
Developing knowledge models of social

media over World Wide Web

by

Li Jinwu, B.Sc.(Hons)

Dissertation

Presented to the

University of Dublin, Trinity College

in fulfillment

of the requirements

for the Degree of

Master of Science in Computer Science

University of Dublin, Trinity College

September 2013

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated, is

my own work.

Li Jinwu

August 29, 2013

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Li Jinwu

August 29, 2013

Acknowledgments

I want to say my sincere thanks to my supervisor, Melike Sah, who spend so much effort

in teaching me how to research and giving me so many valuable suggestions. My thesis

is based on her idea and her assistance. And my parents, my friends and everyone who

support me during the course, I feel life in post-graduate is so meaning when you beside,

me.

Li Jinwu

University of Dublin, Trinity College

September 2013

iv

Developing knowledge models of social

media over World Wide Web

Li Jinwu, M.Sc.

University of Dublin, Trinity College, 2013

Supervisor: Sah Melike

User generated content from large Social Network is considered an important knowl-

edge source in the future. The data is inherently unstructured or semi-structured.

In this project, we perform a case study on LinkedIn Ireland public profiles, to inves-

tigate how to develop a reusable knowledge model for it. Apart from the search engine in

LinkedIn.com itself, there’s no well known public available endpoint that allows users to

query knowledge of interest from LinkedIn. We present a system that download and con-

vert the raw web pages from LinkedIn to a machine-readable, interoperable format using

Data Mining and Semantic Web technologies. One of the outcomes from this project is a

dataset that contains facts about Irish industry and education in a structured manner.

The resulted dataset is publicly accessible SPARQL endpoint, everyone who interested

in facts about Ireland can use HTTP request to access it.

v

Contents

Acknowledgments iv

Abstract v

List of Tables ix

List of Figures x

Chapter 1 Introduction 1

1.1 Background . 1

1.2 Motivation . 1

1.3 Research Question . 2

1.4 Contributions . 2

1.4.1 Reusable knowledge model from LinkedIn public profiles 2

1.4.2 Public online SPARQL endpoint for complex query about Irish in-

dustry . 3

1.4.3 Scalable crawling strategy . 3

1.4.4 Mashup based city information extraction strategy 3

1.5 Outline of the thesis . 3

Chapter 2 State of the Art 5

2.1 Introduction . 5

2.2 Data extraction . 6

2.2.1 Data extraction in general . 6

2.2.2 Approaches . 7

2.3 Knowledge modelling . 9

2.3.1 Semantic Web technologies . 9

2.3.2 Linked Open Data . 11

2.3.3 Building ontologies . 13

2.4 Content integration and classification . 14

vi

2.5 Evaluation of the extracted data . 15

2.6 Chapter Summary . 15

Chapter 3 Design 17

3.1 Requirements . 17

3.2 Knowledge model . 18

3.2.1 Reusing existing ontologies . 20

3.3 System architecture . 21

3.4 Design decisions . 22

3.5 Chapter Summary . 22

Chapter 4 Implementation 23

4.1 Programming languages and corresponding libraries 23

4.1.1 Python and its libraries . 23

4.1.2 Java and Lucene text search engine 23

4.1.3 Modular porogramming paradigm 24

4.1.4 System environment . 24

4.2 Strategy . 24

4.2.1 Profile download strategy . 24

4.2.2 City extraction strategy . 25

4.3 Chapter Summary . 26

Chapter 5 Evaluations 27

5.1 Evaluation, the rationale . 27

5.1.1 Data completeness . 28

5.1.2 Data Accuracy (extracted metadata quality) 30

5.1.3 User perceived data quality . 38

5.1.4 Metadata fitness . 46

5.2 System performance . 47

5.2.1 Parsing performance . 47

5.2.2 Normalising and converting performance 48

5.2.3 Query performance . 48

5.3 Chapter Summary . 51

Chapter 6 Conclusions and Future Work 52

6.1 Conclusions . 52

6.2 Future work . 52

6.2.1 Company names and job tiles classification 52

vii

6.2.2 Expand the current dataset . 53

viii

List of Tables

5.1 Total number of personal profiles, company profiles and skills 28

5.2 Personal profile completeness . 29

5.3 Company profile completeness . 29

5.4 Data Linkage: Total and Average . 30

5.5 Precision, recall and f-measure scores for city information 32

5.6 Precision, recall and f-measure scores for company information 32

5.7 Precision, recall and f-measure scores for job title information 33

5.8 Precision, recall and f-measure scores for experience start date information 33

5.9 Precision, recall and f-measure scores for experience end date information . 34

5.10 Precision, recall and f-measure scores for college information 34

5.11 Precision, recall and f-measure scores for major information 35

5.12 Precision, recall and f-measure scores for degree information 36

5.13 Precision, recall and f-measure scores for education start date information . 36

5.14 Precision, recall and f-measure scores for education end date information . 37

ix

List of Figures

2.1 Semantic Web Stack1 . 9

2.2 Link Data Cloud2 . 11

3.1 Knowledge Model for Linked public profile and company profile 19

3.2 System Architecture . 21

5.1 Online user evaluation website: User manually extracted data 31

5.2 Summary: average precion, recall, f-measure for all fields 38

5.3 Online user evaluation website: Asking user compare manually extracted

data with automatically extracted data . 39

5.4 User average rating for city . 40

5.5 User average rating for company name . 41

5.6 User average rating for job title . 41

5.7 User average rating for experience start date 42

5.8 User average rating for experience end date 42

5.9 User average rating for college . 43

5.10 User average rating for major . 43

5.11 User average rating for degree . 44

5.12 User average rating for education start date 45

5.13 User average rating for education end date 45

5.14 Summary: average user ratings for all fields 46

5.15 Query performance of all 5 queries on development machine and production

machine . 50

x

Chapter 1

Introduction

1.1 Background

Social media like Facebook and Twitter are gradually changing the world, and becoming

a new source of knowledge. Users generate the data with a feeling of rewarding, since they

can get recognition and interaction from other users[1]; but for practitioners in Information

Technology (IT) industry, User Generated Content (UGC) means a new, inexpensive and

fast way to obtain data that is barely impossible in the past.

LinkedIn.com, the world’s largest profession network1, contains a large amount of

hidden career and country base industry information, but yet waiting to be discovered.

Unlike Facebook and Twitter, the study of LinkedIn.com is not getting as much attentions

as it should be.

Semantic Web, as believed by many researchers, will be the “Next generation of knowl-

edge representation and processing technology”[2]. It aims to extends the world of human

readable web page and documents to a new world of machine understandable, interoper-

able metadata.

1.2 Motivation

The lack of study of LinkedIn.com provides an opportunity. This project use LinkedIn

Ireland as the study subject, and aims to develop a reusable, queryable knowledge model

for LinkedIn public profiles. The importance of the project can be described in several

aspects:

Firstly, Getting fully insights about Ireland industry distribution, personal skills and

professionals’ education background are always important for a number of people. And

1According to their official website: http://www.linkedin.com/about-us

1

it can be easily to scale to LinkedIn worldwide.

Secondly, it’s a good complement for government statistics about industries and pro-

fessionals. The effectiveness and timeliness of UGC can always guarantee we are getting

the first hand data.

Thirdly, at the end of this project, an online public dataset will be provided so that

everyone who interest in Ireland facts can query the public endpoint to get information.

Finally, user interface can built on top of the knowledge model and the dataset to

support complex queries and answer questions. Government, practitioners in Human

Resources (HR), and job seekers are possible target audience.

1.3 Research Question

According to the background and motivations, this thesis address the following research

questions:

1. Can we take advantages from Semantic Web technologies to build a knowledge model

and generate user dataset from the public data provided by LinkedIn.com?

2. In order to achieve interoperability and common agreement, can we reuse existing

ontologies and public vocabularies and integrate them into our model?

3. How useful and complete is the extracted data?

4. Is that possible to have a working user interface that make use of our dataset and

demonstrate some useful use cases?

1.4 Contributions

1.4.1 Reusable knowledge model from LinkedIn public profiles

We present a queryable, extendible knowledge graph (Figure 3.1) that capture the data

relationship of LinkedIn.com public profiles and company profiles. It can be used by

LinkedIn internally or by other researchers who also interested in user generated content

in LinkedIn.com.

2

1.4.2 Public online SPARQL endpoint for complex query about

Irish industry

We publish our SPARQL endpoint at http://goo.gl/5HyziV. It’s a standard SPARQL

endpoint that powered by 4store[3]. Our endpoint accept HTTP POST requests and

support a number of RDF format, such as XML, JSON, plain and turtle. Anyone who

interested in discover Irish industry and college facts can use this service.

1.4.3 Scalable crawling strategy

The crawling strategy is scalable to any numbers of LinkedIn public profiles. If we consider

a profile is a node, since in the profile, LinkedIn will suggest 6 to 8 similar profiles

(nodes), the graph is expanding very quickly (exponential increase). Therefore, data

mining practitioners (and other researchers) can make use of our strategy, as discussed in

chapter 4, to download profiles in any subdomains of LinkedIn.

1.4.4 Mashup based city information extraction strategy

Based on our user study, the strategy is widely accepted by our survey participants, with

average of 0.85 F-score and 4.089/5 user rating. The approach can be generalise to get city

information by company names. Another approach is to use Google reverse Geocoding

service2. However, even we don’t have comparison result on hand, the result provided by

reverse geocoding service seems to worse than using a country’s yellow page database.

1.5 Outline of the thesis

Chapter 2 discusses the state of the art in Data extraction and Knowledge modelling.

Chapter 3 covers system requirements, system architecture and design decisions.

Chapter 4 provides details about the implementations, including profile crawling strat-

egy, data extraction, data normalisation and missing fields inference.

Chapter 5 evaluates the extracted data accuracy, LinkedIn profile completeness, data

linkage and data fitness.

2https://developers.google.com/maps/documentation/javascript/geocoding?csw=1#
ReverseGeocoding

3

http://goo.gl/5HyziV
https://developers.google.com/maps/documentation/javascript/geocoding?csw=1#ReverseGeocoding
https://developers.google.com/maps/documentation/javascript/geocoding?csw=1#ReverseGeocoding

Chapter 6 concludes the results and contributions, and future works will be discussed

in this chapter as well.

4

Chapter 2

State of the Art

2.1 Introduction

Social media has become an important source of knowledge, user-generated content has

a great potential useful data in terms of business opportunities and research data source.

