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Summary

Software sound synthesis is an active area in the programming community. Many different

“soft synths” have been created using a variety of languages. This dissertation outlines

the work that we carried in order to create a software synthesiser framework using the

programming language Haskell, and the functional reactive library Reactive-banana.

Chapter one, provides a broad overview of the dissertation, giving some brief back-

ground to the area of sound synthesis, it then outlines the goals of this dissertation.

The second chapter gives a detailed background into Reactive Programming, Func-

tional Programming and Functional Reactive Programming, before taking a closer ooh

at Reactive-banana.

Chapter three, outlines the decisions we made and how they influenced the design of

our framework, including the generation of samples, and the inner state of the framework.

The penultimate chapter, discusses the use of Functional Reactive Programming, in

particular the appropriateness of Reactive-banana as applied to this domain. We also

discuss the strengths and shortcomings of our framework.

Finally, in chapter five we review what has been discussed and provides future work

which could be undertaken.
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Chapter 1

Introduction

1.1 Dissertation Outline

Chapter one of this dissertation talks briefly about sound synthesisers and functional

programming. Chapter two discusses the ideas of Reactive Programming, Functional

Programming, and Functional Reactive Programing, before discussing in more detail

the FRP library Reactive-banana. Chapter three presents our approach to designing our

sound synthesiser, giving motivations and code to how we achieved these results. Chapter

four discusses, Functional Reactive Programming as a viable programming paradigm, and

whether Reactive-banana was a suitable library for the task of sound synthesis. The final

chapter summarises our work and outlines some future work which could be carried out.

1.2 Background

Sound Synthesis is the process of creating sounds using electronic hardware or software,

from scratch. Historically specialised hardware synthesisers have dominated this field,

however due to recent advances in technology, it is possible for a person to digitally

synthesise sound on their PC hardware using new software.

Software synthesisers have been designed in many different programming languages,

one such “softsynth” named “Pure Data” which is built using Python, abstracted away

from the classical idea of dials and sliders, to a create a more programmatic feel for music

synthesis.

Haskell is a functional programming language that is used in many different business

and programs around the world. Haskell allows the user to take a high level approach to

programming, allowing an increased focus on writing neat and maintainable code.
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There have been several examples of sound synthesis software built using Haskell

such as Haskore which focuses on describing sound in terms of sequences of notes[14] or

HasSound which is essentially an interface to CSound[13].

Functional Reactive Programming is a method of modeling reactive behaviors in

purely functional languages, such as Haskell. In purely functional programming lan-

guages there are no side-effects, however there are cases where side-effects are necessary,

such as with user interaction. Functional Reactive Programming aims to meet the needs

of programmers who wish to model these cases without introducing the side-effects asso-

ciated with them.

There have also been cases of synthesisers built using the different Functional Reactive

libraries, such as Yampa-synth[11]. However these synthesisers dealt with the input of

Midi-files and the manipulation of such files.

1.3 Aim

The aim of this dissertation was to explore the possibility of creating a sound synthesis

framework (christened Musikell) that allows a user to programmatically create sounds

through the specification of different functions, using the programming language Haskell

and the Functional Reactive library, Reactive-banana. A follow up to this aim is whether

Reactive-banana is a suitable library for such a task, or whether a different approach

would have been more feasible. When creating the synthesiser framework, we aim to

try and keep the ideas presented as simple as possible, while also keeping the framework

self-reliant.
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Chapter 2

State of the Art

2.1 Functional Reactive Programming

2.1.1 Reactive Programming

What is Reactive Programming?

Normally we can consider a program as a function of its inputs, this is often referred to as

transformational [7]. However there are other approaches that aim to model a continuous

flow of reactions to stimuli which occur throughout a programs life. Programs modeled

like so are said to react to their environments.

Spreadsheets

An appropriate analogy for reactive programming is that of a spreadsheet program, such

as Microsoft’s Excel program. If we were to consider there to be two types of box that

we can make use of. The first type is what we shall call a formula box, in it there is

contained some information about how it is related to another box. The second type of

box will just be an input box, where we can add any type of text.

In the traditional transformational approach to programming, when we enter new

values into the input boxes, nothing will happen, we would have to conceive a third type

of operation, such as a refresh button that would force the program to check the different

input boxes and update the various other boxes as required. From a programming point

of view, we explicitly have to create the relationships between values and how they will

update as a program runs.

In reactive programming however, things operate in a more dynamic manner. As

we enter values into the input boxes the formula boxes that are related to this box will

3



update automatically, in fact if there are formula boxes related to other formula boxes

then those will also be updated. In a set large enough we could in fact see the data

propagate through the number of formula boxes till it reached a point where all related

boxes were up to date. The relationships within the spreadsheet are implicitly defined

as part of the formulae boxes, leaving the programmer free to reason with “what” the

boxes are doing, as opposed to how they would have to deal with “how” they do it.

Why Reactive Programming?

The benefit of using reactive programming is that once we have set up the relationships

within a program, we need only worry about entering our own data and the program will

handle the rest, pushing the changes throughout. As mentioned, Reactive Programming

aims to free the programmer from lower-level concerns and decisions by providing a

greater abstraction, allowing programmers to reason about what a program does and

focus less on how it does it. The most obvious application of reactive programming is

when programming Graphical User Interfaces, we can set relationships to different points

of the interface and allowing the user to change one portion of the interface changes

another. A second reason to use reactive programming is that it removes the necessity

to keep track of multiple different variables that are related, for example;

a = 10

b = a + 1

a = 12

In imperative programming we would need to keep track of wherever the ‘a’ was

updated so that we could update the ‘b’. In reactive programming we could imagine

that we have defined a relationship between ‘a’ and ‘b’ removing the onus from the

programmer to keep track of ‘b’. As ‘a’ varies so indeed does ‘b’.

2.1.2 Functional Programming

2.1.3 Introduction to Haskell

Functional programming is a programming paradigm, one that aims to model compu-

tations as the evaluations of expressions, as opposed to an imperative programming

paradigm that models how each instruction changes the state of a program. Functional

programming requires that all functions are first class citizens, that is a function can be

passed to, and returned from another function. Haskell is a purely functional program-
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ming language, which has a strictly typed system. Apart from having the benefits that

come with abiding by the functional paradigm. Haskell employs a powerful type system

that ensures once the program compiles that there will be no run time errors, and only

bugs to do with the logic of the program itself.

Another benefit of Haskell is that it is a very high level language, that allows users

to write neat and maintainable code, that is often very short and easy to reason with.

Another useful feature of Haskell, is that a programmer has two ways in which to

evaluate an expression; strictly or lazily. Strict evaluation as the name would imply is

done as soon as the expression is encountered, imperative languages such as Java and

C++, are intrinsically strict. Lazy evaluation of an expression however is done only when

the result of an expression is needed by some other larger expression. We can think of

lazy evaluation as keeping a todo list and only crossing off items on the list once they’ve

become a necessity1.

A discussion on Functors and Applicative Functors, slightly less well known but im-

portant features of Functional Programming follows.

Functors

Within Haskell there resides many different typeclasses that one can make a new datatype

an instance of. For example, by making something an instance of the Eq typeclass we

can then equate the same datatypes.

Functor is another typeclass, we make some type an instance of Functor when we

want to be able to map over that type[15]. Functors are defined in the following way;

class Functor f where

fmap :: (a -> b) -> fa -> fb

A concrete example of Functor would be as follows;

instance Functor Maybe where

fmap f (Just x) = Just (f x)

fmap f Nothing = Nothing

As we can see by being part of the type class Functor we are able to use fmap to alter

values within the Maybe type without having to extract the value stored within it, and

then wrap the resultant value back up again.

