
Comparing the Traversal of Acceleration Data

Structures for Real-time Ray Tracing

by

Sean Legg, B.Sc. Computer Science

Dissertation

Presented to the

University of Dublin, Trinity College

in fulfillment

of the requirements

for the Degree of

MSc. Computer Science

(Interactive Entertainment Technology)

University of Dublin, Trinity College

September 2013

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated,

is my own work.

Sean Legg

August 27, 2013

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Sean Legg

August 27, 2013

Acknowledgments

I would like to thank my supervisor Michael Manzke for his advice and guidance

throughout this dissertation, I would also like to thank Michael John Doyle for his

advice also. Lastly I would like to thank anyone who gave me support during the year

and on my dissertation, including the members of the IET course, friends and family.

Sean Legg

University of Dublin, Trinity College

September 2013

iv

Comparing the Traversal of Acceleration Data

Structures for Real-time Ray Tracing

Sean Legg

University of Dublin, Trinity College, 2013

Supervisor: Dr. Michael Manzke

The purpose of this research is to compare the performance of the traversal of acceler-

ation data structures looking at the characteristics that the acceleration data structure

exhibits. In particular I will be looking at the performance of bounding volume hierar-

chies (BVH) and K-d (K-dimensional) trees. A number of experiments will be carried

out on these acceleration data structures at a low-level looking at phonenomena such

as cache performance and branch divergence.

v

Contents

Acknowledgments iv

Abstract v

List of Tables ix

List of Figures xi

Chapter 1 Introduction 1

1.1 Motivation . 1

1.2 Report Roadmap . 2

Chapter 2 State of the Art 3

2.1 GPGPU . 4

2.2 Bounding Volumes . 4

2.2.1 Bounding Sphere . 5

2.2.2 AABB . 6

2.2.3 OBB . 6

2.3 Acceleration Data Structures . 6

2.3.1 Bounding Volume Hierarchies 7

2.3.2 K-d trees . 8

2.3.3 Uniform Grids . 9

2.3.4 Hierarchical Grids . 10

2.3.5 BSP Trees . 11

2.4 Specialised Hardware . 12

2.5 Non-Real-Time Applications . 12

vi

2.6 Real-time Applications . 13

Chapter 3 Method 16

3.1 Models . 16

3.1.1 The Stanford Models . 16

3.1.2 BART . 17

3.1.3 MGF . 19

3.2 Traversal Time . 19

3.3 Cache Performance . 21

3.3.1 16kb L1 with 48kb Shared Memory 22

3.3.2 48kb L1 with 16kb Shared Memory 22

3.3.3 L1 Cache Disabled . 22

3.4 Branch Divergence . 22

3.5 Instruction Statistics . 23

3.6 Dynamic Scene . 24

Chapter 4 Test Setup 26

4.1 Hardware . 26

4.2 Tools . 27

4.2.1 Nvprof . 27

4.2.2 NSight . 27

4.3 Fermi Architecture . 27

4.3.1 Streaming Multiprocessors . 28

4.3.2 Configurable L1 / Shared Memory Cache 28

4.4 Implementation . 30

4.4.1 K-d Tree . 30

4.4.2 BVH . 33

Chapter 5 The Results 36

5.1 Full Render . 36

5.1.1 Stanford . 36

5.1.2 BART . 39

5.1.3 MGF . 43

5.2 Traversal Time Per Pixel . 47

vii

5.2.1 Stanford . 47

5.2.2 BART . 51

5.2.3 MGF . 55

5.2.4 Dynamic Scene Traversal . 59

5.3 Cache Performance . 59

5.3.1 Stanford . 60

5.3.2 BART . 60

5.3.3 MGF . 60

5.3.4 Dynamic Scene . 69

5.4 Branch Divergence . 70

5.4.1 Stanford . 70

5.4.2 MGF . 71

5.4.3 BART . 72

5.5 Instruction Statistics . 74

5.5.1 Stanford . 74

5.5.2 BART . 74

5.5.3 MGF . 78

Chapter 6 Conclusions & Future Work 85

6.1 Conclusion . 85

6.2 Future Work . 86

Appendix A List of nvprof Metrics 88

Bibliography 96

viii

List of Tables

3.1 Stanford Models - Vertex & Triangle Count [33] 17

4.1 Hardware Setup . 26

4.2 Fermi Specifications . 29

5.1 Stanford Primary Ray Full Render . 37

5.2 Stanford Primary & Shadow Rays Full Render 38

5.3 BART Robots Traversal Time K-d tree and BVH 40

5.4 BART Museum Traversal Time K-d tree and BVH 41

5.5 BART Kitchen Traversal Time K-d tree and BVH 42

5.6 MGF Theatre Traversal Time K-d tree and BVH 44

5.7 MGF Conference Traversal Time K-d tree and BVH 45

5.8 MGF Office Traversal Time K-d tree and BVH 46

5.9 Stanford Bunny Average Traversal Times (Per Pixel) 48

5.10 Stanford Dragon Average Traversal Times (Per Pixel) 49

5.11 Stanford Buddha Average Traversal Times (Per Pixel) 50

5.12 BART Kitchen Average Traversal Times (Per Pixel) 52

5.13 BART Museum Average Traversal Times (Per Pixel) 53

5.14 BART Robots Average Traversal Times (Per Pixel) 54

5.15 MGF Conference Average Traversal Times (Per Pixel) 56

5.16 MGF Office Average Traversal Times (Per Pixel) 57

5.17 MGF Theatre Average Traversal Times (Per Pixel) 58

5.18 Dynamic Scene Primary Ray Average Traversal Times 59

5.19 Dynamic Scene Primary & Shadow Rays Average Traversal Times (Per-

Pixel) . 59

ix

5.20 Stanford K-d Primary Ray Cache Hit Rates 61

5.21 Stanford K-d Primary & Shadow Ray Cache Hit Rates 62

5.22 BART Robots Cache Hit Rates . 63

5.23 BART Kitchen Cache Hit Rates . 64

5.24 BART Museum Cache Hit Rates . 65

5.25 MGF Conference Cache Hit Rates . 66

5.26 MGF Office Cache Hit Rates . 67

5.27 MGF Theatre Cache Hit Rates . 68

5.28 Dynamic Scene Cache Hit Rates . 69

5.29 Stanford Bunny Branch Divergence . 70

5.30 Stanford Dragon Branch Divergence . 70

5.31 Stanford Buddha Branch Divergence 71

5.32 MGF Theatre Branch Divergence . 71

5.33 MGF Conference Branch Divergence 71

5.34 MGF Office Branch Divergence . 72

5.35 BART Robots Branch Divergence . 72

5.36 BART Kitchen Branch Divergence . 73

5.37 BART Museum Branch Divergence . 73

5.38 Instructions Executed Stanford Bunny 75

5.39 Instructions Executed Stanford Dragon 76

5.40 Instructions Executed Stanford Buddha 77

5.41 Instructions Executed BART Robots 79

5.42 Instructions Executed BART Museum 80

5.43 Instructions Executed BART Kitchen 81

5.44 Instructions Executed MGF Conference 82

5.45 Instructions Executed MGF Office . 83

5.46 Instructions Executed MGF Theatre 84

A.1 nvprof events . 95

x

List of Figures

2.1 Bounding Volumes [5] . 5

2.2 Bounding Sphere Collision Detection 5

2.3 AABB Collision Detection [5] . 6

2.4 Example of a bounding volume hierarchy [27] 7

2.5 Example of K-d tree spatial subdivision [22] 8

2.6 Example of a Uniform Grid [26] . 9

2.7 DDA Traversal [23] . 10

2.8 Example of a Hierarchical Grid [5] . 11

2.9 Example of a BSP tree [5] . 12

2.10 The movie ’Cars’ by Pixar using ray-traced reflections [3] 13

2.11 NVidia OptiX Cook Demo . 14

3.1 Stanford Models Render [33] . 17

3.2 BART Scenes [21] . 18

3.3 MGF Scenes [17] . 20

3.4 Traversal Time Experiment . 21

3.5 CUDA cache configuration options . 21

3.6 CUDA Cache Configuration . 22

3.7 CUDA Disable L1 Cache . 22

3.8 Branch Divergence nvprof . 23

3.9 Branch Divergence [11] . 24

3.10 Divergent Branch Percentage [6] . 24

3.11 Instructions Executed with nvprof . 24

3.12 Dynamic Scene Motion . 25

xi

4.1 NVidia Nsight Profiler . 28

4.2 NVidia Fermi Architecture [24] . 30

4.3 Streaming Multiprocessor Overview [24] 31

4.4 Typical K-d Traversal Psuedocode [12] 32

4.5 kd-restart Algorithm . 33

4.6 GPU BVH Traversal Psuedocode [12] 35

5.1 Dragon Primary Rays Instructions Executed 74

xii

Chapter 1

Introduction

Since the early days of computer graphics we have used rasterisation based techniques

for rendering which rely on a number of approximations to achieve certain visual effects.

Ray tracing offers an alternative approach in which it achieves better photorealism and

removes the need for approximation techniques. We can also combine both rasterisa-

tion and ray-tracing techniques to get the best of both.

One of the major drawbacks with ray tracing is the fact that it is computationally very

expensive and thus has not been used in any commercial games but has been used in

movies as the scenes can be rendered offline.

1.1 Motivation

The motivation of this report is to compare both K-d trees and bounding volume

hierarchies (BVH) at a low level to see what characteristics they exhibit as this is

previously unknown.

One paper of interest is the paper, “Ray Tracing on a GPU with CUDA Compara-

tive Study of Three Algorithms” [38] which does a excellent comparison of these data

structures, I intend to extend this research by looking at low level characteristics of the

acceleration data structures such as the cache performance and branching. I will also

be looking at the traversal times for the data structures but not for the entire CUDA

1

kernal which includes other calculations such as shading.

1.2 Report Roadmap

This report is structured as follows:

Chapter 2 “State of the Art” covers the state-of-the-art techniques used in ray-tracing,

this chapter mainly looks at the acceleration data structures commonly used for ray-

tracing.

Chapter 3 “Methods” will discuss the experiments in detail and how I plan to carry

them out.

Chapter 4 “Test Setup” covers items such as the hardware setup used and the code

base used for the experiments.

Chapter 5 “The Results” will present and discuss the results achieved from the exper-

iments.

Chapter 6 “Conclusion” is focused on possible future work and what this project

achieved.

2

Chapter 2

State of the Art

The most basic ray-tracing algorithm shoots rays into a scene through a virtual camera

and checks for intersections with triangles within the scene. Computationally this is

very expensive If you are running at a large resolution such as 1920x1080 then you

have to check intersections with every triangle in the scene with over 2 million rays.

If we also consider the complexity of modern game engines which can contain millions

of triangles in a single scene, this means that even in a scene with 1 million triangles

we could have roughly 2 million x 1 million iterations for the ray tracer which is two

trillion checks per update and is not feasible for real-time ray tracing.

To get past this limitation we employ the use of acceleration data structures which

lower the number of checks we need to perform for a single ray by splitting the scene

up. Each of these acceleration data structures have their own advantages and disad-

vantages. The two types of acceleration data structures object and location based,

object based approaches group objects together based on how close they are to each

other whereas location based approaches look at the objects location in the scene to

decide whether or not to check for a collision.

Another technique we use is to make use of the GPU (graphics processing unit) instead

of the CPU (central processing unit) to perform ray tracing, Intel’s latest CPU give us

around 100 GFLOPs compared to the 4.5 TFLOPS of the NVidia GTX Titan. [29]

3

2.1 GPGPU

In recent years ray-tracing has moved the CPU to the GPU which exploits low-level

parallelism. When performing ray-tracing we gain a several fold performance improve-

ment as we can generate a thread on the GPU for a ray that shoots through the virtual

camera which means that each ray is computed in parallel.

The use of GPUGPU in general can have a huge performance increase over CPUs, in

the case of Massachusetts General Hospital who used CUDA to perform Monte Carlo

simulation on the GPU they found that they had a huge 300x performance increase

over the use of a CPU though in most cases the performance increase is not this high.

In the paper “Debunking the 100X GPU vs. CPU Myth: An Evaluation of Throughput

Computing on CPU and GPU” [20] from a team at Intel they found that the GPU had

an average 2.5 times performance increase over the CPU, NVidia later responded to

this paper on their blog giving real-world examples that had 100 to 300 times speedups

over the CPU.

The paper “Stackless KD-Tree Traversal for High Performance GPU Ray Tracing”[32]

looks at ray-tracing on the GPU and the CPU, they found that there was a tenfold

performance increase when using the GPU compared to the CPU when comparing

primary rays only with packet ray traversal. It is also worth noting that this paper

was from 2007 where they used an NVidia 8800GTX which has around 500 GFLOPs

throughput compared to the 4.5 TFLOPs of the NVidia GTX Titan which is a huge

increase compared to the latest CPUs, another thing to note is that GPUs are scalable

in the case of NVidia we can use their SLI technology to run multiple graphic cards

in a single system with a maximum of four GPUs and in the case of AMD we can use

their crossfire technology.