In this dissertation, the author performs a case study on Linked.com, a leading websites

in Social Media, and build a knowledge model for the company and professional public

profiles. The potential use of the dataset could be similar to [4], where applications will

be built on top on the dataset to provide the user with customised data aggregation.

This project focuses on developing the knowledge model representations of user gen-

erated content in the context of Semantic Web. Semantic Web can be regarded as an

revolution from Web of documents to Web of data and knowledge.[2] The key factor that

differentiate it from traditional web is that, it guarantees machine-readable data that

supports automatic reasoning. It increase the interoperability of the data by defining the

semantic meanings. Normally, The Resource Description Framework (RDF) is used to

describe the resources.

In the context of the Semantic Web, there’s a movement that tries to encourage

information holders to publish and link their data together; it’s called Linked Data. More

and more people contribute to the Linked Data Cloud[5], for example, government Linked

Data has already been maintained by W3C.org, Ontologies and RDF are heavily used in

Biomedical domain, the FOAF project has already attracted Social networks to use it to

model the users, and the DBpedia, the Semantic version of the Wikipedia, has become

the centre of the Web Ontologies[6]. So we decide to build our knowledge model using

RDF, because it can take the advantages of Semantic Web, to support reasoning and

machine auto-processing. Apart from that, SPARQL Protocol and RDF Query Language

(SPARQL), can be used to infer the facts from RDF triples.

5

This project focuses on developing the knowledge model representations of user gen-

erated content in the context of Semantic Web. Ideally, the data model should be general

enough so that new knowledge can be inferred from the extracted data. Because we are

using RDF triples to represent data, SPARQL will be used as the query tool to answer

questions.

In order to generate knowledge models from raw HyperText Markup Language (HTML)

files of LinkedIn public profiles, a number of challenges are required to be addressed, such

as Data Extraction, Knowledge Modelling, Content Integration and Evaluation of Ex-

tracted Data. In the next section, we discuss each challenge in detail.

2.2 Data extraction

2.2.1 Data extraction in general

[7] provides an up-to-date survey on web data extraction. In this paper, three common

techniques for web data extraction is listed: 1. Tree-based approach: analysis on Docu-

ment Object Model (DOM) trees. 2. Web wrapper: use procedures to seeks and finds

data required. 3. Machine learning approach: using reasoning or other Artificial Intelli-

gence (AI) techniques to find the data of interest. In addition, the paper provides a full

list of famous applications that are being used in the real world. In our approach, as

we can only access to the HTML files of LinkedIn public profiles, Web wrapper method

will be used to extract data. Although the pages do not contain structure knowledge,

the format are consistent and barely change. Even some profiles are incomplete, we can

handle this in our Wrapper program.

[8] discusses four challenges or concerns that every research will encounter in the field

of Semantic Web and Big Data.

1. Michael L. Brodie mainly focuses on data integration. He also provides a general

form for it: 1. Define the concern. 2. Search for candidate data elements. 3.

Extract, Transform and Load (ETL) the candidate data into appropriate formats.

4. Entity resolution to get unique, comprehensive data. 5. Answer the query/solve

the problem.

2. Christian Bizer tries to motivate people to take the Billion Triple Challenge (http:

//challenge.semanticweb.org/). The challenge is about using pre-crawled data set

to translate different vocabularies into uniform one, discover resources and fuse

descriptions into an integrated representation. So the main challenges here are: 1.

Large-scale RDF processing. 2. Data quality. 3. Data Integration.

6

http://challenge.semanticweb.org/
http://challenge.semanticweb.org/

3. Peter Boncz proposes the Linked Open Data Ripper, a web portal to combine open

government data. The main challenges are the accessibility and the usability of the

public government data. He is looking for robust, reliable user interface(s) (UI) that

integrate Linked Data from multiple sources and allow users to query the data more

easily.

4. Orri Erling believes systematic adoption of Database Management System (DBMS)

technology into Semantic Web could be a potential opportunity, since efficient stor-

age and query of DBMS has been researching for decades. A lot of optimisation

mechanisms, performance tools have been developed to support the system. The

challenges exist are: 1. we need to demonstrate the benefit of semantics. 2. smarter

database is required for reasoning, but Web Ontology Language (OWL) is not

enough. 3. we need to bring Linked data and RDF into the regular data-engineering

stack.

These challenges are interesting topics that waiting to be addressed. Nevertheless, it

provides a brief overview of the current status of Big Data stack.

[9] gives a relative short introduction of several ways to mine data from LinkedIn.com,

typically, LinkedIn Search, raw data processing, and third-party tools. Among these

approaches and tools, the Natural Language Toolkit (NTLK) and [10] are two resources

that worth to study.

2.2.2 Approaches

[11] approaches the problem of web table data extraction by using two-dimensional visual

box model. This paper introduces extracting information from a high level of visual fea-

tures. It uses the representation of web browser rendering, and save the practitioner from

parsing low level Cascading Style Sheets (CSS), JavaScript, HTML tags. The key differ-

ence is that, the traditional approach uses tree-based representation of web pages, such

as HTML or Extensible Markup Language (XML), so the whole information extraction

is processed in low level, using HTML/XML parses. As far as the author can tell, this

approach only works for tables and lists, so it cannot be applied to arbitrary elements on

web pages.

[12] discuss about automatically extracting concepts from semi-structured data, specif-

ically, they use PowerPoint slides as the knowledge source. They combine ontology learn-

ing and natural language processing techniques to produce the knowledge representation.

The process as follows: 1. normalising the text contents by splitting statements, replacing

non-alphanumeric symbols, expanding abbreviations, etc. 2. creating parse tree for sen-

7

tences. 3. defining a set of weighting models. 4. Extracting text features (e.g. topic, title,

bullet, sub bullet) for each term and applying “link-distance algorithm” to determine to

correct concepts. What can be learned from the paper is that they effectively use Natural

Language Processing to tag each term and then define weighting models to hierarchically

extract concepts using text features. But the problem still exists, that is, the 42% of

overall performance (F-measure) is not enough to apply this techniques into real world

E-learning application. Apart from that, in their future work, they plan to introduce

multi-media feature extraction into the their paper. The author believes the high values

of F-measure is very important for real use of this technique, which is the thing that this

paper cannot handle.

[13] presents a framework that exploits the Web documents using a “Tree Alignment

Algorithm”, in which they build trees iteratively and try to find record boundary and

repeating patterns. Then they build “conceptual graphs” to represent domain knowledge.

Finally they map the conceptual structure to the extracted data items. Because the

conceptual graph is directly mapped to a database schema, this approach can reduce the

time of converting the extracted content to database records. The approach proposed here

could be very useful in this project, which also trying to extract data of interest from semi-

structure LinkedIn profile files. However, as far as the author can tell, the approach might

be not scalable, as manually creating a “conceptual graph” is required, which makes the

approach no better than using pure “Regular Expression” approach. Nevertheless, we can

learn from the “mapping” process and adopt it. In our case, Levenshtein distance (Edit

distance) or Cosine similarity (Vector space model) could be used to classify vocabularies

and correct typos.

[14] describes a method to populate Wikipedia info-boxes from Wikipedia article. It

trains “value extractors” from training data using structural analysis. Structure discovery

algorithm is used to overcome the shortcomings of regular expression, in which it tries

to merge important patterns from a frequent pattern list. One thing is not clear in this

paper is how to choose correct attribute value among a list of potential attribute values.

It does mention using “Conditional Random Fields” (CRF) to learn label tokens based

on features. “Combining regular expressions” provides better results, it worth further

investigation.

[15] talks about metadata extraction from enterprise content. It performs a case study

on documents that described by Docbook DTD, which is used widely by many organi-

sations. The motivation of the paper is to provide a novel framework for personalised

information retrieval (IR) system. It also generate an Ontology for user modelling. This

approach is deeply couple with the Docbook content, similar approach might be used in

this project as our data are deeply couple with LinkedIn html structure.

8

2.3 Knowledge modelling

We are living in the era of Web 2.0, which means that large scale of the user-generated

content are available on the Internet in a loose or semi-structure format. Traditionally,

Data Mining is performed on relational databases or data warehouse, in a way that

practitioners look for unaware patterns internally. But gathering data from blooming

Social Media websites cannot be fully addressed in the traditional approach, as most of

the websites are producing HTML or XML files. A mapping between raw data format

and relational database table is required but hard to generalise to other data consumers.

That’s why we need Semantic Web. Semantic Web aims to replace the Web of doc-

uments to the Web of machine processable, automatic reasoning web services or web

databases. It provides interoperability to data by strictly narrow down the data into

triples and allow each piece reference others using unique resource identifier. The po-

tential of Semantic Web is difficult to estimate, it might totally change the development

paradigm[16]: data drive possible applications instead of what we do today, applications

determine data format.

2.3.1 Semantic Web technologies

Semantic Web technology stack can be thought as a layered graph as shown in Figure 2.1.

We are going to introduce some of the technologies in this section.

Figure 2.1: Semantic Web Stack1

1Copy from Dr. Rob Brennan’s lecture notes.

9

Uniform resource identifier (URI) : A string that can be used to uniquely identify a

web resource. According to [17], URI is considered as the standard resource identifier

to represent any HTML or RDF object or concept. The reason behind that is others

can easily access the resources using Hypertext Transfer Protocol (HTTP) requests.

Resource Description Framework (RDF) : RDF is a graph-based data model that

used in Semantic Web. It represents knowledge using a triple structure. An expres-

sion in RDF is a “subject-predicate-object” triple. It can be represented by a graph

where the subject and the object is the start node and end node and the predicate

is the link. Nodes can be a URI or a literal. It has a variety of notations such as N3,

Turtle, and XML, but they are all interchangeable. Notice that it just a data model

that allows us to describe things that in a specific syntax, but has no assumption.

Resource Description Framework Schema (RDFS) : It intends to provide vocab-

ularies to standardise the structure of RDF resources. It is a set of classes and

properties that use the RDF language to provide basic ontologies. The reason we

need these vocabularies is that RDF Triple itself is not informative enough. Dif-

ferent datasets need a standard (just like protocol) to communicate, otherwise, no

one will understand the “semantic” of other datasets. So RDFS specifies a basic

vocabulary such as: subClassOf, DataType, domain, range, etc. to structure the

RDF resources.

OWL : OWL aims to add more constraints on RDFS to describe resources in details. For

example, owl defines disjointWith, complementOf, equivalentClass, and cardinality

on top of RDFS. It makes the triple expression become more expressive and specific.

