
Comparison of Collision Handling Methods for

Cloth using GP-GPU

by

Toby Ross, B.Sc. (Hons)

Dissertation

Presented to the

University of Dublin, Trinity College

in fulfillment

of the requirements

for the Degree of

Master of Science in Computer Science

(Interactive Entertainment Technology)

University of Dublin, Trinity College

September 2014

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated,

is my own work.

Toby Ross

September 1, 2014

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Toby Ross

September 1, 2014

Acknowledgments

I would like to thank Michael Manzke for the advice and support he has offered through-

out this process.

Toby Ross

University of Dublin, Trinity College

September 2014

iv

Comparison of Collision Handling Methods for

Cloth using GP-GPU

Master of Science in Computer Science
(Interactive Entertainment Technology)

Toby Ross

University of Dublin, Trinity College, 2014

Supervisor: Michael Manzke

The physically based animation of cloth has been researched for over two decades,

since which it has become a common and convincing appearance in film. In real time

applications such as video games, cloth simulations are starting to become common,

but the simulations lag behind the standard set in CGI and literature. In particular,

collisions are often neglected, especially self-collisions (where cloth hits cloth, or itself).

The processes normally used to guarantee robust collision handling are poorly suited to

the limitations of a real time application. This paper explores the viability of achieving

robust cloth simulation in real time on the GPU.

A [Bridson et al., 2002] style pipeline is fully implemented on the GPU, and each part of

the pipeline is benchmarked. An experiment is performed to discern the importance of

thickness parameter (a distance within which collisions are registered) to performance.

Further to this, a GPU design and partial implementation is discussed.

v

Contents

Acknowledgments iv

Abstract v

List of Figures viii

Chapter 1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 5

Chapter 2 State of the Art 6

2.1 Cloth Models . 7

2.2 Integration . 10

2.3 Collisions . 12

2.3.1 Collision Detection . 12

2.3.2 Collision Response . 19

2.4 GPGPU Parallelisation . 22

Chapter 3 Experiments & High Level Design 26

3.1 The CUDA Framework . 29

Chapter 4 Implementation & Low Level Design 31

4.1 Pipeline . 31

4.2 Libraries Used . 32

4.3 Cloth Model . 32

4.3.1 Cloth Rendering . 34

vi

4.4 Integration . 34

4.5 Broadphase Detection . 38

4.5.1 Hierarchy Construction . 38

4.5.2 Refitting the Hierarchy . 41

4.5.3 Traversing the Hierarchy . 43

4.6 Discrete Proximity Detection & Handling 44

4.7 Continuous Collision Detection & Handling 45

4.8 Impact Zones . 47

4.9 Untangling . 48

4.9.1 Finishing the Implementation 51

Chapter 5 Results 53

5.1 Experiment 1 . 53

5.2 Experiment 2 . 58

5.3 Experiment 3 . 61

Chapter 6 Conclusion 63

6.1 Limitations & Future Work . 63

6.2 Closing Thoughts . 64

Bibliography 67

vii

List of Figures

2.1 The three types of spring . 8

2.2 A single vertex, shared between six triangles 15

2.3 Self-Intersection due to a Loop . 16

2.4 Self-Intersection due to Contour Overlap 16

2.5 Property that ensures no self-intersection 16

2.6 A Normal Cone contains all of the normals of a surface 17

2.7 A new cone is created from two sub-cones 18

2.8 The intersection of a posed character, and proper behaviour of cloth in

that situation . 23

2.9 The collision curve between a piece of cloth and a sphere 23

2.10 The three different lines created in triangle-triangle intersection 24

2.11 The GPU Streaming Pipeline . 25

2.12 A closer look at the collision part of the pipeline 25

3.1 The full pipeline . 27

4.1 Two-sided thick cloth using two render passes 35

4.2 Spring Groups . 37

4.3 Triangles and leaves . 39

4.4 The BVH created using the 2D construction 40

4.5 The two levels of the tree . 42

4.6 The ‘scanline’ algorithm . 49

4.7 The blue (wrong-side) particles of a BB-II intersection map to the yellow

particles . 50

viii

Chapter 1

Introduction

1.1 Motivation

Physically based animation is a major area of computer graphics aimed at developing

methods by which real world phenomena can be efficiently recreated in virtual worlds.

It is primarily of use in the domain of entertainment. Physically based animation is

used frequently for films and games.

There is a broad difference between physical simulation, and physically based anima-

tion. In the former, the interest is in precisely and accurately recreating reality, which

is typically of interest for scientific and engineering pursuits. In the latter, accuracy is

rarely a focus, and desired only up to the point of plausibility and appeal. Physically

based animation is hence typically achieved using a mixture of simplifications and ap-

proximations. As an example, one of the major pillars of physically based animation

(rigid body simulation) is based off the false assumption of true rigidity for many solid

objects.

There is a considerable difference between the techniques that are viable for use in film

- where simulation is performed offline - and techniques that are viable for use in games

(or other real-time applications). Though it would be an over simplification to state

that efficiency is a non-issue for films, it would not be unreasonable to spend seconds,

or minutes, on a single frame. Comparatively, simulation in a real time application

1

has to be on the order of milliseconds. Games are expected to run at a minimum of

30FPS (frames per second), equating to 33ms to perform every operation, with 60FPS

(16ms per frame) often preferred. Within these budgets, much is typically reserved

for rendering, artificial intelligence and so forth, so realistically any physically based

animation will have to be performed in a few milliseconds.

Traditionally, research into physically based animation is separated into a variety of

different areas. Two of the most established areas are the previously mentioned rigid-

bodies, and particle systems. Particle systems are relatively simple, and can be used

to provide an impressive variety of effects at low cost. Closer to the cutting edge is

simulation of deformable objects (often termed softbodies) and fluids. Fluid simulation

can be used to create plausible animations of liquids, gases, as well as flame. The soft-

bodies are even broader, including hair, rope, and cloth as well as solids which squash,

stretch, and fracture.

Use of these different types of simulation in film are extremely common, and extremely

effective both when used to simulate the fantastic, and the realistic. Games lag far

behind: Physically based animation in games is used in only a small proportion of

the situations where, in an ideal world with infinitely powerful computers, it could

be. The small amount of time afforded to physically based animation has already

been mentioned, but if anything there is another factor that makes physically based

animation in games especially tricky: interactivity.

One could classify physical simulations in games into four groups: those which have

no relation to the player, those which are affected by the player, those which affect the

player, and those which are both affected by the player and affect the player. For the

first group, offline techniques are often applicable. Simply record the simulation that

takes place offline, and replay it as necessary at runtime. For the second group, care

needs to be taken over the robustness of the simulation, as no longer does the designer

have control over what can happen. There has to be a certainty that the player will

not be able to put the simulation into a broken state. For the third group, care needs

to be taken to ensure that the unpredictable physics do not have an adverse effect

on the gameplay. As an example, imagine a football game which correctly simulates

the knuckling of a ball - a contentious phenomenon which causes a non-spinning ball

to unpredictably swerve. This would improve the realism of the simulation, but is

2

unpredictable realism preferable in a game? Worse, what if the physical simulation

left the player in a game-over state due to some chaotic element of the simulation?

Obviously, the fourth group simply combines the difficulties of the second and third.

All of this means that the simulations in games have to be more robust, if anything,

than those in films.

Given the above difficulties, it is unsurprising that physically based animation has not

reached ubiquity in games. Yet, there are examples of all previously mentioned types

of physically based animation in games. Particle systems are used so frequently that it

is not worth an individual mention. Rigidbody physics have been used in many games

successfully, often as a core mechanic. Angry Birds, undeniably one of the most popular

titles of all time, tasks players with destroying enemy fortifications with a catapult.

The fortifications are made up of simple 2D shapes, and as the catapulted birds hit

the structures, they collapse, simulated using the 2D rigidbody engine Box2D. There

are few examples of softbody physics in games. One of the best examples is Star Wars:

The Force Unleashed (and its sequel), which utilise an engine called Digital Molecular

Matter to simulate the how solids bend and break under contact. Examples including

rock crumbling, glass shattering, wood splintering, plants bending, and jelly deforming

and wobbling as objects are fired into it.

Cloth simulation, a subset of softbody simulation, is becoming a regular appearance

in modern video games. Cloth simulation can add a great deal of impact to the visual

appeal of a character. Batman: Arkham City sees the protagonist’s famous cape

simulated, moving with every step, jump, punch and kick, and it makes it that much

easier to immerse oneself into the role. Other instances of cloth in games are similar:

used for a mage’s robes, or a hunter’s cloak. Though cloth simulation is no longer rare

in games, the simulations are far less advanced than those which would be seen in film

or in the literature. As of 2014, no major title has dealt with self-collisions for cloth

(where cloth collides with itself, or another bit of cloth). The simple reasoning for this

is that cloth simulation is complex and expensive. Simulating the movement of the

cloth in an unconstrained environment can be done relatively cheaply, but detecting

collisions and then resolving them in a robust manner cannot.

Collision handling is typically the most expensive element of a physical simulation

regardless of type, and this is particularly true for cloth. It is critical for the collision

3

detection and handling of cloth to be absolutely robust: a single missed collision can

lead to a permanent and unappealing tangle, where portions of cloth self-intersect

and become trapped. Ensuring that collisions aren’t missed is not easy with cloth

because of its thinness. The thickness of a piece of cloth is likely to be on the order

of millimetres (or less), and this thwarts many standard collision handling methods.

The more robust methods necessary for cloth collision detection come at a severe cost,

and it is apparently for this reason that game developers decide to ignore self-collision

handling altogether.

For robust and full cloth simulations to become viable in real time, more efficient sim-

ulations must be achieved. One way in which physical simulations (and physically

based animation) can be accelerated is by exploiting parallelism. For some time now,

computer architecture design has seen processing power split between multiple cores,

rather than concentrated into a single core. This has been the preferred direction

because of various issues that occur when trying to create single cores which exceed

3-4 GHz. Modern consumer processors commonly have two or four cores, with both

six and eight core processors starting to become available. With graphics processing

units (GPUs), the parallelism is much finer. Modern graphics cards commonly have

hundreds, or thousands of cores. These are very well suited to common graphics tech-

niques, but they are increasingly used for non-graphical applications, a concept termed

GPGPU (general purpose computation on graphics processing units). The theoretical

throughout of a GPU is far, far higher than that of a CPU. For well suited tasks, speed

ups of 100x and above are not uncommon.

The tasks typical to a physics simulation have proven many times to be well suited to

graphics processors. This is unsurprising: GPUs are suited to tasks that split easily

into similar small parts. GPUs are known as SIMD processors, which means that they

execute the same instruction on many pieces of data. This is precisely the kind of work

necessary in a physics simulation. As example, a collision detection routine might

require performing a proximity test between thousands of pairs of triangles. Early

GPGPU endeavours awkwardly exploited graphics APIs such as OpenGL to perform

computations, utilising vertex and fragment shaders, textures and the framebuffer for

general computation. More recently, frameworks such as OpenCL and CUDA have

been developed to give a more natural interface for GPGPU.

4

1.2 Contributions

The primary contributions of this dissertation is an exploration of cloth self-collision

handling methods with a particular focus on their viability as part of real time appli-

cations such as video games. To this end, a GPGPU pipeline has been implemented

for the simulation of cloth.

A popular, truly robust method for coping with self-collisions in cloth has been im-

plemented on the GPU based on [Bridson et al., 2002] and has been analysed with a

view to exploring its real time performance. Experiments have also been performed to

evaluate the importance of a particular parameter (thickness) to the cost of handling

collisions.

Untangling, where self-intersections are reversed, has been discussed in the literature

for serial implementations, but not thus far for the GPU. This paper describes a partial

design and implementation of GPU untangling based on the ideas of [Baraff et al., 2003]

and [Wicke et al., 2006].

5

Chapter 2

State of the Art

There are a handful of things that need to be achieved to produce a high quality cloth

simulation. Internal forces, those which hold the cloth together and give it is strength,

must be modelled. External forces, such as gravity, or wind, must be applicable.

The effects of these on the cloth’s state must then be simulated using some form of

integration over time. Collisions between the cloth and other surfaces (typically rigid)

must be simulated, importantly ensuring that the cloth does not ‘clip’ through said

surfaces. Finally, and perhaps most challengingly, ‘self-collisions’, between multiple

pieces of cloth or between different parts of a single piece of cloth must be detected

and dealt with.