2.2 Bounding Volumes

To prevent performing intersection tests with every polygon of an object bounding

volumes are typically used, bounding volumes are simple primitive objects that are

used to encapsulate a complex game object. There are a number of different bounding

4

Figure 2.1: Bounding Volumes [5]

volumes available, the more complex the bounding volume is to fit the better the culling

of objects but this comes at the cost of more complex collision detection as shown in

figure 2.1. [5]

2.2.1 Bounding Sphere

A common bounding volume is the bounding sphere which wraps a game object within

a sphere, this is the simplest bounding volume but typically does not provide a tight

fit around objects. To perform collision checks between the spheres we check if the

distance between the center of two spheres is less then their combined radii as shown

in figure 2.2.

bool CheckSphereSphere (BoundingSphere* a , BoundingSphere* b)
{

glm : : vec3 aPos = a−>GetPosition () ;
glm : : vec3 bPos = b−>GetPosition () ;

i f (glm : : distance (aPos , bPos) < a−>GetRadius () + b−>GetRadius ())
r e turn true ;

r e turn false ;
}

Figure 2.2: Bounding Sphere Collision Detection

5

2.2.2 AABB

Another type of bounding volume is the axis-aligned bounding box (AABB) which is

essentially a box that encapsulates the object, while this provides a better fit then

bounding spheres the collision detection is slightly more complex. We can check for

collisions between two AABBs by checking the min and max positions for each axis as

shown in figure 2.3.

int TestAABBAABB (AABB a , AABB b)
{

i f ((t = aMin−>x − bMin−>x) > bDiameter−>x | | −t > aDiameter−>x) r e turn false ;
i f ((t = aMin−>y − bMin−>y) > bDiameter−>y | | −t > aDiameter−>y) r e turn false ;
i f ((t = aMin−>z − bMin−>z) > bDiameter−>z | | −t > aDiameter−>z) r e turn false ;

r e turn true ;
}

Figure 2.3: AABB Collision Detection [5]

2.2.3 OBB

Oriented bounding boxes (OBB) are similar to an AABB except that they also have

an orientation, this type of bounding volume typically fits an object better than an

AABB. The collision check between OBBs is more complex and requires 15 tests to

determine intersection. [5]

2.3 Acceleration Data Structures

In order to achieve high performance real-time ray tracing we make use of acceleration

data structures which involves breaking down the scene into manageable chunks with

the goal of avoiding collision checks with every triangle or object in the scene. There

are a number of different acceleration structures used and also some hybrid structures

which make use of multiple acceleration data structures. [5]

6

Figure 2.4: Example of a bounding volume hierarchy [27]

2.3.1 Bounding Volume Hierarchies

One of these acceleration data structures is bounding volume hierarchies (BVH) which

is a tree structure made up of bounding volumes such as a sphere or an axis-aligned

bounding box (AABB), on the leaf nodes of the tree we find the geometric objects

themselves. The use of a BVH results in a significant performance improvement, figure

2.4 shows an example of a BVH structure where N1 is the root node and O1 to O8 are

the leaf nodes.

When checking for collisions between a ray and objects we start at the root node of

the tree and see if the ray intersects the bounding volume, if this bounding volume is

intersected then we move to the next node in the tree which is dependent on which

heuristic we use to traverse the tree such as depth-first search which will iterate deeper

into the tree or breadth-first search which iterates horizontally over the tree before

proceeding deeper into the tree. We gain a performance improvement by eliminating

branches from the tree for example in 2.4 if the ray does not intersect with the bound-

ing volume at N3 then we can cut off that branch completely which removes the need

to check any of the child nodes of that branch whereas without the BVH we would

have to check every object in the scene. [27]

7

One issue with the use of a BVH is we need to rebuild the tree when objects move

which can be costly, the paper “Fast BVH Construction on GPUs” [19] looks at this

problem and found that when using a complex scene with 1.5 million triangles it took

66ms to build the tree which is quite a long time considering that we need to render in

16.67ms to achieve 60 frames per second or 33.34ms to render at 30 frames a second

(Which should be an absolute minimum frame rate) and that the 66ms is only the cost

to build the tree and not to render the scene.

When we build the BVH tree one important heuristic is the surface area heuristic

(SAH) which is used to control primitive splitting during the construction of the tree.

The way that the tree is split will also have a direct effect on the performance of the

tree traversal when it comes to ray-tracing. [35]

2.3.2 K-d trees

Figure 2.5: Example of K-d tree spatial subdivision [22]

K-d trees or K-dimensional trees are a generalisation of octrees and quadtrees that

8

are used to partition space. They work by partitioning space one dimension at a time

where k represents the number of dimensions. The axis are typically split in a cyclic

manner in which the x-axis is split first followed by the y-axis and z-axis this is then

continued by splitting the x-axis again and so forth. Figure 2.5 shows an example of

a three dimensional k-d tree where the scene has been subdivided into a number of

smaller regions. [5]

When it comes to collision detection k-d trees can be used in situations where either

octrees or quadtrees are used. They can also be used to check the point location, given

a point the region in which it resides can be found. Nearest neighbour searches can be

performed with a k-d tree in which it will find the point from a set a points the query

point is closest to. [12] [5]

2.3.3 Uniform Grids

Figure 2.6: Example of a Uniform Grid [26]

A uniform grid is a simple effective spacial subdivision scheme which is used to parti-

tion space with a regular grid. The grid is divided up into a number of cells each of

9

equal size, each object in the scene is associated with the cell that it overlaps, figure

2.6 shows an example of a uniform grid. The only objects that can be colliding are

those which overlap a common grid cell in which case more in-depth collision checks

can be used.

The performance for uniform grids is directly correlated to the size of the grid cells, a

balance must be found where the cells are not too small or large and also where there

are not a large amount of objects occupying the same grid cell.

In order to traverse a uniform grid we need to use a Digital Differential Analyser (DDA)

algorithm which is used for linear interpolation of variables between two points, the

start and end point. Figure 2.7 shows an example of a 3D-DDA. [23]

Figure 2.7: DDA Traversal [23]

2.3.4 Hierarchical Grids

A hierarchical grid attempts to solve the problem with uniform grids where it is dif-

ficult to deal with objects that vary greatly in size. With the use of uniform grids

objects may span multiple grid cells leading to moving objects becoming expensive,

hierarchical grids are a good alternative to uniform grids as they are well suited to

holding dynamically moving objects.

10

Figure 2.8: Example of a Hierarchical Grid [5]

Hierarchical grids work by traversing through all the hierarchical grid levels, at each

level the object to be checked is compared to both the cells that its bounding volume

overlaps and also the neighbouring cells that could have objects extending into the

cells that are overlapped. Figure 2.8 shows the structure of a small one dimensional

hierarchical grid where there are six objects A to F and the shaded area are where we

must check for collisions for the object C. [5]

2.3.5 BSP Trees

Binary space-partitioning (BSP) trees are a structure used to partition space. This

data structure works by recursivly diving space into subspaces based on planes or ar-

bitrary position and orientation. [16]

Figure 2.9 shows the stages involved in the division of a square into four convex sub-

spaces and also the corresponding tree structure. The first stage (a) shows the initial

split, the second stage (b) shows the first second-level split and finally the last stage (c)

shows the second second-level split. There are a number of different types of BSP trees.

The paper “Ray Tracing with the BSP Tree” implements a ray-tracer using BSP trees

and they found that the performance was competitive with a ray-tracer using a BVH

or K-d tree.

11

Figure 2.9: Example of a BSP tree [5]

2.4 Specialised Hardware

There is specialised hardware available that is designed purely for ray-tracing perfor-

mance, an example of this is the R2500 by Imagination Technologies which supports

up to 100 million incoherent rays per second or 50 million incoherent rays per second

for the lower end model R2100. Unfortunately there is not a lot of information on

these cards such as benchmarks comparing them to GPUs at the present time as these

particular models have only recently been released. It should be noted that these cards

are aimed at offline rendering and not real-time ray-tracing. [13]

2.5 Non-Real-Time Applications

The movie “Cars” by Pixar made use of ray tracing using their RenderMan renderer

though they only used ray-tracing for the reflections found on the cars an example of

the output can be seen in figure 2.10. In the paper “Ray Tracing for the Movie Cars”

they describe the process of ray-tracing they used and the issues they encountered with

the use of ray-tracing. They faced many issues when trying to add ray-tracing to the

movie mainly due to the shear size of some of the scenes, one which they mention in the

12

Figure 2.10: The movie ’Cars’ by Pixar using ray-traced reflections [3]

paper has a racing oval with 75,000 cars as spectators. One major challenge they faced

was that the scene had to fit into memory otherwise the program would have to read

from virtual-memory which would slow the algorithm down by orders of magnitude,

they also had to look at ray-tracing objects that were outside of the current viewport.

To get past a number of issues they were facing they made use of ray differentials,

multiresolution geometry and texture caches in order to make the scene tracable. [3]

2.6 Real-time Applications

While there are no commercially available ray-traced games due to the large perfor-

mance cost there has been research into ray-tracing some of the earlier Id tech games.

One game of particular interest is “Quake Wars: Enemy Territory” which was modified

to become “Quake Wars: Ray Traced” [14] by Intel, unfortunately the source code or

demo was never released to the public. The implementation they used was based on

the CPU which achieved between 15 and 35 frames depending on the system used. The

successor to this project is “Wolfenstein: Ray Traced” [15] but again no source code

13

or demo has been released publicly.

Figure 2.11: NVidia OptiX Cook Demo

NVidia provide an SDK for ray-tracing called OptiX which makes use of a GPU with

CUDA technology to run in real-time. Optix provides support for building and travers-

ing a number of state-of-the-art acceleration data structures such as Kd-trees and

bounding volume hierarchies with code that is optimized to run on the GPU in paral-

lel. [31]

Along with Optix, NVidia provide a debugger and profiler called Nsight which is avail-

able an an extension to both visual studio and eclipse. Nsight provides support for

running a number of experiments to profile an application, this includes a large amount

of low-level performance metrics such as cache hits, instructions executed, branches

taken, memory bandwidth along with many more which is useful for profiling an ap-

plication to see what is causing any performance bottlenecks. [30]

In recent years there have been an increasing number of technical demos involving ray-

tracing one notable demo was that from NVidia which showed ray-traced fluids with

14

destruction in real-time which was shown at GTC (GPU Technology Conference) 2013.

This demo made use of OptiX 3.0 and ran off two quadro graphics cards in real-time.

Eventually it may be the case that ray-tracing will replace rasterisation due to a number

of key factors, though this is unlikely to happen for quite some time. For one rasterisa-

tion based techniques rely on approximations to implement most rendering effects such

as screen space ambient occlusion (SSAO). Ray-tracing scales better then rasterization

based rendering as ray-tracing is logarithmic whereas rasterisation is linear. [1]

15

Chapter 3

Method

As part of this dissertation I will carry out a number of experiments on ray-tracing

two acceleration data structures, the K-d tree and BVH. This section will describe in

detail the experiments I plan to carry out and how I will go about them.

The tools used for this dissertation allow for a wide variety of experiments to be run,

the full list of metrics supported by the command line tool nvprof can be found in

the appendix table A.1. Out of these possible metrics I selected the ones that would

show what characteristics these acceleration data structures exhibit such as their cache

performance and traversal times.

3.1 Models

To test the performance of these acceleration data structures I will be using a number

of different models. This section gives a brief overview of the models that are used, the

Stanford, BART and MGF models.

3.1.1 The Stanford Models

The Stanford models are a set of high detail models which were created using a scanned

and then processed to produce a single triangle mesh. The models I will specifically

looking at from this set of models are the bunny, dragon and buddha models. [33]

16

Further details about these models can been seen in table 3.1 which shows the vertex

and triangle counts for each of these models.

Figure 3.1: Stanford Models Render [33]

Model Vertices Triangles
Bunny 35947 69451
Dragon 566,098 1,132,830
Buddha 543,652 1,087,716

Table 3.1: Stanford Models - Vertex & Triangle Count [33]

3.1.2 BART

The BART (Benchmark for Animated Ray Tracing) scenes were created specifically

to benchmark ray traced scenes. An example render of the BART scenes can be seen

in figure 3.2 where the kitchen, museum and robot scenes can be seen. The paper

“BART: A Benchmark for Animated Ray Tracing” describes the process of creating

these models, the goal of the BART research was to identify what stresses ray tracing

algorithms leading to a performance loss. They found a number of items that stressed

a number of ray tracing implementations and took these into account when creating

the BART models. [21]

17

(a) BART Kitchen Scene

(b) BART Museum Scene

(c) BART Robots Scene

Figure 3.2: BART Scenes [21]

18

3.1.3 MGF

The MGF models are another set of scenes that are often used for physically based

rendering applications. The scenes I am using included the conference, office and

theatre scenes which can be seen in figure 3.3.[17].

3.2 Traversal Time

The first of the experiments I will carry out will be to look at the traversal times of each

acceleration data structure. In this experiment I am only interested in the time taken

to traverse the acceleration data structure so I will used the CUDA ‘clock’ function

to get these results, the clock function returns the current value of a counter that is

incremented every clock cycle. [28] The ‘clock’ function will be invoked directly before

traversing the structure and then directly after. I will then have two values the start

clocks and the end clocks, using these values I can calculate the number of clocks that

have passed by subtracting the start clocks from the end clocks. The result of this will

give me the number of clock cycles passed for traversing an acceleration structure, but

to get the time in milliseconds the number of clocks is divided by the speed of the GPU

shader clock in kilohertz. An example of the code that will be used is shown in figure

3.4.