Link Open Data Movement : It’s a community effort starting in 2006 to unlock hid-

den semantics in a way that making RDF publicly available using open standards

and protocols. Many open datasets were published by these efforts from many

domains such as geographic locations (e.g. Geonames), general knowledge (e.g.

DBpedia), broadcasting data (e.g. BBC), bioscience, etc. The best way to feel the

impact of the Cloud is to visualise the graph (Figure 2.2):

[18] demonstrates how to collect, analyse FOAF documents. According to the paper,

FOAF is one of the most popular ontology that being used at the moment. One of

the main produces of FOAF documents is blog website. It’s easy to use FOAF specific

tags to identify the documents, and looking for patterns. Apart from above, the reader

2Attribution: “Linking Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch.
http://lod-cloud.net/”

10

Figure 2.2: Link Data Cloud2

known from it that LinkedIn.com also use the FOAF ontology, but they protect the FOAF

documents from public access. This paper implies that we can use FOAF Ontology to

describe LinkedIn public profiles and extend it if necessary.

[5] provides a comprehensive state of the art on the Linked Open Data (LOD). It

introduces “Linked data principles”, how to publishing Linked Data, publishing tools,

existing applications. Also, related developments and research challenges are given to

guide the later researchers.

2.3.2 Linked Open Data

As mention in the previous section, Linked Open Data is a movement that data providers

start to publish and link their data to each other in RDF format. It enables[19]: so-

phisticated data processing, connecting distributed data and change the world from Data

Islands to a Global Data Space. The bar for publishing the Linked data is not restrict,

as it only needs to conform following basic principles[17]:

1. Use URIs to name the things and use HTTP URIs to guarantee accessibility.

11

2. Provide standard information when users access it (RDF*, SPARQL).

3. Include links to other URIs.

As more and more important websites join in this movement, LOD is becoming a

huge knowledge graph as shown in Figure 2.2. DBpedia, a RDF version of Wikipedia,

now become the centre of Open Data Cloud. A lot of tools have been built for LOD[5], for

instance, Linked Data search engines, allow you quickly look for the documents you are

interested in; Publishing tools, allow you quickly publish the data in RDF even though

the origin files in display in other format. Our project aims to contribute to the LOD in a

way that we provide queryable web service that allow people to discover important facts

and statistics.

[6] provides a brief introduction about the DBpedia. It firsts talk about the extraction

of structure information from Wikipedia, which is followed by a list of datasets. Finally,

it talks about how to access, query the dataset online (using HTTP, SPARQL endpoint

and RDF dump), how DBpedia interlink with other open datasets, and how to search

DBpedia.org using built-in user interface. Through the paper, the authors try to convey

a fact that DBpedia is the nucleus of the Web of Data, which is a reasonable claim.

[20] talks about a live extraction framework that can consume Wikipedia updates

and reflect on the DBpedia triple store. The key process is as follows: 1. Use different

extractors to deal with different types of content. 2. Assign states to extractors, namely,

an extractor could be in either “updated”, “not modified”, or “remove” state. 3. Apply

heuristic method (by comparing current Axiom to previous one) to minimise the number

of triples that need to be updated. To increase the effectiveness of “mapping” between

Wikipedia and DBpedia, templates are introduced to infer the correct attribute names

and correct values. Keeping DBpedia content up-to-date has several benefits, such as

enhancing the integration with Wikipedia, increase the use of DBpedia in live scenarios.

So later if the project want to keep the Ontology and triples up-to-date and reflect the

instant change in LinkedIn.com, using the approach mention in this paper could be a

potential solution.

[21] gives a detailed introduction of DBpedia Spotlight – a Web Service to detect

DBpedia resources in text. The key improvement of the disambiguation process is: instead

of using traditional “TF-IDF” to weight the words, it uses “TF-ICF” (term frequency-

Inverse Candidate Frequency). Moreover, to maximise the annotation result, the authors

suggest use customised configuration when annotating. This web service could be very

useful when later the reader tries to annotation the data fields in LinkedIn public profiles.

12

2.3.3 Building ontologies

We can think of it as a collection of terms that defines the concepts and relationships of an

area3. It is the cornerstone of the Semantic Web; by publishing ontologies and combining

them together, the web of knowledge will finally be constructed.

[22] mainly focus on the strategy of building simple Ontologies for social networks. A

tripartite model is suggested in this paper, specifically, an Actor-Concept-Instance model.

The paper demonstrates the applicability of the model using two examples. The paper

also shows how the ontology is emerged based on the model and how it is extended to

support Ontology Extraction from Web Pages. However, this approach mainly about

Community Ontology Construction, as LinkedIn public profiles has no or very limit con-

nection information. In our approach, we will try to enhance linkage/mapping to other

datasets, like DBpedia (for general information), Academic Institution Internal Structure

Ontology (AIISO) (for academic skills, courses), Freebase (for general subjects), etc.

[23] focuses on extracting information from Artificial Intelligence related conference

and workshop and building an Ontology for AI. Again, it constructs domain concept

knowledge from nested tags. for example, in HTML, <h1>means a more general term

than <h2>, so an instance of <h2>is a subclass of an instance of <h1>. Then in

the optimisation process, it performs “ontology pruning and union” to handle concept

duplication. However, this strategy might result in wrong classification. To summarise,

this approach is very useful provided the user knows the contents in the web pages is

valid for hierarchical classification. It could not be generalised for other loose structured

websites.

In this project, our goal is to build an Ontology for LinkedIn public profiles using

automated process. The reasons for doing that are, firstly, Linkedin.com is one of the

main knowledge sources for professional information. People publish their education,

skills, experiences on the site and we expect these kinds of information can answer a lot

questions. For example, decision maker may want to track the trending of an industry by

looking at the number of employees and the number of new startups in the specific area.

Secondly, we choose Semantic Web because we want to link the knowledge into the Web

of knowledge (LOD) to maximise the usability of our data. The interoperability feature

provided by RDF can lead to flexible use of triples (Again, in this case, data can drive

the application developments)

3http://www.w3.org/standards/semanticweb/ontology

13

2.4 Content integration and classification

One of the major problems in Information Extraction (IE), especially in social media

information extraction is the variety of the similar words. For example, in LinkedIn.com,

a user can claim himself as ”Graduated from Trinity College Dublin”, meanwhile, another

user will say she is studding at ”TCD”. When we build an ontology and try to link our

data to LOD, we really have to be very careful about declaiming a term more than once.

A false positive result is also not acceptable, in a way that we might misclassify address

”Dublin” in ”Dublin Core” as the capital of Ireland. So finding ways to clean up the data

and classify them correctly are considered two complex tasks in IE.

[24] gives a very comprehensive introduction about machine learning in text categorisa-

tion. document indexing and dimensionality reduction are common techniques to increase

the effectiveness of accessing data. Probability classifiers, decision tree classifiers, on-line

methods, neural networks, etc. At last, measures of effectiveness was discussed. At the

moment, we will not try to parse the “Summary” section in public profiles (In LinkedIn

profiles, the summary section is where users write “abstract” about themselves). But if

we need more detail knowledge for the Ontology, we might use the approach listed in this

paper.

[25] proposes an approach to build re-usable dictionary repositories for text mining.

The key idea is to build a new dictionary by using synonyms from existing dictionary.

They only use synonym relations, which cannot be enough to represent more complex

semantic relations. And if the practitioner choose an inappropriate dictionary to start

with, he will end up getting nothing back since the similarity value is too low. Apart

from that, according to the authors, the idea of generating text corpus for the existing

dictionaries can save about 50%-60% of time.

[26] talks about how to integrate government data from different data sources. The

integration flow is as follows: 1. Mapping and Scrubbing. They maps attributes to a

simple global schema, and cleansing on data value level. 2. Data Transformation, in

which they transforms the source data structure to the global schema and separates data

of different types. 3. Deduplication. A tool called Duplicate Detection Toolkit was used

to match across data sources. 4. Entity Fusion. They fused the matched entities to

obtain a single representation. “Dempster-Shafer-Theory” is used to induce weights for

attributes. We can investigate the mapping process since we will require map person to

other linked dataset instances.

14

2.5 Evaluation of the extracted data

As everyone can publish their data on the Internet, the evaluation of the data quality

becomes a very important aspect in Ontology building. People cannot or hard to reuse the

data with bad quality, so publishing the data without quality assurance will significantly

reduce the value and the reusability of the data. Therefore, we evaluated some metrics

and a data assessment framework:

[27] lists quality metrics for metadata. This project can use some of these metrics

directly to evaluate the quality of the result of the data mining. Data Completeness is

achieved by comparing extracted data with the “ideal” representation. Data Accuracy

can be achieved by the degree of correctness. In this project, it’s possible to compare

manually collected data with the automatically extracted data. We can use user studies,

by introduce volunteers to extract the data. Then by investigating the manually collected

results to machine auto-generated ones, we will have some confidence about our data

correctness. Conformance to expectations is a way to test whether the schema meets the

requirement of use cases, and supports arbitrary complex queries. Because our dataset will

be used by another project: “Leveraging Power of Social Media and Data Visualisation”,

we can evaluate the dataset by looking at whether the data is complied with the user and

visualisation requirements. So, the metrics list in this paper can evaluate the quality of

the data.

[28] presents a Linked data quality assessment and fusion framework that can be

used to measure, express the quality of data. It’s a part of the Linked Data Integration

Framework (LDIF). The integration process works as follows: 1. access web data, 2,

map the vocabulary from different schema using R2R framework. 3. LDIF also resolute

multiple identifiers for the same entity by using “Silk-Link Specification Language”. 4.

the data quality assessment module contains a set of scoring functions, and it also support

user-extend scoring function and customisation. 5. finally, the data fusion module includes

conflict ignoring, avoiding and resolution strategies to “sieve” the data and generate a

cleaner representation. Since this paper focus on both quality measurement and data

fusion, what we can use from this paper is the Data Quality Assessment module. It’s

possible to use the built-in scoring functions directly or implement new methods.

2.6 Chapter Summary

In this chapter, we discussed and evaluated state of the art in Data extraction, Knowledge

modelling, Content integration and Evaluation method. We looked at different approaches

in Data extraction, and we decided to use the parser approach in our development. We

15

introduced the fundamentals in Semantic Web technologies, which will be applied in the

next chapters. We discussed the methods in content integration, and the possibility of

using them in our project. We also talked about the evaluation methods that are useful

in our system evaluation. Notice that the approaches discussed in this Chapter by no

means must be used during our system development, but understanding their pros and

cons can help us make decisions.

