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Abstract

In the world today there is an enormous leap in the development of mobile devices,

which have grown hugely in capacity and popularity. The enterprise industry has a

huge demand and application requirement for new services, in such space we need

to envisage ad hoc networks that can genuinely be autonomous and do not rely on

the user interaction for the service discovery. Traditional networks have relied upon

using IP addresses for communication inside the networks and bind node features

to these addresses for service discovery purpose. We find that this type of service

discovery mechanism does not suit mobile ad hoc networks as the topology remains

dynamic. We view that this IP addressing scheme can be replaced with characteristics

or features of nodes. For this we introduce a characteristic based routing protocol

called CBR. This protocol spreads the characteristics of nodes across the network

through advertisement broadcasts that follows a stream like pattern, similar to the

flow of a water stream. In this research project we will establish node communication

based on these characteristics rather than the IP address. We choose OMNET++

simulation framework for the evaluation of our protocol. We approach our design

through simulation techniques and prove that successful data delivery can be achieved

by using node characteristics. We also demonstrate a two-way communication context

with service instances broadcasting their device features.
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Chapter 1

Introduction

1.1 Motivation

In todays dynamic network space where wireless communication devices have hugely

gained capacity, speed and have become popular in the modern world. Just in the past

decade devices like PDA’s, music players, laptops, smart phones, game consoles e.t.c

have gained considerable growth. We envisage new applications using the wireless net-

working capabilities of these devices which they incorporate, applications like location

based services, contextual applications or even any content distribution service can

take advantage of these mobile ad hoc networks. Mobile Ad hoc Network (MANET)

routing protocols in ad hoc networks have already made some of these applications a

reality where the communication is based on Internet Protocol (IP) addresses inside

the networks, there is still a space for more flexibility in ad hoc networks which do

not rely on IP address or identity for communication between the mobile nodes. Our

visionary network forms an ad hoc and autonomic network of participating mobile

nodes in which the delivery of information is intended towards certain characteristics

or features of nodes rather than the node identity, this is because we see that the

idenitity takes no meaning in a dynamic network topology. Therefore, we present

a new characteristic based routing protocol which performs routing based on node

features or characteristics. Characteristic Based Routing (CBR) semantics allows for

the expression of an alternative network address to be called a characteristic. Our

light weight routing protocol provides the basic communication primitive of resource

or service discovery using a characteristic and does not rely on the IP layer for routing

information.

Before looking into the research problems and contributions of this master proof,
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we describe application scenarios for wireless ad hoc networks which can benefit from

the results of this thesis.

1.2 Applications

For comparison as traditional networks have been designed and developed to provide

point to point connectivity like the internet or voice telephony services, such type of

networks have been the most widely used applications worldwide, like web content

access through web servers or data or voice communication services all rely heavily

on these traditional networks. We observe that the communication pattern of such

applications exhibit certain features or characteristics.

Figure 1-1: Service Discovery

1.2.1 Service Discovery

In order to support roaming mobile users with information services on the move,

wireless ad hoc networks are used, therefore we envisage such networks that could

provide services like print, games or information posts that the mobile users could

access from anywhere on their mobile devices whenever they choose to access. Thus

concluding that a particular server name or location providing a specific service be-

comes irrelevant to the mobile user, however the usage of the service is directly related

to the proximity or coverage area of the mobile user.
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Figure 1-2: Internet access inside wireless mesh network [15]

1.2.2 Internet Connectivity

Mesh networks provide internet connectivity to mobile users. They are multihop

wireless networks which are usually deployed on roof tops of houses and buildings in

cities or urban central areas. In such type of network only a few number of houses

or buildings have an internet connection over a dedicated fixed infrastructure like a

dedicated DSL line and thus they can act as the internet gateway node and the rest

of the houses or buildings act as relay nodes for providing internet connectivity. The

mobile users who want internet access use such kind of an infrastructure for internet

connectivity via the nodes or buildings that have got a fixed internet connection. In

such type of wireless mesh networks, the routing protocols use anycast routing to

route the packets to the gateway nodes to be sent out to the internet.

1.3 Research Problems

Wireless ad hoc networks have gathered a lot of attention of researchers recently be-

cause of their wide range of potential applications. These network’s comprise of a

number of wireless nodes which are installed either inside an application field or close

to an application field without the help of any infrastructure that is centrally admin-

istered. However wireless ad hoc networks become challenging in many ways. Firstly

the node mobility and wireless links adds high degree of dynamism in such networks

and secondly the lack of any fixed infrastructure does not allow for a centralized so-
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lution and thus we can never rely on a dedicated central server for the control and

lastly we explore the broadcast primitive of the 802.11 standard technology inside the

physical layer and analyse if a characteristic based routing protocol can increase the

success rate of data delivery compared to other routing protocols inside MANETs

which are based on addresses.

In this research topic, we look into possibilities and solutions which can tackle the

below research problems with regard to the wireless ad hoc networks

• How to apply the concept of the flow of water stream to routing inside MANETs?

The idea here is to route information or messages inside the network in analogy

to the flow of a water stream. As we introduce the concept of characteristics

which describe the features of nodes. The characteristics are spread throughout

the network which simulate the flow of water stream where the characteristics

diffuse in a potential or cost field called weight, just like the potential of a flowing

water stream down the hill. These potential values are discrete at individual

nodes. We study the effect of this discretization inside the network.

• How to perform MANET routing in the presence of unreliable links? This

question makes us to think about how to best design the routing strategy and

how should our control protocol and design technique cater best for our routing

strategy, we define Characteristic Advertise Message (CBADV) messages in our

control protocol to take care for route convergence.

• How to implement service discovery in an ad hoc network? We need to study

the mechanisms of service discovery in a completely distributed environment,

thus leading to another question of how could we discover a particular close

service which broadcasts a high capacity and also in the best efficient manner

when their could be multiple source service instances broadcasting or providing

the same service.

1.4 Contributions

The contribution of this work is the design of a characteristics based routing protocol

for loop free routing and its application to wireless ad hoc networks. The contributions

detail is listed below:
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• We propose a robust characteristics routing model which is based on the idea of

a capacity or potential field. In this model, it is possible for successful delivery

of information to endpoints which have certain features or characteristics even

when the links are broken or the node endpoints move along the characteristics

path. We thus prove that our new routing model is loop free and we demonstrate

that our routing converges in random wireless networks.

• We analyse the comparison of capacity versus proximity based routing. We

demonstrate that this type of routing is more robust in a highly dynamic net-

work.

• We present our design for the service discovery protocol for MANETs which

is characteristics based. Our new routing protocol joins service discovery and

routing which minimizes the control overhead in comparison to employing two

separate protocols. We show in our design how the characteristics based routing

can distinguish services based on their potential to assist for distributing the

requests to good services or to those services with less load or increased capacity.

• We analyse and show the benefits using our approach and present a proof of

concept implementation.

1.5 Outline

The structure of this thesis is given below:

• Chapter 2 In the second chapter, we give a background context and an overview

of the wireless communication standards and discuss how the MAC network

layer and broadcast nature is utilised inside networks for the purpose of service

disovery like internet access in mesh networks.

• Chapter 3 The third chapter discusses the state of the art approach to MANET

routing protocols and different techniques applied for the purpose of establishing

a two end communication context.

• Chapter 4 The fourth chapter discusses the design approach of our character-

istic based routing protocol and shows how it could benefit for service discovery

and also demonstrates, the establishing of a service context.

5



• Chapter 5 This chapter discusses the implementation of the characteristic

based routing protocol and the simulation techniques applied using the MiXiM

framework.

• Chapter 6 This chapter will discuss the simulation results and the evalua-

tion done for different performance metrics for our characteristic based routing

protocol.

• Chapter 7 This chapter concludes our research work and discusses our future

improvements.
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Chapter 2

Background

2.1 Context

As mobile ad hoc networks (MANETs) are networks without infrastructure in which

hosts can provide new capabilities such as that of traditional network routers, these

kind of networks place new challenges. The mobility also adds complexity to the

hosts because of the dynamics of the network topology as it may change unpre-

dictably and quickly over time. Such type of networks could be commissioned for a

range of applications. For instance these networks could be deployed very easily in

any terrain or disaster scenario like earthquakes. They could even be used in mil-

itary hostile combat zones where the infrastructure never actually exists. We can

say that MANETs are networks for events where spontaneity is valued. MANETs

have further opened new research fields to be able to blend with traditional solutions

in an environment without any central administration and control. Location based

systems, context aware applications or simple applications like content distribution

can take advantage of MANETs. Most popular deployments of fixed wireless infras-

tructure like Global System for Mobile Communications (GSM) or Universal Mobile

Telecommunications System (UMTS) have leveraged the usage of such applications

and have become a reality in todays world. However there is a growing demand of

flexible ad hoc networks that do not rely on base stations that are fixed in mobile

networks so as to facilitate communication between mobile nodes. There has been

enormous growth in the recent years with small devices like smart phones, , small

sensor devices such as iPod, smart TVs, variety of these are embedded with short

range wireless networking functions in order to visualise new applications. They aid

us to visualise autonomous ad hoc network systems to track the movement of people

in campus buildings, corporate buildings or even big cities or town centres. Medium
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access control, quality of service (QoS), routing protocols and security are still some

issues in mobile ad hoc networks to be dealt with and a number of product solutions

and further work is being carried out every year to tackle these issues. Medium access

control protocols are designed to work in infrastructure mode which means they facil-

itate communication in networks through the presence of router nodes. The famous

IEEE 802.11 wireless standard allows two hosts to communicate directly in ad hoc

mode without the presence of a router node. In the last decade or so medium access

control protocols have been designed more towards multiple hop wireless networks.

Mobile ad hoc networks have another desired property to be able to self-organise

where the main requirement is to permit hosts to enter or leave the network without

any pre configuration in the network like the famous DHCP centralized servers. In the

new development of medium access control protocols this self-organization function

is added in a distributed manner rather than traditional central fashion, we can say

that this type of network is decentralized where the network activity of discovering

the topology and delivering messages is performed by the mobile nodes themselves i.e.

the routing capability is incorporated into the mobile nodes. Mobile ad hoc networks

can also be used for low cost communication as the setup cost of fixed wireless in-

frastructure becomes traditionally more expensive reflecting in high costs to the end

users. Infrastructure less MANETs can use the local communication instead of large

distance wireless communication so as to reduce the energy consumption of mobile

nodes. In any country the mobile wireless networks are also controlled and regulated

by the government or state over some licenced frequencies bands. Adhoc wireless

networks however could be made operational using the unlicensed frequencies and

overcome the regulation problem and allow people to be able to communicate so as

to not be controlled by any government body. It is also seen in less populated areas

or villages that the wireless service is less ubiquitous compared to urban areas or

cities where there is large provisioning of fixed wireless services and wireless commu-

nication is omnipresent, therefore we see that the far reach poor areas or less income

regions suffer and they lag behind with the most needed mobile services. Routing

protocols are affected by the mobile conditions of mobile hosts or nodes. If we look

into traditional networks the routing handover procedures are taken care off very well

for node mobility, whereas due to lack of infrastructure, the hosts or mobile nodes

must perform handover or routing inside the mobile ad hoc networks while tackling

rapid topological changes, further the solution to take care of these rapid changing

networks should be designed to provide optimum quality of service without any cen-

tral administration. This thesis is mainly focused on the routing aspect of MANETs,
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particularly characteristic based routing inside mobile ad hoc networks. In this thesis

we will look into applications for wireless ad hoc networks that provide access to

services. We will look into more detail further in the chapters where the design is

based on anycast where data messages are directed towards their destination sources

which announce certain features or characteristics (service discovery).

2.2 Wireless Communication

There has been a lot of work done exploring the characteristics of low power radio link

in sensor networks and designing and implementing different mechanism for routing

data in order to improve reliability. In my dissertation topic, I review related work

about link characteristics and different approaches to improve performance like wire-

less broadcast advantage, multiple path routing e.g. gradient based routing, hop by

hop retransmissions etc.

This section provides some overview of wireless communication and discusses the

design principles and the wireless 802.11 standard technology, how it is widely used

in the wireless telecommunication world today. Further in the next chapter we will

discuss about the mechanism of gradient based routing in wireless networks.

Wireless communication has been around with us for over hundred years, since

Guglielmo Marconi invention of long distance radio transmission and a radio telegraph

system setup in 1897. Further in 1901, radio reception across the Atlantic Ocean had

been successfully established. In these last hundred years, wireless communication

has become one of one of the most vibrant areas in the field of communication today.

In the last couple of decades there has been a tremendous increase in demand of

tetherless connectivity for cellular telephony and in recent years a huge demand in

wireless data applications. There have been a number of cellular systems designed

and implemented.

One such system is the global system for mobile communication or widely known

as GSM, it is a second generation cellular digital system. Second is the TDMA

(Time-Division Multiple Access) cellular system developed in America, and the third

is CDMA (Code Division Multiple Access). These systems were all developed for

wireless telephony. Third generation cellular systems are developed to handle both

data and voice. As some of the third generation systems have basically evolved from
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the second generation voice systems, some other cellular systems are designed from

scratch in order to take care of the specific characteristics of data. As the demand of

wireless data applications requires higher data rates, these application have another

two features that distinguish them from voice. Most data applications are highly

bursty, as users quite often could remain inactive for a longer period of time, however

they require very often high demands for shorter period of time. In contrast voice

applications however have a fixed rate demand over longer period of time.

Voice applications have relatively tight latency requirement of the order of 100ms,

whereas comparatively data applications have wide range of latency requirements.

One data application example like the real time gaming application could even have

more stricter delay requirements than voice applications, however many other data ap-

plication such as file transfer applications have much less stricter latency requirement.

Beside the cellular telephony systems, their exist other kind of wireless systems like

the AM radio, FM radio and TV broadcast systems. These systems behave in a

similar fashion to the downlink part of cellular telephony networks; however the data

rates, frequency and the sizes of the areas covered by each broadcasting site are very

different. Another such systems are the wireless local area networks knows as LANs.

These are designed for much higher data rates than cellular systems, but behave in a

similar way to a single cell deployed in a cellular network. Such local area networks

are designed to connect portable devices such as laptops into the local area network of

an office building or similar such environment. Such local area network systems have

the major function to provide portability, rather than mobility, there is less mobility

expected in such systems. The major accepted standard for wireless LANs is the

IEEE 802.11 family standard. There are other smaller scale wireless standards such

as Bluetooth and the ultra-wideband (UWB) communication which reduces cabling

in the office and makes it easy and simple for data transfers to occur between the

office and hand-held devices. Furthermore there is another type of local area net-

work called an ad hoc network. In this type of ad hoc network the data traffic flows

through all the nodes alike rather than some central node (or base-station). This kind

of network manages and organizes links between various node pairs and maintains

routing table entries for each of these links. There is a lot of research going on for ad

hoc networking to tackle the problem of distributed cooperation and relaying traffic

among nodes, the research suggests that this problem could be tackled in the node

physical layer.
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2.2.1 802.11 Wireless LANs

802.11 WLANs are widely spread throughout a lot of network deployments these

days, mainly because they are easy to implement. From the users perspective, they

function and behave similar to a shared Ethernet LAN (Wired). 802.11 architecture

is complicated because it becomes hard to control the medium and the challenge is

more complex than that of the controlled wired Ethernet medium. 802.11 devices

can not sense collisions, where as (CSMA/CD) based devices can sense collisions. As

a result, 802.11 family standards provide more robust and scalable Medium Access

Control (MAC) which works with minimized overhead. 802.11 based networks are

flexible by design. 802.11 networks are flexible by design; they support three types of

WLAN topologies:

1. Independent basic service sets (IBSSs)

2. Basic service sets (BSSs)

3. Extended service sets (ESSs)

Service sets are devices that are logicaly grouped. Wireless local area networks

work by transmiting signals over a radio frequency channel. The transmiter before

transmiting the signal attaches a service set identifier called the SSID to the broadcast

signal, which is then used by the receiver to filter and listen to only those signals which

match that particular SSID and ignore the others.

2.2.2 Medium Access Control

It is easy to detect collisions in a wired Ethernet medium, because if multiple stations

are transmitting at the same time then the signal level on the wire increases, whereby

this increase in signal level indicates to the transmitting stations that a collision has

occurred. In the 802.11 wireless scheme, stations do not get this capability. It is

therefore required for the 802.11 access mechanism to make extensive effort to avoid

collisions. One such collision avoidance technique is knows as Time Division Multiple

Access (TDMA).

2.2.3 TDMA

In the TDMA protocol, set of [N] stations share the same radio channel frequency,

but each station uses the channel only in predetermined slots. Inside this protocols,
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the TDMA frame consists of [N] slots, one for each station and the frames are contin-

uous. Therefore the transmission bandwidth is [N] times the bandwidth that would

be necessary to accommodate a single user or a mobile station. Importantly Time

Division Multiple Access (TDMA) is combined with Time Division Duplex (TDD)

where transmission and reception do not happen simultaneously, but at different time

slots. This eliminates the need for expensive duplex filters. TDMA is simple to im-

plement in a downlink i.e. base to mobile, it is done by multiplexing [N] user signals.

However TDMA is more difficult during the uplink i.e. mobile to base, here the fre-

quency signals have to be aligned in time coming from all the stations. For this fast

power-up and power-off times are required so that signals from users do not interfere

with those signals in the other time slots.

2.2.4 Broadcasts

Network communications most fundamental task is broadcasting. During broadcast

a single node of the network is known as the source node which transmits a message

to all other nodes inside the network. Further intermediate nodes inform the remote

nodes via directed paths in the network. A radio network can be modeled as a graph

whose nodes are stations or sensors that can both transmit and receive data. The

nodes sends data packet or messages in synchronous rounds. In each and every round,

a single node acts as either as a transmitter or a receiver. The transmitter node sends

a message to all its out-neighbors, similarly a single node receives a message in a given

round only if the particular node acts as a receiver and exactly one of its in-neighbors

transmitted a message in this round. Also if at least two in-neighbors of a receiving

node R transmit simultaneously in a given round then none of these messages are

received by R in that particular round, hence we can deduce from this that a collision

has occurred at R. Also in a radio network if nodes can differentiate collision from

silence then we can easily say that collision detection is available. In a radio network

a set of nodes i.e. stations or sensors are modeled as points of a plane. Each node

N has a range rN which depends on its transmitter power and it can reach out to

all the nodes at a distance which is at most rN from it. Here the collection of nodes

that has ranges determine a directed graph on the set of these nodes which is called a

geometric radio network (GRN). All of the node ranges are equal if their transmitter

powers are equal and therefore we say that the geometric radio network is symmetric.

Radio network model is applied to wireless networks only in a single frequency. The

model of GRN is applied to wireless networks where the stations or nodes are present
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in a flat region and without any large obstacles. Here, the signal of a transmitter is

reached by receivers at the same distance in all directions, hence we can deduce that

the set of receivers of a transmitter is a disc.

2.2.5 Mesh Networks

We can say today that the worlds largest mesh network is the internet. Informa-

tion packets proceed in the internet by getting bounced from one router to the next

router and so on until these data packets reach their destination and it all happens

automatically. Therefore we can call the internet as a web or sometimes a cloud of

connectivity since their exist billions of possible route or paths through which data

packets can travel. Often these wireless mesh networks (WMNs) are a type of radio

based network which require minimal infrastructure and configuration, also they can

be built using low cost radio and computing platforms. Mesh networks can easily con-

nect wirelessly entire cities using the inexpensive and existing technology. Traditional

common network rely on small number of wired access points (AP) or often known as

wireless hotspots in order to connect users, where as if we look into the wireless mesh

networks, there are even hundreds of wireless mesh nodes that are spanned across

that communicate or ”talk” with one another to share the network connection across

a large area. These types of networks have become an emerging technology and one

day could make the dream of smoothly connected world a reality.

Mesh networks are basically multi-hop wireless networks that provide internet

access to mobile users. These types of networks have been deployed on top of house

rooftops in numerous cities in America and Europe. Only a few nodes among the

buildings or houses have internet connection over fixed infrastructure like DSL cable

lines and then the rest of the other nodes or houses simply act like relays for the

internet connection. Mobile users using their devices (like laptops) take advantage

of this mesh network to connect to the internet via nodes with internet connection.