There are a number of important factors in a cloth simulation. To produce a simulation

of a cloth like object, one has to consider the internal modelling, and this is discussed

in Section 2.1. To progress the simulation, integration should be considered, discussed

in Section 2.2. Collisions, both between cloth and non-cloth objects, and between the

cloth and itself (or two pieces of cloth) must be detected and resolved, and these issues

are covered in Section 2.3. Even with the above three elements in place, simulation is

expensive, so improving performance is a major concern. Finally, in Section 2.4, the

parallelisation of cloth simulation will be discussed.

6

2.1 Cloth Models

In reality, cloth is constructed from the interweaving of threads, themselves constructed

from spun fiber. The interlocking network resulting from this process has considerable

strength due to friction. Different types of fiber present different physical behaviours,

and the weight of the thread (or yarn), as well as the tightness or the weave, and the

style of the weave, also effect physical properties.

Simulating the behaviour of cloth (and more broadly, extremely thin, flexible materials)

has been an area of research for many decades. [Nealen and Müller, 2006] presents a

broad overview of research into the modelling of deformable objects, including cloth.

[Terzopoulos et al., 1987] presents a continuum based model. The simulation is based

on a simplified elasticity model, and differential equations are used to model deformable

objects including cloth. To solve the partial differential equations rendered by this

method, finite element analysis or finite differencing methods are used. The paper

works on the basis that a deformable object (or in the case of cloth, a deformable

surface) can be defined by its rest state (or non-deformed shape) and parameters which

define how a force deforms it.

Finite element/difference methods are common tools for dealing with deformable object

simulation to this day, but in the case of cloth simulation it has largely been set aside.

The prevalent methods for simulating cloth since the 1990s have been particle based.

[Provot, 1995] is considered seminal in its proposition of a mass-spring system, but in

truth [Breen et al., 1994b] argued the viability of particle based systems over Finite

Element techniques. Particle based systems, it was argued, are better positioned to

represent the complicated mechanism of fibers that make up a piece of cloth.

As touched upon before, a microscopic examination of cloth highlights the network

of threads. Parallel groups of thread are known as the warp and weft respectively,

with the warp group perpendicular to the weft. Particle based systems posit that the

crossover point between a warp and weft thread can be modelled as point masses (or

particles) in a discretised model. This is justified as the tension at crossover points is

so great that threads are effectively clamped together.

[Breen et al., 1994b] represents the thread-level structural constraints using energy

7

Figure 2.1: The three types of spring

functions which encapsulate the various interactions found in a piece of cloth. Par-

ticle positions are then solved for using standard energy minimisation techniques.

[Provot, 1995] has a simpler solution for modelling cloth using a particle system: each

particle becomes a point mass with neighbouring particles attached by springs.

The springs are attached as follows. In a rectangular mesh of particles, a coordinate

pair [i, j] refers to the ith column and j th row. Three types of spring are created to

give the mesh cloth like characteristics:

1. Structural Springs link the particles [i, j] to both [i + 1, j] and [i, j + 1] (each

particle to the four directly up, down, left, and right)

2. Shear Springs link [i, j] to [i + 1, j + 1] and [i + 1, j] to [i, j + 1] (each particle

to the four particles at north east, south east, south west, and north west)

3. Flexion Springs link [i, j] to [i + 2, j] and [i, j + 2] (each particle to the four

particles two above, down, left, and right)

The four types of spring are illustrated in Figure 2.1.

The three springs give the cloth strength in specific ways. The structural springs resist

deformation along the primary axes, and the shear springs resist deformation in the

diagonal directions. Finally, the flexion springs resist the bending of the cloth, and

8

are often known simply as bending or bend springs. Each spring applies an ‘internal’

force to the attached particles that pulls (or pushes) the particles towards their original

distance. The further from the original or resting distance the particles are, the stronger

the applied force, in accordance with Hooke’s Law:

F = −kx (2.1)

where F refers to the force, k to the spring coefficient, and x to the vector between

the attach points of the spring (in the case of a mass-spring system, this is the vector

between the two particles).

To an impressive extent, cloth modelled using the mass-spring model is able to recreate

the behaviour of cloth in the real world. One exception to this rule is ‘super-elasticity’

a term coined by Provot in [Provot, 1995] to refer to springs that hugely over extend,

as tends to happen near attachment points (where the cloth is fixed to a point in

world space). This highlights a flaw with the mass-spring model: real cloth is barely

extensible (10% extension is a typical maximum in woven materials).

[Provot, 1995] offers a procedure - by his own admission ‘ad hoc’ - to cope with these

over-elongated springs called the dynamic inverse. After each update of the cloth’s

position, the springs are iterated over, calculating the gap between their rest length

and their current length. Any that have gone too far are then shortened, by moving

the attached particles closer to each other. This process is repeated until no spring

is over extended. There are various other solutions for the over-extended springs - a

simple one is to strengthen over-elongated springs.

The mass-spring model is largely ubiquitous, but there has been considerable suc-

cess with a more modern model. [Müller et al., 2007] presents Position Based Dy-

namics, where positional constraints are used in the place of springs to achieve de-

formable object simulation. This has applications for many types of deformable ob-

jects ([Macklin et al., 2014] uses the concept to build a unified physics system including

rigidbodies, fluids and gases) but in the original paper it is used to implement a cloth

simulation.

Positional constraints, as the name suggest, are functions of particle positions. For

9

the cloth model, two types of constraint are used. The first, a ‘stretching’ constraint

limits the distance between adjacent particles, and the second, a ‘bending’ constraint

limits the angle between triangles which share an edge. The key behind Position Based

Dynamics is how these constraints are enforced. The constraints are formed into a non-

linear system that is solved numerically using a variant of the Projected Gauss Seidel

method, where a systeme is solved by iteratively solving for one variable.

One of the major advantages of Position Based Dynamics is that positional constraints

can take a much wider range of forms, and hence achieve a much wider range of

behaviours, than springs. It is also arguably more intuitive to create positional con-

straints, and to tune them, than it is to tune the springs in a mass-spring cloth model.

This variety is illustrated in [Müller et al., 2007] with a balloon constraint, which mod-

els air pressure inside a closed cloth mesh.

2.2 Integration

With a cloth model in mind, it remains to decide how to use the model to advance from

one time to the next. There a number of major considerations: efficiency - how fast

can it be performed, accuracy - how close are the results to an analytical solution, and

stability - the simulation’s ability to converge to a stable state. A number of different

methods have been proposed for use with cloth simulation. These are typically divided

into two classes: explicit and implicit. The former calculates a future state based purely

on the past state, whereas the latter solves an equation (or system) involving both

the current and future state. Generally, explicit schemes are used for their efficiency,

as while implicit schemes are more accurate and stable, they are considerably more

expensive.

[Provot, 1995] implements the performance light explicit (or forward) euler integrator.

At each state, the integrator can be used to determine a change in position and velocity

which, when added to the old position and velocity, advance the state:

∆x = ∆tvt (2.2)

10

∆v = ∆t
Ft

m
(2.3)

where F refers to force, v to velocity and x to position. Quite clearly, the procedure is

extremely cheap, but it is also extremely inaccurate and more problematically, widely

unstable. Stability is a complicated issue in numerical mathematics, and relates to

various a number of different factors in a physics simulation. One thing that puts a lot of

strain on an integrator’s stability is springs, and in particular, stiff springs. Discussions

on the stability of various integration methods can be found in [Eberly, 2010].

Springs are extremely sensitive to instability issues, and the stiffer the springs are, the

more prone the system will be to exploding. Only when the timestep (the length of

time between the current and future timestep) is lowered does the stability start to

improve. While the explicit euler method is cheap to perform a single update, it is

only stable if multiple updates are used per frame.

This procedure is extremely cheap, but without a small timestep (∆t), it is extremely

inaccurate, and not particularly stable. One popular explicit alternative is the Runge-

Kutta (or Runge-Kutta 4) method, which is far more accurate and less prone to insta-

bility.

[Baraff and Witkin, 1998] instead uses an implicit scheme, arguing that ‘The bottle-

neck in most cloth simulation systems is that time steps must be small to avoid numer-

ical instability‘. Implicit schemes can stably take large time steps (though, dependent

on how collisions are dealt with, small timesteps may still be necessary). They use the

Backward Euler method, an implicit scheme:

∆x = ∆t(v(t) + ∆v) (2.4)

∆v =
1

m
F(t) (2.5)

Their formulation generates a sparse system matrix where the change in velocity (accel-

eration) is solved for using the conjugate gradient method, and from there the change

in position (velocity) follows.

Another commonly used integration technique is Verlet integration. It is very often

11

used for particle systems, and hence it, and variants of it, are used regularly in cloth

simulation, assuming the cloth is simulated using one of the particle based models.

The Verlet technique is unusual in that velocities are not directly used:

xn+1 = 2xn − xn−1 + an∆t2 (2.6)

One such example of the use of a Verlet style integrator is in Position Based Dynamics

[Müller et al., 2007], where at the end of each timestep, the velocity is set as:

v = (p− x)/∆t (2.7)

x = p (2.8)

Here, p stands for the position that has been calculated for the particle over the

timestep, and x to the position of the particle at the beginning of the timestep. Hence,

though the velocity is explicitly stored, it is ‘in exact correspondence with a Verlet

integration step‘.

2.3 Collisions

As with most types of physical simulation, coping with collisions and contact is of

crucial importance. It is most typically the most expensive area of the simulation, and

quite often the most complicated too. Cloth itself poses a particular issue due to how

thin it is. Generally speaking collision handling can be split into how collisions are

detected, and how they are resolved.

2.3.1 Collision Detection

Collision detection methodologies can be classified as either discrete or continuous.

Discrete methods test for collision states at a particular time, whereas continuous

methods try to determine whether equations are going to occur during a time period.

12

For the reasons explained above, continuous collision detection, which is more costly

and typically more complex than discrete collision detection, is often used.

In most cases, collision detection solutions are split into two methods: broadphase, and

narrow phase. In the narrow phase, elements are specifically tested to discover whether

or not a collision has occurred. However, to avoid testing n2 elements, broadphase

testing is used to quickly cull obvious cases of non-collision using various heuristics.

This section will cover first broadphase improvements, before discussing narrowphase

calculations.

Bounding Volume Hierarchies are a common acceleration structure for use in collision

detection. The concept is discussed comprehensively in a survey on collision detection

for deformable objects[Teschner and Kimmerle, 2005].

Algorithm 1 Bounding Volume Hierarchy Test

1: procedure Traverse(A,B)
2: if A and B do not overlap then return

3: if A and B are leaves then return intersection
4: else
5: for all children of A: A[i], and B: B[j] do Traverse (A[i] , B[j])

Algorithm 1 can either be used to test intersection between two objects represented by

two hierarchies with top level bounding volumes M and N respectively by calling Tra-

verse(M, N). Alternatively, self-intersections can be tested by calling Traverse(M,

M).

The overlap test is key. As the algorithm’s name suggests, the overlap test is based on

cheap bounding volume tests (various types of bounding volume can be used, including

axis-aligned boxes and spheres).

A number of decisions have to be made with the use of a Bounding Volume Hierarchy,

such as the type of bounding volume to use, how to build it in the first instance,

and how to update it each frame. Most formulations of BVHs use some kind of ’k-

DOP’ as bounding volume. k-DOP stands for discrete oriented polytope, and is a

generalization of the axis-aligned bounding box (which is a 6-DOP). k refers to the

number of directions that are used to bound the object. With an AABB, six are

chosen: (1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1), (0, 0,−1). Higher degree DOPs

13

tend to involve using diagonal axes which result in beveled bounding volumes. A

26-DOP, for example, is a standard AABB, with each edge and vertex beveled.

There are many techniques for building bounding volume hierarchies. A standard one

is to find a bounding volume that contains an entire object, before recursively splitting

it down the longest side, until a single element remains in the bounding volume. For a

deformable object, the BVH needs to be updated every frame. A naive way of doing

this is to simply rebuild the tree every frame, but this is significantly more costly

than ’refitting’ it, where one simply updates the bounding volumes. A rebuilt tree

will likely be of better quality, so optimal methodologies typically use refitting with

periodic rebuilding.

