
Secure Dropbox

by

Gu Juntao, B.Sc.

Dissertation

Presented to the

University of Dublin, Trinity College

in fulfillment

of the requirements

for the Degree of

Master of Science in Computer Science

University of Dublin, Trinity College

August 2013

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated, is

my own work.

Gu Juntao

August 28, 2013

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Gu Juntao

August 28, 2013

Acknowledgments

I would like to show my greatest appreciation to my supervisor, Dr. Hitesh Tewari, for his

suggestions and expertise throughout the project. Also, I would like to thank my parents,

Mr. Peiqi Gu and Mrs. Xuelan Yang, for their unwavering love and encouragement.

Finally, I would like to thank my best friend and love, Zhong Miao, for all of her support.

Gu Juntao

University of Dublin, Trinity College

August 2013

iv

Secure Dropbox

Gu Juntao, M.Sc.

University of Dublin, Trinity College, 2013

Supervisor: Tewari Hitesh

Recently there have been increasing requirements about utilizing cloud technology

for data maintaining and management especially when reliable, stable data storage and

remote data access required. Since the cloud storage service is usually designed to be

available to users over the Internet, it essentially facilitates the data sharing as well.

However, security concerns are growing as the most commonly cited reason why users,

particularly those enterprise users who are information confidentiality critical, are not

interested in SaaS, of which cloud storage services like Dropbox or Google Drive are

typical instances. The use of those cloud storage service is actually exposing the sensitive

data to the service vendors and government agencies.

This research project aims to investigate the feasibility of solving the data exposing

issue and achieving the goal of secure data sharing via encryption approaches. It was

decided to develop an application to explore this topic. A client end encryption tool

would be implemented based on Python and Python accredited cryptography related

modules. What is more, a key management system (KMS) with features of file encryption

management, user profile management and sharing information management would be

v

deployed to realize the function of everywhere use and secure data sharing. Dropbox

would be selected as the instance of SaaS cloud storage service for demonstration purpose

so that Dropbox core API would be used.

The result of the project indicated the idea of the hybrid application of symmetric and

asymmetric cryptography algorithm could effectively protect the data stored on Dropbox

and potentially could be implemented. The user testing session at the end of the project

also strongly indicated that the encryption tool Secure Dropbox could tremendously gain

users confidence in terms of storing their confidential data on a cloud storage service like

Dropbox.

vi

Contents

Acknowledgments iv

Abstract v

List of Figures xi

Chapter 1 Introduction 1

1.1 Motivation . 3

1.2 This Report . 5

Chapter 2 State of the Art 6

2.1 Introduction . 6

2.2 Cryptography . 7

2.2.1 User-level Cryptography . 7

2.2.2 System-level Cryptography . 7

2.3 Secure Storage in the Cloud . 8

2.3.1 Security in Dropbox . 9

2.3.2 Security in Google Drive . 9

2.3.3 Storage Security Risks in the Cloud 10

2.4 Searchable Symmetric Encryption . 11

2.5 FileMap . 12

2.6 Conclusion . 13

vii

Chapter 3 Design 14

3.1 Application of Cryptography . 16

3.2 The Right Cryptography . 18

3.2.1 Symmetric Cryptography . 18

3.2.2 Asymmetric Cryptography . 19

3.2.3 Cryptographic Hash Function . 21

3.3 Key Management Service . 23

3.3.1 KMS User Authentication . 23

3.3.2 KMS RSA Key Pair Management 24

3.3.3 KMS Doc Key Management . 25

3.3.4 KMS Sharing Information Management 25

3.3.5 Local KMS . 25

3.4 Integration with Dropbox . 26

3.5 System Architecture . 28

Chapter 4 Implementation 30

4.1 Implementation Dependencies . 30

4.1.1 Secure Dropbox Client . 30

4.1.2 Secure Dropbox KMS . 32

4.2 Communication . 35

4.3 Secure Dropbox KMS Implementation . 37

4.3.1 Database Design . 38

4.3.2 KMS User Management . 39

4.3.3 KMS Key Management . 40

4.3.4 KMS File Sharing Management . 41

4.4 Secure Dropbox Client Implementation . 42

4.4.1 Secure Dropbox UI . 43

4.4.2 Dropbox Handler . 46

viii

4.4.3 Cryptor Handler . 48

4.4.4 KMS Handler . 49

4.4.5 Configuration Module . 50

4.4.6 Secure Dropbox Module . 50

Chapter 5 Analysis 53

5.1 Evaluation Approaches . 53

5.2 Performance Testing . 54

5.2.1 Testing Schema . 54

5.2.2 Performance Evaluation . 54

5.3 User Experience . 55

5.3.1 Session Procedure . 55

5.3.2 Non IT Background Users Feedback 56

5.3.3 IT Background Users Feedback . 57

5.4 Discussion of Feedback . 58

Chapter 6 Conclusion 60

6.1 Results . 60

6.1.1 Was An Effective User End Encryption Tool Developed? 60

6.2 Criticism . 61

6.2.1 Design Criticism . 61

6.2.2 Implementation Criticism . 61

6.2.3 Testing Criticism . 62

6.3 Future Work . 62

6.3.1 Version Control and File Recovering 62

6.3.2 User Profile Management . 62

6.3.3 Improvement of Sharing Mechanism 63

6.3.4 File Sharing Refreshing . 63

6.3.5 File System Level Encryption . 63

ix

6.3.6 Configuration Interface . 64

6.3.7 Multi-platform Implementation . 64

6.3.8 Better Local KMS Mechanism . 64

Appendix A Implementation Module Dependence 65

Appendix B Task Description 66

Appendix C Questionnaire 68

Bibliography 70

x

List of Figures

2.1 Customer Architecture . 12

3.1 Secure Dropbox Architecture . 15

3.2 Encrypted File Storage and Reading . 17

3.3 Encrypted File Sharing . 18

3.4 Strength Equivalence . 20

3.5 Hash Table . 21

3.6 Hash Table with Parameters . 22

3.7 KMS Architecture . 24

3.8 Dropbox Core API . 27

3.9 Cryptography Deployment . 29

4.1 Path Representation Schema . 32

4.2 Platform Independent Coding Style . 32

4.3 Amazon EC2 Server Monitoring . 33

4.4 Amazon EC2 Security Customization . 34

4.5 Amazon EC2 SSH Procedure . 35

4.6 Restful WebService Programming . 36

4.7 HTTP POST Request Generating . 37

4.8 KMS Interfaces . 38

4.9 KMS Database Design . 39

4.10 Hashed Passwords . 40

xi

4.11 Sharing Notification . 41

4.12 Sharing Notification Implementation . 41

4.13 Secure Dropbox Client Architecture . 43

4.14 Running Environment Detection . 44

4.15 Secure Dropbox Commands . 45

4.16 Command Print Information . 45

4.17 Command Print Information II . 46

4.18 File Dialog Implementation . 46

4.19 Application Settings of Secure Dropbox . 47

4.20 Dropbox OAuth Service . 48

4.21 Return Value of Dropbox Core API . 48

4.22 AES Key Generation . 49

4.23 KMS Data Package Generation . 49

4.24 User Instance in Local KMS . 51

4.25 RSA Key Pair Generation . 52

4.26 Replacements of Newline Characters . 52

5.1 Testing Environment . 54

5.2 Secure Dropbox Cryptography Performances 55

xii

Chapter 1

Introduction

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network

access to a shared pool of configurable computing resources that can be rapidly provisioned

and released with minimal management effort or service provider interaction [1]. It is by

definition composed of three service models:

• Cloud Software as a Service (SaaS) provides computation capacity by running soft-

ware on a cloud infrastructure. These applications are remotely accessible to users.

The users are not supposed to manage the cloud infrastructure hardware but only

utilize the services. Different cloud consumers’ applications are organized in a single

logical environment in the SaaS cloud to achieve economies of scale and optimiza-

tion regarding issues like speed, security, availability, disaster recovery, and main-

tenance [1] [2]. Those cloud storage services which this research mainly aims at,

Dropbox and Google Drive for instance, are representative examples of SaaS.

• Cloud Platform as a Service (PaaS) is a development framework and service hosting

platform which allows users to develop cloud services by providing runtime environ-

ment, R&D toolkits, SaaS application APIs, storage and middleware/OS support.

An example instance of PaaS is the Google Application Engine.

• Cloud Infrastructure as a Service (IaaS) refers to on-demand provisioning of in-

1

frastructural resources on the cloud, usually in terms of VMs [3]. The capability

provided to the consumer is about provision processing, storage management, net-

work configurations and other fundamental computing resources. The customers

are able to deploy and run any software in the cloud [1] [3]. Amazon EC2 is a

representational IaaS cloud platform.

Cloud storage refers to the service on the cloud which is delivered as remote storage in-

frastructure. It can be accessed from any terminal connected to the Internet. It also

offers additional data-related functionalities regarding to data management and mainte-

nance [4]. Any operations in which the core tasks that a cloud computing system processes

are relevant to big data storage and maintenance, it could be defined as a cloud storage

system. Most hardware configuration and software deployment inside are optimized for

providing data storage services. As it is a service that provides interfaces in terms of data

manipulations rather than utilizing certain physical storage devices directly, cloud storage

is by nature an application of SaaS.

For personal users, cloud storage is an extension of local storage with good cost per-

formance. Also it could be an ideal replacement of portable storage devices like flash

drive or portable hard drive by which stable data storage is not guaranteed. Moreover, it

is also a more reliable local disk backup given its essence of good cost efficiency, remote

accessibility and reliability. Besides, from the enterprise-level users perspective, cloud

storage reduces the investment they should have made in terms of design, management

and maintenance of device clusters to build a systematic big data storage service. Lastly,

the data sharing is another thing that boosts up data usage efficiency via facilitating

the real time data exchange and decreasing the workload about data collection especially

relating to frequently reused data resources.

As a highly developed commercial-level cloud storage product and innovator in this

field, Dropbox is becoming the industry leader with a market share of 14.14% in 2011 [5].

Google Drive, another popular cloud storage service which is built based on application

2

framework by Google and well integrated with other Google services (e.g. Gmail as a

major way of acting user or system activity notification) is also increasing dramatically.

It is routine for cloud storage service vendors to provide multiple ways of getting access

to the service from different platforms for ubiquitous usage. For example, desktop client,

web application and portable device application.

1.1 Motivation

Alongside the high speed development of the cloud storage industry, security anxiety in

the age of the cloud is becoming a significant issue. There are frequent reports of web

servers being attacked: either because data residing on servers is of interest to hackers,

or because the hackers want to leave their mark of exploiting. While robustness and

availability are main concerns of security, confidentiality is equally important [6]. The data

storage security problem is an important aspect of Quality of Service(QoS) [7].The security

features of cloud storage technology are always compared with traditional ways like local

disk or RAID. For personal users, the reasons for using the cloud storage service or not

are simple and straight forward. For instance, would people put their security sensitive

data like bank account information on the cloud? Also, even if service carriers claim that

they deploy secure encryption scheme throughout, is it definitely sure that the employees

of service carriers will abide strictly by the terms of service and never try to access users

data unconsciously by technical approaches which could be easily performed internally? In

addition, some personal users with computer expertise could have concerns about whether

the continuous on service cloud storage server might represent an attractive attack target

and therefore be riskier than local storage. Lastly, personal users, particularly those who

use cloud storage service for free, have concerns about who will bear responsibility for any

loss of personal data whilst it is stored on the cloud. Such problems relating to security

confidence restrict users to only storing unimportant data on the cloud as redundancy

and utilize the feature of portability. Even if the cloud storage service provider could be

3

Google or Dropbox, it is paradoxical that people only achieve redundancy for important

data because the security concerns hinder it.

