
Seamless Integration of Real and Virtual

Environments

by

Tom Noonan, B.A.

Dissertation

Presented to the

University of Dublin, Trinity College

in fulfillment

of the requirements

for the Degree of

Master of Science in Computer Science

(Interactive Entertainment Technology)

University of Dublin, Trinity College

September 2014

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated,

is my own work.

Tom Noonan

September 1, 2014

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Tom Noonan

September 1, 2014

Acknowledgments

I would like to thank my supervisor Dr. John Dingliana for the invaluable advice and

guidance offered throughout the length of this dissertation.

Tom Noonan

University of Dublin, Trinity College

September 2014

iv

Seamless Integration of Real and Virtual

Environments

Tom Noonan

University of Dublin, Trinity College, 2014

Supervisor: Dr. John Dingliana

Within the field of augmented reality there are a number applications already available

which allow for physical interaction between a real scene and certain virtual objects.

Often times though this interaction is quite limited and coarse in detail. The objective

of this dissertation is to design and create a model which allows for detailed and accu-

rate physical interaction between a real scene and various virtual physical phenomenon.

In particular, we wish to be able to expose virtual objects such as rigid bodies, cloth

and fluid to a view of a real scene and have them behave like they belong in this scene.

To achieve this, the Microsoft Kinect is used to scan in information about the real

scene and Kinect Fusion is used to track the motion of the camera and build a fully

volumetric 3D representation of the scene. The physically relevant information is ex-

tracted from the scene and a unified particle solver is then used to simulate the physical

interactions. The results presented far surpass the capabilities of current alternatives

v

found in games today and real-time performance is maintained by executing nearly

everything on the GPU.

vi

Contents

Acknowledgments iv

Abstract v

List of Tables xi

List of Figures xii

Chapter 1 Introduction 1

1.1 Motivation . 2

1.2 Objectives . 3

1.3 Dissertation Outline . 4

Chapter 2 State of the Art Review 5

2.1 Input Device . 5

2.1.1 Structure Light Scanner . 6

2.1.2 Time of Flight Camera . 7

2.2 Scene Reconstruction & Camera Tracking 7

2.2.1 Multi-View Stereo (MVS) . 8

2.2.2 Simultaneous Localization and Mapping (SLAM) 8

2.2.3 Structure from Motion (SfM) 9

2.2.4 Iterative Closest Point . 11

2.2.5 RGB Plus Depth . 12

2.3 Volumetric Representation . 13

2.3.1 Voxels . 13

vii

2.3.2 Signed Distance Function . 14

2.3.3 Uniform Spatial Subdivision . 14

2.3.4 Hierarchical Structure . 15

2.3.5 Spatial Hashing . 16

2.4 Surface Extraction & Rendering . 18

2.4.1 Raycasting . 18

2.4.2 Compositing of Real and Virtual 18

2.5 Kinect Fusion . 19

2.6 Extraction of Physically Relevant Information 20

2.6.1 Particles . 20

2.6.2 Meshes . 21

2.6.3 Primitive Shapes . 21

2.6.4 Signed Distance Functions . 22

2.7 Physics Calculations . 22

2.7.1 Physics Engines . 23

2.7.2 Particle Systems . 23

2.7.3 Position Based Dynamics (PBD) 24

2.7.4 Collision Detection & Response 24

2.7.5 Rigid Bodies . 25

2.7.6 Cloth . 26

2.7.7 Fluid . 27

2.7.8 Unified Particle Physics . 28

Chapter 3 Design 29

3.1 Key Design Decisions . 29

3.2 Method of Input . 30

3.3 Representing the Real World Information 31

3.4 Physical Solver . 32

3.5 Keeping It All Real-Time . 32

3.6 Rendering . 33

3.7 Languages, Tools & Libraries . 34

Chapter 4 Implementation 36

viii

4.1 The Kinect . 36

4.1.1 Scanning in the Real Scene Information 36

4.1.2 Kinect Fusion . 37

4.1.3 Extracting the Physical Information 38

4.2 The Physics . 38

4.2.1 The Particle . 38

4.2.2 Simulation Loop . 40

4.2.3 Timestep . 41

4.2.4 Neighbour Detection . 42

4.2.5 Collision Response . 44

4.2.6 Rigid Bodies . 44

4.2.7 Cloth . 46

4.2.8 Fluid . 48

4.3 Rendering . 52

4.3.1 Real World - RGB Image . 52

4.3.2 Real World - 3D Mesh . 53

4.3.3 Rigid Bodies . 54

4.3.4 Cloth . 55

4.3.5 Fluid . 56

Chapter 5 Results & Evaluation 61

5.1 Quality of Interaction . 61

5.1.1 Fluid . 62

5.1.2 Cloth . 63

5.1.3 Rigid Bodies . 64

5.1.4 Kinect PoV . 65

5.2 Performance . 66

5.3 Evaluation . 68

Chapter 6 Conclusion 70

6.1 Summary . 70

6.2 Limitations & Future Work . 70

Appendix A Appendix 73

ix

A.1 Links to Videos . 73

A.2 Source Code . 74

Appendices 73

Bibliography 75

x

List of Tables

5.1 Time taken per frame for the typical physics simulations. 67

xi

List of Figures

2.1 In the image on the left, the infrared line pattern emitted by many

structured light cameras. In the image on the right, the dot pattern

emitted by the Kinect. 6

2.2 On the left, a sample MVS setup in [1]. In the centre, approximate

translations leading to increased error in SLAM[2]. On the right, points

of interest detected in a SfM approach[3]. 11

2.3 On the left, visual representation of the shallow hierarchy method in

Chen et al.[4]. On the right, visual representation of the spatial hashing

method used by Teschner et al.[5]. 17

2.4 On the left, a vertical slice of the volumetrically represented SDF. On

the right, ray casting to approximate the surface. 19

2.5 A 2,000 element point cloud (left) represented as 372 basic shapes (right)

using [6]. 22

4.1 On the left is the virtual representation of the scene overlaid with the

RGB image. On the right is an example of the depth image used for

occlusion . 53

4.2 Scene rendered as a 3D mesh . 54

4.3 Cube visualized just as particles and with final render 54

4.4 Cloth visualized just as particles and with final render 56

4.5 The various stages of the fluid renderer. Images listed in order depict

blurred depth, normals, unblurred thickness, reflection, refraction and

the final composite . 60

5.1 Fluid being dropped on a desk . 62

xii

5.2 Fluid being dropped on a chair . 62

5.3 Cloth being dropped on a desk . 63

5.4 Cloth being dropped on a person . 63

5.5 Cubes being dropped on a chair . 64

5.6 Kinect POV of fluid being dropped on a desk 65

5.7 Kinect POV of cloth being dropped on some chairs 65

5.8 Time taken per frame by Kinect Fusion with varying amounts of voxels

representing a 4metre x 4metre scene 66

xiii

Chapter 1

Introduction

When it comes to seamless integration between the real and the virtual, two main areas

exist which affect a user’s ability to perceive a difference between the two. The first

is how the two look together, and the second is how they behave together. Within

the field of augmented reality, extensive work has been carried out on the former of

these two areas. One approach is to try and make the virtual objects look as realistic

as possible and to attempt to match them to the current lighting of the real scene

being augmented[7]. And another approach is to abandon the idea of trying to make

everything look like it belongs to the real scene, and instead just try to render both the

real and virtual with a similar, stylized approach[8]. Not as much attention, however,

has been paid to how the real and virtual behave and interact physically with one

another. The work of this dissertation will be focused almost entirely on this second

area, researching and demonstrating the type of physical interaction possible between

the real and virtual in an augmented reality environment.

1

1.1 Motivation

With the recent release of the next generation of gaming consoles, depth sensing cam-

eras are more and more becoming a feature commonly found in the average household

living room. Many applications have been developed specifically for use with these

cameras, some of which allow certain amounts of physical interaction between a user

and virtual objects within the application. An example of this is Microsoft’s Kinect

Party [9]. Kinect Party consists of a number of different modes and within most of

these modes there is no particular goal. Rather users are just prompted to perform cer-

tain actions in front of the Kinect camera as to create humorous results in the form of

augmented reality which can then be displayed on the screen connected to the console.

Some of these modes allow for users to bat around virtual balloons or watch virtual

lava flow in around them. While these features sound intriguing at first, in reality when

you observe these modes in action it is quite obvious to see that the actual physical

interaction is extremely limited and coarse in detail. As such the the behaviour of the

virtual objects displayed on screen are similarly coarse and the results are very rarely

what you might describe as realistic.

In most cases these type of interactions do not limit the user experience to a large

degree in the context of that particular game/application as the input required is

similarly simple. The modes themselves are not meant to have much depth and rather

are just for a couple minutes of fun. This does however largely limit what type of

gameplay you can achieve as a whole, in future games, if you are forced to keep within

the constraints of such simple interaction. A large part of designing games which are

meant to contain an amount of depth and keep a user playing for a longer period of

time is to maintain some form realism and immersion. At the moment, developers are

content with this limited form of interaction. However if detailed physical interactions

could be simulated between the real and the virtual it would only serve to improve

the user experience and lead to more possibilities and depth in potential gameplay or

other applications.

2

1.2 Objectives

With all this in mind, the main aim of this dissertation is to design and create a

model which allows for detailed and accurate physical interaction between a real scene

and various virtual physical phenomena. Involved in this is researching the various

approaches available for scanning in the real world information, along with the various

method of handling the physical interactions. Finding two which work well together

in the context of this problem and combining them together to make interactions as

realistic as possible. Ultimately the goal is to be able to expose a real scene to virtual

rigid bodies, cloth and fluid, and have the virtual objects behave like they belong in

the real scene.

Because a model like this would primarily find its use in applications like games, it is

also important that the eventual implementation be suitable for convenient use in any

scene. This means the system must be easy to set up and capable of working in differ-

ent environments and capable of handling various lighting conditions. Many existing

augmented reality applications require visual prompts such as augmented reality tags

or fiducial markers, which we also wish to be able to avoid.

Another important factor which must be considered when designing a system for use in

games is performance. The implementation must be able to maintain real-time frame

rates. As such the aim is to execute as much the implementation as possible on the

GPU.

And finally, very little previous work has been done in the area of trying obtain a high

level of physical interaction between the real and the virtual using a simple, consumer

grade depth sensing camera. Aside from just provide a specific implementation which

achieves these types of interactions, it is also the aim that this dissertation could serve

as a point of reference to others who wish to continue research in the area. Be it

through expansion or improvement of the implementation developed in this work, or

just through using the knowledge gained from the considerations and insight detailed

in this text.

3

1.3 Dissertation Outline

The rest of this dissertation is outlined as follows:

Chapter 2 - State of the Art Review looks at the current state of the art with

regard to the two main areas involved in this research, 3D scene reconstruction

and physical solvers. A detailed discussion of the pre-existing techniques is pro-

vided and some of the advantages and disadvantages of these techniques within

the context of the objectives of this dissertation are mentioned.

Chapter 3 - Design describes a high level overview of the design planned for the

eventual implementation. Some of the key design decisions which had to be made

are highlighted and a discussion behind the various thought processes which lead

to the eventual design choice is provided.

Chapter 4 - Implementation gives a detailed step by step description of the imple-

mentation used to develop the final application.

Chapter 5 - Results & Evaluation demonstrates some of the results achieved and

evaluates these results in the context of realism and performance. Also provides

a discussion on the relative success of the dissertation with regards to other

alternatives available presently.

Chapter 6 - Conclusion summarizes the work done and main results achieved. Also

describes some of the limitations of the final implementation and presents ideas

for future work to overcome these limitations.

4

Chapter 2

State of the Art Review

In this chapter we explore the current state of the art with regards to the areas of

research this dissertation will be focusing on. The aim of this is to gain an increased

understanding of the current techniques utilized in existing literature, and also to gain

a better idea of what pre-existing techniques or areas can further be built upon to

develop our own contribution to this area of research. This section will begin with a

focus on the area of scanning in real 3D scenes and representing them virtually, and

discuss the various methods already developed for this purpose. It will then move on

to the topic of physical integration between these real scenes and the purely virtual,

and discuss some of methods available for achieving this purpose. Finally, some of the

current state of the art in techniques used for physical simulation are presented.

2.1 Input Device

The first barrier in trying to scan in a real world information is what device to use

as a method of input. This section briefly describes the very basic theory behind how

certain depth sensing cameras work.

5

2.1.1 Structure Light Scanner

A structured light scanner is a device which uses projected light patterns and a camera

to measure the three-dimensional shape of an object. Structured light scanners work by

generating a known pattern of light within the device. This pattern is then projected

outwards onto the scene to be recorded, where the pattern will be distorted depending

on the geometry of the scene and where the light collides with visible objects. A camera,

also within the device, will then read in the scene illuminated in the distorted pattern,

and compare this with the original known pattern to gain depth information from the

scene. The calibration between the projector and the camera must be known and

taken into account. Up until relatively recently, structured light scanners were unable

to affordably provide high frame rates for full images with a reasonable resolution,

but this all changed with the introduction of the Microsoft Kinect. Based off of the

range camera technology developed and patented by PrimeSense[10], the Kinect uses

a modified structured light technique to build its depth map. Instead of using the

time-varying structured light patterns widely applied in previous devices, the Kinect

uses a fixed irregular pattern which consists of a very large number of dots. These dots

are produced by an infrared laser LED and a diffractive optical element. The Kinect

determines the disparities between the emitted light beam and the observed position

of the light, where the identity of each dot is determined by utilizing the irregular

pattern. Once the identity and position of a dot is known, the depth information can

be extracted.

Figure 2.1: In the image on the left, the infrared line pattern emitted by many struc-
tured light cameras. In the image on the right, the dot pattern emitted by the Kinect.

6

2.1.2 Time of Flight Camera

A 3D time of flight(TOF) camera works in a manner very similar to the familiar

concepts of radar. The camera emits a specific type of light and essentially uses the

time taken for the light to reflect back to its detector to determine the depth of a

particular point. More specifically, TOF cameras most commonly work by illuminating

the scene to be recorded with a modulated laser light source. The phase shift between

the illumination and the reflection can then be measured and translated to distance

between the camera and the point of reflectance[11]. Microsofts second generation of

Kinect, which was just recently released along with their newest console the XBox

One[12], is in fact based off of time of flight technology using range gate imagers. In

these devices there is a built in shutter in front of the image sensor that opens and

closes at the same rate as the light pulses are sent out. Because part of every returning

pulse is blocked by the shutter according to its time of arrival, the amount of light

received relates to the distance the pulse has travelled[13]. Despite TOF technology

being present in the second generation of Kinect, Microsoft has yet to release it for

Windows, and as such cant really be considered for this dissertation. This leaves a lack

of consumer grade cameras which will produce a depth image of sufficient resolution

and sensitivity.