[Bergen, 1997] explored the issue of Bounding Volume Hierarchies for collision detection

of deformable objects, including a section on refitting versus rebuilding. They state

that ’experiments have shown that for models composed of over 6000 triangles, refitting

an AABB tree is about ten times as fast as rebuilding it’. They note the drawbacks or

refitting too - the bounding volumes in a refitted tree are liable to overlap more than

the boxes in a rebuilt tree. This leads to the search having to descend farther down the

tree, and thus worse performance. However, in cases where the mesh is not fractured,

they ’found no significant performance deterioration for intersection testing, even for

more severe deformations’.

The Bounding Volume Hierarchy is not the only high-level culling concept suggested

for use with cloth. There are various instances where spatial subdivision has been

proposed as an alternative, including [Teschner et al., 2003]. The scheme works by

implicitly splitting the world into small AABBs, or, into a 3-D grid of cells. In a first

pass, for each vertex, the cell is determined, and the coordinates are hashed, before

being stored in a hash table. In the second pass, elements (eg. triangles or tetrahedra)

are looped over. For each element, a standard hashtable lookup is performed with any

cell the element intersects. These vertex-element pairs are then highlighted as those

being potential colliders.

The method is efficient, but does not highlight edge-edge collisions. This is justified

on the basis that ’the relevance of an edge test is unclear in case of densely sampled

objects’. Many cloth simulations do in fact deal with the edge-edge case, but, strong

14

Figure 2.2: A single vertex, shared between six triangles

results have been achieved without (such as with [Müller et al., 2007]).

Collision detection is the major bottleneck in cloth simulation, and a lot of work has

gone into trying to improve high and low level culling algorithms to reduce the number

of elemental tests that have to be performed. One such example is Representative Tri-

angles, the primary contribution of [Curtis et al., 2008]. It seeks to solve the problem

that many features (vertices and edges) are shared between elements (triangles), and

hence many duplicated elementary tests occur in a naive setup. With Representative

Triangles, each feature is ’represented’ by a just one triangle.

As example, illustrated in Figure 2.2, a single vertex, v1, collides with a triangle,

t1. The vertex is shared between six triangles, t2 through t7. The vertex may end

up being tested against t1 for each of the six triangles, despite only one test being

necessary. However, with representative triangles, just one triangle, say t2 would be v1’s

representative. Culling elementary tests in this way was not novel, but the strategy of

culling them by attaching features to their representative triangles is far more efficient

than previous strategies of using run-time databases to detect whether a particular

test has been used before. The database method is far more costly than representative

triangles, leading to improved performance in experiments - the method is enormously

better than not culling redundant elementary tests at all.

Other culling algorithms have been suggested for similar purposes. [Tang et al., 2009a]

proposes the orphan set, which deals with the high level of redundancy in the element

tests between adjacent triangles. Where 15 tests are necessary by default between two

15

Figure 2.3: Self-Intersection due to a Loop

Figure 2.4: Self-Intersection due to Contour Overlap

triangles, only four are actually necessary. More over, many of these tests will have

already been performed in tests between non-adjacent triangles. Another example is

the non-penetration filter from [Tang et al., 2010] which uses a conservative coplanarity

test to cull elementary tests prior to solving the cubic equations used for continuous

collision detection.

Very specifically, some optimisations have been proposed for the use in cloth collision

handling. [Volino and Thalmann, 1994] makes a number of useful contributions in-

cluding some insights on the self-intersection of cloth. The paper describes the two

properties of a surface which can lead to self-intersection.

Figure 2.5: Property that ensures no self-intersection

16

Figure 2.6: A Normal Cone contains all of the normals of a surface

1. The surface is curved enough that it loops around and intersects as in Figure 2.3

2. The contour of the surface is overlapping as in Figure 2.4

These are reworded as a pair of mathematical properties which, if both true, guarantee

a surface does not self-intersect. These are illustrated in Figure 2.5.

1. There exists a vector, V, for which the dot product with any normal from the

surface is positive.

2. The projection of the surface’s contour onto a plane orthogonal with V does not

self-intersect.

The first property can be efficiently dealt with using the concept of the normal cone

proposed in [Provot, 1997]. For a particular surface, its normal cone is a cone which

contains all of the normals of the surface as illustrated in Figure 2.6. Such a cone can

be described entirely by its axis (the vector from the cone’s origin point through the

center of the cone), and its apex angle (the angle between the two edges of the cone).

If the apex angle of the cone is smaller than Π, then it suffices to say that there is a

vector for which the dot product is greater than 0 for every normal.

The normal cone test can be made part of a Bounding Volume Hierarchy broadphase.

The cones for each node can be built recursively by working bottom up a hierarchy as

part of a standard refit.

As for the contour test, there is considerable thinking that it can in fact be ignored, as is

done in both [Volino and Thalmann, 1994] and [Provot, 1997]. The latter justifies this

on the basis that self-collision due to a severely non-convex contour ’never happened

in our simulations, even when modelling clothes using real clothes patterns’. Even so,

[Tang et al., 2009a] implements a continuous version of the contour test.

17

Figure 2.7: A new cone is created from two sub-cones

Moving onto the narrowphase testing, the thinness of cloth has meant that the general

focus is on continuous methods rather than discrete methods. [Provot, 1997] is an early

authority on continuous collision detection for cloth. It describes two tests which allow

the continuous detection of the collision between a vertex and a triangle, and between

two edges, which together cover all collisions that can occur. Respectively, one has to

test whether a vertex becomes coplanar with the three vertices of the triangle, and,

whether the four points which define the two edges become coplanar.

Vertex co-planar with a triangle:

(
−−→
AB(t)×

−−→
AC(t)) ·

−−→
AP(t) = 0 (2.9)

where A, B and C are the three points of a triangle, and where P is the vertex. Hence,

the function
−−→
AB(t) is a vector between A and B. If the movement of vertices over a

timestep is linear (an oft-used assumption in physical simulation), this resolves to a

cubic equation where one can solve for t. For each real root found, further checks are

necessary to determine that there is a vertex-triangle collision. First, that the time is

between the current time and the end of the timestep, and second that, at that time,

the vertex is not just coplanar, but internal, to the triangle. If multiple roots satisfy

this, just the first represents a collision.

Two edges co-planar:

(
−−→
AB(t)×

−−→
CD(t)) ·

−−→
AC(t) = 0 (2.10)

18

where A and B are the beginning and end of one edge, and C and D the beginning and

end of the other edge. Again, finding that the points become coplanar is not enough

to determine a collision. For each real root that is between the current time and the

end of the timestep, it is necessary to check whether the colliding points between the

infinite lines are between the end points of the edges.

Using these two above tests, one can accurately determine whether there is a collision

between moving triangles.

Despite the fact that theoretically, any collision can be coped with using the continuous

collision detection system above, according to [Bridson et al., 2002], numerical inaccu-

racy still means that self-intersection can occur. The paper describes a combination of

methods which, together, achieve a guarantee of no dynamic self-intersection.

The scheme uses both discrete and continuous detection. For the discrete detection,

feature pairs (edge-edge and vertex-face) are tested for proximity, to see whether they

are closer than a certain ‘thickness’ value.

2.3.2 Collision Response

Once collisions have been detected, the effects of the collision have to be reflected in

the movement of the cloth. Much like there are various methods for collision detection,

there are also many for collision response.

[Provot, 1997] describes how collisions can be dealt with in a mass-spring system, using

a basic impulse based response to implement both restitution (impact) and friction for

elements that are in contact:

v =

vT − kf |vN | vT

|vT ||
− kdvN if vT >= kf |vN |

−kdvN if vT < kf |vN |
(2.11)

where v is velocity, vT the tangential component of velocity, vN the normal component

of velocity, kf the coefficient of friction and kd the coefficient of restitution. These

equations are for a point/particle colliding with a stationary and immovable object.

Similar equations apply for moving particles in collision with each other.

19

However, the paper goes on to explain that using impulses as above will not in fact

avoid every case of self penetration. Dealing with multiple simultaneous collisions (or,

multiple collisions, over a timestep, with dependencies on each other) is a significant

problem in physics simulation. The obvious solution is to perform a round of collision

detection to determine where the first impact will occur, moving forward just that far

in time, before dealing with that impact before repeating the entire process. This,

unfortunately, is impractical for real time simulation as it becomes prohibitively slow

when multiple collisions occur in quick succession. [Mirtich, 2000] is a well known

strategy for dealing with this problem. It works by simulating the movement of objects

that are not in colliding states as normal, only backing up the simulation of an object

if it comes in to contact. In this way, it manages to resolve collisions in order, but does

not needlessly resimulate.

Unfortunately, as explained in [Bridson et al., 2002], timewarp ‘works well except when

there are a small number of contact groups which unfortunately is the case for cloth

as the entire piece of cloth has every node in contact with every other through the

mass-spring network’. This in essence justifies a position that dealing with collisions

in contact order is impractical, particularly when performance is an issue.

The solution in [Provot, 1997] is to determine so called ‘zones of impact’ or ‘impact

zones’ - areas of cloth which will involve multiple collisions over the timestep, and to

treat them as rigid. The zones are built up iteratively, with each node/particle in its

own zone, with zones successively merged if nodes from separate zones interact with

each other. It is intuitive that any node that is part of an impact zone cannot possibly

intersect with any other node that is part of the zone because their relative positions

will be static over the timestep. It is not a method with a great deal of justification in

reality, but it is a method that has seen use since, including in [Bridson et al., 2002],

where it is used as part of the scheme which guarantees no dynamic self-intersection.

Indeed, [Bridson et al., 2002] uses a number of steps to produce such a robust simula-

tion. As described previously, they use both discrete and continuous collision detection.

The discrete detection is used to determine proximity between elements of cloth, flag-

ging where elements are ‘too close’, which is taken to mean closer than the thickness

of the cloth would permit, and continuous detection is used to check whether actual

intersection occurs between elements over a timestep.

20

To deal with collisions they use a number of stages.

1. A round of discrete detection is used at t, to determine whether any parts of

the cloth are within the thickness parameter. Elements which are, and that are

approaching eachother, are first dealt with using an impulse which simulates an

inelastic collision (the relative velocity is removed). Following this, a spring like

replusion is used which pushes the elements apart towards the thickness distance,

and a further impulse, along the collision tangent, is used to apply friction.

2. A round of continuous detection is used, to detect collisions between t and t+∆t

to check for intersections that will occur, and a round of discrete detection is used

at t+∆t to check whether elements are too close at the end of the timestep. This

will pick up both cases where elements are approaching and going to collide, and

cases where elements are moving apart. In the case of the former, the collision is

coped with as in step (1), where in the latter just the spring repulsion is applied.

3. Step (2) is repeated some number of times

4. After some number of repetitions, if any collisions are still being detected in the

continuous detection, then Rigid Impact Zones are used as in [Provot, 1997].

The above scheme guarantees that, if the state of the cloth at t is collision free, the

state of the cloth at t + ∆t will also be collision free. That may sound perfect, but,

as discussed in [Baraff et al., 2003], it is not. ’Given the kind of guarantees that Brid-

son’s method [[Bridson et al., 2002]] provides, the ability to untangle cloth geometry

may seem unnecessary: if you start Bridson’s algorithm with no intersectionts, it will

maintain the invariant. A problem, however, is that if outside constraints force cloth

to intersect, the method can never recover. In production animation, this happens all

the time, when cloth becomes pinched between intersecting character geometries.’

They go on to explain that, while in real life geometry does not intersect, it is common

practice for parts of a character’s model/skeleton to intersect itself in certain poses.

As example, a squatting character will bend his knee such that the backs of lower and

upper leg come into contact. In real life, the flesh deforms and rests against itself. In

an animation pose, it’s likely that the joints simply intersect each other. This poses

two issues: how should the cloth behave when it is forced to intersect with objects, and

21

potentially cloth. Second, when the intersection ends, how can we ensure that the cloth

is not tangled. A case of cloth being trapped between joints is shown in Figure 2.8.

[Baraff et al., 2003] describes two methods which work together to solve the above

issues. Flypapering is used to ensure good behaviour of cloth in highly constrained

situations, and Global Intersection Analysis is used to untangle tangled cloth, if it

should arise. The flypapering method works by detecting ’pinched’ cloth particles and

essentially adhering them to the object/objects that trap them. This method is being

used in Figure 2.8.