Typically in these mesh networks anycast routing is a natural fit to route data packets,

since these data packets can be easily sent across through the internet via any node

which acts as the gateway. The nodes pick up the quickest, safest route and this

process is called dynamic routing. Nodes in a mesh network use the common wireless

standard or WiFi also known as the 802.11a, b and g standard to communicate or

talk with users wirelessly, but more importantly with each other wirelessly.

Nodes, in order to work in a larger network, are programmed with software that

help them interact. Information travels from point A to point B through the network
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by traversing wirelessly from one mesh node to the other. As compared to wired

or fixed wireless networks, the biggest advantage for wireless networks is that they

are genuinely wireless. Most wireless access points are still needed to be connected

to the Internet using wires to broadcast their signal. Ethernet cables are laid on

ceilings and walls and throughout public areas, for large wireless networks. Only

one node is required to be wired to internet. This wired node shares its internet

connection wirelessly with other nodes nearby. Similarly, these nodes share their

internet connection wirelessly with other nodes nearby, and so on so forth. The

more the nodes are, the further the connection can spread, that can create a wireless

connection that can operate in a small office or a whole city. The advantages of

wireless mesh networks are : Lower costs to set up a network, as fewer wires are

required. The network becomes faster and bigger as more nodes are installed. They

use the same Wifi standards that are already being used by most networks. They

are useful where Ethernet wall connections cannot be used, for example in outdoor

concerts, warehouses, transportation settings, etc. They are also useful for Non Line

of Sight (NLoS) networks where wireless signals are irregularly blocked. For example,

in parks, rides may, at times, block signals from a node. If there are more nodes

around, the mesh network will automatically make changes to find a better signal.

There is no need for a network administrator to integrate a new node into the existing

network, as mesh networks can adjust the new node automatically attributing to self

healing. Even if the nodes losing their signals or are blocked, the mesh networks can

automatically find the fastest and most dependable path to send data. The wireless

mesh networks configurations help the local network to run faster, as local packets

need not to travel back and forth to server. Mesh nodes are easy to uninstall and

install, which makes such network extremely adjustable and expandable.

2.2.6 Vehicular Ad-hoc Networks VANETS

Figure 2-1: Vehicular Ad-hoc Networks [17]
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Vehicular Ad-Hoc Networks are a subset of mobile ad hoc networks, which supports

data communications among close vehicles in proximity and the nearby fixed infras-

tructure also called the roadside entities. The basic idea behind all this is to aid the

driver of the vehicle with useful information that he or she cannot obtain on their

own. Also depending on the range of communications devices, vehicles or nodes in

this type of ad hoc network communicate among themselves in type of short-range

(vehicle-to-vehicle) or medium-range (vehicle-to-roadside). Some typical information

could be about traffic jams ahead or about car accidents or even the weather condi-

tions, VANETs are also used in guiding the driver to find a free car park space in any

area of proximity i.e. the closest car park space available. In addition to this, major

applications of VANETs include safety and real-time applications like real-time traf-

fic jams and routing information, high speed tolling and many others. Some of the

vehicular safety applications are collision, car accident, emergency and other safety

warnings.

However their still remain several challenges in achieving scalability, high perfor-

mance, robustness, fault tolerance and secure vehicular networking, some of them

mentioned are as follows:

1. Availability, Scalability

2. PHY, MAC, Network Layer

3. Mobility, Traffic models

4. Security, Privacy

5. Cross-layer optimization techniques

6. Vehicle To Vehicle

7. Vehicle To Roadside
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Chapter 3

State Of Art

The objective of my thesis is to investigate how successful data delivery can be

achieved using characteristics of nodes for efficient routing inside MANETs. As we

have come to know that wireless ad hoc networks are challenging in many ways like

the wireless links and the mobility of the nodes increases the dynamism of wireless

ad hoc networks and the infrastructure less property of these networks makes any

centralised solution not applicable. Over here we will survey and discuss some rout-

ing approaches and then look into the most common protocols for MANETs in the

following sections.

3.1 Gradient based routing approach

3.1.1 Overivew

In scientific terminology, it is laid out by researchers as; ”Every physical event results

in a natural information gradient in the proximity of the phenomenon” [3]

It is this natural information gradient which can be used to design efficient infor-

mation driven routing protocols for ad hoc networks. If we take the example of

”WSNs”, they comprise of distributed sensors in an area of space to monitor the

environmental or physical conditions and to collaborate with each other to pass in-

formation through the network to a main location. Some characteristics of the sensor

nodes like for instance limited battery life, energy expensive wireless communication,

loss of wireless communication, high risk of failure or malfunction and unstructured

nature of the wireless sensor network ”WSN” all of these make routing in the WSN

a challenging problem. In these kind of networks, data of interest should be passed
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to the application in an energy efficient and timely manner according to the proto-

cols that do not waste much radio transmissions. It is of view that different kind of

wireless applications may require different flavor of communication protocol or strate-

gies in order to maximize the wireless network lifetime. A typical such application

could be a data gathering application such as temperature or light sensing. In a data

driven network model, an application could instruct each sensor node to sense its

environment parameters at certain rate and for a specific period of time and then

send matching data back to the sink. Here the sensor nodes are called sources and

the sink is a node with high computing power and resources whose job is to analyze

and process that data. Data can be transmitted from the sources to one or more

sinks, hence we say that the network traffic is composed of several packets that flow

around periodically between many sensors and one or more sink nodes.

Because of the recent progress in Wireless Sensor Networks (WSN) the interest has

increased the possibility of the use of applications such as security surveillance, border

protection, disaster management, etc. To attend to the environments that are unsu-

pervised, unaccompanied or neglected, sensors become handy, which are supposed to

be positioned remotely in large numbers that function independently.

3.1.2 Basis of Gradient based routing

Gradient concept inside routing protocols is used to describe a network layer augmen-

tation where every node is associated with a potential value with respect to the sink.

The sink being the root node. In such an overlay network the packets are routed

by decreasing the potential value ’Q’ at the next node inside the route path i.e. the

packets are forwarded to those neighbouring intermediate nodes that contain a lower

potential value with respect to the sink node. Such gradient based routing protocols

employ a spread mechanism for collection of information of data inside mesh networks

where the source node, spreads its gradient throughout the nodes inside the network.

This flow creates a directed acyclic graph in which every participating node member

has an associated value with respect to the sink also known as the root node. The

sink is finally reached by following the direction of this acyclic graph. This flow pro-

cess is also known as a ”gradient descent”. Such an idea or concept of tunnelling the

data towards source node or nodes with higher capabilities or features is frequently

employed inside ad hoc networks for pushing data across outside the network.
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Following figure illustrates the gradient broadcast example towards a sink.

Figure 3-1: Gradient Broadcast [22]

3.1.3 Gradient Broadcast (GRAB)

GRAB is a gradient based routing protocol [4] that has a robust forwarding mecha-

nism utilising efficiently multiple number of paths when descending the gradient. It

builds and maintains an energy ”cost” field, which gives every sensor the directed

path to forward sensing data. Participating nodes in GRAB contain an estimation

of this energy cost to forward the packet to a neighbouring node. This kind of cost

gradient is initialised during the setup phase taking the measurement of Signal to

Noise Ratio and eventually storing energy cost towards the sink at every node. Inside

GRAB, data packets are forwarded over multiple paths adding to the reliability of

the protocol and the interleaving of these paths provides fault tolerance along any

single path. GRAB forms a band of nodes carrying the transmission from the source

towards the sink, it controls the width of this band to increase the delivery ratio,

this is controlled via a credit based value which is added to the energy cost as extra

budget. A source node broadcasts a packet over the width of the band and towards

the sink only if its energy cost is less than the total of the energy cost of the packet

and the credit value from the source node. GRAB relies on the collective efforts of

multiple nodes for data delivery, without the dependency on any individual ones.
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3.1.4 Directed Diffusion

Directed diffusion [2] is data-centric i.e. all the communication is for some particular

named data, thus this sensor data is named and it diffuses according to some pre-

established gradients of interest towards the data sink. Here the entire directional

diffusion based network is application aware. One feature of directed diffusion is

its ability to aggregate data which is done according to the interests of the nodes,

therefore we can say that it supports multiple destinations keeping in view that the

main goal of this system is to deliver data to all of the interested nodes. In my work

simulation we will provide the mathematical model as we carry out in this thesis in

the next chapters.

3.2 Routing using potentials

For routing protocols it is very important to avoid congested areas in a network,

therefore in 2003, A.Basu designed a routing algorithm [7] that was dynamic for the

internet and was traffic aware. This was designed by actually modelling the routers

queue length being the potential field, which was taken as the real input and used these

potential values for this routing algorithm. In research topic, the author mentioned,

described and evaluated the complete model for his potential based routing. In the

tests and analysis for network routers, it was revealed that steepest gradient routing

resulted in identifying routes via the routers that were less congested. Although this

work very much focused on unicast routing in wired networks that are fixed, In my

thesis I will utilise the source capacity for characteristics based routing in MANETs.

3.3 Anycast Routing Protocols

Anycast is a bit like making announcements of same network in different subnets

inside a network so as to reduce the network hops necessary to reach that particular

network, it uses a delivery mode in which a packet is addressed to one member

within a group of hosts. We can say that anycast is used in the IPv6 6to4 transition

protocol. In this particular section, we are going to discuss the research efforts carried

out around this type of anycast routing protocols for the Internet and also for the

mobile networks.
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3.3.1 Internet

Inorder to make it easier to find a server among many, which are supporting a desired

service, an Request for Comments (RFC) for the internet was proposed in 1993.

This particular RFC proposed that multiple hosts could be assigned with an unicast

IP address advertising this unicast address into the routing infrastructure from all

the hosts which shared the same IP address. This scheme was later added into the

addressing architecture of the IPv6 protocol. There are two main problems with IP

anycast for not being widely deployed and used in todays internet. Mainly it is hard

to deploy in the core of the internet at a large scale and also it does not scale well. A

proposed GIA solution by Dina Katabi as a IP architecture that is scalable was tried,

however in this proposal a change to the core internet routers was necessary and a

main requirement which defeated the practical approach. Further many researchers

looked into application layer solutions ( proxy based approach like PIAS - deployed

as a global anycast service ) that could be adhered to scalability and which did not

require much change to the routing and core internet infrastructure. Although it

could be technically smooth and straightforward (but may be more expensive) for

the ISPs to support a new IPvN protocol release, however they must have a choice

and incentive to do so. It is quite evident that scalability and the ease of deployment

are fundamental for the success of anycast routing protocol in the Internet, however

it is less important for infrastructure less networks like mobile, ad hoc networks, or

wireless sensor networks which is the main focus of this thesis. Here we mostly expect

such type of networks to be less dense or smaller (may be hundred to thousand nodes

as compared to perhaps millions of nodes in the internet) and also to be mainly used

in local communications like within city or may be among a group of people. Such

networks which function as self-organizing more likely will not rely on existing routing

infrastructures (like the huge internet), making the problem easier for our protocol

deployment.

Figure 3-2: Service based topology for MANETs - S: Service provided by A, B and

F, H, G: Service requestor.
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3.4 Service Discovery Architectures

Service discovery architecture mainly depends on either having a directory or not

having one. The directory is basically a store that stores information about services

that are available inside the network, therefore the architecture for a service discovery

protocol can be directory based or it can be directory less or it could even be a hybrid

of both. MANETs have been setup using all such architectures, Following are the

architectures that could be adopted for an approach to service discovery;

1. Service coordinator (directory based)

2. Distributed query based (directory less)

3. Hybrid of both

Service coordinator scheme is very similar to a directory based, which in fact

is like a central directory and certain nodes in ad hoc network are dedicated ser-

vice coordinators which act in the role of a directory agent like in SLP or the JINI

lookup service, UDDI (Universal Description Discovery and Integration). These kind

of service discovery approach fair better for networks that are infrastructure based

and where the topology does not change frequently. They are not much suitable for

MANETs where we see that the system topology is changing all the time due to node

mobility. Directory based architecture is further classified into a central directory

architecture and a directory based architecture.

On the other hand, distributed query based architecture is not centralized and is

directory less. It has no service coordinator node. In this type of MANET the clients

always flood the service discovery requests throughout the network neighbourhood.

which results in an extra overhead due to flooding of requests and it consumes a lot

of battery power, bandwidth and computational resources. Service location protocol

and universal plug and play are a few examples. It is seen from surveys that directory

less approach is more used inside MANETs than the directory based approach.

Hybrid architecture is a mix of both directory based and directory less architec-

tures. In this architecture servers may wait for service query requests from clients or

they might register their services with a directory agent when available, clients could

then post service queries to directory agents if available or straight away to service

providers by flooding.
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Figure 3-3: Service discovery protocol architectures

3.4.1 DNS based service discovery

Figure 3-4: DNS Service Lookup

A DNS-SD is a traditional service discovery mechanism, where the nodes acting as a

potential resource for a service like printer, ftp or some share service are named and

organised into a structure, in order to assist the client for service lookup or discovery.

When the client provides the type of the service and the domain, the DNS query

mechanism gives back the list of named instances by searching from its database or

other DNS lookups.

3.4.2 Service Discovery

In the following section we will look into the solutions for service discovery that work

at the application layer and compare them with the solutions that work at the network

layer which combine with the routing tasks as well.

3.4.3 Application-Layer

Just a couple of decades ago, in the late nineties, there started emerging a number of

industry standards for service discovery. As service discovery requires common lan-

guage to allow software agents to make use of each other’s services without the need
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for continuous user intervention, a lot of these standards incorporated XML as the

common exchange format. Microsofts introduced XML based UPnP universal plug

and play services, IETF put effort in bringing the SLP (service location protocol)

and standardised the service discovery framework for the big internet. Researchers

at Berkeley using the XML language also developed a framework for service dis-

covery and put forward a secure architecture. XMPP, WS-Discovery, SAP (Session

Announcement Protocol), SSDP (Simple Service Discovery Protocol) are a few more

example in this area. Suns JINI framework for spontaneous distributed computing

has also taken mobile devices to a new level and make possible for small devices to

quickly discover services in proximity. Although these service discovery protocols or

standards are not fit to work in mobile ad hoc networks. On the other hand a new ser-

vice discovery and delivery protocol was designed and implemented for peer-to-peer

networks, more importantly to deliver m-commerce oriented software services, this

protocol was called Konark. It used a tree-based structure for storing services and

its purpose was mainly for registration and advertisement of services on a particular

mobile device, and also the discovery of services on other devices in the environment.

It used XML based approach for the service description, but the service delivery itself

was SOAP based. Since Konark design took the application layer approach, it still

assumed an underlying routing substrate.

3.4.4 Network-Layer

If we look into the popular Bluetooth technology, its specification has got a definition

for service discovery protocol (SDP) in order to be able to help for the discovery of

services a device has to offer. This came into being from the early Intentional Naming

System (INIS) that was proposed in 1999 at MIT by W.A.Winoto. In their approach

the particular service requests coming from the clients were directly routed towards

the matching service instances even without doing a proxy or intermediate lookups

to find out the particular service instance address. They proposed a resolver network

which contained a list of dedicated INS resolvers in order to properly route all the

service requests. Their work focused more on the design of a naming architecture.

This thesis work tends more towards the routing of service queries and selection of

a specific service instance with a characteristic. Also INS was developed for wired

networks where as we are going to take the approach of the wireless channel using

its broadcast nature. Koodli formulated in 2002 in an RFC the proposal of adding

the service discovery process inside the MANET routing protocols themselves. His
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idea was to bundle the service information directly inside the route request messages

which was further incorporated into the on demand ad hoc routing protocols like the

DSR and Ad hoc On-demand Distance Vector (AODV). There was a draw back in

this design that it introduced flooding inside the network by each and every service

request. The next step taken was to incorporate a novel service discovery mechanism

inside the mobile ad hoc networks. For this a more dynamic approach of creating

a virtual backbone was introduced which assured that all the host nodes become

a part of it or they are located at least at one hop distance from the backbone.

However in this model it is not possible to make the service selection effective and

it shows discrimination as it becomes hard to distinguish when there are multiple

service instances available which are of the same type.

3.5 Network Architectures

We aim to come up with a new architecture for mobile ad hoc networks, the main

idea and plan will be to figure out how to transmit heterogeneous traffic over radio

wireless links efficiently.

1. Applications: tactical ad hoc networks, wireless Internet access, sensor net-

works.

2. Rquirements: low-bandwidth, high-definition video, voice, data.

3. Target: communication-on-the-move in dynamic network space, which is reli-

able (QoS)

There is lot of literature that has come up with proposals and solutions for the

architectural fix for the internet protocol which we have mentioned above including

routing, naming/addressing, security, quality of service (QoS) are some of them, all

of them tend to choose of improving the current ISP infrastructures. The solution

lies at the application layer which act as overlays, but this solution adds a significant

stretch to the path length and is not found to be good for wireless ad hoc networks.

Another approach of cross layer design is a good one and is more efficient. In the

cross layer design approach there are misconceptions that in this design we need to

get rid of protocol layers and to integrate all of them, rather in this design we take

a more holistic view of wireless networking. With the cross layer architecture we can

use information across from the application layer then at the routing layer to form

a strictly layered architecture which fades away from the path length stretch. This
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type of architecture does preserve the integrity of the IP architecture simultaneously

also allowing for the particularities of MANETs which we require. There is also a

sensor network architecture that abstracts the communication to a single hop rather

than multiple hop as observed with the IP architecture and this sensor network ar-

chitecture deals nicely with the addressing schemes and also with the diversity of

different semantics. This is a trait of Publish-subscribe system which is a paradigm

that totally decouples communication as the destination address is not required and

also the components involved in the communication process may not be online simul-

taneously. Publish-subscribe architectures have been widely studied and applied in

wired networks, but their deployment on mobile ad hoc networks still presents a lot of

challenges. Publish-subscribe architectures like TIB / RENDEZVOUS have processes

that could subscribe to only those network messages that contain information on spe-

cific subjects while the other processes publish such network messages. Therefore,

we can ascribe our characteristic based routing protocol similar to publish-subscribe

system, where service providers use a characteristic potential field to subscribe to any

clients subscribe requests. We are going to take the advantage of the broadcast nature

of wireless network where usually such publish-subscribe systems are built like the

overlays over IP. We can figure out in the later development that how such internet

architecture can get more evolved and deployable.

3.6 Mobile Networks

It has been described by Vincent D. Park and Joseph P.Macker in their paper [1]

of how to extend unicast routing techniques like distance vector routing and link

state for anycast routing for data packet delivery. Similarly, J. Wang in his paper

[5] proposed techniques of how to extend the DSR and AODV protocols in order

to support anycast delivery for MANETs. All these protocols use the same routing

strategy i.e. to route data packets to the nearest member within a group over the

shortest route.

3.6.1 P2PNET

P2PNET is their to support the mobile group users for information demand and

communications likely for any disaster management, it is used as a good disaster

management solution for emergency communication and it is also based on a server-

less p2p based MANET network which is their to support for a temporary group
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communication. Its real world usage is for example in the army battle field, rescue

teams in any catastrophic disasters and also in mobile learning groups. It has the

flexibility for optional nodes which can act as satellite gateways for the possibility of

other nodes in the network to connect to the internet when the nodes are available,

here communication with the satellite are not part of managing for the routes in the

MANET nodes, P2PNET communications system is based on the walkie talkie like

ad hoc communications model.

3.6.2 DUMBONET

DUMBONET is another emergency communications system which uses a VPN (vir-

tual private network) to hide the heterogeneity of the network and also uses direct

satellite links to setup connection between the command headquarters and the di-

verse and far reaching disaster sites, thus exploiting the satellite communications to

tackle the partitioning of mobile ad hoc networks. It is analyzed in a test simulation

environment which connects remote site via geostationary satellite like IPSTAR, the

basis of the test representing a VPN where all the devices or nodes use the same pri-

vate subnet and Optimized Link State Routing (OLSR) routing protocol for routing

the data traffic among devices or nodes. OLSR is good in this case because using

this protocol finds no difference between the satellite links and terrestrial connections,

therefore the simulation achieved successful data transmissions between the disaster

areas and the remote sites. Further proposals are made for the OLSR routing protocol

to extend with link characteristic awareness which is a good add on.