For enterprise users, except for the same concerns that might be taken into considera-

tion as a personal user, there are more severe problems to be dealt with. According to the

survey hosted by Intel in May 2012 [8], the concerns of IT professionals regarding public

cloud (opposite to the private cloud and traditional IT storage solutions like local disk or

RAID. The storage service provided by Google Drive and Dropbox discussed in the paper

are typical instances of public cloud) were: Firstly, the lack of measurement of security

capabilities of cloud storage service. Despite the security methods deployed which claim

to be secure, the providers hide the implementation details and the only transparent ap-

proach to users is simply identity based access control. It is not sufficient to gain their

confidence towards the security of the storage system. 57% of the survey participants

thought it was the most significant problem concerned when using such service among all

the concerns. 55% of the participants considered a lack of control over data as another

major concern because of the invisible abstracted resources and shared storage infrastruc-

ture in the cloud. Only 36% of the participants thought the cloud storage service lack of

transparency/ability to conduct audits which indicates that the continuously improving of

comprehensive query interfaces about storage service itself makes it acceptable by gaining

the level of transparency. Compliance with regulatory mandates is another key problem

concerned by an average of 78% participants. Due to the opaque security and operability

of cloud storage, the security of storing legislation sensitive data might not be fully mea-

sured and leads to compliance problems. Such laws vary from country to country. One of

the advised solutions is making full use of cloud storage for enterprise data is to classify

the data with different priorities and keep them in internal infrastructure and external

storage services respectively.

The goal of the project is to investigate the feasibility of gaining users confidence

towards the security of cloud storage service by utilization of a hybrid encryption mech-

anism in the local host. Also to evaluate the advantages of information sharing based

4

on asymmetric cryptology over the symmetric cryptology. To achieve this goal, it was

decided to develop a desktop client which performs local file management and cryptology

operations and a server, which functions as a key management service, user management

system and a file sharing pool. The combination of the two components will implement

the entire procedure as a prototype.

On completion of the project, the prototype will be demonstrated to information

security experts and several testers who do not have Computer Science background will

be invited. The evaluation will be mainly about performing user acceptance tests for

assessing the availability and user experience of the software.

1.2 This Report

This report will contain a review of the state of the art technologies in the fields of cloud

storage, cloud security approaches and other potential solutions those are relevant to this

project. Some other popular approaches will also be discussed, together with justification

for their inclusion.

Important design decisions made during the undertakings of this course project will

then be explained in detail, along with the reasons that justify these decisions. There will

be followed by a detailed outline of both design and implementation of key components

of the software. A systematic analysis of the software prototype will be given based on

not only the expertise of the IT security professionals but also comments and suggestions

by routine Dropbox users. Assessment of this application will focus on the theoretical

correctness, availability and user experience based on the feedback from beta users. Ad-

ditionally, potential future work including implementing such an application on portable

platform and evaluating the possibility of performing a file system level encryption will

be discussed. Finally, the conclusion of the whole project will be presented.

5

Chapter 2

State of the Art

2.1 Introduction

Information Security is one of the key issues that slows down the development of cloud

computing and its feature of complications with data privacy and protection continue

to hinder taking the market [9]. Although the cloud storage services potentially offer

several security advantages with their standardized accessing interfaces and benefits of

scale (i.e., the same investment of security infrastructures on centralized server sets would

provide better capability with regard to issues like data filtering, update management and

deployment of information security policies) and agility of reactions to attacking events

or other security-threatening behaviors. However, in some other ways, due to its essence

of the multi-tenancy model [2], problems are caused by sharing physical storage resources

with other users. Also its nature of SaaS implies merely the accessing and auditing

interfaces are open to users makes the hidden internal mechanism not trustworthy to

users. Furthermore, security approaches towards cloud storage must consider interactions

and mutual effects among multiple network objects (e.g., other applications or users) [10]

that lead to the invalidation or rejection of traditional local secure storage methods.

Modern security technologies and some mainstream cloud storage security solutions in

particular are considered as referable potential solutions to this problem. Their features,

6

impacts and also reasons why some of these security approaches are not appropriate in

certain application scenario will be discussed in this chapter.

2.2 Cryptography

Cryptography provided secrecy for information sent over channels where eavesdropping

and message interception was possible [11]. In order to conceal sensitive contents, cryp-

tography is always exploited on plain text in the storage media concerning not only those

intelligible contents but also metadata that might be utilized for deducing the correspond-

ing contents.

2.2.1 User-level Cryptography

A typical way of encrypting the file or data is through some encryption tools, such as

enigma under FreeBSD, crypt in UNIX or applications with encryption modules em-

bedded. The basic goal of information concealing achieved in this way if used properly.

However, none of them is entirely satisfying in the matter of security, generality and avail-

ability [3]. Manual errors like forgetting to delete the plain text file after encryption or

inappropriate key management will make results negative. As a conclusion, if encryption

is too close to the user level, the high frequency of human interaction caused errors is not

ideal for practical and everyday usage [12].

2.2.2 System-level Cryptography

Generally to avoid the manual flaws of user level encryption, the cryptographic related

modules should be designed to serve as infrastructures of the system. The key of designing

this system is mainly about specifying the component to be cryptographically protected in

accordance with priority level. Storage and communication risks are most urgent factors

to be concerned about.

7

Physical media like hard drives could be well protected by customizing the hardware

design or additional firmware functionalities. Disk controllers could be used for encrypting

entire disks or individually protecting file blocks with a specified key. In this way the

procedure of encryption is completely transparent as long as the key is determined to

the hardware [12]. It seems to be an ideal alternative of user-level cryptography but

the problem happens when performing data management like sharing or backup. Data

sharing would not be done until the encryption key exchange has been made via an

unreliable medium. Playing backup of a disk without encrypting raw contents is equivalent

to exposing a decrypted version of ciphers while applying same encryption mechanism

gives rise to not only extra expense of backup procedure but other unreliability concerns.

For example, backup is periodically played to ensure the availability by creating data

redundancy. However, an extra cryptography application will make the availability of

cryptography modules a necessary condition prior to the availability of content backup

itself, which changes the essence of backup drastically.

Moreover, such mechanism would not protect data exchange with the disk so that it

is not sufficient to secure data in remote physical storage entities. Encrypted network

connections between storage entities could be a solution for securing the data exchange,

SSL for example. The cryptography could be utilized in the form of end-to-end encryption

communication protocol and cryptographic authentication [12]. However, some special-

ized hardware might be required and these extra cryptographic operations will doubtlessly

cause a significant penalty of network performance.

2.3 Secure Storage in the Cloud

File systems on the cloud, due to their web application circumstance, lead to extra security

concerns in comparison to local file system. Except for enhancement of its service avail-

ability, features like constant monitoring and auditing mechanism will be well redesigned

and integrated into the system to achieve better security performance [13]. Most service

8

providers offer access control mechanism as a basic security issue. Some service carri-

ers (e.g., Dropbox) use a combination of identity based access control and encrypted

data storage while others (e.g., Google Drive) just stick to concentrating on better access

control, auditing performance and revolutionary redesign of the traditional file system,

Google File System for instance. Also, certain modern solution like two-step verification

which refers authentication security to additional verification steps via sms, voice call

or other similar approaches. It adds an extra layer for secure storage thanks to carriers

multi-platform features.

2.3.1 Security in Dropbox

Dropbox uses Amazon’s Simple Storage Service (S3) as storage infrastructure. All files

stored online by Dropbox are encrypted during transmission and before storage with

Secure Sockets Layer (SSL) and AES-256 bit encryption respectively [14]. Amazon S3

does not encrypt data before storage but a service named Server Side Encryption (SSE)

is provided for users to encrypt files and perform key management on the cloud.

2.3.2 Security in Google Drive

Without using any local encryption on the physical storage infrastructure, Google im-

proves its file system dramatically about the access control and auditing. In Google File

System, there are some innovative specific fields as part of file metadata for multi-user

management and data sharing. For example, rather than generating physical replicas of

file or file relocation record, the field “exportLinks” allows data sharing by generating a

sharing URL which is irreversible and ready to be published. Another field “writersCan-

Share” indicates the writers permission of sharing the file with others, which actually

controls the permission leakage.

Google Drive also offers another access control mechanism called authorization scope.

Authentication scopes imply the permissions users are required to authorize for the follow-

9

ing operations. For example, when requiring for authorization with CGI: /auth/drive.readonly

indicates that a positive authentication result will allow read-only access to file metadata

and file content.

2.3.3 Storage Security Risks in the Cloud

Privacy concerns for some internal reasons always exists as long as the content is stored in

plain text on the cloud or encrypted with a key that is known to someone who conducts

the encryption. Dropbox has been criticized for storing authentication information on

disk in plain text. It actually indicates that Dropbox’s terms of service are contradicted

to its privacy implementation although the company claims that employees of Dropbox

are not able to access users files or profiles [15]. On the contrary, employees of Dropbox

can effortlessly hack the system and access users data unconsciously [16]. This kind of

attacks cannot be protected by traditional security technologies as long as it is technically

possible [17].

External attackers would also try to hack the storage service providers system to access

to stored data and such attacking could be prevented by traditional approaches [18].

Undoubtedly, it will raise the data security risk if stored plain texts are exposed once

the system has been exploited. Given the fact that these day and night services with

considerable potential profit are more attractive to attackers, they are essentially more

risky. Some services claim that the stored data is all well encrypted but tragedy happens

when key management are involved in the same space and easily to be discovered by

hackers.

Anyway, storage on the cloud in plain text, no matter how unbeatable the security

design and implementation are, is highly risky no matter it is facing an internal or ex-

ternal attack. Customer data is uncontrolled and could be leaked to unaccredited parties

potentially in this way [18].

10

2.4 Searchable Symmetric Encryption

The security of encrypted data storage, assuming the private key could be kept prop-

erly and confidentially, could be guaranteed. However, there could be an availability

performance penalty that routine private key encryptions might prevent searching over

encrypted data. Users would lose the ability to selectively locate fragments of expected

data at the same time [19] [20]. Searchable symmetric encryption (SSE) allows a user to

use the third party storage service of its data, meanwhile keeping the capacity of selective

searching over data pools [21].

The system prototype was described as a possible architecture for a cryptographic

storage service in the paper from Microsoft [21]. The system was composed of three

parts: a data processor (DP), a data verifier (DV) and a token generator (TG). The

data processor handles data prior to being sent to the cloud; Data verifier verifies if the

data in the cloud has been modified without authorization based on auditing information;

Token generator generates tokens that grant the permissions to the cloud storage provider

and enables it to get segments of expected data of customer. Additionally, a credential

generator who works based on certain access control mechanism is implemented. It works

by issuing credentials to the various parties in the system which will enable them to

decrypt encrypted files according to the policy.

The key features of a cryptography based storage service let customers take control of

their data. Its security properties are derived from cryptography, a trusted issue but not

those unreliable human factors like legislation or physical security. The advantage with

regard to security make the data is always encrypted and data integrity can be audited

any time so that security attacking poses little, or say, no risk for the customer [19].

Furthermore, the utilization of symmetric searchable encryption, which leaves the indexes

available but sensitive contents encrypted, improves the availability of encryption based

security storage.

The whole process illustrated in this paper is expressed as follows:

11

Figure 2.1: Customer Architecture [19]

1. Alices data processor prepares the data (encrypted with symmetric searchable en-

cryption) before sending it to the cloud.