In the case of primary and shadow rays multiple traversals are required, in this case

another variable is used to store the clocks passed after the first traversal, the results

of the second traversal are added to this.

The traversal time experiment will be run using the Stanford, BART and MGF models

for K-d trees and BVHs with primary and secondary rays. In the case of the BART and

MGF scenes secondary rays will also be included in these results. The results of this

experiment will give the min, max and average values for traversing these acceleration

structures on a Fermi based GPU.

This experiment will also be run using a number of different cache configurations in

order to see how the cache affects the traversal time, to carry out this experiment the

19

(a) MGF Conference Scene

(b) MGF Office Scene

(c) MGF Theatre Scene

Figure 3.3: MGF Scenes [17]

20

clock_t start = c lock () ;

// Traverse the g r id and try to f i nd intersection .
int hitTriangle = traverseKdTree<true>(origin , d i r , minimum , maximum , triangles , buffer ,←↩

stackNode , stackMin , stackMax) ;

clock_t stop = c lock () ;

Figure 3.4: Traversal Time Experiment

traversal will be run three times, the first with the default 16KB L1 with 48KB shared

memory configuration, the second with 48KB L1 with 16KB shared memory and finally

with the L1 cache completely disabled. The results of these will then be evaluated to

see the traversal times.

3.3 Cache Performance

Making use of the NVidia Nsight developer tools I will be looking at the cache perfor-

mance of these ray-tracing acceleration data structures. Fortunately NVidia provide a

number of methods to change the size of the L1 cache as seen in figure 3.5, although

the 32kb/32kb split is only available on cards based on the newer Kepler architecture.

There is also an option to completely disable the L1 cache using a command line flag.

Value Description
cudaFuncCachePreferNone Default cache configuration (16kb L1 with 48kb

shared) .
cudaFuncCachePreferShared 16kb L1 with 48kb shared.
cudaFuncCachePreferL1 48kb L1 with 16kb shared.
cudaFuncCachePreferEqual 32kb L1 with 32kb shared.

Figure 3.5: CUDA cache configuration options

This experiment will take place over one hundred frames for both primary rays and

primary combined with shadow rays, the average hit rates across the one hundred

frames will be the result.

21

3.3.1 16kb L1 with 48kb Shared Memory

This is the default setting used by the NVidia CUDA compiler (NVCC) which allocates

16kb to the level one cache and 48kb to shared memory.

3.3.2 48kb L1 with 16kb Shared Memory

There are two possible ways in which we can change the cache configuration. The first

method involves adding the following command line arguments to NVCC - “-Xptxas

-dlcm=ca”, the second method involves adding a line of code as seen in figure 3.6.

cudaDeviceSetCacheConfig (cudaFuncCachePreferL1) ;

Figure 3.6: CUDA Cache Configuration

3.3.3 L1 Cache Disabled

The last cache experiment I plan to carry out involves completely disabling the L1

cache. When the L1 cache is disabled all global memory transactions that take place

are 32 bytes in size (128 bytes when the L1 cache is enabled). To disable the L1 cache

a command line flag is passed to the CUDA compiler as shown in figure 3.7.

−Xptxas −dlcm=cg

Figure 3.7: CUDA Disable L1 Cache

3.4 Branch Divergence

The branch divergence experiment looks at how many branches diverge over a number

of kernel launches. This is important as conditional statements can lead to a perfor-

mance decrease in a SM as each branch of the condition has to be evaluated. With a

long code path conditionals can cause a two-times slowdown for each conditional inside

22

the warp, up to a maximum of a 32 times slowdown. With the Fermi architecture a new

technique is utilised called prediction, with this technique the if and else parts of the

conditional are executed in parallel which helps to solve the problem of mispredicted

branches and warp divergence. [6]

The impact of branch divergence is that the SM units are underutilised which cannot

be compensated by increasing the level of parallelism. With CUDA a kernel launch is

executed on the GPU by scheduling thread blocks onto the streaming multiprocessors

which must execute the thread block in its entirety. Each of these thread blocks is

separated into groups of 32 threads which are known as warps, all threads inside this

warp must execute the same instruction at any given time. In the case of branch

divergence which causes different paths to be taken the warp will serially execute

each branch path that is taken and disables threads that are not on that path, these

threads then reconverge after the execution is complete. An example of potential

branch divergence can be seen in figure 3.9 where if only half of the threads in a warp

execute the ’++x’ statement then the utilisation of the execution units is only 50

percent. The paper “Reducing Branch Divergence in GPU Programs” presents two

ways in which to avoid branch divergence which are referred to as iteration delaying

and branch distribution. [11]

To get the branch statistics I plan to use the nvprof command line tool using the

arguments shown in figure 3.8 for each model and all resolutions. To actually calculate

the percentage of divergent branches I used the formula shown in figure 3.10.

nvprof −−events branch , divergent_branch raytrace . exe

Figure 3.8: Branch Divergence nvprof

3.5 Instruction Statistics

The instruction statistics experiment looks at the number of instructions executed over

a number of kernel launches. The results of this will be the minimum, maximum and

23

tid = threadIdx . x ;
i f (a [tid] > 0) {
++x ;

}

Figure 3.9: Branch Divergence [11]

(100 * divergent branch) / (divergent branch + branch)

Figure 3.10: Divergent Branch Percentage [6]

average number of instructions executed for both K-d trees and BVHs, this experiment

will be carried out using the Stanford, BART and MGF models.

Using the results of this experiment I will look to see the correlation between the

number of instructions executed and the time it takes to traverse the acceleration data

structures. Figure 3.11 shows how I will use nvprof command line tool to gather the

data for this experiment.

nvprof −−events inst_executed raytrace . exe

Figure 3.11: Instructions Executed with nvprof

3.6 Dynamic Scene

The dynamic scene experiment looks at the performance of K-d tree and BVH traversals

when the data structures are rebuilt every frame, this experiment will be carried out

over one hundred frames. For this experiment two different models are used, the

Stanford bunny and the Stanford dragon in which these models move in the opposite

direction to one another. The image in figure 3.12 shows an example of the motion in

the dynamic scene where the two models move in different directions.

24

The results of this experiment will be looking at both the traversal and cache perfor-

mance of the acceleration data structures for this dynamic scene. As with the previous

experiments the results will be gathered using the CUDA ’clock’ function to get the

traversal times for each acceleration data structure. This experiment also looks at the

cache performance of the dynamic scene looking at the L1 and L2 caches on the GPU,

to gather these results NVidia’s NSight tool will be used in a similar manner to that

of the previous cache experiment.

Figure 3.12: Dynamic Scene Motion

25

Chapter 4

Test Setup

The following chapter will discuss in detail the hardware setup I am using to carry

out the experiments, the architecture of the GPU I am using (GTX 590) and the

ray-tracing implementation used.

4.1 Hardware

The hardware setup used for this dissertation can be seen in table 4.1. I am using a

Fermi based GPU which introduced a number of new features when it was released

some of which will be discussed later in this chapter.

Component Value
CPU Intel i7-2600K @ 4.0GHz
GPU NVidia GeForce GTX 590 (3GB)
Architecture Fermi
Compute Capability 2.0
SLI Disabled
RAM 16GB 1600MHz Dual Channel DDR3
OS Windows 8 64-bit

Table 4.1: Hardware Setup

26

4.2 Tools

In order to get the required results for this dissertation I will be using a number of

tools for profiling code that runs on the GPU. The tools I will be using to carry out

the experiments are both from NVidia, nvprof and nsight. The use of profiling tools

allow us to find bottlenecks in some code, in the case of GPUs they are best at parallel

execution so if the occupancy rate is low that could be considered a bottleneck as the

GPU is not fully utilised.

4.2.1 Nvprof

The nvprof tool is a command line program provided by NVidia with the CUDA GPU

computing SDK which allows the user to measure a number of performance metrics.

With the nvprof profiler we can look at data such as the number of instructions executed

and the number of divergent branches. An alternative to the nvprof tool is the NVidia

visual profiler which is essentially the visual version of this command line tool, with the

use of this tool you can visually see the CPU timeline, GPU timeline, kernel properties

along with others. [9] The full list of performance metrics available for the GTX 590

can be found in the appendix table A.1.

4.2.2 NSight

Another one of the tools I used for this dissertation is NVidia’s Nsight debugging and

profiling tool which is supported by both eclipse and visual studio. Nsight allows you

to perform a number of experiments on a code base using hardware counters built into

the GPU, this allows us to look at low-level information such as the cache hit rates.

[2] A screenshot of the NVidia Nsight profiler can be seen in figure 4.1.

4.3 Fermi Architecture

In 2010 NVidia released their new series of graphics cards, the GeForce 400 series which

were the first cards based on the new Fermi architecture. The Fermi architecture was

a huge leap over the existing GT200 architecture with 3.0 billion transistors, more

than twice the transistor count (1.4 billion) from the previous generation. This new

27

Figure 4.1: NVidia Nsight Profiler

architecture had a number of new features such as an increased core count for each

streaming multiprocessor (SM), EEC memory support and configurable cache sizes

along with many other features. [24]

4.3.1 Streaming Multiprocessors

GPUs based on the Fermi architecture are made up of 16 streaming multiprocessors

(SM) each of which contains 32 CUDA cores giving 512 CUDA cores in total. All of

the streaming multiprocessors share a common L2 cache which is 768kb in size, this

can be seen in figure 4.2. An example of a streaming multiprocessor is shown in figure

4.3.

4.3.2 Configurable L1 / Shared Memory Cache

One of the new additions with the Fermi architecture is the ability to modify the size

28

of the L1/shared memory cache or even completely disable this cache. Each streaming

multiprocessor (SM) has 64KB of on-chip memory. The default cache configuration

allocates 16kb to the L1 cache and 48kb to shared memory, this can be changed to

use a 48kb L1 and 16kb shared memory split or a 32kb/32kb even split between L1

and shared memory. This feature allows developers to gain performance improvements

depending on how much shared memory they have used, for example if a developer only

uses 8kb of shared memory they will likely gain a noticeable performance improvement

by using the 16kb shared memory with 48kb L1 cache configuration. [4]

With the Fermi architecture memory transactions are either 32 bytes or 128 bytes in

size. When the L1 cache is enabled then all memory transactions that take place are

128 bytes, in the case that the L1 cache is disabled memory transactions are 32 bytes.

[36]

Value
Transistors 3.0 billion
Streaming Multiprocessors (SMs) 16
Streaming Processors (Per-SM) 32
CUDA Cores 512
Registers (Per-SM) 32 KB
Max. number of threads (Per-SM) 1536
Max. number of threads (per-block) 1024
Warp size 32
Warp scheduler Dual
Double Precision Floating Point Capability 256 FMA ops / clock
Single Precision Floating Point Capability 512 FMA ops / clock
Special Function Units (SFUs) / SM 4
Warp schedulers (per SM) 2
Shared Memory (per SM)) User Configurable (16, 32 or 48 KB)
L1 Cache (per SM)) User Configurable (0, 16, 32 or 48 KB)
L2 Cache 768k KB
Size of global memory transaction 32 or 128 B
ECC Memory Support Yes
Concurrent Kernals Up to 16
Load/Store Address Width 64-bit

Table 4.2: Fermi Specifications

29

Figure 4.2: NVidia Fermi Architecture [24]

4.4 Implementation

I originally planned to use NVidia’s Optix engine which supports a number of acceler-

ation data structures such as K-d trees and BVHs, unfortunately the traversal code is

closed source because of this I had to find another ray tracing implementation. After

looking at various ray tracing code bases I decided to use the ray-tracing implemen-

tation from the paper “Ray Tracing on a GPU with CUDA – Comparative Study of

Three Algorithms”. This code base has support for a number of acceleration structures

such as K-d trees, BVHs and uniform grids though I will only be looking at K-d trees

and BVHs, The actual code used in this implementation is C++ with CUDA. [38]

4.4.1 K-d Tree

The K-d tree used in this implementation is built using the surface area heuristic, each

K-d node occupies 8 bytes of memory. The typical traversal for a K-d tree looks as in

the figure 4.4 where the algorithm works by walking the tree until it finds a leaf node at

which point it traverses the triangles at that node to find the closest hit. Unfortunately

this does not scale well to the GPU so a number of techniques are employed such as

30

Figure 4.3: Streaming Multiprocessor Overview [24]

31

kd-restart, push-down and short-stack. [12]

stack . push (root , sceneMin , sceneMax)
tHit=infinity

whi le (not stack . empty ()) :
(node , tMin , tMax)=stack . pop ()
whi l e (not node . isLeaf ()) :

a = node . a x i s
tSplit = (node . value − ray . origin [a]) / ray . direction [a]
(first , s e c) = order (ray . direction [a] , node . left , node . right)
i f (tSplit >= tMax or tSplit < 0)

node=first

e l s e i f (tSplit <= tMin)
node=second

e l s e
stack . push (sec , tSplit , tMax)
node=first

tMax=tSplit

f o r tri in node . triangles () :
tHit=min(tHit , tri . Intersect (ray))
i f tHit<tMax :

r e turn tHit //early exit

r e turn tHit

Figure 4.4: Typical K-d Traversal Psuedocode [12]

kd-restart

The kd-restart traversal algorithm changes the typical kd-tree traversal algorithm such

that it eliminates any stack operations, by eliminating stack operations then the re-

sulting traversal will move directly to the first leaf node that has been intersected by

the ray. This means that if a ray leaves a leaf node without intersecting any of the

triangles then the kd-restart algorithm advances the tMin and tMax values forward

so that the origin of the ray (tMin) will be set to the previous endpoint, tMax. An

example of this can be seen in figure 4.5. [7]

push-down

Another technique that is used is the push-down traversal algorithm which is used to

prevent restarting traversal from the root node. Instead of restarting at the root node

rays only need to backtrack to the node that is the root of the lowest subtree that

encloses them. From an implementation point of view it is very easy to implement

requiring just a boolean flag and some simple logic. [12]

32

Figure 4.5: kd-restart Algorithm

short-stack

The short-stack is a technique that is complementary to the push-down technique. The

short-stack introduces a small fixed-size stack with two modifications to how the stack

is manipulated. The first modification is that when pushing a node onto the stack when

the stack is full the bottom-most entry is discarded. The second modification is when

an empty stack is popped a restart is triggered instead of terminating the traversal.