The Global Intersection Analysis method works by first determining a ’collision curve’

on an intersecting piece of cloth. An example is shown between cloth and a sphere in

Figure 2.9. In the left side, the collision is shown, and the red curve marks a contour of

where the actual intersection takes place. The right image shows the contour mapped

to the cloth and sphere individually, with white spots indicating the vertices interior

to the contour. Having detected such a curve, and the interior particles, disentangle-

ment can be achieved by applying attraction forces between the white particles shown.

Generating the curve/contour, and interior particles, is key.

In any intersection between two triangles, there is a precise line which intersects be-

tween them. The three possibilities are shown in Figure 2.10. By combining the line

segments from a collision between two meshes (or two parts of the same mesh), a col-

lision curve can be found. Given such a curve, it is necessary to find the vertices that

are interior. A flood fill algorithm determines which side of the curve has less vertices

in it, and this is named interior. As such, regions of particles which ultimately need to

pass back through each other are determined, allowing untangling to occur.

2.4 GPGPU Parallelisation

Despite the length of time for which cloth simulation has been studied, it is still an area

where performance is often prohibitive. One way in which performance can undoubt-

edly be improved in physical simulation is by mapping it to parallel hardware, which is

often more suited to the types of computation necessary. Parallel solutions have been

sought on multi-core CPUs, and more recently many-core GPUs, particularly with the

22

Figure 2.8: The intersection of a posed character, and proper behaviour of cloth in
that situation

Figure 2.9: The collision curve between a piece of cloth and a sphere

advent of the GPGPU paradigm.

Some research into GPU based simulation specifically sought to use elements of the

graphics processing pipeline (such as the rasteriser) for aspects such as collision de-

tection, such as [Baciu and Wong, 2004]. However, there are limits to the potential of

image-based methods, so the focus here on is on object-space simulation.

One of the first examples of GPUs being used for cloth simulation was from NVIDIA’s

Simon Green, who presented a basic cloth simulation which incorporated basic be-

haviour based on the traditional mass-spring model. Particle data is stored in a

floating-point texture. Using a series of fragment shader passes, particle positions

are updated based on Verlet integration, before having constraints applied to them

(enforcing distance constraints between particles, and collision with sphere and plane).

A slightly more advanced version was presented in 2005 and released as a white paper

23

Figure 2.10: The three different lines created in triangle-triangle intersection

in 2007[Zeller, 2005]. The major difference between Zeller’s formulation and Green’s is

that Zeller more smartly handles the spring constraints between particles. For interde-

pendent constraints (eg. two constraints which move the same particle), enforcement

must be sequential for the simulation to converge. Hence, the springs are split into

groups so that no interdependent springs are processed in the same pass. Zeller simu-

lates the structural and shear springs from [Provot, 1997], and use 8 groupings/passes

to simulate them all. Collisions are dealt with by detecting whether a cloth particle is

inside one of the collision objects, before moving it out.

Though both of the above systems are efficient simulations, they are far inferior to much

earlier sequential methods in terms of the simulation quality. Crucially, neither of them

deal with self-collision detection/resolution, a staple of high quality cloth simulation.

More recently, research into parallel cloth simulation has caught up significantly with

what can be expected from a sequential program. [Tang et al., 2011a] describes a GPU

based pipeline for continuous collision detection with deformable objects, utilising the

GPU as a stream processor via the CUDA platform. In the stream processing paradigm,

data is represented as streams which are then worked on by kernels. They boast

impressive performance with ’inter-object and intra-object computations on models

composed of hundreds of thousands of triangles in tens of milliseconds’. The scheme

is designed to be flexible enough to take advantage of culling methods such as those

described in the collision detection section.

24

Figure 2.11: The GPU Streaming Pipeline

Figure 2.12: A closer look at the collision part of the pipeline

The work has been incorporated into [Tang et al., 2013], which describes a fully GPU-

based method for simulating cloth. For the simulation of extremely high resolution

cloth, their results show a speedboost of over 2 orders of magnitude over single threaded

CPU based simulations, and over 1 order of magnitude over multi-threaded CPU sim-

ulations.

Their pipeline has two major stages, time integration (for which they have implemented

both explicit RK4, and implicit integration), and collision handling, heavily based on

[Bridson et al., 2002]. The pipeline is shown in Figures 2.11 and 2.12, with the second

picture giving an in detail look at the collision handling section.

25

Chapter 3

Experiments & High Level Design

As mentioned in the introduction, the goals of the project were to explore the viability

of performing cloth simulation, including the highly complex and costly self-collision

handling, in real time. Due to impressive results achieved across research into physically

based animation, it was decided the research should be performed utilising the relatively

new area of GPGPU.

In particular, three experiments were devised:

1. To benchmark a fully developed GPU version of robust CPU-based standard

described in [Bridson et al., 2002].

2. To explore the way that the thickness of the cloth (a margin within which colli-

sions are registered using discrete collision detection) affects the cost of collision

detection & handling, based on a hypothesis that higher thickness values will

drastically reduce the cost of collision handling.

3. To compare the performance of the standard Bridson model against a combina-

tion of discrete collision detection and untangling (e.g. [Baraff et al., 2003]). In

particular, a quantitative comparison of costs and a qualitative comparison of

appeal/believability.

Four different collision handling methods are necessary to perform the above tests -

these have already been summarised in Sections 2.3.1 and 2.3.2.

26

1. Proximity based discrete collision detection

2. Continuous collision detection

3. Rigid Impact Zones

4. Untangling

It was decided that the design should be modular. The system should work with all

four methods, any three, any two, one, or none, without a hitch. As such, the pipeline

was designed as illustrated in Figure 3.1. The integration module takes a cloth state,

and, based on the internal modelling of the cloth and external forces (such as gravity,

and interaction forces directed by the mouse), calculates the new velocity for each point

in the mesh. The collision handling methods are then depended on to alter these the

candidate velocities to ensure collisions are resolved.

After all collision handling has occurred, the altered candidate velocities are used to

update the cloth to its new position, at which point the simulation moves to the next

timestep. The order of the collision handling methods is as so because: untangling

should occur before any other phase, because elements involved in untangling typically

need to be excluded from further handling. The further three phases are ordered as in

[Bridson et al., 2002].

Figure 3.1: The full pipeline

27

Two real possibilities were available for the cloth model - a mass-spring model derived

from [Provot, 1997], or a position based dynamics model from [Müller et al., 2007]. In

the end, the mass-spring model was used as it is still the most popular method, and

the method that both [Bridson et al., 2002] and [Baraff et al., 2003] are based on.

Various different integrators were explored to see which would best fit the aims of the

project. On the low end, the highly efficient explicit euler integrator was considered, but

was found to be too unstable for high resolution meshes of cloth with stiff springs. The

high end implicit integrators were also considered, such as [Baraff and Witkin, 1998],

but these seemed prohibitively expensive, despite the accuracy. Eventually, a happy

medium was found in the approximated implicit integrator from [Kang et al., 2000].

The discrete collision detection, continuous collision detection, and rigid impact zones

are designed to follow the example set in [Bridson et al., 2002]. For the discrete and

continuous detection, mapping to the GPU is relatively simple, and [Tang et al., 2013]

discusses GPU based implementations of both.

[Tang et al., 2013] does not implement the rigid impact zones, noting that their scheme

cannot be entirely relied on: “For some complex scenarios, repulsion-based and impulse-

based collision handling can not resolve all the penetrations. Some more sophiscated

methods, such as [...] impact zones can be used. This is a good avenue for future

work”. Hence, a GPU based version of the process is developed based on the insight

that the merging of impact zones can be considered as a standard graph problem.

For the untangling method, again a GPU approach had to be developed anew. The

CPU-based approach outlined in [Wicke et al., 2006] was followed. There are a number

of steps involved. First, on a discrete basis the triangle-triangle intersections are found

in the mesh. These intersections are then grouped up into paths. These paths are

used to identify those particles which have crossed to the wrong side of the mesh - and

those particles are then pushed back to the right side. The exact process by which this

occurs depends on the type of intersection path.

Each of the collision handling methods require testing pairs of triangles, or pairs of

triangle features against each other. To ensure that this can be achieved in better

than O(n2) time, a broadphase was needed. [Teschner and Kimmerle, 2005] argues

persuasively for the use of Bounding Volume Hierarchies, and this is supplemented

28

using various optimisations including normal cones [Provot, 1997] and representative

triangles [Curtis et al., 2008].

3.1 The CUDA Framework

It is intended that the entire pipeline should be implemented on the GPU with minimal

operation on the CPU. The CUDA framework is used for controlling the GPU. A brief

discussion of the major CUDA concepts follows.

Using CUDA, functions can be written in C/C++ that run on the GPU. Global func-

tions are GPU functions which can be launched by the CPU, whereas Device functions

are GPU functions that are called from the GPU. Three major levels of parallelism are

offered: threads, blocks, and streams.

When a global function is called (also known as a kernel launch), it is called using a

number of threads and blocks. Each block is made up of a number of threads. The code

inside the global function is run by every thread. The code can include the index of

the thread and block, and so despite the fact that every thread will run the same code,

they can do it on different data by using the thread and block identifiers as indices

into arrays. Obviously, using conditional programming, different threads can also end

up running different instructions.

Parallelism can be achieved by using just blocks of just one thread each, but there are

significant advantages to using multiple threads per block. Up to 32 threads can be

run simultaneously (as fast as a single thread) in a warp. Also, synchronisation can be

performed between threads in the same block (ensuring that all threads do X before

moving onto Y). Unfortunately, there is a limit to the number of threads per block

(512 on older GPUs, and 1024 on more modern ones), and this means that massive

parallelism can only be achieved using both threads and blocks.

The final layer of parallelism is provided by streams, which allow multiple kernels to

be run simultaneously. Kernels launched into the same stream will run sequentially,

but two kernels launched into different streams will run in parallel. This is useful for

performing different tasks, with no dependency, at the same time.

29

Getting good performance on the GPU is all about ensuring the GPU is being occupied

fully at all times. It needs to be constantly processing lots of data with little downtime.

Two other important factors for efficient GPU programming are data and execution

coherency. For good data coherency, nearby threads should be working on nearby data.

If, for example, a kernel is launched to work on an array, the first thread should deal

with array[0], the second array[1], and so forth.

For good execution coherency, nearby threads should be working on the same instruc-

tions. If conditional instructions are to be used, ideally nearby threads will take the

same path. As an example, if there are 512 threads executing a kernel with an if-

else statement that half will evaluate as true, and half false, it is far better to use

if(threadId.x < 256), than if(threadId.x % 2 == 0).

A common problem that arises during any parallel programming is the race condi-

tion. A race condition occurs when multiple threads simultaneously try and modify

particular values, which can lead to incorrect results. CUDA offers a simple solution

for this, called atomic instructions. Atomic instructions implement read-modify-write

operations in a way which is guaranteed not to be interfered with by other threads.

Multiple threads which use atomic operations on a single value will end up being run

serially, so they should only be used when simultaneous operation on a single value is

rare.

It is hoped that this brief discussion will be enough to ground the future descriptions

of the project’s implementation. Many further resources are available on NVIDIA’s

website.

30

Chapter 4

Implementation & Low Level

Design

4.1 Pipeline

As discussed in the previous chapter, the cloth simulation was designed as a linear

modular pipeline. At the beginning of each timestep, the state of the cloth is advanced

through time using the integrator. To be more exact, the integrator calculates the next

velocity for each particle in the cloth mesh. This velocity is then used at the end of

the pipeline to calculate a new position.

In between the integration step and the position update step, the velocity of each

particle may be altered by one of the various collision handling methods. The pipeline

is designed so that collision handling methods can be incorporated easily, slotted in

and out as needed. Four collision handling methods have been implemented, and each

takes advantage of broadphase acceleration via a Bounding Volume Hierarchy.

The remainder of this chapter will describe the implementation details of the cloth

model, integration, and collision handling methods.

31

4.2 Libraries Used

A number of different tools where used for the implementation. Alongside CUDA, the

Thrust library, which is supplied as part of the CUDA SDK, which provides GPU-based

implementations of commonly used parallel functions such as reductions, prefix sums,

sorting and so on. The CULA Dense library was also used, which provides GPU-based

linear algebra functions (such as matrix multiplication and linear system solving).

