction
	3.3 Style Assignment
	3.4 Style Rendering
	3.4.1 Edge Darkening
	3.4.2 Toon Shading
	3.4.3 Colour Modification
	3.4.4 Three Pigment Density Variation

	Chapter 4 Implementation Details
	4.1 Platform
	4.2 Other Libraries
	4.3 Development and Runtime Environment

	Chapter 5 Evaluation
	5.1 Colour Transfer between Images
	5.1.1 Results
	5.1.2 Runtime Efficiency

	5.2 Watercolour Rendering
	5.3 Colour Transfer from image to 3D scene
	5.3.1 Results
	5.3.2 Runtime Efficiency

	Chapter 6 Conclusion and Future Work
	6.1 Watercolour Style Transfer
	6.2 Accurate Style Assignment

	Appendix A Abbreviations
	Bibliography