[12]

4.4.2 BVH

The BVH tree in this implementation was built in a top-down manner using the surface

area heuristic, the BVH cell occupies 32 bytes which is exactly four times more then

a K-d tree node. The traversal algorithm used is based on the paper “Realtime Ray

Tracing on GPU with BVH-based Packet Traversal”. [8]

This BVH traversal algorithm uses a packet based approach which are essentially col-

lections of coherent rays. Each ray is mapped to a single thread and each packet to a

chunk which are aligned to 128 bytes on Fermi based GPUs.

The algorithm works by traversing one node at a time and testing an entire packet

against it. If this node happens to be a leaf node then each ray in the packet is checked

for an intersection with the geometry contained within the BVH node. If the current

33

node is not a leaf node then both child nodes are loaded and packet is tested against

them to determine the traversal order, it does this by comparing the signed entry

distance between the ray and the two child nodes to see which node the ray should

traverse first. It is then up to the algorithm to decide which of the child nodes to visit,

the algorithm looks at how many of the rays in the packet are trying to traverse each

node and picks the node with the highest requested traversals, if a ray inside the packet

wants to visit the other node then this node is pushed onto the stack. In the case that

none of the rays contained in the packet want to visit these two child nodes or when

the algorithm has just processed a leaf node the next node is taken from the top of the

stack. If the stack is empty then the algorithm will terminate. Figure 4.6 shows the

pseudocode for the BVH traversal algorithm. [10]

34

R = (O , D) // The ray

d ← ∞ // Distance to closest intersection

NP ← pointer to the BVH root

NL , NR : shared ≡ Shared storage f o r N ' s children

M [] : shared ≡ Reduction memory

S : shared ≡ The traversal stack

PID : const ≡ The number of this processor

loop

i f NP points to a leaf then

Intersect R with contained geometry

Update d i f necessary

break , i f S is empty

NP ← pop (S)
e l s e

i f PID < s i z e (NL , NR) then // parallel read

(NL , NR) [PID] ← children (NP) [PID]
end i f

(λ1 ,λ2) ← intersect (R , NL)
(µ1 ,µ2) ← intersect (R , NR)
b1 ← (λ1 < λ2) ∧ (λ1 < d) ∧ (λ2 ≥ 0)
b2 ← (µ1 < µ2) ∧ (µ1 < d) ∧ (µ2 ≥ 0)

M [PID] ← false , i f PID < 4
M [2 b1 +b2] ← true

i f M [3] ∨ M [1] ∧ M [2] then // Visit both children

M [PID] ← 2(b2 ∧ µ1 < λ1) 1

PARALLELSUM (M [0 . . processor−count])

i f M [0] < 0 then

(NN , NF) ← pointer−to (NL , NR)
e l s e

(NN , NF) ← pointer−to (NR , NL)
end i f

push (S , NF) , i f PID = 0
NP ← NN

e l s e i f M [1] then

NP ← pointer−to (NL)
e l s e i f M [2] then

NP ← pointer−to (NR)
e l s e

break , i f S is empty

NP ← pop (S)
end i f

end i f
end loop

Figure 4.6: GPU BVH Traversal Psuedocode [12]

35

Chapter 5

The Results

In this chapter the results of the experiments described in the ’Method’ chapter are

presented. The results were compiled using a number of tools both from NVidia, nvprof

and NSight.

5.1 Full Render

In this section the results of the full render experiment are presented. This experiment

looks at the entire kernel launch including both the traversal of the acceleration data

structure and shading resulting in the time it takes to render a single frame.

5.1.1 Stanford

The results of the full render experiment when carried out using the Stanford models

show that in most cases the K-d tree performs better than the BVH (With the exception

of the Stanford bunny) at the lower resolutions (256x256, 512x512 and 768x768) but

the BVH closes this performance gap at the higher resolution of 1024x1024. The results

of this experiment can been seen below in tables 5.1 and 5.2.

36

Min Max Average
K-d Bunny P
256x256 1.072832 ms 2.407136 ms 1.548652 ms
512x512 2.431680 ms 4.832672 ms 3.343905 ms
768x768 4.188160 ms 7.550336 ms 5.780483 ms
1024x1024 6.263360 ms 11.41248 ms 8.828431 ms
BVH Bunny P
256x256 1.084544 ms 2.069984 ms 1.454210 ms
512x512 1.560864 ms 2.424480 ms 1.953591 ms
768x768 2.460704 ms 3.656160 ms 2.945168 ms
1024x1024 3.469792 ms 5.261280 ms 4.275245 ms
K-d Dragon P
256x256 1.305312 ms 3.062720 ms 1.991542 ms
512x512 3.292064 ms 6.270080 ms 4.709790 ms
768x768 5.923712 ms 11.447104 ms 8.491594 ms
1024x1024 9.152352 ms 17.964449 ms 13.191978 ms
BVH Dragon P
256x256 2.670976 ms 8.619104 ms 4.671336 ms
512x512 3.966944 ms 9.686464 ms 7.008855 ms
768x768 4.986848 ms 12.602784 ms 9.154868 ms
1024x1024 6.495200 ms 15.592224 ms 11.537935 ms
K-d Buddha P
256x256 0.907648 ms 2.501632 ms 1.592877 ms
512x512 1.940128 ms 5.024800 ms 3.671167 ms
768x768 3.280704 ms 8.659232 ms 6.527819 ms
1024x1024 5.062336 ms 13.258944 ms 10.047005 ms
BVH Buddha P
256x256 1.948224 ms 7.836416 ms 4.310605 ms
512x512 2.603424 ms 9.286048 ms 6.403870 ms
768x768 3.529280 ms 11.278240 ms 8.397223 ms
1024x1024 4.423040 ms 13.877952 ms 10.433164 ms

P Primary Rays

Table 5.1: Stanford Primary Ray Full Render

37

Min Max Average
K-d Bunny PS
256x256 2.725504 ms 3.514688 ms 2.479525 ms
512x512 4.676032 ms 8.146400 ms 5.859196 ms
768x768 8.559776 ms 14.501120 ms 10.796020 ms
1024x1024 12.874944 ms 22.158049 ms 16.663357 ms
BVH Bunny PS
256x256 1.981984 ms 4.258560 ms 2.742734 ms
512x512 3.235616 ms 4.278752 ms 3.640488 ms
768x768 5.037856 ms 6.632704 ms 5.753088 ms
1024x1024 7.396320 ms 9.547520 ms 8.444658 ms
K-d Dragon PS
256x256 1.305312 ms 4.751520 ms 3.391940 ms
512x512 7.007840 ms 11.342944 ms 8.868724 ms
768x768 13.464544 ms 21.814816 ms 16.745096 ms
1024x1024 20.817345 ms 33.831841 ms 26.078743 ms
BVH Dragon PS
256x256 6.662656 ms 10.410912 ms 8.489571 ms
512x512 11.555072 ms 17.183071 ms 14.102702 ms
768x768 16.158144 ms 22.065825 ms 19.581047 ms
1024x1024 20.798912 ms 30.153215 ms 25.040182 ms
K-d Buddha PS
256x256 2.048320 ms 3.921440 ms 2.883934 ms
512x512 4.687520 ms 8.698368 ms 7.099356 ms
768x768 8.460064 ms 15.561088 ms 12.903708 ms
1024x1024 13.200448 ms 24.662560 ms 20.106138 ms
BVH Buddha PS
256x256 6.083936 ms 11.026464 ms 8.433007 ms
512x512 10.857024 ms 17.850401 ms 14.648832 ms
768x768 14.578624 ms 22.863647 ms 19.644007 ms
1024x1024 18.544704 ms 27.985472 ms 24.548191 ms

PS Primary & Shadow Rays

Table 5.2: Stanford Primary & Shadow Rays Full Render

38

5.1.2 BART

When using the BART set of models consisting of the robots, museum and kitchen

scenes there is no clear winner with regards to the performance of the acceleration

data structures. The results of this experiment can been seen in tables 5.3, 5.4 and 5.5

below.

In the first case we look at the performance of the robots scene and in this particular

case the K-d tree is faster in all cases (primary, primary with shadow and primary,

shadow and reflection rays).

In the second case we look at the museum scene, in the museum scene the BVH is

faster in all of the tests and close to 50% faster in certain cases.

Lastly we look at the performance of the kitchen scene, this scene has quite a mixed

performance where the BVH is faster than the K-d tree with just primary rays while

the K-d tree outperforms the BVH with reflection rays. In the kitchen scene with

primary and shadow rays the K-d tree performs better at 256x256 and 512x512 while

the BVH performs better at 768x768 and 1024x1024.

39

Robots Min Max Average
K-d P
256x256 0.303712 ms 2.163328 ms 1.111406 ms
512x512 1.118336 ms 4.959776 ms 2.646239 ms
768x768 2.752544 ms 13.583232 ms 7.168683 ms
1024x1024 4.635808 ms 18.738752 ms 10.458248 ms
BVH P
256x256 0.474752 ms 2.636512 ms 1.367954 ms
512x512 1.767712 ms 4.485888 ms 3.294106 ms
768x768 4.374816 ms 11.827392 ms 8.348372 ms
1024x1024 7.364160 ms 18.528511 ms 13.342626 ms
K-d PS
256x256 0.696832 ms 3.348640 ms 1.922398 ms
512x512 2.625856 ms 8.737024 ms 5.050729 ms
768x768 6.396864 ms 22.179968 ms 13.132985 ms
1024x1024 10.838272 ms 31.304064 ms 19.817677 ms
BVH PS
256x256 0.834688 ms 5.065024 ms 2.557266 ms
512x512 3.099104 ms 8.409472 ms 6.140616 ms
768x768 7.904192 ms 22.808640 ms 15.562988 ms
1024x1024 13.019840 ms 34.423328 ms 24.853336 ms
K-d PSR
256x256 0.703840 ms 4.721760 ms 2.613482 ms
512x512 2.640352 ms 10.989344 ms 5.788201 ms
768x768 6.431360 ms 34.955841 ms 16.052902 ms
1024x1024 10.917248 ms 45.430782 ms 22.98251 ms
BVH PSR
256x256 0.883296 ms 8.036512 ms 3.935138 ms
512x512 3.313408 ms 12.906176 ms 7.761605 ms
768x768 8.559424 ms 43.155968 ms 21.005152 ms
1024x1024 14.225280 ms 58.282497 ms 30.675678 ms

P Primary Rays

PS Primary & Shadow Rays

PSR Primary, Shadow & Reflection Rays

Table 5.3: BART Robots Traversal Time K-d tree and BVH

40

Muesum Min Max Average
K-d P
256x256 0.595168 ms 2.966496 ms 2.121926 ms
512x512 1.771296 ms 6.576896 ms 5.01249 ms
768x768 4.284736 ms 17.886656 ms 13.539915 ms
1024x1024 6.965088 ms 24.139040 ms 18.588215 ms
BVH P
256x256 0.440320 ms 1.234016 ms 1.008350 ms
512x512 1.593888 ms 3.126848 ms 2.610556 ms
768x768 3.917728 ms 7.617664 ms 6.345273 ms
1024x1024 6.565248 ms 11.931008 ms 9.988448 ms
K-d PS
256x256 2.180192 ms 5.455680 ms 4.497135 ms
512x512 6.607328 ms 14.585632 ms 12.199412 ms
768x768 15.407072 ms 36.597279 ms 29.912104 ms
1024x1024 25.110624 ms 51.801922 ms 43.964321 ms
BVH PS
256x256 1.382016 ms 3.255040 ms 2.806842 ms
512x512 4.409024 ms 8.080896 ms 6.969739 ms
768x768 10.743648 ms 18.775520 ms 16.552038 ms
1024x1024 17.816193 ms 29.201281 ms 25.657625 ms
K-d PSR
256x256 2.739776 ms 11.646976 ms 9.258921 ms
512x512 7.767072 ms 30.527617 ms 24.021410 ms
768x768 18.512224 ms 77.097092 ms 60.453091 ms
1024x1024 29.225697 ms 104.383774 ms 86.116585 ms
BVH PSR
256x256 1.816928 ms 12.334912 ms 10.142564 ms
512x512 5.348832 ms 24.822496 ms 20.053637 ms
768x768 13.796896 ms 65.077087 ms 51.375050 ms
1024x1024 22.012928 ms 85.104736 ms 67.532257 ms