1This todo list in Haskell is called a Thunk, more information on Thunks can be found here:
http://www.haskell.org/haskellwiki/Thunk
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Applicative Functors

Now that we have considered Functors, imagine the case where we wish to map (*) over

some Functor, for example, the maybe type;

:t fmap (*) Just 3

> fmap (*) Just 3 :: Maybe (Int -> Int)

We get back a function wrapped in the Maybe type. Now that we have this, how do

we apply the functor containing the function to a functor containing some value. The

fact is that with normal Functors we cannot, we could if we desired pattern match over

the functor type, for example;

apply (Just f) (Just x) = Just (f x)

apply (Just f) Nothing = Nothing

However it is preferable to have a more general and abstract way of dealing with this

scenario. Applicative Functors are a type class that are designed to do just this [15].

Applicative Functors reside in the Control.Applicative module. Within this module are

defined two functions pure and <*>. Much like fmap in the Functor type class there is

no default implementation and so we must define our own. First, however let’s look at

their type signatures.

class (Functor f) => Applicative f where

pure :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b

As we can see to be part of the Applicative type class, a type constructor must be

first part of the Functor type class. The first of the two functions - pure - wraps a value

in a default context – a minimal context that still yields a value. The <*> function is

quite similar in its type signature to the definition of fmap from the Functor typeclass.

However instead of taking a regular function, it takes one that is wrapped in a Functor

and then applies it to another value that is also wrapped in a Functor, to get the final

result.

Finally an example of the two functions in action.

> Just (+3) <*> Just 9

Just 12

> pure (+3) <*> Just 10

6



Just 13

2.1.4 Functional Reactive Programming

Roots

Functional Reactive Programming is a method of modeling reactive behavior in purely

functional languages. In a purely functional language, there are no side-effects, however

there are cases where side-effects are necessary, such as with user interaction. Functional

Reactive Programming arose from the needs of programmers to model these areas without

introducing the side-effects associated with them[12].

The first instance of FRP was in the release of Conal Elliott and Paul Hudak’s seminal

paper “Functional Reactive Animation”2, in which was described a collection of data

types and functions for composing interactive, multi-media animations. In this paper

was described for the first time the ideas of Behaviors and Events, where Behaviors are

thought of as time-varying values, and Events were described as “arbitrarily complex

conditions, carrying possible rich information”.

There are several goals that FRP implementations aim to meet[1];

• Safety: Programs should make use of as much of the compilers correctness checking

as possible.

• Efficiency: As most FRP programs will be expected to respond in real time, efficient

operation and optimization are necessary

• Composability: FRP should maintain the ability to allow larger programs to be

built from smaller programs

Since “Functional Reactive Animation”, the concepts presented have stayed similar,

in that there are still Behaviors (Signals in some implementations) and Events. FRP

achieves reactivity through modeling how Behaviors are updated in response to events

that occur.

Numerous semantic models have emerged since the first paper, as much of the difficult

work involved with FRP is the definition of a suitable semantic model. Two of the main

models that arose are “Classic FRP” which is closely based off Conal Elliott’s work.

Classic FRP treats Behaviors and Events as first class citizens in the language, and

2Although the term Functional Reactive Programming was never used in the paper, it surfaced in
subsequent works
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allows them to be directly manipulated by the language constructs. Signal function

semantics on the other hand, deal with the concept of Signals, but do not allow them to

be acted upon in the same way as Behaviors, rather functions on Signals are manipulated

and made reactive.

Libraries

There are many different FRP libraries. Each tries to express how they feel is the

best way to implement the semantics first proposed by Conal Elliott. There are several

different FRP libraries 3,the following section outlines what we see as the current main

contributors to FRP based programming.

Fran

Fran, although now considered outdated was the first library to properly implement the

ideas of Behaviors and Events as used in more modern FRP libraries, therefore it is

remiss to discuss later libraries without discussing to to a small degree this library.

Fran arose from the creators’ belief that there did not exist a sufficiently high-level ab-

straction for dealing with the construction of interactive multimedia animation. Mainly

the difficultly lay with the fact that programs had to explicitly manage common imple-

mentation duties, such as stepping forward discretely in time, and capturing and handling

sequences of motion input events. The authors believed that by allowing programmers

to express the “what” of an animation, one could hope to then automate the “how”.

Fran captures the essence of modeling through four different concepts[10].

1. Temporal Modeling Values called Behaviors which vary over time are the main

values of interest. They are first class values and are built up compositionally. An

example is the expression;

bigger (sin time) circle

At time t, the circle has size sin t. Allowing the circle to change size naturally as

time progresses.

2. Events, like Behaviors, are first-class values. Events can refer to happenings in the

real world, such as mouse button presses, but also to predicates based on animation

3A list is available at: http://www.haskell.org/haskellwiki/Functional Reactive Programming#Libraries
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parameters, for example the collision of two items in a game. Events can be com-

bined together to an arbitrary degree of complexity, for example we could model

the event describing the first left button press after time t0 is simply lbp t0,

another describing time squared being equal to 5 is just;

predicate (timeˆ2 == 5) t0

We can then combine these two events using the .|. operator;

lbp t0 .|. predicate (timeˆ2 == 5) t0

3. Declarative Reactivity, many Behaviors are naturally expressed in terms of reac-

tions to events. These reactive Behaviors have declarative semantics in terms of

temporal compositionally rather than an imperative semantics in terms of state

changes. For example, a piece of code that alternates between red and blue on each

mouse button click :

colorCycle t0 =

red ’untilB’ lbp t0 *=> \ t1 ->

blue ’untilB’ lpb t1 *=> \ t2 ->

colorCycle t2

4. Polymorphic Media, the variety of time-varying media and parameters have their

own type-specific operations but they fit into a common framework of Behaviors

and reactivity.

Without going into more detail than is necessary about the underlying semantics of

Fran, I have shown the basic ideas that Fran initially “brought to the table” and the

groundwork that it lay for future Functional Reactive Libraries to build upon. In the

following sections we will highlight how current Functional Reactive libraries have built

and improved upon these ideas.

Yampa

Yampa is a language embedded in Haskell for describing Reactive Systems[9]. It was cre-

ated by Paul Hudak and like all current FRP libraries is based on the ideas from Fran.

9



Yampa has two central concepts Signals and Signal Functions. A signal is a function from

Time to to a value. We can think of the following definitions as the theoretical way that

these functions are implemented, in actual implementations the library has some changes.

Signal a = Time -> a

Time is continuous and is represented by a non-negative real number4

A Signal Function on the other hand is a function that operates over signals;

SF a b = Signal a -> Signal b

Signal Functions are first class citizens in Yampa, Signals however are not. It is easiest

to think of Signal and Signal Functions using a flow chart analogy, where wires represent

Signals and boxes represent Signal Functions with one type of Signal entering a box and

another type exiting.

Yampa’s Signal Functions are an instance of the arrow framework proposed by Hughes.

Two of the main combinators are;

arr :: (a -> b) -> SF a b

and

(>>>) :: SF a b -> SF b c -> SF a c

Graphically these functions can be expressed as such.

Figure 2.1: A graphical representation of Yampa Combinators, as we can see the arr
function lifts a regular function into a Signal Function, and the >>> function can compose
multiple Signal Functions together.