2.2 Scene Reconstruction & Camera Tracking

With a suitable input device selected, the question which naturally comes next is how to

reconstruct the virtual scene from this real world input data. This process is simplified

if the position of the camera is fixed and known, however this approach very much

limits the level of detail you can acquire. Since you are unable to move the camera

there are often holes left in the scene reconstruction where the camera is unable to see.

A solution to this is to allow the camera to move and be able to scan the scene from

many different angles. Alternatively multiple stationary cameras can be used to obtain

the same multi-angle view. Neither of these approaches are new concepts and a large

amount of previous research has been done on various ways of achieving a much more

comprehensive view of the scene.

7

2.2.1 Multi-View Stereo (MVS)

Conceptually, the simplest approach to achieve a 3D scene reconstruction from 2D

images is multi-view stereo. MVS generally requires a setup of multiple calibrated

cameras and additional user input information about the geometric extent of the object

or scene being reconstructed[14]. While there are many different approaches to fusing

the number of 2D images together to create a single volumetric model, recent advances

have been made particularly in the area of multi-view photometric stereo. In Vlasic

et al.[1] they use a system of MVPS which combines earlier familiar techniques of

silhouette recognition, and combine them with highly detailed normal maps obtained

from an extremely elaborate setup of calibrated light sources and cameras. Surface

reconstruction algorithms can then be used to process this data and reconstruct high

quality, fully volumetric 3D models. The downfall of MVS is the amount of prior

calibration and expensive equipment needed to get an adequate setup ready to capture.

An example of this is the set up used in Vlasic et al. which is shown in Figure 2.2.

2.2.2 Simultaneous Localization and Mapping (SLAM)

SLAM is a broad concept within the robotics society which represents techniques used

by robots and autonomous vehicles to build up a map of the environment it is currently

in, while simultaneously keeping track of it own location within that environment. The

complexity of the technical processes of both locating and mapping under conditions of

errors and noise do not allow for a coherent solution of both tasks. SLAM is a concept

that binds these processes in a loop and therefore supports the continuity of both as-

pects in separated processes. Iterative feedback from one process to the other enhances

the results of both consecutive steps. SLAM, as a process itself, generally consists of

multiple different parts: landmark extraction, data association, state estimation, state

update and landmark update. Extensive research have been done on many different

techniques for solving each stage.

The seminal work done on SLAM was Smith&Cheeseman[2] in 1986. Here they in-

troduce the idea of approximate transformations (ATs), which consist of an estimated

mean relation of one coordinate frame relative to another and a covariance matrix

8

that expresses the uncertainty of the estimate. In the context of a mobile robot this

paper presents the concept of the robot moving from one position in world space to

another as a single AT, so long as the kinematics of the robot are known. At the end

point of the robots movement, its position within a certain error can be estimated by

calculating that AT. As the robot then moves from point to point to point, more ATs

are added to the first, with the error associated with the prediction of its new position

rising with each new AT. Eventually it will get to a stage where the robots location

with respect to the world frame becomes so uncertain that the robot is unlikely to

succeed in actions such as going through a doorway, based purely on the information

available to it so far. This is where the authors move on to the idea of robot sensing. A

mobile robot equipped with sensors would allow it to determine the location of objects

to an accuracy determined by the sensor resolution. These sense relationships could

then also be represented as ATs in the AT network, along with those due to motion.

It is important to note though, that if this kind of sensing is to work, these reference

sensors must be established ahead of time, and the robot must always be in range of

a reference sensor to receive any contribution to its location estimation. Figure 2.2

shows a diagram depicting the accumulating error of multiple ATs.

2.2.3 Structure from Motion (SfM)

All the earliest SLAM techniques developed required a large of amount of prior knowl-

edge about the scene to be explored and mapped, such as sensor positions or the robot

kinematics etc. One of the first techniques to attempt to reduce the amount of prior

knowledge needed was the structure from motion technique. SfM hinges on the idea

of detecting feature points within the scene, and tracking their trajectories over time,

as the camera moves[15]. This, in theory, eliminates the need to know the exact kine-

matics of the robot and instead allows an estimation of location from just the various

images alone. This is a step in the right direction however still requires prior knowledge

of the scene. In the case of Dellaert et al.[15], the features chosen were hand picked.

Also this method still leaves the problem of if the camera becomes orientated so that

none or very few of the features chosen are visible, the system immediately falls down.

A class of techniques known as extensible tracking has since been developed to limit

9

these shortcomings, and further reduce the amount of prior knowledge needed. Exten-

sible tracking in Park et al.[16] works by first calculating the cameras position in the

world from a number of reference fiducials(visual points of reference used in camera

calibration) within the scene. Natural features around the scene are then detected and

calibrated using the same fiducials. Once a natural feature has been detected and cali-

brated, it can then be used as a point of reference itself to find further natural features

as the camera moves around. This allows the user to move the camera so none of the

original fiducials are visible and still be able to calculate its position in the world.

So now the the prior knowledge needed for potentially an entire scene has been reduced

down to a very small set of fiducials. The logical next step in SfM is to try and

eliminate the need for any reference map at all, and that is what they set out to do

in Klein et al.[3]. Here they initialize the map purely through a small amount of user

interaction, and application of a five point stereo algorithm. The user must first point

the camera at a particular set of features to be tracked, press a button, smoothly

translate the camera 10cm while maintaining vision on the same set of features, and

then press another button. Within this step features are detected and tracked and the

disparity between these original two keyframes can be used to calibrate the original

set of feature points with regard to the camera. The authors then draw on the basis

of the previously mentioned techniques to continue to detect and map further feature

points within the scene to be mapped. With the aim of real-time results, the algorithm

they developed does not use every frame from the video input. Instead they work

off a series of keyframes which can be an arbitrary amount of time apart from one

another. The feature points are tracked between keyframes by first searching for 50 of

the coarsest-scale features in the new image, and the camera pose is roughly updated

with regard to the translation found by this. After this original pose update, a further

1000 points are reprojected and searched for on the image. This allows a much finer

and accurate final pose update to be calculated for the camera depending on the

matches found. This paper was considered a large stride forward in the field of SLAM,

however the application was focused more on scene and shape recognition, rather than

reconstruction. As such they were only capable of constructing very sparse maps.

Figure 2.2 displays an example set of points of interests detected by a SfM technique

like this.

10

Figure 2.2: On the left, a sample MVS setup in [1]. In the centre, approximate trans-
lations leading to increased error in SLAM[2]. On the right, points of interest detected
in a SfM approach[3].

2.2.4 Iterative Closest Point

Separate from the ideas of SfM but still a product of SLAM, ICP is another technique

which has been adapted to track camera motion within an unknown scene. ICP origi-

nally found its use as a way of comparing an ideal ‘model’ shape and a detected ‘data’

shape to see if the two match up [17]. Since then though, it has been adapted to track

the motion of the camera within a scene[18]. At its core, ICP is an algorithm employed

to minimize the difference between two sets of 3D point data. Within the algorithm,

one set of data is considered the reference and is kept fixed. The second set is then

transformed iteratively using various translations and rotations until it matches the

reference set as closely as possible. At the beginning of each simulation frame, each

point in the second cloud is matched with the closest point to it in the reference cloud.

The transformation need to best align each pair of points is found using a mean square

error cost function. The second cloud is transformed by this calculated value and then

this entire process is reiterated until the two converge within a certain error.

While it is easy to see why this kind of a method could be used to compare and match

shapes, it is also important to note how it can be used to track the motion of a camera.

If a transformation that should be executed on the second point cloud to match the

two up can be calculated, then the transformation needed to be applied to the virtual

camera so that the two appear on top of each other visually can also be calculated. ICP

is an attractive solution because it allows the user to map completely arbitrary scenes

with purely just the depth information so long as the scene holds a decent amount

11

of different geometry and is not just a wall, or similar flat surface. One shortcoming

however, is since each pair of points is assigned depending on their closest neighbours

in the other cloud, very fast or sudden motion will severely skew the results.

Another difficulty with regard to ICP is the handling of a phenomenon known as loop

closure. This refers to the process that occurs when the camera is brought on a long

sweep around a room which is executed over a larger period of time. The camera carries

on being tracked around the scene and the newly scanned geometry is reconstructed

within the application, however very small accumulations of error with the ICP can

accumulate over time. This means that if the camera then returns to scan the area it

began at, the algorithm will now think the camera is in a slightly different position and

that all the point data is slightly off. This leads to the morphing and degradation of

reconstructions of large areas over time. This phenomenon is mostly irrelevant when

only scanning a relatively small area though.

2.2.5 RGB Plus Depth

Up until this point we have only really discusses methods which work solely on 3D point

clouds retrieved from depth images. While these point clouds are extremely well suited

for frame to frame alignment and for dense 3D reconstruction, they still ignore a large

amount of valuable information contained in images. Colour cameras, on the other

hand, capture rich visual information which can further be used in the principles of

SLAM. RGB-D techniques are based around the combination of both the typical depth

information and this usually absent RGB information. The Microsoft Kinect possesses

both RGB and depth cameras within a single structure, and the data recorded by the

two can be coordinated so long as the exact calibration between the two cameras is

known.

In Henry et al.[19] the authors combine techniques of both ICP and feature detection to

do their mapping, and they call it RGBD-ICP. In RGBD-ICP, every frame a sparse map

of visual features is extracted from the RGB-D image. These features are associated

with their corresponding depth values and typical ICP is performed on these points

to find the transformation needed. This achieves the best of both worlds getting the

increased accuracy from ICP and the more reliable feature detection from RGB-D.

12

Because the two methods are integrated and work so closely together in this approach,

refining each other, this also allows for greater areas to be mapped without skewing

the earlier readings with large amounts of accumulating error as the camera is brought

on a long sweep, and returns back to its original position, the phenomenon also known

as loop closure. An added bonus of the RGB-D approach as well, of course, is that

colour can be preserved and present in the final reconstruction. The limitation of this

RGB-D technique though is the fact that their RGBD-ICP method only runs at about

one second per frame.

2.3 Volumetric Representation

By predicting the global pose of the camera, any depth measurement can be converted

from image coordinates into a single consistent global coordinate space. How the data

that now makes up this global coordinate space is stored is the next area of interest

which must be explored. Primarily the information must be stored in a manner which

can be used to visually reconstruct the surface in a later step. Although the raw depth

data could just be roughly stitched together and rendered like that, this would leave

a very coarse and jagged looking representation. The real challenge lies in storing

the information in such a way that curved surfaces etc. can be represented smoothly

and realistically. The data structure must also be added to, updated and referenced

fast enough to maintain the real-time nature of the application. As such, speed is of

paramount importance to the solution chosen. Space efficiency on the other hand, is

not of as much importance for these types of applications as long as they are still fast.

With that being said though, the lower the amount of memory the data occupies, the

larger the scenes that can be represented.

2.3.1 Voxels

Voxels as a concept are somewhat analogous to a 3D pixel. A 3D scene can be split into

a grid of equally sized volume elements, with each volume element (or voxel) storing

a certain amount of information relevant to the grid position in 3D space it occupies.

13

Traditionally, voxels had found use solely in representing purely volumetric data, like

for instance the kind of information returned by an MRI scan. Recently though, more

and more uses are being found for them in other areas of computer science, such as

using them as a densely sampled representation of opaque surfaces[20]. Voxels are ideal

for use in the kind of fully volumetric representation we are trying to build up of the

scene.

2.3.2 Signed Distance Function

In Curless&Levoy[21] the authors introduced the use of cumulative weighted signed

distance functions (SDFs) to volumetrically represent the 3D surface of an object. The

idea behind SDFs is that each node in the volumetric representation would contain

a weighted distance function to the nearest surface. Nodes which lay on the outside

of the surface would be given a positive distance, and nodes which lay on the inside

would be given a negative distance. This would then allow rays to be casted from

the camera or elsewhere, and wherever they ray transitioned from a positive node to

a negative node, a surface was detected and could be further approximated using the

relative weighted distances of the two crossover nodes. Curless&Levoy also observed

that for these kind of applications, the SDF is only meaningful near the surface and

that majority of voxels that are a certain distance from any surface can be completely

ignored. Therefore they use a truncated SDF (TSDF) region in the vicinity of the

observation, which only stores SDF values for voxels close enough to a surface to be

relevant. TSDFs are ideal for volumetrically representing the kind of data obtained

from the previously discussed imaging techniques and as such are used in nearly all of

the state of the art approaches.

2.3.3 Uniform Spatial Subdivision

Both Curless&Levoy[21] and Izadi et al.[18] use the approach of uniform spatial subdi-

vision of a voxel grid to hold their TSDF data. In Izadi et al. the 3D volume of fixed

resolution is predefined in a position relative to the starting position of the camera.

Once defined, this volume can not be moved and the full 3D voxel grid is allocated

14

on the GPU as aligned linear memory. They recognize that though this is far from

the most space efficient approach (with a 5123 grid of 32-bit voxels requiring 512MB

of memory), they maintain that this does not really matter given that the approach

is speed efficient. Of course though this will always limit the overall grid size their

algorithm is able to represent, and it will also limit the resolution attainable.

In an effort to combat the limitation of having the scene locked to an initial position as

above, Whelan et al.[22] developed a direct extension of Izadi et al. which they named

Kinituous. Kintinuous works in a manner very similar to above in that they pre-define

their first 3D voxelized volume as a fixed amount of space around the camera. However,

when their camera is judged to have moved over a certain threshold of distance away

from it original position they shift this volume along the transformation of the camera.

This will lead to new empty nodes being made available to the TSDF with fresh input

data, and will also lead to certain previous nodes of the TSDF being discarded. So as to

preserve the data recorded in a previous TSDF, rather than just discard these nodes as

they leave the area being scanned, the surface information is extracted from the voxels

to be discarded and this data is streamed from the GPU memory and immediately fed

into a greedy mesh triangulation algorithm. The results is a high polygon count surface

representation of the previously mapped environment, which can be continuously added

to as more of the scene is scanned in and processed by the TSDF.

2.3.4 Hierarchical Structure

In Izadi et al.[18] they discuss potential future work and suggest more memory effi-

cient approaches such as octrees might be needed in order to be able to reconstruct

larger scenes. Another direct extension of this paper, Zeng et al.[23] attempts exactly

that. Though there are benefits of using an octree to reduce the amount of memory

wasted on empty space, it is significantly more difficult to implement an octree based

data structure that maintains the same requirements for speed as the simple memory

inefficient approach. This is largely down to the fact that it is difficult to maintain

the parallelism feature of the GPU due to the sparseness of an octree’s nodes. In Zeng

et al. they construct their octree structure using arrays of different layers, where one

array corresponds to a layer in the octree. In their structure they use three different

15

types of layers, branch layers, middle layers and data layers. Branch layers hold just

children IDs, middle layers hold both children IDs and the node’s xyz key and data

layers hold both the xyz key and the SDF value and weight. The authors also design

new algorithms for the ‘reconstruction update’ and ‘surface prediction’ stages to effi-

ciently utilize GPU parallelism and maintain speed. In their conclusion they report

using about 10% of the memory [18] uses, and also report about a 2x speed-up on the

stages they optimized.