16

Chapter 3

Design

In this chapter we discuss the requirements of the system, both functional and non-

functional, the knowledge model we designed and also the software architecture. In the

architecture, we use modular programming paradigm for flexibility purpose. We also talk

about decisions we made and also provide reasons to justify our decisions.

3.1 Requirements

In order to answer the research questions and produce public dataset at the end, the

system should be capable to:

1. Have a knowledge model describing how the data should be stored (in RDF format).

2. Download LinkedIn personal public profiles and company public profiles, the data

should be in HTML format.

3. Extract data from the raw HTML files.

4. Normalise the metadata to provide consistent and structure output, which means

the system should be able to correct dirty data. This is important for upper layer,

such as UI that powered by SPARQL query, as minimum efforts are required if we

have normalised data.

5. Convert the data into RDF triples, and store it in a public accessible triplestore.

Additionally, the system also have a number of non-functional requirements that need

to be fulfilled:

Crawling performance and parsing performance

The system should be able to download and parse enough profiles in a small number

17

of days. Because timeliness is the nature of user generated content, if it takes too

long to do this, we lost the chance of getting first hand information.

Query performance

The system should be able to respond to the query from user interface quickly

enough to make sure the UI usability.

The choice of programming language(s)

The ideal programming language(s) for this project should be dynamic typing,

widely used, cross platform scripting language. The reason behind that is we want

quickly iterate the program. As parsing and converting user generated content are

hard, we cannot make assumptions about anything. Therefore, statically typed,

compiled programming language (such as C++ and Java) is incapable for this task.

Perl, Python are two possible options. But since Python is easy to learn and have

rich communities support in terms of Semantic Web and Natural Language process-

ing, we finally decide to use Python to implement our parse and RDF converter.

3.2 Knowledge model

As discussed in the previous chapter, we decide to use Semantic Web technologies for

knowledge modelling. The first thing we need to do is the come out with an Ontology

that can reflect the actual state of LinkedIn personal profile and company profile. After

investigate with samples and discuss with the upper layer UI designer, we come out with

Figure 3.1

18

Figure 3.1: Knowledge Model for Linked public profile and company profile

As shown on the figure, the model can be divided into three cores: Person, Education

and Organisation. In LinkedIn personal profiles, a person might have current living city,

skills, work position, job title, start date and end date of the position. Besides, a person

will have education background, such as college name, major, degree and start year and

end year of the college.

For a LinkedIn company profile, it might have, headquarters, company type (public,

private own, etc.) and industry type (e.g. IT) and company size.

Our knowledge model links the personal profile with company profile using “position”.

The whole graph is linked so that we can perform arbitrary query. For example, we can

discover the relations between education background and organisation through person

and position.

One key thing to note is Semantic Web is built around the idea of triples, which means

an expression has the structure of “subject”, “predicate” and “object”. In the graph, the

names in circle are “Class”, the link between two “Classes” is call “Property” (predicate),

it is used to link an instance of one Class to an instance of another Class.

19

3.2.1 Reusing existing ontologies

Ontology reuse is an important concept in Ontology Engineering. According to [29], it

increases the quality of the application, achieves interoperability, improves cost in ontol-

ogy development and helps applications agree on the domain concept. One mission of

Semantic Web is to achieve data interoperability. If two applications cannot understand

the meaning or the semantic of data from the other side, then these two applications

cannot communicate. Therefore, we need to try our best to reuse existing, well known

Ontologies so that other Semantic Web application can at least partially understand our

domain, hence reduce the needs of Ontology mapping.

In Figure 3.1, we partially reuse following vocabularies or ontologies: Simple Knowl-

edge Organization System (SKOS), AIISO, DBpedia, Friend of A Friend (FOAF). How-

ever, the reasons for reusing them are varies:

SKOS

Just as its name suggest, SKOS is used for “knowledge organisation”, such as “struc-

ture vocabularies” and “classification schemes”[30]. We can use this language to de-

fine academic disciplines (major). For example, one LinkedIn user study “Computer

Science”, another one study “Artificial Intelligence”, if we define, in a SKOS man-

ner, say “Computer Science” is a “broader” term of “Artificial Intelligence”, then

our system can handle the discipline hierarchy. It also good for our endpoint users.

Since hierarchy meanings both general and specific, so users who write SPARQL

queries to get knowledge from our system can have more simple but detailed control

of what should be returned.

AIISO

We make use AIISO class definition to define our education part. As the Ontology

is used to describe the internal state of an Academic Institution, it has definition

about college, course (we also called major or discipline), and degree. So we don’t

need to create our own concept (since no one know anything about our ontology)

about education.

DBpedia

In the previous chapter, we already introduce the importance of DBpedia. The more

terms we can reuse from DBpedia, the more interoperability we obtain. We use

both class definition and property definition from DBpedia, they are: City (Class),

city (property), industry (property), language (property), Language (Class). With

FOAF and AIISO, these three ontologies form a backbone of my knowledge model.

20

FOAF

FOAF is another widely used ontology, it is used to describe and link the data

in Social network[31]. We use foaf:Person to define our LinkedIn user, and use

foaf:Organization to define the company in LinkedIn work experience.

Even though we couldn’t find and reuse enough existing properties in our knowledge

model, but my major Class are all from well known ontologies, which means there is a

chance to allow other applications to discover our contents.

3.3 System architecture

According the requirements, we design the system as Figure 3.2 shows:

Figure 3.2: System Architecture

As LinkedIn.com will not provide Application programming interface (API) for down-

loading their public profiles, we need to do it using Google search result.

So the system flow will be as follows, this description is a brief overview of the system

process, more details will be given in the next chapter:

1. Use Google search engine to query for profiles in LinkedIn Ireland.

2. Get the response from Google, and download the html files base on the Uniform

resource locator (URL) in response content.

3. Call the parser to parse the HTML files and get the fields that will be used, as

shown in the Figure 3.1.

4. Then the data extracted will be sent to a data normalisation module (Lucene search

engine in this case), where the data will be cleaned up and normalised.

21

5. Finally we can build the RDF triples using the normalised data and put them into

our triplestore.

3.4 Design decisions

There are several decisions we make to guarantee the final results come out smoothly.

Firstly, we decide to separate the profile downloader module with the profile parser

module. It means we first run the module and download enough profiles, then we start

to call parser module. The reason behind that is downloading profiles will consume a

large amount of Google and LinkedIn resources, which implies that our connection can

be switched off at any time by remote server. Therefore we don’t want to do parsing

together with downloading, since we don’t want to spend extra effort in Network problem

handing. Another point is that our final result will be in RDF format, hence if we do

parsing together with downloading, extra storage and data structure is required to store

this intermediate result.

Secondly, a simple database is required to keep track of which url is downloaded, which

profile is parsed and had been converted into RDF format. Because we are handling a

very large amount of profiles, and the correctness of the parse has to be adjusted during

parsing, so it’s unrealistic to assume that our program can parse and convert all the data

with one-click. For example, if an unhandled exception occurred and stop the program,

we can start parsing the remaining profiles if we have a database keeps track of the status.

Thirdly, just as the first reason we highlighted, the parser module, data normalisation

module and RDF conversion module will form a pipeline. It means the output from

previous module will be feed as input of the next module. The reason is, we don’t have

to store the intermediate result from the previous two modules.

3.5 Chapter Summary

In this chapter, we clarified our functional and non-functional system requirements. We

introduced our knowledge model for LinkedIn.com personal public profile and company

public profile, and went through the structure of the mode. We discussed the existing,

well-known ontologies we used. And finally, we specified some decisions that will guide

our implementation.

22

Chapter 4

Implementation

In the previous chapter, we specify the requirements of the system. Therefore we can

start implementing each module to meet the needs of our design. In this chapter, we

will discuss the programming languages and corresponding libraries we used, and some

reusable strategies. We also provide the system environment as reference.

4.1 Programming languages and corresponding libraries

4.1.1 Python and its libraries

As discussed in previous chapter, We used Python as the main programming language.

During the implementation period, the below is a list of Python libraries that helped to

finish this project:

Beautiful Soup

A easy-to-use library for parsing HTML documents. It provides both flexibility and

performance for parsing HTMl or XML files.

RDFLib

RDFLib is a library that allow Python to manipulate RDF files. It has RDF parser,

serializer and also SPARQL 1.1 implementation. This library is all we need for RDF

format conversion. And we can also test our data with its built-in SPARQL query

API.

4.1.2 Java and Lucene text search engine

For data normalisation, the final decision is to use Lucene text search engine. According

to [32], Lucene is a simple and power API for full-text indexing and searching. But we

23

don’t need the most powerful part of it, we only take the advantage of its keyword search

and fuzzy search (by using Edit Distance[33]).

Another option is pylucene. It is the Python wrapper for Lucene text search engine.

However, the project seems to only working on some particular version of Java Virtual

Machine (JVM), which means that it is hard to migrate to arbitrary machine.

Therefore, we use Java to implement our data normalisation engine and use socket

to communicate with our Python modules. The process of the socket communication in

shown in Figure 3.2.

4.1.3 Modular porogramming paradigm

Instead of using popular Object Oriented paradigm, we use Modular programming in

developing our system. Python is particularly suitable for this programming paradigm.

The main idea is to break a large system into each individual, separated module to

accomplish one specific function. The advantage for using the paradigm is that we can

debug each module separately so that error data (as it’s very common in Data Mining)

will not propagate across the system.

4.1.4 System environment

The technologies and libraries used in this project are all open source. In order to utilise

the command line and built-in tools, UNIX-like system is used in development but there

is not problem in running the code on Windows machine. It requires Python2.7 and

Java1.7.

The production environment is Amazon EC2 64 bit Ubuntu12.04, Intel Xeon Central

processing unit E5-2650 2.00GHZ, 4G memory.

4.2 Strategy

Two strategies are worth mentioned during the development. One is the strategy of

scalable profile downloading. With this approach, one can easily download any number

of profiles in any LinkedIn subdomain.

4.2.1 Profile download strategy

In LinkedIn API documentation1, there is no method for one to download public profile

without OAuth Authentication. One thing to note here is we will not disclose LinkedIn

1LinkedIn Developers’ Documentation: https://developer.linkedin.com/apis

24

users personal information and we are downloading the public profiles, therefore we are

legally valid to perform this action.