Figure 3-5: Classification of routing protocols in MANETs
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3.7 MANET routing protocols

MANET routing protocols show that the mobility of nodes becomes a constraint and

it yields a network that behaves dynamic in a sense that the links among the nodes

remains temporary i.e. if we consider a particular node desiring to send a data packet

to some other node which lies outside the sending nodes radio range, then it becomes a

separate requirement to use some intermediate node which can act as a multi-hop link

to that particular sink node as the final destination. Hence all the nodes in a MANET

should have the same routing capabilities inorder to determine which particular node

is the actual next node in the path or route to reach the final destination node. In

reality this routing task is not a trivial one because of the nature of temporary links

seen in these type of dynamic networks and majority of traditional routing protocols

do not fair better as a solution. Some good efforts in this regard have brought up

several solutions and new concepts which were adapted from the earlier traditional

protocols. We will investigate further in the list of these protocols and look into a

different routing technique which is based on characteristics or properties of a node.

3.8 Proactive Routing

Proactive routing is precomputed routing. In this type of routing each and every node

is bound for maintaining the global network topology information by periodically

exchanging and updating routing information which is stored in the form of tables

in order to maintain consistent and accurate network state information. It therefore

maintains paths or routes to all the destinations in order to proactively respond

to any kind of network topological changes. This routing information is usually

flooded inside the whole network. Thus whenever a particular node wants to send

information packets to a destination, it executes an appropriate path finding algorithm

on the topological information it maintains. These routing protocols are seen as an

extension to the wired network routing protocols. Traditionally it has been analysed

that proactive type routing is not suitable for mobile ad hoc network routing, this

is because the dynamics of such networks follows constant updates which adds to

a significant increase in the overhead. A number of solutions are presented and

discussed next.
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3.8.1 Destination-Sequenced Distance Vector (DSDV)

DSDV protocol is derived from the traditional routing information protocol also

known as RIP, it is actually one of the first protocols that was designed for the

mobile ad hoc wireless networks. This protocol belongs to the distance vector family

of routing protocols and it is based on an extended version of the distributed Bellman-

Ford algorithm in which every node stores a routing information table that stores the

shortest distance and also stores the first node in the shortest path to all other nodes

inside the network. In DSDV protocol a sequence number field is also added into the

routing information table which differentiates between the routes that are stale and

to those that are fresh. It also incorporates a mechanism of table updates with incre-

menting sequence number tags in order to prevent the loops and also for the faster

convergence, therefore we can say that routes or full paths to all the destinations

are constantly available at each and every node inside the network at all times. The

mechanism of table updates are of two types, incremental updates and full dumps.

Here the later includes all the routing information that is available while the former

includes just the information that is changed since the last full dump. DSDV is not

found suitable for mobile networks that contain large number of nodes and where the

mobility is high among the nodes, this is because in this case the signalling cost or

amount becomes high in the order of O(n2) where n is the number of nodes in the

mobile network. If we look into the computation of the DSDV routing algorithm,

here the nodes inside the network maintain table which contains the next hop and

the distance to each destination node, all this information is periodically exchanged

and sent to the neighbouring nodes, when the node receives a distance table from

a particular neighbouring node, this node then calculates the shortest path or route

to all the other nodes in the network and updates its own table. In the beginning

of DSDV routing algorithm, any particular node will know only the distance to its

neighbors, subsequently this information spreads node by node across the network

until the routing algorithm converges and the routing information tables are fully

prepared and reach complete state.

Advantages and Disadvantages

It makes the availability of routes to all destinations at all times making the delay

in route setup phase minimum. However as updates are necessary to maintain an

up-to-date view of the routes, the updates get propagated through out the network,

which can lead to a control overhead or even worse does not scale very well especially
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when links are broken i.e. it can choke the available bandwidth during high mobility,

therefore, it does not scale very well.

3.8.2 OLSR

OLSR is part of the link state family of routing protocols and is a proactive routing

protocol. It follows an efficient packet forwarding strategy called multipoint relaying

which tackles the overhead issue of proactive routing protocols. The strategy reduces

the size of the signalling messages and also the number of retransmissions in a broad-

cast. In this protocol, each node in the network maintains the network topology by

periodic broadcasting the pure link states. Multipoint relaying employs an efficient

link state packet forwarding scheme and the protocol optimizes the link state routing

protocol. This optimization is performed in two ways, firstly by reducing the control

packet’s size and then secondly by minimizing the number of links that are utilized in

forwarding the link state packets. The computation of the routing algorithm employs

the shortest path algorithm to the received topology information in order to deter-

mine the routes or paths to all the destinations inside the network. Inside the network

which uses OLSR, each node will select a set of neighbours as their multipoint relays

in such a way that these multipoint relays must cover all its two hop neighbours. This

is because to allow the multipoint relays only to retransmit messages when receiving

broadcast messages from a node. Their are two main processes or methods inside the

OSLR protocol regarding the signalling which are the link sense and the link state

distribution. Here the link sense method utilises the local exchange of HELLO type

messages for the nodes to gather information about the links which lie at most at a

distance of two hops. After obtaining this information the protocol’s topology control

messages are then broadcasted inside the entire network which then takes advantage

of the multipoint relaying topology.

Advantages and Disadvantages

It has an added advantage of having a low cost connection setup and also a reduced

control overhead.

3.8.3 Hierarchical State Routing (HSR)

HSR is a multilevel clustering protocol which performs the logical partitioning of

mobile nodes. First network is divided into clusters and then the protocol chooses a

cluster-head by applying a cluster-based algorithm. The cluster-heads together can
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also form other clusters. This link information is broadcasted between the nodes of

a physical cluster. This information is summarized and sent to nearby cluster-heads

via gateway. They exchange their link information along with the summarized lower

level cluster information between themselves and so on. A node at each level floods

the information it obtained, after the algorithm has done its job.

Advantages and Disadvantages

This protocol reduces the size of the routing table by using the hierarchical infor-

mation. Although the reduction of size of the routing table is good, but the control

overhead involved in exchanging packets that hold information about the levels of

hierarchy makes it less affordable in the context of ad hoc wireless network.

3.9 Reactive Routing

Reactive routing is also known as on-demand routing i.e. routes prepared on demand,

therefore, protocols that fall into this category never have to maintain the routing

path information of the entire network topology, this type of routing minimizes the

extra overhead that is seen inherent inside the proactive routing protocols, this is

because reactive routing protocols have to maintain information for active routes

only. Since they gather the necessary path when it is required, routes are obtained

for the nodes that require to send data packets to a specific destination node by a

connection establishment process and thus do not exchange any routing information

periodically. Inorder for a node to send data to another node inside the network, that

node first broadcasts a routing request to gather and setup the particular route. Once

this route is discovered and setup finally then the protocol performs a bit of route

maintenance for keeping the active routes updated and also follow or react to the

routes that have broken because of the link outage observed due to the node mobility.

These procedures are carried out by the protocol to save network bandwidth and also

to avoid any unnecessary calculation of the unused and stale routes, but however the

process of sending out the route request first adds to the route acquisition latency

i.e. even before sending out any packet to a particular destination node. If we look

into the proactive protocols, the nodes inside this category do not get affected by the

route acquisition latency, this is because, in proactive routing protocols, they gather

and maintain all the distance paths to all the possible destinations all the time by

employing the HELLO type packets or broadcasts. A number of reactive routing
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protocols also differ from each other in the way they do the route discovery and route

maintenance, we will look into these next.

3.9.1 AODV

AODV has been developed as a result of the IETF (International Engineering Task

Force) best effort inside the MANET group and is now standardized since the earlier

presentation of RFC 3561. This routing protocol utilizes an on-demand approach in

finding out the routes or paths inside the network.

It’s important main tasks are:

1. Only to broadcast route finding ’RouteRequest’ messages when necessary.

2. Differentiate between the neighbourhood identification also knows as local con-

nectivity management from the general topology maintenance.

3. Pass on the network change information inside the local connectivity manage-

ment to the neighbouring nodes which are mobile and more likely to need this

change information for path identification.

AODV establishes the routes or paths only when it is required by any source node

inside the network to transmit the data packets, for transmitting those data packets it

uses a destination sequence numbering scheme to find out the latest and updated path.

AODV employs three processes to perform its main functions or tasks, one being the

route discovery process, second is the route maintenance process and finally the local

connectivity management process. The node initiating the issuance of data starts

with the route discovery process. It first of all starts broadcasting the RouteRequest

packet or message to the neighbours in order for building up the correct path or

route to the destination node, this RouteRequest comprises of the source identifier

(SrcID), destination identfier (DestID), source sequence number (SrcSeqNum), the

destination sequence number (DestSeqNum) and the broadcast identifier (BcastID).

A node which receives the RouteRequest message sends back a RouteReply message

or packet only if it knows the route to the destination node which is set inside the

original RouteRequest message. Duplicate RouteRequest messages are identified and

filtered with the inclusion of a unique BROADCAST ID (or the BcastID-SrcID pair)

which is present inside the message. As the RouteRequest message passes on inside

the network and disseminates, simultaneously a reverse direction path towards the

originating source node is also built and setup, this is to facilitate the sending back of
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the RouteReply message as a unicast towards the source node. Also while the unicast

is happening, the route to the destination is then stored inside the intermediate

nodes which have the forward path built and setup. AODV becomes a hop by hop

routing protocol, in the sense that the active routing information is stored inside the

intermediary nodes in the shape of destination next hop pairs. If a node moves away or

if the active link or route is broken due to mobility, then the route maintenance mode

kicks in and starts discovering another route to the node that has moved. The local

connectivity management process detects any link outages by using the LLACKs also

knows as link layer acknowledgement packets. If the local connectivity management of

a node finds out that a link is broken, then it will send out an unwarranted RouteReply

message to all the active upstream neighbouring nodes. If including the source node

or any node along the path direction or route wants to build the route again to the

destination, it will start sending out a RouteRequest message inorder to setup a new

route. The function of the local connectivity management process of any node is to

maintain the list of neighbours. Inorder to buildup and maintain this list, each node

must send out a HELLO packet to the neighbours within a set HELLO packet interval.

Network changes are detected by the local connectivity management process in a node

if a number of consecutive HELLO message are missed or failed to be received which

is usually set to two by default. This process in the node can also be employed to

ensure the bidirectional connectivity among the neighbouring nodes.

Advantages and Disadvantages

Advantage for this protocol is that the connection setup delay is less, the disadvantage

is that their becomes a possibility of stale and unfresh routes when the source holds an

old sequence number while some intermediate node holds a higher sequence number

thus leading to inconsistent routes, also it consumes unnecessary bandwidth because

of frequent beaconing.

3.9.2 Dynamic Source Routing (DSR)

Dynamic source routing protocol or DSR is an on-demand routing protocol which

is related to the AODV protocol. It is designed to control the bandwidth used by

the control packets inside the ad hoc wireless networks by getting rid of the usual

periodic table update messages utilized inside the table driven approach. With respect

to the AODV protocol, the main difference with the DSR protocol is the source

routing approach whereas AODV uses the hop by hop routing approach. This means
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that in the DSR protocol, the route is stored inside the actual data packets and

not like in AODV, where the route is stored and distributed inside the intermediary

nodes. Another difference between DSR and the other on-demand routing protocols is

that this protocol is a beacon-less protocol and it does not require the transmissions

of frequent and periodic HELLO packet or beacon which are commonly used by

the node inside the network to inform its neighbours of its own presence. Hence

the difference follows to bring some changes to the route discovery and the route

maintenance process inside DSR. Inside DSR when it broadcasts RouteRequest for

the route discovery process, then during progression of the message inside the network,

the node- ids that processed the message is stored inside the header of the message,

this is because when it reaches the destination node, it should be sent back to the

source node. To do this the hop sequence is piggybacked inside a new RouteRequest

message which is then bounced back to the source node. We can observe that for

data transmission inside DSR unidirectional links are perfectly compatible, duplicate

RouteRequests are easily detectable using a request-id field. Inside the protocol when

the RouteReply reaches the source node, it extracts the hop sequence and packages

this hop sequence into the header of the data packets sent out to the destination.

This important and explicit routing information present inside the data packets and

the RouteReplies is then cached by the intermediary nodes. Also, more promiscuous

approaches could be utilized to permit other nodes which lie in the transmission range

to also cache the same routing information.

Advantages and Disadvantages

It has a reduced control overhead, although it has a higher delay during connec-

tion setup. Its disadvantage is that its performance degrades quickly when mobility

increases and its routing overhead are proportional to the path length.

3.10 Hybrid Routing

Hybrid routing is classified as the third routing approach inside MANETs. It works

by allocating geographic zones to nodes inside the network i.e. the nodes which are

located at a particular distance from a node are said to be inside the routing zone

of the concerned node. These protocols use a table-driven approach for nodes when

working within the routing zone and employ an on demand routing approach for

nodes outside this zone. ZRP is another hybrid routing protocol.
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3.10.1 Zone Routing Protocol (ZRP)

ZRP is a hybrid routing protocol which uses both the reactive and proactive routing

protocol approach, it combines the advantages of both these types of routing proto-

cols. This protocol works on the concept of zones and each node inside the network

has a different definition of its routing zone and the zones of neighbouring nodes

overlap. Every node’s zone has a radius R defined which is calculated in hops and

is therefore called a limited zone which means it includes nodes in the zone which

are at most R-HOP from that node. ZRP takes the proactive routing approach when

working with the nodes inside the R-HOP neighbourhood and it takes the reactive

approach for the nodes outside this R-HOP zone. It names its proactive routing ap-

proach as intra-zone routing protocol (IARP) and names inter-zone routing protocol

(IERP) for the reactive routing approach. Nodes inside the routing zone periodically

broadcast route update packets thus trying to maintain routes to all the nodes lying

inside the particular zone. Doing so it adds an extra control overhead as the routing

zone becomes larger.

Advantages and Disadvantages

ZRP demonstrates a reduced control overhead compared to the reactive and proactive

approaches which is a good thing. However as the zone radius becomes larger then

the ZRP performance gets impacted.

3.11 Summary

In this chapter, we have gone through a survey of the current state of the art concepts

for routing inside MANETs and discussed some techniques involved in gradient based

routing protocols. Also, we gave an introduction to the service discovery approach

inside ad hoc networks at different layers. In the next chapter we discuss the design

of our characteristics based routing protocol.
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Chapter 4

Design

The design of our CBR routing protocol for MANETs involves with the task to achieve

the successful delivery of information to nodes or endpoints having a strong gradient

to specified characteristics and to tackle the frequent and evolving network topology.

In different scenarios our protocol works by spreading characteristic advertisement

packets which finally gets decimated inside the ad hoc network. The spread of these

characteristics advertisement packets simulate the flow of a coloured water stream

from a higher gradient or potential towards a low gradient. In this chapter we will

do the analysis and design of our routing protocol and discuss the approach.

4.1 Overview

In our design for characteristic based routing, we will take the approach of features

of nodes rather than the identities of nodes as the basis for routing of the data flow.

If we look into the internet protocol or IP, it provides identity based routing at the

network layer inside the OSI architecture model, our aim is to substitute this network

layer addressing scheme with our own characteristic addressing terminology. In fixed

or wired networks each and every node is given an IP address which hints the location

of a network node or the subnet that the particular node is attached to, however in

MANETs this kind of addressing scheme becomes illogical due to the dynamic topol-

ogy where the location of nodes changes frequently, therefore we can deduce that

such IP based end to end communication is not very well suited for MANETs rather

we can argue that it is the properties or the characteristics of the nodes which are of

interest for a number of applications, such as a rapid intervention team member want-

ing to access temperature data from a thermal imaging camera, similarly among the

applications and services that are accessed on mobile devices, it is the data services
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that are without doubt the most demanded services for MANETs, hence we see that

it is all about service discovery rather than the node discovery. Our assumption to

this approach is that a node at least has one characteristic or knows some neighbour

that has one, similarly a node can have multiple characteristics and there can also be

multiple sources of the same characteristic inside the network.

In the simple case where a node has one characteristic, then this node spreads out

its characteristic information through an advertisement packet to the neighbouring

nodes which take this characteristic advertisement packet, inherit the characteristic

and then propagate or broadcast it further to their neighbouring nodes. In our ap-

proach, this kind of a flow is called a characteristic flow. Thus intermediary nodes

from their knowledge can answer the question ”Who is the next strong gradient for

a specified characteristic X?”.

Similar to the analogy of a coloured water stream flow, different flows of a particular

characteristic can join together at an intermediate node and then continue to form

a new flow. We can also deduce that the gradient is strongest at the source of a

characteristic and it starts diminishing as it moves further away. In our approach

such kind of a characteristic flow will eventually reach a stable state. Following are

the three important points to our design approach:

1. The warm-up/start-up time must be kept minimum where all characteristic

flows reach a stable state as this becomes a requirement for MANET protocols

always. This is because we do not want the application to be held for a long

time where the bandwidth is completely taken up by the packets in the early

start-up phase for the characteristic flows. Since ad hoc networks should always

deal with frequent changes in topology as mobile nodes tend to wander around,

changing their network location and link status on a regular basis, meaning

nodes could join or leave the network or could be turned off. Our CBR rout-

ing protocol must minimize the time required to converge after such topology

changes. A low convergence time is more critical in ad hoc networks because

temporary routing loops can result in packets being transmitted in circles, fur-

ther consuming valuable bandwidth.

2. In the start-up phase each characteristic takes the same steps as discussed above

for a flow inside the network as the distribution of characteristics inside the

network becomes important for the case where a node fails, however the failure
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will have less effect on the service discovery aspect.

3. A particular node upon receiving multiple characteristics will fuse them to-

gether before further broadcasting takes place. The analogy can be given of

two coloured water streams flowing, one is a red colour stream and the other is

a blue colour stream, they eventually meet together at some distance and blend

together to form a purple coloured stream and the water flow continues or prop-

agates further for the distribution. We say in this analogy that the density of

colour is lowered as the purple coloured stream flows further downstream, thus

at some far reached node the colour will become lighter purplish.

Figure 4-1: Color or Characteristic Propagation [18]

In the figure above, lets elaborate this analogy of a coloured water stream with

an example. If a node G wants to send a request to a node for a blue characteristic.

It can analyse that node F knows something about blue since its colour is inherited

purple from nodes D and E and thus the request will eventually reach node E via

node F.

4.2 Terminology

Characteristic

This represents the actual inherent features of the mobile devices which are passed

in the CBADV packets inside the ad hoc network.
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Characteristic Instance

This refers to the characteristic object, that is realised to denote an active feature of

a mobile device.

Local Characteristic Table

This refers to all the characteristic instances that are associated to a particular node

and stored inside the local table, which can also contain characteristic instances ar-

riving from other intermediate nodes.

Characteristic Propagation

This refers to the process of characteristic spread inside the mobile ad hoc network.

Weight

This refers to the gradient strength or potential of a particular characteristic instance.

Tracing

This refers to the entries added into the local characteristic table, inorder to assist for

the reverse forwarding of Characteristic Reply (CBREP) packets to those nodes that

originaly transmitted the Characteristic Request (CBREQ). The entries are added

to the path which the CBREQ follows inside the network.

4.3 Characteristic Based Communication

Our routing protocol is different to other routing protocols in the sense that it does

not involve routing based on any hop count, distance calculation or sensing the delay

in the network, but rather it measures the routing in the size of a weighted metric or in

other words computing the capacity of resources when choosing our service providers.