Further work on hierarchical optimization has also been done in Chen et al.[4]. Here

they introduce a method of using a shallow hierarchical structure which only goes about

3-4 layers deep as opposed to the 9-10 in the octree based approach. The authors of this

paper name Zeng et al. as the work most similar to their own in the area, however they

feel that the reliance on an octree imposes significant pointer overhead. In this paper

they use regular spatial subdivision to structure their tree, however they exploit the

sparseness of the scene to only densely represent areas near a surface, and use a much

coarser representation for empty space. To represent their data they decided to use a

technique of refinement. The root would consist of a coarse, fully allocated grid which

spatially subdivides the entire area. If any of these coarse voxels is found to intersect

with a predicted surface, that voxel is chosen for refinement. Refinement continues

like this recursively down the tree until the leaf level is reached. Again the authors of

this paper had to develop their own algorithm to support the efficient integration of

SDF data and ray casting using this newly proposed data structure by exploiting the

parallelism of the GPU. Lastly they also extend their algorithm to efficiently be able

to stream data out of their voxel grid to support moving volume techniques such as

Kintinuous mentioned above. The authors report even better results than the octree

based approach and feel that the scalability of their approach provides a very attractive

solution.

2.3.5 Spatial Hashing

The approaches of using a hierarchical structure have returned favourable results and

effectively combat the massive memory overhead introduced by purely spatial ap-

proaches. However, it still remains that due to the fact it is inherently difficult to

16

parallelize hierarchical data structures, the full speed potential of an efficiently par-

allel algorithm is not being met. Nie et al.[24] propose to solve this problem using a

technique of spatial hashing. They argue their method carries the benefits of other

volumetric approaches, but does not require either a memory constraining voxel grid

or the computational overheads of a hierarchical data structure. They aim to exploit

the underlying sparsity in the TSDF representation by only storing voxels that contain

TSDF related information in their sparse and efficient hash table based off of Teschner

et al.[5]. In the paper they use the idea of voxel blocks. These voxel blocks are uni-

formly subdivided into the world and each contain a grid of 83 voxels. It is these blocks

that are inserted into the hash table using the key of their x,y,z positions. The authors

use a GPU accelerated hash table to manage allocation and retrieval of the blocks. In

addition to storing a pointer to the voxel block the hash entry also contains its world

position and an offset pointer to handle collisions efficiently. This system still efficiently

supports the integration of TSDF data and surface extraction by ray casting. They

also provide a method for streaming voxel data both from the GPU to the host and

the host back to the GPU. This allows for a system like Kintinuous but also has the

added functionality of being able to return and reintegrate earlier streamed parts of

the scene with the extra host to GPU streaming capability. The paper reports large

frame rate increases over Chen et al., which was said to be the current state of the art

at the time.

2.4 Surface Extraction & Rendering

The final step in virtually representing the real world scene is to render the surface on

screen. This uses the information gained from the camera tracking and combines this

with the data structure created in the stage of volumetric representation. Again speed

is of great importance in this stage. The rendering system implemented must also be

capable of rendering fully virtual 3D meshes within the reconstructed scene also. This

means correctly taking into account any occlusion between real and virtual objects.

17

Figure 2.3: On the left, visual representation of the shallow hierarchy method in Chen
et al.[4]. On the right, visual representation of the spatial hashing method used by
Teschner et al.[5].

2.4.1 Raycasting

Since basically all of the current research in this area is using some form of SDFs to

represent their data volumetrically, using a method of raycasting to extract and render

the surface is by far the most popular approach. The raycasting works by initiating

a ray starting at the virtual cameras position and giving it a certain direction within

the current view frustum. This ray will then traverse through whatever data structure

is chosen to volumetrically represent the TSDF of the scene. Once the ray reaches

a point of zero crossing between adjacent nodes a surface is detected and its exact

position can be found using the relative distance functions. Assuming the gradient is

orthogonal to the surface interface, the surface normal can be computed directly as the

derivative of the TSDF at the zero crossing. Therefore each ray cast can calculate a

single interpolated vertex and normal, which can be used to render the surface.

18

Figure 2.4: On the left, a vertical slice of the volumetrically represented SDF. On the
right, ray casting to approximate the surface.

2.4.2 Compositing of Real and Virtual

This method of raycasting provides an effective approach at rendering the virtually

reconstructed imitation of the real world scene. However it does not implicitly provide

a method for rendering additional purely virtual objects within this reconstruction. In

Izadi et al.[18] they introduce a rendering pipeline which allows conventional polygon-

based graphics to be composited on the raycasted view. Their method also supports

correct occlusion handling. Their pipeline works by first rendering the virtual scene

with graphics parameters identical to the parameters being used in the raycast. The

vertex buffer, surface normals and colour maps from this are stored in off screen maps

and used as input during the ray casting. For each raycast, a distance from the associ-

ated mesh vertex from the virtual scene to the camera is first calculated. This is then

used as a termination condition when stepping along each ray. If the ray finds a real

surface while under this distance the raycast surface is drawn, while if the length of

the ray ever exceeds the original virtual vertex distance calculated, the ray is discarded

and the virtual object is drawn.

2.5 Kinect Fusion

The Kinect Fusion technique [18][25], is widely considered the basis for the current

state of the art in the area of scene reconstruction using a consumer grade camera.

19

In these papers the authors describe how they developed a GPU based pipeline for

reconstructing scene geometry at interactive rates. They use a Kinect camera as their

method of input, perform camera tracking using ICP and represent the information

volumetrically using a TSDF in a spatially subdivided grid. All of these are concepts

mentioned previously. Kinect Fusion is a Microsoft published pipeline and there is

a library available for executing some of the techniques mentioned in the papers on

MSDN, using the Kinect for Windows SDK[26]. Although the main purpose of Kinect

Fusion is more for the detailed reconstruction of surfaces and 3D models, they do also

demonstrate some of the physical capabilities of the pipeline. This is demonstrated by

performing simple virtual particle collisions with their 3D reconstruction.

2.6 Extraction of Physically Relevant Information

With the real scene fully reconstructed and suitably rendered in the virtual world,

the next step is to consider how to represent the scene physically. There are many

different types of input data that can be used to calculate rigid body physics within

the scene, however this is not necessarily the same kind of information already extracted

to render it. The method chosen must yield data that is suitable for calculating the

physical interactions between real and virtual objects.

2.6.1 Particles

The easiest approach to this problem is to only use a system of particle physics and

work on extracting the relevant particle information from the scene. This fits nicely

with the different volumetric representations developed because the various leaf voxels

found to be intersecting with a surface can just be used to create a particle of size equal

to the voxel itself. This somewhat crude approach provides a very grainy interpretation

of surfaces, but for basic simulations of rigid body physics it works visually fine. Since

the fixed scene geometry is represented entirely by this particle information, any virtual

objects cast into it must also be represented by similar particle data. An advantage

of a particle based representation is it is very simple to update the scene in real-time

20

even if the geometry should ever change.

2.6.2 Meshes

Another type of scene representation suitable for calculation of rigid body physics is as

a mesh. In the previously mention paper Kintinuous [22], they provided a method for

streaming the volumetric information back to main memory where it can be used into

a 3D mesh. While the motives of their research was not to extract this for physically

related use, but rather larger scene construction, this method could still be used to

generate a mesh for arbitrary purposes. The major disadvantage of this method though

is that once the volumetric information has been extracted to a mesh, it is quite difficult

to make any dynamic changes to that mesh. This, of course, is not a problem though

if you are only concerned with static scenes.

2.6.3 Primitive Shapes

Since we will be dealing with a scene representation that cannot be moved by the phys-

ical events triggered in the simulation, it is in theory possible to use a much coarser

medium to represent the surface geometry. An ideal medium for this coarse representa-

tion would be primitive shapes such as planes, spheres, cylinders etc. Primitive shapes

suit well for this kind of application because, while still being able to fit the scanned

data quite closely, they would significantly reduce the amount of points that need to

be tracked. Primitive shapes also perform much more efficiently in rigid body physics

calculations when compared to vast amounts of particle data or relatively fine meshes.

The technique of Random Sample Consensus (RANSAC) is an iterative method which

estimates parameters of a mathematical model from a set of observed data which con-

tains outliers. In Schnabel et al.[6] they present an efficient RANSAC algorithm for

detecting basic shapes in point cloud data. They use RANSAC to extract shapes by

randomly drawing minimal sets from the point cloud data and construct corresponding

shape primitives. A minimal set, in this case, is the smallest number of points required

to uniquely define a given type of geometric primitive. The resulting candidate shapes

are tested against all points in the data to determine how many of the points are well

21

approximated by that primitive, with each being given a score. After a given number

of trials, the shape which approximates the most points is extracted and the algorithm

continues on the remaining data. This method was developed with the aim of being

able to visually represent semi-complex scenes with a reduced data set but this could

definitely be extended to our motives. This method was not really developed with in-

teractive rates in mind but then again their focus was on representing complex scenes,

perhaps performance could be vastly increased using relatively simple configurations

on a work bench.

Figure 2.5: A 2,000 element point cloud (left) represented as 372 basic shapes (right)
using [6].

2.6.4 Signed Distance Functions

It would also be possible to just integrate the existing signed distance function with

virtual objects and use that to calculate rigid body collisions. In Guendelman et al.[27]

they represent geometry using both a triangulated surface mesh and a SDF defined on a

grid. They argue this approach has many advantages and use it to simulate interactions

between nonconvex rigid bodies. Because the SDF of the scene geometry is already

known from the scene reconstruction we would not really need to extract it. The only

thing left to do would be to calculate an SDF for any virtual objects that might be

thrown into the scene.

22

2.7 Physics Calculations

With all the physically relevant information extracted the next task would be to decide

what methods to use to calculate the various physical interactions. The physical solver

eventually chosen depends a lot on the kind of information extracted form the scene

as discussed above. Another extremely important factor is that the solver must be

quick enough to support being executed at the same time as the scene reconstruction,

while maintaining interactive frame rates. Luckily there is an extremely large amount

of techniques and algorithms developed in this area which we can draw from.

2.7.1 Physics Engines

Of course the simplest approach would be to just use a pre-existing physics engine.

There a few highly optimized and largely robust physics engines such as Bullet[28] or

Havok[29] readily available for download and use. The potential difficulty would lie in

streaming the relevant information in a suitable format to the engine for use. The kind

of scene representation suitable for input into an engine like this would typically be as

either a mesh or as an assortment of 3D primitive collision shapes. Mesh generation in

every frame can be quite expensive when included with all the other aspects though.

2.7.2 Particle Systems

Extensive research has been carried out in the field of simulating physically based in-

teractions through the use of a particle based representation. Many different particle

based approaches are available which use various techniques to simulate the different

mediums of rigid bodies, cloth and fluid. The only paper previously discussed in this

chapter which simulates physical interactions within their work is Kinect Fusion[18].

As discussed above, they wished to demonstrate the physical capabilities of their im-

plementation without going into too much detail on the topic as a whole. To do this

they chose to expose the scene to a system of separate virtual particles and simulate

simple collision response using a method outlined in the book GPU Gems 3[30][31].

In GPU Gems they use a discrete element method to simulate their collision response

23

with a repulsive force being modelled like a linear spring, and a damping force mod-

elled by a dashpot, which dissipates energy between particles. Although they do not go

any further than this simple implementation in the Kinect Fusion paper, GPU Gems

also describes how this method can be extended to simulate more advanced systems

such as rigid bodies, cloth or fluid. Although this implementation provides a suitable

framework for the intentions of this dissertation, further work has since been carried

out on the area and new state of the art for particle based solvers now exists.

2.7.3 Position Based Dynamics (PBD)

Traditionally the approach taken to simulate the behaviour of dynamic objects has

been to work with forces. Internal and external forces are accumulated at the begin-

ning of each time step, and Newton’s second law of motion can be used to transform

these forces to accelerations. A time integration scheme can then be used to first

compute velocities from these accelerations, and then positions from the velocities. Al-

ternatively impulses, which directly alter the velocity of the particular object, can be

used to control it, meaning one level of integration can be skipped. In applications like

games though, it is often desirable to have direct control over the positions of objects

or vertices of a mesh. PBD is a method which affords this control, where the simu-

lation acts directly on the positions[32]. Position based approaches make it possible

to control the integration directly, thereby avoiding the overshooting and energy gain

problems associated with explicit integration. PBD works by solving different systems

of constraints which represent physical interaction. Constraints are conditions which

must be satisfied by the solver. So for instance if we take the example of two equally

sized spheres which rigidly collide with one another, the constraint that must be satis-

fied is that the centre positions of the two spheres are always at least a distance of two

radii apart. If they were found to be closer than this then a collision response must

be calculated and the positions of the two spheres are altered until the constraint is

satisfied and they are no longer colliding. Different types of constraints can also be

specified for various different types of interaction. Because the PBD approach works

solely by altering position, velocity of objects must be inferred from the total change

in position from the beginning to the end of a single simulation loop.

24

2.7.4 Collision Detection & Response

Collision detection and response is one of the most important stages in any physics

simulation. Because in particle based systems you are usually dealing with many

thousands of particles, distance checks between these particles could potentially become

an enormous bottleneck. ”CUDA Particles”[33] is a highly efficient method of finding

neighbouring particles. It works by spatially subdividing space into a 3D grid and

placing particles into specific cell positions within this grid using their position in x,y,z

coordinates. A hash value unique to the particular discrete cell position the particle

is currently in is calculated and this hash is used to store each particle in their correct

cell in a manner which allows you to easily read any cell’s contents on demand. Once

every particle has been placed in a cell, each particle can then be iterated through and

distance checked with all the particles found in the surrounding 26 grid positions, as well

as the cell it is currently occupying itself. If any overlaps are found, a neighbour for that

particular particle is stored. Depending on the type of medium the two neighbouring

particles represent, they could either be designated as collision neighbours, or in the

case of a fluid-fluid pairing, they will be used in the fluid neighbour constraint solver.

This method is very popular due to the fact that it is highly parallelizable and ideal for

use with solvers that carry out a lot of their implementation on the GPU. The actual

response triggered by finding collision neighbours with this method is calculated by

using the collision constraint described in the paragraph previous.

2.7.5 Rigid Bodies

Although rigid bodies are typically associated with being a single rigid object, it is

also possible to represent them as a system of independent particles bound together

by a system of constraints[34]. The constraints which govern the motion of these

rigid bodies can be calculated by finding a certain translational vector and a certain

rotation matrix. As each object is generated, the positional offset of each particle that

makes up the object with regard to the its overall centre of mass must be recorded.