Inspired by [4], we decide to combine google keyword search and google site oper-

ator to get the profile urls. Hence, the google query is constituted by two parts: the

keyword part and the query domain part. In order to get more query result to im-

prove the performance of the profile download module, we decide to use common Irish

names as keywords. For the second part, after we carefully investigate same samples, we

decide to use “http://ie.linkedin.com/pub/” as the site operator. The url means: “pub-

lic profile directory for LinkedIn Ireland”. Therefore, the final query string is: ”Name

site:http://ie.linkedin.com/pub/”.

Besides, every downloaded LinkedIn personal public profile has a section called “View-

ers of this profile also viewed...”, in which LinkedIn will suggest around six to eight similar

users to the viewer. Therefore, one downloaded profile can link to 6 to 8 profiles, we can

do this again and again. Even conflicts might happen but ideally, we can download most

of the profiles in LinkedIn Ireland.

4.2.2 City extraction strategy

We need city information in our RDF triplestore for every profile, if possible. The reason

for that is the upper layer user interface(s) is designed around comparing different numbers

across cities. Therefore, without the city information, our triplestore cannot reflect facts

of interest.

The strategy is quite simple, it constitutes of three cases:

1. Case 1: If the person’s current living city is shown on the profile, we use our HTML

parser to get it.

2. Case 2: If the information is not in the profile, we can sort the companies that this

person had worked in, in reverse chronological order. For each of the company, we

query goldenpages.ie2, which contains most of the companies’ information. We get

the first return city as the person’s current living city, and also set all return cities

as the company’s located city. (As a large amount of company will have offices in

different city.)

3. Case 3: If the person has no work experience or the company he worked in doesn’t

register on goldenpages.ie, we get the city base on his education experience, in

reverse chronological order, again.

2http://www.goldenpages.ie/

25

In the next chapter, statistics will be shown to demonstrate the strategy is working

well based on user study.

4.3 Chapter Summary

In this chapter, we discussed the programming languages and libraries we used. We

introduced Modular programming paradigm and justified our choice. We also discussed

about the production system environment, profile download strategy and city traction

strategy.

26

Chapter 5

Evaluations

It’s very important to evaluate our work after the development. This chapter, we will

evaluate our system in two aspects: data quality and system performance. Both aspect

are critical to our dataset, since: without high data quality, our dataset cannot not trust

by users; without high performance our approach will not be accepted by other developers

and is not queryable by front-end users.

5.1 Evaluation, the rationale

As discussed in Chapter 2, we need to evaluate the quality of the data we extracted. [27]

suggest a number of quality metrics, in this project, we will use Data Completeness, Data

Accuracy, User perceived data quality and Conformance to Expectation (Data fitness) to

evaluate our work. The reason for choosing them is because:

Data Completeness can reflect how complete the LinkedIn profile is. It’s an important

statistics we can get from LinkedIn.com as people always interest in how complete

for these profiles in general. It also a hint for future research since we can quickly

identify sparse data fields and intensive data fields.

Data Accuracy is where we introduce volunteers to manually extract the data out

from the HTML files and ask them to rate our results from 1 to 5. By calculating

prediction precisions, recalls, f-measures (will be discussed later) and user average

ratings, we can know how well our parser and our data normalisation is.

User Perceived Data Quality is simplified version of Data Accuracy. We present our

results and show the user extracted results, then ask user rate our result from 1 to

5. As precision, recall and f-measure are too complex for people who do not have

mathematics background, simple ratings can be more user friendly.

27

Data fitness is to measure how well our knowledge model and our dataset match the

requirements of the upper layer user interface. In this part, we collect feedbacks

from the developer of the Data Visualisation project, and the drawbacks will be

presented in our future works.

5.1.1 Data completeness

In this section, we present the completeness of profiles in LinkedIn.com. Researchers who

also interested in LinkedIn.com public profiles can use this statistics as a measure, to

avoid the fields that are too sparse.

Definition

[27] defines Data completeness as: A degree of metadata contains all information required

to have ideal presentation. To get it we can simple count the number of fields that contains

data and divided by total number of instances:

C =

∑N
i=1 F (i)

N
(5.1)

In Equation 5.1, F(i) is 1 when the field has data and 0 when the field is empty. N is

the total number of instances. Notice that the definition of total number of instances can

be changed in later paragraph.

Table 5.1 shows the total number of personal profiles, company profiles and total

number of skills in all of the profiles. These numbers are base numbers that will be used

to calculate the percentage in the following tables.

Total number of public personal profiles 13014
Total number of company profiles 24778

Total number of skills 15917

Table 5.1: Total number of personal profiles, company profiles and skills

Public personal profile completeness

Many people do not fill their complete work experiences and education backgrounds into

LinkedIn, therefore, in our 13014 randomly download and selected profiles, we can have

an overview of the percentage of people have sections that are missing.

28

Number Percentage(of personal profiles)
Profiles that have work experiences 11501 88.4%

Profiles that have education 9913 77%
Profiles that have skills 10511 80%

Profiles that have city information 10158 78%
Profiles that have academic degree information 5230 40.2%

Profiles that have college major information 7825 60.1%

Table 5.2: Personal profile completeness

In Table 5.2, the N in Equation 5.1 is the total number of public profiles, and F(i)

is each field, i.e. work experience, education, skill, city, degree and major. Notice that

the percentage of profiles that have degree and major information are relatively low, it

implies that people usually skip fill in their information into their profile. The degree

information is the lowest, that is because our Lucene text search engine does not accept

any string that cannot be classified, in which case the normalisation result simply return

empty string. Then our RDF converter just skip this triple. In order to increase the

percentage, we need to have more degree abbreviations and full names to cover every

possible degree in University worldwide.

Company profile completeness

Not every company will register in LinkedIn company to have a company profile. If a

company in a person’s work experience registered on LinkedIn.com, there’s a hyperlink

that link the company name to the complete company profile. If the company is not

registered, there will be not such hyperlink. So we can easily draw a conclusion from

Table 5.3, around 46% of companies in Ireland register in LinkedIn.com.

Number Percentage(of company profiles)
Company profiles that have industry type 11868 47.9%

Company profiles that have organisation type 11351 45.8%
Company profiles that have company size info 11343 45.8%

Table 5.3: Company profile completeness

At here, the N in Equation 5.1 is the total number of companies in our dataset. F(i)

is each fields, i.e. industry type, organisation type and the size of the company.

Data linkage

The definition of RDF data linkage is: average linkage= total number of links
total number of objects

. It’s a mea-

surement of how “sparse” of the RDF data is. Generally, high linkage means high corre-

29

lation between objects.

Total number of objects 160251
Total number of links 415916

Average linkage 2.595

Table 5.4: Data Linkage: Total and Average

As we can see in Table 5.4, in average, every object has 2.5 number of links to other

objects.

5.1.2 Data Accuracy (extracted metadata quality)

Evaluation setup

We recruited 10 users, divided them into 5 groups, so each group have 2 participants.

Each group of users will view same 10 randomly selected profiles. They were asked to

manually extract city, work experiences (including company names, job titles, job start

dates and job end dates) and education backgrounds (including college names, majors,

degrees, college start dates, college end dates).

Then after the user fill in the data, we display what they entered as well as what we

automatically extracted data, and ask them to rate our results, from 1 to 5, where score

5 is highest (the result of this user perceived data quality will be discussed in the next

section).

Figure 5.1 is the screenshot for the user interface that asking user to transfer data

from LinkedIn profile to our evaluation system:

30

Figure 5.1: Online user evaluation website: User manually extracted data

Results

After the user evaluation, we take user input as the ground truth, we use string matching

to compare entered data with automatic extracted data. If the string matching return

false, we manually examine the data and decide whether the extracted data is correct.

The metrics here we use are precision, recall and f-measure.

precision =
correctly predicted

predicted
(5.2)

31

recall =
correctly predicted

total
(5.3)

f −measure =
2 ∗ precision ∗ recall
precision + recall

(5.4)

The meaning of these metrics can be explained as follows[34]: Precision, or confidence,

is focus on how good we are predicting; Recall, or sensitivity is a measure of the proportion

we correctly predicted over total data size. F-measure, or F-score is designed to capture

both precision and recall. In order to get high F-score, precision and recall must be high.

User Precision Recall F-Measure
User 1 0.8889 0.8889 0.8889
User 2 0.75 0.6667 0.7059
User 3 0.8571 0.6667 0.75
User 4 0.8571 0.6667 0.75
User 5 0.8889 0.8889 0.8889
User 6 0.8889 0.8889 0.8889
User 7 1 1 1
User 8 1 1 1
User 9 1 0.7778 0.875
User 10 0.875 0.7778 0.8235
Average 0.9006 0.8222 0.8571

Table 5.5: Precision, recall and f-measure scores for city information

According to Table 5.5, users are quite satisfy with our city information extraction

strategy. Even some lazy volunteers didn’t fill in the ground truth, we still getting average

of 0.85 F-score. It’s acceptable for us to do complex query using person’s city information.

User Precision Recall F-Measure
User 1 0.8947 0.8947 0.8947
User 2 0.9737 0.9737 0.9737
User 3 0.96 0.96 0.96
User 4 0.84 0.84 0.84
User 5 1 1 1
User 6 0.9556 0.9556 0.9556
User 7 1 1 1
User 8 1 1 1
User 9 0.9333 0.9333 0.9333
User 10 0.9556 0.9556 0.9556
Average 0.9513 0.9513 0.9513

Table 5.6: Precision, recall and f-measure scores for company information

32

We are getting very high score in company name field according to Table 5.6. The

reason for that is because participants normally copy and paste the company name to fill

in our survey forms, the exact matching is very high.

User Precision Recall F-Measure
User 1 0.8947 0.8947 0.8947
User 2 0.9474 0.9474 0.9474
User 3 0.96 0.96 0.96
User 4 0.92 0.92 0.92
User 5 0.9333 0.9333 0.9333
User 6 0.8667 0.8667 0.8667
User 7 0.9545 0.9545 0.9545
User 8 1 1 1
User 9 0.8889 0.8889 0.8889
User 10 0.9556 0.9556 0.9556
Average 0.9321 0.9321 0.9321

Table 5.7: Precision, recall and f-measure scores for job title information

For the job title field in Table 5.7, the result is similar to the company name field.

Users normally copy and paste the text without any term generalisation (e.g. change

product manager to manager as it’s more general), that’s what our parser do as well. So

the score is very high.