P Primary Rays

PS Primary & Shadow Rays

PSR Primary, Shadow & Reflection Rays

Table 5.4: BART Museum Traversal Time K-d tree and BVH

41

Kitchen Min Max Average
K-d P
256x256 0.168320 ms 3.463552 ms 2.343429 ms
512x512 0.619104 ms 6.050944 ms 4.333699 ms
768x768 1.558848 ms 20.482529 ms 12.587105 ms
1024x1024 2.594432 ms 24.238625 ms 16.367794 ms
BVH P
256x256 0.561632 ms 2.485696 ms 1.626423 ms
512x512 2.129120 ms 4.937440 ms 3.848129 ms
768x768 5.231264 ms 12.040800 ms 9.638050 ms
1024x1024 8.874976 ms 17.859585 ms 14.620613 ms
K-d PS
256x256 1.699200 ms 9.2840000 ms 6.471941 ms
512x512 6.087904 ms 25.288063 ms 17.370169 ms
768x768 14.503360 ms 66.022881 ms 44.233585 ms
1024x1024 24.597919 ms 93.149117 ms 64.363754 ms
BVH PS
256x256 2.823552 ms 9.540672 ms 6.686491 ms
512x512 10.742688 ms 23.038624 ms 17.694319 ms
768x768 27.585567 ms 52.916767 ms 41.969330 ms
1024x1024 45.775520 ms 79.503136 ms 64.508408 ms
K-d PSR
256x256 1.723072 ms 15.293760 ms 10.312797 ms
512x512 6.205952 ms 41.103489 ms 25.812811 ms
768x768 14.777888 ms 119.055809 ms 70.401917 ms
1024x1024 25.146303 ms 163.017380 ms 98.886032 ms
BVH PSR
256x256 2.898176 ms 30.198816 ms 17.988287 ms
512x512 11.063456 ms 71.271713 ms 37.457893 ms
768x768 29.745920 ms 201.298141 ms 108.049805 ms
1024x1024 49.096802 ms 262.157043 ms 143.415359 ms

P Primary Rays

PS Primary & Shadow Rays

PSR Primary, Shadow & Reflection Rays

Table 5.5: BART Kitchen Traversal Time K-d tree and BVH

42

5.1.3 MGF

In the case of the MGF scenes the BVH has the upper hand over the K-d tree. The

results of this experiment can be seen in tables 5.6, 5.7 and 5.8.

The first scene tested was the theatre scene. In the case of the theatre scene the BVH

was slighty faster than the K-d tree with primary rays and primary with shadow rays

by around one to two milliseconds. Although the K-d tree outperforms the BVH in

the case of reflection rays where it was three to thirty milliseconds faster in cases.

The second scene tested was the conference scene. The results of this experiment

carried out on the conference scene shows that the BVH is faster than the K-d tree in

all cases and in some particular cases it is around two to three times faster than the

K-d tree.

Finally, the last scene tested was the office scene. The results for the office scene show

that the BVH was faster than the K-d tree in all cases ranging from a three to fifteen

millisecond difference between the acceleration data structures.

43

Theatre Min Max Average
K-d P
256x256 0.359488 ms 4.185504 ms 2.103928 ms
512x512 1.275776 ms 10.313184 ms 5.286815 ms
768x768 3.150528 ms 25.217888 ms 13.267407 ms
1024x1024 5.178400 ms 36.528255 ms 19.298046 ms
BVH P
256x256 0.691648 ms 2.631456 ms 1.421610 ms
512x512 2.446048 ms 9.240000 ms 4.521169 ms
768x768 6.020064 ms 22.316704 ms 10.907532 ms
1024x1024 10.231744 ms 37.817089 ms 17.551369 ms
K-d PS
256x256 2.443648 ms 8.281088 ms 4.774881 ms
512x512 6.556448 ms 19.836832 ms 13.002388 ms
768x768 16.285088 ms 47.485474 ms 31.193853 ms
1024x1024 26.262272 ms 70.616386 ms 47.151222 ms
BVH PS
256x256 2.048288 ms 6.458112 ms 4.018600 ms
512x512 7.184192 ms 19.946592 ms 12.202060 ms
768x768 17.559904 ms 48.062366 ms 28.947918 ms
1024x1024 29.530144 ms 77.946274 ms 45.793098 ms
K-d PSR
256x256 2.392192 ms 17.299168 ms 8.270072 ms
512x512 8.210048 ms 43.219456 ms 20.526312 ms
768x768 19.616896 ms 117.579262 ms 58.375954 ms
1024x1024 32.408417 ms 155.701981 ms 80.660133 ms
BVH PSR
256x256 2.715552 ms 21.389185 ms 11.131578 ms
512x512 9.964608 ms 54.639137 ms 26.712067 ms
768x768 29.745920 ms 58.375954 ms 84.549545 ms
1024x1024 39.511230 ms 191.595490 ms 113.011917 ms

P Primary Rays

PS Primary & Shadow Rays

PSR Primary, Shadow & Reflection Rays

Table 5.6: MGF Theatre Traversal Time K-d tree and BVH

44

Conference Min Max Average
K-d P
256x256 2.994656 ms 4.638560 ms 3.889329 ms
512x512 5.704544 ms 10.302048 ms 8.073959 ms
768x768 15.414368 ms 37.527519 ms 29.575521 ms
1024x1024 19.719584 ms 44.459263 ms 35.089020 ms
BVH P
256x256 1.268640 ms 2.859328 ms 1.881490 ms
512x512 2.685376 ms 4.461664 ms 3.701239 ms
768x768 7.549728 ms 12.125120 ms 10.358947 ms
1024x1024 10.443648 ms 16.117376 ms 13.963135 ms
K-d PS
256x256 6.183744 ms 8.889824 ms 7.628999 ms
512x512 11.346048 ms 20.624001 ms 16.823334 ms
768x768 31.588863 ms 67.459549 ms 54.038280 ms
1024x1024 41.038433 ms 81.769089 ms 67.061821 ms
BVH PS
256x256 3.813280 ms 8.575680 ms 5.677174 ms
512x512 7.334560 ms 13.087168 ms 10.644398 ms
768x768 20.415104 ms 34.553055 ms 29.301922 ms
1024x1024 28.677889 ms 45.029728 ms 39.017368 ms
K-d PSR
256x256 N/A N/A N/A
512x512 N/A N/A N/A
768x768 N/A N/A N/A
1024x1024 N/A N/A N/A
BVH PSR
256x256 6.349600 ms 13.411200 ms 9.467188 ms
512x512 8.523904 ms 18.216703 ms 13.155451 ms
768x768 23.713535 ms 55.405281 ms 42.685680 ms
1024x1024 31.760736 ms 66.239487 ms 51.851124 ms

P Primary Rays

PS Primary & Shadow Rays

PSR Primary, Shadow & Reflection Rays

Table 5.7: MGF Conference Traversal Time K-d tree and BVH

45

Office Min Max Average
K-d P
256x256 2.282336 ms 3.438752 ms 2.678899 ms
512x512 4.125344 ms 5.503456 ms 4.672025 ms
768x768 11.973952 ms 14.977952 ms 13.265472 ms
1024x1024 14.605024 ms 18.986784 ms 16.471052 ms
BVH P
256x256 1.063680 ms 1.638720 ms 1.262682 ms
512x512 2.371904 ms 2.953056 ms 2.638733 ms
768x768 7.264320 ms 8.994880 ms 8.214394 ms
1024x1024 8.887424 ms 11.415008 ms 10.377632 ms
K-d PS
256x256 5.675968 ms 8.383072 ms 6.899347 ms
512x512 13.032224 ms 17.562241 ms 15.666132 ms
768x768 37.140610 ms 42.789185 ms 39.395340 ms
1024x1024 51.370304 ms 57.711777 ms 54.566345 ms
BVH PS
256x256 3.628256 ms 5.159360 ms 4.313031 ms
512x512 9.080192 ms 11.031584 ms 10.292833 ms
768x768 25.479391 ms 29.543488 ms 28.032146 ms
1024x1024 35.647488 ms 40.958206 ms 38.808231 ms
K-d PSR
256x256 5.654048 ms 8.184576 ms 6.791181 ms
512x512 12.991168 ms 17.245216 ms 15.525816 ms
768x768 36.954815 ms 43.668831 ms 39.612053 ms
1024x1024 51.617825 ms 58.371391 ms 54.614952 ms
BVH PSR
256x256 3.752320 ms 5.400032 ms 4.456864 ms
512x512 9.426848 ms 11.289280 ms 10.584877 ms
768x768 26.543009 ms 30.921600 ms 28.934631 ms
1024x1024 36.927551 ms 42.186081 ms 39.981724 ms

P Primary Rays

PS Primary & Shadow Rays

PSR Primary, Shadow & Reflection Rays

Table 5.8: MGF Office Traversal Time K-d tree and BVH

46

5.2 Traversal Time Per Pixel

The traversal time per pixel experiment looks at the time taken to traverse the accel-

eration data structure for a single pixel (or ray). The results of this experiment show

the average time to traverse the acceleration data structure for a number of different

cache configurations.

5.2.1 Stanford

The results of this experiment carried out using the Stanford models shows that the

K-d tree gains a performance increase by up to just under twelve percent by increasing

the size of the L1 cache. In the case of the BVH increasing the size of the L1 cache

has a negative result in most cases. When the L1 cache is completely disabled we see

that there is a performance loss in the majority of cases.

In the case of the Stanford bunny the BVH outperforms the bunny for both primary and

primary with shadow rays, even with the K-d’s performance gain from the increased

cache size it is around 75% slower than the BVH.

Looking at the Stanford dragon the results show that the K-d tree performs better

than the BVH in most cases, but it is worth noting that the difference in traversal time

becomes smaller and smaller as the resolution is increased. In one case with primary

rays at 1024x1024 the BVH is faster than the K-d tree and with primary with shadow

rays it becomes close to outpeforming the K-d tree.

Finally, the last of the Stanford models is the Stanford buddha. In this case again

the K-d tree outperforms the BVH, but we see the same pattern again where the gap

between the K-d tree and BVH narrow as the resolution increases.

47

Bunny 16KB/48KB 48KB/16KB L1 Disabled
K-d P
256x256 1.22875 ms 1.17430 ms (+4.431%) 1.27880 ms (-4.073%)
512x512 1.56195 ms 1.40837 ms (+9.833%) 1.54535 ms (-1.063%)
768x768 1.55545 ms 1.53659 ms (+1.212%) 1.69054 ms (-8.685%)
1024x1024 1.68890 ms 1.62293 ms (+3.906%) 1.78997 ms (-5.984%)
BVH P
256x256 1.16257 ms 1.15950 ms (+0.264%) 1.20787 ms (-3.897%)
512x512 0.79086 ms 0.78968 ms (+0.149%) 0.80910 ms (-2.306%)
768x768 0.58691 ms 0.64536 ms (-9.959%) 0.65780 ms (-10.777%)
1024x1024 0.54383 ms 0.57512 ms (-5.754%) 0.58442 ms (-7.464%)
K-d PS
256x256 1.72636 ms 1.56922 ms (+9.102%) 1.71973 ms (+0.384%)
512x512 1.88288 ms 1.64852 ms (+12.447%) 1.81031 ms (+3.854%)
768x768 1.87750 ms 1.72407 ms (+8.172%) 1.89443 ms (-0.902%)
1024x1024 2.03498 ms 1.79873 ms (+11.609%) 1.97789 ms (+2.805%)
BVH PS
256x256 2.68731 ms 2.67354 ms (+0.512%) 2.76183 ms (-2.773%)
512x512 1.64260 ms 1.63110 ms (+0.700%) 1.66552 ms (-1.395%)
768x768 1.15711 ms 1.23090 ms (-6.377%) 1.24582 ms (-7.667%)
1024x1024 1.02148 ms 1.03442 ms (-1.267%) 1.04732 ms (-2.530%)

P Primary Rays

PS Primary & Shadow Rays

Table 5.9: Stanford Bunny Average Traversal Times (Per Pixel)

48

Dragon 16KB/48KB 48KB/16KB L1 Disabled
K-d P
256x256 1.47826 ms 1.42164 ms (+3.830%) 1.50828 ms (-2.031%)
512x512 1.91339 ms 1.73712 ms (+9.212%) 1.87432 ms (+2.042%)
768x768 1.95931 ms 1.92022 ms (+1.995%) 2.09122 ms (-6.732%)
1024x1024 2.16546 ms 2.04579 ms (+5.526%) 2.23100 ms (-3.027%)
BVH P
256x256 3.47106 ms 3.46517 ms (+0.170%) 3.58479 ms (-3.277%)
512x512 2.77253 ms 2.76660 ms (+0.214%) 2.85024 ms (-2.803%)
768x768 2.02301 ms 2.23469 ms (-10.464%) 2.29374 ms (-13.383%)
1024x1024 1.74730 ms 1.87446 ms (-7.278%) 1.92529 ms (-10.187%)
K-d PS
256x256 1.95353 ms 1.82236 ms (+6.715%) 1.96453 ms (-0.563%)
512x512 2.30247 ms 2.02740 ms (+11.947%) 2.21581 ms (+3.764%)
768x768 2.24419 ms 2.11847 ms (+5.602%) 2.31723 ms (-3.255%)
1024x1024 2.36666 ms 2.16550 ms (+8.500%) 2.36606 ms (+0.025%)
BVH PS
256x256 5.34768 ms 5.32514 ms (+0.422%) 5.48009 ms (-2.476%)
512x512 3.64548 ms 3.62840 ms (+0.469%) 3.73831 ms (-2.546%)
768x768 2.78200 ms 2.98684 ms (-7.363%) 3.07704 ms (-10.605%)
1024x1024 2.49699 ms 2.59533 ms (-3.938%) 2.66413 ms (-6.693%)