4.3 Cloth Model

The standard ‘Provot’ cloth model is used, covered in Section 2.1, where a rectangular

mesh of particles is connected by a network of springs. Data is stored that pertains

to the particles, springs, and triangles that make up the cloth. Ultimately, this forms

three data structures.

The Particle System

• Mass (Float)

• Position (3D Vector)

• Velocity (3D Vector)

• Fixed (Boolean)

• Force (3D Vector)

• Attached Forces (3D Vector)

• # of Springs (Integer)

• # of Triangles (Integer)

• Triangle Indices (Up to 6 integer indices into triangle system)

• Normal (3D Vector)

• Impulses (3D Vector)

• # of Impulses (Integer)

• Changed (boolean)

Most of the above items should be self explanatory. The fixed boolean indicates whether

the particle is immovable, which can be used to suspend the cloth in midair, for exam-

ple. The attached forces stores the sum of forces applied to the particles attached to the

32

current particle, and the number of springs is also stored. These two values are stored

for the purpose of integration. For collision detection and rendering, details about the

triangles each particle is a part of are stored. For collision handling, an accumulator

stores the total impulse to be applied, as well as the number of impulses to be applied.

Finally, the changed boolean value stores whether the particle has been affected by

the previous round of collision handling, which is used for a simple acceleration in the

broadphase.

The Triangle System

• Normal (3D Vector)

• Particle Indices (Integer indices into particle system)

• Representative Particles (3 Booleans)

• Representative Edges (3 Booleans)

For each triangle is stored the normal, and three indices which refer to the three

particles which make up the triangles. Further to this, three boolean values are stored,

one for each particle, which refers to whether the triangle is its representative (in short,

each particle is represented by exactly one triangle, this is used to accelerate collision

handling. To implement representative triangles from [Curtis et al., 2008], covered in

Section 2.3.1.

The Spring System

• Index to first particle (Integer)

• Index to second particle (Integer)

• Rest length of spring (Float)

• Spring coefficient (Float)

• Damping coefficient (Float)

Finally, the above details are stored for each spring. The indices refer to the first and

second particle that are attached by the spring.

Each of the three systems above are represented using a Structure of Arrays. Hence,

the particle system is not stored as an array of particles, but a set of arrays for particle

masses, positions, velocities, and so on. This offers a considerable performance boost.

33

4.3.1 Cloth Rendering

Rendering cloth was not one of the primary objectives of the project, but as it is

not entirely trivial, here follows the method used. To render the cloth using a normal

lighting technique, each particle needs an associated normal. The normals are acquired

via a two step process. First, the normals of the triangles are calculated according to

Equation 4.1. Second, the normals for each particle is calculated as the average of the

normals of the triangles the particle is constituent of, according to Equation 4.2.

n̂t =
(p2 − p1)× (p3 − p1)

|(p2 − p1)× (p3 − p1)|
(4.1)

n̂p =

∑m
i=0 ni

|
∑m

i=0 ni|
(4.2)

Here, pi refers to the position of the ith vertex of a triangle, and ni refers to the normal

of the ith triangle a particle is a part of.

However, this process only deals with rendering a single side of the cloth, which can

cause some odd effects with lighting. Despite the fact that the cloth model doesn’t

consider the cloth as having sides, it does have to be rendered as if it is two sided and

somewhat thick. Hence, the cloth is rendered twice, once using the normals as calcu-

lated above and then again using the negated version of those normals. Additionally,

to achieve thickness, the vertex shader offsets the particle positions a small distance

along its normal (once positive, once negative). Unfortunately, around the edge of the

cloth, a gap can be visible using the above formulation. To fix this, the particles on

the edge of the cloth mesh are offset by a much smaller amount.

This extra process gives appealing looking cloth with a tangible weight to it.

4.4 Integration

The integration scheme used to advance the cloth model through time is an approxi-

mation of the implicit euler method, from [Kang et al., 2000]. In the previous section,

34

Figure 4.1: Two-sided thick cloth using two render passes

the cloth model, and all of the data stored about the cloth, was discussed in detail. In

this section, a thorough description of how the integration is implemented follows.

[Kang et al., 2000] outlines a series of formulae which can be used to calculate the next

state for each particle:

Ft
si =

∑
∀j|(i,j)∈S

kij(|xj − xi| − lij)
xj − xi

|xj − xi|
(4.3)

Ft
vi =

∑
∀j|(i,j)∈S

kijh(vt
j − vt

i) (4.4)

Ft
ei = gmi (4.5)

Ft
i = Ft

si + Ft
vi + Ft

ei (4.6)

The above four equations calculate the force that is being applied to a particle i, Ft
i.

35

S is the set of all springs. A spring (i, j) is a spring which attaches particle i to j.

The position of particle i is referred to as xi, and its velocity as vi. kij is the spring

coefficient of spring i, j. Finally, h is the length of the timestep (typically 1/60 s, and g

is the acceleration due to gravity (0,−9.81, 0)T).

The calculations referred to by Equations 4.5 and 4.6 are simple, but some thought

has to go into accumulating the sums in Equations 4.3 and 4.4 in parallel. There are

two main possibilities for this. The first is, for each particle, to iterate through the

attached particles and accumulate the values. However, this particle centric system

ends up doing double the necessary work as the force applied by a spring to a particle

is equal and opposite to the force it applies on the other particle.

Better is a spring centric system, where the calculations are performed for each spring

and the values then distributed to the particles. In parallel though, this provides a race

condition, as many springs will be adding to the same particle’s force accumulator. The

solution for this was inspired by [Zeller, 2005]. The idea is to separate the springs into

groups such that no two springs in the same group affect a single particle.

Splitting the springs into these groupings is fairly simple. For example, the horizontal

structural springs connect particles to those directly to the left, and right. They can be

split into two groups which satisfy the above principle as so: The first group includes

springs (0,1), (2,3), (4,5), and so on. The second group includes springs (1,2), (3,4),

(5,6), and so on. The separation is similar for the vertical structural springs, shear

springs, and bending springs. The groupings for structural and shear springs are shown

in Figure 4.2.

Then, simply, each group of springs is dealt with in turn, with a synchronisation

barrier between each group. This ensures that the computation for the first group is

fully executed before the computation for the second, and the race condition is avoided.

This completes the process of calculating Fi
t.

The approximate integrator proceeds as follows:

∆vt+h
i =

Ft
ih+ h2k

∑
∀j|(i,j)∈S Ft

jh/(mj + h2knj)

mi + h2kni

(4.7)

36

Figure 4.2: Spring Groups

vt+h
i = vt

i + ∆vt+h
i (4.8)

xt+h
i = xt

i + vt+h
i (4.9)

There is little to say about the final two equations here - these are simple equations to

calculate the next position and velocity. The first equation however is the core of why

the approximate integrator is so stable. The change in velocity for particle i is effected

not only by the force applied to particle i, but also by the forces applied to all of the

particles particle i is attached to.

To help, an intermediate variable is accumulated - part of Equation 4.7.

Ft
ai =

∑
∀j|(i,j)∈S

Ft
jh/(mj + h2knj) (4.10)

After Ft has been calculated for every particle, Ft
a is calculated. For every spring (i, j),

Ft
i is added to Ft

aj, and Ft
j is added to Ft

ai. Once again, a race condition will occur if

37

the springs are dealt with in parallel, and hence the 12 spring groupings are used.

Once Ft
a has been calculated, Equations 4.7 through 4.9 are used to update the state of

the cloth. As explained in the introduction to the chapter, the position update actually

occurs at the end of the pipeline, after any collision handling has occurred. As such,

the velocity calculated using Equation 4.7 is essentially the candidate velocity, which

is then checked to see whether it is valid (i.e. does not cause collisions), and changed

if it is not.

4.5 Broadphase Detection

All of the different narrow phase collision detection/handling methods boil down to

performing tests between pairs of triangles, or pairs of features (vertex-face or edge-

edge). Naively testing all potential pairings is prohibitively expensive, so a Bounding

Volume Hierarchy is used to accelerate detection. The Bounding Volume Hierarchy is

used to efficiently cull blatant cases of non-collision, leaving a small set of cases to test

more precisely.

The Bounding Volume Hierarchy implemented is designed to work with each of the

different collision detection methods. The hierarchy is built during initialisation, and

refit as needed, typically with each round of collision detection. The Bounding Volume

Hierarchy is then traversed to detect overlapping leaf nodes.

4.5.1 Hierarchy Construction

The cloth exists in a 3D world, but it is at times useful to consider it two dimensional,

and it is this two dimensional version of the cloth which is used to build the tree

hierarchy. The coordinates of each particle then run from (0, 0) to (N − 1, N − 1),

where N refers to the width/height of the mesh (and thus N2 is the number of particles

in the mesh).

The leaves of the BVH are constructed from pairs of adjacent triangles. Figure 4.3

shows how leaves and triangles are numbered. It shows the first and second triangles

38

(in pink and blue respectively) which together would make up the first leaf, and the

second leaf (shown in yellow). The coordinates of the leaves then run from (0, 0) to

(N − 2, N − 2).

Figure 4.3: Triangles and leaves

Starting at the root, the leaves are then classified recursively by splitting the node

in half, first by the x-axis, then by the y-axis. This is performed on the CPU, and

constructs a hierarchy with a useful property: every node is made up of a contiguous

surface. An example hierarchy is shown in Figure 4.4. The first seven images show

different levels of the hierarchy: the first three and four last. Red AABBs indicate

nodes, and blue indicate leaves. The final two images shows how the hierarchy works

in 3D. The first shows the state of the cloth, and the second shows the hierarchy on

top of it at the third lowest depth.

As the hierarchy is built at initialisation, it is constructed on the CPU before being

moved across to the GPU. On the CPU, the data is stored using a standard tree

representation, where each node points to its children. This makes no guarantees

about the position of nodes in memory which is disastrous for data coherency. The

GPU tree is stored in a contiguous block of memory, within which each depth of the

tree is stored contiguously.

39

Figure 4.4: The BVH created using the 2D construction

40

4.5.2 Refitting the Hierarchy

The hierarchy is refitted on the GPU using a bottom-up method. Starting at the

maximum depth, each node is refit before moving up to the next depth. The refitting

method differs somewhat dependent on the collision handling method, but in every case

involve generating new AABBs for each node. For the discrete collision detection, the

AABBs are inflated by the thickness amount. For the continuous collision detection

(used for the impact zones as well), the AABBs contain the swept triangle, or, the

triangle both at the start of the frame and at the end. For untangling, where triangle-

triangle intersections are sought, the AABBs are standard.

In sequential code, refitting can be achieved using a head-recursive function. It is

trickier to map it to the GPU.

It is mandatory for obvious reasons that the children of a node must be refit prior

to the node itself. To parallelise the BVH refit using CUDAs two level parallelism

(threads & blocks), the tree is split into a top section and a bottom section as shown

in Figure 4.5. In the small example, the tree has been split into a top section (orange)

and a bottom section. The bottom section is then split into four subtrees (blue, pink,

green, and purple).

The top section will be dealt with by a single block of threads. Starting at the bottom

of the section, each node is refit by a thread, before synchronisation, which ensures

that no thread starts dealing with depth x before depth x+ 1 is fully computed. After

the threads are synchronised, the computation moves up a level, and repeats. To aid

this, an array stores indices into the BVH for the first node at each depth. This is

summarised in pseudocode in Algorithm 2.

Algorithm 2 Refitting the top of the tree from depth T upwards

1: procedure RefitTop
2: for Depth T to Depth 0 do
3: Offset = First node at this depth
4: Refit node[offset + threadid]
5: Synchronise Threads

Refitting the bottom section of the tree is more complex, as the width of the tree

(maximum number of nodes at any depth) may exceed CUDAs maximum number of

41

Figure 4.5: The two levels of the tree

threads per block. Thus, the parallelisation must be split over multiple blocks. CUDA

does not support synchronisation between blocks - and what this entails is that a node

must be dealt with by the same block as its children. Hence, the bottom section of the

tree is split into several subtrees (enough that no subtree’s width exceeds the maximum

number of threads per block).