We use our characteristic based communication for the purpose of resource lookup

or service discovery. Inside this type of characteristic based routing the route is

always discovered or setup by a resource potential or like a weighted metric and it

fuses along the characteristic flow in order to successfully establish the route to assist

for the service discovery. We mention about the node weights as a potential value

which represents the capacity of the particular node with a characteristic. Thus each

node which has a characteristic also stores the potential value to represent its weight
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or capacity. Inside the network the spread of the characteristic as mentioned before

simulates the flow of water down in a stream. The direction of the water flow is always

from a high potential towards a low potential and also this potential is reduced along

the flow similar is the case for our characteristic flow inside the network. Also a

number of other flows might merge together at one intersection point to form into a

new stream and then continue to propagate further. Therefore we can deduce from

it that the higher potential a characteristic contains, then it has the tendency to

reach further during the propagation, conversely if a node is closer to a characteristic

source then it is likely to sense a high potential. We use potential or capacity as one

or another. With the top down encoding of our characteristics which is formed by the

underlying features of ad hoc devices or service providers, a node could be represented

with the grouping of characteristics to form a set which describes the services like for

example internet access could become a characteristic set which represent the internet

service; like dial-up, wifi or optical broadband service to name a few, for high capacity

services like the metropolitan ethernet or gigabit ethernet could be used for medium

to large business services. In our characteristics propagation inside the network, each

characteristic shows a different form of weight change depending upon the network

environment they run through. This can be explained for instance, a service offering

some print service could be accessible in a large area when the form of weight change

is minimum for the Quality Of Service (QoS) per unit of area, where as similarly a

service of an internet connection could form a higher weight change for the QoS per

unit of area, this means its range is less compared to range for the print service, this

is much similar to saying that the internet connection running a video stream for a

route that is formed over multiple hops does not give the same throughput as the

route over a single hop, thus we say that the bandwidth is reduced in a multiple hop

route path. In our design we drive the data forwarding by the capacity or a weight

gradient, where by eliminating the need for a distance vector or a hop count gradient

for the identification of the route instead we use this weight gradient to balance out

with the distance from the actual potential of a characteristic.
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4.4 Characteristic Flow

Figure 4-2: Flow

A node inside the network that has a characteristic will at recurring intervals broad-

cast its characteristic information outwards to its one hop neighbours, the neighbours

then inherit these characteristics and then spread them out more further via broad-

casts and the process continues, therefore in our characteristic based routing protocol

every node has the knowledge about the characteristics of its one hop neighbours. On

each single hop during the propagation, the weight gradient gets reduced by applying

the weight cost function. The characteristic information always flows in the direction

of a low gradient. i.e. it starts at the source which posses higher weight or capacity

towards lesser capacities inside the adhoc network. Propagation is controlled by a

cost function. Similar to Uisce [6], we define a constant ”W DIFF” which controls

the characteristics flow in our ad hoc network.

Figure 4-3: Propagation [6]

{
w1− cost ≥ w2 + wdiff ,

cost+ wdiff > 0

}
(4.1)
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The figure 4-3 illustrates the calculation of our weight cost during the propagation of

a characteristic from node N1 to N2. This figure illustrates that the sum of weight

cost plus the weight diff constant should always be greater than zero, however the

weight diff constant value can never be zero but it can be infinitely small, therefore

we can extract from this illustration that a node which contains a characteristic with

weight W can only accept incoming characteristic packets if the characteristic is of

the same type and the receiving node has the weight no lower than W - W DIFF.

Now there could be multiple sources of a characteristic inside the network and these

sources tend to meet at some intermediate node, therefore the merged characteristic

is calculated based on a weight fusion function. This function in our implementation

would generally be a MATH.max method.

max {x1, x2} =

{
x1, if x1 > x2

x2, otherwise
(4.2)

Therefore the crossed over characteristic of the same type merging at an intermediate

node will actually be worked upon by applying the max technique in order to fuse and

merge them over the selected characteristic flow or route. To summarise further our

weight cost function is applied to all the characteristics before they are broadcasted

in the advertise packets.

Figure 4-4: Characteristic Flow Diagram

4.4.1 An Example Scenario

We will look at a building fire emergency as an example scenario to describe the

workings of our protocol. In the building fire situation, their are fifteen fire fighters

who have a wearable computer attached to them all the time and it has the latest
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networking capabilities attached to it, like GSM, Bluetooth, GPRS, GPS, UMTS

and 802.11 standards technology. Now the computer that each firefighter uses should

be able to seamlessly change over with the most suitable technology or service au-

tomatically as the communication in such a scenario becomes a mission critical one

i.e. the safety of precious human life is utmost. Their can be a situation where a

fire fighter detects a dangerous substance and requires to send the still photo or a

quick voice message to some remote experts over the internet for labeling or even to

the group commander inside the fire engine. One fire fighter could want to stream

the incident video in real-time to experts for the rapid decision and response and to

control the evolving situation. Another communication could be to stream a thermal

camera video to other colleagues that do not have a thermal camera. In all these

situations the underlying technology protocols will be processed over CBR. Following

table shows the ad hoc network which has reached a stable state for our scenario.

Table 4.1: Firefight ad hoc network

Characteristics Nodes

Internet Access FE-1, FE-2

Eutelsat 15Mbps FE-1

3G-Link 2Mbps FE-2

GPS-Service 16

Camera 20, 14

Thermal 20

Night-Vision 14
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Figure 4-5: Ad hoc stable network

Nodes inside our ad hoc network do the periodic characteristic broadcast and the

characteristic flow starts propagating inside the ad hoc network. We go through this

characteristic propagation and for node M to perform the following operations:

1. Node M wants to have the thermal camera view as it does not have one.

2. Node M wants to send a short voice message (only few seconds), for the labeling

of the dangerous substance found at the incident location.

3. Node M wants to join the video conference with the area commander.

CBR Broadcast attempt in the following chronological order:

• FE-2 Characteristic broadcast; CBR protocol at node FE-2 sends down to

the lower layer, CBADV packet (characteristic=3G-Link 2Mbps, seq=1, hop-

count=0, node=FE-2)

• Node 20 Characteristic broadcast; CBR protocol at node 20 sends down to

the lower layer, CBADV packet (characteristic=Thermal, seq=1, hopcount=0,

node=20)

• Node 14 Characteristic broadcast; CBR protocol at node 14 sends down to the

lower layer, CBADV packet (characteristic=Night-Vision, seq=1, hopcount=0,

node=14)

• FE-1 Characteristic broadcast; CBR protocol at node FE-1 sends down to

the lower layer, CBADV packet (characteristic=Eutelsat 15Mbps, seq=1, hop-

count=0, node=FE-1)
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• Node 16 Characteristic broadcast; CBR protocol at node 16 sends down to the

lower layer, CBADV packet (characteristic=GPS-Service, seq=1, hopcount=0,

node=16)

• Node 23 recieves CBADV packet (characteristic=Eutelsat 15Mbps, seq=1, hop-

count=1, node=FE-1) and it inherits it inside its own characteristic table and

then spread it further to its neighbours.

• Node 8 recieves CBADV packet (characteristic=Eutelsat 15Mbps, seq=1, hop-

count=2, node=23) and it inherits it inside its own characteristic table and then

spread it further to its neighbours.

• Node 12 recieves CBADV packet (characteristic=3G-Link 2Mbps, seq=1, hop-

count=1, node=FE-2) and it inherits it inside its own characteristic table and

then spread it further to its neighbours.

• Node 13 recieves CBADV packet (characteristic=Thermal, seq=1, hopcount=1,

node=20) and it inherits it inside its own characteristic table and then spread

it further to its neighbours.

• Node 10 recieves CBADV packet (characteristic=Thermal, seq=1, hopcount=2,

node=13) and it inherits it inside its own characteristic table and then spread

it further to its neighbours.

• Node 3 recieves CBADV packets (characteristic=Eutelsat 15Mbps, seq=1, hop-

count=3, node=8), (characteristic=Thermal, seq=1, hopcount=3, node=10)

and it inherits it inside its own characteristic table and then spread it further

to its neighbours.

• Node 9 recieves CBADV packet (characteristic=Night-Vision, seq=1, hopcount=1,

node=14) and it inherits it inside its own characteristic table and then spread

it further to its neighbours.

• Node 7 recieves CBADV packet (characteristic=Night-Vision, seq=1, hopcount=2,

node=9) and it inherits it inside its own characteristic table and then spread it

further to its neighbours.

• Node 5 recieves CBADV packet (characteristic=Night-Vision, seq=1, hopcount=3,

node=7) and it inherits it inside its own characteristic table and then spread it

further to its neighbours.
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• Node M recieves CBADV packets (characteristic=3G-Link 2Mbps, seq=1, hop-

count=2, node=12), (characteristic=Eutelsat 15Mbps, seq=1, hopcount=4, node=3),

(characteristic=Thermal, seq=1, hopcount=4, node=3),

(characteristic=Night-Vision, seq=1, hopcount=4, node=5), (characteristic=GPS-

Service, seq=1, hopcount=1, node=16) and it inherits it inside its own charac-

teristic table and then waits for any characteristic update.

The shape of node M characteristic table is given below:

Table 4.2: Characteristics table of Node M

Characteristics Distance In Hops Next-Hop Node

Eutelsat 15Mbps 4 3

3G-Link 2Mbps 2 12

Thermal 4 3

Night-Vision 4 5

GPS Service 1 16

Now, if we assume that the network becomes stable and reaches a static state

i.e. weights no more fluctuate. Then if node M wants to use his video lan client

(VLC) software to hook up to the RTSP stream provided by node 20 thermal camera.

The application layer of node M can locally resolve the thermal camera node i.e.

rtsp://thermalcamera:554 which is present inside the fire fight ad hoc network, CBR

will then support the forwarding of the requests to the resource using characteristic

instance ’Thermal’. The RTSP OPTION and PLAY request is packaged into the

CBR packet and directed towards the strong gradient source via nodes 3,10 and 13.

Upon arrival at the source, the CBR protocol layer unpacks the RTSP OPTION and

PLAY requests and passes it the upper application layer at node 20, which sends back

the response to the requestor node M, following the characteristic flow downstream

via the CBR trace knowledge i.e 13,10,3. This request and response forms a service

context and handshake is established i.e. two way communication link is made and

the streaming of the video can begin.

Similarly, if node M wants to send a few seconds of voip data, node M network

layer can use the voip facility via a low bandwidth link. As the size of the message

consumes low bandwidth, our CBR protocol will choose characteristic instance ’3G-

Link 2Mbps’ and therefore the voice over ip protocol message will be packaged in the

CBR packets and forwarded to FE-2 via node 12, which then gets unpacked in the

upperlayers of FE-2 and sent out to the voip endpoint.
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However the setup of video conferencing with the area commander requires high-

bandwidth, therefore CBR in this case will communicate over the characteristic in-

stance ’Eutelsat 15Mbps’ which is a highbandwidth link and the CBR packets will

relay back and forth the traffic data i.e. VOICE(RTP) fragments over the highband-

width link using the CBR protocol.

The CBR protocol builds up the characteristic heuristics for message types like

VIDEO, VOIP, IM, EMAIL, THERMAL e.t.c and will eventually know which char-

acteristic instance to choose or prefer for data delivery based on their weights.

4.5 Characteristic Hierarchical Coding

We use a characteristic hierarchical coding model to form a coding scheme with

quality hierarchy, in this model the lowest layers inside the hierarchy have less detailed

information for intelligibility but the succeeding number of layers contribute to the

increasing quality inside the ad hoc formation.

Figure 4-6: Characteristics Hierarchical Scheme

We see that in networks, packets pass on data from one node to the other and

similarly these packets can be marked according to their importance for intelligibility

towards the characteristic inside the network, this knowledge can be useful in deter-

mining which packets could be dropped or delayed or given priority. This hierarchical

coding model becomes ideal to deal with transmission over a number of links with

different bandwidths. In a non-hierarchical coding scheme either the complete traffic

passed through a lowest bandwidth link degrades the quality of the service or to cause

the low bandwidth link to face congestion where the requestors become affected and

loose intelligibility for the service. Thus with the choice of a good hierarchical coding
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scheme, request packets could be filtered to preserve the intelligibility of characteristic

instances inside the network.

Figure 4-7: Characteristic Heirarchy - Abstraction

∣∣∣∣∣ a : InternetAccess b : LowBandwidth c : HighBandwidth

d : 1Mbps e : 10Mbps

∣∣∣∣∣ (4.3)

We see above in the figure which illustrates how a top down hierarchical encoding

for a node is computed and which is actually the union of the characteristics for

all its ancestors and for itself. This parent child relationship forms a tree structure

where we can see that the node ”e” encoding 110 is formed by the union of node ”c”

and node ”a” characteristics. Such type of a hierarchical encoding scheme simplifies

operations on the characteristics. We define such operations as a union set function

which brings along a number of characteristic flows towards an intermediate node

and then elevate this characteristic to a higher level at some remote node along the

propagation path. This means that the characteristics reaches an abstraction after

the union or fusing of a number of characteristic flows at some intermediate point

during the flow. Therefore we can say that the characteristics abstraction becomes

less detailed along the propagation path.

4.6 Data Forwarding

As we have the CBADV packets inside our routing protocol for the spread of the

characteristic. We also have CBREQ, CBREP packets to assist sending of data to

the characteristic source and receive response. The flow of these data packets is fol-

lowed in reverse to our weight gradient definition as mention in the last section. We

define this logic in our implementation where the data packets will always be prop-

agated from the nodes with lower weight to the nodes that contain higher weight

i.e. upstream. Data forwarding works by broadcasting to close proximity neighbours
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i.e. one hop neighbours. So when sending data to the source of a characteristic, the

sender has no knowledge about the location or proximity, rather it relies on the one

hop neighbours whom he thinks might have the information for the actual source of

the characteristic, thus the one hop intermediate neighbour upon receiving this data

packet continues to follow the same process that the last sender performed and so

this process continues until our data packet reaches the specified characteristic source.

Data forwarding involves the data packets that carry the information to the source,

this completes one end communication in ad hoc networking, however sometimes

there becomes a need for different applications to have two end communications i.e.

the source also wants to send a reply message back to the requestor, when it receives

a request. This puts an additional constraint to maintain the communication at both

the sender and receiver nodes. Inside our characteristic based routing we maintain

the two end communication by introducing Characteristic Trace (CBTRC) packets.

This two end communication forms a different context to the one end communi-

cation path, where the context is established whenever the first data packet arrives

at the characteristic source node.

4.7 Route Tracing

We define CBTRC entry for reverse forwarding of the replies back to the requestor.

When the CBREQ is sent from the requestor node to a characteristic source, the

protocol during its upstream propagation through the intermediary nodes, creates

reverse path trace entries in the local characteristics table of the intermediate nodes.

The entries are associated with an expiry timer, when ever the node is traversed by

the CBREQ, the trace entry expiry timer is reset to the current time plus the reverse

path expiry timeout. This way the trace characteristic entry remains fresh. Thus

when the CBREQ reaches the source, it can send back the CBREP back via the

same trace route that the request came from.

4.8 Characteristic Updating

Inside our characteristic based routing protocol, there exist a node which contain at

least one characteristic which is considered active with high gradient value and asso-

ciated to the particular node, from this node the characteristic spreads to the other
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nodes, which further stores the received characteristic information inside their local

characteristics table. Our protocol works by configuring and starting a few internal

timers, it has an internal Characteristic Advertise Timer (CBADVTIMER) message

which helps the protocol working in the network layer to initiate periodically the

CBADV packets from those nodes that want to broadcast from their active internal

characteristics set and are ready. This CBADV packet is then broadcasted to all the

neighbours. This spread is similar to a HELLO packet inside the OLSR proactive

approach, it moves forward and gets distributed like in most other gossiping proto-

cols, which are commonly defined by probabilistic flooding, Upon receiving the first

advertise packet, a node will forward this packet with a fixed probability P to the

neighbouring nodes that lie within the communication range via the known broadcast

primitive of the MAC layer. The forwarding mechanism also checks for the CBADV

packets propagated weight cost and makes sure that it is greater than the local stored

weight value for the broadcast characteristic. Also inside the forwarding mechanism

the nodes delay the forwarding of the CBADV packet for a random time which is

between 0 and fDelay. We illustrate this in our algorithm as given below.

Var: c, backoff

Map: characteristic table

# On receive characteristic advertise message AM

if AM.CHARC 6∈ characteristic tablethen

if AM.FORWARD WEIGHT COST � WEIGHT then
# Received characteristic AM for first time

add {AM.CHARC} to characteristic table

print AM

if randomDelay(1.0) ≤ cthen
wait(randomDelay(backoff))

broadcast AM to all one hop neighbours

end

end

else
discard AM

end

Algorithm 1: ADVERTISE(c) - Advertise Packet Algorithm
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4.9 Characteristic Table

Our node’s characteristics table is made up of the following fields as shown below:

Table 4.3: Characteristics Table Fields

Name Type

Characteristic string

NextWeightAddress string

NextWeight long

Weight long

SequenceNumber long

HopCount integer

ReachStable boolean

This table stores all information about the propagating characteristic flows ocur-

ring inside the ad hoc network. The lookup key is the characteristic field, which is

used to search and update entries inside the table when CBADV arrives. All the

characteristic table entries have an associated timer which is kept for the characteris-

tic staleness check to ensure that the node proximity is correct and it remains fresh.

Hence the characteristic stable field is set, in the case where a node disappears as

detected by the expiry timer event, then its value is reset as it senses that for that

particular characteristic their are no more incoming flows.

4.10 Weight Cost Calculation

We apply our simple weight cost function that simulates the weight lost in the direc-

tion to the characteristic flow. This is deduced by applying a gradient function to

calculate the minimum of the function for multiple variables.

cost(w) = w +
(w1 + const)

1!
+

(w2 + const)

2!
+

(w3 + const)

3!
... (4.4)

sinw =
∞∑
n=0

1

(2n+ 1)!
(w2n+1 + const) (4.5)

The cost term belongs to the Maclaurin series expansion where all the terms are

nonnegative integer powers of the weight cost variable. W DIFF is computed using

the sine function as below:
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∣∣∣∣∣∣∣
const = 0.5

wDiff ≈ sin(w ∗ π/α)

α = 50000

∣∣∣∣∣∣∣ (4.6)

We tune the parameters to adjust the gradient function, these are the values that

we use for our evaluation.
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Chapter 5

Implementation

This chapter discusses our implementation part, using the OMNET++ [23] network

simulation library and the usage of opensource MiXiM, INETMANET frameworks.

We concentrate on the network layer part which is the focus area of our characteristic

based routing protocol. We show the setting-up of our network model to collect our

simulation results.

Figure 5-1: Simulation model for CBR

5.1 Overview

OMNET++ uses the concept of modules that work in layers, and they can communi-

cate via sending and receiving messages. For our CBR module, we do the mapping of

our implementation system to these layers of communicating modules. The compo-

nents that we implement, and the model structure, we develop is managed through a

network description (NED) file. Our CBR modules are developed in C++. We test

our implementation by supplying the simulation engine with our test configuration
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ini file. After successfully building the program, we link our code to the omnet++

simulation kernel and execute the simulation. We have defined a number of scalar and

vector recorders inside our program to capture our test metrics for latency, through-

put, overhead and success rate.

5.1.1 MiXiM framework

MiXiM framework provides the modeling of the physical, network and application

layer. We can set the physical parameters like sensitivity and radio channel fre-

quencies for our simulation. Following figure illustrates the MiXiM model where the

devices can be configured to provide an interface to access the medium.

Figure 5-2: MiXiM - Framework model

The important aspect of setting up the network simulation for our protocol is the

medium access control and the network layer. This is the area where our protocol

efficiency will show effect. MAC layer provides the channel access function that will

support a number of nodes to be able to communicate inside the network. This

configuration setting will allow the nodes to remain connected by sharing the same

physical medium. As their are wide variety of protocols for wireless communication,

we carried out simulation with three MAC protocol implementations

1. CSMA/CA

2. LMAC (Lightweight Medium Access Protocol)

3. IEEE80211

In the end, we carried out our final evaluation based on the standard IEEE80211

MAC protocol with the following decider settings.
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Table 5.1: Decider80211

Parameter Name Parameter Value

Threshold 0.12589254117942

Our network layer component is the nitty gritty of our protocol and it is this layer that

is responsible for propagating requests to the characteristics source nodes. We view

that the network control, error control are part of this network layer implementation.

5.2 Data Structures

Following are the typedef’s for storing the characteristic weights and next hop ad-

dresses, it is this data structure that forms our routing table that we look upon in

forwarding the characteristic requests to strong sources.

struct localCharacteristicEntry {

std::string nextWeightAddress;

double nextWeight;

double weight;

int hopCount;

unsigned long seqNumber;

};

typedef std::map<std::string,

struct localCharacteristicEntry>

mapCharacteristicEntries;

typedef std::map<std::string,

mapCharacteristicEntries_>

localCharacteristicsTable;

We define a CBADVTIMER message that manages the sending of CBADV mes-

sages from nodes that inherit the characteristic instance. Each node will then asso-

ciate an entry timer to keep the local characteristics table entries fresh.