As the simulation progresses and the object is subject to various collisions etc, the

shape of the object is maintained using the knowledge of the offset of each particle

at rest. The translational vector basically equates to the difference in the centre of

25

mass of all the particles at the very beginning, and the current centre of mass. And

an ideal rotation matrix is calculated for the object which allows us to constrain the

various particles to the shape’s current orientation. Originally this paper was written

as a method of representing deformable objects. This can be achieved by only applying

loose constraints to each particle so that they try to retain their original shape, however

deform elastically. This method can easily be adapted to simulate fully rigid bodies

though if stiff constraints are used.

2.7.6 Cloth

Traditionally cloth simulations are simulated using a system of springs which replicate

the bending and stretching of cloth in real life. In the same paper which for the first

time defines PBD as a complete framework [32], they also demonstrate the capabilities

of the system using an implementation of cloth. In their approach they replace the

traditional spring-like interactions with constraints which imitate these interactions.

They treat their cloth as a triangle mesh, with each shared vertex being represented as

a single particle. This means that if there are two connected triangles at, for instance,

the corner of the cloth, the six vertices associated with the two triangles are actually

represented physically as four particles. The stretching constraints are calculated using

the distance between particles along the three edges of each triangle. If the distance

between a pair of particles along an edge exceeds a certain amount the two particles

are drawn together. The bending constraint is calculated by taking pairs of adjacent

triangles and comparing the normals between the two. If the triangles are not parallel,

the constraint will push them back towards facing in a similar direction.

To produce more realistic interaction, aerodynamics can also be applied to simulate

the cloth being somewhat dragged by a certain density of air. In [35] they simulate

the effects of aerodynamics by approximating each triangle as a thin airfoil. Lift and

drag forces can then be distributed to the cloth’s particles. The drag force always

acts in a direction opposing the motion of each airfoil and has an impact on velocity

depending on the normal of the airfoil. If the face of the triangle is perpendicular to

the direction of motion a greater drag force is experienced. The lift force is calculated

in a similar manner, but is different in that the lift force always acts in a direction that

26

is perpendicular to the motion of the airfoil.

2.7.7 Fluid

Early particle based simulations of fluid depended on techniques such as smoothed

particle hydrodynamics(SPH) [36]. The motion of particles governed by SPH is defined

by a number of smoothing kernels. Different kernels are used to represent the different

forces present in a fluid simulation. Kernels work by extending out from each particle a

certain distance, if a neighbouring particle is found to fall within the interaction radius,

each kernel will apply a weighted force to the particles in question depending on how

close they are within the smoothing radius, and depending what force it represents.

For instance, if the force brought about by fluctuations in density is being calculated, a

nice smooth kernel will be used to gradually ease each particle within system back to be

at rest density. These types of kernel produce gradual interactions with no hard limits.

However if you wanted to simulate the effects of a force like pressure, spiky kernels are

used which give a very firm push apart when particles get too close together. Since

the original work done on SPH based fluid simulations a more recent particle based

approach has been developed which uses the framework of position based dynamics,

“Position Based Fluids”(PBF)[37]. In this approach they still use the idea of various

smoothing kernels but no longer use forces and instead calculate constraints to replace

the forces. The main governing constraint in PBF is the density constraint. Again a

gradual kernel is used to calculate the density of the fluid at each particle location. Once

all these densities have been calculated the constraint is formed using the rationale that

the current density should ideally be equal to the rest density. If the current density

is lower then that particle draws in all neighbouring particles, while if the current

density is higher than rest then it pushes away all neighbours. Beside density, PBF

also calculates values for vorticity, viscosity and surface tension. Vorticity is a force

which acts on particles and is used to replace some of the energy lost through some

undesirable damping caused by the PBF technique. Viscosity works by calculating the

velocity of a certain particle relative to all the particles surrounding it. Viscosity then

serves to act against this relative motion and instead cause the motion of the fluid as

a whole to act more coherent.

27

Although the PBF paper includes a term for surface tension, more recent techniques

have achieved better results. Akinci et al.[38] calculates both a term for cohesion be-

tween particles and a surface minimization term. The cohesion term is calculated using

the distance between neighbouring particles and spline function which acts somewhat

like a kernel. If the distance between two particles is below a certain threshold they

will repulse each other, and if it is above that threshold but still within the interaction

radius, they will attract each other. The surface minimization term is calculated by

calculating the gradient of the smoothed colour field at each particle. This is essentially

influenced by where a particles neighbours lie around it. If they are all to a single side

of the particle this will cause a large gradient, whereas if the particle is nicely surround

the gradient will go to zero. The force caused by this term between two neighbouring

particles is weighted by the difference in the gradient between the two. Towards the

centre of a fluid this term will go to zero, while on the outer edge it will cause more

smooth and rounded edges.

2.7.8 Unified Particle Physics

Unified Particle Physics for Real-Time Applications [39] is a paper published by Müller

et al. in 2014 which is considered to be the current state of the art in particle based

solvers. This paper contributes a unified dynamics framework which combines many

of the previous works mentioned in this chapter which use position based dynamics to

simulate their physical phenomena. Müller et al. provide a novel simulation loop which

can simultaneously simulate rigid bodies, cloth, fluid and gases, and allows for two-way

interactions between all of these simulations. Every object within the solver must be

composed of equally sized particles, and the various sets of constraints which act on

each particle are calculated and solved in a Jacobi fashion. Jacobi iteration works by

taking the positions of all particles relevant into a certain constraint solve, and only

using this original view of what the particle positions are to calculate the change in

position for each particle involved. This is different to Gauss-Seidel iteration, where

each particle position is updated as soon as the position change is calculated, and this

now modified position is used in future calculations in that particular constraint solve.

28

Chapter 3

Design

The aim of this chapter is to provide a high level overview of the design process. Key

design challenges encountered and decisions made will be highlighted and discussed.

Also provided will be an overview of the various programming tools and assets used

throughout development.

3.1 Key Design Decisions

From the very beginning of the project it was clear that a few key design decisions must

be made with regard to the high level workings of the eventual application, before an

implementation can be attempted. These key decisions are:

• What method of input to use

• How to represent the real world information in a manner suitable for simulating

physical interaction

• What kind of solver to use to handle the physical interactions

• How to keep this all within the bounds of real-time

• How to represent the interactions and objects visually

29

3.2 Method of Input

Of course when setting out with the goal of capturing a real scene and having the aim

of integrating it with certain virtual aspects, the first question which must be asked

is how you wish to record this real world data. Among the many factors that would

influence a decision like this, three of the most important factors for an application

like this are image quality, how the input data is received, and finally accessibility.

Image quality is of particular importance to this paper. In some applications, such

as those used for skeletal recognition etc., sufficient information can be inferred from

noisy point cloud data. However in order to obtain sufficient information for detailed

physical interaction to be possible, a higher level of surface geometry must be obtained.

For this reason the input device chosen must be capable of capturing enough detail

in the scene to make a detailed reconstruction possible. Also important is the type of

data received from a particular input device. If the goals of real-time are to be met,

the input data stream must balance on the fine line of enough information to recreate a

sufficiently accurate scene, while not overwhelming the application with impractically

large or cumbersome data sets. Finally is the issue of accessibility. There are any

amount of highly expensive cameras or elaborate multi-camera setups that would be

suited to a virtual reconstruction of a real world scene. However, these types of devices

or setups are inherently inaccessible and awkward to work with when compared to the

more affordable and portable solutions available today.

Because the goal is to design a system that is capable of working in a variety of different

scenes without the need for visual prompts such as augmented reality tags or fiducial

markers, a depth sensing camera is ideal for scanning in this type of information. As

far as what depth sensing camera to use, the Microsoft Kinect was chosen. The Kinect

is cheap, widely available and, for the purposes of this dissertation, has performance

comparable to even the most expensive of depth cameras. Microsoft also provide a

number of useful libraries for processing information scanned in by the Kinect in their

‘Kinect for Windows’ SDK[40].

30

3.3 Representing the Real World Information

Traditional depth images are often quite noisy and contain a lot of holes where no

depth information has been obtained. Also, once the various pixels which contain depth

information have been mapped to a point cloud in 3D space, what you actually get is a

very sparse representation of the scene as a whole, with only information corresponding

to the surfaces closest to the camera available. Detailed physical interaction requires

comprehensive knowledge of the scene and if only the information obtained from the

raw depth image was used, virtual objects would constantly be falling down through

the holes in the depth information or catching on the sharp edges of the front surface of

the scanned in real object. Also if noisy data is present where, for instance, a pixel has

no value for depth in a particular frame but then does the following frame, the constant

appearance and disappearance of particles which are supposed to cause collisions can

lead to instability and an undesirable addition of energy to the system. In order to be

able to simulate as accurate physical interaction as possible, a representation of the

scene beyond just the front-most surface must be formed. Also desirable is the ability

to smooth out the noisy data to a much more stable view of what is present in the

scene.

Kinect Fusion, as described in the state of the art, provides an ideal solution for

overcoming these two major hurdles. Camera tracking allows us to gain information

from various angles and fuse point clouds together to get a much more complete 3D view

of the scene. Also as the information is fused it is integrated together to give a much

smoother representation of surfaces within the scene over time. This eliminates the

problem with noise. Although the state of the art also detailed some improvements on

Kinect Fusion’s specific implementation which provide better results in both memory

efficiency and performance, the fact that Kinect Fusion is a publicly available library

was too attractive to ignore for the purposes of this time constrained project.

31

3.4 Physical Solver

With the method of representing the real world information now known, the next step

is to decide on what type of physical solver to use to handle the interactions. Of

course the solver chosen must be able to handle the kind of information being exported

from the Kinect, so the eventual choice of solver will largely be influenced by the

type of information we can conveniently return from Kinect Fusion. While Kinect

Fusion is capable of exporting a mesh, this process can actually be quite performance

intensive. The volumetric representation of Kinect fusion is stored in a uniform 3D grid

that fills the entire space being scanned in. As previously mentioned, discrete voxel

representations suit the idea of using particles because any voxel found to be inside

a surface can easily be treated as an immovable particle in that discrete position,

with diameter equal to the length of the voxel. Also important to keep in mind when

choosing a solver is it must also be efficient enough to run real time along with camera

tracking and point cloud integration. Particle based solvers are highly parallelizable

and it is often possible to carry out most of the calculations on the GPU. For these

two main reasons a particle based solver was chosen to be used in this implementation.

The specific particle based solver chosen was the Unified Particle Physics solver de-

scribed in the state of the art[39]. Collision detection would be handled by CUDA

Particles[33] and the different systems of constraints needed to simulate rigid bodies,

cloth and fluid would be calculated using the various papers united under the posi-

tion based dynamics framework[32][34][37]. The order and manner in which all these

different steps are executed will be governed by the unified solver’s novel simulation

loop.

3.5 Keeping It All Real-Time

With the general plan for the structure of the implementation now known, the impact

on performance of all these various steps next had to be considered. Kinect Fusion

already runs almost entirely on the GPU so that was not so much of a concern. Going

forward the plan was to implement all the papers associated with the physical simula-

32

tion of objects serially on the CPU. This was partly because I had never worked with

CUDA before and as such was not hugely comfortable with it. Partly because I didn’t

know yet if a serial implementation would be too demanding on performance. And

partly because I figured that even if I found a GPU based implementation was fully

necessary, it would be easier to port a version I had previously got working in serial

than diving straight in the deep end and trying to get it to work for the first time in

CUDA.

After successfully implementing all these simulations in serial it did become apparent

that in order to support larger particle systems for more interesting interactions it

would be necessary to port all the implementations to CUDA. This was also necessary

in order to be able to execute the physics simulations at the same time as the camera

tracking and volumetric integration from the Kinect Fusion stage. Luckily particle

based systems are highly parallelizable and the papers do give some guidelines with

regards to efficiently calculating the simulations on the GPU.

3.6 Rendering

Although rendering was not originally suppose to be a focus of this dissertation at all,

further into the development I realised that I would need to pay at least some attention

to the area of giving both the virtual and the real greater visual fidelity. What was

implemented so far was just both the real scene and the virtual objects rendered as

equally sized particles. If the rendering was left like this it would make it very difficult

to tell if the interactions between the two are actually accurate because it is hard to

tell exactly what is going on. Also rendering the scene just as particles makes the

representation lose any familiarity to it actually being a real scene. This is undesirable

because it makes everything just look virtual and no longer seems to be working on

the seamless integration of real and virtual.

The first matter was to work on restoring the familiarity of the real scene. The obvious

solution to this problem was to just overlay the current image being read in by the

RGB component of the Kinect camera on top of the physical details being scanned in.

This has the advantage of keeping very strong ties to the real scene but unfortunately

33

it requires using the rather limited view port of the current Kinect field of view. An

alternative solution would be to use Kinect Fusion’s export mesh feature which allows

us to build a 3D mesh of the scanned in scene which can then be rendered with full

colour. The advantage of this approach is it allows us a much more flexible view port

and the freedom to move the virtual camera anywhere within the scene and look at

it from any different angle. Unfortunately though this method does lose some of the

familiarity to it being a real scene and can make the scene look quite static. In the end

it was decided to use implementations of both. Both techniques have advantages and

disadvantages in showing off particular features of the implementation so being able to

compare the two would be a valuable addition.

The final issue is how to render the virtual objects. Although making the virtual and

the real appear visually like they belong together was well outside the scope of this

project, it was decided that each of rigid bodies, cloth and fluid had to look more

like their actual respective visuals, rather than just a system of particles. This means

proper rendering for each and the ability to show some simple lighting. While it is

possible to generate visuals for rigid bodies and cloth quite easily by using the layout

of the particles to calculate triangles and in turn normals, fluid rendering is quite a bit

more difficult and an implementation of screen space fluid rendering [41] was needed.

A big part of making a fluid look like it belongs in a scene is handling some sort of

reflection and refraction. A detailed description of how these problems were tackled is

available in the implementation.

3.7 Languages, Tools & Libraries

The application was built using the following combination of languages, tools and

libraries:

• C++

• OpenGL

• GLSL

• CUDA

34

• Thrust

• Kinect Fusion

• GLM

• Eigen

35

Chapter 4

Implementation

This chapter will discuss the specific details of the implementation used in this disser-

tation. The implementation itself is broadly separated into three sections: scanning in

the scene using the Kinect, performing the physics calculations using the particle based

solver, and finally rendering everything. In each section the step by step implemen-

tation of the major features will be described. Aside from this some of the problems

encountered that hadn’t necessarily been considered during the general design phase

will be highlighted and the steps take to solve these problems will be discussed.

4.1 The Kinect

4.1.1 Scanning in the Real Scene Information

The first step of every frame is to attempt to scan in the depth information from the

Kinect. The Kinect only captures at 30fps so to avoid limiting the possible frame rate

of the program to the same cap as the Kinect, a call is made to the depth stream of

the camera which checks if a new frame is waiting to be processed. If there is a new

frame present, the raw depth image is copied from the depth stream to a pixel buffer

to be used later in the process. If the check returns that there is no new frame waiting

however, this copy is skipped and no new depth information is passed into the scene

36

reconstruction. Similarly, the colour image must then also be scanned in as well. Again

the program enquires if there is a new colour frame waiting in the colour stream of the

Kinect, and if not the colour integration is skipped.