2. Bob asks Alice for permission to search for a keyword.

3. Alices token and credential generators send a token for the keyword and a credential

back to Bob.

4. Bob sends the token to the cloud.

5. The cloud uses the token to find the appropriate encrypted documents and returns

them to Bob.

6. At any point in time, Alices data verifier can verify the integrity of the data.

2.5 FileMap

FileMap is a file-based map-reduce system for data-parallel computation [22]. It is de-

signed and implemented around several application scenarios like file-based and data

replication. Its idea of data replication mechanism which is similar to RAID4 or RAID5

means the file is split in the physical separated media and stored. Files could be split into

12

segments and stored in different entities which are both logically or physically separated,

or a combination of them. For example, to perform secure cloud storage in logical sepa-

rated entities, certain file could be fragmented into n segments and stored in one providers

cloud storage service with n identities (i.e., n segments stored in n accounts of Dropbox

respectively). While storing files in physical separated entities, as same as the first sce-

nario, files also have to be divided into n segments but the difference is storing them via

different cloud storage providers services (i.e., n segments stored in Google Drive, Drop-

box and SkyDrive separately). Given the fact that some providers providing encrypted

storage service like Dropbox, a pseudo searchable encrypted cloud storage prototype with

could be made by:

1. Regenerate the file and adding indexes information in the metadata and fragment

it into index and content segments.

2. Store the index segments in plain text stored cloud storage service but with better

access control mechanism deployed like Google Drive.

3. Store the rest n content segments in n accounts of encrypted cloud storage service

like Dropbox.

2.6 Conclusion

In conclusion, the on the fly and static storage security of cloud storage service are still

relies on the strength of cryptography and application methodology. The cryptography is

decided based on the trade-off of efficiency performance and security. The hybrid appli-

cation of searchable encryption storage and segmenting storage facilitate the availability

in the context where encryption is applied. Data auditing and error recovery become

indispensable parts of cloud storage file system for usability and consistency.

13

Chapter 3

Design

Current storage systems secure data either via encrypting data on the wire, or through

data encryption on the physical disk [23]. Cryptographic protection of single file in-

stances could prevent data modification or leakage during storage [24]. Secure Dropbox is

designed as a client end encryption tool over the Dropbox service. The main idea is pro-

viding a file encryption service with symmetric cryptography where key is not known to

Dropbox and, in the meantime, the file encryption key is well protected with asymmetric

cryptography for secure file sharing. It is proposed to strengthen the way in which the

Dropbox protects users file content security from attacks especially those from Dropbox

itself. Internal attack is theoretically easy to be perform as Dropbox encrypts those files

with keys known to them. Also the security against external attack has been fortified

since files will be encrypted twice, Dropbox and Secure Dropbox respectively. Secure

Dropbox is proposed to be a C/S architecture system. The server end will work as a key

management service (KMS) which mainly processes key management requests and storage

request while the client end running on a user’s host computer will perform cryptographic

computations which are resource consuming. Secure Dropbox performs file operations

like uploading, downloading and sharing via Dropbox API or the Dropbox official client

which is essentially built with Dropbox API as well. The user interface of Secure Dropbox

will be designed as a file system operation interface. Encryption within this service will

14

be transparent to the users. The very security of Secure Dropbox service is based on

users proper usage of Secure Dropbox account information. Two application modes will

be provided: using regular mode when there is Internet access while in local mode when

there is no Internet access.

Figure 3.1: Secure Dropbox Architecture

This chapter will discuss some major design decisions and implementation challenges

during the Secure Dropbox project. Firstly, the overall design of Secure Dropbox will be

proposed. Secondly, the cryptography application mechanism to guarantee the security

of Secure Dropbox will be explained and justified. Furthermore, the reason for making

choices about ways of performing file operations, systematic integration with Dropbox and

a platform on which to construct the application will be discussed in regard to building

a platform independent application. Moreover, the decisions made in terms of building

a Client/Server architecture application but not in Browser/Server architecture will be

explained. Some other design features are more intuitively understandable by explaining

from the implementation aspect so more detail of those parts will be proposed in the next

chapter or just briefly mentioned in this chapter. Lastly, the design decisions and other

principles proposed to implement Secure Dropbox are not Dropbox oriented specifically

but could be adopted when designing any application that protect users file in the cloud

and provide a reliable file sharing in the cloud storage system.

15

3.1 Application of Cryptography

Dropbox claim that they are using Secure Socket Layer (SSL) on data transmission and

performing AES 256-bit encryption with users data. It seems sufficient against external

attack but only on condition that the attacking does not come to key management service

(KMS). However, these mechanisms make no sense of protecting users data from internal

attack, which could be performed by employees of Dropbox who have access permission

to KMS. The behavior, or say the ability, of accessing to users data has been admitted

in their terms of service [25] that Dropbox will remove the encryption from file data

and deliver them to law enforcement on governments requirement. Nevertheless, because

of internal attackers proficient understanding of Dropbox system and some inappropriate

access permission configurations, internal attacks could even be done unconsciously. These

security concerns have been certified that several internal attack events are reported.

Client end encryption is one of those alternatives recommended by Dropbox if users are

more willing to conceal their data and care less about losing some Dropbox features like

version control or data recovering [25]. More importantly, when protecting users data from

internal Dropbox attack with client end encryption, it actually disables the file sharing

infrastructure provided by Dropbox totally.

Anyway, cryptography is still going to be the very insurance for the security of Secure

Dropbox. Generally, Secure Dropbox is designed to make Dropbox internal attack impos-

sible and also to provide a cipher file sharing service. To achieve this goal, Secure Dropbox

will apply a combination of symmetric cryptography and asymmetric cryptography. The

symmetric cryptology like AES or DES will be used for file content encryption given the

fact that they are much faster than asymmetric cryptography and sufficient security of-

fered. The asymmetric cryptology is used for protecting the symmetric encryption key

and providing a secure key transmission service. In the following example, the procedure

of secure storage is going to be illustrated with AES and RSA as instance of symmetric

and asymmetric cryptography respectively:

16

Figure 3.2: Encrypted File Storage and Reading

In the file encrypted storage procedure, plain text is ciphered in AES with a random

generated AES file encryption key. The doc key is later ciphered in RSA as well with

file owners RSA public key. In encrypted file read procedure, firstly the ciphered doc

key Ksecure should be deciphered in RSA with file owners RSA private key. Having

retrieved the raw doc key K, the cipher could be decrypted in AES with K. The procedures

of sharing from Secure Dropbox users is mainly about ciphering the doc key K and

transferring it to the sharing recipient. K should be ciphered by file owner but could

only to be deciphered by sharing recipient, which is a typical scenario for asymmetric

cryptography application. In the following example, Alice wants to share a file with Bob:

Sharing procedure as shown above actually does not perform any operation on the file

instance but only cipher the key for sharing purpose. The doc key is stored in a secure

way at the very beginning. To get the raw doc key, Alice has to decipher Ksecure in RSA

with her own RSA private key. In order to enable Bob deciphering the key ciphered by

Alice, she should encrypt the raw doc key K in RSA with Bobs RSA public key, which

is open to all the users in the Secure Dropbox system. Ksharing is generated in this way

and then transmitted to Bob via secure tunnels. After receiving the Ksharing, Bob will

decrypt it in RSA with his own RSA private key and then get the raw doc key. Now the

plain text of the shared encrypted file could be retrieved by decrypting in AES with the

raw doc key.

17

Figure 3.3: Encrypted File Sharing

Respecting managing the RSA key pair of Secure Dropbox user and doc key of each

file, a detailed design description will be given in the coming section.

3.2 The Right Cryptography

3.2.1 Symmetric Cryptography

In the symmetric (private-key) cryptography procedure, encryption and decryption are

performed with same key [26]. Accordingly, encryption key sharing becomes the pre-

condition of the sharing the symmetrically encrypted information. Theoretically, as it is

significantly faster in comparison with asymmetric algorithm with the same security level,

symmetric encryption algorithm is usually used for big data protection.

Advanced Encryption Standard (AES) is a specification for the encryption of electronic

data established by the U.S. National Institute of Standards and Technology (NIST) in

2001 [27]. NIST claimed that AES with 128-bit keys provides adequate protection for

classified information up to the SECRET level definition. Increasing AES applications

have changed to the AES-256 in which more rounds hash and longer key are applied

18

and fulfill a TOP SECRET level by definition (Both definitions of SECRET and TOP

SECRET are advised by CNSSP-15 [28]). Numerously there are 3.4 × 1038 combinations

to guess for AES-128 while this number is squared and comes to an incredible 1.1 × 1077

for AES-256.

As Dropbox is using AES-256 for encryption in transit and encryption in rest, seem-

ingly it would be ideal to deploy an AES-256 encryption in Secure Dropbox for file en-

cryption as well. As claimed by NIST [29], the encryption strength of AES-256, which

has an equivalent security level as RSA-15360, will be sufficient until 2030. In Secure

Dropbox, AES-256 will be the most direct protection of all data include encrypted file

storage, encrypted local storage of users file encryption key chains and other confidential

data in server end as long as content concealing is required.

However, since the guaranteed security totally depends on a proper key usage and

storage, it is highly risky to transmit the unprotected file encryption key via unreliable

media like the Internet. So, despite of those application layer protocols for secure data

transmission like SSL, hybrid encryption which combines the symmetric encryption and

asymmetric encryption would be a better way to directly protect the symmetric encryption

key against risks during key exchange.

3.2.2 Asymmetric Cryptography

Practically, the security of cryptography nowadays is no longer guaranteed by concealing

the cryptography algorithm itself but lies on the encryption key strength and mechanism of

key protection. While sharing the symmetrically encrypted data will inevitably involve key

exchange on unreliable public tunnels where interception and distortion are happening,

the asymmetric cryptography turns out to be a better option.

In asymmetric cryptography, the encryption and decryption are performed with math-

ematically linked public key and private key respectively. Generally speaking, the public

key is for encrypting the plain text while the private key is used for decryption purpose.

19

The key pair is generated by a trusted PKI. The key pair, especially the private key, is

distributed far less often than symmetric encryption application scenario. It essentially

reduces the security threats brought by frequent key exchange. As a prerequisite of en-

crypted information sharing, the public encryption key is widely distributed and accessible

by anyone who wants to activate information sharing. However, the private key will be

only known to the encrypted information recipient. As a result, there is only transmission

of encrypted data which could be considered as secure rely on the strength of asymmetric

cryptography algorithm and its key length.

Nevertheless, due to the different mathematical natures in comparison with symmetric

cryptography, asymmetric algorithm is remarkably less efficient. Most applications of

asymmetric cryptography are limited to small data encryption or as a component in

hybrid encryption. For example, to share a large encrypted data, the data content is

encrypted in the faster symmetric cryptography such as AES while the relatively short

AES key is protected with asymmetric cryptography before transmission.

RSA is an algorithm for asymmetric cryptography based on the presumed difficulty

of factoring large integers. As claimed by RSA Security, there is a mapping relationship

of security strength between RSA and AES in terms of the encryption key length. The

correspondence is listed as follows:

Figure 3.4: Strength Equivalence [30] [29]

RSA Security also claimed that 1024-bit keys are likely to become unsafe sometime

between 2006 and 2010 while the 2048-bit keys are sufficient until 2030. Thus the RSA

key length of 3072 bits will be required since 2030 [30]. RSA with 2048-bit or longer key

20

should meet the requirement of file encryption key security of Secure Dropbox.