For each subtree the procedure is very much similar to that described for the top of

the tree. For refitting the top of the tree, an array is used which stores the index of the

first node at each depth of the tree. For refitting the bottom, an array is used which

stores the index of the first node at each depth for each subtree.

Algorithm 3 Refitting the bottom of the tree

1: procedure RefitTop
2: Subtree = blockid
3: for Depth D to Depth T + 1 do
4: Offset = First node at this depth of subtree
5: Refit node[offset + threadid]
6: Synchronise Threads

The algorithm ensures that, within a given subtree, computation on depth x + 1 will

42

complete prior to computation on depth x. No guarantees are made about execution

between subtrees, but as the subtrees are independent of each other, this is not an

issue.

These two kernels are run one after the other (bottom first, top second), and accomplish

a full parallel refit of the tree. It effectively accomplishes the two key factors for good

CUDA performance: good data coherency and good execution coherency. Similar

threads will indeed be dealing with similar data, and be executing the same code.

4.5.3 Traversing the Hierarchy

Given a refitted BVH, it remains to traverse the tree to determine all pairs of over-

lapping leaves. For this, a NVIDIA developer blogpost [Karras, 2012] was referred

to.

On the CPU, the standard way to traverse a BVH to search for self-intersections is

described in Section 2.3.1 and Algorithm 1 in what is termed ‘simultaneous traversal’.

However, as explained in [Karras, 2012], simultaneous traversal doesn’t map especially

well to the GPU’s massive parallelism because it has high data divergence.

A simpler idea, ‘independent traversal’, which would be far slower on the CPU, tends to

be faster on the GPU. In independent traversal, the entire BVH is checked against each

leaf. In parallel, each leaf is dealt with by a single thread and no thread cooperation

is necessary.

The testing is performed on a depth first basis. This could be implemented using

recursive function calls, but this can cause stack overflow (the stack for function calls

is smaller than that on a CPU) and high execution divergence. Instead, the stack is

managed manually leading to an efficient BVH traversal scheme that should minimise

both data and execution divergence.

At each stage of the algorithm, a test is performed between two nodes to determine

whether they overlap. This overlap test is spplemented with an extra test based on

the normal cone optimisation described in Section 2.3.1. The test cheaply determines

whether self-collision is possible in a contiguous surface. Due to the construction of

43

the hierarchy, every node is guaranteed to be a contiguous surface. As such, the test is

made up of two parts: is the leaf node part of the node its being tested against, and,

if so, is the normal cone angle lower than π.

4.6 Discrete Proximity Detection & Handling

The first of the four collision handling methods is based on proximity. Any vertex-

face or edge-edge pair that are closer than a thickness value are pushed apart using

impulses.

The broadphase returns a list of pairs referring to two overlapping leaf nodes. A thread

is used to deal with each pair. As explained in Section 4.5.1, each leaf is made up of

two triangles, and hence each pair defines four triangle-triangle pairs which have to be

tested. Each triangle-triangle pair then defines six vertex-face pairs and nine edge-edge

pairs that have to be tested.

To further cull these tests, the notion of representative triangles covered in Section 2.3.1

is used. The boolean variables stored per triangle (covered in Section 4.3 indicate

whether or not a particular triangle represents a feature. This ensures that a particular

vertex will only be tested against a particular face once.

Both the edge-edge and vertex-face proximity tests are described in [Bridson et al., 2002].

The vertex-face test boils down to two phases: first, the vertex is projected onto the

plane which contains the face. The projection is then tested to see whether it lies inside

the triangle. If the projection is inside the triangle and if the distance between the

projection of the vertex and vertex is less than the thickness, a collision is registered.

For the edge-edge test, the closest points between the two infinite lines the edges are

part of are found. The points are then clamped to the edges, and tested to see whether

they are closer than the thickness value.

Two impulses are then applied for every such collision. The first is an inelastic im-

pulse - it stops the features from approaching each other by removing their relative

velocity along the collision normal (which is the vector between the projection and

vertex in a vertex-face collision and the vector between the closest points in an edge-

44

edge collision). The second impulse attempts to push the features apart towards the

thickness value. Details on these impulses and how they are calculated can be found

in [Bridson et al., 2002].

The impulses are atomically added to the particle’s impulse vector, and each time this

happens the particles number of impulses is incremented also. After the impulses have

been calculated, each particle ‘applies’ its impulses, by adding the impulse divided by

the number of impulses, to its velocity.

The division is necessary because the impulses are calculated in parallel. Imagine a

case where a vertex is too close to two adjacent faces. Impulses are applied to stop the

approach exactly. However, the two impulses applied together will bounce the vertex

away elastically. The division prevents this from occurring, albeit slowing the speed of

convergence.

4.7 Continuous Collision Detection & Handling

The second collision handling method aims to detect future collisions, and prevent them

from occurring. The tests determine whether, given the current velocity of the particles,

any two feature pairs (vertex-face or edge-edge) will intersect over the timestep.

As with the discrete handling, the broadphase returns lists of leaf pairs which define

four triangle-triangle tests which in turn define 6 vertex-face tests and 9 edge-edge

tests, which are once again culled using representative triangles. The continuous tests

are considerably more involved than the discrete proximity tests from the previous

section. Indeed, each requires solving for the roots of a cubic equation, to test for the

point at which four points (either the end points of the two edges or the vertex and

the three points of the triangle) become coplanar.

The roots of the cubic equation then have to be checked to see whether there is indeed

intersection. This is identical to the proximity testing that is used for the discrete

proximity detection, except that a small epsilon value is used, not a thickness value. In

the discrete test, the vector between the colliding points is used as the collision normal.

For the continuous test, the colliding points are in the same place, and hence this vector

45

cannot be used. Instead, the normal of the triangle (for a vertex-face collision) or cross

product of edges (for an edge-edge collision) is used.

Also, because the distance between the two colliding points is likely very small, the

collision normal is instead calculated as the cross product of the two edges, and the

normal of the triangle.

Not all of the roots need to be checked. Roots outside of 0 and h are scrapped, and the

remaining roots are tested in ascending order. Roots need not be checked if an earlier

root is a collision. As mentioned in [Bridson et al., 2002], checking for proximity at the

end of the timestep (even if it is not a root) can aid robustness.

One of the major issues that exists with this testing method is determining the roots of

the cubic equation. Cubic equations can be solved using the algebraic cubic formulae,

but this is prone to various robustness issues. The Newton-Raphson method based

solver from the Self-CCD library was ported to CUDA compatible code for this purpose.

Given a detected collision, an impulse is applied along the collision normal that removes

the relative velocity, identical to the first impulse discussed in the previous section. This

should ensure that the collision no longer occurs over the course of the timestep, but,

the effect can be cancelled out by a different impulse applied to the same particles.

Also, there is no guarantee that an impulse applied to stop one collision occurring over

the timestep won’t cause a different collision to occur over the timestep.

A typical implementation of the continuous collision detection routine will use some

number of rounds of continuous collision detection to try and deal with all of the

collisions. Each round of continuous collision detection demands another round of

broadphase detection. An obvious but significant optimisation is possible here. A

feature’s movement is altered if it is calculated that it will collide with any other

feature. It is obvious that two unchanged features that do not collide when testing

for round i will not collide in round i + 1. Hence, the leaves of the BVH used for the

broadphase detection are supplemented with a boolean value that indicates whether

or not any of the particles in the leaf (four particles in each case) have changed. These

values are then propagated up the tree using a logical or. Then, when traversing the

tree, any pair of nodes which have FALSE values for their Changed variable do not

involve any collisions. This significantly reduces the number of unnecessary tests in

46

subsequent rounds of continuous collision detection.

4.8 Impact Zones

The two collision handling tools discussed so far represent a cheap way to deal with

many collisions, and an expensive way to deal with all collisions. The third collision

handling method provides a cheap way to deal with all collisions at the cost of realism

and, potentially, believability).

As discussed in more detail in Section 2.3.2, an impact zone is a portion of the cloth (a

set of particles) which are estimated as being rigid. The linear and angular momentum

of the particles are, as with a rigidbody, uniform.

Impact zones are formed of groups of particles that are involved in dependent collisions.

In [Bridson et al., 2002], the approach to calculate which particles are in which zones

is as follows: Each particle starts in its own list - its own impact zone. Whenever a

collision occurs, the lists containing the four involved nodes are merged. The impact

zones are grown until the cloth is collision free.

To achieve a similar effect on the GPU, a round of continuous collision detection finds

the collisions in the mesh that will occur over the timestep. The problem can then be

thought of as a connected component search in graph theory. A connected component

is a subgraph in which every vertex is connected to every other vertex, but no vertex

is connected to a vertex outside of the subgraph. Each particle is represented by a

vertex, and an edge exists between two vertices if the vertices are involved in the same

collision.

To proceed, each particle needs to know which impact zone it is in. Two particles

will have the same identifier if and only if they are in the same zone. To achieve this,

the GPU based algorithm from [Soman et al., 2010] was implemented, which finds the

connected components in a graph.

Having found the impact zones, the center of mass, average momentum, angular mo-

mentum and inertia tensor is calculated. These are then used to calculate the velocity

47

for each particle in an Impact Zone. The equations to calculate these are found in

[Bridson et al., 2002].

4.9 Untangling

Instead of preventing collisions, as with the previous three methods, an untangling

method attempts to reverse intersections that have already occurred.

The GPU implementation here follows the CPU-based design from [Wicke et al., 2006].

The first part of the process is to detect the triangle-triangle intersections in the mesh.

Once again, the BVH is traversed to find overlapping leaf nodes. The leaf pairs each

define four triangle-triangle tests. The triangle-triangle tests were implemented based

upon [Möller, 1997]. The intersection between two triangles is either a point, or a line,

and the intersection method returns these for each intersection.

The intersections need to be grouped together into what [Baraff et al., 2003] terms an

intersection path. Similarly to how Impact Zones are merged (refer to the previous sec-

tion), triangle-triangle intersections are merged into the larger intersection paths. In

this case, the vertex in the connected component search is a triangle-triangle intersec-

tion, and the edges are connections between those intersections. Those connections are

found by detecting any ‘collisions’ between the intersections (those intersections which

start/end in the same place). A naive O(n2) method is used to find these collisions

(which was offset by the cheapness of the test) but a broadphase acceleration method

could have been used here.

In Section 4.5.1, the idea that the cloth could be considered, at once, in 2D and 3D was

discussed. The same concept is necessary for classifying collision paths and untangling

cloth. An intersection path in 3D is, in 2D, a pair of intersection paths. Each triangle-

triangle intersection (a line) is converted from 3D to 2D as follows:

A 3D triangle-triangle intersection is defined by a start point, an end point, and the

two involved triangles. The barycentric coordinates of the start/end points are found

for each triangle. The barycentric coordinates are then used to determine, where in

the 2D versions of the triangles, the intersection starts and ends.

48

At this point, for each 3D intersection path, we have two 2D intersection paths. The

2D intersection paths have to be classified. A full classification of all the possible types

of intersection path is in [Wicke et al., 2006]. Four different path types are dealt with:

closed, inside-inside (II), boundary-inside (BI) and boundary-boundary (BB). A closed

path is one that is a full loop. A path is inside-inside if neither of its ends finish on a

boundary, boundary-inside if one does, and boundary-boundary if neither does.

For each tangle, we have a 3D intersection path or, its equivalent pair of 2D intersection

paths. Handling the tangle is dependent on the types of the two 2D paths. Various

pairings are possible (and others are impossible - a closed path will always pair with

another closed path). Three examples are closed-closed, BB-II, and BI-BI.

For all but the BI-BI pairing, classifying which particles are internal to a path is neces-

sary. In the case of [Baraff et al., 2003] and [Wicke et al., 2006], this is achieved using

a floodfill algorithm. The floodfill algorithm however doesn’t seem to map especially

well to a massively parallel architecture. Instead, a scanline style algorithm was devel-

oped, which, unsurprisingly, as a major part of the standard GPU pipeline (it is used

for filling the pixels of a polygon) maps very well to the GPU.

Figure 4.6: The ‘scanline’ algorithm

Figure 4.6 illustrates the idea behind the scanline algorithm with a BB path and a

49

closed path. The grid represents the cloth mesh, with the crossover points in the grid

representing particles. The red points indicate where the intersection paths cross the

horizontal lines, and the blue every particle between two red points.