User Precision Recall F-Measure
User 1 1 0.8684 0.9296
User 2 1 0.8947 0.9444
User 3 1 0.84 0.913
User 4 1 0.84 0.913
User 5 1 0.8889 0.9412
User 6 1 0.8889 0.9412
User 7 1 0.7727 0.8718
User 8 1 0.7727 0.8718
User 9 1 0.9556 0.9773
User 10 1 0.9556 0.9773
Average 1 0.8678 0.9281

Table 5.8: Precision, recall and f-measure scores for experience start date information

33

User Precision Recall F-Measure
User 1 1 0.8684 0.9296
User 2 1 0.8684 0.9296
User 3 1 0.8 0.8889
User 4 1 0.8 0.8889
User 5 1 0.9556 0.9773
User 6 1 0.9556 0.9773
User 7 1 0.8182 0.9
User 8 1 0.7727 0.8718
User 9 1 0.9778 0.9888
User 10 1 0.9778 0.9888
Average 1 0.8794 0.9341

Table 5.9: Precision, recall and f-measure scores for experience end date information

Table 5.8 and Table 5.9 illustrate our prediction on start date and end date. The

precision is high is because LinkedIn always use same datetime pattern to represent the

start date and end date. The recall is low is because some profiles do not have the these

fields.

The previous four tables (Table 5.6, Table 5.7, Table 5.8 and Table 5.9) illustrate our

parsed result for work experiences (company name, job title, job start date and job end

date). With the average F-score greater than 0.9, we can accept the parse result. The

reason for such high result in both company name and job title is, we didn’t perform data

normalisation in these two fields. Basically, volunteers copy and paste these information

to our survey form, and that’s what our parser do as well. Since strings are fully matched,

the scores are high.

User Precision Recall F-Measure
User 1 1 1 1
User 2 0.9286 0.9286 0.9286
User 3 1 1 1
User 4 1 1 1
User 5 0.7778 0.7778 0.7778
User 6 0.9444 0.9444 0.9444
User 7 0.8462 0.8462 0.8462
User 8 0.9231 0.9231 0.9231
User 9 0.6538 0.6538 0.6538
User 10 0.9231 0.9231 0.9231
Average 0.8997 0.8997 0.8997

Table 5.10: Precision, recall and f-measure scores for college information

34

We are getting high score for college name field(Table 5.10, the explanation for high

score is the same as company name field, users just copy and paste the college name from

the profile. However, one difference is that we also use our data normalisation tool to

classify college name to our ground truth college name. Because in our implementation of

college name normalisation, if we couldn’t find any similar string, we create a new entry

in our search engine database and assume it’s a new college name.

User Precision Recall F-Measure
User 1 0.8571 0.8571 0.8571
User 2 0.8571 0.8571 0.8571
User 3 0.5714 0.5 0.5333
User 4 0.4286 0.375 0.4
User 5 0.8571 0.6667 0.75
User 6 0.8571 0.6667 0.75
User 7 0.6667 0.6154 0.64
User 8 0.75 0.6923 0.72
User 9 0.7083 0.6538 0.68
User 10 0.4 0.2308 0.2927
Average 0.6954 0.6115 0.648

Table 5.11: Precision, recall and f-measure scores for major information

According to Table 5.11, our scores for major field are very low. If we look at the low

scores and high scores carefully, we can see that they come in a pair. That means the

user input data is consistent, and in some groups of profiles, our data normalisation fail

to normalise degree information correctly. The reason for that is people do some data

cleaning in their minds so the major information they fill in is cleaned and well known.

But our system didn’t do any language processing, so the result of a simple copy and

paste approach is different from the result generated by human mind.

35

User Precision Recall F-Measure
User 1 1 1 1
User 2 1 1 1
User 3 1 0.875 0.9333
User 4 1 0.75 0.8571
User 5 0.9444 0.9444 0.9444
User 6 1 0.8889 0.9412
User 7 0.9167 0.8462 0.88
User 8 0.8333 0.7692 0.8
User 9 1 0.8846 0.9388
User 10 1 0.9615 0.9804
Average 0.9694 0.892 0.9275

Table 5.12: Precision, recall and f-measure scores for degree information

We are getting very high degree score in Table 5.12, which means our ground truth

degrees in working properly and classified most of the degree information correctly.

User Precision Recall F-Measure
User 1 0 0 0
User 2 0 0 0
User 3 1 0.125 0.2222
User 4 1 0.125 0.2222
User 5 0 0 0
User 6 0 0 0
User 7 1 0.3077 0.4706
User 8 1 0.2308 0.375
User 9 1 0.5 0.6667
User 10 1 0.7308 0.8444
Average 0.6 0.2019 0.2801

Table 5.13: Precision, recall and f-measure scores for education start date information

36

User Precision Recall F-Measure
User 1 0 0 0
User 2 0 0 0
User 3 1 0.125 0.2222
User 4 1 0.25 0.4
User 5 0 0 0
User 6 0 0 0
User 7 1 0.3077 0.4706
User 8 1 0.2308 0.375
User 9 1 0.5 0.6667
User 10 1 0.7308 0.8444
Average 0.6 0.2144 0.2979

Table 5.14: Precision, recall and f-measure scores for education end date information

The scores for college start date (Table 5.13) and college end date (Table 5.14) didn’t

perform well. This evaluation helps us discover a problem in extracting these two fields.

Since our system makes a wrong assumption about the format of the start date and end

date(as ’yyyy-mm-dd’), we could not capture the fact that the start date and end date

format in education background is ’yyyy’. This finding also prove that doing user study

is very important in system evaluation.

37

Figure 5.2: Summary: average precion, recall, f-measure for all fields

From Figure 5.2, we can see that city, company names, job titles, work experience start

and end date, college names and degree information have high average scores. But for

major, we got an average f-score a bit greate than 0.6, which means we cannot correctly

classify the major names. In the future, we might need natural language processing and

college subjects database to get a better results. And we need to fix the problem in

extracting college start date and college end date.

5.1.3 User perceived data quality

Apart from precisions, recalls and F-measure, we also collect user ratings for each field

and user overall rating for each profile. Figure 5.3 is the screenshot that asking user to

compare their manually extracted data with our automatically extracted data and rating

our results.

38

Figure 5.3: Online user evaluation website: Asking user compare manually extracted
data with automatically extracted data

39

At here we only show average rating for each field. From these ratings, we want to

get consistent results about how well is our parser and data normalisation working as in

Data Accuracy (extracted metadata quality).

Figure 5.4: User average rating for city

In Figure 5.4 we find the user satisfaction ratings are not fully match with Table5.5.

The reason for that is our city extraction strategy is setting the first return possible city

from all cities as the person’s current living city. Since the profile sometime contains too

less information for us to guess where the person is actually located, some users simply

don’t like our result when they see “A person work for Tesco Ireland is now living in

Limerick” as they think there’s too few information to predict the correct city.

40

Figure 5.5: User average rating for company name

Figure 5.6: User average rating for job title

In Figure 5.5 and Figure 5.6, We get consistent result with Table 5.6 and Table 5.7.

As we discussed earlier, a simple copy and paste approach is accepted by our participants.

41

Figure 5.7: User average rating for experience start date

Figure 5.8: User average rating for experience end date

For the start date ratings (Figure 5.7) and end date ratings (Figure 5.8), we are getting

lower user satisfaction comparing to what we get at the previous section (Table 5.8 and

Table 5.9). The reason for that is, some volunteers do not happy we convert the datetime

format from ’MM yyyy’ to ’yyyy-mm-01’. What we are doing here is we assume all the

start date and end date of a work experience is on the first day of the month. We explain

42

the reason to volunteers during the evaluation, as we need this format the match the date

literal definition in XML Schema[35].

Figure 5.9: User average rating for college

Similar to Figure 5.5, our user average rating for college names (Figure 5.9) is widely

accepted. Even we try to use our data normalisation module to classify the college name,

but when we encounter a new unknown college name, we add it to our Lucene text search

engine database instead of leaving the college name empty.

Figure 5.10: User average rating for major

43

Because every two users are viewing same 10 randomly selected profiles, therefore, for

major field, the average ratings (Figure 5.10) from user 5 and user 6 are so low is because

our parser perform bad in that 10 profiles. Notice that the user ratings for major field

is actually higher than the scores we get in Table5.11, that is because participants are

happy to know that our system is not that intelligent as human mind and fail to clean

the major field correctly. So participants rate their satisfaction scores high.

Figure 5.11: User average rating for degree

We are getting lower user ratings at degree fields (Figure 5.11) comparing to 5.12.

That’s because the data completeness for degree field is low. For every profile that has

no degree field, we set the score to 3, which is the average score by default.

44

Figure 5.12: User average rating for education start date

Figure 5.13: User average rating for education end date

As mentioned in the previous section, our parser failed to capture the fact that ed-

ucation start date and education end date is using ’yyyy’ pattern in representing the

datetime. Therefore, most of our volunteers just set the rating to 0 since there’s no

information available (Figure 5.12 and Figure 5.13).

Figure 5.14 shows average user ratings for all fields. As we can see, users are quite

satisfy with our results in city, company name, job title, work experience start date and

45

Figure 5.14: Summary: average user ratings for all fields

end date. And users are slightly not happy with our result in major and degree, which

is what we need to improve in the future. Finally users are totally not accept the empty

college start date and end date.

5.1.4 Metadata fitness

This section is a reflection on how the extracted triples fit to the data visualisation inter-

face. The interface is divided into 3 scenarios:

Scenario 1, Government

The first scenario is that the interface should reflect the needs of Government officers.

The fields that used by them are: city, industry type, academic degree and company

size.

Scenario 2, Company’s human resource department

The user interface also support daily queries from HR. The fields that used in this

scenario are: city, degree, skill, work experience and start date.

Scenario 3, Job seekers and college students This part allows users get insights about the

employment status by city. The fields that used in this scenario are: city, degree,

skill and position.

46

During the development and evaluation, we found some drawbacks of the extracted

data that makes the query and the user interface hard to develop and use:

1. Do not have information to group similar job title together. This is important as

we want our query return more correct result and in the meantime keeps the query

as simple as possible. For example, when one querying “software engineer” similar

terms such as “application developer, Java software engineer” should all return as

these job titles have no significant difference if we want to compare this job in IT

over another industry. Doing this classification is hard, we will discuss it in future

work section in the next chapter.

2. Company names may have aliases. One example is “Oracle” and “Oracle EMEA”.

But since we cannot find company names database as ground truth, our system

cannot handle this problem. This issue is very similar to the previous one, it needs

we have very accurate ground truth.