When new images for both depth and colour have been received, the goal is to combine

the two together to provide both positional and colour information of each pixel in

the respective images. Unfortunately though the Kinect camera has a gap of a few

centimetres between the depth camera and the RGB camera. This means that if one

image is laid directly on top of the other, they will not match up perfectly. Because

of this the pixels of the colour image must first be mapped accordingly onto the depth

image. This ensures the correct colour gets associated with the correct depth value.

4.1.2 Kinect Fusion

With the two input images now appropriately mapped onto one another, this informa-

tion is now suitable to be passed into Kinect Fusion. Kinect Fusion is responsible for

taking this information, performing camera tracking using the depth images, updat-

ing the camera position based of the tracking, and finally integrating both the depth

and colour information into the existing volumetric representation it has constructed.

During the initialization of Kinect Fusion it is possible to specify certain parameters

such as the size of the area you wish to reconstruct and the resolution of voxels within

that area. It is also possible to specify the weight Kinect Fusion has towards either

favouring its existing knowledge of what the scene should look like, or favouring what

the most recent frames say it should look like. If a heavy weight towards its pre-existing

knowledge of the scene is chosen the representation constructed will be very smooth

and noise free, however the program will be unable to handle any kind of movement

because it will just assume the newest frame is wrong. If a heavy weight towards the

most recent frame is chosen, however, movement can easily be detected and accounted

for but the overall reconstruction will be much noisier and it becomes much more dif-

ficult to build up a stable and comprehensive view of the scene. It is quite difficult

to find a balance between the two which allows for both movement and detailed scene

representation. As such it was decided to just settle for a mostly static scene and bias

fusion towards the smoother, more stable representation.

37

4.1.3 Extracting the Physical Information

With the scene information being successfully scanned in and integrated, the last stage

is to extract the physically relevant information from the Kinect Fusion volumetric

representation. This can be achieved by raycasting into the voxel grid and returning

points where a surface is hit. This raycast can have a certain stride assigned to it

which allows the user to make a point cloud less dense than the actual volumetric

representation if such a high resolution of surface data is not needed. The positions

of these surface points are then copied into the physical solver for use in the physical

simulation.

4.2 The Physics

4.2.1 The Particle

The particle is the fundamental building block of absolutely everything involved in

the physics simulation in this dissertation. As such how much information each par-

ticle possesses and how this information is stored is an extremely important factor

in the possible capabilities and limitations experienced later down the road. In this

implementation each particle is responsible for storing a number of key values:

• Position - The position of the particle at the very beginning of the frame

• New Position - The position of the particle after it has been subject to the various

constraints

• Delta Position - Because of the Jacobi style of iteration constraints update the

delta. Then every ‘New Position’ is updated at once

• Velocity - The velocity of the particle

• Mass - Its mass

• Phase ID - An ID which specifies whether the particle is part of a rigid body,

cloth or fluid etc.

38

Because we wish to carry out all the simulations on the GPU all this information must

be stored in GPU memory. Originally structs which contained each of the components

previously listed were being stored. However as I became more accustomed to using

CUDA I learned that memory coherency when making calculations can be a major

limiting factor for the speed CUDA can achieve. By storing an array of structs like

this, a calculation which requires taking the positions of two particles into account

is forced to skip along vast chunks of memory. For example, even if an interaction

between two particles that are stored adjacent in memory is being calculated, it is still

necessary to traverse a step in memory equal to the full size of the particle struct to

reference the positions of both particles. This problem is only magnified during an

interaction between particles that are thousands away from each other. An alternative

approach to this is to use a struct of arrays, rather than the previous array of structs.

This essentially means that there would be a single struct which contained information

for every particle in the system. This struct would store a number of arrays which held

all the information each particle would possess individually. Now each particle just

corresponds to a certain index into these arrays, and interactions can be calculated

much faster now that similar values are stored in consecutive memory. A calculation

which requires referencing two adjacent particle positions now requires a step equal to

one 3D vector, as opposed to the capacity of the entire struct.

As described there is now a single struct which contains all the particles in the entire

system. This might sound bizarre because there is no real separation between particles

that are part of a rigid body cube or particles that are part of a fluid etc. But this is

simply the way that unified particle solver works. As far as each particle is concerned

it is completely independent from every other particle in the system and is only re-

sponsible for holding its own values. The thing that binds particular particles together

and make them behave like part of a bigger object are the different sets of constraints

which act on them. Each constraint knows the IDs of the particles within the global

data structure that it has influence over.

Particle diameter is also quite an important factor that impacts the simulation greatly.

The reason behind this is quite closely tied to timestep and will be discussed in section

4.2.3.

39

4.2.2 Simulation Loop

I will now briefly describe a typical simulation loop executed by the solver each frame,

and later go into greater detail on each of the main steps.

Algorithm 1 Simulation Loop

1: read in the array of scene particles
2: clear spatial hash grid
3: for all virtual particles do
4: apply external forces
5: predict position
6: end for
7: for all real and virtual particles do
8: insert into hash grid
9: end for
10: for all virtual particles do
11: find neighbours from hash grid
12: add neighbours to either collision neighbours or fluid neighbours
13: end for
14: while iter <solverIterations do
15: for all virtual particles do
16: solve collision constraints
17: end for
18: for each constraint group do
19: solve all constraints in group
20: end for
21: end while
22: for all virtual particles do
23: update velocity
24: apply internal forces such as aerodynamics and viscosity etc.
25: update final position
26: end for

Each update loop begins by reading in the positions of the scene particle scanned in by

the Kinect. The spatial hash grid is cleared as it still contains data from the previous

frame. The position of each particle is projected forward using the velocity calculated

from the previous frame combined with the application of external forces forces such

as gravity. Both scene and virtual particles are placed in their appropriate positions

in the spatial hash grid. Neighbouring particles are found using this hash grid and

40

they are either stored as collision neighbours or fluid neighbours. An iteration loop is

started and in each loop it solves the collision constraints between the various collision

neighbours, and then solves the respective constraints needed to simulate rigid bodies,

cloth and fluid. Because these steps are the most performance intensive to calculate,

the iteration count is kept relatively low at a value of two suggested by Müller et

al.[39]. The constraint systems themselves have been designed to operate well under

low iteration counts like this. After the while loop the velocity of each particle can

be calculated by dividing the distance between its ‘new’ position and its position at

the beginning of the frame by the time step. Velocity modifying forces such as cloth

aerodynamics or fluid viscosity, vorticity and surface tension are applied. And lastly

the actual position of the particle is updated to its calculated new position. This is

only a very high level view of the simulation loop described and we will now go into

greater detail on the more complex aspects of the loop.

4.2.3 Timestep

In an application which is aimed to be run at 60fps the average timestep to be processed

each from would be about 16milliseconds. Obviously the aim for a real time application

would be to get the timestep used in the physics simulation as close to 16ms as possible

in order to have the behaviour as realistic as possible. There are a few important factors

to consider when setting timestep, aside from just this though. Tunnelling is a widely

known problem in physics simulations where discrete collision detection is used, and

tunnelling is an even bigger problem in particle based simulations. An example of

tunnelling is say a dynamic particle of diameter 0.01metres is directly above a static

particle with the same diameter. Currently the distance between them is 0.015m and

they are not colliding. If the dynamic particle is falling at a speed of 2m/s, using

a timestep of 0.016s, the particle’s position will be projected forward 0.032metres.

The dynamic particle will now be a distance of 0.017m below the static particle, and a

collision will never have been detected. At the beginning of every simulation loop in this

physical solver there is a position projection which acts like this. Therefore timestep

is somewhat limited by the particle diameter chosen. The particle diameter we found

best suited this implementation for various reasons such a stability, integrating with

41

Kinect Fusion and rendering was 0.04metres. The timestep found to be most stable

with this particle size was 0.01s.

4.2.4 Neighbour Detection

Collision detection is quite often going to be one of the stages that is the most important

and demanding in terms of performance in any physical solver and this one is no

different. The implementation in this dissertation all hinges around a spatial hash

grid. This hash grid divides a certain set 3D volume of space into cells which have a

length equal to the particle diameter. The purpose of this is that only particles found

in adjacent cells have any chance of being overlapped. The hash function used for

the grid corresponds to the particular cell’s index along the x, y and z axis. So if a

10x10x10 grid is defined, the hash for each cell would be

hashvalue = xID × (yID × 10)× (zID × 10× 10) (4.1)

The single ID for a particular cell is equal to this hash value. Which cell ID a particular

particle lies in can easily be determined if the position of the minimum of the volume

designated by the grid in world space is known. In the example above the minimum

would most likely by (-5.0, -5.0, -5.0) if the cells are set to have a width of 1.0.

Once the method of hashing is known, the next step is to consider how the information

is going to be stored and accessed. Each cell must be capable of storing an amount

of indexes to particles which are found to be inside that cell. Because the volume

of the grid does not change throughout the course of the simulation a large block of

memory can be assigned once during the initialization and then just modified frame by

frame. Because we are assigning a single block at the very beginning we must assign a

maximum amount each cell can contain. If the maximum is set to 12 then the cell with

ID 0 ‘owns’ the slots available between position 0 and 11 in this single block, just like

cell ID 5 corresponds to positions 60-71. Therefore if you wish to write an index into

a particular cell you simply multiply the cellID by the maximum number of particles

allowed in each and add however many particles are already stored in that particular

cell to find the correct position in the overall block.

42

blockPosition = (cellID ×maxPerCell) + numInCell[cellID] (4.2)

This may seem like a very memory inefficient approach but for this implementation

we are not worried about memory efficiency as we are not ever memory constrained.

Rather we are just concerned with speed and this approach gives a huge speed increase

over other implementations, especially in a CUDA based environment.

The next challenge to deal with is how to do this in parallel. As mentioned above

the number of particles already stored in a particular cell must be known in order to

place the particle index in the correct block position. To achieve this a counter must

be incremented each time a particle is stored in a cell and this counter must be stored

itself. Incrementing this counter in serial is not a problem and will always work as

expected but when you are doing it in parallel errors will occur. This is because if two

particles are trying to insert themselves into the same cell, there is a possibility that

they could each read the value in the counter at the exact same time before either has

had a chance to increment, write their particle into that slot and then increment the

counter. This means that one particle will essentially overwrite the other and data will

be lost. Simultaneous memory accesses are major problem in parallel computing. To

avoid this happening an atomic add is used. Atomic add is a function in CUDA which

checks to see if a particular memory address is currently being accessed anywhere else

in the program. If it finds that the address is not currently being accessed then it can

perform operations such as incrementing the value at that address, while if it detects

that there is already somewhere else accessing it, the function will just wait for the

other access to be completed before proceeding. Atomic adds are generally frowned

upon in parallel computing because if you are trying to write to the same address with

atomic adds rather frequently, the waiting essentially brings the program back towards

being serial. For the purpose of this dissertation though it is very rare that the atomic

add will ever have to wait. This is due to the fact the cells are of equal size to particles

and collision response is turned on so you will rarely ever find two particles or more in

a single cell.

Once every particle has successfully been placed into the relevant cell, the next step

is to detect actual overlaps. This is done by distance checking the current particle

43

in question with the particles found in the 26 surrounding cell positions, along with

the other particles found in the cell it is currently occupying itself. If an overlap is

detected each of the two particles will be added to the other’s list of collision neighbours.

Although if the two particles are detected to be fluid particles, they are instead added

to each other’s list of fluid neighbours, for use in the fluid constraining process.

4.2.5 Collision Response

With all collision neighbours now detected and known, the first constraint to solve is the

collision constraints brought about by these collisions. Collision response constraints

for particles simply dictate that no two particles can be overlapping. To solve this

constraint we simply just project the positions of the pair of particles away from each

other until they no longer overlap. The delta position for one of the two particles is

written as

delta =
1

2
× (dist− particleDiameter)× p1− p2

dist
(4.3)

where p1 and p2 are the positions of the respective particles and dist is the distance

between them. It is important to note however that scene particles are treated as

immovable so the fraction which divides the displacement by two must removed where

the virtual particle is colliding with a scene particle.

4.2.6 Rigid Bodies

As mentioned in the design the paper which we chose to base this implementation

off of is [34]. When a rigid body is initialised in this implementation, the centre of

mass of the shape is set to be the origin, and the positional offsets of each particle

used to represent the shape are recorded. The constraint which governs the motion

of these particles later in the simulation is a product of a translation vector and a

rotation matrix. These two components are forever trying to maintain the shape of the

object as specified in the initialisation step. The translation vector can be calculated

by translating the original centre of mass to the current centre of mass. Since the shape

44

was initialised around the origin anyway the translation simply becomes the position

of the current centre of mass. All particles within the object are set to have equal mass

so to calculate the centre of mass the simple equation below is used, where n is the

number of particles.

currentCentre =

n∑
i

positioni

n
(4.4)

Calculating the rotational matrix is slightly more complicated. The eventual matrix

calculated is based off the difference between the original offset of each particle from

its original centre of mass, labelled qi and the current offset for each particle from

the object’s current centre of mass, labelled pi. A symmetric matrix Apq is calculated

where Apq =
∑
i

piq
T
i . The actual rotation matrix, R, can now be calculated by

R =
Apq√
AT

pqApq

(4.5)

The Eigen mathematics library[42] was used to handle the square root of the denom-

inator matrix. With the translation and rotation components now known, the final

delta for each particle can now be calculated.

deltai = (R× qi) + currentCentre− positioni (4.6)

When we first looked at adapting this to perform in parallel there didn’t appear to be

a huge amount which could be parallelized because most of the calculations are solved

for the rigid body as a whole, rather than just for each particle individually. One cal-

culation it was possible to make a CUDA kernel for is the calculation of the Apq matrix

for each particle, however a lot of the work was still being done on the CPU. Another

thing we noticed which could be improved is both the summing of positions(with the

goal of getting the centre of mass) and the summing of the individual Apq matrices

calculated for each particle(with the goal of calculating the rotation matrix). Summing

in serial works by adding each element consecutively. If a system with 8 elements is

45

being summed, the first element is added to the second, the third is added to this

result, then the fourth and so on. In CUDA there is a concept of ‘reductions’ which

can be used as a more efficient method of achieving this same goal. In a reduction built

for the purpose of summing these 8 elements together, 4 simultaneous threads would

be executed which added the first element to the second, the third to the fourth and so

on until there are now 4 values to be summed rather than 8. In the next stage of the

reduction the consecutive pairs would again be added together giving 2 values. These

final 2 values can then be added together to give the total sum of the original 8 values.