Finally although we can model some aspects of programming as continuous signals,

other sources such as a mouse button being pressed are more naturally described as dis-

4In current implementations of Yampa, Time is a synonym of Haskell’s Double type
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crete events. As such Yampa provides another type to work with;

data Event a = NoEvent | Event a

A Signal value whose output signal is of type (Event t) for some type t is called an

Event Source. The value carried by an event occurrence may contain some information

about the occurrence.

Yampa is currently one of the more popular FRP libraries and users have implemented

several different games, music synthesisers and robotics libraries using it. Its strength

lies in the fact that the arrow framework helps to avoid a time leak 5 a problem that

affected earlier FRP libraries, the arrow syntax also allows a natural modeling of flow

between the different modules that make up a program.

2.1.5 Reactive-banana

Unlike other FRP libraries, Reactive-banana takes a more applied approach to Func-

tional Reactive Programming, with the creator Heinrich Apfelmus focusing on building

the system before publishing his work. One of the main motivations behind the creation

of Reactive-banana was the simplification of coding graphical user interfaces with Func-

tional Reactive Programming. As such the library can be hooked into any existing event

based library such as wxHaskell. Reactive-banana can be classed as being of the “clas-

sic” FRP style, as semantically the variations in Reactive-banana and Conal Elliott’s

Fran are negligible. However, the implementations of the two are very different (as will

be discussed further on), this gives Reactive-banana greater efficiency. This efficiency

along with the ability to easily swap between functional reactive and pure functional

programming, whilst coding are the main reason we have chosen to implement the sound

synthesiser in Reactive-banana.

What follows is an overview of some of the key ideas of Reactive-banana.

Behaviors

Like Fran, Reactive-banana uses the idea of Behaviors to model time-varying values, se-

mantically we can think of Behaviors like so;

type Behavior t a = Time -> a

5Time leaks will be discussed in chapter 4
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Behaviors are instances of the Functor and Applicative Functor typeclasses so we are

able to map over a Behavior as we would with other types. Accompanying Behaviors are

several helper functions that are quite useful, some are mentioned further down.

Events

Events are also once again used to model a sequence of event occurrences, syntactically

we can think of them as;

type Event t a = [(Time, Event)]

Like Behaviors, Events are instances of the typeclass Functor. However they are not

part of the Applicative Functor typeclass. Events are used in Reactive-banana to model

discrete occurrences of something, for example the button being pressed on a GUI. You

will remember that this is the same as how were they described in Fran, a difference

however lies in the implementation of this idea.

Where Fran models Events as something like;

type Event a = [(Time, a)]

Reactive-banana’s implementation is closer to this;

type Event a = [(Time, Maybe a)]

This may seem like a small change, but this becomes important when using the

combinator function “union” (discussed below), in Fran’s implementation we have to

wait for an occurrence of both Events that we are uniting so we can pattern match on

them both before we can proceed, whereas with the Reactive-banana implementation by

introducing a condition that Events are “synchronized” in the sense that Events indicate

their occurrence at that time [5]. If an event does not occur at this time then it is

Nothing, so it can then be implemented as follows;

union ((t1,x1):e1) ((t2,x2):e2) = (t1, combine x1 x2) : union

e1 e2

where

combine (Just x) Nothing = Just x

combine Nothing (Just y) = Just y
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combine (Just x) (Just y) = Just x

combine Nothing Nothing = Nothing

This way we can always ensure an event fires correctly in the stream at a time.

Fran has a way around this case by using a function called “unamb” to help choose the

correct event when it occurs, however it is an extremely inefficient in its implementation,

requiring the use of two threads.

Combinators

Reactive-banana, like Yampa gives us several different combinators to provide extra ab-

straction, and allow for an increase in efficiency. Some of the key combinators in Reactive-

banana are6;

stepper :: a ->Event t a -> Behavior t a

This function allows the programmer to essentially store the event that is triggered

in a Behavior for future use. The value will continuously update as new events arrive.

accumB :: a -> Event t a (a -> a) -> Behavior t a

This function is similar to stepper, however instead of simply replacing the initial

value with one from the event, the event carries a function that can operate over the

value. The result of that function is then stored in the Behavior.

apply :: Behavior t (a -> b) -> Event t a -> Event t b

Apply takes time-varying function and applies it to a stream event, note due to

Haskell’s purity , what we are left with is two streams whenever an event is fired in the

first stream, a transformed event is fired in the second stream.

union :: Event t a -> Event t a-> Event t a

This is the function that we discussed earlier. This function combines two different

events streams that are of the same type into one unified stream. This is useful for when

6A full list of combintors can be found at http://hackage.haskell.org/packages/archive/reactive-banana
/0.7.0.1/doc/html/Reactive-Banana-Combinators.html
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we wish to have two different events affect one Behavior.

Reactive-banana Example

Now that we have looked at some of the functions of Reactive-banana, it is best to

provide a concrete example. What follows is a section of code from Reactive-banana’s

counter.hs code7.

let networkDescription :: forall t. Frameworks t

=> Moment t ()

networkDescription = do

eup <- event0 bup command

edown <- event0 bdown command

let

counter :: Behavior t Int

counter = accumB 0 $ ((+1) <$ eup) ‘union‘

(subtract 1 <$ edown)

sink output [text :== show <$> counter]

network <- compile networkDescription

actuate network

We firstly describe our event network using the Moment Monad, which denotes a

particular moment in time. In it we describe our inputs and outputs. Our inputs in this

case are the Events eup and edown (which are fired when buttons on the user interface

are pressed). The output of this event network is handled by the function sink which

takes the value from a Behavior and outputs the value onto a graphical user interface.

The Behavior in this program, is the value of the counter. To update the value we

use accumB, giving the counter an initial starting value of 0. When the Event eup is

fired, the value stored in counter is increased , and it decreases when the Event edown

is fired.

Now that that the event network has been described, we compile it into a network to

run, and then use actuate to start the network.

7The entirety of the code can be found at "http://github.com/HeinrichApfelmus/reactive-banana/blob/
master/reactive-banana-wx/src/Counter.hs"
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2.1.6 Applications

Since its creation FRP has been used in many different areas of programming - such

as game design, robotics, and computer vision - to allow an easy modeling between the

external interaction of outside stimuli and the internal events of a program. Below are 3

of the more notable endeavors made available to the public.

FRob/YFRob

Functional Robotics (FRob) [17] is an embedded domain specific language for control-

ling Robots. Initially developed using the Functional Reactive ideas highlighted in Fran.

FRob deals with the interaction between a robot and its environment in a purely func-

tional manner. This serves as a basis for composable high level abstractions supporting

complex control scheme in a concise way. Although FRob was initially built using the

ideas of Fran, new versions see it use Yampa as its main Functional Reactive framework

(YFRob).

Frag

Frag is a a 3D game built using Haskell. Its graphics were programmed using HOpenGL,

a Haskell binding to the openGL graphics library. More interesting though is that Yampa

was used to model both the continuous events of the frames updating and the discrete

events associated with the players input. Benchmarking of the game see it perform at

a desirable rate, though it was mentioned that improvements could be made through

different optimisations [8].

FVision

FVision (pronounced “fission”) is a library built in Haskell for the purpose of computer

vision. It is based on the C++ library XVision. Using Functional abstractions users of

FVision can build new tracking systems quickly and reliably. FVision is again built using

Yampa to model a user’s input as well as for scanning images [18].

2.2 Synthesisers

2.2.1 Pure Data

Pure Data is an open source visual programming language written in the programing

language Python. It aims to allow users to process and generate sound, video, and 2D/3D
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graphics. It is available for Windows, Linux and Mac OSX. Pure Data takes several of

its ideas from the ways of hardware synthesisers in that we can create several different

patches and connect them through different chords. Allowing for different sounds to

be generated. Pure Data takes a visual approach to making its patches, functions are

represented by objects, which are placed on a screen called a canvas. Pure Data serves

as one of the main inspirations of the project in that I hope to emulate to some degree

the basic sound functionality that Pure Data allows in a Haskell based framework.