3. As SPARQL has very limit function in datetime manipulation, the start date and

end date approach in our model is not working really well. For example, if one user

is looking for “How many people had been working in a company for more then 5

years?”. The query is very hard to write so it would be easier if our model have

“year between” field that address this requirement.

The details of possible solution of drawbacks will be discussed in next chapter, future

works section.

5.2 System performance

In System environment, we list our software and hardware details. Here we want to show

the performance of some critical modules, to provide more comprehensive details of the

system. One important things to know is that the performance measurements does not

include database accessing and file serialisation and other miscellaneous, therefore, in

production environment, the system performance could be less than the result we got.

5.2.1 Parsing performance

We run our parser 10 times, each time it parses 100 randomly selected profiles, the average

time spending on parsing 100 profiles is: 18.27 seconds.

47

5.2.2 Normalising and converting performance

We run our RDF converter 10 times, each time in try to normalise the data in 100 profiles

and convert it into RDF triples, the average time spending on this is: 345.53 seconds.

5.2.3 Query performance

We tried several queries with different level of complexity. Notice that the complexity

means the complexity of the query structure, it does not mean the complexity of the

SPARQL engine in processing it.

A query that only return subject, predicate and object

select * where {?subject ?predicate ?object. }

Listing 5.1: Query1: A query that return all subjects, predicates and objects

The time spend on this query is: 13.179s, and it returned 819488 rows.

A query that asks from subject, predicate and object then summing up the

subject

select (count(?subject) as ?total) where {

?subject ?predicate ?object.

}

Listing 5.2: Query2: A query that return all subjects, predicates, objects and count

subjects

The time spend on this query is: 1.799s, and it returned 1 rows.

Notice that this query (Query 5.2) is 7 times faster that the previous query (Query 5.1)

even though the complexity is higher. We don’t know the implementation of 4store, but

one possible explaination is that the COUNT method can be optimised so the program

do not really need read all rows to get the actually result.

48

A query that defines two relationships

select * where {

?person a foaf:Person;

lk:skill ?skill.

}

Listing 5.3: Query3: A query that defines two relationships

The time spend on this query is: 1.795s, and it returned 196187 rows.

It is an interesting result because getting graph patterns (Query 5.3) is actually quicker

than the first query, which only ask for all triples. One possible answer is the 4store

SPARQL engine has special optimisation on graph matching.

A query that defines two relationships with group by and count

select ?city (count(?person) as ?pCount) where {

?person a foaf:Person ;

dbpedia-owl:city ?city .

} group by ?city

Listing 5.4: Query4: A query that defines two relationships and use group by and count

The time spend on this query is: 0.353s, and it returned 19 rows.

This time, data aggregation query (Query 5.4 is actually quicker than simple “print

all” query (Query 5.1) and query with simple graph matching (Query 5.3). This result

demonstrates 4store implementation of data aggregation has very high performance.

A query that defines two relationships with group by, count and order by

select ?skill (count(?skill) as ?sCount) where{

?p a foaf:Person;

lk:skill ?skill.

} group by ?skill order by desc(?sCount)

Listing 5.5: Query5: A query that defines two relationships and use group by, count and

order by

The time spend on this query is: 2.204s, and it returned 16185 rows.

This query (Query 5.5) takes more than 2 seconds to execute. That is because to

generate the correct result, the SPARQL engine has to split all the skill into groups, sum

them up and finally sort the results.

49

The performance seems is reasonable if we are not trying get all raw triples from

the server. However, the performance can be even better if we have a better hardware

(our production environment is Amazon EC2 64 bit Ubuntu12.04, Intel Xeon Central

processing unit E5-2650 2.00GHZ, 4G memory). We don’t have enough budget to get

a high performance CPU instance on Amazon EC2. Figure 5.15 shows a comparison

on query performance between our production server and our development server. The

parameters of our development machine are: MacBook Pro OSX 10.8 Mountain Lion,

Intel core i7 2.7GHz CPU, 8GB 1600MHz DDR3 memory.

Figure 5.15: Query performance of all 5 queries on development machine and production
machine

Notice that if we run our query on our development machine, the time spend on getting

all triples is around 3 second, which is 4 times faster than our production server.

Conclusion

We can see that for complex group by, count and order by query, our production server

takes about 2 seconds to run. One important factor that result in slow queries is the system

hardware. Because we test the performance in production environment, the machine is an

Amazon EC2 m1.medium instance, which is relatively low comparing to current standard

server. We also illustrate the performance issue can be potentially alleviated by upgrading

to a higher Central processing unit. With these query times, our server should be able to

respond to public queries.

50

5.3 Chapter Summary

In this section, we evaluated our result set and SPARQL server thoroughly. We performed

evaluations on Data completeness, Data accuracy, User ratings and System performance.

We found the fields that people normally missing in their profiles, the fields that are

converted with high accuracy and also identify issues that need to be fixed or improved.

We examined the performance of our production server and make suggestions for future

improvement.

51

Chapter 6

Conclusions and Future Work

6.1 Conclusions

Generally speaking, UGC, is inherently unstructured but informative. Semantic Web

is one of the best technologies that tries to solve this problem as it doesn’t make any

assumption about the form of the data. High flexibility can be guaranteed in creating

and maintaining the generated knowledge graph.

In this case study, we take LinkedIn.com public profiles as research subject, investi-

gate the possibility of converting semi-structure profiles to a RDF dataset. We create

a knowledge graph that can express the semantics behind the profiles and the relations

between nodes. Our project and the upper layer user interface (the project “leveraging

power of social media and data visualisation”) has proved that Semantic Web technologies

can be a good solution to represent unstructured data. In addition, we provide an simple

way to download a large amount of LinkedIn.com public profiles and extract the user’s

current living city information from the raw HTML files. Finally, we contribute a public

SPARQL endpoint that allow everyone query about facts in LinkedIn Ireland.

6.2 Future work

6.2.1 Company names and job tiles classification

In chapter 5 we discuss the data fitness of our generated triples. The major problem is

that the company names and job titles do not have semantics. One example would be:

if we query about “Microsoft” there’s no hint about “Microsoft Ireland” is also a valid

result for this query. So our query cannot always obtain the correct answers because some

possible aliases might not be included in the result set.

52

One possible solution is to find ground truth datasets that include a large amount

of company names and job titles. But this approach is unrealistic because the possible

combinations for job title, for example, are infinite. We might look for a machine learning

approach, which first extract a large amount of metadata from the profiles we extracted,

then create a “game” that ask volunteers manually link the data with same meaning.

With this validation dataset, we can easy to apply different machine learning algorithms

to see which one is better.

6.2.2 Expand the current dataset

At the moment, the public SPARQL endpoint has only 13,000 LinkedIn Ireland personal

public profiles. We still want to include most of the profiles in LinkedIn Ireland to get a

complete understanding about Irish industry. Downloading and parsing profiles at such

large scale is nearly impossible without LinkedIn’s help, if possible, we hope we can work

with LinkedIn Data Engineering team to develop a knowledge model for LinkedIn.com

officially. Fully integrated our work to LinkedIn can be very helpful and interesting.

53

Abbreviations

AI Artificial Intelligence. 6

AIISO Academic Institution Internal Structure Ontology. 13, 20

API Application programming interface. 21

CPU Central processing unit. 24, 50

CSS Cascading Style Sheets. 7

DBMS Database Management System. 7

DOM Document Object Model. 6

ETL Extract, Transform and Load. 6

FOAF Friend of A Friend. 20, 21

HR Human Resources. 2

HTML HyperText Markup Language. 6

HTTP Hypertext Transfer Protocol. 10

IE Information Extraction. 14

IR information retrieval. 8

IT Information Technology. 1, 19

JVM Java Virtual Machine. 24

LDIF Linked Data Integration Framework. 15

LOD Linked Open Data. 11

54

NTLK Natural Language Toolkit. 7

OWL Web Ontology Languag. 7, 10

RDF Resource Description Framework. 5

RDFS Resource Description Framework Schema. 10

SKOS Simple Knowledge Organization System. 20

SPARQL SPARQL Protocol and RDF Query Language. 5

UGC User Generated Content. 1, 2, 52

UI user interface(s). 7, 17, 18, 25

URI Uniform resource identifier. 10

URL Uniform resource locator. 21

XML Extensible Markup Language. 7

55

Bibliography

[1] J. Krumm, N. Davies, and C. Narayanaswami, “User-generated content,” Pervasive

Computing, IEEE, vol. 7, no. 4, pp. 10–11, 2008.

[2] N. Shadbolt, W. Hall, and T. Berners-Lee, “The semantic web revisited,” Intelligent

Systems, IEEE, vol. 21, no. 3, pp. 96–101, Jan.-Feb. issn: 1541-1672. doi: 10.1109/

MIS.2006.62.

[3] S. Harris, N. Lamb, and N. Shadbolt, “4store: the design and implementation of

a clustered rdf store,” in 5th International Workshop on Scalable Semantic Web

Knowledge Base Systems (SSWS2009), 2009, pp. 94–109.

[4] Y. Li, Y. Shi, X. Fan, and M. Bhavsar, Careergalaxy a planner for future, 2012.

[5] C. Bizer, T. Heath, and T. Berners-Lee, “Linked data-the story so far,” International

Journal on Semantic Web and Information Systems (IJSWIS), vol. 5, no. 3, pp. 1–

22, 2009.

[6] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives, “Dbpedia:

a nucleus for a web of open data,” The Semantic Web, pp. 722–735, 2007.

[7] E. Ferrara, P. De Meo, G. Fiumara, and R. Baumgartner, “Web data extraction,

applications and techniques: a survey,” arXiv preprint arXiv:1207.0246, 2012.

[8] C. Bizer, P. Boncz, M. Brodie, and O. Erling, “The meaningful use of big data:

four perspectives–four challenges,” ACM SIGMOD Record, vol. 40, no. 4, pp. 56–

60, 2012.

[9] D. Bradbury, “Data mining with linkedin,” Computer Fraud & Security, vol. 2011,

no. 10, pp. 5 –8, 2011, issn: 1361-3723. doi: 10.1016/S1361-3723(11)70101-4. [On-

line]. Available: http://www.sciencedirect.com/science/article/pii/S1361372311701014.

[10] M. Russell, Mining the Social Web: Analyzing Data from Facebook, Twitter, LinkedIn,

and Other Social Media Sites. O’Reilly Media, 2011.