3.2.3 Cryptographic Hash Function

Cryptographic hash functions perform irreversible encryption on an arbitrary length plain

text and returns a fixed length cipher. The hash digest is fixed for same input but

tremendously changed as long as changes happen to content, no matter how trivial it

is [31]. These one-way hash functions provide a rapid method for detecting any change

made to the content and are also used for generating individual digest of content [31]. In

web application context, users confidential information is usually stored in the form of

hash digest in case of being exposed when server is exploited.

Since the hash function by definition has the same output with the same input, hash

collision attack is easy to perform. For example: Alice sets her password as “123456” while

Bob coincidentally sets his password as “123456” too. Consequently, same password hash

values will be generated and stored. If Alice happens to get the password hash table that

stored in the server, she might recognizes that Bobs password hash value is exactly the

same with hers and further realizes that Bobs plain text password could be the same as

Alices:

Figure 3.5: Hash Table

Also, if Alice has the dictionary of most frequently used password, she could try to

hash each password in the collection and match to see if the same hash value exists.

Accidentally she might find that Eves hashed password could be achieved by hashing

“654321” with certain algorithm.

21

To protect the password hash value against hash collision attack, a random generated

salt and configurable hash function iteration time could be applied when performing the

content hashing. Randomly generated salt acts as a part of content to make same content

distinct. The stored hash value is the result of hashing the combination of primary

content and salt. Also the adoption of different iteration with different round times leads

to a more sophisticated mapping relationship between plain text and hash value. The

following example illustrates how a hash table with salt and iteration information stored

in the server:

Figure 3.6: Hash Table with Salt, Iteration and Algorithm Indicator

As shown above, there is additional information attached to the hash value. Take first

record for example:

• pdkdf2 indicates the librarys name via which the hash algorithm is used.

• sha1 indicates the algorithm used to generate the hash value.

• 1000 indicates there are 1000 iterations when performing the password hashing.

• “vAoH1lpY” is the salt added to the plain text password before it is hashed.

The hash value to be matched should be generated with the above parameters. In this

example, the SHA1 generates a 160-bit long digest of the content. It could be considered

as a sufficient secure hash function since it is still widely used in mainstream security

protocols like TLS and SSL.

22

3.3 Key Management Service

In the Secure Dropbox application scenario, there should be an infrastructure posting all

Secure Dropbox users RSA public key for sharing sponsor to achieve during the encrypted

file sharing procedure. In addition, given the essence of Secure Dropbox (a client end

file encryption tool) and Dropboxs cloud storage nature, the requirement of everywhere

use should be met. It means as long as users could get access to Dropbox, they are

allowed to use the Secure Dropbox service like downloading the desired doc key chain

and RSA key pairs. To achieve the goal, besides generating a local copy of essential data

like Secure Dropbox users authentication information, RSA key pairs, doc keys and file

sharing information, these records should also be stored on a server which is able to be

accessed anytime anywhere.

Dropbox stores file encryption key in its own database makes it not an accredited

storage service to users. However, in order to avoid same security concerns towards

Dropbox about its encryption mechanism, some improvements should be made. To make

Secure Dropbox reliable, the authority of decrypting file should be only granted to owner

but no one else even the KMS administrator. A possible alternative is storing all sensitive

data (e.g. RSA private key and doc key) on the server confidentially so that the everywhere

usage could be realized safely. Therefore, the only entry (assume it could be something

like an access token or password) of decrypting all these sensitive data should never be

stored on the server but only held by users themselves.

3.3.1 KMS User Authentication

User authentication information is a basic component in any web application instance as

long as access control is required. The classic way applied in web application saves users

authentication could be adopted: for the minimum usage, a plain text username and a

hashed password should be saved. The authentication procedure will match the username

and password hash value. The hashed password is generated in the client and only the

23

Figure 3.7: KMS Architecture

hash value with algorithm indicator prefixes will be uploaded to KMS and stored. To

avoid performing any suspicious behavior, plain text password should be hashed in client

once it is received in the terminal and uploaded for authentication. There is no plain

text password involves in the KMS server end. The hash value matching could be done

at client as well but it requires a corresponding KMS interface for users to fetch hash

algorithms salt, iteration times and hash value.

3.3.2 KMS RSA Key Pair Management

The RSA key pair could be generated either on KMS or client although it would potentially

bring about better user confidence when everything is generated in the client and uploaded

after encryption. In KMS, RSA public key is stored in plain text so that it could be reached

by any user who wants to process the doc key before sharing the file. An RSA private

key should be stored in cipher. It is encrypted in symmetric cryptography with users own

password or token as encryption key and uploaded once generated in client end. Any

request about fetching Secure Dropbox users RSA public key should be allowed.

24

3.3.3 KMS Doc Key Management

For each file encrypted by Secure Dropbox, a unique file encryption key will be generated.

Before uploading to KMS, it is a necessity to encrypt the doc key in RSA with file owners

RSA public key. The documents name will be stored in plain text for easy indexing

purpose. In this way, any operation on this encrypted file, no matter reading or sharing,

could only be initiated by the file owner. It is because both procedures require file

encryption key that is only known to file owner. The RSA private key is involved in

decryption in corresponding to the encryption with RSA public key that from the same

key pair.

3.3.4 KMS Sharing Information Management

The key component of sharing data is still the processed doc key. The processing procedure

should be performed on the client. The sharing recipient will be able to get the processed

key and decrypt it with own RSA private key. Besides it should include sharing metadata

generated by Dropbox sharing API: a URL indicates the entry of the file content and a

sharing expiration timestamp indicates when the URL will be closed for access.

3.3.5 Local KMS

There are two modes for Secure Dropbox: regular mode when Internet access is available

and a local mode when Internet access is not available. A local copy of KMS information

related to the Secure Dropbox user is generated for local usage like providing user authen-

tication information, RSA key pair information and file encryption keychain. Since there

is no Internet access, User can neither share a file with other Secure Dropbox users nor

read shared files from other Secure Dropbox user. Users own files stored in the local file

system are still accessible given the design decision made about using the Dropbox official

application as file container. The local RSA key pair and doc keychain make it possible to

decrypt any encrypted files. This local copy should be protected and encrypted as well.

25

3.4 Integration with Dropbox

Dropbox provides several kinds of APIs for Dropbox developers. For example, The Drop-

box Core API, which is recommended as an ideal API set by Dropbox for server-based

applications with programming interface for file reading and writing provided. It is also

claimed as the most direct way to access Dropbox. Furthermore, it includes some advanced

functionality interfaces like content search, version control and restoring file service for

developers to performing low-level controls. The Dropbox Sync API, which provides file

system-similar programming interface, encapsulates functionality implementations like

synchronizing and notification of remote changes. It mainly orients to mobile platform

programming. With respect to implementing Secure Dropbox, not only file synchroniza-

tion operation like uploading and downloading, but also some low-level operations like

file sharing, sharing URL generation and file metadata checking are required. To use

Dropbox Core APIs, an access token obtained during Dropbox OAuth is essential. The

access token will allows Secure Dropbox, a third-party application, to use the Dropbox

API with granted permission but never get disclosed with any Dropbox user account in-

formation. The implementation details about how to perform the indirect authentication

will be proposed in the implementation chapter. Some key Dropbox Core APIs are listed

as follows:

Except exploiting these Dropbox APIs as advised, there is another way to use Dropbox

service synchronizing files through the Dropbox official application. Using Dropbox on

the host computer is just like using any other folder in the file system. However, the files

you drag or copy into Dropbox folder will be automatically synchronized and consequently

synchronized to other terminals like mobile devices which are linked to Dropbox account.

In this way, the Core API is still used but indirectly because the underlying interface

for Dropbox official applications is implemented in Core API. The story with regard

to file operation could be tremendously simplified if Secure Dropbox use the Dropbox

client application as target folder and perform all file operations on it. Correspondingly,

26

Figure 3.8: Key Dropbox Core APIs Functionality Description

every encrypted file written into the Dropbox client folder will be uploaded automatically

but without any Dropbox API invoked explicitly. A commercial software product with

the same design and implementation relating to the hybrid usage of Dropbox APIs is

Boxcryptor [32]. Boxcryptor has a driver level encryption which is more efficient than

user space encryption. However, the nature of client end encryption disables the sharing

service infrastructures provided by Dropbox since file shared that way would be nonsense

to human reader since the data is encrypted. Boxcryptor made their own sharing service

which partially depends on Dropbox core API service like getting raw content of encrypted

file via “/media” interface and sharing after decryption.

Although the Dropbox client folder eases the complexity when design the file operation

module of Secure Dropbox, the file sharing feature of Dropbox client has been disabled. To

analyze from API invokings perspective, “/share” function of Dropbox core API returns

the URL refers to file or folder entity encapsulated with html information so there could

be a rendered display of certain entity while the “/media” function returns the URL refers

to a raw file content text. Apparently, if a file has been encrypted by Secure Dropbox and

uploaded to Dropbox, it would be accessible by authenticated user but not meaningful

until these encrypted data have been through the decryption service provided by Secure

27

Dropbox. A potential solution to such a problem is a combination usage of Dropbox client

and Dropbox API. For instance, the shared information could be accessed by firstly getting

the encrypted raw data via “/media” interface and decrypted in Secure Dropbox while

other synchronization operations are still based on the Dropbox application. Another

concern derives from the lack of access control on Dropbox official application. The

permission to use Dropbox application is incorrectly granted in the following scenario:

Alice logins to Secure Dropbox service with her Secure Dropbox account and performs

some file operations at her laptop. Bob comes to Alice and asks for a temporary use.

When Bob logins with his Secure Dropbox account and uses Secure Dropbox, the file

operations are actually performed on Alices Dropbox account. Dropbox does not open

API to reset the Dropbox client account information of Dropbox application.

3.5 System Architecture

As so long as there is a cryptographic operation happens in the server end, there will be

encryption key involved inevitably. It also potentially indicates that the server is allowed

to do anything with the encryption key like storing or distributing it. So, to make Secure

Dropbox security confident to users, KMS of Secure Dropbox will not be allowed to involve

any cryptography procedure. Apparently a Browser/Server architecture, where client is

designed to be light while the server is fully responsible for all computations, will not be

considered as a reasonable decision. It could be the foremost reason why a Client/Server

designed architecture is more appropriate. However, to reduce the workload of server,

in C/S architecture client is assigned with more tasks. Also only the processed data

will be submitted to the server. Besides the key involvement issue, in Secure Dropbox

the cryptography is the most resource consuming procedure especially when data to be

processed is huge. All these tasks done by Secure Dropbox client end could significantly

reduce the servers workload. Based on this design, KMSs work has been simplified to

only process IO requests and perform local storage procedure. Where the encryption

28

potentially involved in Secure Dropbox is illustrated as follows:

Figure 3.9: Cryptography Application Scenarios in Secure Dropbox

29

Chapter 4

Implementation

The previous chapter explained some major design decisions made during this project

and this chapter will describe the architecture and implementation details of the result-

ing application of Secure Dropbox. The implementation language, relevant libraries and

implementation platform will be introduced at first. Then the communication pattern of

Secure Dropbox KMS and Secure Dropbox client will be explained. The implementation

of Secure Dropbox KMS, the Secure Dropbox client and their various components, will

be illustrated in detail.