The first part of the scheme designates the red points. One thread per intersection

is used to check whether the intersection crosses any horizontal lines in the 2D mesh.

If they do, the crossing point (along the x-axis) is stored. For BB paths, the cloth

boundary is considered part of the path for this process.

The second part of the scheme uses one thread per horizontal line. Every particle

between two red points (inclusive) is classified as being internal to the path. The

scanline kernel can be used for each intersection path in parallel, using CUDA’s streams.

Having classified the particles, the next objective is to pull the particles on the wrong

side back through the cloth. Following [Wicke et al., 2006], each wrong-side particle is

attracted towards another particle. This mapping of particles to particles is achieved

by function fitting.

Figure 4.7: The blue (wrong-side) particles of a BB-II intersection map to the yellow
particles

Implementation of untangling for all path types was not achieved. Only untangling

the BB-II pairing was proceeded with past the particle classification stage. A function

50

is created which maps the BB 2D intersection path onto the II 2D intersection path

(as these are both known quantities) using function fitting (the process is summarised

in [Wicke et al., 2006]. The wrong-side particles are then mapped, using the fitted

function, to the points on the cloth mesh they should be attracted towards. The

CULA Dense Library, which provides CUDA based linear algebra functions, was used

to fit the function by solving a linear system. An example of the mapping between the

particles is shown in Figure 4.7.

Attractive impulses are then used to pull the points together. This effectively copes

with the common BB-II tangle.

To summarise the approach:

1. Triangle-triangle intersections are found in the cloth mesh

2. The intersections are grouped into paths using a connected component search

3. A pair of 2D Intersection Paths is created from each 3D Intersection Path

4. The 2D intersection paths are classified as BB, BI, II, or Closed

5. Particles are classified as internal/external for partitioning (BB/Closed) paths

6. Functions are fitted which map a 2D path to its partner

7. The function is then used to map internal particles to their targets

8. Impulses are applied which attract internal particles to their targets

4.9.1 Finishing the Implementation

The primary contribution of this work (as opposed to [Baraff et al., 2003] - which coped

with closed-closed paths - and [Wicke et al., 2006] which coped with all paths) is the

parallelisation of the untangling.

The implementation only deals with BB-II paths currently, but it would not be a great

deal of work to generalise it to the other path types. The single exception is the BI-BI

path, which doesn’t work on the basis of inside/outside classification for particles.

As well as dealing with the rest of the path types, the implementation would have to be

furthered if it was to slot into place alongside the other collision handling methods (a

sheer necessity for the scheme to have any practical use). In particular, particles that

51

are involved in untangling need to be unperturbed by the collision handling methods:

the collision handling must not prevent the cloth from passing back through itself.

Each internal particle would thus need to be removed from the collision handling. This

could be achieved with a boolean variable indicating whether or not it was involved in

the untangling process.

52

Chapter 5

Results

5.1 Experiment 1

The first experiment was to benchmark a fully developed GPU version of the robust

standard from [Bridson et al., 2002]. Measurements were taken for the individual parts

of the pipeline - integration, proximity based handling, continuous collision handling,

and impact zone based handling - over a series of scenarios.

In each scenario, a piece of cloth with 2000 triangles was used, modelled with a

thickness of 7mm. For each of the benchmarks listed above, the average, maximum, and

standard deviation were measured. The times stated are, in every case, in milliseconds.

A limit of five rounds of continuous collision detection is used.

In the first scenario, the cloth starts in a rest state flat on the ground. A corner is

then picked up, and pulled across so that the cloth is folded along the diagonal, where

it again rests, with half the cloth on top of the other half.

The second scenario picks off where the first ends. The corner which was folded on

top is picked up again, and flicked back towards its original position, putting the cloth

back into a flat state.

The third scenario again starts with the cloth lying flat. The middle point of the cloth

is picked up, lifting the cloth off of the ground. This is a complex scenario as the edges

53

of the cloth all fly towards the center as the cloth clumps up.

The fourth scenario sees the cloth, that has been picked up in scenario three, dropped.

This scenario is particularly stressful as the cloth crumples into a heap, with many

dependent collisions.

In the final scenario, the cloth starts suspended in mid-air. The middle of the cloth is

fixed, and when the simulation begins the two halves of the cloth speed towards each

other. In particular, this tests the pipeline’s ability to cope with a fast collision that

involves much the cloth simultaneously.

Scenario 1

Average Maximum Standard Deviation

Integration 0.29 0.31 0.00

Proximity 1.16 1.95 0.46

Continuous 2.66 3.36 0.25

Zones 0.08 0.13 0.01

The first scenario illustrates a few main things. The approximated integrator being

used has a low, constant cost, as expected given its explicit nature. Against the cost of

the collision handling, it is almost negligible. This relatively unconstrained test does

not see the Impact Zones utilised whatsoever. At the beginning of this simulation,

no collisions are occurring but a handful of collisions need to be tested by both the

54

proximity and continuous routines. At around the 340th frame, the cloth that is being

folded over starts to approach the cloth that still lies on the ground. The proximity

handling becomes permanently more expensive: those pieces of cloth that rest on top

of each other are in constant contact. As the collision occurs, the continuous routine

sees a sudden burst as it resolves the most tricky collisions, which are ones that happen

at speed and which would be missed by the proximity based handling.

Scenario 2

Average Maximum Standard Deviation

Integration 0.29 0.31 0.00

Proximity 1.20 2.04 0.51

Continuous 2.61 3.32 0.34

Zones 0.08 0.31 0.01

The second scenario starts as the first ends, and the cloth is unfolded back to its original

position. Unsurprisingly, the right hand side of the second graph closely mimics the

left hand side of the first, as the cloth resumes its original and unconstrained position.

At the start of the test, the cost of detecting and handling collision quickly reduces as

the portions of cloth that are resting on top of each other are moved apart.

The major takeaways from the first two scenarios are that there is a persistent cost

to testing collisions even when none are occurring that is not insubstantial. In almost

every circumstance, less continuous tests will be necessary than proximity tests but

55

the considerably higher cost of a single continuous test means that it is always the

more expensive part of the pipeline. Furthermore, while the cost of proximity based

handling tends to change smoothly, the cost of continuous handling varies more wildly.

For brevity, the integration is being excluded from the future tables as it is essentially

constant regardless of the scenario.

Scenario 3

Average Maximum Standard Deviation

Proximity 1.43 2.67 0.713

Continuous 2.95 4.23 0.67

Zones 0.08 0.148 0.01

The third scenario is far more intensive than the first or second. Here, the cloth is

pulled up by a point in its center. Naturally, the edges of the cloth move inward at this

point. The cloth clumps together naturally, meaning that lots of complex collisions

have to be resolved.

Correlating with the previous finding, the continuous collision detection is still the most

costly part of the pipeline - and in this scenario the impact zones are still not called

upon. In this scenario the cost of the entire pipeline is far higher than in scenarios

1 and 2, although by the end of the scenario (where the cloth is suspended in midair

56

fully), the cloth reaches a near equilibrium and the costs start to fall.

Scenario 4

Average Maximum Standard Deviation

Proximity 2.30 2.87 0.46

Continuous 3.60 0.11 0.56

Zones 0.11 6.03 0.34

The fourth scenario starts where the third ends, as the cloth is dropped. This is a highly

constrained scenario as the cloth approaches the ground fairly hard and compresses,

ensuring that many collisions occur. Here, the impact zones are indeed used. Spikes

are seen in the continuous collision detection representing times where the five rounds

of collision detection are needed and exhausted. The impact zones then take over, and

resolve the collisions. Pleasingly, the impact zones are only used in three frames, which

ensures that the rigidity will be unnoticeable to a viewer.

The maximum number of rounds of continuous collision detection can be used to put

a rough upper bound on the cost of computation for even a robust pipeline. As can

be seen from the three spikes though, there is a considerably variance on how long the

five rounds took, implying that more collisions were tricky to resolve in the third spike

than the first or second. A firmer bound might be found by limiting, as well as the

number of rounds of continuous collision handling, the number of continuous collision

tests.

57

Scenario 5

Average Maximum Standard Deviation

Proximity 1.38 2.13 0.11

Continuous 2.52 9.85 0.70

Zones 0.09 8.67 0.29

The final experiment is also quite intensive, but in a slightly different way to the

previous test. The collisions in this test are fast and all occur at more or less the same

time. This forms two very clear spikes that occur first when the cloth hits originally,

and second as it reapproaches after bouncing away.

5.2 Experiment 2

In the second experiment, the effect of the thickness value on the speed of collision

is examined. The test itself is the same scenario as Experiment 1’s Scenario 5, but

instead of the 7mm used for thickness, a variety of measures from 1mm to 20mm are

used. Theoretically, this will affect the speed of collision detection in two main ways.

For the proximity based detection, the AABBs in the BVH will scale with the thickness

value (as each AABB is inflated by the thickness). This means more narrowphase tests

will be necessary. Also, collisions will occur slightly earlier with a higher thickness

when cloth approaches itself.

58

However, this should be more than countered by the fact that, with a higher thickness,

collisions will be resolved more quickly, and more importantly, the proximity based

handling will deal with a higher proportion of collisions compared to the continuous

handling.

The following tables give average, maximum, and standard deviation values for six

seconds of the simulation, which includes the collision of the cloth, and a period after.

1mm Average Maximum Standard Deviation

Proximity 1.42 2.29 0.16

Continuous 3.10 17.10 2.50

Zones 1.23 29.49 4.06

3mm Average Maximum Standard Deviation

Proximity 1.41 2.04 0.13

Continuous 2.78 15.81 22.69

Zones 0.40 22.69 1.96

5mm Average Maximum Standard Deviation

Proximity 1.36 1.97 0.11

Continuous 2.67 13.83 1.44

Zones 0.18 10.56 0.83

7mm Average Maximum Standard Deviation

Proximity 1.37 2.14 0.12

Continuous 2.62 10.84 1.11

Zones 0.16 9.36 0.8

9mm Average Maximum Standard Deviation

Proximity 1.36 2.05 0.12

Continuous 2.52 9.22 0.69

Zones 0.11 8.91 0.46

59

12mm Average Maximum Standard Deviation

Proximity 1.36 2.16 0.15

Continuous 2.46 5.65 0.39

Zones 0.08 0.13 0.01

15mm Average Maximum Standard Deviation

Proximity 1.39 2.25 0.15

Continuous 2.46 4.18 0.30

Zones 0.08 0.13 0.01

20mm Average Maximum Standard Deviation

Proximity 1.52 3.01 0.21

Continuous 2.47 4.18 0.14

Zones 0.08 0.13 0.01

The data in these tables is compiled into two graphs, which show, respectively, the

averages for each of the three pipeline stages, and the maximums for each of the three

stages.

The graphs illustrate enormous performance differences between cloth simulations using

thickness values. The graph of averages displays only marginal differences for the

proximity and continuous handling methods. This is likely due to the scenario in

question: the cloth is only in contact for a brief proportion of the six seconds. The

graph of maximums displays a far more interesting result, and displays just how much

60

difference is made by increasing the thickness value. For this particular simulation, real

time performance is not achieved with 1mm or 3mm cloth, but real time performance

is very comfortably achieved by the 12, 15, and 20mm cloth which do not ever need to

call on the Impact Zones to resolve the collision.

5.3 Experiment 3

As discussed in Section 4.9, the implementation of untangling was not completed, and

hence the third experiment could not be completed. It was intended to provide a

qualitative and quantitative examination of the comparison between a Bridson style

collision handling pipeline and a pipeline which combined the cheap proximity based

handling and untangling.

While this level of analysis cannot be provided, the incomplete implementation leads to

some remarks regarding the ease of mapping untangling to the GPU. The untangling

process described in [Baraff et al., 2003] and [Wicke et al., 2006] is non-history based.

They work by analysing the state of the cloth and determining where intersections have

occurred (as opposed to history based solutions, covered in Section 2.3.2, which check

to see when the cloth changes side by examining past states.

61

Unfortunately, the non-history based approach, called Global Intersection Analysis,

tends towards producing lots of small but different problems. It is often the case

during untangling that many small intersections, of different types, occur. These may

involve just one or two particles each, and each of these would need kernels launched

to cope with them. This is precisely the kind of computation which is unsuited to the

GPU. It may in fact be better to move data from the GPU to the CPU for untangling,

before moving the results back to the GPU.