The parallel nature of a reduction means that whereas the original CPU based version

would take time equivalent to 7 serial additions, the GPU only takes a time equal to 3

serial additions. The time saved by using reductions is only increased when considering

objects which consist of large numbers of particles and also considering the fact they

will be used to sum 3D vectors and 3x3 matrices. Thrust[43] is a CUDA based library

which has functions to perform certain reductions. Thrust’s addition reduction was

used to handle these sums in this implementation.

4.2.7 Cloth

The paper we chose to base this implementation of cloth off was the seminal paper in

position based dynamics[32]. When this implementation of cloth is initialized the layout

of the particles which make up the cloth are structured in such away that is simple

to determine the index of the particles directly adjacent to each individual particle in

all directions. Once the neighbours can be easily referenced the various constraints

can now be executed. The main constraint is the stretching constraint which gives the

cloth its bouncy and stretchy behaviour. The particle based representation of the cloth

must first be mapped onto a triangle based representation, where 4 adjacent particles

in a square could be thought of as 2 connected triangles. The stretching constraint acts

along the edges of the the fully mapped triangle representation and consists of a simple

spring-like distance constraint. This constraint serves to pull the two particles along

the edge in question back towards each other if a certain distance threshold between

them is exceeded. Where p1 and p2 are the positions of the two particles and l0 is the

original length of the edge, the constraint is calculated as

46

Cstretch(p1, p2) = |p1 − p2| − l0 (4.7)

The actual delta position can be calculated by inserting this constraint into the con-

straint projection algorithm outlined in the paper which returns

∆p1 = −1

2
(|p1 − p2| − d)

p1 − p2
|p1 − p2|

(4.8)

where d is equal to the original distance between the two particles along the edge. If we

consider that the 4 particles p1, p2, p3 and p4 represent 2 connected triangles, with p2

and p3 being the shared edge. The stretching constraint applies interactions between

every particle pairing except between the only 2 particles which don’t share an edge,

p1 and p4. This final interaction is left for the bending constraint to account for. The

bending constraint can be calculated by using the equation

Cbend(p1, p2, p3, p4) = acos(
(p2 − p1)× (p3 − p1)
|(p2 − p1)× (p3 − p1)|

.
(p2 − p1)× (p4 − p1)
|(p2 − p1)× (p4 − p1)|

)− φ0 (4.9)

where φ0 is the initial dihedral angle between the two triangles. This constraint can

then also be inserted into the same constraint projection algorithm which leads to a

much more complicated method of finding the delta than it was for the stretching

constraint. The full process is listed in the appendix of PBD[32].

Handling self collisions is often another difficult task which must be considered and

solved in traditional cloth simulations. While they do suggest a method of handling

self collisions in the PBD paper, in the case of this dissertation it is not necessary to

deal with these collisions within the cloth calculations. Instead they can simply be

dealt with by the unified solver. The particles which make up the cloth can be treated

just like any other collision particle in the global system. This means that, as long as

the cloth in question has a dense enough representation of particles, self collisions will

automatically be handled by the unified solver.

To add further realism to the cloth the effects of aerodynamics were included in the

47

simulation as well using the method outlined in Keckeisen et al.[35]. As described in

the state of the art there are two main forces applied to simulate aerodynamics, the

drag force and the lift force. The drag force opposes the motion of each face and points

in the opposite direction of the current velocity of the face. The velocity of the face,

vi, is calculated by averaging the velocity of the three associated particles, and the

normal, ni, of the face is calculated using cross products and the positions of the three

particles. The drag force applied can then be calculated as

Fdrag =
1

2
CDρ|vi|2A.(ni.vi).(−vi) (4.10)

where CD is the specific air resistance coefficient, ρ is the density of air, and A is the

area of the corresponding face.

The lift force is calculated using similar factors however it is always directed perpen-

dicular to the motion of the face. The direction the lift force acts in can be calculated

by ui = (ni × vi)× vi. The lift force can then be calculated as

Flift =
1

2
CLρ|vi|2Acosθ.ui (4.11)

where CL is the specific lift force coefficient.

Conversely to rigid bodies it was possible to approach the calculations necessary for

each particle completely independently of any others particles. This made it possible to

parallelize pretty much every calculation performed in the cloth simulation and perform

them all on the GPU.

4.2.8 Fluid

The paper we chose to base this fluid implementation off of was Position Based Fluids[37].

PBF can be thought of as an extension to the smoothed particle hydrodynamics based

approach[36] which instead fits into the position based dynamics framework. The main

constraint which governs the motion of this fluid simulation is the density constraint.

48

Ci =
ρi
ρ0
− 1 (4.12)

This constraint essentially means that if the density at a particular particle i is either

higher or lower then the rest density of the liquid, then neighbouring particles must

either be pushed away or pulled in accordingly. If the rest density is met, the constraint

goes to zero. The density for a particular particle can be calculated by using a gradual

smoothing kernel, the concept behind which has been explained in section 2.7.7. The

gradual smoothing kernel, W(pi−pj, h), for a particle of position pi, and its neighbour

of position pj, gives a weighted contribution for density from each neighbour of the

particle currently in question. This weight comes from the distance between the two

particles with regard to their interaction radius h. The particle accumulates these

contributions and the final sum is the particle’s current density.

ρi =
∑
j

mjW (pi − pj, h) (4.13)

With the density now known and the constraint calculated, the next step is to try use

this constraint to find a suitable particle position correction. First a scaling factor, λi,

must be calculated for each particle. To do that the gradient of the constraint function

must be calculated. While a gradual kernel is used for density calculation, a spiky

kernel, ∇W(pi − pj, h), is used to calculate the gradient.

∇pkCi =
1

ρ0

∑
j

∇pkW (pi − pj, h) (4.14)

where k is both the particle question i, and all its neighbours j. The scaling factor for

each particle can now be calculated by

λi = − Ci∑
k |∇pkCi|2 + ε

(4.15)

where ε is a small relaxation constant. The final position update can now be calculated

for every particle using

49

∆pi =
1

ρ0

∑
j

(λi + λj)∇W (pi − pj, h) (4.16)

This is definitely one of the most complicated parts of the implementation as it involves

a lot of long calculations and complicated mathematical syntax. Because of this it is

quite difficult to describe in a manner that can be easily understood. The algorithm

below visualizes a typical fluid constraint solver loop.

Algorithm 2 Fluid Simulation

1: for each fluid particle i with neighbours j do
2: calculate density at that particle
3: use this density to find the constraint
4: find the gradient of the constraint function at i
5: for each neighbouring particle j do
6: find the gradient of the constraint function at j
7: end for
8: accumulate all these gradients
9: calculate λi
10: end for
11: for each fluid particle i do
12: use previously calculated values for λ to calculate ∆pi
13: end for

This delta position will give the fluid general fluid-like behaviour, however it will still

very visibly lack the kind of cohesion we associate with fluid, and instead it will look

more just like a system of interacting particles. Features which must be added to give

the system its more fluid-like behaviour are vorticity confinement, viscosity and surface

tension. All these effects act directly on the velocity of the particles rather than the

positions so they are not included in the constraint solving phase but rather closer to

the end of the global simulation loop, during the velocity modifying stage. Vorticity

confinement is introduced to return some of the energy that is inadvertently lost during

position based methods of simulating. To calculate vorticity confinement we must first

calculate the current vorticity at the particle using

ωi =
∑
j

vij ×∇pjW (pi − pj, h) (4.17)

50

Once we have the vorticity we can now calculate a corrective force which can be used

to alter the velocity of the particle.

fvorticityi = ε(
∇|ω|i
|∇|ω|i|

× ωi) (4.18)

Viscosity makes a fluid flow more cohesively by reducing relative velocities between

neighbouring particles. The velocity correction due to viscosity can be calculated quite

easily using the equation below, where the parameter c is some small viscosity constant.

vnewi = vi + c
∑
j

vij.W (pi − pj, h) (4.19)

The last velocity modifying effect to apply is surface tension. Although the PBF

provides behaviour similar to surface tension through a term dubbed ‘tensile instability’

in their paper, there has since been a more accurate technique been developed by Akinci

et al.[38]. In this paper they achieve their surface tension effect by generating two

forces, one to simulate molecular cohesion, and one to simulate surface minimization.

The cohesion term can be calculated by

fcohesioni = −γ
∑
j

C(r)
pi − pj
|pi − pj|

(4.20)

where γ is a cohesion constant and C(r) is a spline function which pushes particles away

if they are too close but pulls them closer together if they are towards the outside of each

others’ interaction radii. The last thing to calculate is now the surface minimization

term. First the gradient of the smoothed colour field for each particle must be found.

This essentially detects if there is any imbalance in the distribution of particles directly

surrounding the particle in question. Towards the centre of a volume of fluid it can be

reasonably assumed that each particle will be uniformly surrounded. However towards

the edge of the volume some particles will have particles on one side and air on another.

This is where we want our surface minimization force to act. The smoothed colour field

can be calculated by

51

ni = h
∑
j

massj
ρj
∇W (pi − pj, h) (4.21)

and the actual force can be calculated by

fsurfacei = −γmassi
∑
j

(ni − nj) (4.22)

Similarly to the vorticity force, these two forces can then be used to calculate a direct

modification to the particle’s current velocity.

Similarly to cloth, pretty much every calculation in this implementation fluid simulation

is isolated per particle. Because of this it was possible to execute every stage in parallel

on the GPU.

4.3 Rendering

As stated in the design in section 3.6, at this stage in the implementation it became clear

that some form of rendering would have to be carried out on both the real and virtual

objects. Accuracy of interaction became hard to judge and the connection between real

and virtual became blurred because the whole scene just looked virtual. This section

will describe the various rendering techniques used to highlight the physical results.

4.3.1 Real World - RGB Image

The most obvious option was to just overlay the RGB image over the virtual represen-

tation of the real scene. In order to be able to align the two properly, this meant that

the Kinect’s own field of view would have to be used. To achieve this the window size

was set to be 640x480 to match the resolution of the Kinect image and we varied the

virtual camera’s field of view until an angle was found which best lined up the two.

This angle was found to be 48◦. Of course because the RGB image is coming from

the point of view of the Kinect as well, the virtual camera’s point of view must also

52

be matched to this. Kinect Fusion’s camera tracking returns a view matrix for where

it thinks the real Kinect camera is with regard to the world. This can then be copied

straight over to the virtual camera’s view matrix.

Although this on its own served the purpose of restoring familiarity to the scene, it was

still very difficult to judge interaction and everything looked rather unnatural because

no occlusion had been factored into this. What we are essentially dealing with is a

flat texture rendered to the screen with no concept of 3D depth within the world. On

its own the texture will appear entirely at a single depth, whether it be always at the

very front, always at the very back or elsewhere. To gain some idea of the depth for

each RGB pixel the depth image was read in simultaneous and the depth pixels again

mapped to the colour image. Rather than use the mapped images to integrate into the

volumetric representation, this depth is instead passed into the fragment shader along

with the RGB information. Here the depth is linearised with respect to the far clipping

plane of the virtual camera and the depth of the fragment is manually assigned.

Figure 4.1: On the left is the virtual representation of the scene overlaid with the RGB
image. On the right is an example of the depth image used for occlusion

4.3.2 Real World - 3D Mesh

Another option to render the real world information was to use Kinect Fusion’s built in

export mesh function. This function raycasts into the voxel block and returns a mesh

of the surface scanned in which holds values for both position, colour and normal. This

information can easily be then passed into shaders and rendered accordingly. Although

the normals are provided, no lighting was performed on the mesh. This is because the

53

colour value read in already has some representation of lighting from the scene, so any

more virtual lighting just looks unnatural. It is worth noting though that these normals

could be useful in a completely uniform lighting environment, or the information could

also be used to create other visual effects such as a toon effect or similar. An advantage

of this representation is the virtual camera can be moved around anywhere in the scene

by the user, there is no longer any need to match it to the Kinect’s PoV. Occlusion

also is not an issue using the mesh representation because it is fully 3D information.

Figure 4.2: Scene rendered as a 3D mesh

4.3.3 Rigid Bodies

Basic rendering of the cubes used to demonstrate rigid body interactions was rather

trivial. Knowledge of the four particles which correspond to the four corner points of

the cube can be used to construct faces. The four particles can also be used to calculate

normals for each face. Basic lighting is then carried out in the shader.

Figure 4.3: Cube visualized just as particles and with final render

54

4.3.4 Cloth

The implementation used to render cloth was rather similar to the method employed

for rigid bodies. If you assume that the cloth has x amount of particles along the x

axis and y amount along the y axis, it is possible to use these two numbers to create

a network of triangles using the various particle indices. Each frame the positional

information for the vertex of each triangle is extracted. If we consider p1, p2 and p3

to be the three vertices of a particular triangle, the normal, n of that triangle can then

be calculated by

n = normalize((p2− p1)× (p3− p1)) (4.23)

Because a single particle can actually be responsible for multiple vertices, all attached

to different triangles, if each triangle just had its normal calculated and used like this

the visual division between triangles would be extremely apparent. To make the cloth

look smooth, the multiple normals associated with each particle must be accumulated

and normalized, and this value must then be used for all vertices connected to that

particle. This successfully gave the cloth smooth, cloth-like visuals.

Unfortunately though, since only normals facing in one direction were calculated, one

side of the cloth will appear nicely lit and rendered correctly, whereas the other one

will just look flat and dark. To remedy this, what is essentially just a second cloth

is rendered which matches the first in every respect only it faces the other direction.

After implementing this though visual artefacts kept appearing due to two things being

rendered in exactly the same place, which caused a certain amount of clipping problems.

To stop this clipping occurring, rather than render the two clothes using the exact same

position(corresponding to the exact centre of all the particles), the vertex positions were

instead projected a small amount out from the particle centres along their normals in

either direction. This is essentially leaving a small gap between the two cloth renderings

which are supposed to represent a single piece, however the gap is not big enough to

be detected visually and it does succeed in stopping the artefacts.

55

Figure 4.4: Cloth visualized just as particles and with final render

4.3.5 Fluid

Unlike rigid bodies and cloth, rendering fluid can not be achieved based only off of

existing knowledge of particle configuration. Instead a rather complex fluid rendering

technique named screen space fluid rendering[41] was used. SSFR is a particle based

fluid rendering technique which carries out nearly all of its work in screen space. This

means that rather than trying to use fully 3D methods, the final result is instead a

composite of images generated from the current 2D view of the particle simulation

currently on screen. To achieve the final render, a number of steps must first be

implemented which will be explained in detail throughout this section.