4.1 Implementation Dependencies

4.1.1 Secure Dropbox Client

Both client end and KMS of Secure Dropbox are implemented in Python. To implement

the file encryption functions, driver level encryption will be more efficient than user space

encryption but might encounter with compatibility problems on different platforms. One

reason to choose Python as implementation language is it is an efficient programming

language that widely supported to run on most mainstream operating systems like Win-

dows, Linux/Unix and Mac OS X. Moreover it has been ported to the Java and .NET

virtual machines already. Program once written could be executed everywhere as long

30

as Python interpreter has been installed. It is a high-level programming language and

its libraries and syntax regulation allow developers to implement certain functions with

fewer lines of code than in lower level programming language like C. It increases the

readability of code and boosts up the programming procedure. Although always being

claimed as a scripting language, the object-oriented feature makes Python competent in

large scale program implementation as well. Another reason to choose Python is because

of its relatively stable version history. Java has 51 different releases for Java SE 6 from

2007 to 2011 and 25 releases for Java SE 7 from 2011 to 2013. However, Python has

only 8 versions for Python 2.x in the last 13 years and the latest Python 2.7 has been

stable since July 2010. As Secure Dropbox is designed to be a C/S architecture system,

a frequently changed implementation platform may cause compatibility problems and

make software update routines complicated. Also, Python is the advised programming

language by Dropbox to make use of their Core API. Especially, some advanced features

are currently only supported by the Python API release like OAuthV2 which performs

an indirect Dropbox Authentication during Python API programming. With regard to

server end implementation, those powerful web development frameworks of Python like

Django or web2py provides mature web development toolkits and libraries to use. Django

even automatically provides a well generated back end application console for the web

application which reduces development workload tremendously. In conclusion, Python

could be an ideal programming language to implement the Secure Dropbox Project. The

implementation platform becomes less important when programming in Python. Python

interpreter mechanism insures that as long as there is no operating system specified fea-

tures used in code, the program could be executed everywhere with exact same outcomes.

An example of operating system specified feature could be illustrated with the following

example which was actually encountered during the Secure Dropbox course project:

The two different representations indicate that Windows and Linux are using different

symbols as path separator. Assume current working directory is D: in Windows and

/home on Linux. For both of them there is a involving some file operations upon a

31

Figure 4.1: Representation of Path in Different Operating System

certain file in the folder Secure Dropbox. When specifying the file path, either “/” or “\”

may leads to compatibility issues on different operating systems and file path exceptions.

Such problems can be avoided. For example, in Python the path could be generated as

follows:

Figure 4.2: Platform Independent Coding Style

In this way, the variable “os.path.sep” will be replaced with “\” on Windows or “/”

on Linux by Python interpreter. To make Python program platform independent, any

operating system individual features should not appear in the code. It is advised to make

more use of the Python OS or other libraries. Secure Dropbox was developed in Windows

7 64-bit operating system but designed as multi operating system usage software. Python

2.7.5 64-bit which was released on May 15th, 2013 was adopted for implementation of both

KMS and client. All cryptography modules are generated based on accredited Python

cryptography libraries like PyCrypto or M2Crypto.

4.1.2 Secure Dropbox KMS

Secure Dropbox KMS is implemented as a Restful WebService given those desired features.

The WebService implementation is based on the Python bottle library which provides

ready to use Restful interface for the application.

KMS has been deployed on Ubuntu Server 13.04. Ubuntu Server is currently the most

popular guest server platform on the worlds leading public clouds, regarding the total

number of instances running or the diversity of customized images available. It offers

32

a complete solution for building highly available, flexible and secure server application

production with stable and efficient storage, networking and computation capabilities.

The Ubuntu Server instance with Secure Dropbox KMS Running is currently deployed

on the Amazon Elastic Compute Cloud (Amazon EC2). Amazon EC2 is a computing plat-

form which provides resizable compute capacity in the cloud. As a representational Cloud

Infrastructure as a Service (IaaS) cloud platform, Amazon EC2 rents virtual machines

with specific computation resources. Also it provides the developers and administrators

with the capability of provision processing, storage management, network configurations

and other fundamental computing resources to facilitate application deployment and run-

ning. Although Ubuntu Server provides monitoring infrastructures, the administration

console provided by Amazon EC2 is more intuitive and comprehensive. A sample server

monitoring interface is as follows:

Figure 4.3: Amazon EC2 Server Monitoring

Amazon EC2 also offers an intuitive network access control interface. For example,

only port 22 is open by default to capacitate the SSH access from any host. Network data

flow has been categorized as inbound and outbound direction. Both directions are allowed

to be customized by EC2 administrator. For instance, since Secure Dropbox KMS is a

restful WebService, all the inbound http requests should be allowed to go through the

access control. To customize the schema, the administrator needs to choose the inbound

33

tag, select the rule as custom TCP rule, set any available port number and allow address

of 0.0.0.0/0 which means no access control rules on this port. Configuration interface as

follows:

Figure 4.4: Amazon EC2 Security Customization

To SSH to the Ubuntu Server instance on EC2, An identity based authentication is

required. For each cloud application deployed on EC2, a private-key file which associated

with the instance will be delivered to the administrator. User is by default granted

with root permission if the private-key file is authorized. The following figure indicates

the procedure of SSH to Amazon EC2 instance from TCD SCSS Turing service. The

SSH command includes a private-key file TRY.pem, a default username “ubuntu” and

the elastic IP Address of Ubuntu Server Instance. The prompt from the Ubuntu Server

instance have no expression about any Amazon EC2 information. Some basic monitoring

information like current process number, CPU load and Memory usage will be displayed

once login succeeds:

Secure Dropbox KMS uses SQLite as database. SQLite is a SQL database engine

delivers file based storage service. It is suitable for building a lightweight disk-based

database that does not require a separate server process. The standard python module

sqlite3 provides a SQL interface compliant with the DB-API 2.0 specification and a built

connection instance that could access to the SQLite database directly.

34

Figure 4.5: Amazon EC2 SSH Procedure

4.2 Communication

Except the encrypted file instance itself, all information data involves in Secure Dropbox

client are downloaded from KMS during initialization and any newly generated data have

to be synchronized and permanently stored in KMS. For example, before authentication

procedure, the password hash algorithm, salt and iteration time information have to be

fetched and the locally hashed password has to be uploaded to KMS again for matching

purpose. The communication between the Secure Dropbox client and KMS is performed in

REST-style. A typical REST-style architecture generally consists of client end and server

end. The client initiates by sending requests to the server. Having received the request,

the server will process it and return the corresponding responses to the client. REST

requests and responses are generated aiming at the transmission of representations of

data resources. Resource to be sent can be essentially any comprehensible and meaningful

35

concept that able to be addressed by both ends. The representation of certain resource

is typically a formatted text or document that contains the state or value. In Python

programming, JSON is the standard data format that always used for formatting the

data to be sent.

To build a REST WebService Server, The python web framework Bottle is used in this

project. The Python Bottle is a fast, simple and lightweight WSGI micro web-framework

for Python. To generate a request routing, a tag with http request method type and

desired routine name are proposed as follows:

Figure 4.6: Restful WebService Programming with Python Bottle

• This function will process any POST requests with URL points to the CGI /up-

load doc key chain.

• The function “upload doc key chain()” is called when such a request arrives.

• The resource content needs to be transmitted and processed is encapsulated in the

HTTP body.

• The resource content has been formatted in JSON so it could be retrieved again if

loaded in JSON format.

• The return value is directly returned to the requester.

In the client end, the request is generated as building an http request with required

resource data. It could be done with the support of urllib2. It is a standard module in

36

Python 2.7 with definitions of functions and classes which helps in fetching URLs. To

call the remote KMS APIs, the target URL should be specified as the routine name that

predefined in WebService end. It is simplified by urllib2 to generate an HTTP request

and send it to KMS:

Figure 4.7: HTTP POST Request Generating

• The data to be transmitted has to be formatted into JSON

• An HTTP POST request is generated with data and target URL as parameters

• The request is sent via “urllib2.urlopen()” method and response data received as

return value.

All communication sessions are initiated by the Secure Dropbox client. Also these

data exchanges are designed with no state so that any communication step is atomic and

finished in a single session. The request about fetching data will get a response of data

instance and request about uploading KMS data will get an error code depends on if the

operation succeeds or not.

4.3 Secure Dropbox KMS Implementation

KMS plays a key management processor role in Secure Dropbox. There are three different

types of tasks running in KMS: user management, key management and file sharing

management. User management processes users registration and login requests. Key

management mainly performs CRUD operations upon encryption key related issues. File

37

sharing management is responsible for file sharing notification and performing a time task

to handle the expired file sharing information. The implementation of some important

features and WebService interface will be explained.

Figure 4.8: KMS Interfaces

4.3.1 Database Design

There are three tables in database of Secure Dropbox KMS. The “user” table stores users

username, password and RSA key pairs. Users RSA public key is recorded in plain text

while the private key is stored with encryption. The token is a timestamp to indicate

the last login time. The “key chain” table includes each users file encryption keychain

which is composed by a unique doc id and doc key. The doc id is guaranteed to be unique

since it includes the file owners username which is unique defined as public key in the

user table. Each file has its doc id and corresponding doc key which is essentially an

AES-256 key. The doc key is encrypted with the owners private key. The “sharing pool”

table consists of sharing information like sharing sponsor and recipient. The doc key in

sharing pool is encrypted with sharing recipients public key so that the shared doc key

could be decrypted with the recipients private key. The field URL and expires is generated

by Dropbox “/media” API. The URL points to the raw encrypted file content and the

38

field expires indicates when the URL turns into not accessible. There is a scheduled task

handles the records and deletes those expired records in “sharing pool” table because

certain sharing information becomes useless after getting expired. Logically they should

not be able to searched and displayed to the user.

Figure 4.9: KMS Database Design

Although stored in the database of KMS, all these data are generated and uploaded

by a Secure Dropbox client. Some essential fields are encrypted with the key not known

to KMS but only known to account owner.

4.3.2 KMS User Management

The interface “@post(/getsalt)” returns password hash algorithm parameters like algo-

rithm name, salt value and iteration times to Secure Dropbox client. Thus client is able

to hash the plain text password with the same parameters as how the hashed password

value stored in KMS database was generated. It is called before client performing the

login procedure. The function will return a Python dictionary variable like {“algorithm”:

“sha1”, “iteration”: 1000, “salt”: “vAoH1lpY”} to the invoker client.

The interface “@post(/login)” processes login requests. A login request includes a

username and hashed password value. A token of current timestamp will be generated

39

Figure 4.10: Hashed Passwords in Database

and returned if login information is authenticated or an error code for failed login trials.

The users RSA key pair is returned as well if login succeeds.

The interface “@post(/register)” processes registration requests. All the user informa-

tion includes username, password and RSA key pair are generated and partially encrypted

by the Secure Dropbox client. The KMS server will only check if all the fields meet certain

requirements and then perform the storage procedure. Error code returned as registration

result.

4.3.3 KMS Key Management

Uploading a new file via Secure Dropbox client is consists of two steps: The first one is

encrypting the file and synchronizing it to Dropbox. The second one is uploading the

encryption key and other data that involved in the first step to Secure Dropbox KMS.

KMS key management module is implemented oriented to the second step.

The interface “@post(/upload doc key chain)” receives newly generated doc id and

corresponding doc key. The record will be refreshed if there is one with same doc id

exists in “key chain” table. Otherwise the new doc id and doc key will be added to the

“key chain” table. Error code returned as uploading result.

The interface “@post(/download doc key chain)” returns the keychain which belongs

to the user in a Python dictionary format with doc id as key and doc key as the value.