P Primary Rays

PS Primary & Shadow Rays

Table 5.10: Stanford Dragon Average Traversal Times (Per Pixel)

49

Buddha 16KB/48KB 48KB/16KB L1 Disabled
K-d P
256x256 1.27154 ms 1.22827 ms (+3.403%) 1.30133 ms (-2.343%)
512x512 1.66757 ms 1.53381 ms (+8.021%) 1.64974 ms (+1.069%)
768x768 1.73071 ms 1.71681 ms (+0.803%) 1.86330 ms (-7.661%)
1024x1024 1.90991 ms 1.83504 ms (+3.920%) 2.00027 ms (-4.731%)
BVH P
256x256 3.51910 ms 3.51704 ms (+0.059%) 3.64502 ms (-3.578%)
512x512 3.00823 ms 2.99752 ms (+0.356%) 3.09171 ms (-2.775%)
768x768 2.28501 ms 2.51972 ms (-10.272%) 2.59470 ms (-13.553%)
1024x1024 2.00215 ms 2.16746 ms (-8.257%) 2.22810 ms (-11.285%)
K-d PS
256x256 1.86477 ms 1.75909 ms (+5.667%) 1.8813 ms (-0.886%)
512x512 2.19201 ms 1.98930 ms (+9.248%) 2.1558 ms (+1.652%)
768x768 2.16434 ms 2.12295 ms (+1.912%) 2.3154 ms (-6.979%)
1024x1024 2.33132 ms 2.20390 ms (+5.466%) 2.4112 ms (-3.426%)
BVH PS
256x256 5.82499 ms 5.79936 ms (+0.440%) 5.99704 ms (-2.954%)
512x512 5.03099 ms 5.00617 ms (+0.493%) 5.16063 ms (-2.577%)
768x768 4.06612 ms 4.48649 ms (-10.338%) 4.62450 ms (-13.733%)
1024x1024 3.51192 ms 3.78270 ms (-7.710%) 3.89004 ms (-10.767%)

P Primary Rays

PS Primary & Shadow Rays

Table 5.11: Stanford Buddha Average Traversal Times (Per Pixel)

50

5.2.2 BART

Similarly to the experiment carried out with the Stanford models increasing the size of

the L1 cache results in a performance increase of just over 16% in cases. While with the

BVH we gain a performance increase of around 1% in cases while losing performance

in other cases. With the L1 cache disabled there is a performance loss in all cases.

In the BART kitchen scene the K-d tree has a better average traversal time than the

BVH. In the full render experiment we see that the BVH is faster with primary rays,

this is not the case here which means that the K-d tree has a higher average maximum

traversal time.

With the BART museum scene we can see that the BVH is faster in most cases than

the K-d tree with exception of the primary rays experiment where they are very close

to each other (within 8 thousandths of a millisecond in the worst case scenario).

The last scene in the BART set of models is the robots scene. In this scene we can see

that the average traversal time of the K-d tree is faster in all cases which is similar to

what we see in the full render experiment.

51

Kitchen 16KB/48KB 48KB/16KB L1 Disabled
K-d P
256x256 0.1223 ms 0.1083 ms (13.0057%) 0.1283 ms (-4.6538%)
512x512 0.0985 ms 0.0862 ms (14.3812%) 0.1027 ms (-4.012%)
768x768 0.0881 ms 0.0767 ms (14.8696%) 0.0915 ms (-3.6668%)
1024x1024 0.0819 ms 0.0712 ms (15.1462%) 0.0848 ms (-3.3629%)
BVH P
256x256 0.1371 ms 0.1367 ms (0.3269%) 0.1411 ms (-2.8423%)
512x512 0.1066 ms 0.1063 ms (0.2492%) 0.1103 ms (-3.3480%)
768x768 0.0973 ms 0.0972 ms (0.2045%) 0.1010 ms (-3.5423%)
1024x1024 0.0930 ms 0.0929 ms (0.1769%) 0.0966 ms (-3.6326%)
K-d PS
256x256 0.5813 ms 0.5102 ms (13.9651%) 0.6060 ms (-4.0548%)
512x512 0.4766 ms 0.4143 ms (15.0296%) 0.4937 ms (-3.4596%)
768x768 0.4299 ms 0.3723 ms (15.4934%) 0.4439 ms (-3.1373%)
1024x1024 0.4025 ms 0.3478 ms (15.7336%) 0.4144 ms (-2.8664%)
BVH PS
256x256 0.7136 ms 0.7048 ms (1.2551%) 0.7358 ms (-3.0069%)
512x512 0.5324 ms 0.5269 ms (1.0543%) 0.5519 ms (-3.5141%)
768x768 0.4754 ms 0.4712 ms (0.8989%) 0.4942 ms (-3.8054%)
1024x1024 0.4478 ms 0.4443 ms (0.8029%) 0.4663 ms (-3.9601%)
K-d PSR
256x256 0.7539 ms 0.6626 ms (13.7861%) 0.7884 ms (-4.3641%)
512x512 0.6329 ms 0.5510 ms (14.8892%) 0.6586 ms (-3.8963%)
768x768 0.5752 ms 0.4983 ms (15.4376%) 0.5966 ms (-3.5862%)
1024x1024 0.5400 ms 0.4663 ms (15.8160%) 0.5587 ms (-3.3392%)
BVH PSR
256x256 1.4103 ms 1.3931 ms (1.2345%) 1.4491 ms (-2.6721%)
512x512 1.0283 ms 1.0170 ms (1.1167%) 1.0584 ms (-2.8474%)
768x768 0.8755 ms 0.8663 ms (1.0670%) 0.9028 ms (-3.0189%)
1024x1024 0.7909 ms 0.7829 ms (1.0209%) 0.8166 ms (-3.1434%)

P Primary Rays

PS Primary & Shadow Rays

PSR Primary, Shadow & Reflection Rays

Table 5.12: BART Kitchen Average Traversal Times (Per Pixel)

52

Museum 16KB/48KB 48KB/16KB L1 Disabled
K-d P
256x256 0.0288 ms 0.0255 ms (13.1344%) 0.0298 ms (-3.4362%)
512x512 0.0264 ms 0.0243 ms (8.3519%) 0.0276 ms (-4.626%)
768x768 0.0256 ms 0.0237 ms (8.1135%) 0.0265 ms (-3.1399%)
1024x1024 0.0253 ms 0.0234 ms (8.2505%) 0.0262 ms (-3.3977%)
BVH P
256x256 0.0280 ms 0.0279 ms (0.2976%) 0.0294 ms (-4.6644%)
512x512 0.0265 ms 0.0265 ms (0.1077%) 0.028 ms (-5.2511%)
768x768 0.0260 ms 0.0259 ms (0.0317%) 0.0275 ms (-5.7433%)
1024x1024 0.0255 ms 0.0256 ms (-0.2232%) 0.0271 ms (-5.8425%)
K-d PS
256x256 0.0946 ms 0.0831 ms (13.8159%) 0.0969 ms (-2.4335%)
512x512 0.0895 ms 0.0786 ms (13.8247%) 0.0918 ms (-2.5604%)
768x768 0.0856 ms 0.0773 ms (10.6823%) 0.089 ms (-3.8758%)
1024x1024 0.0849 ms 0.0772 ms (9.9213%) 0.0876 ms (-3.174%)
BVH PS
256x256 0.0693 ms 0.0697 ms (-0.5704%) 0.0737 ms (-5.9254%)
512x512 0.0668 ms 0.0668 ms (-0.0057%) 0.0711 ms (-5.9597%)
768x768 0.0643 ms 0.0644 ms (-0.1823%) 0.0689 ms (-6.6526%)
1024x1024 0.0633 ms 0.0632 ms (0.1585%) 0.0675 ms (-6.2519%)
K-d PSR
256x256 0.1040 ms 0.0896 ms (16.1377%) 0.1063 ms (-2.16%)
512x512 0.0970 ms 0.0843 ms (15.1327%) 0.1004 ms (-3.3898%)
768x768 0.0941 ms 0.083 ms (13.27%) 0.0964 ms (-2.4113%)
1024x1024 0.0920 ms 0.0823 ms (11.7509%) 0.0953 ms (-3.4376%)
BVH PSR
256x256 0.0698 ms 0.069 ms (1.1133%) 0.0726 ms (-3.8382%)
512x512 0.0664 ms 0.0662 ms (0.3718%) 0.0706 ms (-5.8874%)
768x768 0.0643 ms 0.0639 ms (0.566%) 0.0685 ms (-6.2105%)
1024x1024 0.063 ms 0.0625 ms (0.8186%) 0.0671 ms (-6.0543%)

P Primary Rays

PS Primary & Shadow Rays

PSR Primary, Shadow & Reflection Rays

Table 5.13: BART Museum Average Traversal Times (Per Pixel)

53

Robots 16KB/48KB 48KB/16KB L1 Disabled
K-d P
256x256 0.0833 ms 0.073 ms (14.0007%) 0.086 ms (-3.223%)
512x512 0.072 ms 0.0626 ms (15.109%) 0.074 ms (-2.7105%)
768x768 0.0671 ms 0.0582 ms (15.4219%) 0.0688 ms (-2.42%)
1024x1024 0.0644 ms 0.0557 ms (15.6435%) 0.0659 ms (-2.2348%)
BVH P
256x256 0.1071 ms 0.1069 ms (0.1449%) 0.1106 ms (-3.1847%)
512x512 0.0968 ms 0.0967 ms (0.1338%) 0.1006 ms (-3.7244%)
768x768 0.0934 ms 0.0933 ms (0.1051%) 0.0972 ms (-3.8301%)
1024x1024 0.0918 ms 0.0917 ms (0.0885%) 0.0955 ms (-3.8903%)
K-d PS
256x256 0.1606 ms 0.1399 ms (14.7963%) 0.1658 ms (-3.1559%)
512x512 0.1405 ms 0.1215 ms (15.6348%) 0.1443 ms (-2.64%)
768x768 0.1316 ms 0.1136 ms (15.8755%) 0.1349 ms (-2.3813%)
1024x1024 0.1268 ms 0.1093 ms (16.0186%) 0.1297 ms (-2.2043%)
BVH PS
256x256 0.2017 ms 0.2002 ms (0.771%) 0.2092 ms (-3.5812%)
512x512 0.1819 ms 0.1808 ms (0.6158%) 0.1892 ms (-3.8525%)
768x768 0.1751 ms 0.1741 ms (0.5633%) 0.1823 ms (-3.9296%)
1024x1024 0.1718 ms 0.1709 ms (0.5572%) 0.1789 ms (-3.952%)
K-d PSR
256x256 0.1637 ms 0.1425 ms (14.8959%) 0.1693 ms (-3.2603%)
512x512 0.1439 ms 0.1242 ms (15.8977%) 0.148 ms (-2.7749%)
768x768 0.135 ms 0.1162 ms (16.2296%) 0.1385 ms (-2.4986%)
1024x1024 0.1301 ms 0.1117 ms (16.4519%) 0.1332 ms (-2.3097%)
BVH PSR
256x256 0.2272 ms 0.2241 ms (1.405%) 0.2344 ms (-3.0385%)
512x512 0.199 ms 0.1965 ms (1.2761%) 0.2056 ms (-3.1678%)
768x768 0.1886 ms 0.1859 ms (1.4585%) 0.1944 ms (-3.0153%)
1024x1024 0.1834 ms 0.1803 ms (1.7432%) 0.1886 ms (-2.7648%)

P Primary Rays

PS Primary & Shadow Rays

PSR Primary, Shadow & Reflection Rays

Table 5.14: BART Robots Average Traversal Times (Per Pixel)

54

5.2.3 MGF

With the MGF set of models increasing the size of the L1 cache leads to a just under

17% performance increase in certain cases.

The first scene we looked at was the conference scene, we can see that the BVH

outperforms the K-d tree in all cases here.

The second scene is the office scene. The results of this experiment carried out on the

office scene show that again the BVH is faster in all cases.

Lastly, the final scene is the theatre scene. In the case of this scene the K-d tree

outperforms the BVH in all cases.