Before going into depth on the implementation though, it would be worth explaining

some terms which will be brought up throughout. The first is a fragment, a fragment

can be thought of as the data necessary to shade a single pixel. The data which makes

up a fragment is calculated on the GPU in a fragment shader. The next is a frame

buffer, a frame buffer can be thought of as a buffer of memory which images can be

rendered to, much like how an image is rendered to the screen. The difference between

rendering to a frame buffer and rendering to the screen though is the frame buffer is

kept off screen and not displayed. Instead, 2D textures can be made from these images

rendered to the off screen buffer. Frame buffers are useful in this context because they

allow us to render multiple different interpretations of the current scene which can then

be written to textures and combined to make a final image, but only the final image is

actually rendered to the screen.

56

Point Sprites

The only information SSFR needs from the actual fluid simulation is just the centre

points of all the fluid particles per frame. To turn this scattering of point-like positions

in space into a unified representation, the first thing which must be carried out is

to approximate some sort of sphere like representation. Instead of doing the costly

calculation of trying to approximate actual spherical geometry around every point, the

particles are instead represented as quads which always face directly towards the camera

and have a width equal to a fluid particle diameter. Once this quad has been passed into

the fragment shader, if the distance of the fragment is found to be a distance further

than the radius of a particle from the centre of the quad, then the pixel is discarded.

This turns the square, screen aligned quad into a round, screen aligned circle. But at

this point the circle is still essentially flat so still does not represent any 3D geometry.

This geometry can be faked within the same shader by projecting the depth forward

depending on where the fragment lies within the circle. Fragments at the very edge of

the circle’s radius will have a depth equal to whatever the depth of the centre point is.

Fragments towards the very middle however will be an additional radius closer to the

screen than the centre point, and of course fragments in between can be interpolated.

This method is very cheap and succeeds in giving each fluid particle faked spherical

geometry, rendered only in ‘screen space’ because it is essentially 2D. The method of

using point sprites to fake 3D geometry can simply be used on its own to render large

systems of particle very cheaply with simple lighting. This is, in fact, the method used

to render the entire system as particles when that was the only rendering being carried

out in this dissertation. In this fluid renderer however, this technique is used to to

create a depth map and later to approximate thickness.

Depth Map

As described above the technique of screen facing point sprites can be used to give

each particle a spherical appearance with calculated depth. This, in turn, can be used

to make a depth map of the current view of the particle system. To make a depth map

the artificial depth values for each pixel are all rendered to a floating point texture on

the frame buffer.

57

Bilateral Blur

Because we want the system of particles to look less like a set of individual spheres

and more like a single cohesive fluid, applying some kind of blur or splatting or similar

is usually necessary. In this case a bilateral blur is performed on the depth map. A

bilateral blur works by taking an image(like our depth map), passing it into the blur

shader and blurring each pixel of the image a set amount of pixels either side along the

x axis. This x blurred view is now rendered to a separate texture on the framebuffer,

where it is then passed back into the blur shader and blurred a set amount of pixels

either side along the y axis. The final image rendered from this gives a nice smooth

version of the depth map where the individual particles are no longer visible. How

many pixels you blur along each axis is one of the biggest factors in the smoothness of

the final render you achieve. The best number to choose depends both on the particle

size and distance of the fluid from the camera. Large blur radii are very performance

intensive though and the blur shader will often be the most demanding part of the

renderer.

Normals

Now we have a nice smooth depth map, the next step is to calculate a screen space

normal map. This can be achieved by passing this blurred depth image into a normals

shader and applying an algorithm within that shader which can use the depth of a

particular pixel and its x and y coordinates in the screen space image to calculate its

3D coordinates in eye space. The shader then calculates the gradient in eye space

position between the pixel in question and the pixels above, below, to the left and

to the right of it. This gradient is then the normal. This normal map can then be

rendered to an RGB texture but it is worth noting that the texture is incapable of

storing negative numbers. Because usually the individual values in normals span from

-1.0 to 1.0, this will cause errors and instead the normals must be translated to fit

between 0.0 and 1.0.

58

Thickness

The thickness of a fluid determines the amount of colour attenuated through that fluid

and it also impacts the amount of refraction. For this reason we must also build a

thickness map. The thickness shader is quite similar to the depth shader in that it uses

point sprites to approximate geometry. In the same way the depth shader can fake

depth, the thickness shader can fake thickness. An overall thickness map is built up

by turning on additive blending and disabling depth testing. This means that every

particle in the fluid will be drawn, even if it is hidden behind other particles and all

of them will be drawn additively on top of each other. Thickness can be inferred from

how coloured a pixel is by the end of the pass. This thickness map is then blurred

using the bilateral technique again.

Colour Attenuation

To give a fluid a deeper blue look when looking through a thick chunk of water and a

semi transparent look when looking towards the edge of the water, colour attenuation

must be factored in. Beer’s Law is used to model this attenuation.

Reflection and Refraction

One of the biggest factors in making a fluid look like it actually belongs in a scene is

having it accurately reflect and refract its surroundings. Typically, cheap reflection and

refraction is carried out using a cube map. A cube map can be considered as a giant

cube which is floating around the scene you wish to render, but doesn’t necessarily show

up on screen. Reflection/refraction at a certain point in the world can be simulated

by mapping the visuals to a certain point on the cube map. To carry out some kind

of reflection/refraction in this application, some method of creating a cube map from

the currently available representation of the real scene must be designed. For the 3D

mesh representation of the world a cube map is made by putting a separate virtual

camera directly in the centre of the 3D scene being read in. This separate camera takes

six snap shots along the different axes and then maps the images to the six faces of

the cube map. In the representation where the RGB image is overlaid this method

59

does not work as we only ever can get one point of view of the scene. Because of this

reflection was not really an option but refraction was still possible. Rather than have

the cube map stay static in the world it was set to follow around the orientation of the

camera. This meant that the current view from the Kinect could be mapped to the

negative Z side of the cube and this will give pretty adequate refraction.

Achieving the Final Render

With all these textures with various amounts of screen space information now gener-

ated, the last step was to pass them all into one final shader and composite the various

images to create the final image.

Figure 4.5: The various stages of the fluid renderer. Images listed in order depict
blurred depth, normals, unblurred thickness, reflection, refraction and the final com-
posite

60

Chapter 5

Results & Evaluation

The results which best indicate the degree of success of this implementation can be

divided into two categories, quality of interaction and performance. The quality of

the interaction is difficult to quantify as the purely visual feedback is somewhat open

to interpretation. The performance however provides slightly more tangible results.

This chapter will present the results obtained from the implementation described in

the previous chapter, provide a discussion on their relative success and also highlight

some of their shortcomings. Towards the end of this chapter I will also provide an

evaluation of the implementation as a whole.

5.1 Quality of Interaction

Of course the original intention of the dissertation was to design a system capable of

carrying out as close to realistic interactions as possible between real and virtual. As

such the believability and apparent accuracy of these interactions were always going

to be the main metric of the success achieved within this area. Although it is difficult

translate these purely visual and dynamic results to paper, screenshots which portray

some of the interactions achieved will be presented below. And the link to the actual

videos will be provided in the appendix along with digital copies provided on the

attached CD.

61

5.1.1 Fluid

Figure 5.1 and Figure 5.2 are taken from two of the videos which show fluid interacting

with a scene. As is visibly apparent, the behaviour of the fluid and how it collides with

the real scene is actually quite believable and realistic. Fluid particles collide with

scene geometry accurately, accumulate in dips and corners correctly, and flow along

flat geometry such as the the floor like you would expect. Throughout the simulation

the fluid is suitably cohesive and generally behaves quite similarly to how you would

expect a real fluid to behave. One disadvantage though is since it is not possible to

gain any sort of material information about the scene, the scene is basically treated like

glass during the interaction. No feature like soakage or anything like that is possible

within the scope of this simulation so the interaction of the fluid with the scene is

purely governed by rigid collision and essentially no friction, much like how a real fluid

would interact with glass.

Figure 5.1: Fluid being dropped on a desk

Figure 5.2: Fluid being dropped on a chair

62

5.1.2 Cloth

Figure 5.3 and Figure 5.4 are taken from two of the videos which show cloth in-

teracting with a scene. Again in these examples we can see that the cloth behaves

quite believably when exposed to the scene. It collides correctly with the different

scene geometry, accurately bends and contours around curved surfaces, and it main-

tains structure and avoids clipping through itself due to self-collisions being dealt with

adequately. One disadvantage of the cloth simulation though is there is currently

very limited friction. Due to the ‘bumpy’ nature of particle based collisions, a certain

amount of friction is always present just because the representation of surfaces is al-

ready relatively coarse. Unfortunately for cloth though this does not provide sufficient

friction and the cloth tends to slide around the scene a little too much. This is not as

apparent when cloth is just being dropped on some scene geometry, however becomes

more apparent when the cloth falls to rest on the floor but instead continues to slide.

Figure 5.3: Cloth being dropped on a desk

Figure 5.4: Cloth being dropped on a person

63

5.1.3 Rigid Bodies

Figure 5.5 is also taken from a video, this time showing rigid body interaction with the

scene. For the purpose of this demonstration just cubes were used to represent rigid

bodies, although any shape could be configured. From these pictures we can see that

the cubes collide appropriately with both the real scene geometry and the other virtual

cubes around them. They rotate and spin correctly when collisions occur towards

the side of the cube geometry and maintain the look of a uniform, structured rigid

body despite being made entirely out of completely separate particles. Unfortunately

though, since there is no friction with the scene the believability of the collisions suffer

somewhat. Out of all the virtual mediums this shortcoming is most apparent with the

rigid bodies. Also, since the method is taken from a deformable object implementation,

sometimes the rigid bodies can appear very slightly elastic where they collide with

something, deform just a small bit and then return to their original rigid form.

The scene representation used to show the rigid bodies in action is rendered just as

particles like all scenes were being rendered initially. This is due to the fact that

the Eigen math library[42] used to compute the square root of a matrix in the rigid

body constraint phase sometimes causes certain conflicts with CUDA. When Eigen is

included anywhere in the final implementation it causes errors within CUDA and the

project will not compile, so it was necessary to roll back to an earlier version. In some

ways presenting the scene rendered in this manner reinforces the decision to spend time

rendering it properly in the final implementation.

Figure 5.5: Cubes being dropped on a chair

64

5.1.4 Kinect PoV

So far only the scene being rendered as a 3D mesh with a virtual camera has been

presented. An alternative approach implemented was to use the Kinect’s point of

view as the virtual camera and overlay the Kinect’s RGB image on top of the virtual

representation of the scene. The advantage of this method is it maintains much greater

ties to the real scene. Unfortunately though it requires that the Kinect’s much smaller

field of view must be used. Because of this the view the user gets of everything is much

more close up. Whereas in the previous examples you would be looking at a 4metre

cubed area, using the Kinect’s FoV would be more like looking at a 1metre cubed area.

Due to this fact you get a much closer view of the virtual objects, and each particle will

now appear much bigger on the screen. This is not much of a problem when rendering

the rigid bodies and cloth as the individual particles are not included in the rendering.

However in the fluid rendering particle size is used and if the radius is too big compared

to the amount of space available on the screen it will lead to the fluid looking extremely

blobby. In an effort to reduce this effect the particle size can be reduced. As discussed

in section 4.2.3 a reduced particle size unfortunately means the timestep must also be

reduced to avoid tunnelling. Because of this the fluid simulation for the Kinect POV

implementation runs at a lower timestep than the others and looks a bit unnatural due

to a slower falling speed and velocity applying effects behaving differently.

Figure 5.6: Kinect POV of fluid being dropped on a desk

Figure 5.7: Kinect POV of cloth being dropped on some chairs

65

5.2 Performance

The next relevant area in terms of results is performance. All results were generated

using a computer with an Intel Xeon 3.4GHz CPU, 16GB of RAM and an NVIDIA

Quadro K2000 4GB GPU. As stated one of the main possible use cases for an ap-

plication like this is for games, so maintaining an acceptable framerate is of utmost

importance. After analysing the performance of the various different parts of this pro-

gram it was found that by far the biggest bottleneck was Kinect Fusion. The various

steps of camera tracking, volumetric integration and then extracting the point data

put quite a large drain on performance. The largest defining factor in just how slow

or fast these algorithms perform is how many total voxels are included in the volumet-

ric representation of the scene. Within the Kinect Fusion framework it is possible to

specify the amount of voxels used per axis, and it is also possible to chose how much

area each voxel represents. Figure 5.8 below displays some of the timings with regard

to varying voxel amounts.

Figure 5.8: Time taken per frame by Kinect Fusion with varying amounts of voxels
representing a 4metre x 4metre scene

66

When choosing the amount of voxels you do wish to use for a particular simulation,

certain considerations must be taken into account. The first is the size of the scene you

wish to capture. Typically for the scenes presented in the results of this dissertation

a 4metre cubed area was needed to sufficiently capture the area we wished to scan

in. The next question is what level of detail you need. For a reconstruction which is

only needed for the purely physical information, the main defining factor for the level

of detail required is that the size of each voxel must at the very least be equal to the

relative size of a particle. So if each particle has a diameter of 0.04 metres, in a 4x4x4

representation the resolution of voxels must be at least 100x100x100. This is adequate

for giving a physically adequate representation of the scene and is what was used for

the RGB overlaid simulation in section 5.1.4. However, when used to generate a mesh

of the scene this gives quite a blocky and blurred visual representation. To generate

the meshes presented earlier in the results a 256x256x256 voxel block was used instead.

Unfortunately, since the optimization of Kinect Fusion is outside the scope of this

project, these timing constraints are unavoidable. For the simulations where we overlay

the RGB image and don’t have to worry about representing the visuals it was possible

to to use a voxel resolution low enough where Kinect Fusion could be performed at the

same time as the physics calculations and still achieve suitable framerates. Unfortu-

nately though, where it was necessary to generate the detailed mesh for rendering, it

was required that the scene reconstruction be executed in a step previous to simulating

the physical interactions.

Although Kinect Fusion is the main bottleneck of the application, timings for some of

the typical physics simulations are included in table 5.1. It is important to note that

the timings listed are for separate simulations. This means that the time to simulate

all of these steps together would be much less than the sum of all three because steps

like collision detection etc will only need to be performed once.

Number of Particles Time per frame

Fluid 10,000 8.33ms

Cloth 40x40 1.43ms

Rigid Bodies 4 x (4x4x4) 2.27ms

Table 5.1: Time taken per frame for the typical physics simulations.

67

5.3 Evaluation

As mentioned in the introduction, very little previous work has been carried out trying

to obtain this level of physical interaction between the real and virtual using just a

consumer grade depth sensing camera. Because there is very little to compare against

it is difficult to evaluate the results of this project in the context of this field as a

whole. This dissertation has more been treated as an entry into this field where others

can refer to this work and try to improve it with their own research or implement

their own method if desired. And I feel this has been achieved. A detailed literary

review was provided which presented the current state of the art of existing techniques.

The key design decisions which must be considered are highlighted and the various

thought processes behind every design decision were explained and rationalised. A

comprehensive implementation gave an in depth run down of every technique used and

provided insight on how to overcome the various problem experienced along the way.