The interface “@post(/delete)” receives doc id to be deleted. Not only deleting the

record in table key chain, it will also trigger the deletion of the corresponding records in

the “sharing pool” table. For example, Alice has a file doc1 Alice.txt and shared it with

Bob. If Alice deletes the record of doc1 Alice.txt in the “key chain” table, the sharing

information with Bob about this file will be deleted as well. Error code returned as

40

deletion result.

The interface “@post(’/fetch pub key’)” returns the RSA public key of the user whose

name is specified in the request. It happens before users want to share files with the

potential sharing recipient. The sharing sponsor has to fetch the recipients public key to

encrypt the file encryption key before generating that sharing record in “sharing pool”

table. Although the public key is stored in the “user” table, it is still designed as part of

key management since the RSA key pairs are not involved in user management.

4.3.4 KMS File Sharing Management

The interface “@post(/share)” receives file sharing information and stores it into the

sharing pool table. If there is same sharing record in the database then only the doc key

field will be refreshed to the new file encryption key. Otherwise a new record will be added.

An email notification towards the sharing recipient will be created by this method. The

example sharing notification is generated as follows:

Figure 4.11: Sharing Notification

The notification function could be implemented based on Python smtplib module

which defines an SMTP client session object that can be used to send mail.

Figure 4.12: Sharing Notification Implementation

41

• SMTP (‘smtp.gmail.com:587‘) generates a SMTP instance encapsulates an SMTP

connection to Gmail.

• “ehlo()” identifies the local machine to an ESMTP server.

• “starttls()” puts the SMTP connection in Transport Layer Security (TLS) mode.

• “login()” logins on the Gmail SMTP server with authentication information.

• Send the mail via “sendmail()” method. The message has been generated in the

context.

The interface “@post(/shared file)” returns all the sharing records where the to user

field is the user who is calling this method. A Python dictionary includes doc id, processed

encryption key, sharing sponsor, access URL and expiration is returned. This function

should be called before the sharing recipient wants to read those shared files.

Since the file sharing URL generated by Dropbox will by default expire three hours

later, the sharing recipient would get no access to the URL then. To reduce the confusion,

a scheduled task is running as a thread in the server which refreshes the information in

sharing pool periodically. The task will delete the records in which the timestamp in

expires field is later than current timestamp. The refreshing period is by default configured

as 600 seconds and configuration interface is open to administrators.

4.4 Secure Dropbox Client Implementation

The secure Dropbox client performs cryptography related computations and communi-

cates with both Dropbox and Secure Dropbox KMS simultaneously. In short, according

to the architecture diagram above, the Secure Dropbox UI module is responsible for hu-

man computer interaction and Application initialization. The secure Dropbox module is

the middle ware which controls the data communications and cryptography operations.

The judgment of Secure Dropbox module is performed in Secure Dropbox UI module

42

Figure 4.13: Secure Dropbox Client Architecture

during application initialization. The configuration module includes application environ-

ment configuration parameters and it is open to Secure Dropbox User. Cryptor Handler

includes AES-256, RSA and other essential cryptography algorithm encryptor instances.

Dropbox Handler creates a session handler which is used in Secure Dropbox module when

Dropbox file operation or other communication is required. KMS Handler includes the

method to communicate with Secure Dropbox KMS. Cryptor Handler is used in KMS

Handler as well since some communications between client and KMS requires encryp-

tion. Since Secure Dropbox module is an integration of other infrastructure modules, the

implementation details will be introduced at last after explaining of those infrastructures.

4.4.1 Secure Dropbox UI

Secure Dropbox is implemented as a command line based application since it performs

better platform independency when GUI is not involved. Besides IO function, Secure

Dropbox clients running environment prerequisites are detected and configured during UI

initialization. Also Secure Dropbox running mode is decided. The detection procedure is

as follows:

If the Dropbox official client is not installed on this computer, the Secure Dropbox

client is not allowed to start since no file synchronization operation to Dropbox could

be done. The Secure Dropbox will be configured as local mode if either Secure Dropbox

43

Figure 4.14: Secure Dropbox Running Environment Detection

KMS or Dropbox server is not reachable. In this situation, if any ini file which works as a

local KMS exists, the client will be configured and started in local mode. Otherwise both

remote and local KMS will be considered as not available and consequently the Secure

Dropbox service is not available. If both Dropbox server and Secure Dropbox KMS are

both accessible, client will be initialized in regular mode.

The supported command is different under different mode. For example, under local

mode, there are only two commands supported: “ls” to print local file list and “read” to

read local files. However, the supported operations in regular mode are listed as follows:

The following two examples are print information of command “ls” and “read”. The

“ls” command lists all local files in the folder named Secure Dropbox in Dropbox appli-

44

Figure 4.15: Secure Dropbox Commands

cation. The sync flag field indicates if the encrypted files encryption key could be found

in KMS. It might be inappropriate operations that lead to files out-sync. The out-sync

file could not be read since no encryption key could be fetched and applied. The second

diagram shows the print information of “read” command. A “read” command automati-

cally invokes the “ls” function to display the local file list at first and then show further

prompts to guide user to input the sequence number of desired files to be read. It accepts

sequence number and reduces the possibility of misoperations by typing file names. The

file is stored in cipher locally but decrypted and printed in the same console. It means

that the file encrypted by Secure Dropbox could be only read from the Secure Dropbox

client. Most user interfaces are designed as the following styles:

Figure 4.16: “ls” Command Print Information

A file loading dialog is provided to choose the file which user wants to upload to Drop-

box via Secure Dropbox. It is implemented based on TkInter, a standard Python interface

to the Tk GUI toolkit and available on most UNIX platforms, as well as Windows. It

facilitates the procedure of specifying the file to be loaded under command line. The

return value of the file dialog is a full path of the selected file. Secure Dropbox currently

only supports cryptographic operation of text files so any file selected without the suffix

45

Figure 4.17: “read” Command Print Information

.txt will be ignored. Also, for access control purpose, the file does not include current

users account name will be ignored as well. The loading dialog only accepts selection of

file instance but not the folder. It is implemented as follows:

Figure 4.18: File Loading Dialog Implementation

4.4.2 Dropbox Handler

Dropbox Core API is used in Secure Dropbox. Only applications that have registered

and integrated with Dropbox application console could get an access token to use these

APIs. The App key and App secret are generated after registration and they are also key

identities when applying for the access token. There are two permissive types of operating

Dropbox. Full Dropbox indicates everything inside users Dropbox folder is accessible by

this application while Application Folder mode indicates the application can only access

the specified folder with full permission. Secure Dropbox is using the Full Dropbox permit.

Application settings of Secure Dropbox are listed as follows:

Dropbox Handler generates an access token via OAuth service of Dropbox. This is an

46

Figure 4.19: Application Settings of Secure Dropbox

authorization framework that allows a third-party application to obtain access permission

for HTTP services that is using this framework. For example, to operate Dropbox, rather

than inputting the Dropbox username and password to the third-party application, the

user still authenticates on Dropbox and then an access token will be granted to this appli-

cation if authentication succeeds. Significantly it reduces the security risks for Dropbox

since it is difficult to audit if the third-party application code records the users username

and password. In Secure Dropbox, the Dropbox authentication web page will pop up

automatically and wait for users authorization action. The permission type is indicated

as follows:

Access token will be granted after clicking Allow button. Although Dropbox Core

API provides powerful interfaces that sufficient to implement any file operations, Secure

Dropbox still relies on Dropbox official application with respect to all file operations for

simplification of implementation and robustness of file synchronization mechanism. For

now, only file sharing function in the Secure Dropbox client is performed through the

Dropbox Core API by calling the “/media” interface. It gets a temporary authenticated

URL for the target file. A Python dictionary with a URL and expiration information like:

The expiration time is consistent with the validation of OAuth access token to avoid the

situation that the user whose last login has been expired but still able to get access to the

file. Secure Dropbox stores this information and notifies sharing recipient. The sharing

recipient gets file content by accessing the specified URL and read it after decryption

47

Figure 4.20: Dropbox OAuth Service

Figure 4.21: Return Value of Dropbox Core API

procedures.

4.4.3 Cryptor Handler

Cryptor handler includes implementation of AES-256. It also contains an encapsulated

file encryption tool based on AES-256 that is frequently used in the client. The AES-

256 is based on interfaces provided by PyCrypto module which also covers some other

cryptography algorithms for the Python programming. AES-256 in Secure Dropbox is

in CBC mode and configured with both trunk size and initial vector length in 16-bit.

48

RSA encryption/decryption handler is implemented based on M2Crypto. M2Crypto is

another popular cryptography library for Python with better padding implementation of

RSA algorithm. In Secure Dropbox, pkcs1 padding mechanism is adopted. AES-256 key

generator is implemented in Cryptor Handler while RSA key pair is not generated here

since logically it belongs to the registration procedure. Algorithm of generating random

AES key is based on plain text file content as random seeds and implemented as follows:

Figure 4.22: AES Key Generation

4.4.4 KMS Handler

KMS Handler implements communication interfaces with Secure Dropbox KMS. Impor-

tant features and implementation dependencies has been introduced in the Communica-

tion section. It includes a Cryptor instance for some cryptography operation involves in

this module. Typically most methods in KMS Handler are related to generating data

package to be sent to KMS based on data transferred from Secure Dropbox module. For

example, to make a file deletion request to KMS, data package is generated and sent as

follows:

Figure 4.23: KMS Data Package Generation

• The URL is created with a fixed prefix “CONFIG.SERVER URL” which includes

KMSs IP address and listening port. “delete” specify the interface to call.

• Value to be sent is wrapped as a Python dictionary.

49

• “send request to server” is called for sending requests. Return value is the response

from KMS.

KMS interface invoker methods are implemented correspondingly. Some methods are

called by Secure Dropbox Module directly while some else are performing as reusable

infrastructure methods like “send request to server()”.

4.4.5 Configuration Module

The configuration module includes Dropbox application settings, running environment

settings, cryptography parameters and communication error code. The same error code

schema is defined in the KMS side as well so these indicators could be recognized by

each other. Dropbox application settings include App key, App secret and access type.

Server URL is specified with the combination of IP address, listening port of KMS and

the other running environment include like default local location of encrypted files and

local KMS file. Cryptography parameters like SHA1 iteration times and encryption block

size is defined as well. Secure Dropbox users can change these macros in the configuration

file to customize individual security requirement and other settings.

4.4.6 Secure Dropbox Module

SecureDropbox is the main function class in the application. This module includes the user

information handler, the Dropbox handler, the KMS handler and the Cryptor handler.

The functions provided by these handlers are integrated into Secure Dropbox module to

enable Secure Dropbox performing as desired. For example, a file uploaded to Dropbox

through Secure Dropbox is encrypted by “encrypt file()” method of Cryptor handler,

uploaded to Dropbox via access token generated by Dropbox handler. Moreover, its

encryption key is uploaded to KMS by KMS handler as well. Secure Dropbox is created

and manipulated by the Secure Dropbox UI instance. During initialization, it will create

50

a folder in the Dropbox application named Secure Dropbox and all operations done by

Secure Dropbox will be only in this folder.

Secure Dropbox has two operation modes. The regular mode works when a normal

Internet connection is made. The local mode only supports reading local files. Besides

different operations, the user authentication procedure is essentially different. The au-

thentication process in regular mode is performed as described previously while local mode

authentication is performed based on the local KMS file. This KMS file is created when

login with regular mode and refreshed based on corresponding data in KMS. It actually

stores an instance contains user account information, file encryption keychain and RSA

key pair information. When the KMS server is not reachable, this information could

perform as a read-only local KMS.