/* Timer for individual characteristic entries inside

* the local table. */

class CBR_CharacteristicLinkTimer : public CBR_Timer
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{

public:

CBR_CharacteristicLinkTimer(CBRSingleton* controller)

: CBR_Timer(controller) {}

CBR_CharacteristicLinkTimer(CBRSingleton* controller,

mapCharacteristicEntries* entry)

: CBR_Timer(controller) { singleEntry = entry; }

CBR_CharacteristicLinkTimer():CBR_Timer() {}

void expire();

};

5.3 Packets

Omnet++ provides a flexible way of modelling protocol packets for the necessary

communication among the nodes. We use this provided flexibility of message defini-

tion to create our CBR packets. The message c++ files are automatically generated

via reflection inside omnet++.

class LAddress::L3Type extends void;

packet CbrPkt

{

LAddress::L3Type destAddr;

LAddress::L3Type srcAddr;

int hopCount;

unsigned long seqNum;

string characteristic;

double weightOnPropagate;

double weight;

string data;

}

packet CbrReqPkt extends CbrPkt

{

LAddress::L3Type reqSrcAddr;

long transactionId;
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simtime_t messageTime;

}

packet CbrRepPkt extends CbrPkt

{

LAddress::L3Type reqSrcAddr;

long transactionId;

string payload;

simtime_t messageTime;

}

packet CbrTracePkt extends CbrPkt

{

LAddress::L3Type reqSrcAddr;

long transactionId;

simtime_t origTime;

simtime_t messageTime;

}

5.3.1 Request and Reply message fields

In our implementation, the communication context is one way, so we only require to

persist the address from the origination point only. i.e. when a CBREQ is generated

at the application layer from any node, this originating address is only relevant for

our one way communication. When the packet arrives at the characteristic source,

then it knows where to send back the reply, i.e. to which origination point. This

is set inside the ’ReqSrcAddr’ message field. The hop count resembles the life span

of the packet and it defaults to 4 hops. After this, the packet acquires an ascended

hierarchical code from the characteristic set and starts from fresh. Sequence number

identifies a unique message for a certain advertise characteristic originating from a

node, when it arrives at the intermediary node, this sequence number is compared to

assist for handling and keeping uptodate with the topology changes.

5.3.2 Extra message fields

In our message definition, we add extra fields for our scalar and vector recording

purpose. These include the transactionId, origTime, messageTime and data field.

TransactionId is used to collate the request and response packets arriving from the

59



source node, we match our requests with reply based on this identifier, which ini-

tialises it self from a time value and we can do a less than check to confirm that the

transactionId is increasing with each node request generated at the application layer.

(Tidn)∞n=1 (5.1)

We use the orig and message time field for the latency metric, where as the data field

is simply an optional place holder for sending back a protocol message state back to

the requestor inside the reply packet coming from the characteristic source node.

Statistics

Table 5.2: Network Layer Recordings

Type Name

Scalar Netw-Control-Overhead

Scalar Control-Data-Bits

Table 5.3: Application Layer Recordings

Type Name

Scalar Total-Requests-Received

Scalar Total-Requests-Sent

Scalar Control-Overhead

Scalar Aggregate-Latency

Scalar First-Packet-Sent-Time

Scalar Last-Packet-Receive-Time

Scalar Total-Data-Bits

StdDev Test-Stat

Vector Latencies-Raw

5.4 Single Hop Neighbor Management

The network layer also keeps track of the level 2 addresses of the one hop neighbours,

inorder to propagate the characteristic advertisement and for the request and reply

packets. For this it has a second routing table to manage the node level 2 addresses.

For this we define a typedef as below.
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typedef std::map<LAddress::L3Type, LAddress::L2Type> RoutingTable;

5.5 CBR Application Layer

This layer is responsible for sending out CBREQ packets to characteristic sources.

This layer first waits for the service application above to send a service message

destined to a particular characteristic source for initiating the path for the service

discovery. When the sending node’s application layer receives a CBREP from the

characteristic source, it passes the reply message to the upper service layer which

creates a bind for the communication endpoint and establishes a service context.

5.6 CBR Network Layer

This layer starts with the broadcast of CBADV packets inside the ad hoc network

and builds the characteristic spread. It is the source nodes which announce a strong

gradient weight. Since this layer deals with our network behaviour, it is this layer

which adds to the control overhead.

5.7 CBR as a State Machine

Inside characteristic based routing protocol the application layer and the network

layer component modules gets initialised in the beginning by reading the configura-

tion parameters supplied in the omnet.ini file.

Once these modules are set and initialised, the protocol moves from the INIT state to

the IDLE state, then it remains in an IDLE until the schedule timer for the ADVER-

TISE characteristic broadcast expires, and the protocol starts the warm-up phase

of the ad hoc network, where the nodes are trying to refresh their characteristic in-

stances list from the receiving separate broadcast messages. When the node is ready

to send an ADVERTISE broadcast message, the state is shifted to ADVERTISE state.

Similarly when a neighbouring node receives this broadcast, it moves to RECEIVE-

MESSAGE state, the RECEIVE-MESSAGE state is set when ever a message of type

CBADV, CBREQ, CBREP is received from the lower layer. The node decides if the

request is destined to a next hop address, in that case the message is forwarded or
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relayed to the next hop address, the node then shifts to RELAY-MESSAGE state.

If the CBREQ arrives at the characteristic source node then the node delivers this

message to the application layer and the CBR protocol prepares a CBREP packet

destined for the requestor and delivers it to the lower layer. The node arrives back

to the IDLE state.

Figure 5-3: State diagram

An intermediate node will buildup the weight metric and always choose the higher

gradient weight for forwarding the CBREQ to the next hop.
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Chapter 6

Evaluation

In this chapter, we evaluate the performance metrics of our characteristics based

routing protocol and present a comparative study of the results we have gathered

in our test analysis and inspect these with the other routing protocols like AODV

and OLSR. The tests are performed using the MiXiM modeling framework which is

perfect for testing mobile ad-hoc networks as it concentrates on the lower layers of

the protocol stack, we use the OMNET++ simulation engine for running our tests.

We use the INETMANET framework for testing the performance of the AODV and

OLSR routing protocols. In our evaluation, we managed to look into the latency,

throughput, control overhead and the success rate metrics. We analyze our simulation

results by calculating the mean for each performance metric.

6.1 Performance Measurements

1. We measure our latency and define it as the time taken by a CBRRequest

packet from the network layer of the requestor node until the packet arrives at

network layer of the characteristic source node. We then add this metric to our

recording vector for calculating the mean latency for the test duration.

2. We measure the control overhead by adding up the byte size of all the CBADV

packets received by each node in the entire duration of our simulation test run.

advoverhead =
n∑

M=1

advoverheadM (6.1)

Where

advoverheadM (6.2)
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is the number of advertise packets generated by node M.

3. We gather our throughput metric by calculating the amount of data that is

transferred and then divide it by the data transfer time which is actually mea-

sured by recording the time interval of the first request packet that is sent

from any requestor node and the last request packet which is received at the

characteristic source node during the entire simulation duration.

4. We measure the success rate by dividing the count of successful delivery of re-

quest packets for a characteristic source by the total number of request attempt

by all the nodes during the test run.

6.2 Generic Scenario

Figure 6-1: Node mesh 16

Our test network is composed of N nodes where N = 10 is set to simulate a low-density

network and N = 100 is set to simulate a high-density network. Nodes are placed in

an 800 by 800 square meter field, the nodes start off in a square box i.e. they are

initialised to correct positions in the square area and then they start moving with

constant speed (1mps, 5mps, 10mps, 15mps, 20mps). All the simulation test run were

completed under 120 seconds in Express mode. We use the constant speed mobility

type as one of the topology property of our network because it impacts the evolution
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of our topology. If we increase, the speed parameter, it will give us a more dynamic

network topology. The node wait time is a default to 5 seconds, higher this number,

more likely the network topology shifts to static. We choose our speed depending on

the range of our radio module during our simulation. We show our result statistics

in average metrics.

Table 6.1: Settings

Parameter Value

CBADV Interval Random [1-9] sec

CBREQ Frequency 10/sec

Theta 0.5

Mobility-Type ConstSpeedMobility,MassMobility

Nodes 10,16,20,25,30,40,50,60,70,80,90,100

Table 6.2: Simulation parameters for our physical layer

Module Parameter Value

connectionManager alpha 4

connectionManager sat -120dBm

connectionManager pMax 110.11mW

phy maxTXPower 110.11mW

phy sensitivity -119.5dBm

mac bitrate 2E+6bps

radio berTableFile per table 80211g Trivellato.dat

wlan typename Ieee80211Nic

To test the feasibility and correctness of our characteristics based routing protocol,

we tested it in two different mobility settings, ”Mass Mobility and Constant Speed Mobility”.

We also in the start used ”Stationary Mobility” where the nodes are standalone and

do not move. Each node was configured to use the IEEE802.11 MAC and the ra-

dius of the range for our radio module were set to 100 metres inside our physical

model. We setup a test environment using the INETMANET framework for analyz-

ing the latency and successrate for the provided implementation of the AODV and

OLSR routing protocols. We updated the UDPBasicApp provided in the framework

to collect the latency and success rate metric, exactly like in our test setup inside
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MiXiM where a number of nodes were configured to be characteristic source nodes

and other were setup as requestor nodes sending out request packets to a number of

characteristics. In all our simulation test runs, the traffic model used was UDP packet

flows, with 100 byte payloads and the traffic sources were configured to send out 10

requests per second. We used the available INETMANET framework for evaluating

the latency and the successrate using AODV and OLSR protocol.

6.3 Latency

In our simulation we found the latency to be acceptable. As the design of our protocol

is proactive, we see from the latency graphs that AODV adds extra latency because

it works in reactive mode, meaning it adds extra delay in finding new routes.

Figure 6-2: Mobility 1mps
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Figure 6-3: Mobility 10mps

We analyse, that the latency drops, as the mobility speed increases for AODV.

We found OLSR faired better in latency.

Figure 6-4: Mobility 20mps

67



6.4 Success Rate

The success rate metric tells us about the efficiency of our routing protocol. We

measure it by accumulating the count of the CBREQ received at the characteristic

source originating from the application layer of different requestor nodes. From our

test, we managed to see around 65 percent average success rate which is better to the

OLSR metric of 44 percent, but behind the AODV success rate. Issue of lower success

rate to AODV is found to be because of packets being dropped in the simulation as

no alternate route could be found. This was investigated to be because our network

did not reach a stable state where the weight values kept fluctuating with the increase

in mobility.

Figure 6-5: Success Rate

6.5 Throughput

This metric will effect the performance of applications, therefore, we need to look for

a high throughput, as a high metric value becomes a quality trait for communication

networks and routing protocols. We setup our simulation test to analyze how the

varying mobility settings and the characteristic route length will effect the throughput

value. The characteristic route path is at maximum inside high density i.e. when N

= 100. Our request packet was a constant block size meaning the size of the packets
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data and header part remained constant and did not change during the simulation

run. The test was carried out with 5 iterations in express mode using the omnet++

simulation engine.

Figure 6-6: Throughput - Requests traffic (10/sec) for two characteristics

The above graph shows that the throughput in our characteristics based routing

protocol increases as the node density increases. We can see that the throughput

value tends to converge as we shift to the higher node density areas.

6.6 Overhead

We studied different grid settings for analyzing the advertise routing overhead, we

worked out the test plan for low density N = 20 and high density network N = 100.

We did not manage to achieve a horizontal line. However, in our test we did achieve

near to perfect connectivity for low density N = 20 and N = 40, the higher the density

the routing overhead gets increased inside high mobility. Following figure illustrates

our findings.
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Figure 6-7: Overhead advertise in bit/sec
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Chapter 7

Conclusions

In this master proof, we have studied the issue of delivering and routing data traffic

based on node features or characteristics rather than the assigned IP addresses. We

have given a complete view of why this approach is feasible for MANETs where their

becomes a huge demand in enterprise for setting up urgent communication network

in situations of war conflict and emergency disaster relief operations due to some

major incident. We have shown how our routing protocol seamlessly and efficiently

provides service discovery and assistance for communication to nodes that announce

specific features or characteristics. We have tested in simulation the scalability of

the protocol in the presence of different mobility settings and route failures and we

have achieved acceptable latency level for the data delivery in MANETs. We have

in our design shown that nodes in close proximity are chosen than the distant nodes

unless we sense routes with high potential over the distant path. Therefore, we can

conclude that our protocol integrates the characteristics routing correctly with service

discovery.

7.1 Future Work

Following are the areas that we are aware to improve further in the development of

this protocol.

1. Research into the design of hybrid heuristics using simulation technique in a

highly heterogeneous network space with unique services.

2. A truth based mechanism for ensuring that the nodes are not declaring a false

weight cost during the broadcast, in order to protect from some malicious at-

tacker.
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3. Reducing the algorithmic complexity to self adjust when a low bandwidth is

sensed and when using battery power reserve.

4. Bundling of multiple characteristic instances.

5. Adding a session control mechanism when the nodes battery power has gone

below a threshold level or has wandered off too far. Inorder to keep track of the

communication, when the node reappears.
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Appendix A

Source Code

This appendix, provides with the source code of our proof of concept characteristics

based routing protocol which is implemented using OMNET++ v4.3 [19] network

simulator and using the MiXiM v2.3 [20] framework.

A.1 Network Layer Module

A.1.1 CbrNetwLayer.CC

#include "CbrNetwLayer.h"
Define_Module(CbrNetwLayer);
/*--------methods----------*/
CbrNetwLayer::CbrNetwLayer() :

BaseModule(), boredTime(), maxTtl(0), na(), dataIn(-1), dataOut(-1),
startCharacteristicAdvertisement(NULL), runningSeqNumber(0),
cntrlOverhead(0), ohNumberOfControlBits(0), routingTable() {

cbrSingleton = cbrSingleton->getInstance();
}
CbrNetwLayer::~CbrNetwLayer() {

cancelAndDelete(startCharacteristicAdvertisement);
delete cbrSingleton;

}
void CbrNetwLayer::scheduleCharacteristicAdvertisement() {

if (startCharacteristicAdvertisement->isScheduled()) {
cancelEvent(startCharacteristicAdvertisement);

}
scheduleAt(simTime() + (rand() % (9 - 1 + 1) + 1),

startCharacteristicAdvertisement);
}
void CbrNetwLayer::broadcastAdvertisement() {

printLog("Broadcasting advertisement packet.");
cbrpkt_ptr_t helloAdvertisement = new cbrpkt_t("ADVERTISE", ADVERTISE);
helloAdvertisement->setBitLength(10 * 8);
helloAdvertisement->setDestAddr(LAddress::L3BROADCAST);
helloAdvertisement->setSrcAddr(na);
helloAdvertisement->setSeqNum(runningSeqNumber++);
helloAdvertisement->setHopCount(1);
NetwToMacControlInfo::setControlInfo(helloAdvertisement,

LAddress::L2BROADCAST);
const_cast<cModule*>(getNode())->bubble(

"Advertise Message #" + runningSeqNumber);
sendDown(helloAdvertisement);

}
void CbrNetwLayer::sendDown(cPacket* pkt) {

send(pkt, dataOut);
}
/* Method takes care of forwarding the ADVERTISE~ment
* messages to single-hop nodes during a
* characteristics broadcast */

void CbrNetwLayer::handleAdvertise(cMessage* msg, cbrpkt_ptr_t pkt,
double rssi) {

/* Who advertise this message */
const LAddress::L3Type& srcNodeAddress = pkt->getSrcAddr();
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/* We already know ourself, i.e. it matches our NA (Node Address) */
if (srcNodeAddress == na) {

std::stringstream printSrcNodeAddress(std::stringstream::out);
printSrcNodeAddress << "PrintLog::HandleAdvertise - SrcNodeAddress: "

<< srcNodeAddress << " NodeAddress: " << na;
printLog(printSrcNodeAddress.str());
delete pkt;
return;

}
/* Have we got information about him already? Start building the routing table. */
if (routingTable.count(srcNodeAddress) == 0) {

/* If not then add him to our routing table with the mac address of the previous hop */
MacToNetwControlInfo* cInfo =

static_cast<MacToNetwControlInfo*>(pkt->getControlInfo());
const LAddress::L2Type& prevHop = cInfo->getLastHopMac();
routingTable[srcNodeAddress] = prevHop;
cbrSingleton->getInstance()->insertIntoAddressTable(srcNodeAddress,

prevHop);
/*std::stringstream osBuff(std::stringstream::out);
osBuff << "Got advertise packet from host[" << (srcNodeAddress - 1) << "]-"
<< srcNodeAddress << " prevHop: " << routingTable[srcNodeAddress];
const_cast<cModule*>(getNode())->bubble(osBuff.str().c_str());
printLog(osBuff.str());*/

/* Now also schedule characteristic advertisement */
scheduleCharacteristicAdvertisement();
ohNumberOfControlBits += pkt->getBitLength();
delete pkt;
return;

} else {
std::stringstream thisNodeAddress;
thisNodeAddress << na;
std::stringstream nextNodeAddress;
nextNodeAddress << pkt->getSrcAddr();
std::string pktCharacteristic = pkt->getCharacteristic();
/* Make sure the source node is eliminated from the characteristic
propagation stream flow */

bool isConfiguredAsSourceNode =
cbrSingleton->getInstance()->isConfiguredAsSourceNode(

thisNodeAddress.str(), pktCharacteristic);
/* Make sure the incomming packet has the propagation weight larger than the
one stored for the node inside the local table */
double localWeightStored =

cbrSingleton->getInstance()->getLocalNodeStoredCharacteristicWeight(
thisNodeAddress.str(), pktCharacteristic);

int localTotalRoutes =
cbrSingleton->getInstance()->getTotalAddressRoutes();

/* Looks like a characteristic advertisement packet has arrived from some
neighbour, deal with it and propagate it further */

if (!isConfiguredAsSourceNode /*&& localTotalRoutes != (numHosts-1)*/
&& pkt->getWeightOnPropagate() > localWeightStored

&& pkt->getWeight() > 0 && pktCharacteristic.size() > 0
/*&& pkt->getHopCount() <= maxTtl*/) {

cbrSingleton->getInstance()->insertAdvCharacteristic(
thisNodeAddress.str(), pktCharacteristic,
nextNodeAddress.str(), pkt->getWeight(),
pkt->getWeightOnPropagate(), pkt->getHopCount(),
pkt->getSeqNum());

cbrSingleton->getInstance()->printLocalCharacteristicsTable();
cbrpkt_ptr_t propagateAdvertisement = new cbrpkt_t("ADVERTISE",

ADVERTISE);
propagateAdvertisement->setBitLength(10 * 8);
/* Gather the weight cost from last hop address */
double weightPropagationCost = pkt->getWeightOnPropagate();
/* Calculate the weight flow for the next propagation */
double nextWeightPropagationCost =

cbrSingleton->getInstance()->prepareWeightCost(rssi,
weightPropagationCost);

int timeToLive = pkt->getHopCount();
propagateAdvertisement->setDestAddr(LAddress::L3BROADCAST);
propagateAdvertisement->setSrcAddr(na);
propagateAdvertisement->setHopCount(++timeToLive);
propagateAdvertisement->setWeight(weightPropagationCost);
propagateAdvertisement->setWeightOnPropagate(

nextWeightPropagationCost);
propagateAdvertisement->setSeqNum(pkt->getSeqNum());
propagateAdvertisement->setCharacteristic(

pktCharacteristic.c_str());
NetwToMacControlInfo::setControlInfo(propagateAdvertisement,

LAddress::L2BROADCAST);
const_cast<cModule*>(getNode())->bubble(

"Propagating characteristic advertise message #"
+ propagateAdvertisement->getSeqNum());

sendDown(propagateAdvertisement);
if (controlBegin) {

cntrlOverhead = simTime() - cntrlOverhead;
testCntrlOh.collect(SIMTIME_DBL(cntrlOverhead));

}
}
/* Now also schedule characteristic advertisement */
scheduleCharacteristicAdvertisement();
ohNumberOfControlBits += pkt->getBitLength();
delete pkt;
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}
}
/* Timer method which takes care of sending out the
* ADVERTISE~ment messages for a broadcast */

void CbrNetwLayer::handleAdvertiseCharacteristicsTimerMessage(cMessage* msg,
double rssi) {

int localTotalRoutes = cbrSingleton->getInstance()->getTotalAddressRoutes();
nodeConfCharacteristics_ ncc =

cbrSingleton->getInstance()->getConfCharacteristics();
int iterator = 0;
if (ncc.size() > 0) {

for (std::map<std::string, characteristicEntries_>::iterator it =
ncc.begin(); it != ncc.end(); ++it) {

std::string address = it->first;
characteristicEntries_ entries = it->second;
std::stringstream myaddress;
myaddress << na;
if (address