2.2.2 Haskell Synthesisers

In Haskell, there have been a variety of different Synthesisers created in various different

ways to describe sound in different varieties. What follows is what I see as the main

synthesisers in Haskell.

HasSound

HasSound is a Haskell frontend to CSound. HasSound definitions are compiled to Csound

specifications. As such HasSound has ready access to the plethora of Csound features,

however the drawback to this is that one cannot do anything in HasSound that cannot

be done Csound. One of the main ideas of my dissertation is to build a framework that

relies mainly on Haskell, as such Csound is not a particularly good base for this project.

Yampa-Synth

This was a modular synthesiser designed by George Giorgidze and Henrik Nilsson for their

paper Switched-On-Yampa [11]. As the name would imply this Synthesiser was created

in Yampa which is another Functional Reactive extension for Haskell. The synth served

as mostly a proof of concept that Yampa could be used to design a naive reactive system

simply and cleanly. However this synth focuses less on a sound generation framework and

more on the input of external Midi files and other external inputs such as the key presses

of a keyboard to generate its sounds, nonetheless many of the ideas that are presented

in this paper serve as cornerstones for design implementations of Musikell.

Reactive-balsa

Reactive-Balsa is a live MIDI event processor that uses the Reactive-banana framework,

as such it would amiss to not mention it. Normally one would insert Reactive-balsa

between a MIDI input device such as a USB piano keyboard and a MIDI controlled
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internal software synthesizer. Again although it uses Reactive-banana, it does not provide

a framework to create sound which is the aim of Musikell. Also our framework tries to

be as portable as possible, due to Reactive-balsa relying on ALSA - the Advanced Linux

Sound Architecture - it will only work on Linux based systems [19].

2.3 Conclusion

In this section, I have laid the groundwork for what one will need to know when pro-

gramming a Synthesiser using a functional reactive library. The following section will

discuss how I implemented my framework in Reactive-banana.
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Chapter 3

Design

In the previous chapter we looked at Functional Reactive Programming as a whole, and

took a slightly more detailed look at Reactive-banana. In this chapter we are going to

discuss how we took these ideas presented and applied them to our Framework.

Our framework is designed to be used as one large network of inputs and outputs.

The input of this network can be anything that we choose to connect to the core of the

system, such as a keystroke or a button press from the GUI that we have included with

this work. The outputs of the network are of course the sounds that have produced over

the lifetime of the application.

3.1 Waveforms

While other synthesisers modeled using FRP decided to represent their sound using

MIDI-Files [11, 19]we chose a different path and decided to design a much lower level

framework that deals with the creation of waves, how a wave evolves over time, and

which produces digital samples as output.

3.1.1 Waves Explanation

As one would expect, the theory of musical synthesis is grounded within physics. The

best way to understand what is occurring during musical synthesis is to understand the

theory of sound.

Sound is made up of pressure waves, these move forward and backwards [6] - not unlike

waves in the sea - at a particular frequency. These waves move a persons eardrums with

the same frequency. Musical synthesis is the creation of signals which are then turned

into sounds waves by a speaker.
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When dealing with the synthesiser, we will deal with four basic sound waves; Sine,

Sawtooth, Square and Triangle waves.

Sine-waves are the purest of all waves, their name is derived from the fact that they

can be plotted using the simple mathematical function Sine. The formula for plotting a

Sine-wave is A × sin(wt + φ) where A is the amplitude of the wave, w = the angular

frequency, t is the time and φ is the phase of the wave.

Figure 3.1: A graphical representation of a Sine Wave. Values on the left side of the
graph, represent the wave’s Amplitude, and the values on top, are time.

Saw-waves are made through the additive synthesis of multiple different Sine-waves.

The lowest frequency Sine-wave of a Saw-wave is known as its fundamental frequency.

The subsequent Sine-waves are then all integer multiples of this fundamental frequency

and they are known as the Harmonics of the Saw-wave. Saw-waves have quite a harsh

sound to them.

Figure 3.2: A graphical representation of a Saw Wave. Values on the left side of the
graph, represent the wave’s Amplitude, and the values on top, are time.

Square-waves are similar to Saw-waves, however they only use the odd harmonics of

a fundamental frequency.

Figure 3.3: A graphical representation of a Square Wave. Values on the left side of the
graph, represent the wave’s Amplitude, and the values on top, are time.

Finally Triangle-waves are again similar to Saw and Square-waves, they also only use

the odd harmonics, however the amplitude of each harmonic drops at a faster rate than

that of Square-wave
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Figure 3.4: A graphical representation of a Triangle Wave. Values on the left side of the
graph, represent the wave’s Amplitude, and the values on top, are time.

3.1.2 Waves and Behaviors

Due the fact that waveforms vary over time, we decided a natural way to represent them

was as a Behavior in our framework. One can consider it as;

type SynthState = Behavior Wave

Where the type Wave contains type constructors as follows;

SinWave Frequency Amplitude Filter

SawWave Frequency Amplitude Harmonics Filter

Currently we do not need to worry about the “Filter” part of our types, as it will

be explained in a later section. The Behavior above is a very abstract idea of how we

should represent waves. When designing the application, we had to decide how to best

represent these waves.

One possible way we considered was to generate each value and write it out as we

created it, however we felt that this would cause problems as if there was a delay in

generating a sound then samples could be delayed, resulting in a skipping sound during

playback. An example of an unexpected delay would be if Haskell’s garbage collector

was to make a pass, it could potentially pause the running of the program, though this

would be only for a fraction of a second, it could be enough to disrupt the flow of sound

as a user would expect it.

The way we chose to approach this problem instead was to generate an infinite list of

points that would represent the overall lifetime of a wave.

type SynthState = Behavior [Double]
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This approach goes part of the way to solving this problem as we now have a large

number of values buffered so we do not need to generate them as we need them, providing

some relief if a case as pointed out above occurs. The other part of this solution is

sampling, which we will now discuss.

3.1.3 Sampling

Now that we have a data type with an infinite list of points that represents a wave, we

are presented with two new problems;

• When it comes time for the program to write out to a file, the program will stall

as it attempts to write out a never ending stream.

• The second issue is that with an infinite list, there is no proper way to manage

the change of a sound over time, by this we mean, if we decided that at first we

would play a sine wave and then play a saw wave, with an infinite list we would

only have the playback of the saw wave as it would have replaced the infinite list

of sine values.

The solution to both these problems is to of course sample points from the infinite

list at discrete intervals, and store the values taken until we need to write them out to a

file. With this in mind we can present a new definition for our current state.

type SynthState = Behavior ([Double], [Double])

Where the first list of Doubles, is the samples that we’ve taken so far, and the second

double is the infinite list of points generated.

3.1.4 Sound Generation

Now that we have shown how we wish to represent the waves as values. It is appropriate

to show how we generate these values. Oscillators are one of the main components of a

synthesiser. The job of an oscillator is to generate a periodic wave. In our framework our

implementation is as follows. We have a general function that we use to create our waves;

generateWave :: SampleRate -> WaveInfo -> [Double]
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Before we show the details of WaveInfo we can see an example of it in use, the

meaning is hopefully clear, if it is not we will be discussing it in full below.

generateWave samplePS (WaveInfo s (SinWave f a fil) cv _)

= (sineWave samplePS s f fil cv)

generateWave samplePS (WaveInfo s (SawWave f a h fil) cv _)

= (sawWave samplePS s f h fil cv)

As we can see it at the heart of it, it takes the wave type that we discussed earlier

and passes the information from inside it to a particular function corresponding to each

type of wave we can have, as well as some other information.