Figure 4.24: User Instance in Local KMS

The local KMS file is created by dumping a User class instance into a file and en-

crypting it with the users password. Inside the class instance, the password is stored in

hash value and “doc keychain” is encrypted with “RSA priv key” which is also ciphered

with an AES key derived from password. In Python, to dump an object into a file, the

module pickle is widely used. It implements a fundamental solution for serializing and

de-serializing objects in Python. To read the local KMS file, a right password as de-

cryption key must be used. Otherwise, the decrypted result of local KMS file will be

meaningless that no user instance could be fetched. The input username and password

will be matched with that in KMS file. Encrypted file encryption keychain and RSA key

pairs will be decrypted and fetched after a successful authentication.

51

The RSA keys are produced in the Secure Dropbox module with certain interfaces

of M2Crypto before uploading registration record. It is made and stored in pem format

and then fetched and uploaded with private key encrypted. Coding implementation as

follows:

Figure 4.25: RSA Key Pair Generation

“/media” is used for generating file sharing record in Secure Dropbox while it causes

different characters coding style on diverse of operating systems. In operating system

like UNIX or other Unix-like operating systems, the newline character is coded as LF

(“0x0a”). However, in Windows it is encoded as LF+CR (“0x0d0a”). The URL generated

by “/media” points to the file data instance that is located on Unix-like file system

on Dropbox which changes the windows coding style into Unix coding style. Since the

encryption is done within Windows environment, the binary level change like losing several

bytes in the cipher will lead to drastic influences on decryption result. To solve this

problem, any “0x0d0a” should be replaced with “0x0a” in ciphers binary content as

follows:

Figure 4.26: Replacements of Newline Characters

52

Chapter 5

Analysis

Since the security of Secure Dropbox relies on the nature of different cryptography which

has been justified, this chapter will mainly outline the methodologies taken in evaluating

the Secure Dropbox in terms of computation performance and user experience. The

methods of data collection and analyses are explained and an overview of evaluation

result will also be illustrated.

5.1 Evaluation Approaches

Feedbacks of the evaluation were sought from two categories of evaluators: Dropbox

users with IT background and Dropbox users without any professional understanding of

IT or computer science and work in IT unrelated industries. Performance evaluation

involves the efficiency of cryptography operations where network situation sometimes

matters. Efficiency of cryptography involved procedures will be evaluated according to

time consumed to play cryptography operation. Network environment counts when using

sharing service.

Secure Dropbox was designed to fortify the security confidence of Dropbox users. It is

difficult to emulate the scenario that Dropbox is under internal attack practically so the

design philosophy and security provided are explained from a mathematical perspective

53

and reasoning of its working procedure. The result data is extracted from the partic-

ipants oral expression about their thoughts of this application. Also, the frequency of

misoperations is recorded with application context to illustrate the usability of Secure

Dropbox.

5.2 Performance Testing

5.2.1 Testing Schema

Performance of Secure Dropbox reflected in file encryption and decryption time consump-

tion. The test is conducted under the hardware configuration of:

Figure 5.1: Testing Environment

To test the performance, several text files with different length from 1 MB to 64 MB

have been created. Encryption time consumption is achieved during loading file into

the Secure Dropbox procedure. The decryption time consumption is achieved from both

procedures of reading local file and shared files. Downloading time is recorded during

the shared file reading procedure. For values in the final performance record, each line

is determined depends on average value of 100 times repeated test upon same file by

performing Python scripts automatically. The results are listed as follows:

5.2.2 Performance Evaluation

On the basis of testing result listed above, Secure Dropbox could encrypt a 1 MB file within

an average of 13.41 ms while this number comes to 763.72 ms when encrypting a 64 MB

54

Figure 5.2: Secure Dropbox Cryptography Performances

file. It could be observed that the decryption roughly costs 35 ms more than encryption

no matter what the file size is. The different time consumption could be attributed to the

AES decryption preparation works like unpadding the cipher and extracting initial vector.

However, in comparison of the time consumption of file synchronization operation when

reading shared file, the decryption time period which takes almost single-digit-percentage

only could be ignored. For example, it costs more than 1 minute to download a 64 MB

file but the file could be decrypted in 800 ms. The result could be concluded as satisfying

concerning local file cryptography operation while the network situation becomes the

bottleneck when performing large shared file reading.

5.3 User Experience

To make the user experience evaluation a generic result, Dropbox users with or without

IT background are both chosen as participants. In this section the feedback received from

both of them will be summarized and discussed.

5.3.1 Session Procedure

Application configuration was conducted with delivering of packed Python egg of Secure

Dropbox and readme file. Assistances were given when necessary. Users tested Secure

55

Dropbox on their PC or laptop. All the participants finished their sessions individually.

During the session, participants were encouraged to finish several proposed tasks with

Secure Dropbox client on their own. Participants with IT background were additionally

assigned with tasks like Secure Dropbox configuring and performance evaluation. After

user experience evaluation, participants were required to fill out a short questionnaire for

collecting improvement comments. Users behavior confidence and time consumption on

each task is recorded as well.

5.3.2 Non IT Background Users Feedback

Most participants without IT background asked for help during Secure Dropbox con-

figuration regarding command line operations and terminologies that involved. During

testing, most of them were not skilled in command line operation style at first but got

accustomed to it after several trials. Some participants forgot to press enter after finish-

ing the OAuth procedure in the browser and instead just ignored the prompts and kept

waiting in command line. All participants performed the file loading operation easily.

Participant complained about that changing the source file requires another file loading

operation is troublesome and easy to be forgotten. These users also commented with

improvement suggestions that it would be better to make writing function integrated into

the Secure Dropbox client as well so that extra file loading operations will not be essential.

However they accepted the reason why this is difficult to make a generic editing inter-

face. It was explained that different files call for different editing interface just like for

ppt files Microsoft Office Power Point is required for editing. The most time consuming

steps for these participants were registration and login since they were confused when

typing the password to register or login but without echo on the screen. Some of them

suspended the testing procedure and thought it was a program implementation problem.

This is intentionally designed to imitate the way Linux does when inputting password

information. Anyway it caused extremely high type error happening. Some participants

56

proposed that there should be a contact list with permanent storage of sharing recipients

Secure Dropbox account name in order to share a file. Also an interface to share files with

a group of users should be implemented instead of performing sharing operations to each

recipient one by one. One user advised that it would gain more confidence about his files

security if Secure Dropbox could perform encryption on the same file but not on the copy

in a Secure Dropbox folder. There will be only one encrypted file instance. Otherwise he

had to look for other approaches to protect the plain text file. Though, he also showed

his concern that he was not confident with leaving only one encrypted file instance and

worried if encrypted file could not be decrypted properly. Finally, it was advised by most

participants that they prefer operations in GUI or application provides a file system style

user interface just like Dropbox application.

5.3.3 IT Background Users Feedback

Besides those relatively generic feedbacks, participants with IT background proposed

more professional comments. Most of them advised that the file loading dialog should

set file suffix filter to only display “.txt” files as Secure Dropbox only supports text file

and other file input will be recognized as invalid operation. A few of them concerned

that the OAuth procedure via browser and file loading diagram might causes availability

problem in pure command line operating system like UNIX. Some participants thought an

interface for querying file metadata in regard to cryptography like algorithm, key length

and sharing records. Some else participants, who had been informed in advance that the

Secure Dropbox disables the version control and file recovering service, advised that an

operation logging system should be implemented for problem tracing in case of application

errors. Some significant design defects and implementation advices have been reported

during performance evaluation. Most participants thought the application crashed when

reading the 64 MB shared files because there was only a blinking cursor but no any other

progress indication. They advised that there should be a progress bar for time consuming

57

operations like large file downloading or encrypting. When asked to configure the RSA key

length, some participants thought the user experience should be improved. Rather than

configuring by modifying the Python source code directly, an integrated configuration

user interface would not only make configuration convenient and application robustness

guaranteed. The configuration interface in application could play parameter checking in

case of manual errors like incorrect key length is advised or illegal expressions or values for

parameters. Most importantly, a fatal design defect was discovered. Encrypting a large

file (i.e., 64 MB) costs less than one second while consumes far more time to synchronize

file into Dropbox via Dropbox official client. However, Secure Dropbox is designed to

upload file key encryption into KMS as long as the file has been encrypted. That time

the file record could be queried in Secure Dropbox client but actually not in Dropbox yet.

It works properly when performing a local reading since there is encrypted file instance

in local file system while an exception occurs when trying to share the file because the

encrypted file in Dropbox folder is not synchronized yet. It is because the /media interface

called by Secure Dropbox to generate sharing URL cannot find the specified file which

is still under synchronization. Another cryptography application design with security

weakness was pointed out that once file sharing is cancelled or its URL is expired, the

file encryption key should be changed in the meantime in case of someone could get

the encrypted file instance and decrypt it without using shared file reading interface of

Secure Dropbox client. There were implementation suggestions about integrating Secure

Dropbox into file system so that it could be seamlessly used. For example, command

“sdls” (stands for Secure Dropbox “ls”) will be recognized as a default system command

and it will directly list files loaded to Dropbox through Secure Dropbox.

5.4 Discussion of Feedback

The feedback received from the both kinds of participants with regard to security was

primarily positive. They believe a client end encryption guarantees their file not accessible

58

by Dropbox employees. Despite of those who have no concept about asymmetric cryptog-

raphy, participants felt more confident to share file with Secure Dropbox in comparison

of the plain text sharing by Dropbox.

Most of the criticism directed towards Secure Dropbox was concerned against the

usability and design defects. Most participants thought the user interface should be

improved no matter in GUI or command line for better user experience. The design flaws

found during the performance test might be fatal factors to availability and security of

Secure Dropbox. Future work on this application will be made based on these feedbacks.

59

Chapter 6

Conclusion

This chapter draws some conclusions from evaluation results achieved from user testing

session and summarizes some criticisms of the project. The future work planned for the

Secure Dropbox is then proposed.

6.1 Results

6.1.1 Was An Effective User End Encryption Tool Developed?

The best approach to appropriately illustrate the idea of user end encryption tools and

asymmetric cryptography based secure sharing mechanism is to build a working pro-

totype. Secure Dropbox accomplishes one and the most key ideas in accordance with

security have been expressed. Secure Dropbox does not invent anything but applied a

cryptography combination in a new application scenario. Its security is based on classic,

strict, widely used and universally accepted cryptography algorithm. The design makes it

zero-knowledge software: Secure Dropbox never has access to the file or even the encryp-

tion keys. Statically stored data that should be kept as secrets are unquestionably stored

confidentially. It undeniably gains users confidence when using public cloud storage to

store their confidential documentations according to the user testing feedbacks. Secure

Dropbox users will never work with unencrypted files in their Dropbox which are ready

60

to share with a small conversion upon the encryption key. Secure Dropbox could already

be thought as a successful user end encryption tool to some extent.

However, it is still far from being a commercial software product. It provides a higher

level of security but at the same time disables some important features of Dropbox.

Actually, to most uncommercial users, the stability and fault-tolerance of a cloud storage

are often considered as much as security. The trade-off will be absolutely there until these

problems have been solved. Now Secure Dropbox is only implemented as prototype.

6.2 Criticism

6.2.1 Design Criticism

Although it explains the main idea of Secure Dropbox, the project is designed only for

demonstration purpose. Some essential features are omitted. For example, a logging

module is always built in any software. The potential fault-tolerance and error recovering

features of Secure Dropbox could have been illustrated by implementing an embedded

logging module. It also lacks of consideration about availability such as it was designed

to grant user with a minimum file reading permission in Secure Dropbox local mode.