55

Conference 16KB/48KB 48KB/16KB L1 Disabled
K-d P
256x256 0.2325 ms 0.2081 ms (11.7267%) 0.2525 ms (-7.9313%)
512x512 0.1765 ms 0.1564 ms (12.8391%) 0.1898 ms (-7.0319%)
768x768 0.1499 ms 0.1322 ms (13.3959%) 0.1601 ms (-6.3577%)
1024x1024 0.134 ms 0.1178 ms (13.7478%) 0.1424 ms (-5.8917%)
BVH P
256x256 0.1524 ms 0.1516 ms (0.5106%) 0.1568 ms (-2.811%)
512x512 0.1048 ms 0.1043 ms (0.4578%) 0.1082 ms (-3.1419%)
768x768 0.0894 ms 0.089 ms (0.4274%) 0.0925 ms (-3.3288%)
1024x1024 0.082 ms 0.0817 ms (0.3906%) 0.0849 ms (-3.4414%)
K-d PS
256x256 0.5469 ms 0.4815 ms (13.5799%) 0.5929 ms (-7.7594%)
512x512 0.4202 ms 0.3685 ms (14.0479%) 0.4509 ms (-6.7921%)
768x768 0.3606 ms 0.3156 ms (14.2709%) 0.3842 ms (-6.1414%)
1024x1024 0.3249 ms 0.2837 ms (14.5048%) 0.3445 ms (-5.6903%)
BVH PS
256x256 0.4632 ms 0.4574 ms (1.2845%) 0.4763 ms (-2.7457%)
512x512 0.3148 ms 0.3112 ms (1.167%) 0.3248 ms (-3.0522%)
768x768 0.2645 ms 0.2617 ms (1.0641%) 0.2734 ms (-3.2844%)
1024x1024 0.2394 ms 0.2371 ms (0.9617%) 0.248 ms (-3.4602%)
K-d PSR
256x256 N/A N/A N/A
512x512 N/A N/A N/A
768x768 N/A N/A N/A
1024x1024 N/A N/A N/A
BVH PSR
256x256 0.5527 ms 0.5452 ms (1.3804%) 0.5687 ms (-2.8125%)
512x512 0.3786 ms 0.3741 ms (1.2005%) 0.3898 ms (-2.8837%)
768x768 0.31 ms 0.3066 ms (1.1139%) 0.3199 ms (-3.0765%)
1024x1024 0.2746 ms 0.2718 ms (1.03%) 0.2837 ms (-3.226%)

P Primary Rays

PS Primary & Shadow Rays

PSR Primary, Shadow & Reflection Rays

Table 5.15: MGF Conference Average Traversal Times (Per Pixel)

56

Office 16KB/48KB 48KB/16KB L1 Disabled
K-d P
256x256 0.121 ms 0.1085 ms (11.4605%) 0.1292 ms (-6.3926%)
512x512 0.0942 ms 0.0828 ms (13.7335%) 0.0996 ms (-5.4228%)
768x768 0.0827 ms 0.0722 ms (14.587%) 0.087 ms (-4.9436%)
1024x1024 0.0763 ms 0.0664 ms (15.0015%) 0.08 ms (-4.5908%)
BVH P
256x256 0.0841 ms 0.084 ms (0.1313%) 0.087 ms (-3.2648%)
512x512 0.0648 ms 0.0646 ms (0.1938%) 0.0671 ms (-3.502%)
768x768 0.0579 ms 0.0578 ms (0.1803%) 0.0601 ms (-3.5941%)
1024x1024 0.0543 ms 0.0542 ms (0.172%) 0.0564 ms (-3.6463%)
K-d PS
256x256 0.4737 ms 0.418 ms (13.3174%) 0.4999 ms (-5.2458%)
512x512 0.3785 ms 0.329 ms (15.0492%) 0.3965 ms (-4.5483%)
768x768 0.3388 ms 0.2927 ms (15.7376%) 0.3535 ms (-4.1584%)
1024x1024 0.3164 ms 0.2729 ms (15.9465%) 0.3291 ms (-3.8617%)
BVH PS
256x256 0.3692 ms 0.3642 ms (1.384%) 0.3812 ms (-3.154%)
512x512 0.2878 ms 0.2845 ms (1.1684%) 0.2984 ms (-3.5305%)
768x768 0.2589 ms 0.2563 ms (1.0015%) 0.269 ms (-3.7686%)
1024x1024 0.244 ms 0.2418 ms (0.8946%) 0.2538 ms (-3.8668%)
K-d PSR
256x256 0.4698 ms 0.4135 ms (13.6156%) 0.4959 ms (-5.2589%)
512x512 0.3763 ms 0.3258 ms (15.4893%) 0.3943 ms (-4.5666%)
768x768 0.3375 ms 0.2902 ms (16.313%) 0.3519 ms (-4.0771%)
1024x1024 0.3156 ms 0.2705 ms (16.6769%) 0.328 ms (-3.786%)
BVH PSR
256x256 0.3784 ms 0.3738 ms (1.2163%) 0.391 ms (-3.2308%)
512x512 0.2928 ms 0.29 ms (0.9609%) 0.3037 ms (-3.5727%)
768x768 0.2626 ms 0.2605 ms (0.8046%) 0.2728 ms (-3.772%)
1024x1024 0.2469 ms 0.2453 ms (0.6702%) 0.2569 ms (-3.8867%)

P Primary Rays

PS Primary & Shadow Rays

PSR Primary, Shadow & Reflection Rays

Table 5.16: MGF Office Average Traversal Times (Per Pixel)

57

Theatre 16KB/48KB 48KB/16KB L1 Disabled
K-d P
256x256 0.1759 ms 0.155 ms (13.465%) 0.1856 ms (-5.2263%)
512x512 0.1405 ms 0.1228 ms (14.3772%) 0.147 ms (-4.4511%)
768x768 0.126 ms 0.1098 ms (14.7674%) 0.1313 ms (-4.0506%)
1024x1024 0.118 ms 0.1026 ms (14.9823%) 0.1227 ms (-3.8112%)
BVH P
256x256 0.1561 ms 0.1555 ms (0.4044%) 0.1611 ms (-3.0663%)
512x512 0.1331 ms 0.1327 ms (0.3332%) 0.1379 ms (-3.4768%)
768x768 0.125 ms 0.1246 ms (0.2822%) 0.1297 ms (-3.6123%)
1024x1024 0.1209 ms 0.1206 ms (0.2451%) 0.1255 ms (-3.6817%)
K-d PS
256x256 0.4423 ms 0.3877 ms (14.0781%) 0.4646 ms (-4.7982%)
512x512 0.358 ms 0.3114 ms (14.9575%) 0.3734 ms (-4.1141%)
768x768 0.3232 ms 0.2802 ms (15.3497%) 0.3358 ms (-3.7541%)
1024x1024 0.3036 ms 0.2628 ms (15.5096%) 0.3147 ms (-3.5356%)
BVH PS
256x256 0.4474 ms 0.4417 ms (1.2794%) 0.4616 ms (-3.0861%)
512x512 0.3669 ms 0.3629 ms (1.0909%) 0.38 ms (-3.4488%)
768x768 0.3374 ms 0.3341 ms (0.9734%) 0.3501 ms (-3.6239%)
1024x1024 0.3221 ms 0.3192 ms (0.9099%) 0.3345 ms (-3.7107%)
K-d PSR
256x256 0.5395 ms 0.4782 ms (12.8177%) 0.5705 ms (-5.4453%)
512x512 0.4518 ms 0.3978 ms (13.5715%) 0.4747 ms (-4.8339%)
768x768 0.4135 ms 0.3624 ms (14.1061%) 0.4329 ms (-4.4901%)
1024x1024 0.3909 ms 0.3416 ms (14.4154%) 0.4083 ms (-4.28%)
BVH PSR
256x256 0.9865 ms 0.9725 ms (1.438%) 1.0109 ms (-2.4164%)
512x512 0.7655 ms 0.7555 ms (1.3289%) 0.7854 ms (-2.5286%)
768x768 0.6672 ms 0.6585 ms (1.3182%) 0.6851 ms (-2.6222%)
1024x1024 0.6096 ms 0.6017 ms (1.3071%) 0.6265 ms (-2.7028%)

P Primary Rays

PS Primary & Shadow Rays

PSR Primary, Shadow & Reflection Rays

Table 5.17: MGF Theatre Average Traversal Times (Per Pixel)

58

5.2.4 Dynamic Scene Traversal

In the case of the dynamic scene the K-d tree had faster traversal times in all cases,

but this does not mean that the K-d tree is better to use for a dynamic scene. When

looking at a dynamic scene we must also consider the cost of rebuilding or refitting the

acceleration data structure, although this is outside the scope of this dissertation. Two

papers that look specifically at the construction of these acceleration data structures

are “Fast BVH Construction on GPUs” [18] and “Real-Time KD-Tree Construction on

Graphics Hardware” [37]. Aside from the actual build time another important factor

is the quality of the data structure which will effect the traversal.

Dynamic K-d Tree BVH
256x256 1.091703440 ms 2.450178239 ms
512x512 1.315079226 ms 2.448173646 ms
768x768 1.340206107 ms 1.949641679 ms
1024x1024 1.424558189 ms 1.827218403 ms

Table 5.18: Dynamic Scene Primary Ray Average Traversal Times

Dynamic K-d Tree BVH
256x256 1.639874173 ms 4.622630716 ms
512x512 2.291114947 ms 4.700892774 ms
768x768 2.236793679 ms 3.640467704 ms
1024x1024 2.336598239 ms 3.435019687 ms

Table 5.19: Dynamic Scene Primary & Shadow Rays Average Traversal Times (Per-
Pixel)

5.3 Cache Performance

In this experiment we looked at the cache performance of the two acceleration data

structures. To achieve this I looked at the cache hit rate for both L1 and L2 caches,

I then increased the size of the L1 cache to see the effect on the cache hit rates. In

this particular implementation I found that the cache performance of K-d trees was

higher than that of BVHs. I also tested this experiment on a Kepler based GPU and

found that the L1 cache hit rate were zero percent, this is because with the Kepler

59

architecture the L1 cache is reserved only for local memory accesses such as register

spills and stack data while the L2 cache is used for global loads. [25]

5.3.1 Stanford

When carrying out this experiment using the Stanford models the K-d tree exhibits a

very high hit rate while the hit rate of the BVH is relatively low, more than 50% lower

in cases. The results of this experiment can be seen in tables 5.20 and 5.21 below.

5.3.2 BART

In the case of both the K-d tree and BVH exhibit a very high cache hit rate in the

majority of cases. Increasing the size of the L1 cache increases the L1 cache hit rate

in all cases and in some cases with the BVH there is around a 13% increase in the hit

rate. Overall the K-d tree hit rate is higher than the BVH by around 5% to 10% in

most cases. The results of this experiment can be seen in the tables 5.22, 5.23 and 5.24

below.

5.3.3 MGF

The last set of models we looked at the cache performance of were the MGF models.

Again this shows similar results to the BART models where both acceleration data

structures have high cache hit rates with the K-d tree being slightly higher. The

results of this experiment can be seen in the tables 5.25, 5.26 and 5.27 below.

60

L1 L2 L1 (Prefer L1) L2 (Prefer L1)
K-d Bunny P
256x256 88.7254% 71.7455% 91.9615% 74.1596%
512x512 94.2964% 94.2964% 95.8374% 85.7804%
768x768 96.2554% 96.2554% 96.9571% 89.1308%
1024x1024 97.0987% 97.0987% 97.4707% 90.7466%
BVH Bunny P
256x256 41.9802% 48.3771% 47.4030% 44.8126%
512x512 51.7407% 73.0808% 58.5077% 69.7721%
768x768 59.1198% 81.3547% 66.2590% 78.3362%
1024x1024 64.4346% 85.9042% 71.7949% 83.1064%
K-d Dragon P
256x256 81.94% 81.94% 84.7443% 43.781%
512x512 87.8225% 87.8225% 91.1692% 67.1093%
768x768 91.6905% 91.6905% 94.0944% 78.9125%
1024x1024 93.9338% 93.9338% 95.4931% 84.1211%
BVH Dragon P
256x256 31.0469% 8.9269% 34.1189% 6.4467%
512x512 37.1026% 21.5203% 42.0901% 17.4883%
768x768 40.9344% 36.3629% 47.2147% 31.3302%
1024x1024 44.3192% 49.8583% 51.4148% 44.6086%
K-d Buddha P
256x256 81.4238% 35.9401% 83.753% 39.6696%
512x512 86.4045% 53.6828% 89.5807% 60.3979%
768x768 90.1743% 68.7898% 92.8409% 73.3896%
1024x1024 92.6473% 78.9089% 94.5553% 80.242%
BVH Buddha P
256x256 30.3565% 7.4372% 32.9112% 5.286%
512x512 36.0842% 17.9975% 40.4944% 14.3361%
768x768 40.3394% 31.0218% 46.1537% 26.191%
1024x1024 43.8036% 43.6431% 50.5967% 38.3157%

P Primary Rays

Prefer L1 48KB L1 with 16KB Shared Memory

Table 5.20: Stanford K-d Primary Ray Cache Hit Rates

61

L1 L2 L1 (Prefer L1) L2 (Prefer L1)
K-d Bunny P
256x256 89.0083% 71.8903% 91.8062% 72.1191%
512x512 94.373% 88.0727% 95.42% 83.0812%
768x768 96.1501% 91.8008% 96.5701% 86.7545%
1024x1024 96.8642% 93.3026% 97.0813% 88.3513%
BVH Bunny P
256x256 42.1724% 66.8537% 54.7251% 62.3881%
512x512 53.7336% 85.5344% 67.7834% 81.1074%
768x768 61.1924% 90.2891% 74.1427% 86.7543%
1024x1024 66.5673% 92.4605% 78.0122% 89.5525%
K-d Dragon P
256x256 81.6642% 35.1682% 83.762% 39.2567%
512x512 87.59% 57.3134% 90.0499% 62.4169%
768x768 91.5512% 74.0978% 93.1141% 73.7321%
1024x1024 91.5535% 74.1044% 94.5708% 78.3563%
BVH Dragon P
256x256 28.6822% 12.3618% 33.4067% 9.5204%
512x512 34.521% 25.407% 42.6423% 21.1018%
768x768 39.2113% 41.3351% 50.0489% 35.7574%
1024x1024 43.1911% 56.4027% 55.5731% 50.1062%
K-d Buddha P
256x256 80.6927% 29.7373% 82.3235% 32.5334%
512x512 84.8232% 45.186% 87.5864% 51.0954%
768x768 88.2942% 60.1196% 90.958% 65.2007%
1024x1024 90.8436% 71.8014% 92.9431% 73.292%
BVH Buddha P
256x256 27.2272% 10.1599% 31.0499% 7.6032%
512x512 31.8826% 19.0275% 38.1697% 15.2827%
768x768 36.1696% 29.7772% 44.8475% 24.8189%
1024x1024 39.6891% 41.0252% 50.0185% 35.2469%