GPU based untangling is still a worthwhile area for future research, but it is hard to

imagine that it will map as well to the GPU as other parts of the pipeline. It is very

much recommended that any further research also considers the history based solutions

such as [Volino and Thalmann, 1995].

62

Chapter 6

Conclusion

6.1 Limitations & Future Work

As discussed at length in Section 4.9, the implementation of a GPGPU based solution

for untangling cloth is incomplete, and this would obviously be a worthy avenue for

future work, despite reservations that untangling using Global Intersection Analysis in

the style of [Baraff et al., 2003] and [Wicke et al., 2006] may not be an ideal candidate

for massively parallel architectures.

The focus of this work being on self-collisions in particular, only basis cloth-plane col-

lisions were implemented. General collision handling between cloth and rigidbody was

not implemented, but doing so would not be especially complicated. In almost every

way imaginable, the cloth-cloth collisions coped with in the current implementation

are more complex, and costly to perform.

The implementation was in places based off of an assumption that the cloth mesh was

square, and there is a guarantee that triangles come in pairs which make up a square.

For practical implementation, regular triangular meshes are preferred. In particular,

the construction of the BVH would have to be changed, as would the method by which

particles are classified as inside/outside internal paths for untangling.

63

6.2 Closing Thoughts

The objectives of this project centralised on exploring the viability of achieving more

complex cloth simulations more efficiently, with an eye towards real time, rather than

offline performance. Though cloth simulation is starting to become a fairly common

appearance in modern video games, the simulations are typically neglectful of collisions,

particularly the more complex cloth-cloth (or self-collisions).

To produce simulations which are truly robust, fairly sophisticated collision handling

is necessary. Cloth simulation was first explored in the literature in the late 1980s -

it wasn’t until 2002 that a scheme was proposed which could guarantee self-collisions

would be dealt with while guaranteeing self-intersection will not occur. More recently,

research has started exploring the possibility of achieving cloth simulation in paral-

lel, initially using multi-threading on the CPU, but increasingly using the massively

parallel GPU architecture. Recently, [Tang et al., 2013] performed a large portion of

the [Bridson et al., 2002] pipeline via the GPU. The primary focus of their work was

exploiting consumer GPUs to perform ”high resolution” cloth simulation. They fo-

cus on simulations of cloth meshes involving 20k, 200k and 2m triangles respectively.

They benchmarked dropping their cloth onto a Buddha statue, with frametimes of 3.1s,

38.8s, and 137.8s respectively.

In this work, focus was firmly on real time performance. Additionally, there was an

interest in exploring how a fully robust collision handling could be achieved on the GPU.

Both Impact Zones (the element of the [Bridson et al., 2002] scheme not implemented

in [Tang et al., 2013]), and untangling were explored. Additionally, experiments were

run to explore how the thickness value (a distance within which collisions are detected

and handled) affects the cost of collision handling.

Quantitatively, the results covered in Chapter 5 illustrate the way the robust GPU

pipeline works when put through its paces on a range of scenarios designed to produce

countless self-collisions. They also illustrate the enormous difference that higher thick-

ness values can achieve. An unrealistically large thickness can appear obvious with

gaps appearing between cloth that should be in contact, but it also allows the discrete

collision handling to deal with the vast majority of contact situations.

64

In much the same way that discrete collision detection alone can be used to produce

extremely impressive rigid body simulations, discrete collision detection alone, tied

with a large thickness value, can produce impressive cloth simulations at reasonable

costs. In the short to medium term, high thicknesses may well be key to how cloth

simulations can deal with self-collisions within a game’s frame budget.

Despite these findings, it is entirely understandable that, with the current state of hard-

ware, cloth simulations tend to neglect many cloth-object collisions and all cloth-cloth

collisions. There is undoubtedly room for improvement in the implemented pipeline,

such as a number of optimisations that were included in [Tang et al., 2013], but not so

much that it is reasonable to imagine fitting a robust cloth pipeline into the portion of

millisecond likely reserved for physically based animation in a modern game’s budget

for the forseeable future. Optimistically, one could conclude that the novel GPU im-

plementation of impact zones moves us a step closer to seeing robust cloth simulations

in real time.

65

Non-literature References

NVIDIA Flameworks https://developer.nvidia.com/flameworks

Angry Birds https://www.angrybirds.com/

Batman: Arkham City http://rocksteadyltd.com/#arkham-city

Box2D Engine http://box2d.org/

Digital Molecular Matter http://www.pixelux.com/

Star Wars: The Force Unleashed http://www.starwars.com/games-apps/star-wars-

the-force-unleashed

Self CCD http://gamma.cs.unc.edu/SELFCD/

66

Bibliography

[Baciu and Wong, 2004] Baciu, G. and Wong, W. S.-K. (2004). Image-based collision

detection for deformable cloth models. IEEE transactions on visualization and com-

puter graphics, 10(6):649–63.

[Baraff and Witkin, 1998] Baraff, D. and Witkin, A. (1998). Large steps in cloth sim-

ulation. Proceedings of the 25th annual conference on Computer graphics and inter-

active techniques - SIGGRAPH ’98, pages 43–54.

[Baraff et al., 2003] Baraff, D., Witkin, A., and Kass, M. (2003). Untangling cloth.

ACM Transactions on Graphics (TOG), pages 862–870.

[Bergen, 1997] Bergen, G. (1997). Efficient collision detection of complex deformable

models using AABB trees. Journal of Graphics Tools, pages 1–14.

[Breen et al., 1994a] Breen, D. E., House, D. H., and Wozny, M. J. (1994a). A Particle-

Based Model for Simulating the Draping Behavior of Woven Cloth. Textile Research

Journal, 64(11):663–685.

[Breen et al., 1994b] Breen, D. E., House, D. H., and Wozny, M. J. (1994b). Predicting

the drape of woven cloth using interacting particles. Proceedings of the 21st annual

conference on Computer graphics and interactive techniques - SIGGRAPH ’94, pages

365–372.

[Bridson et al., 2002] Bridson, R., Fedkiw, R., and Anderson, J. (2002). Robust treat-

ment of collisions, contact and friction for cloth animation. ACM Transactions on

Graphics (ToG).

67

[Choi and Ko, 2005] Choi, K. and Ko, H. (2005). Stable but responsive cloth. ACM

SIGGRAPH 2005 Courses.

[Curtis et al., 2008] Curtis, S., Tamstorf, R., and Manocha, D. (2008). Fast collision

detection for deformable models using representative-triangles. . . . of the 2008 sym-

posium on Interactive . . . , 1(212):61–70.

[Eberly, 2010] Eberly, D. (2010). Game physics. CRC Press, 2 edition.

[Kang et al., 2000] Kang, Y.-M., Choi, J.-H., Cho, H.-G., and Park, C.-j. (2000). Fast

and stable animation of cloth with an approximated implicit method. Proceedings

Computer Graphics International 2000, pages 247–255.

[Karras, 2012] Karras, T. (2012). Thinking Parallel, Part II: Tree Traversal on the

GPU.

[Lauterbach et al., 2010] Lauterbach, C., Mo, Q., and Manocha, D. (2010). gProxim-

ity: Hierarchical GPU-based Operations for Collision and Distance Queries. Com-

puter Graphics Forum, 29(2):419–428.

[Macklin et al., 2014] Macklin, M., Müller, M., Chentanez, N., and Kim, T.-Y. (2014).

Unified particle physics for real-time applications. ACM Transactions on Graphics,

33(4):1–12.

[Mirtich, 2000] Mirtich, B. (2000). Timewarp rigid body simulation. Proceedings of

the 27th annual conference on Computer graphics and interactive techniques - SIG-

GRAPH ’00, pages 193–200.

[Möller, 1997] Möller, T. (1997). A Fast Triangle-Triangle Intersection Test. Journal

of Graphics Tools, 2(2):25–30.

[Müller et al., 2007] Müller, M., Heidelberger, B., Hennix, M., and Ratcliff, J. (2007).

Position based dynamics. Journal of Visual

[Nealen and Müller, 2006] Nealen, A. and Müller, M. (2006). Physically based de-

formable models in computer graphics. Computer Graphics

[Provot, 1995] Provot, X. (1995). Deformation constraints in a mass-spring model to

describe rigid cloth behaviour. Graphics interface.

68

[Provot, 1997] Provot, X. (1997). Collision and self-collision handling in cloth model

dedicated to design garments.

[Redon et al., 2000] Redon, S., Kheddar, A., and Coquillart, S. (2000). An algebraic

solution to the problem of collision detection for rigid polyhedral objects. Proc. of

IEEE Conference on Robotics . . . , (April):3733–3738.

[Redon et al., 2002] Redon, S., Kheddar, A., and Coquillart, S. (2002). Fast Continu-

ous Collision Detection between Rigid Bodies. Computer Graphics Forum, 21(3):279–

287.

[Selle et al., 2009] Selle, A., Su, J., Irving, G., and Fedkiw, R. (2009). Robust high-

resolution cloth using parallelism, history-based collisions, and accurate friction.

IEEE transactions on visualization and computer graphics, 15(2):339–50.

[Soman et al., 2010] Soman, J., Kishore, K., and Narayanan, P. J. (2010). A fast GPU

algorithm for graph connectivity. 2010 IEEE International Symposium on Parallel

& Distributed Processing, Workshops and Phd Forum (IPDPSW), pages 1–8.

[Tang, 2010] Tang, M. (2010). Self-CCD: Continuous Collision Detection for Deforming

Objects.

[Tang et al., 2009a] Tang, M., Curtis, S., Yoon, S.-E., and Manocha, D. (2009a).

ICCD: interactive continuous collision detection between deformable models using

connectivity-based culling. IEEE transactions on visualization and computer graph-

ics, 15(4):544–57.

[Tang et al., 2011a] Tang, M., Manocha, D., Lin, J., and Tong, R. (2011a). Collision-

streams: fast gpu-based collision detection for deformable models. Symposium on

interactive 3D . . . , 1(212):63–70.

[Tang et al., 2009b] Tang, M., Manocha, D., and Tong, R. (2009b). Multi-core colli-

sion detection between deformable models. 2009 SIAM/ACM Joint Conference on

Geometric and Physical Modeling on - SPM ’09, page 355.

[Tang et al., 2010] Tang, M., Manocha, D., and Tong, R. (2010). Fast continuous

collision detection using deforming non-penetration filters. Proceedings of the ACM

SIGGRAPH Symposium on Interactive 3D Graphics and Games - I3D 10, page 7.

69

[Tang et al., 2011b] Tang, M., Manocha, D., Yoon, S.-E., Du, P., Heo, J.-P., and Tong,

R.-F. (2011b). VolCCD. ACM Transactions on Graphics, 30(5):1–15.

[Tang et al., 2013] Tang, M., Tong, R., Narain, R., Meng, C., and Manocha, D. (2013).

A GPU-based Streaming Algorithm for High-Resolution Cloth Simulation. Computer

Graphics Forum, 32(7):21–30.

[Terzopoulos et al., 1987] Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. (1987).

Elastically deformable models. ACM Siggraph Computer . . . , 21(4):205–214.

[Teschner et al., 2003] Teschner, M., Heidelberger, B., and Müller, M. (2003). Opti-

mized spatial hashing for collision detection of deformable objects.

[Teschner and Kimmerle, 2005] Teschner, M. and Kimmerle, S. (2005). Collision de-

tection for deformable objects. Computer Graphics . . . , xx(x).

[Volino and Thalmann, 1994] Volino, P. and Thalmann, N. (1994). Efficient self colli-

sion detection on smoothly discretized surface animations using geometrical shape

regularity. Computer Graphics Forum.

[Volino and Thalmann, 1995] Volino, P. and Thalmann, N. (1995). Collision and self-

collision detection: Efficient and robust solutions for highly deformable surfaces.

[Wicke et al., 2006] Wicke, M., Lanker, H., and Gross, M. (2006). Untangling cloth

with boundaries. . . . of Vision, Modeling, and Visualization (VMV

[Zeller, 2005] Zeller, C. (2005). Cloth simulation on the GPU. ACM SIGGRAPH 2005

Sketches, page 2003.

70