To understand this information better again let us have a look at the sineWave

function being called;

sineWave :: Int -> Double -> Frequency -> Filter

-> ControlValue -> SamplesGenerated

sineWave samplePS start freq fil cv

= map (sine freq cv) $ generateWaves samplePS start

sine f cv t = sin (2*pi*(f*(2ˆ (fromIntegral cv)))*t)

The generateWaves is a simple function that generates a list of Doubles based on a

start position and how many samples we wish to produce per second.

generateWaves :: Int -> Double -> [Double]

generateWaves samplePS start = [start, step..]

where

step = start + 1(fromIntegral samples)

More interesting is the sine function. As we can see it it just calls the inbuilt sin

function. We can now see what the purpose of the cv value is, it affects the overall

frequency of the current wave. We adopted a general convention that increasing this

control value by one, doubles the frequency (or increases the pitch by one octave) , and

lowering it by one, halves the frequency (or lowers the pitch by one octave).

So now we can discuss the WaveInfo type, it contains extra information important to

a wave, but not essential in the generation of one.
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data WaveInfo = WaveInfo { startPosition :: Double

, wave :: Wave

, controlValue :: ControlValue

, changed :: Bool

}

The remaining two fields we which we have not yet discussed are the startPosition

type which as we have seen already, helps generate waves starting at a particular point

in the wave cycle. This is important for when we wish to swap waves while they are

running, so as to allow the new wave to properly continue from where the previous wave

ended. The other field changed, is again for when we want to change between waves.

It is used to signal to the gatherSamples function that once the samples have been

gathered that it is to generate a new set of values to begin sampling from. If it is not

signaled it will continue to sample from the original “pool” of values.

Now we have shown that we can generate values using the WaveInfo type, it should

be obvious at this stage that the values contained within this type are also subject to

change over time, for this reason they also need to be part of our main Behavior. So let

us once again expand on what we have.

type SynthState = Behavior ([Double], [Double], WaveInfo)

The final extension to our state that we should consider is the notion of an envelope.

3.1.5 Envelope Generators

What are they?

Envelope generators are another component of a synth, they can be used to control any

other component of a synth, normally however they are used to control the amplitude of a

signal, to allow for a nice sounding start and finish to the signal[6]. In our implementation

we chose to implement just the ability to control the amplitude of the synth. An envelope

generator is defined by its levels, and the length of time it should take to reach that level.

Envelope generators normally have four stages to them, these are;

• Attack: This stage ramps the amplitude of a signal up to a specific level, normally

full strength.

• Decay: The amplitude drops to a fraction of the full signal.
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• Sustain: The amplitude remains all the level decay dropped to, and will remain at

that level until a close gate signal occurs.

• Release: The phase after a close gate signal, the amplitude drops off to some

number, normally zero.

This has led these type of generators to be known as ADSR generators. Often there

is a special case where more stages can be specified, however in our implementation

(discussed next) there is no limit to the number stages so we can act as an ADSR

generator or a more general one.

Figure 3.5: An ADSR Envelope Generator. During the attack phase the amplitude of
the wave increases to its maximum, before decaying to a fraction of this value, the note
will the then be sustained at that level, until it is released..

Implementation

In our implementation, we decided to model envelope generators as another list of Dou-

bles. However it was not convenient for user input to specify a very large list of doubles.

To remedy this we instead introduced another new type StepPair;

type StepPair = (Time, Level)

Both types contained within StepPair are synonymous with the Double type. When

programming an interface for Musikell, one can use StepPair to define the levels and time

taken to reach these levels for use with an envelope generator.
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The next step of course is to convert these StepPairs into a list of Doubles to use.

This was done through the following function;

beginGenEnvelope’ :: Int -> [Double] -> Level -> [StepPair]

-> [Double]

beginGenEnvelope’ samplesPS acc startLevel [] = acc ++

(repeat startLevel)

beginGenEnvelope’ samplesPS acc startLevel ((time,

nextLevel):xs) = beginGenEnvelope’ samplesPS (acc ++

[startLevel, sl’..nextLevel]) nextLevel xs

where

samples = (time/1000) * (fromIntegral samplesPS)

sl’ | startLevel > nextLevel = (startLevel - 1/samples)

| otherwise = (startLevel + 1/samples)

This function takes the StepPairs provided in the list and using the current level (of

the amplitude) decides how to step between each level. To decide on how to step between

the levels. The function first takes the time to reach that level (given in Milliseconds),

we then convert it to seconds, we then use the samples per second to decide how many

samples we need for that number of seconds.

Using the value obtained, we need to decide what the step between the current level

and the next level is. We do this by taking the start level and adding one over the number

samples (if the next level is above the start level) or subtracting the value (if the next

level is below the start level).

Using this step, we generate a list between the start level and the next level where

each value is a slight increment to the initial value.

We repeat this process for each StepPair (using the previous pairs, level as the start

level) until none are left, we then append an infinite list to the accumulated list, this

represent the sustain of the envelope.

The release of the envelope is handled by a separate function, releaseGenEnvelope’;

endGenEnvelope’ :: Int -> Level -> StepPair -> [Double]

endGenEnvelope’ samplesPS startLevel (time, nextLevel) =

[startLevel, sl’..nextLevel] ++ (repeat nextLevel)
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where

samples = (time/1000) * (fromIntegral samplesPS)

sl’ = startLevel - (1/samples)

This is a much simpler version of beginGenEnvelope that simply forces a value

down to the specified level. We leave it up to the use to the decide the final level it

should stop at.

Once again, as we are constantly changing the value of the envelope generator, it is

best to model this as a Behavior aswell. So we can add this into our state;

type SynthState = Behavior ([Double] [Double], WaveInfo,

Envelope)

This type apart from the name is in fact the final type we use within Musikell. In the

type also we use two synonyms for our two lists of doubles, these are SamplesGathered

and SamplesGenerated.

type SynthState = Behavior ( SamplesGathered,

SamplesGenerated , WaveInfo, Envelope)

3.1.6 Modeling Time

Now that we have shown how we decided upon the type SynthState, it is time

to address another problem that arose when designing the code, when sampling from

samplesGenerated how would we best represent time. For this we decided that there

were two main cases that had to be addressed. The case of sampling for an application

in realtime, that is sampling at a rate where human interaction with a wave can be heard

instantly. This would require sampling at a faster rate or sampling less values per sample

time. The second notion of time we thought of as “file playback”, in that all the samples

were written to a file and then played back by an external application. This notion of

playback brought with it the idea that samples only had to have a regular time step and

when values of samples was of little consequence.

One thing we wished for Musikell, is for it at some time in the future to be capable

of realtime interaction of a wave, however this was not a major undertaking for this part

of the project, as such we could take liberties with our timer. As a result we chose to use

the timer that comes bundled with the wxHaskell framework. The reason for this was
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two-fold, first it was easy to integrate into the application, thanks to Reactive-banana’s

focus on working with other graphical frameworks[3]. The second reason was that it

worked straight out of the box, which for implementing the rest of the framework was

exactly what we needed.

3.1.7 Playback

File Playback

Finally one more design decision that had to be made was how to best store the values of

the file. As in the end we use a large series of values it is quite simple to write out the file

in many different ways. Continuing with our trend of keeping our framework as simple

as possible, we chose to use a pre-existing library for writing sound files, the library was

Data.WAVE. The reason for choosing this was that it was designed to write out a list

of points easily, and contained a number of helper methods for dealing with some of the

more difficult things to do such as defining a .WAV header file and the sample rates.