Although most timely Dropbox application based synchronization works robustly, no fault

recovering or feedback is provided when errors occur. It is because Dropbox application is

not designed to be based on by another application so there is no programmable interface

provided. Dropbox core API is the only recommended way to implement a third-party

application of Dropbox.

6.2.2 Implementation Criticism

The user space cryptography implementation essentially narrows down the supported file

types by Secure Dropbox. For this stage only text file is supported and to support a

new file type requires considerable efforts. A file system level encryption implementation

61

would solve this problem. Additionally, a more flexible configuration interface should be

made like allowing users to configure their own cryptography application schema based on

different environment and practical requirements. The user experience should be improved

by redesigning the user interface based on some human computer interaction principles

and adding practical functionalities.

6.2.3 Testing Criticism

Performance testing lacks of comparison with other cryptography algorithms or under

different running environment. Consequently these numbers do not speak much about

the performance of Secure Dropbox. In addition, the user experience testing lacks of

expert participants although some of them have computer science background. Security

experts usually have a better understanding in this area and they are able to propose

constructive expertise about such a software product.

6.3 Future Work

6.3.1 Version Control and File Recovering

Version control and file recovering service provided by Dropbox is disabled because there

is no corresponding file encryption key version control module in Secure Dropbox. A

possible design could be padding the file name with a timestamp and using this file name

as the key of the version control table. This table records the history of certain file and

its corresponding encryption key.

6.3.2 User Profile Management

With reference to user profile management, only the user registration and login have been

implemented. The following jobs will be the implementation of a more generic user profile

management module with common features like logout, account cancellation and more

62

importantly password modification. The updating mechanism towards the expired RSA

key pair which is also a part of user profile will be implemented as well.

6.3.3 Improvement of Sharing Mechanism

The file will keep using the same key until its source text has been modified and reloaded

via Secure Dropbox again. For now file sharing does not change the file encryption key

because the sharing URL could be cancelled or automatically expires after certain time

slot. Also shared files could only be accessed after valid authentication and through Secure

Dropbox user interface control. However, a new file sharing mechanism provides one time

encryption key which guarantees a better security for the file. The file encryption key has

been known to other users will no longer be available after sharing is cancelled.

6.3.4 File Sharing Refreshing

The file sharing URL generated by Dropbox expires in 3 hours. It is consistent with

Dropbox OAuth access token because Dropbox does not allow third-party application who

holding an expired access token could still access the shared file. To keep the file sharing

until further cancellation, the file sharing record in the database should be refreshed

periodically to update the previous URL and expiration timestamp. However, calling

“/media” interface requires a valid token which has to be fetched by playing manual

authentication. A proper mechanism of keeping the access token valid will call for more

investigations.

6.3.5 File System Level Encryption

Secure Dropbox currently supports operation upon text file only because the implemented

user space encryption could play file manipulations conveniently upon text files although

it is sufficient as a prototype for demonstration. File system level encryption makes

cryptography procedure transparent to user space applications. Dragging files into the

63

specific folder with customized file system level system calls will trigger file encryption

automatically and vice versa.

6.3.6 Configuration Interface

Now Secure Dropbox configuration could be carried out by changing parameters in Python

source code. While an embedded configuration user interface could limit the options for

configuration and execute parameter checking before the new configuration taking effect.

6.3.7 Multi-platform Implementation

There are lots of Dropbox users who want to synchronize their files between different

terminals. Since Secure Dropbox is implemented with Python, it would not cost much

effort to do the application transplantation between different operating systems. Python is

also supported in some portable operating systems like Android and iOS. The difference to

be concerned will be mainly about the computation and network capacity which impacts

the performance significantly.

6.3.8 Better Local KMS Mechanism

Now Secure Dropbox local mode works based on KMS files stored in local file system

which is generated after last login. It provides file encryption keychain and RSA key pair

required in order to execute reading operation. Nevertheless, a better designed local KMS

mechanism should guarantee Secure Dropbox users the same experience seamlessly as the

regular mode does. An optimized local KMS mechanism is designed to perform delay

tolerant KMS information updating when Internet access revives.

64

Appendix A

Implementation Module Dependence

Name URL

PyCrypto https://www.dlitz.net/software/pycrypto/

M2Crypto http://chandlerproject.org/Projects/MeTooCrypto

Dropbox https://www.dropbox.com/developers/core/sdks/python

PBKDF2 https://github.com/mitsuhiko/python-pbkdf2

Werkzeug http://werkzeug.pocoo.org/

Bottle http://bottlepy.org/docs/dev/

65

Appendix B

Task Description

1. Please register a Secure Dropbox account with your email address and login with

this account.

2. Check the Secure Dropbox folder in Dropbox folder. Open the ini file includes your

username with any text editor.

3. Load a text via Secure Dropbox with “load” command.

4. Check the Secure Dropbox folder in Dropbox folder again. You will see a file whose

file name is made up with the files name you just loaded, your account name and

end up with suffix enc. Open this file and see if it is encrypted.

5. Use read command in Secure Dropbox to read the file you just loaded.

6. Open another Secure Dropbox client. Register another Secure Dropbox account and

login with that account.

7. Back to the first Secure Dropbox client. Use “share” command to share the file you

just loaded with the new account you just registered.

8. Switch the later opened Secure Dropbox client. Use “shared” command to see if

there is file shared with you and use “read shared” command to read the shared file.

66

9. Open use. Please do any operation you want with Secure Dropbox. Help information

will display by using command “?”

67

Appendix C

Questionnaire

1. I can understand the theory of how Secure Dropbox performing secure storage and

secure file sharing through background introduction. 1-5:

2. I think this application is easy to use. 1-5:

3. I think it is more suitable to technical users. 1-5:

4. I think functions in the application are easy to understand. 1-5:

5. I feel more confident when using Secure Dropbox rather than only Dropbox. 1-5:

6. I think I grasp the basic usage by following the task list. 1-5:

7. I think people will try to use this application for security. 1-5:

8. I will use this application frequently. 1-5:

9. Do you have professional IT background? Yes/No:

10. How often do you use Dropbox? 1-5:

11. I concern about security of Dropbox. 1-5:

12. I experienced security problems in Dropbox or any other cloud storage service.Yes/No:

68

If you have any comments on how you think about Secure Dropbox, please write them

here:

69

Bibliography

[1] P. Mell and T. Grance, “The NIST Definition of Cloud Computing (Draft) Recom-

mendations of the National Institute of Standards and Technology,” 2011.

[2] T. Dillon, C. Wu, and E. Chang, “Cloud Computing: Issues and Challenges,” 2010

24th IEEE International Conference on Advanced Information Networking and Ap-

plications, pp. 27–33, 2010.

[3] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art and re-

search challenges,” Journal of Internet Services and Applications, vol. 1, pp. 7–18,

Apr. 2010.

[4] C. Cachin and A. Shraer, “Trusting the Cloud,” ACM SIGACT News, vol. 40, no. 2,

pp. 81–86, 2009.

[5] OPSWAT, “Security Industry Market Share Analysis,” Tech. Rep. June, OPSWAT,

2011.

[6] D. Beaver, “Network security and storage security: symmetries and symmetry-

breaking,” Proceedings of the First International IEEE Security in Storage Workshop

(SISW02), 2003.

[7] P. S. Kumar, R. Subramanian, and D. T. Selvam, “Ensuring data storage security

in cloud computing using Sobol Sequence,” 2010 First International Conference On

Parallel, Distributed and Grid Computing (PDGC 2010), pp. 217–222, Oct. 2010.

70

[8] Intel, “What’s Holding Back the Cloud ?,” Tech. Rep. May, Intel, 2012.

[9] S. Subashini and V. Kavitha, “A survey on security issues in service delivery models

of cloud computing,” Journal of Network and Computer Applications, vol. 34, pp. 1–

11, Jan. 2011.

[10] X. Ou, S. Govindavajhala, and A. W. Appel, “MulVAL: A Logic-based Network

Security Analyzer,” Security ’05 Technical Program, 2005.

[11] D. E. Rob, Cryptography and Data Security. Addison-Wesley Publishing Company,

Inc., 1 ed., 1982.

[12] A. B. L. Blaze, Matt, “A Cryptographic File System for Unix,” 1st Conf.- Computer

& Comm. Security, vol. 4, 1993.

[13] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,” ACM SIGOPS

Operating Systems Review, vol. 37, p. 29, Dec. 2003.

[14] Dropbox, “How secure is Dropbox?,” 2013.

[15] M. de Icaza, “Dropbox Lack of Security,” 2011.

[16] G. Dhillon and S. Moores, “Computer crimes: theorizing about the enemy within,”

Computers & Security, vol. 20, pp. 715–723, Dec. 2001.

[17] J. Yao, S. Chen, S. Nepal, D. Levy, and J. Zic, “TrustStore: Making Amazon S3

Trustworthy with Services Composition,” 2010 10th IEEE/ACM International Con-

ference on Cluster, Cloud and Grid Computing, pp. 600–605, 2010.

[18] R. Uppalli and C. Killian, “Analysis of techniques for building intrusion tolerant

server systems,” IEEE Military Communications Conference, 2003. MILCOM 2003.,

vol. 2, pp. 729–734, 2003.

[19] S. Kamara and K. Lauter, “Cryptographic Cloud Storage,” IFCA/Springer-Verlag

Berlin Heidelberg, pp. 136–149, 2010.

71

[20] D. Xiaodong, S. David, and W. Adrian, “Practical Techniques for Searches on En-

crypted Data ,” Security and Privacy, 2000. S\&P 2000. Proceedings. 2000 IEEE

Symposium on, 2000.

[21] R. Curtmola, J. Garay, and M. Hill, “Searchable Symmetric Encryption :Improved

Definitions and Efficient Constructions,” CCS06, October 30November 3, 2006,

Alexandria, Virginia, USA., pp. 79–88, 2006.

[22] Mfisk, “Why Map-Reduce?,” 2013.

[23] Erik Riedel, Mahesh Kallahalla and R. Swaminathan, “A framework for evaluating

storage system security,” FAST, pp. 15–30, 2002.

[24] L. M. Vaquero, L. Rodero-Merino, and D. Morán, “Locking the sky: a survey on

IaaS cloud security,” Computing, vol. 91, pp. 93–118, Nov. 2010.

[25] Dropbox, “Dropbox Security Overview,” 2012.

[26] M. Bellare, a. Desai, E. Jokipii, and P. Rogaway, “A concrete security treatment

of symmetric encryption,” Proceedings 38th Annual Symposium on Foundations of

Computer Science, pp. 394–403, 1997.

[27] NIST, “Announcing the ADVANCED ENCRYPTION STANDARD (AES),” Fed-

eral Information Processing Standards Publication 197 November, 2001.

[28] National Security Agency, “National Policy on the Use of the Advanced Encryp-

tion Standard (AES) to Protect National Security Systems and National Security

Information,” CNSS Policy No. 15, Fact Sheet No. 1, vol. 6716, no. 15, pp. 1–3,

2003.

[29] Elaine Barker, William Barker, William Burr, William Polk and M. Smid, “Recom-

mendation for Key Management Part 1: General,” NIST Special Publication 800-57

Part 1, Revised, 2007.

72

[30] B. Kaliski, “TWIRL and RSA Key Size,” 2009.

[31] R. C. Merkle, “A fast software one-way hash function,” Journal of Cryptology, vol. 3,

pp. 43–58, 1990.

[32] BoxCryptor, “BoxCryptor,” 2013.

73