56

http://dx.doi.org/10.1109/MIS.2006.62
http://dx.doi.org/10.1109/MIS.2006.62
http://dx.doi.org/10.1016/S1361-3723(11)70101-4
http://www.sciencedirect.com/science/article/pii/S1361372311701014

[11] W. Gatterbauer, P. Bohunsky, M. Herzog, B. Krüpl, and B. Pollak, “Towards

domain-independent information extraction from web tables,” in Proceedings of the

16th international conference on World Wide Web, ACM, 2007, pp. 71–80.

[12] T. Atapattu, K. Falkner, and N. Falkner, “Automated extraction of semantic con-

cepts from semi-structured data: supporting computer-based education through the

analysis of lecture notes,” in Database and Expert Systems Applications, Springer,

2012, pp. 161–175.

[13] A. Hemnani and S. Bressan, “Extracting information from semi-structured web

documents,” Advances in Object-Oriented Information Systems, pp. 389–396, 2002.

[14] D. Lange, C. Böhm, and F. Naumann, “Extracting structured information from

wikipedia articles to populate infoboxes,” in Proceedings of the 19th ACM interna-

tional conference on Information and knowledge management, ACM, 2010, pp. 1661–

1664.

[15] M. Sah and V. Wade, “Automatic metadata extraction from multilingual enterprise

content,” in Proceedings of the 19th ACM international conference on Information

and knowledge management, ser. CIKM ’10, Toronto, ON, Canada: ACM, 2010,

pp. 1665–1668, isbn: 978-1-4503-0099-5. doi: 10.1145/1871437.1871699. [Online].

Available: http://doi.acm.org/10.1145/1871437.1871699.

[16] M. Bergman, “Advantages and myths of rdf,” AI3, April, 2009.

[17] T. Berners-Lee, Design issues: linked data, 2006.

[18] L. Ding, L. Zhou, T. Finin, and A. Joshi, “How the semantic web is being used: an

analysis of foaf documents,” in Proceedings of the Proceedings of the 38th Annual

Hawaii International Conference on System Sciences (HICSS’05) - Track 4 - Volume

04, ser. HICSS ’05, IEEE Computer Society, 2005, pp. 113.3–, isbn: 0-7695-2268-

8-4. doi: 10.1109/HICSS.2005.299. [Online]. Available: http://dx.doi.org/10.1109/

HICSS.2005.299.

[19] T. Heath and C. Bizer, “Linked data: evolving the web into a global data space,”

Synthesis lectures on the semantic web: theory and technology, vol. 1, no. 1, pp. 1–

136, 2011.

[20] S. Hellmann, C. Stadler, J. Lehmann, and S. Auer, “Dbpedia live extraction,” in

Proceedings of the Confederated International Conferences, CoopIS, DOA, IS, and

ODBASE 2009 on On the Move to Meaningful Internet Systems: Part II, ser. OTM

’09, Vilamoura, Portugal: Springer-Verlag, 2009, pp. 1209–1223, isbn: 978-3-642-

05150-0. doi: 10.1007/978-3-642-05151-7 33. [Online]. Available: http://dx.doi.

org/10.1007/978-3-642-05151-7 33.

57

http://dx.doi.org/10.1145/1871437.1871699
http://doi.acm.org/10.1145/1871437.1871699
http://dx.doi.org/10.1109/HICSS.2005.299
http://dx.doi.org/10.1109/HICSS.2005.299
http://dx.doi.org/10.1109/HICSS.2005.299
http://dx.doi.org/10.1007/978-3-642-05151-7_33
http://dx.doi.org/10.1007/978-3-642-05151-7_33
http://dx.doi.org/10.1007/978-3-642-05151-7_33

[21] P. N. Mendes, M. Jakob, A. Garćıa-Silva, and C. Bizer, “Dbpedia spotlight: shedding

light on the web of documents,” in Proceedings of the 7th International Conference

on Semantic Systems, ser. I-Semantics ’11, Graz, Austria: ACM, 2011, pp. 1–8,

isbn: 978-1-4503-0621-8. doi: 10.1145/2063518.2063519. [Online]. Available: http:

//doi.acm.org/10.1145/2063518.2063519.

[22] P. Mika, “Ontologies are us: a unified model of social networks and semantics,” Web

Semant., vol. 5, no. 1, pp. 5–15, Mar. 2007, issn: 1570-8268. doi: 10.1016/j.websem.

2006.11.002. [Online]. Available: http://dx.doi.org/10.1016/j.websem.2006.11.002.

[23] S. Wang, Y. Zeng, and N. Zhong, “Ontology extraction and integration from semi-

structured data,” Active Media Technology, pp. 39–48, 2011.

[24] F. Sebastiani, “Machine learning in automated text categorization,” ACM Comput.

Surv., vol. 34, no. 1, pp. 1–47, Mar. 2002, issn: 0360-0300. doi: 10.1145/505282.

505283. [Online]. Available: http://doi.acm.org/10.1145/505282.505283.

[25] S. godbole, I. Bhattacharya, A. Gupta, and A. Verma, “Building re-usable dic-

tionary repositories for real-world text mining,” in Proceedings of the 19th ACM

international conference on Information and knowledge management, ser. CIKM

’10, Toronto, ON, Canada: ACM, 2010, pp. 1189–1198, isbn: 978-1-4503-0099-5.

doi: 10.1145/1871437.1871588. [Online]. Available: http://doi.acm.org/10.1145/

1871437.1871588.

[26] C. Bohm, F. Naumann, M. Freitag, S. George, N. Hofler, M. Koppelmann, C.

Lehmann, A. Mascher, and T. Schmidt, “Linking open government data: what jour-

nalists wish they had known,” in Proceedings of the 6th International Conference

on Semantic Systems, ACM, 2010, p. 34.

[27] X. Ochoa and E. Duval, “Quality metrics for learning object metadata,” in Proceed-

ings of World Conference on Educational Multimedia, Hypermedia and Telecommu-

nications 2006, E. Pearson and P. Bohman, Eds., Chesapeake, VA: AACE, 2006,

pp. 1004–1011. [Online]. Available: http://www.editlib.org/p/23127.

[28] P. Mendes, H. Mühleisen, and C. Bizer, “Sieve: linked data quality assessment and

fusion,” in Proceedings of the 2012 Joint EDBT/ICDT Workshops, ACM, 2012,

pp. 116–123.

[29] E. Simperl, “Reusing ontologies on the semantic web: a feasibility study,” Data

& Knowledge Engineering, vol. 68, no. 10, pp. 905 –925, 2009, issn: 0169-023X.

doi: http://dx.doi.org/10.1016/j.datak.2009.02.002. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/S0169023X0900007X.

58

http://dx.doi.org/10.1145/2063518.2063519
http://doi.acm.org/10.1145/2063518.2063519
http://doi.acm.org/10.1145/2063518.2063519
http://dx.doi.org/10.1016/j.websem.2006.11.002
http://dx.doi.org/10.1016/j.websem.2006.11.002
http://dx.doi.org/10.1016/j.websem.2006.11.002
http://dx.doi.org/10.1145/505282.505283
http://dx.doi.org/10.1145/505282.505283
http://doi.acm.org/10.1145/505282.505283
http://dx.doi.org/10.1145/1871437.1871588
http://doi.acm.org/10.1145/1871437.1871588
http://doi.acm.org/10.1145/1871437.1871588
http://www.editlib.org/p/23127
http://dx.doi.org/http://dx.doi.org/10.1016/j.datak.2009.02.002
http://www.sciencedirect.com/science/article/pii/S0169023X0900007X
http://www.sciencedirect.com/science/article/pii/S0169023X0900007X

[30] A. Miles and J. R. Pérez-Agüera, “Skos: simple knowledge organisation for the web,”

Cataloging & Classification Quarterly, vol. 43, no. 3-4, pp. 69–83, 2007.

[31] J. Golbeck and M. Rothstein, “Linking social networks on the web with foaf: a

semantic web case study.,” in AAAI, vol. 8, 2008, pp. 1138–1143.

[32] M. McCandless, E. Hatcher, and O. Gospodnetic, Lucene in Action, Second Edition:

Covers Apache Lucene 3.0. Greenwich, CT, USA: Manning Publications Co., 2010,

isbn: 1933988177, 9781933988177.

[33] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algo-

rithms, 2nd. Cambridge, MA, USA: MIT Press, 2001, isbn: 0-262-03293-7, 9780262032933.

[34] D. Powers, “Evaluation: from precision, recall and f-measure to roc., informedness,

markedness & correlation,” Journal of Machine Learning Technologies, vol. 2, no.

1, pp. 37–63, 2011.

[35] P. Biron, A. Malhotra, W. W. W. Consortium, et al., “Xml schema part 2: datatypes,”

World Wide Web Consortium Recommendation REC-xmlschema-2-20041028, 2004.

59

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter 1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Research Question
	1.4 Contributions
	1.4.1 Reusable knowledge model from LinkedIn public profiles
	1.4.2 Public online SPARQL endpoint for complex query about Irish industry
	1.4.3 Scalable crawling strategy
	1.4.4 Mashup based city information extraction strategy

	1.5 Outline of the thesis

	Chapter 2 State of the Art
	2.1 Introduction
	2.2 Data extraction
	2.2.1 Data extraction in general
	2.2.2 Approaches

	2.3 Knowledge modelling
	2.3.1 Semantic Web technologies
	2.3.2 Linked Open Data
	2.3.3 Building ontologies

	2.4 Content integration and classification
	2.5 Evaluation of the extracted data
	2.6 Chapter Summary

	Chapter 3 Design
	3.1 Requirements
	3.2 Knowledge model
	3.2.1 Reusing existing ontologies

	3.3 System architecture
	3.4 Design decisions
	3.5 Chapter Summary

	Chapter 4 Implementation
	4.1 Programming languages and corresponding libraries
	4.1.1 Python and its libraries
	4.1.2 Java and Lucene text search engine
	4.1.3 Modular porogramming paradigm
	4.1.4 System environment

	4.2 Strategy
	4.2.1 Profile download strategy
	4.2.2 City extraction strategy

	4.3 Chapter Summary

	Chapter 5 Evaluations
	5.1 Evaluation, the rationale
	5.1.1 Data completeness
	5.1.2 Data Accuracy (extracted metadata quality)
	5.1.3 User perceived data quality
	5.1.4 Metadata fitness

	5.2 System performance
	5.2.1 Parsing performance
	5.2.2 Normalising and converting performance
	5.2.3 Query performance

	5.3 Chapter Summary

	Chapter 6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future work
	6.2.1 Company names and job tiles classification
	6.2.2 Expand the current dataset