== myaddress.str() /*&& localTotalRoutes != (numHosts-1)*/) {
if (entries.size() > 0) {

for (std::map<std::string, double>::iterator it1 =
entries.begin(); it1 != entries.end(); ++it1) {

std::string characteristic = it1->first;
if (it1->second > 0L) {

/* Now also start characteristic advertisement to neighbours */
double weightCharacteristic = it1->second;
/* Apply Cost Function */
double weightPropagationCost =

cbrSingleton->getInstance()->prepareWeightCost(
rssi, weightCharacteristic);

cbrpkt_ptr_t characteristicAdvertisement =
new cbrpkt_t("ADVERTISE", ADVERTISE);

characteristicAdvertisement->setBitLength(10 * 8);
characteristicAdvertisement->setDestAddr(

LAddress::L3BROADCAST);
characteristicAdvertisement->setSrcAddr(na);
characteristicAdvertisement->setSeqNum(

runningSeqNumber++);
characteristicAdvertisement->setHopCount(1);
characteristicAdvertisement->setWeightOnPropagate(

weightPropagationCost);
characteristicAdvertisement->setWeight(

weightCharacteristic);
characteristicAdvertisement->setCharacteristic(

characteristic.c_str());
NetwToMacControlInfo::setControlInfo(

characteristicAdvertisement,
LAddress::L2BROADCAST);

const_cast<cModule*>(getNode())->bubble(
"Characteristic Advertise Message #"

+ runningSeqNumber);
sendDown(characteristicAdvertisement);

}
}

}
}

}
}
/* Now also schedule characteristic advertisement */
scheduleCharacteristicAdvertisement();

}
/* Method takes care of forwarding the CBRRequests
* to the strong characteristic source. */

void CbrNetwLayer::handleServiceRequest(cMessage* msg) {
if (dynamic_cast<ApplPkt*>(msg) != NULL) {

ApplPkt* requestPacket = static_cast<ApplPkt*>(msg);
if (requestPacket != NULL

&& (requestPacket->getData()
&& requestPacket->getData()[0] != ’\0’)) {

std::ostringstream logMessage;
logMessage << "Received service request message for "

<< requestPacket->getData() << " Source: "
<< requestPacket->getSrcAddr() << " Dest: "
<< requestPacket->getDestAddr() << " transaction number "
<< cbrSingleton->getInstance()->LongToString(

requestPacket->getTransactionId()) << endl;
std::stringstream nodeAddress;
nodeAddress << na;
bool reachedSourceNode =

cbrSingleton->getInstance()->isConfiguredAsSourceNode(
nodeAddress.str(), requestPacket->getData());

if (reachedSourceNode) {
std::cout << "Do nothing, source node "

<< requestPacket->getSrcAddr() << " and host is " << na
<< endl;

/* Now send the received message to the upper layer also as we
have reached the source node */

/* ApplPkt* rupmsg = new ApplPkt("REQUEST_CHARACTERISTIC",
REQUEST_CHARACTERISTIC);

rupmsg->setBitLength((100 * 8));
rupmsg->setData(requestPacket->getData());
rupmsg->setSrcAddr(requestPacket->getSrcAddr() );
rupmsg->setDestAddr(requestPacket->getDestAddr());
rupmsg->setTransactionId(requestPacket->getTransactionId());
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rupmsg->setSentTime(msg->getCreationTime());
NetwControlInfo::setControlInfo(rupmsg, requestPacket->getDestAddr());
send(rupmsg, findGate("upperLayerOut"));*/

} else {
if (nodeAddress.str().size() > 0) {

std::string nextNodeAddress =
cbrSingleton->getInstance()->getNextNodeAddress(

nodeAddress.str(),
requestPacket->getData());

if (nextNodeAddress.size() > 0) {
cbrreqpkt_t* fwd = new cbrreqpkt_t(

"REQUEST_CHARACTERISTIC",
REQUEST_CHARACTERISTIC);

LAddress::L3Type nextHopL3Address = LAddress::L3Type(
atol(nextNodeAddress.c_str()));

LAddress::L2Type nextHopL2Address =
routingTable[nextHopL3Address];

fwd->setSrcAddr(na);
fwd->setDestAddr(nextHopL3Address);
fwd->setReqSrcAddr(requestPacket->getSrcAddr());
fwd->setTransactionId(

requestPacket->getTransactionId());
fwd->setCharacteristic(requestPacket->getData());
fwd->setMessageTime(msg->getCreationTime());
std::string rroutePath;
std::stringstream requestSourceAddress;
rroutePath.append("REQUEST_CHARACTERISTIC_");
rroutePath.append(requestPacket->getData());
rroutePath.append("_");
rroutePath.append(

cbrSingleton->getInstance()->LongToString(
requestPacket->getTransactionId()));

rroutePath.append(" REQUESTOR ");
rroutePath.append(" >> ");
requestSourceAddress << requestPacket->getSrcAddr();
rroutePath.append(requestSourceAddress.str());
rroutePath.append(" >> ");
rroutePath.append(nextNodeAddress);
fwd->setData(rroutePath.c_str());
/*std::cout << "GOT REQUEST from " << requestPacket->getSrcAddr()
<< " and arrive, host is " << na
<< " nextNodeAddr is " << nextNodeAddress
<< " FWD_DEST_ADDR_L3 is " << nextHopL3Address
<< " FWD_DEST_ADDR_L2 is " << nextHopL2Address
<< endl;*/

/* Make sure to use rolling sequence number from this node
* when characteristic based routing begins for the request packet
* coming from the upper layer */

fwd->setSeqNum(runningSeqNumber++);
fwd->setHopCount(1);
NetwToMacControlInfo::setControlInfo(fwd,

nextHopL2Address);
sendDown(fwd);

}
}

}
}
delete msg;

} else if (dynamic_cast<CbrReqPkt*>(msg) != NULL) {
cbrreqpkt_t* forwardedPacket = static_cast<cbrreqpkt_t*>(msg);
std::stringstream nodeAddress;
nodeAddress << na;
if (forwardedPacket != NULL) {

std::ostringstream logMessage;
logMessage

<< "2) Received forwarded service request message for characteristic "
<< forwardedPacket->getCharacteristic()
<< " source address " << forwardedPacket->getSrcAddr()
<< " dest address " << forwardedPacket->getDestAddr()
<< " transaction number "
<< forwardedPacket->getTransactionId() << endl;

bool reachedSourceNode =
cbrSingleton->getInstance()->isConfiguredAsSourceNode(

nodeAddress.str(),
forwardedPacket->getCharacteristic());

if (reachedSourceNode) {
/* Display now the request message path vector */
std::ostringstream displayPathVector;
displayPathVector << forwardedPacket->getData();
printLog(displayPathVector.str());
/* As we have reached the source node for the

* characteristic request, prepare a reply */
cbrreppkt_t* replyBack = new cbrreppkt_t("REPLY_CHARACTERISTIC",

REPLY_CHARACTERISTIC);
LAddress::L3Type lastHopL3Address =

forwardedPacket->getSrcAddr();
LAddress::L2Type lastHopL2Address =

routingTable[lastHopL3Address];
replyBack->setSrcAddr(na);
replyBack->setDestAddr(lastHopL3Address);
replyBack->setReqSrcAddr(forwardedPacket->getReqSrcAddr());
replyBack->setTransactionId(

forwardedPacket->getTransactionId());
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replyBack->setCharacteristic(
forwardedPacket->getCharacteristic());

replyBack->setMessageTime(forwardedPacket->getMessageTime());
/* Make sure to use rolling sequence number from this node for this reply packet */
replyBack->setSeqNum(runningSeqNumber++);
replyBack->setHopCount(1);
LAddress::L2Type macAddressReached =

cbrSingleton->getInstance()->getMacAddressForNode(na);
std::ostringstream nodeMacAddress1;
nodeMacAddress1 << macAddressReached;
std::string nodeMacAddress2;
nodeMacAddress2.append(nodeMacAddress1.str());
std::string payload;
payload.append(forwardedPacket->getCharacteristic());
payload.append(

" service can be reached and the service MAC address is ");
payload.append(nodeMacAddress2.c_str());
replyBack->setPayload(payload.c_str());
/* Send back reply message and set the reply route */
std::string rproutePath;
std::stringstream sourceNode;
sourceNode << na;
std::stringstream forwardNode;
forwardNode << lastHopL3Address;
rproutePath.append("REPLY_CHARACTERISTIC_");
rproutePath.append(forwardedPacket->getCharacteristic());
rproutePath.append("_");
rproutePath.append(

cbrSingleton->getInstance()->LongToString(
forwardedPacket->getTransactionId()));

rproutePath.append(" SOURCE ");
rproutePath.append(" << ");
rproutePath.append(sourceNode.str());
rproutePath.append(" << ");
rproutePath.append(forwardNode.str());
replyBack->setData(rproutePath.c_str());
NetwToMacControlInfo::setControlInfo(replyBack,

lastHopL2Address);
// sendDown(replyBack);
/* Now send the received message to the upper layer also as
* we have reached the source node */

ApplPkt* rupmsg = new ApplPkt("REQUEST_CHARACTERISTIC",
REQUEST_CHARACTERISTIC);

rupmsg->setBitLength((100 * 8));
rupmsg->setData(forwardedPacket->getCharacteristic());
rupmsg->setSrcAddr(forwardedPacket->getSrcAddr());
rupmsg->setDestAddr(forwardedPacket->getDestAddr());
rupmsg->setTransactionId(forwardedPacket->getTransactionId());
rupmsg->setSentTime(forwardedPacket->getMessageTime());
NetwControlInfo::setControlInfo(rupmsg,

forwardedPacket->getDestAddr());
/* Send it back to the application layer above */
send(rupmsg, findGate("upperLayerOut"));

} else {
if (nodeAddress.str().size() > 0) {

std::string nextNodeAddress =
cbrSingleton->getInstance()->getNextNodeAddress(

nodeAddress.str(),
forwardedPacket->getCharacteristic());

if (nextNodeAddress.size() > 0) {
cbrreqpkt_t* fwd = new cbrreqpkt_t(

"REQUEST_CHARACTERISTIC",
REQUEST_CHARACTERISTIC);

LAddress::L3Type nextHopL3Address = LAddress::L3Type(
atol(nextNodeAddress.c_str()));

LAddress::L2Type nextHopL2Address =
routingTable[nextHopL3Address];

fwd->setSrcAddr(na);
fwd->setDestAddr(nextHopL3Address);
fwd->setReqSrcAddr(forwardedPacket->getReqSrcAddr());
fwd->setTransactionId(

forwardedPacket->getTransactionId());
fwd->setCharacteristic(

forwardedPacket->getCharacteristic());
fwd->setSeqNum(forwardedPacket->getSeqNum());
fwd->setHopCount(forwardedPacket->getHopCount() + 1);
fwd->setMessageTime(forwardedPacket->getMessageTime());
/* Set the flowing route path */
std::ostringstream routePath;
routePath << forwardedPacket->getData();
std::string routePath1;
routePath1.append(routePath.str());
routePath1.append(" >> " + nextNodeAddress);
fwd->setData(routePath1.c_str());
NetwToMacControlInfo::setControlInfo(fwd,

nextHopL2Address);
sendDown(fwd);

}
}

}
delete forwardedPacket;

}
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}
}
/* Method takes care of forwarding the service
* reply message in a reverse forward path.
*/

void CbrNetwLayer::handleServiceReply(cMessage* msg) {
if (dynamic_cast<CbrRepPkt*>(msg) != NULL) {

cbrreppkt_t* replyPacket = static_cast<cbrreppkt_t*>(msg);
std::stringstream nodeAddress;
nodeAddress << na;
if (replyPacket != NULL) {

if (na == replyPacket->getReqSrcAddr()) {
/* Display now the reply message path vector */
std::ostringstream displayPathVector;
displayPathVector << replyPacket->getData();
printLog(displayPathVector.str());
// create and send a new message
ApplPkt* rmsg = new ApplPkt("REPLY_CHARACTERISTIC",

REPLY_CHARACTERISTIC);
rmsg->setBitLength((100 * 8));
rmsg->setData(replyPacket->getCharacteristic());
rmsg->setSrcAddr(replyPacket->getSrcAddr());
rmsg->setDestAddr(replyPacket->getDestAddr());
rmsg->setTransactionId(replyPacket->getTransactionId());
rmsg->setSentTime(replyPacket->getMessageTime());
NetwControlInfo::setControlInfo(rmsg,

replyPacket->getDestAddr());
/* Send it back to the application layer above */
send(rmsg, findGate("upperLayerOut"));

} else {
/* Get the next hop relaying address from the path vector */
std::string forwardingNodeAddress =

cbrSingleton->getInstance()->getForwardingNodeAddress(
nodeAddress.str(),
replyPacket->getCharacteristic());

if (!forwardingNodeAddress.empty()) {
/* As we have reached the source node for the characteristic
request, prepare a reply */

cbrreppkt_t* relayNextTo = new cbrreppkt_t(
"REPLY_CHARACTERISTIC", REPLY_CHARACTERISTIC);

LAddress::L3Type relayToL3Address = LAddress::L3Type(
atol(forwardingNodeAddress.c_str()));

LAddress::L2Type relayToL2Address =
routingTable[relayToL3Address];

relayNextTo->setSrcAddr(na);
relayNextTo->setDestAddr(relayToL3Address);
relayNextTo->setReqSrcAddr(replyPacket->getReqSrcAddr());
relayNextTo->setTransactionId(

replyPacket->getTransactionId());
relayNextTo->setCharacteristic(

replyPacket->getCharacteristic());
/* Make sure to use rolling sequence number from this
node for this reply packet */

relayNextTo->setSeqNum(replyPacket->getSeqNum());
relayNextTo->setHopCount(relayNextTo->getHopCount() + 1);
relayNextTo->setPayload(replyPacket->getPayload());
relayNextTo->setMessageTime(replyPacket->getMessageTime());
/* Set the reverse route path */
std::ostringstream revRoutePath;
std::stringstream relayNode;
relayNode << relayToL3Address;
revRoutePath << replyPacket->getData();
std::string routePath2;
routePath2.append(revRoutePath.str());
routePath2.append(" << " + relayNode.str());
relayNextTo->setData(routePath2.c_str());
NetwToMacControlInfo::setControlInfo(relayNextTo,

relayToL2Address);
sendDown(relayNextTo);

}
}

}
delete replyPacket;

}
}
void CbrNetwLayer::printLog(std::string logStatement) {

EV<< logStatement << endl;
std::cout << logStatement << endl;

}
/* Gather our metric inside for the control overhead */
void CbrNetwLayer::finish() {

recordScalar("Netw-Control-Overhead", testCntrlOh.getMean());
recordScalar("Control-Data-Bits", ohNumberOfControlBits);

}
/* Method is called during our simulation run and our
* network protocol module gets initialized */

void CbrNetwLayer::initialize(int stage) {
if (stage == 0) {

dataOut = findGate("lowerLayerOut");
dataIn = findGate("lowerLayerIn");
/* FindModule<>::findHost(this)->getDisplayString().
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setTagArg("i", 0, "device/accesspoint");*/
numHosts = par("numHosts");
std::cout << "Number of hosts configured " << numHosts << endl;
na = LAddress::L3Type(par("na").longValue());
maxTtl = par("maxTtl").longValue();
boredTime = par("boredTime").doubleValue();
/* Read this nodes main characteristics from omnetpp.ini */
cbrSingleton->getInstance()->populateConfCharacteristics(

par("na").str(), par("nodeCharacteristics"));
cbrSingleton->getInstance()->printConfCharacteristics();
cntrlOverhead = simTime();

} else if (stage == 1) {
startCharacteristicAdvertisement = new cMessage(

"ADVERTISE_CHARACTERISTICS_TIMER",
ADVERTISE_CHARACTERISTICS_TIMER);

broadcastAdvertisement();
}

}
/* Method which is called for processing all incoming
* and outgoing traffic (Adevrtise, CBRRequest, CBRReply)
* packets inside our network protocol layer
*
* This is where all the characteristic based routing
* occurs. */

void CbrNetwLayer::handleMessage(cMessage* msg) {
/* Ignore RSSI */
double rssi = 0.0;
switch (msg->getKind()) {
case ADVERTISE:

handleAdvertise(msg, static_cast<cbrpkt_ptr_t>(msg), rssi);
break;

case ADVERTISE_CHARACTERISTICS_TIMER:
handleAdvertiseCharacteristicsTimerMessage(msg, rssi);
break;

case REQUEST_CHARACTERISTIC:
handleServiceRequest(msg);
break;

case REPLY_CHARACTERISTIC:
handleServiceReply(msg);
break;

case BaseMacLayer::PACKET_DROPPED:
printLog("Packet dropped by MAC layer.");
delete msg;
break;

default:
error("unknown packet type of packet %s", msg->getName());
break;

}
}

A.2 Application Layer Module

A.2.1 CbrApplLayer.CC

#include "CbrApplLayer.h"
#include "BaseMacLayer.h"
#include "NetwControlInfo.h"
#include "ApplPkt_m.h"
Define_Module(CbrApplLayer);
/* Method is called when our simulation starts
* Parameters are initialized from our omnet.ini
* conf file */

void CbrApplLayer::initialize(int stage) {
BaseModule::initialize(stage);
if (stage == 0) {

/* Begin by connecting the gates
to allow messages exchange */

dataOut = findGate("lowerLayerOut");
dataIn = findGate("lowerLayerIn");
ctrlOut = findGate("lowerControlOut");
ctrlIn = findGate("lowerControlIn");
// Retrieve parameters
debug = par("debug").boolValue();
stats = par("stats").boolValue();
trace = par("trace").boolValue();
isTransmitting = false;
nbPackets = par("nbPackets");
trafficParam = par("trafficParam").doubleValue();
nodeAddr = LAddress::L3Type(par("nodeAddr").longValue());
dstAddr = LAddress::L3Type(par("dstAddr").longValue());
flood = par("flood").boolValue();
PAYLOAD_SIZE = par("payloadSize"); // data field size
PAYLOAD_SIZE = PAYLOAD_SIZE * 8; // convert to bits
/* Configure internal state variables and objects */
numberTotalReqSent = 0;
numberTotalReqReceived = 0;
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controlOverhead = simTime();
nbPacketsReceived = 0;
remainingPackets = nbPackets;
INITIAL_DELAY = 5; // initial delay before sending first packet
/* Start timer if needed */
if (nodeAddr != 0 && remainingPackets > 0) {

delayTimer = new cMessage("app-delay-timer");
/* we add a small shift to avoid systematic collisions */
scheduleAt(simTime() + INITIAL_DELAY + uniform(0, 0.001),

delayTimer);
} else {

delayTimer = 0;
}
if (stats) {

/* we should collect statistics */
int nbNodes = getNode()->size();
for (int i = 0; i < nbNodes; i++) {

std::ostringstream oss;
oss << "latency";
oss << i;
cStdDev aLatency(oss.str().c_str());
latencies.push_back(aLatency);

}
}
if (trace) {

/* record all packet arrivals */
latenciesRaw.setName("rawLatencies");
oneEndLatenciesRaw.setName("OneEndRawLatencies");

}
scheduleDelayTime();

}
}
CbrApplLayer::~CbrApplLayer() {

if (delayTimer)
cancelAndDelete(delayTimer);

}
/* Method called to tidy things up and record all
* our required statistics for results */

void CbrApplLayer::finish() {
if (stats) {

recordScalar("Total-Requests-Received", numberTotalReqReceived);
recordScalar("Total-Requests-Sent", numberTotalReqSent);
recordScalar("Packets-Received", nbPacketsReceived);
recordScalar("Aggregate-Latency", testStat.getMean());
recordScalar("Control-Overhead", testControl.getMean());
for (unsigned int i = 0; i < latencies.size(); i++) {

cStdDev aLatency = latencies[i];
aLatency.record();

}
/* Throughput Time */
recordScalar("First-Packet-Sent-Time", firstCbrPacketTime);
recordScalar("Last-Packet-Receive-Time", lastCbrPacketTime);
recordScalar("Total-Data-Bits", tpTotalNumberOfBits);

}
}
/* Method to manage the delay timer for sending out the
* CBRRequests */

void CbrApplLayer::scheduleDelayTime() {
if (delayTimer->isScheduled()) {

cancelEvent(delayTimer);
}
scheduleAt(simTime() + (rand()%(9-1 + 1) + 1), delayTimer);