And finally results for both quality of interaction and performance were presented in

a clear and precise manner, ready for future comparison. I feel that anyone would be

able to take this dissertation as a reference and be able to gain a very clear idea on

how to go about continuing on this field of research themselves.

As far as how I feel this implementation will compare against future work, I believe

that most design decisions chosen were the backed up by logic and were the best choices

to make. The decision to base the interactions off particle physics I feel was the right

one. The biggest consideration when choosing this is finding a physical solver which

matches the kind of information extracted from the scene. I feel that the discrete

voxel based representation is the best way of representing the scene and this fits too

perfectly with a particle based solver to use anything else. I feel that the interactions

this implementation are capable of providing are quite impressive, and with some

improvements in future work could achieve some extremely realistic results.

As far as performance is concerned, pretty much every performance intensive task

was carried out in parallel on the GPU throughout every stage of the process. Kinect

Fusion is all executed on the GPU, the physical solver was all implemented using CUDA

and the various techniques for rendering, even the expensive fluid rendering were all

carried out on the GPU as well. As mentioned in the state of the art there are existing

68

techniques out there which have improved on the performance of Kinect Fusion and I

feel like this would be the main area to achieve better results in performance.

And finally, one thing that there is no doubt about is the interactions made possible

by this implementation far surpass the kind of existing interactions found in games

like the previously mentioned Kinect Party. It is difficult to compare the two directly

because the results presented in this work were focused on largely static scenes due to

some limitations of Kinect Fusion. I do feel though that with this framework in place

it would not be a very big task to incorporate it with applications which do allow for

more movement, and still be able to reproduce the kind of interactions which will lead

to greater depth in gameplay and an overall better user experience.

69

Chapter 6

Conclusion

6.1 Summary

The stated objective to design a framework capable of handling the detailed and ac-

curate physical interaction between real and virtual has been achieved. Kinect Fusion

was used to build a volumetric representation of the real scene and a unified particle

solver was used to simulate the various physical interactions. Suitability for extension

to games was maintained with real-time frame rates being made possible by executing

nearly all of the implementation on the GPU. This dissertation also serves as a point

of reference for others who wish to conduct their own research in this area. Whether it

be through replicating and improving on the implementation detailed here, or through

exploring some of the alternative approaches discussed in the state of the art and design

chapters. This implementation is the first of its kind to achieve this level of results,

and far surpasses the current alternatives presented in various games.

6.2 Limitations & Future Work

While the potential of this implementation can clearly be seen in the results presented, a

few shortcomings hold the system back and prevent it from being ready for integration

into an application such as a game just yet. While Kinect Fusion has many many

70

advantages and was definitely the right choice for this dissertation, it is also the source

of a lot of these shortcomings.

The first is the performance limitations. Although real-time framerates were achieved,

the system is still quite draining on resources and would not allow for much other

computation simultaneously. As mentioned in the state of the art, Kinect Fusion

was developed mainly with the aim of using the Kinect to scan in and reconstruct

3D models and being able to maintain a very accurate representation of the surface

geometry. As such Kinect Fusion focuses a lot of resources on obtaining a high level

of detail. This kind of detail is necessary to maintain the visual fidelity of the scanned

in objects, however a much coarser representation would serve just as adequately for

physical purposes. Also because it is a library, as a programmer you don’t have a whole

lot of access to the inner workings, and rather have to go through a layer of abstraction

to achieve your goal. It is highly likely that it would be possible to gain a major

speed increase if an implementation of camera tracking and volumetric representation

tailored exactly to reconstructing scenes in a physically relevant sense was developed.

The second relates to the fact that movement and user input are of course common

themes in the usual kind of games developed for the Kinect. Unfortunately though,

Kinect Fusion does not deal well with large amounts of movement within the scene

it is reconstructing. The Kinect for Windows SDK contains a method for skeleton

tracking and it also is capable of matching pixels within a depth scene to a particular

skeleton. So for example if the Kinect detects the defining features of a skeleton it will

then flag that skeleton, associate it with a certain player number, and then look at

the surrounding depth pixels and match the player’s silhouette to the skeleton. This

means it would in theory be possible to isolate any pixel associated with a player

and not include it in the Kinect Fusion scene reconstruction. This would mean user

movement would not skew Kinect Fusion’s results. It would then be possible to use a

much more basic assumption of the players geometry such as assigning collision spheres

along the bones. This would allow for a fully 3D representation of the scene which fluid

etc can be poured onto and would also include player interaction.

And the final area which I feel would be the next step in future work is improving the

fidelity of the physical interactions themselves within the solver. Although the results

presented look quite accurate and realistic in a lot of cases, I feel like with a bit of fine

71

tuning they could be improved even more. A major area of improvement would be to

include a friction model, which was omitted from this work due to time constraints.

72

Appendix A

Appendix

A.1 Links to Videos

Note: Videos also available on CD attached

Fluid

An example of fluid simulation - https : //www.youtube.com/watch?v = LXXsaHa90mI

Fluid on a desk - https : //www.youtube.com/watch?v = 56wPbTXUZu4

Fluid on a chair - https : //www.youtube.com/watch?v = V 3qc0wJV zNo

POV fluid on a desk - https : //www.youtube.com/watch?v = QkaG1Qx6bZ4

Cloth

Cloth on a desk - https : //www.youtube.com/watch?v = S3noKOxPtrk

Cloth on a person - https : //www.youtube.com/watch?v =6 IIV zUDKg

POV cloth on chairs - https : //www.youtube.com/watch?v = LPY KxeLhS9s

POV cloth on a desk - https : //www.youtube.com/watch?v = AUZxBQgFdg

73

Rigid Bodies

Rigid bodies on a chair - https : //www.youtube.com/watch?v = 0QO2jsV tqig

Rigid bodies on a scene - https : //www.youtube.com/watch?v = 5ziV ROwHJis

Miscellaneous

A scene being scanned in - https : //www.youtube.com/watch?v = UUj78PlW748

Video of fluid render stages - https : //www.youtube.com/watch?v = fdiNAlIqHEo

Exhibit of fluid refraction - https : //www.youtube.com/watch?v = 4C2MDPxn2U

A.2 Source Code

Source can be found on the CD attached.

74

Bibliography

[1] D. Vlasic, P. Peers, I. Baran, P. Debevec, J. Popović, S. Rusinkiewicz, and W. Ma-

tusik, “Dynamic shape capture using multi-view photometric stereo,” in ACM

SIGGRAPH Asia 2009 Papers, SIGGRAPH Asia ’09, (New York, NY, USA),

pp. 174:1–174:11, ACM, 2009.

[2] R. C. Smith and P. Cheeseman, “On the representation and estimation of spatial

uncertainly,” Int. J. Rob. Res., vol. 5, pp. 56–68, Dec. 1986.

[3] G. Klein and D. Murray, “Parallel tracking and mapping for small ar workspaces,”

in Proceedings of the 2007 6th IEEE and ACM International Symposium on Mixed

and Augmented Reality, ISMAR ’07, (Washington, DC, USA), pp. 1–10, IEEE

Computer Society, 2007.

[4] J. Chen, D. Bautembach, and S. Izadi, “Scalable real-time volumetric surface

reconstruction,” ACM Trans. Graph., vol. 32, pp. 113:1–113:16, July 2013.

[5] M. Teschner, B. Heidelberger, M. Müller, D. Pomeranets, and M. Gross, “Opti-

mized spatial hashing for collision detection of deformable objects,” in In Proc.of

Vision, Modeling, Visualization, pp. 47–54, 2003.

[6] R. Schnabel, R. Wahl, and R. Klein, “Efficient ransac for point-cloud shape de-

tection.,” Comput. Graph. Forum, vol. 26, no. 2, pp. 214–226, 2007.

[7] S. Gibson, “Illumination capture and rendering for augmented reality,” 2004.

[8] J. Chen, G. Turk, and B. MacIntyre, “Watercolor inspired non-photorealistic

rendering for augmented reality,” in Proceedings of the 2008 ACM Symposium

75

on Virtual Reality Software and Technology, VRST ’08, (New York, NY, USA),

pp. 231–234, ACM, 2008.

[9] “Kinect party,” 2012. Microsoft Studios.

[10] B. Freedman, A. Shpunt, M. Machline, and Y. Arieli, “Depth mapping using

projected patterns,” Oct. 2 2008. US Patent App. 11/899,542.

[11] D. Van Nieuwenhove, W. Van der Tempel, R. Grootjans, and M. Kuijk, “Time-of-

flight optical ranging sensor based on a current assisted photonic demodulator,”

in Proceedings Symposium IEEE/LEOS Benelux Chapter, pp. 209–212, 2006.

[12] “Xbox one,” 2013. Microsoft. Video game console.

[13] A. Medina, F. Gayá, and F. del Pozo, “Compact laser radar and three-dimensional

camera,” J. Opt. Soc. Am. A, vol. 23, pp. 800–805, Apr 2006.

[14] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski, “A comparison

and evaluation of multi-view stereo reconstruction algorithms,” in Proceedings of

the 2006 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition - Volume 1, CVPR ’06, (Washington, DC, USA), pp. 519–528, IEEE

Computer Society, 2006.

[15] F. Dellaert, S. Seitz, C. Thorpe, and S. Thrun, “Structure from motion without

correspondence,” in Computer Vision and Pattern Recognition, 2000. Proceedings.

IEEE Conference on, vol. 2, pp. 557–564 vol.2, 2000.

[16] J. Park, S. You, and U. Neumann, “Natural feature tracking for extendible robust

augmented realities,” in Proceedings of the International Workshop on Augmented

Reality : Placing Artificial Objects in Real Scenes: Placing Artificial Objects in

Real Scenes, IWAR ’98, (Natick, MA, USA), pp. 209–217, A. K. Peters, Ltd.,

1999.

[17] P. J. Besl and N. D. McKay, “A method for registration of 3-d shapes,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 14, pp. 239–256, Feb. 1992.

[18] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton,

S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon, “Kinectfusion: Real-time

3d reconstruction and interaction using a moving depth camera,” in Proceedings

76

of the 24th Annual ACM Symposium on User Interface Software and Technology,

UIST ’11, (New York, NY, USA), pp. 559–568, ACM, 2011.

[19] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “Rgb-d mapping: Using

kinect-style depth cameras for dense 3d modeling of indoor environments,” Int. J.

Rob. Res., vol. 31, pp. 647–663, Apr. 2012.

[20] S. Laine and T. Karras, “Efficient sparse voxel octrees,” IEEE Transactions on

Visualization and Computer Graphics, vol. 17, pp. 1048–1059, Aug. 2011.

[21] B. Curless and M. Levoy, “A volumetric method for building complex models

from range images,” in Proceedings of the 23rd Annual Conference on Computer

Graphics and Interactive Techniques, SIGGRAPH ’96, (New York, NY, USA),

pp. 303–312, ACM, 1996.

[22] T. Whelan, J. B. McDonald, M. Kaess, M. F. Fallon, H. Johannsson, and J. J.

Leonard, “Kintinuous: Spatially extended KinectFusion,” in RSS Workshop on

RGB-D: Advanced Reasoning with Depth Cameras, (Sydney, Australia), July 2012.

[23] M. Zeng, F. Zhao, J. Zheng, and X. Liu, “A memory-efficient kinectfusion using

octree,” in Proceedings of the First International Conference on Computational

Visual Media, CVM’12, (Berlin, Heidelberg), pp. 234–241, Springer-Verlag, 2012.

[24] M. Niessner, M. Zollhofer, S. Izadi, and M. Stamminger, “Real-time 3d reconstruc-

tion at scale using voxel hashing,” ACM Trans. Graph., vol. 32, pp. 169:1–169:11,

Nov. 2013.

[25] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison,

P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon, “Kinectfusion: Real-time

dense surface mapping and tracking,” in Proceedings of the 2011 10th IEEE Inter-

national Symposium on Mixed and Augmented Reality, ISMAR ’11, (Washington,

DC, USA), pp. 127–136, IEEE Computer Society, 2011.

[26] “Kinect fusion library.” http://msdn.microsoft.com/en-us/library/dn188670.aspx.

[27] E. Guendelman, R. Bridson, and R. Fedkiw, “Nonconvex rigid bodies with stack-

ing,” ACM Trans. Graph., vol. 22, pp. 871–878, July 2003.

[28] “Bullet physics.” http://bulletphysics.org/.

77

[29] “Havok physics.” http://www.havok.com/products/physics.

[30] S. Le Grand, “Broad-phase collision detection with cuda,” in GPU Gems 3,

Addison-Wesley, 2007.

[31] T. Harada, “Real-time rigid body simulation on gpus,” in GPU Gems 3, Addison-

Wesley, 2007.

[32] M. Müller, B. Heidelberger, M. Hennix, and J. Ratcliff, “Position based dynamics,”

J. Vis. Comun. Image Represent., vol. 18, pp. 109–118, Apr. 2007.

[33] S. Green, “Cuda particles,” tech. rep., NVIDIA, 2008.

[34] M. Müller, B. Heidelberger, M. Teschner, and M. Gross, “Meshless deformations

based on shape matching,” in ACM SIGGRAPH 2005 Papers, SIGGRAPH ’05,

(New York, NY, USA), pp. 471–478, ACM, 2005.

[35] M. Keckeisen, S. Kimmerle, B. Thomaszewski, and M. Wacker, “Modelling effects

of wind fields in cloth animations,” 2004.

[36] M. Müller, D. Charypar, and M. Gross, “Particle-based fluid simulation for inter-

active applications,” in Proceedings of the 2003 ACM SIGGRAPH/Eurographics

Symposium on Computer Animation, SCA ’03, (Aire-la-Ville, Switzerland,

Switzerland), pp. 154–159, Eurographics Association, 2003.

[37] M. Macklin and M. Müller, “Position based fluids,” ACM Trans. Graph., vol. 32,

pp. 104:1–104:12, July 2013.

[38] N. Akinci, G. Akinci, and M. Teschner, “Versatile surface tension and adhesion

for sph fluids,” ACM Trans. Graph., vol. 32, pp. 182:1–182:8, Nov. 2013.

[39] M. Macklin, M. Müller, N. Chentanez, and T.-Y. Kim, “Unified particle physics

for real-time applications,” ACM Trans. Graph., vol. 33, pp. 153:1–153:12, July

2014.

[40] “Kinect for windows.” http://www.microsoft.com/en-us/kinectforwindows/.

[41] W. J. van der Laan, S. Green, and M. Sainz, “Screen space fluid rendering with

curvature flow,” in Proceedings of the 2009 Symposium on Interactive 3D Graphics

and Games, I3D ’09, (New York, NY, USA), pp. 91–98, ACM, 2009.

78

[42] “Eigen math library.” http://eigen.tuxfamily.org/index.php.

[43] “Thrust - cuda toolkit.” http://docs.nvidia.com/cuda/thrust/.

79