One drawback to using this library however, was that we were very much limited to

the .WAV file-type. As mentioned these types of file, require a header and a sample for

adequate playback, also a restriction that was imposed by the library is that all the data

has to be written out at once. This prevents us from streaming values and instead when

we gather samples we must append them to an ever increasing list. This of course means

that when we come to write out the file, the longer we have been playing a sound the

longer the list, and the longer the time it takes to write out to a file.

Realtime Playback

In the later times of this work, we attempted to implement realtime streaming of the

sounds as they were created. Unfortunately there are no ready-made libraries to handle

such a thing in Haskell. To try and get around this, we attempted to use Sound exchange

(SoX) an open source, cross platform, command line application. SoX allows users to

playback multiple different types of file, but more importantly with SoX one is able to

read in values from its stdin, by piping the output from Musikell1 into SoX we had

hoped we would get the sound playing back in realtime, however we were faced with

some technical difficulties. We believe that with more time and research in this area we

could easily have discovered the source of the problem, however with the limited time we

focused on other matters.

1To do this, we changed from writing to a file to writing to Musikell’s stout we also changed the
values from being accumulated to streaming
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3.2 Implementation

In the previous section we discussed a number of the design decisions that we made, and

how we implemented several of the concepts that were mentioned. This section details

some more of the technical details that were not mentioned.

3.2.1 Filters and Filtering

A filter in general terms is a component that alters a wave in some fashion, so we could

broadly speaking consider a Voltage Controlled Amplifier as a filter. Normally however,

we would consider filtering as a function that affects the Harmonic components of a

compositional wave, through their attenuation. Filtering can bring new tones to a wave,

for example, if we wished for a Saw-wave to have a darker, more muffled tone, we can

filter out the higher harmonics of the wave [6].

There are two types of basic filter, high pass filters and low pass filters. High pass

filters are filters that will block out lower frequency waves, while keeping higher level

ones. Low pass filters as one would expect are the inverse of High pass filters. We can

separate the frequencies that are filtered into three separate categories.

• Frequencies within the pass band, these frequencies are the ones that are not af-

fected by the filter.

• Frequencies within the stop band, these frequencies are the ones that have their

signal attenuated down to 0, effectively blocking them.

• The transition from the stop band to the pass band can happen gradually, this is

area is called the transition band. Values within this band are attenuated based on

a interpolation between stop band and the pass band.

We implemented high-pass and low pass filters in Musikell;

hPassFilter :: Double -> Double -> Double -> Double

hPassFilter lowCut highCut frequency

| frequency < lowCut = 0

| frequency > highCut = 1

| otherwise = interpolated

where interpolated =

(frequency-lowCut)/(highCut - lowCut)
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Figure 3.6: A high pass filter, note how the movement from the stop band to the pass
band is gradual.

The above function is our high pass filter, it returns a single Double based on the

position of the frequency with regards the three bands discussed above. If it is below a

cut off frequency we simply return a zero, if it’s above it, we return a one. If it’s in the

transition band we work out using interpolation how far along the band the frequency

is. The values returned are then used to attenuate the frequencies during construction.

As low pass filters are the inverse of high pass filters, we are able to define it simply as;

lPassFilter :: Double -> Double -> Double -> Double

lPassFilter lowCut highCut frequency

= 1 - hPassFilter lowCut highCut frequency

More complex filters also exist. Two such filters are the band-pass filter and the band

reject filter. These filters are created through the combination of a low-pass filter and a

high-pass filter. Band-pass filters isolate a group of frequencies and allow them through,

blocking all other frequencies. Band-reject filters are the inverse of Band-pass filters and

allow all frequencies that are not within range to pass while blocking those within a

range. A fourth variable was added to allow for someone to define a transition band for

the overall filters. Once again, our band reject filter is just the inverse of the band pass

filter.
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Figure 3.7: A band pass filter, it only allows frequencies within the pass band to sound,
all other frequencies are blocked.

As these filters are combinations of the previous two filters. They are easily defined;

bandPassFilter :: Double -> Double -> Double -> Double ->

Double

bandPassFilter lo hi f tran

= (hPassFilter lo (lo+tran) f) * (lPassFilter (hi-tran)

hi f)

bandRejectFilter :: Double -> Double -> Double -> Double ->

Double

bandRejectFilter lo hi f tran

= 1 - bandPassFilter lo hi f tran

Our approach to filtering is different to the standard way. Synthesisers normally

will take a composite wave and deconstruct it into it’s fundamental frequency and har-

monics using a Fast Fourier Transformation. They will then filter these values before

re-constructing the new wave. We decided however that a better way to do this for

Musikell, was to make a filter part of the waves generation. We could then attenuate any

frequencies that were blocked by the filter and generate the wave as normal.

The rationale behind this was that, considering we generated waves through additive

synthesis it would be inefficient to decompose the wave again, only to add it back together.
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A drawback however is that when a filter is applied we need to recalculate the wave from

scratch, and sample from the wave.

3.2.2 Gathering the Samples

Now that we have discussed the other functions making up Musikell, the final thing in the

core functions. Is the function gatherSamples. This function is executed whenever

the timer goes off.

gatherSamples :: Int -> SynthState -> SynthState

gatherSamples sample (accum, rest, (WaveInfo s wave cv

False), eg)

= (newAccum, newRest, (WaveInfo (s +fromIntegral

sample) wave cv False),egRest)

where

newAccum = accum ++ (force values’)

(values, newRest) = splitAt sample rest

(egValues, egRest) = splitAt sample eg

values’ = zipWith (*) values egValues

gatherSamples sample (accum, rest, (WaveInfo s wave cv True),

eg)

= (newAccum, newRest, (WaveInfo (s+(fromIntegral

sample)) wave cv False), egRest)

where

newAccum = accum ++ (force values’)

(_,newRest’)

= splitAt (round s) (generateWave sample

(WaveInfo 0 wave cv True))

(values, newRest) = splitAt sample newRest’

(egValues, egRest) = splitAt sample eg

values’ = zipWith (*) values egValues

As mentioned before depending on whether WaveInfo is carrying a True or False

value, this function does two slightly different things. If WaveInfo carries a False, then

it means that the currently the sound wave has not been modified and we can continue

to sample from the same list.
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If WaveInfo carries a True however then we must start sampling from a new wave.

Either way the methods for sampling are similar, using samplesPS we split the infinite

list into two, which gives us our new samples, and the remainder of the list.

While we take from the list of wave values, we also take from a second list, the

envelope generator list, we do this in the same fashion as we do for the wave list. We

then multiply these two values, to get the final values for our samples. We then append

these new samples to the previously collected samples.

One thing to note, is that we strictly evaluate the samples as we take them from the

list, we do this to prevent a time leak which is discussed more in the next chapter.

3.3 Reactive Banana and Musikell

In the previous sections we discussed the main core components that make up Musikell.

This section now looks at how we modeled interaction between these components and

the outside world.

3.3.1 Events

In Chapter 2, we discussed Events in the context of Functional Reactive Programming

in general, but also how they relate specifically to Reactive-banana. To remind others,

an event is some occurrence that can happen at a discrete time, be it a button press on

GUI, or a mouse press.

With Musikell, we have left it open for future users to decide what different inputs

will signal an event in the program. However to best explain the ideas of events and how

they act upon the main state, we have included a small runnable application along with

this source code. It is important to stress that this is intended as just a proof of concept

to demonstrate some of the synth core functionality, and to help explain the key ideas

presented in the documentation.