}
/* Method which is called when a CBRRequest packet arrives into
* our source node’s application layer, where other nodes
* sending out the CBRRequest packets for a characteristic,
* It generates all our statistics for the latency, throughput,
* overhead and successrate.
*
* Also gather relevant statistics for the CBRReply packet
* arriving from the strong characteristic source node */

void CbrApplLayer::handleMessage(cMessage * msg) {
debugEV << "In CbrApplLayer::handleMessage" << endl;
if (msg == delayTimer) {

if (debug) {
debugEV << " processing application timer." << endl;

}
std::stringstream thisNodeAddress;
thisNodeAddress << nodeAddr;
std::string strNodeAddress;
strNodeAddress = thisNodeAddress.str();
if (!isTransmitting && flood ) {

/*const long double sysTime = time(0);
const long double sysTimeMS = sysTime*1000;*/

// create and send a new message
ApplPkt* msg = new ApplPkt("REQUEST_CHARACTERISTIC",

REQUEST_CHARACTERISTIC);
msg->setBitLength(PAYLOAD_SIZE);
/* Now send out random characteristic request */
int randCharacteristic = rand()%(2-1 + 1) + 1;
if (randCharacteristic == 1)

msg->setData("AAAABBAA");
else if (randCharacteristic == 2)

msg->setData("AAAABBBB");
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else if (randCharacteristic == 3)
msg->setData("AABBBBAA");

msg->setSrcAddr(nodeAddr);
msg->setDestAddr(LAddress::L3BROADCAST);
msg->setTransactionId(

((transactionid--) + atol(strNodeAddress.c_str())));
/* Broadcast it to neighbours */
NetwControlInfo::setControlInfo(msg, LAddress::L3BROADCAST);
if (debug) {

debugEV << " sending down new data message to"
<< " MAC layer for radio transmission."
<< endl;

}
send(msg, dataOut);
numberTotalReqSent++;
tpTotalNumberOfBits += msg->getBitLength();
if (!controlBegin) {

controlOverhead = simTime() - controlOverhead;
testControl.collect(SIMTIME_DBL(controlOverhead));
controlBegin = true;

}
if (!sentFirstCbrPacketTime) {

firstCbrPacketTime = simTime();
sentFirstCbrPacketTime = true;

}
/* update internal state */
remainingPackets--;

}
/* reschedule timer if appropriate */
if (remainingPackets > 0) {

if (!flood && !delayTimer->isScheduled()) {
scheduleAt(simTime() + exponential(trafficParam) + 0.001,

delayTimer);
}

} else {
cancelAndDelete(delayTimer);
delayTimer = 0;

}
} else if (msg->getArrivalGateId() == dataIn) {

if (msg->getKind() == REPLY_CHARACTERISTIC) {
/* We received a data message from someone else !*/
ApplPkt* m = dynamic_cast<ApplPkt*>(msg);
if (debug)

debugEV << "I (" << nodeAddr << ") received a message from node "
<< m->getSrcAddr() << " of size "
<< m->getBitLength() << "." << endl;

nbPacketsReceived++;
if (stats) {

simtime_t theLatency = msg->getArrivalTime() - m->getSentTime();
latencies[m->getSrcAddr()].collect(SIMTIME_DBL(theLatency));
testStat.collect(SIMTIME_DBL(theLatency));

}
if (trace) {

simtime_t theLatency = msg->getArrivalTime() - m->getSentTime();
latenciesRaw.record(SIMTIME_DBL(theLatency));

}
delete msg;

} else if (msg->getKind() == REQUEST_CHARACTERISTIC) {
/* we received a data message from someone else ! */
ApplPkt* m = dynamic_cast<ApplPkt*>(msg);
numberTotalReqReceived++;
if (trace) {

simtime_t theLatency = msg->getArrivalTime() - m->getSentTime();
oneEndLatenciesRaw.record(SIMTIME_DBL(theLatency));

}
tpTotalNumberOfBits += m->getBitLength();
lastCbrPacketTime = simTime();
delete msg;

}
} else if (msg->getArrivalGateId() == ctrlIn) {

debugEV << "Received a control message." << endl;
/* msg announces end of transmission. */
if (msg->getKind() == BaseMacLayer::TX_OVER) {

isTransmitting = false;
if (remainingPackets > 0 && flood && !delayTimer->isScheduled()) {

scheduleAt(simTime() + 0.001 * 001 + uniform(0, 0.001 * 0.001),
delayTimer);

}
}
delete msg;

} else {
if (debug) {

ApplPkt* m = static_cast<ApplPkt*>(msg);
debugEV << "I (" << nodeAddr << ") received a message from node "

<< (static_cast<ApplPkt*>(msg))->getSrcAddr()
<< " of size " << m->getBitLength() << "." << endl;

}
delete msg;

}
scheduleDelayTime();

}
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A.3 Network Control

A.3.1 CbrSingleton.CC

#ifndef __CBRSINGLETON_H__
#define __CBRSINGLETON_H__
using namespace std;
/* Local Characteristics Table Structure */
struct localCharacteristicEntry {

std::string nextWeightAddress;
double nextWeight;
double weight;
int hopCount;
unsigned long seqNumber;
localCharacteristicEntry(std::string p1="", double p2=0, double p3=0,

int p4=0, unsigned long p5=0):nextWeightAddress(p1),
nextWeight(p2),
weight(p3),
hopCount(p4),
seqNumber(p5){}

};
/* Map for storing the characteristics packets received for a particular node */
typedef std::map<std::string, struct localCharacteristicEntry> mapCharacteristicEntries_;
typedef std::map<std::string, mapCharacteristicEntries_> localCharacteristicsMap_;
typedef std::map<std::string, double> characteristicEntries_;
typedef std::map<std::string, characteristicEntries_> nodeConfCharacteristics_;
typedef std::map<LAddress::L3Type, LAddress::L2Type> addressTable_;
class CBRSingleton
{
private:

nodeConfCharacteristics_ ncCharac_;
localCharacteristicsMap_ localCharacteristicsTable_;
addressTable_ macAddressTable_;
friend class CBR_CharacteristicLinkTimer;
static bool instanceFlag;
static CBRSingleton *single;
CBRSingleton()
{

//private constructor
}

public:
double CONST_COST_GRADIENT = 0.5;
static CBRSingleton* getInstance();
void method();
void populateConfCharacteristics(std::string nodeAddress, const char *nodeCharacs);
nodeConfCharacteristics_ getConfCharacteristics();
void printConfCharacteristics();
double getNodeConfCharacteristicWeight(std::string nodeAddress, std::string characteristic);
double getLocalNodeStoredCharacteristicWeight(std::string localNodeAddress,

std::string characteristic);
bool isConfiguredAsSourceNode(std::string nodeAddress, std::string characteristic);
std::string getNextNodeAddress(std::string nodeAddress, std::string characteristic);
std::string getPrintStringForDouble(double weight);
std::string getPrintStringForString(std::string str);
std::string getForwardingNodeAddress(std::string nodeAddress, std::string characteristic);
double prepareWeightCost(double rssiFeed, double characteristicWeight);
std::string LongToString(long value);
void insertIntoAddressTable(LAddress::L3Type level3Address, LAddress::L2Type level2Address);
LAddress::L2Type getMacAddressForNode(LAddress::L3Type level3Address);
void insertAdvCharacteristic(std::string nodeAddress, std::string characteristic,

std::string nextWeightAddress, double nextWeight, double weight, int hopCount,
long seqNumber);

void printLocalCharacteristicsTable();
int getTotalAddressRoutes();
double gradientCost(double input);
/* Fast inverse square root function */
float inverseSquareRoot( float number ) {

long i;
float x2, y;
const float threehalfs = 1.5F;
x2 = number * 0.5F;
y = number;
i = * ( long * ) &y;
i = 0x5f3759df - ( i >> 1 );
y = * ( float * ) &i;
y = y * ( threehalfs - ( x2 * y * y ) );
return y;

}
~CBRSingleton()
{

instanceFlag = false;
}

};
bool CBRSingleton::instanceFlag = false;
CBRSingleton* CBRSingleton::single = NULL;
/*
* Make sure to carry out protocol logic
* in a singleton instance. Keep tidy.
*/

CBRSingleton* CBRSingleton::getInstance()
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{
if(! instanceFlag)
{

single = new CBRSingleton();
instanceFlag = true;
return single;

}
else
{

return single;
}

}
void CBRSingleton::method()
{

cout << "Method of the singleton class" << endl;
}
/*
* MAC address routing table, populate method
*/

void CBRSingleton::insertIntoAddressTable(LAddress::L3Type level3Address,
LAddress::L2Type level2Address) {

macAddressTable_.insert(std::pair<LAddress::L3Type, LAddress::L2Type>
(level3Address, level2Address));

}
/*
* Method which gets the Level2 MAC Address for the
* specified Level3 Address.
* Used for spreading the characteristics to the single
* hop neighbours during a broadcast
*/

LAddress::L2Type CBRSingleton::getMacAddressForNode(LAddress::L3Type level3Address) {
LAddress::L2Type l2MacAddress;
if (macAddressTable_.size() > 0) {

addressTable_::iterator it= macAddressTable_.find(level3Address);
if( it != macAddressTable_.end() ) {

l2MacAddress = it->second;
}

}
return l2MacAddress;

}
/*
* Method which adds entries separately into the
* configuration characteristics table for the
* association check
*/

void CBRSingleton::populateConfCharacteristics(std::string nodeAddress,
const char *nodeCharacs) {

std::string thisNodeAddress = nodeAddress;
characteristicEntries_ characteristicEntry;
cStringTokenizer tokenizer(nodeCharacs);
const char *token;
while ((token = tokenizer.nextToken()) != NULL) {

std::string elem1, elem2, currToken;
currToken = token;
char sep = ’:’;
int t=0;
/* split using the ’:’ seperator and extract the characteristic

name and weight */
for(size_t p=0, q=0; p!=currToken.npos; p=q) {

if (t==0) {
elem1 = currToken.substr(p+(p!=0),

(q=currToken.find(sep, p+1))-p-(p!=0));
t++;

} else if (t==1) {
elem2 = currToken.substr(p+(p!=0),

(q=currToken.find(sep, p+1))-p-(p!=0));
characteristicEntry.insert(std::pair<std::string, double>

(elem1, atof(elem2.c_str())));
elem1 = "";
elem2 = "";
t=0;

}
}

}
ncCharac_.insert(std::pair<std::string, characteristicEntries_>

(thisNodeAddress, characteristicEntry));
}
nodeConfCharacteristics_ CBRSingleton::getConfCharacteristics() {

return ncCharac_;
}
/*
* Utility method for printing all the associated characteristics
* which are picked up from omnet configuration file for the
* simulation run.
*/

void CBRSingleton::printConfCharacteristics() {
for (std::map<std::string,

characteristicEntries_>::iterator it=ncCharac_.begin();
it!=ncCharac_.end(); ++it) {

std::string nAddress = it->first;
std::map<std::string, double> naCharacteristics = it->second;
for (std::map<std::string, double>::iterator

it1=naCharacteristics.begin();
it1!=naCharacteristics.end(); ++it1) {

std::string characteristic = it1->first;
double weight = it1->second;

}
}
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}
/*
* Method which gets the associated characteristic weight
* for the gradient source.
*/

double CBRSingleton::getNodeConfCharacteristicWeight(
std::string nodeAddress, std::string characteristic) {

std::string lookupAddress = nodeAddress;
double weight=0;
if (ncCharac_.size() > 0) {

nodeConfCharacteristics_::iterator it= ncCharac_.find(lookupAddress);
if( it != ncCharac_.end() ) {

characteristicEntries_ entries = it->second;
if (entries.size() > 0) {

characteristicEntries_::iterator it1= entries.find(characteristic);
if (it1 != entries.end()) {

double w = it1->second;
if (w > 0)

weight = w;
}

}
}

}
return weight;

}
/*
* Method which gets all the characteristic entries
* for a node address and the given characteristic
*/

double CBRSingleton::getLocalNodeStoredCharacteristicWeight(
std::string localNodeAddress, std::string search_characteristic) {

std::string lookupAddress = localNodeAddress;
bool foundNodeWeight = false;
double weight=0;
for (std::map<std::string,

mapCharacteristicEntries_>::iterator
it=localCharacteristicsTable_.begin();
it!=localCharacteristicsTable_.end(); ++it) {

std::string mainAddress = it->first;
mapCharacteristicEntries_ characteristicsEntries = it->second;
if (mainAddress == lookupAddress) {

for (std::map<std::string,
struct localCharacteristicEntry>::iterator it1=
characteristicsEntries.begin();
it1!=characteristicsEntries.end(); ++it1) {

std::string characteristic = it1->first;
localCharacteristicEntry entry = it1->second;
if (characteristic == search_characteristic) {

foundNodeWeight = true;
weight = entry.weight;
break;

}
}

}
if (foundNodeWeight)

break;
}
return weight;

}
/*
* Method checks whether the node is indeed a strong
* gradient source for a characteristic
*/

bool CBRSingleton::isConfiguredAsSourceNode(std::string nodeAddress,
std::string characteristic) {

std::string lookupAddress = nodeAddress;
bool isNodeConfigured=false;
if (ncCharac_.size() > 0) {

nodeConfCharacteristics_::iterator it= ncCharac_.find(lookupAddress);
if( it != ncCharac_.end() ) {

characteristicEntries_ entries = it->second;
if (entries.size() > 0) {

characteristicEntries_::iterator it1= entries.find(characteristic);
if (it1 != entries.end()) {

double w = it1->second;
if (w > 0)

isNodeConfigured = true;
}

}
}

}
return isNodeConfigured;

}
/*
* Method for getting the next node address
* when propagtaing towards the strong
* gradient source
*/

std::string CBRSingleton::getNextNodeAddress(std::string nodeAddress,
std::string characteristic) {

std::string lookupAddress = nodeAddress;
std::string nextNodeAddress = "";
if (localCharacteristicsTable_.size() > 0) {

for (std::map<std::string,
mapCharacteristicEntries_>::iterator it=
localCharacteristicsTable_.begin();
it!=localCharacteristicsTable_.end(); ++it) {
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mapCharacteristicEntries_ characteristicsEntries = it->second;
std::string mainAddress = it->first;
if (mainAddress == lookupAddress) {

for (std::map<std::string,
struct localCharacteristicEntry>::iterator it1=
characteristicsEntries.begin();
it1!=characteristicsEntries.end(); ++it1) {

std::string charact = it1->first;
localCharacteristicEntry entry = it1->second;
if (charact == characteristic) {

nextNodeAddress = entry.nextWeightAddress;
break;

}
}

}
}

}
return nextNodeAddress;

}
/*
* Method for acquiring the reverse route path
*/

std::string CBRSingleton::getForwardingNodeAddress(std::string nodeAddress,
std::string characteristic) {

std::string forwardingNodeAddress = "";
bool matchNodeAddress = false;
if (localCharacteristicsTable_.size() > 0) {

for (std::map<std::string,
mapCharacteristicEntries_>::iterator it=
localCharacteristicsTable_.begin();
it!=localCharacteristicsTable_.end(); ++it) {

mapCharacteristicEntries_ characteristicsEntries = it->second;
forwardingNodeAddress = it->first;
for (std::map<std::string,

struct localCharacteristicEntry>::iterator it1=
characteristicsEntries.begin();
it1!=characteristicsEntries.end(); ++it1) {

std::string charact = it1->first;
localCharacteristicEntry entry = it1->second;
if (charact == characteristic && nodeAddress == entry.nextWeightAddress) {

matchNodeAddress = true;
break;

}
}
if (matchNodeAddress)

break;
}

}
/* Now lets look into reverse path technique */
if (!matchNodeAddress) {

forwardingNodeAddress = "";
/*std::string nextNode = getNextNodeAddress(nodeAddress, characteristic);
long nAddress = atol(nextNode.c_str());
nAddress = nAddress + 1;
std::ostringstream nextNAddress;
nextNAddress << nAddress;
if (localCharacteristicsTable_.size() > 0) {

for (std::map<std::string, >::iterator
it=localCharacteristicsTable_.begin();
it!=localCharacteristicsTable_.end(); ++it) {

mapCharacteristicEntries_ characteristicsEntries = it->second;
forwardingNodeAddress = it->first;
for (std::map<std::string,

struct localCharacteristicEntry>::iterator it1=
characteristicsEntries.begin();
it1!=characteristicsEntries.end(); ++it1) {

std::string charact = it1->first;
localCharacteristicEntry entry = it1->second;
if (charact == characteristic

&& nextNode == entry.nextWeightAddress
&& nextNAddress.str() == forwardingNodeAddress) {

matchNodeAddress = true;
break;

}
}
if (matchNodeAddress)

break;
}

}*/
}
return forwardingNodeAddress;

}
double CBRSingleton::gradientCost(double input)
{

int i, j, toggle = 1;
double angle, product, sum = 0.0;
angle = input;
while (angle >= (2*M_PI))

angle -= (2*M_PI);
for (i = 0; i < 100; i++)
{

product = 1.0;
for (j = (2*i); j > 0 ; j--)

product *= angle / j;
sum += product * toggle;
toggle = -toggle;

}
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return sum;
}
/*
* Method for the calculation of our
* Gradient weight cost
*/

double CBRSingleton::prepareWeightCost(double rssiFeed, double characteristicWeight) {
double costGradient = 0;
double wDiff = sin(characteristicWeight*PI/50000);
costGradient = characteristicWeight - wDiff - CONST_COST_GRADIENT;
return costGradient;

}
/*
* Populates our local characteristic table
*/

void CBRSingleton::insertAdvCharacteristic(std::string nodeAddress,
std::string characteristic, std::string nextWeightAddress,

double nextWeight, double weight, int hopCount, long seqNumber) {
struct localCharacteristicEntry lcEntry;
lcEntry.nextWeightAddress = nextWeightAddress;
lcEntry.nextWeight = nextWeight;
lcEntry.weight = weight;
lcEntry.hopCount = hopCount;
lcEntry.seqNumber = seqNumber;
mapCharacteristicEntries_ mcEntries;
if (localCharacteristicsTable_.find(nodeAddress)

== localCharacteristicsTable_.end()) {
/* Not found */
mcEntries.insert(std::pair<std::string, struct localCharacteristicEntry>

(characteristic, lcEntry));
localCharacteristicsTable_.insert(std::pair<std::string,

mapCharacteristicEntries_>(nodeAddress, mcEntries));
} else {

/* Found */
localCharacteristicsMap_::iterator it = localCharacteristicsTable_.find(nodeAddress);
if (it != localCharacteristicsTable_.end()) {

// Try to update it now with new values
std::map<std::string, struct localCharacteristicEntry>::iterator it1;
// Update map for characteristic
it1 = it->second.find(characteristic);
if (it1 == it->second.end()) {

// entry not present therefore insert new entry
it->second.insert(std::pair<std::string, struct localCharacteristicEntry>

(characteristic, lcEntry));
} else {

// entry is present, therefore update it
mcEntries.insert(std::pair<std::string, struct localCharacteristicEntry>

(characteristic, lcEntry));
it->second = mcEntries;

}
}

}
}
std::string CBRSingleton::LongToString(long value)
{

std::string mystring;
stringstream mystream;
mystream << value;
mystring = mystream.str();
return mystring;

}
/*
* Utility method for number padding
* for keeping values aligned in the
* display table
*/

std::string CBRSingleton::getPrintStringForDouble(double weight) {
std::ostringstream sstream;
sstream << weight;
std::string weightString = sstream.str();
std::string paddedString;
paddedString.append(" ");
paddedString.append(weightString);
int paddedSpaces = (15 - weightString.size());
for (int p=0; p < paddedSpaces; p++)

paddedString.append(" ");
return paddedString;

}
/*
* Utility method for string padding
* for keeping values aligned in the
* display table
*/

std::string CBRSingleton::getPrintStringForString(std::string str) {
std::string paddedString;
paddedString.append(" ");
paddedString.append(str);
int paddedSpaces = (15 - str.size());
for (int p=0; p < paddedSpaces; p++)

paddedString.append(" ");
return paddedString;