In the example provided Musikell takes it events from the user interface provided.

To extract the event from the buttons on the interface, Reactive-banana provides the

function event0, which can be used as follows;

eStartE <- event0 startE command

The input to event0 is simply the widget we wish to register to the event. Now

whenever the start button the user interface is pressed an event will be fired. The event
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fired is of type Event () which is not very useful to us, as it cannot modify the state.

In order to bring in the ability to modify the state we need to replace () with a function

instead. To do this with Reactive-banana is again very simple, we use the (<$) operator,

it’s type signature is;

(<$) :: Functor f => a -> f b -> f a

An example of this in use is;

(beginGenEnvelopeE samplePS envelope) <$ eStartE

Now whenever the event eStartE occurs the () is replaced with the partially ap-

plied function beginGenEnvelope. We can now take this partially applied function

and apply it to the state type using mapAccum. To remind ourselves accumB allows

users to apply functions stored in events to types stored in Behaviors. The Behavior that

we wish to apply this function to is of course the SynthState.

bSynthState :: Behavior t SynthState

bSynthState =

accumB ([], generateWave samplesPS rw , rw, (repeat 0))

((beginGenEnvelopeE samplePS envelope) <$

eStartE)

Now whenever the “Begin Envelope” button is pressed on user interface, an event

occurs which updates the SynthState using the function beginGenEnvelope. In order

to expand this to multiple inputs is trivial at this point. One only needs to register a new

event coming from somewhere, e.g another GUI button, or a key stroke, and then attach

another one of the functions mentioned earlier to that new event as just discussed. One

final step of course is to make sure that the multiples events are all fired as they come

in, the way to do this is through union.

-- Assume that the events have been registered previously

bSynthState :: Behavior t SynthState

bSynthState =

accumB ([], generateWave samplesPS rw , rw, (repeat 0))

((beginGenEnvelopeE samplePS envelope) <$
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eStartE)

‘union‘ (endGenEnvelope samplesPS (1000,0) <$

eStopE)

‘union‘ (gatherSamples samplesPS <$ eAlarm)

As we mentioned previously, the functions are all partially applied. The reason for

this can be seen by examining the type signature of accumB again.

accumB :: a -> Event t (a -> a) -> Behavior t a

It requires that the functions take and return the same type that is currently stored in

the behavior. All the functions with Musikell take the samples per second as a parameter,

and some others take more parameters, so it is important to partially apply the functions

up to the point where all it requires is the SynthState as input. Once we have ensured

this, then we can add in more functions to modify the state easily. This allows for an

easily extensible framework.
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Chapter 4

Discussion

In this chapter we discuss our experiences with Functional Reactive Programming, with

an emphasis on Reactive-banana. We also discuss our thoughts on Musikell as an appli-

cation, both its strength and weaknesses.

4.1 Functional Reactive Programming

4.1.1 FRP vs FP

Programming using Functional Reactive libraries allows programmers to reason about

suitably more complex systems without the need to understand the underlying imple-

mentations of how the program deals with data flow. A programmer can reason about

these ideas using the abstract ideas of Behaviors and Events if we’ve subscribed to the

“classical” style of FRP, or using Signals and Signal Functions if subscribed to the “Sig-

nal” style. By freeing the programmer of the underlying implementation we are able to

write shorter, more maintainable code.

However FRP also suffers because of this abstraction, as the concepts that are pre-

sented at first can be difficult to understand and often ideas are presented with an

assumed prior knowledge, this coupled with the lack of documentation can often leave

people new to the subject feeling out of their depth.

This said, due to the fact that we can trace FRP semantics back to the ideas expressed

in “Functional Reactive Animation”[10], once a grasp of the high level concepts has been

achieved it is quite easy to move between the different libraries, and understand the

concepts put forward. Surprisingly, the two different styles of FRP are a boon to someone

first learning the concepts, as if they are having difficulty with one style, they may find

it easier to understand what is being expressed, under a different light.
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4.2 Reactive-banana

In Chapter 2, we gave a summary of Reactive-banana’s library. In this section we discuss

the appropriateness of Reactive-banana used as a general developmental library and also

it’s appropriateness when applied to the domain of Sound Synthesis.

4.2.1 Overview

Reactive-banana is a very powerful library that allows users to model many different

applications using the concepts put forward by Conal Elliot. As with any library created

their are always benefits and drawbacks to using it.

There are numerous benefits to using Reactive-banana, due to its similar semantics

to Fran[4], once the idea of FRP is understood properly it becomes a very powerful

and simple way to express ideas using only Behaviors and Events, combining this with

Reactive-banana’s emphasis on Graphical User Interface creation, we are able to not

only easily create front ends but also create links between the interfaces and the under-

lying code using Events. An example of this can be seen in this excerpt from the code

Arithmetic.hs.

-- Defining the layout of the text boxes using wxHaskell

f <- frame [text := "Arithmetic"]

input1 <- entry f []

input2 <- entry f []

output <- staticText f []

set f [layout := margin 10 $ row 10 $

[widget input1, label "+", widget input2

, label "=", minsize (sz 40 20) $ widget output]]

-- extracting the values from the text boxes and modeling

them as Behaviors

binput1 <- behaviorText input1 ""

binput2 <- behaviorText input2 ""

As we can see we define the text boxes and then simply extract their values so we can

reason with them as we would with any previous behavior. A review of the Counter.hs

code shown in section 2 will show that a similar method can be taken to create events
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from buttons in the user interface.

There are drawbacks however to using Reactive-banana. The main major drawback

is that unlike other FRP libraries there is no implicit notion of Time in Reactive-banana,

this forces many users into creating their own model of time, or relying on other libraries

to provide timers for them to use. We believe that Reactive-banana would benefit greatly

from having it’s own concept of time freeing it from relying on other libraries (as it does

in many of the examples given on the wiki page). Another drawback, is that because it is

easy to integrate plain Haskell code into Reactive-banana it is easy to mis-use Reactive-

banana, by relying on Haskell functions it is possible to introduce State and Time-leaks

into programs, two things that Functional Reactive Programming promises to remove,

however we feel this is less an issue with the library and more one that falls on the

programmer to avoid.

4.2.2 Learning Curve

Reactive-banana compared to other FRP libraries is easily the most well documented of

all the libraries. There are numerous examples of small applications, the Hackage entry

for it also has a lot of information. However despite all this, there is a difficulty to learning

to use Reactive-banana. When first presented with all the ideas, it is easy for someone

to feel overwhelmed by the amount of new information. The examples presented while

numerous can often confuse as much as aid the programmer as there can be other parts

to a program (such as interface creation) before one reaches the section that pertains

directly to Reactive-banana. This we felt could lead to in-experienced FRP users to get

entangled in the wrong portions of code and miss the point of what Reactive-banana is

trying to achieve.

Reactive-banana like other FRP libraries, suffers from the problem that it deals with

very abstract, high level concepts, which can make it difficult to understand at first, we

are presented with ideas of how to create a network using the Moment monad, without a

concrete example of why we need to use this monad and the benefit it provides. Similarly

the construction of a program and how to best interact with Behaviors and Events can

be lost within the numerous functions presented in the API, as such beginners may very

well be tempted to “create the wheel” so to speak. However as stated this is a problem

that seems to be inherent with most FRP libraries.

37



4.2.3 Ease of Use

Despite the learning curve associated with Reactive-banana, once a programmer has come

to grips with the flow of a Reactive-banana program, and has become more familiar with

the numerous functions provided, they will find it very easy to create simple programs

using the concepts. Programs designed around a front-end are very simple to create and

programmers can design prototypes quite quickly and simply using the library.

4.2.4 Time-Leaks

Time-leaks are a situation in which a value becomes dependent on previous values for

an arbitrary time interval, and these values are not evaluated as produced, thus once a

value is required it may take an arbitrary amount of time to calculate this value. The

unpredictability of when a program stalls is one of the biggest concerns with regards

Time-leaks, as an event may occur sporadically in the lifetime of a program, and that

event could force a calculation of multiple values that have been built up in the interval,

causing the program to halt.

One of the motivations for expressing FRP (Functional Reactive Programming) as

signal functions is to avoid time leaks [16]. Reactive-banana has also designed many of

its functions with the explicit concern of avoiding time leaks[2]. However there are cases

when a programmer can accidentally introduce time leaks into their programming. As

mentioned in the previous chapter, we force strict evaluation of values when sampling

from the lazy list, this was done to avoid a time leak in the application when one even-

tually writes out to a file, as suddenly the program seizes while it tries to calculate the

values. Interestingly enough this forced strictness has no negative effect on the run-time

performance of the code. It will calculate values at the correct speed, and when writing

out to files the time to do so is greatly reduced. It should also be noted that if values were

streaming, this strict evaluation during sampling would be redundant as values would be

forced to evaluate as they were produced, thus avoiding the time leak.

4.2.5 Appropriate for Application Domain?

Having created a simple sound synthesiser using Reactive-banana, we believe that it was

perhaps not the best choice of library for the problem. This is mainly due to the fact that

Reactive-banana does not have an implicit time built into it’s library. This led to several

of the design decisions made, including our choice of how to sample values, because we

could not easily integrate a timer into the creation of sine waves as was done with the
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synthesiser created in Yampa. We also believe that Reactive-banana although expressive

is not as well suited for modeling the ideas of the data flow of a synth as well as Yampa

can, by this we mean using Yampa’s arrowed framework is a more natural representation

of the how sound signals would travel in a synthesizer.

This being said, despite Reactive-banana’s shortcomings in this area, it was never

designed to be used in this type of scenario, this was not immediately obvious when first

choosing the library, and by the time we realized this it was too late to start with a new

library. However, we have proved that it is possible to design more complex applications

using Reactive-banana, and it gives us hope that in the future we will see a more refined

version of Reactive-banana that allows for more general FRP application programming.

4.3 Musikell : An Analysis

Musikell is a very simple framework, and that is both its strength and its weakness.

What follows is a discussion on what I find to be Musikell’s greatest strengths and

biggest shortcomings.

4.3.1 Strengths

Musikell was designed to be a simple and easy to use Framework that can be used to

create different sounds, and we believe that we achieved this to a good extent.

One of Musikell’s main strengths is how lightweight it is, the codebase is very small,

the functions are very straightforward, and though designed with the idea of functional

reactive programming in mind, we stepped away from that to some extent and many of

the functions do not rely on the necessity of Reactive-banana. Due to this, Musikell is

also easily extensible, a person need only add new functions that manipulate the synth

state to achieve a new effect on the sound.

Perhaps, amongst the greatest things about Musikell is that it’s main functions are

completely de-coupled from any reliance on a user interface. Using Reactive-banana or

some other FRP library we can create any type of user interface we desire, such as buttons

to be pressed on a graphical user interface, or keys being pressed on the keyboard. We

need only model these ideas as events that change a behavior in some way and we can

have any sort of link up that we desire.

Finally Musikell, is completely system independent. This was one of the main things

that we wished to see happen when making the Framework. Some of the other synths,

require that one has support for Advanced Linux Sound Architecture, instantly limiting
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the platforms that the synths can operate on. Musikell makes no assumption about which

platform you work on, only that you have the basic requirements to run the code, in this

case Reactive-banana and its dependancies.

4.3.2 Weaknesses

What follows is what we see as the largest shortcomings of Musikell and solutions on how

we could perhaps improved upon them if given more time.

The first problem we believe needs to be addressed is the fact that when sampling

the infinite list of values we rely on the use of wxHaskell’s built in timer. As stated

in the strengths section we do not necessarily need to use wxHaskell or any other GUI

framework, as Musikell can be independent of any user interface framework, however

if one chooses to peruse this route of independence , they will need to devise their own

method of sampling values. We believe that given more time, we could have implemented

our own variation on a timer, that would have made Musikell more self-reliant, but due

to lack of time it was an unnecessary addition to the codebase.

A main goal that we had hoped to achieve but was not possible was that of real time

playback of sounds, so that we could hear the change of sound instantly as opposed to

listening to it from a file after writing out the samples taken. One of the main reasons

for this shortcoming was the lack of Haskell based realtime streaming libraries. I believe

this lack of library is due to Haskell’s level of abstraction, at this level, it is hard to make

assumptions about the underlying architecture and thus hard to implement. One solution

that we tried to remedy this problem was the usage Sound eXchange (or SoX) a cross

platform command line utility that can allow realtime playback. This seemed promising

however experiments in this approach experienced problems. We believe this problem

lay in the fact that audio bit rates were not lining up correctly, more experimentation in

this area would in our opinion lead to a proper audio real time playback area.

The last major shortcoming of Musikell that I believe needs to be addressed is that

lack of concurrency used within the application. Given more time, this would have been

one of the major points that would have been addressed, as with concurrency not only

comes optimizations to do with writing and generating files, but also we could have

addressed the problem that only a single note could be played back a time by Musikell.
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Chapter 5

Conclusion

This dissertation investigated the plausibility and practicality of building a simple sound

synthesiser framework using the concepts of Functional Reactive Programming, in par-

ticular the use of the library Reactive-banana. In chapter one we gave a brief overview of

this work as a whole, before examining the origins of Functional Reactive Programming

and its libraries in chapter two. In chapter three we outlined the design of Musikell,

considering the different decisions and limitations that shaped the framework. Finally in

chapter four, we discussed the use of Reactive-banana as an appropriate library for this

work, before analysing the success and shortcomings of Musikell.

With regards the aims of this research, we have achieved a moderate level of success

with regards a sound synthesis framework. To re-iterate the sentiment in chapter four,

Reactive-banana may not be the best suited Functional Reactive library for this appli-

cation domain, however we have shown that it is possible to create a simple framework

based on the concepts provided by the library, and these ideas can be extended into other

areas not just sound synthesis, if one so desires.

5.1 Future Work

Although we have built a framework for sound synthesis, there are further endeavours

with which one can partake for the improvement of Musikell.

5.1.1 Timer

An intent of Musikell was always to make it as self-contained as possible, currently if we

wish to sample data from the list of values (as outlined in chapter 3) we can do so with

the aid of a timer provided by wxHaskell. A solution that we would like to see come to
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fruition would be to create our own notion of time, and use this new timer to sample

values, freeing Musikell from its reliance on other frameworks.

5.1.2 Realtime playback

Realtime playback was not a major concern when considering the creation of the frame-

work. However a future addition to the framework could be a set of functions to achieve

this end. This addition would continue the idea of making Musikell as self-sufficient as

possible.

5.1.3 Arrowed Musikell

As stated in Chapter two, a similar concept to Musikell had been explored in the paper

Switched-On-Yampa, however the design of their system was aimed at the manipulation

and playback of midi-files as opposed to sound creation. A possible future for Musikell,

would be to re-construct the the ideas presented in this work, using Yampa or another

signal based FRP library, to see if better results could be achieved.
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