}
/*
* Print our local characteristics table
* to std output stream for display
*/
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void CBRSingleton::printLocalCharacteristicsTable() {
std::cout << "+-----------------+-----------------+-----------------+-----------------"
<< "+-----------------+-----------------+-----------------+-----------------+"
<< endl;
std::cout << "| Total | Node Address | Characteristic |NextWeightAddress|"
<< "Next Weight | Weight | Hop Count | Sequence Number |"
<< endl;
std::cout << "+-----------------+-----------------+-----------------+-----------------"
<< "+-----------------+-----------------+-----------------+-----------------+"
<< endl;

for (std::map<std::string, mapCharacteristicEntries_>::iterator it=
localCharacteristicsTable_.begin();
it!=localCharacteristicsTable_.end(); ++it) {

std::string mainAddress = it->first;
mapCharacteristicEntries_ characteristicsEntries = it->second;
for (std::map<std::string, struct localCharacteristicEntry>::iterator it1=

characteristicsEntries.begin();
it1!=characteristicsEntries.end(); ++it1) {

std::string characteristic = it1->first;
localCharacteristicEntry entry = it1->second;
std::cout << "|" << getPrintStringForDouble(localCharacteristicsTable_.size())

<< "|" << getPrintStringForString(mainAddress)
<< "|" << getPrintStringForString(characteristic)
<< "|" << getPrintStringForString(entry.nextWeightAddress)
<< "|" << getPrintStringForDouble(entry.nextWeight)
<< "|" << getPrintStringForDouble(entry.weight)
<< "|" << getPrintStringForDouble(entry.hopCount)
<< "|" << getPrintStringForDouble(entry.seqNumber)
<< "|" << endl;

}
}

std::cout << "+-----------------+-----------------+-----------------+-----------------"
<< "+-----------------+-----------------+-----------------+-----------------+"
<< endl;

}
/*
* Get the total number of entries present
* inside the local characteristics table
*/

int CBRSingleton::getTotalAddressRoutes() {
return localCharacteristicsTable_.size();

}
class CBR_Timer : public cOwnedObject
{

protected:
CBRSingleton* ntwkController;
mapCharacteristicEntries_* singleEntry;

public:
virtual void removeTimer();
CBR_Timer(CBRSingleton* controller);
CBR_Timer();
~CBR_Timer();
virtual void expire() = 0;
virtual void removeQueueTimer();
virtual void resched(double time);
virtual void setCharacteristicEntry(mapCharacteristicEntries_ *e) {singleEntry = e;}

};
/* Timer to manage individual characteristic entries inside the local table. */
class CBR_CharacteristicLinkTimer : public CBR_Timer
{

public:
CBR_CharacteristicLinkTimer(CBRSingleton* controller) : CBR_Timer(controller) {}
CBR_CharacteristicLinkTimer(CBRSingleton* controller, mapCharacteristicEntries_* entry)

: CBR_Timer(controller) { singleEntry = entry; }
CBR_CharacteristicLinkTimer():CBR_Timer() {}
void expire();

};
#endif

A.4 Messages

A.4.1 CbrPacket
cplusplus {{

#include "SimpleAddress.h"
}}
class LAddress::L3Type extends void;
// Characteristic based routing network packet contains a
// destination and source network address.
// Additionally a time to live (ttl) field like hop count
// can be defined in order to limit the
// maximum number of hops the messge will travel. The
// sequence number is guranteed to be unique for all packets
// generated by one host
//
// @author Suhaib Naseem
packet CbrPkt
{
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LAddress::L3Type destAddr; // destination address
LAddress::L3Type srcAddr; // source address
int hopCount = 0; // hop count
unsigned long seqNum = 0; // sequence number
// packet delaing with characteristic by name
string characteristic = "";
// characteristic weight on propagation
double weightOnPropagate = 0;
// characteristic weight
double weight = 0;
string data; // route data

}
packet CbrReqPkt extends CbrPkt
{

LAddress::L3Type reqSrcAddr; // request source address
// transaction number of the request message
long transactionId = 0;
simtime_t messageTime;

}
packet CbrRepPkt extends CbrPkt
{

LAddress::L3Type reqSrcAddr; // request source address
// transaction number of the reply message
long transactionId = 0;
string payload; // characteristic source reply data
simtime_t messageTime;

}
packet CbrTracePkt extends CbrPkt
{

LAddress::L3Type reqSrcAddr; // request source address
// transaction number of the request message
long transactionId = 0;
simtime_t origTime;
simtime_t messageTime;

}

A.5 Configuration

A.5.1 omnet.ini
[General]
network = CharacteristicRoutingNetwork
cmdenv-express-mode = true
record-eventlog = false
sim-time-limit = 5000s
tkenv-default-config =
cmdenv-event-banners = true
cmdenv-module-messages = true
**.vector-recording = true
**.result-recording-modes = all
##############################################################################
# Parameters for the entire simulation #
##############################################################################
*.playgroundSizeX = 850m
*.playgroundSizeY = 850m
*.playgroundSizeZ = 100m
CharacteristicRoutingNetwork.numHosts = 16
# uncomment to enable debug messages for all modules
# **.debug = 0
**.coreDebug = false
**.debug = true
##########################################################
# WorldUtility parameters #
##########################################################
**.world.useTorus = false
##############################################################################
# Parameters for the ConnectionManager #
##############################################################################
**.connectionManager.carrierFrequency = 2.4e+9Hz # [Hz]
# max transmission power [mW]
**.connectionManager.pMax = 110.11mW # [mW]
# signal attenuation threshold [dBm]
**.connectionManager.sat = -120dBm # [dBm]
# path loss coefficient alpha
**.connectionManager.alpha = 4
**.connectionManager.sendDirect = false
##############################################################################
# Parameters for the Application Layer #
##############################################################################
# debug switch
**.appl.headerLength = 1024bit
**.appl.burstSize = 3
##############################################################################
# Parameters for the Network Layer #
##############################################################################
**.netwl.headerLength = 32bit# in bits
**.netwl.stats = false
##############################################################################
# Parameters for the Mac Layer #
##############################################################################
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# debug switch
**.mac.headerLength = 272 bit
**.mac.queueLength = 14
**.mac.bitrate = 2E+6bps# in bits/second
**.mac.autoBitrate = false
### values if no fading is modelled, gives at most 1% packet error rate
**.mac.snr2Mbit = 1.46dB # [dB]
**.mac.snr5Mbit = 2.6dB # [dB]
**.mac.snr11Mbit = 5.68dB # [dB]
**.mac.rtsCtsThreshold = 400
**.mac.neighborhoodCacheSize = 30
**.mac.neighborhoodCacheMaxAge = 100s # [s]
**.mac.txPower = 110.11mW # [mW]
##############################################################################
# Parameters for the Phy #
##############################################################################
**.phy.usePropagationDelay = false
**.phy.thermalNoise = -110dBm # [dBm]
**.phy.analogueModels = xmldoc("config.xml")
**.phy.decider = xmldoc("config.xml")
**.phy.sensitivity = -119.5dBm # [dBm]
**.phy.maxTXPower = 110.11mW
**.phy.initialRadioState = 0
**.phy.useThermalNoise = true
################ NETW layer parameters ####################
*.host[*].netwl.maxTtl = 3
*.host[*].netwl.boredTime = 0.5
*.host[*].netwl.numHosts = 16
################ APPL layer parameters ####################
#*.host[*].applicationType = "TestApplication"
**.appl.trafficParam = ${traffic = 1..19 step 2}s
**.appl.nbPackets = 1000
**.appl.initializationTime = 10s
CharacteristicRoutingNetwork.host[0].netwl.nodeCharacteristics = "AAAABBAA:5000"
CharacteristicRoutingNetwork.host[1].netwl.nodeCharacteristics = "AAAA:0 BBBB:0"
CharacteristicRoutingNetwork.host[2].netwl.nodeCharacteristics = "AAAA:0 BBBB:0"
CharacteristicRoutingNetwork.host[3].netwl.nodeCharacteristics = "AAAA:0 BBBB:0"
CharacteristicRoutingNetwork.host[4].netwl.nodeCharacteristics = "AAAA:0 BBBB:0"
CharacteristicRoutingNetwork.host[5].netwl.nodeCharacteristics = "AAAA:0 BBBB:0"
CharacteristicRoutingNetwork.host[6].netwl.nodeCharacteristics = "AAAA:0 BBBB:0"
CharacteristicRoutingNetwork.host[7].netwl.nodeCharacteristics = "AAAA:0 BBBB:0"
CharacteristicRoutingNetwork.host[8].netwl.nodeCharacteristics = "AAAABBBB:6000"
CharacteristicRoutingNetwork.host[9].netwl.nodeCharacteristics = "AAAA:0 BBBB:0"
CharacteristicRoutingNetwork.host[10].netwl.nodeCharacteristics = "AAAA:0 BBBB:0"
CharacteristicRoutingNetwork.host[11].netwl.nodeCharacteristics = "AAAA:0 BBBB:0"
CharacteristicRoutingNetwork.host[12].netwl.nodeCharacteristics = "AAAA:0 BBBB:0"
CharacteristicRoutingNetwork.host[13].netwl.nodeCharacteristics = "AAAA:0 BBBB:0"
CharacteristicRoutingNetwork.host[14].netwl.nodeCharacteristics = "AAAA:0 BBBB:0"
CharacteristicRoutingNetwork.host[15].netwl.nodeCharacteristics = "AAAA:0 BBBB:0"
CharacteristicRoutingNetwork.host[0].appl.flood = false
CharacteristicRoutingNetwork.host[1].appl.flood = true
CharacteristicRoutingNetwork.host[2].appl.flood = true
CharacteristicRoutingNetwork.host[3].appl.flood = true
CharacteristicRoutingNetwork.host[4].appl.flood = true
CharacteristicRoutingNetwork.host[5].appl.flood = true
CharacteristicRoutingNetwork.host[6].appl.flood = true
CharacteristicRoutingNetwork.host[7].appl.flood = true
CharacteristicRoutingNetwork.host[8].appl.flood = false
CharacteristicRoutingNetwork.host[9].appl.flood = true
CharacteristicRoutingNetwork.host[10].appl.flood = true
CharacteristicRoutingNetwork.host[11].appl.flood = true
CharacteristicRoutingNetwork.host[12].appl.flood = true
CharacteristicRoutingNetwork.host[13].appl.flood = true
CharacteristicRoutingNetwork.host[14].appl.flood = true
CharacteristicRoutingNetwork.host[15].appl.flood = true
################ Mobility parameters #####################
**.host[*].mobility.initFromDisplayString = false
CharacteristicRoutingNetwork.host[*].mobilityType = "ConstSpeedMobility"
CharacteristicRoutingNetwork.host[*].mobility.debug = false
CharacteristicRoutingNetwork.host[*].mobility.speed = 10.0mps
CharacteristicRoutingNetwork.host[*].mobility.updateInterval = 3.0s
*.host[0..15].mobility.constraintAreaMinX = 0m
*.host[0..15].mobility.constraintAreaMinY = 0m
*.host[0..15].mobility.constraintAreaMinZ = 0m
*.host[0..15].mobility.constraintAreaMaxX = 550m
*.host[0..15].mobility.constraintAreaMaxY = 600m
*.host[0..15].mobility.constraintAreaMaxZ = 100m
*.host[0].mobility.initialX = 50m
*.host[0].mobility.initialY = 100m
*.host[0].mobility.initialZ = 100m
*.host[1].mobility.initialX = 150m
*.host[1].mobility.initialY = 100m
*.host[1].mobility.initialZ = 100m
*.host[2].mobility.initialX = 250m
*.host[2].mobility.initialY = 100m
*.host[2].mobility.initialZ = 100m
*.host[3].mobility.initialX = 350m
*.host[3].mobility.initialY = 100m
*.host[3].mobility.initialZ = 100m
*.host[4].mobility.initialX = 50m
*.host[4].mobility.initialY = 200m
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*.host[4].mobility.initialZ = 100m
*.host[5].mobility.initialX = 150m
*.host[5].mobility.initialY = 200m
*.host[5].mobility.initialZ = 100m
*.host[6].mobility.initialX = 250m
*.host[6].mobility.initialY = 200m
*.host[6].mobility.initialZ = 100m
*.host[7].mobility.initialX = 350m
*.host[7].mobility.initialY = 200m
*.host[7].mobility.initialZ = 100m
*.host[8].mobility.initialX = 50m
*.host[8].mobility.initialY = 300m
*.host[8].mobility.initialZ = 100m
*.host[9].mobility.initialX = 150m
*.host[9].mobility.initialY = 300m
*.host[9].mobility.initialZ = 100m
*.host[10].mobility.initialX = 250m
*.host[10].mobility.initialY = 300m
*.host[10].mobility.initialZ = 100m
*.host[11].mobility.initialX = 350m
*.host[11].mobility.initialY = 300m
*.host[11].mobility.initialZ = 100m
*.host[12].mobility.initialX = 50m
*.host[12].mobility.initialY = 400m
*.host[12].mobility.initialZ = 100m
*.host[13].mobility.initialX = 150m
*.host[13].mobility.initialY = 400m
*.host[13].mobility.initialZ = 100m
*.host[14].mobility.initialX = 250m
*.host[14].mobility.initialY = 400m
*.host[14].mobility.initialZ = 100m
*.host[15].mobility.initialX = 350m
*.host[15].mobility.initialY = 400m
*.host[15].mobility.initialZ = 100m
*.host[0].appl.nodeAddr = 1
*.host[0].appl.dstAddr = 10
*.host[0].appl.flood = false
*.host[0].appl.payloadSize = 100byte
*.host[0].appl.headerLength = 128b
*.host[1].appl.nodeAddr = 2
*.host[1].appl.dstAddr = 10
*.host[1].appl.flood = false
*.host[1].appl.payloadSize = 100byte
*.host[1].appl.headerLength = 128b
*.host[2].appl.nodeAddr = 3
*.host[2].appl.dstAddr = 10
*.host[2].appl.flood = false
*.host[2].appl.payloadSize = 100byte
*.host[2].appl.headerLength = 128b
*.host[3].appl.nodeAddr = 4
*.host[3].appl.dstAddr = 10
*.host[3].appl.flood = false
*.host[3].appl.payloadSize = 100byte
*.host[3].appl.headerLength = 128b
*.host[4].appl.nodeAddr = 5
*.host[4].appl.dstAddr = 10
*.host[4].appl.flood = false
*.host[4].appl.payloadSize = 100byte
*.host[4].appl.headerLength = 128b
*.host[5].appl.nodeAddr = 6
*.host[5].appl.dstAddr = 10
*.host[5].appl.flood = false
*.host[5].appl.payloadSize = 100byte
*.host[5].appl.headerLength = 128b
*.host[6].appl.nodeAddr = 7
*.host[6].appl.dstAddr = 10
*.host[6].appl.flood = false
*.host[6].appl.payloadSize = 100byte
*.host[6].appl.headerLength = 128b
*.host[7].appl.nodeAddr = 8
*.host[7].appl.dstAddr = 10
*.host[7].appl.flood = false
*.host[7].appl.payloadSize = 100byte
*.host[7].appl.headerLength = 128b
*.host[8].appl.nodeAddr = 9
*.host[8].appl.dstAddr = 10
*.host[8].appl.flood = false
*.host[8].appl.payloadSize = 100byte
*.host[8].appl.headerLength = 128b
*.host[9].appl.nodeAddr = 10
*.host[9].appl.dstAddr = 10
*.host[9].appl.flood = false
*.host[9].appl.payloadSize = 100byte
*.host[9].appl.headerLength = 128b
*.host[10].appl.nodeAddr = 11
*.host[10].appl.dstAddr = 10
*.host[10].appl.flood = false
*.host[10].appl.payloadSize = 100byte
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*.host[10].appl.headerLength = 128b
*.host[11].appl.nodeAddr = 12
*.host[11].appl.dstAddr = 10
*.host[11].appl.flood = false
*.host[11].appl.payloadSize = 100byte
*.host[11].appl.headerLength = 128b
*.host[12].appl.nodeAddr = 13
*.host[12].appl.dstAddr = 10
*.host[12].appl.flood = false
*.host[12].appl.payloadSize = 100byte
*.host[12].appl.headerLength = 128b
*.host[13].appl.nodeAddr = 14
*.host[13].appl.dstAddr = 10
*.host[13].appl.flood = false
*.host[13].appl.payloadSize = 100byte
*.host[13].appl.headerLength = 128b
*.host[14].appl.nodeAddr = 15
*.host[14].appl.dstAddr = 10
*.host[14].appl.flood = false
*.host[14].appl.payloadSize = 100byte
*.host[14].appl.headerLength = 128b
*.host[15].appl.nodeAddr = 16
*.host[15].appl.dstAddr = 10
*.host[15].appl.flood = false
*.host[15].appl.payloadSize = 100byte
*.host[15].appl.headerLength = 128b
##############################################################################
# Parameters for the Host #
##############################################################################
*.host[0].netwl.na = 1
*.host[0].nic.id = 10001
*.host[1].netwl.na = 2
*.host[1].nic.id = 10002
*.host[2].netwl.na = 3
*.host[2].nic.id = 10003
*.host[3].netwl.na = 4
*.host[3].nic.id = 10004
*.host[4].netwl.na = 5
*.host[4].nic.id = 10005
*.host[5].netwl.na = 6
*.host[5].nic.id = 10006
*.host[6].netwl.na = 7
*.host[6].nic.id = 10007
*.host[7].netwl.na = 8
*.host[7].nic.id = 10008
*.host[8].netwl.na = 9
*.host[8].nic.id = 10009
*.host[9].netwl.na = 10
*.host[9].nic.id = 10010
*.host[10].netwl.na = 11
*.host[10].nic.id = 10011
*.host[11].netwl.na = 12
*.host[11].nic.id = 10012
*.host[12].netwl.na = 13
*.host[12].nic.id = 10013
*.host[13].netwl.na = 14
*.host[13].nic.id = 10014
*.host[14].netwl.na = 15
*.host[14].nic.id = 10015
*.host[15].netwl.na = 16
*.host[15].nic.id = 10016
*.host[*].netwl.na = 0
*.host[*].nic.id = 0

A.5.2 CbrApplLayer.ned

import org.mixim.base.modules.IBaseApplLayer;
simple CbrApplLayer like IBaseApplLayer
{

parameters:
bool debug = default(false); // debug switch
bool stats = default(true); // stats switch
bool trace = default(true); // trace switch
// mean time between packets (poisson arrival rate)
double trafficParam @unit(s);
double nodeAddr; // node address
double dstAddr; // packet destination node address
bool flood; // send packets continuously
double payloadSize @unit(byte); // number of bytes per packet
double nbPackets; // number of packets to generate
// length of the application message header (in bits)
int headerLength @unit("bit");

gates:
// to receive data from communications stack
input lowerLayerIn;
// to send data to communications stack
output lowerLayerOut;
// to receive control messages from communications stack
input lowerControlIn;
// to send control messages from communications stack
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output lowerControlOut;
}

A.5.3 CbrNetwLayer.ned

import org.mixim.base.modules.BaseNetwLayer;
simple CbrNetwLayer extends BaseNetwLayer
{

parameters:
@class(CbrNetwLayer);
headerLength = 12 bit;
double na;
double maxTtl;
double boredTime;
int numHosts;
string nodeCharacteristics = default("AAAA:2000 AABB:1000");

}

A.5.4 CharacteristicRoutingNetwork.ned

import org.mixim.base.modules.BaseNetwork;
import org.mixim.modules.node.Host80211;
network CharacteristicRoutingNetwork extends BaseNetwork
{

parameters:
int numHosts; // total number of hosts in the network

submodules:
host[numHosts]: Host80211 {

@display("p=148,94;b=42,42,rect,yellow;i=device/wifilaptop");
}

connections allowunconnected:
}

A.5.5 Host80211.ned
module Host80211 extends WirelessNode
{

parameters:
applicationType = "org.tcd.WSNCBRRouting.CbrApplLayer";
networkType = "org.tcd.WSNCBRRouting.CbrNetwLayer";
nicType = "Nic80211";

}

A.5.6 config.xml

<?xml version="1.0" encoding="UTF-8"?>
<root>

<AnalogueModels>
<AnalogueModel type="SimplePathlossModel">

<parameter name="alpha" type="double" value="4.0"/>
<parameter name="carrierFrequency" type="double" value="2.412e+9"/>

</AnalogueModel>
</AnalogueModels>
<Decider type="Decider80211">

<!-- SNR threshold [NOT dB]-->
<parameter name="threshold" type="double" value="0.12589254117942"/>

</Decider>
</root>
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