P Primary Rays

Prefer L1 48KB L1 with 16KB Shared Memory

Table 5.21: Stanford K-d Primary & Shadow Ray Cache Hit Rates

62

L1 L2 L1 (Prefer L1) L2 (Prefer L1)
K-d P
256x256 97.7413% 69.79% 97.9075% 67.2745%
512x512 98.6715% 64.3775% 98.8055% 60.866%
768x768 99.0783% 59.1768% 99.164% 55.6125%
1024x1024 99.286% 55.451% 99.3558% 51.4198%
BVH P
256x256 91.5188% 65.0053% 93.8635% 60.9183%
512x512 95.5228% 57.9355% 97.4063% 52.0188%
768x768 96.952% 52.2713% 98.4738% 45.5565%
1024x1024 97.668% 48.0945% 98.9575% 40.6923%
K-d PS
256x256 98.3215% 81.7288% 98.7145% 78.1905%
512x512 98.9815% 77.0075% 99.2623% 73.379%
768x768 99.2893% 73.045% 99.4865% 69.3603%
1024x1024 99.446% 69.905% 99.614% 65.9145%
BVH PS
256x256 76.1943% 56.7783% 90.3443% 64.126%
512x512 77.5993% 52.9188% 92.0555% 56.1723%
768x768 71.4133% 52.8798% 89.8353% 52.2493%
1024x1024 71.6673% 52.0098% 90.1033% 49.9428%
K-d PSR
256x256 98.072% 80.6815% 98.6275% 78.689%
512x512 98.6533% 76.6678% 99.1658% 74.1268%
768x768 98.9973% 73.21% 99.3918% 70.573%
1024x1024 99.1845% 70.659% 99.5178% 67.6028%
BVH PSR
256x256 88.9655% 64.3745% 95.0988% 65.7275%
512x512 89.0273% 61.6588% 95.4888% 58.334%
768x768 68.0555% 54.339% 86.2805% 53.4748%
1024x1024 68.0825% 53.823% 86.6735% 52.4505%

P Primary Rays

PS Primary & Shadow Rays

PSR Primary, Shadow & Reflection Rays

Table 5.22: BART Robots Cache Hit Rates

63

L1 L2 L1 (Prefer L1) L2 (Prefer L1)
K-d P
256x256 96.8963% 79.0955% 97.2358% 73.6788%
512x512 98.074% 80.427% 98.2738% 74.0298%
768x768 98.5803% 78.5195% 98.7253% 71.718%
1024x1024 98.8523% 75.6958% 98.9805% 68.78%
BVH P
256x256 86.4695% 63.5003% 89.7248% 58.3555%
512x512 92.7368% 68.079% 95.0098% 62.3025%
768x768 95.0435% 66.8953% 96.871% 60.191%
1024x1024 96.227% 64.4285% 97.761% 56.8758%
K-d PS
256x256 96.349% 90.207% 97.746% 89.1208%
512x512 97.8343% 93.4165% 98.5883% 90.9583%
768x768 98.4113% 93.6118% 98.9255% 90.988%
1024x1024 98.7% 93.1858% 99.1125% 90.3358%
BVH PS
256x256 77.913% 68.1305% 88.3568% 67.4905%
512x512 79.431% 69.0908% 90.652% 72.0895%
768x768 74.8335% 67.0318% 89.1448% 67.1693%
1024x1024 75.4248% 65.5963% 89.7435% 66.245%
K-d PSR
256x256 94.6063% 83.1018% 97.0385% 83.7025%
512x512 95.9943% 85.6793% 97.8038% 85.0753%
768x768 96.6113% 86.4218% 98.1223% 85.4313%
1024x1024 96.991% 86.7428% 98.3088% 85.5685%
BVH PSR
256x256 84.6468% 63.944% 90.3708% 60.2533%
512x512 84.821% 64.6758% 91.0345% 61.453%
768x768 71.955% 60.2195% 83.9625% 55.8888%
1024x1024 72.0948% 60.4005% 84.6515% 56.2023%

P Primary Rays

PS Primary & Shadow Rays

PSR Primary, Shadow & Reflection Rays

Table 5.23: BART Kitchen Cache Hit Rates

64

L1 L2 L1 (Prefer L1) L2 (Prefer L1)
K-d P
256x256 97.7113% 88.2573% 97.9967% 83.7513%
512x512 98.6953% 87.95% 98.8073% 82.2633%
768x768 99.0113% 85.438% 99.088% 79.036%
1024x1024 99.1767% 82.78% 99.262% 75.4333%
BVH P
256x256 85.9273% 71.3567% 89.3173% 67.896%
512x512 92.408% 71.014% 94.808% 66.894%
768x768 94.6433% 68.0147% 96.8% 62.6333%
1024x1024 95.8167% 64.9453% 97.784% 58.478%
K-d PS
256x256 97.462% 94.6767% 98.406% 92.5467%
512x512 98.576% 95.7227% 99.024% 93.354%
768x768 98.9207% 95.216% 99.262% 92.33%
1024x1024 99.098% 94.4973% 99.3993% 90.868%
BVH PS
256x256 72.7587% 67.2787% 85.3713% 74.1453%
512x512 73.394% 63.9453% 87.728% 75.1167%
768x768 67.87% 60.046% 86.1973% 69.282%
1024x1024 67.9747% 58.6933% 86.642% 68.2953%
K-d PSR
256x256 95.2353% 92.054% 97.5273% 91.732%
512x512 96.6413% 93.742% 98.2687% 92.994%
768x768 97.298% 94.2993% 98.58% 93.072%
1024x1024 97.6967% 94.622% 98.7647% 93.246%
BVH PSR
256x256 86.7153% 73.2727% 91.8567% 76.646%
512x512 85.6567% 70.706% 92.0467% 76.1287%
768x768 65.322% 60.8047% 81.3373% 65.6427%
1024x1024 65.084% 60.1087% 81.878% 65.496%

P Primary Rays

PS Primary & Shadow Rays

PSR Primary, Shadow & Reflection Rays

Table 5.24: BART Museum Cache Hit Rates

65

L1 L2 L1 (Prefer L1) L2 (Prefer L1)
K-d P
256x256 96.3263% 79.807% 97.522% 80.7903%
512x512 97.4533% 86.9513% 98.404% 86.2403%
768x768 97.9778% 89.4555% 98.761% 86.929%
1024x1024 98.2965% 90.0003% 98.9623% 86.6288%
BVH P
256x256 76.069% 62.9155% 81.8743% 58.0993%
512x512 84.885% 73.2975% 89.9703% 67.927%
768x768 88.6505% 76.1685% 93.0978% 70.566%
1024x1024 90.725% 76.502% 94.7595% 70.3408%
K-d PS
256x256 95.6685% 78.8983% 97.869% 84.3118%
512x512 96.9843% 88.2203% 98.64% 90.6388%
768x768 97.6148% 91.8575% 98.9423% 92.1405%
1024x1024 97.9815% 93.1853% 99.1023% 92.6218%
BVH PS
256x256 73.3758% 57.5068% 82.5275% 51.4895%
512x512 74.126% 63.997% 84.9703% 62.5568%
768x768 69.7213% 61.9723% 85.9915% 66.4673%
1024x1024 69.7008% 61.326% 86.5578% 67.7203%
K-d PSR
256x256 N/A N/A N/A N/A
512x512 N/A N/A N/A N/A
768x768 N/A N/A N/A N/A
1024x1024 N/A N/A N/A N/A
BVH PSR
256x256 86.3325% 59.4543% 79.561% 49.9278%
512x512 85.7995% 64.64% 81.4608% 57.4695%
768x768 67.0698% 59.3788% 82.584% 61.539%
1024x1024 66.8613% 59.3833% 83.3263% 62.4985%

P Primary Rays

PS Primary & Shadow Rays

PSR Primary, Shadow & Reflection Rays

Table 5.25: MGF Conference Cache Hit Rates

66

L1 L2 L1 (Prefer L1) L2 (Prefer L1)
K-d P
256x256 97.678% 82.98% 97.916% 78.98%
512x512 98.432% 82.796% 98.638% 76.464%
768x768 98.856% 80.106% 99.016% 73.636%
1024x1024 99.106% 77.054% 99.236% 70.132%
BVH P
256x256 88.562% 70.758% 90.762% 67.294%
512x512 93.892% 68.878% 95.522% 64.848%
768x768 96.062% 65.38% 97.356% 59.71%
1024x1024 97.06% 61.572% 98.224% 54.882%
K-d PS
256x256 97.684% 94.582% 98.69% 92.106%
512x512 98.586% 95.638% 99.208% 93.416%
768x768 98.98% 95.494% 99.442% 93.276%
1024x1024 99.162% 94.728% 99.572% 92.134%
BVH PS
256x256 75.244% 69.666% 85.712% 70.698%
512x512 75.93% 66.984% 87.32% 70.704%
768x768 70.644% 63.624% 87.924% 70.072%
1024x1024 70.744% 62.286% 88.272% 68.978%
K-d PSR
256x256 97.69% 94.476% 98.724% 93.022%
512x512 98.584% 95.096% 99.218% 93.87%
768x768 98.944% 94.644% 99.446% 93.242%
1024x1024 99.136% 94.136% 99.57% 92.404%
BVH PSR
256x256 83.286% 69.394% 82.646% 66.06%
512x512 83.182% 66.762% 84.152% 65.606%
768x768 68.014% 60.802% 84.796% 64.274%
1024x1024 67.924% 59.714% 85.258% 63.526%

P Primary Rays

PS Primary & Shadow Rays

PSR Primary, Shadow & Reflection Rays

Table 5.26: MGF Office Cache Hit Rates

67

L1 L2 L1 (Prefer L1) L2 (Prefer L1)
K-d P
256x256 98.0003% 82.9588% 98.1758% 78.3093%
512x512 98.7038% 79.3348% 98.8655% 74.9638%
768x768 99.0235% 75.9298% 99.183% 71.515%
1024x1024 99.2113% 72.7668% 99.3693% 68.4588%
BVH P
256x256 86.5248% 79.116% 91.4868% 75.1303%
512x512 92.1983% 75.623% 94.9525% 69.8095%
768x768 94.4308% 71.753% 97.79% 64.4143%
1024x1024 95.5773% 68.4743% 98.4958% 59.876%
K-d PS
256x256 97.9488% 93.926% 98.7278% 91.997%
512x512 98.7753% 94.3013% 99.2185% 91.9113%
768x768 99.1065% 93.3765% 99.4435% 90.8473%
1024x1024 99.2865% 92.2063% 99.572% 89.5775%
BVH PS
256x256 77.2243% 72.756% 90.2973% 77.6628%
512x512 78.6733% 68.9773% 92.504% 77.8218%
768x768 74.6138% 65.2498% 90.32% 69.4663%
1024x1024 74.9068% 63.7095% 90.7123% 67.89%
K-d PSR
256x256 96.4188% 89.49% 98.103% 89.1083%
512x512 97.015% 90.2285% 98.478% 89.925%
768x768 97.3238% 90.3758% 98.6543% 89.764%
1024x1024 97.5343% 90.2555% 98.767% 89.5728%
BVH PSR
256x256 87.6438% 73.6593% 93.1338% 73.9283%
512x512 87.8355% 73.3208% 93.6445% 75.108%
768x768 71.4448% 65.3403% 84.0355% 65.3415%
1024x1024 71.5355% 64.6305% 84.4715% 65.0268%

P Primary Rays

PS Primary & Shadow Rays

PSR Primary, Shadow & Reflection Rays

Table 5.27: MGF Theatre Cache Hit Rates

68

5.3.4 Dynamic Scene

This experiment looks at the cache performance of the dynamic scene. The results of

this can be seen in table 5.28 where the K-d tree exhibts much higher cache hit rates

for both L1 and L2 caches compared to the BVH.

Dynamic Scene L1 L2
K-d P
256x256 80.7616% 31.4108%
512x512 84.3577% 46.2912%
768x768 87.3612% 55.8229%
1024x1024 89.6358% 63.6617%
BVH P
256x256 29.2111% 7.3424%
512x512 33.4784% 15.7988%
768x768 37.8214% 22.5094%
1024x1024 41.8186% 28.5494%
K-d PS
256x256 79.3588% 27.4060%
512x512 82.7308% 41.4814%
768x768 85.9977% 51.3539%
1024x1024 88.7248% 59.6181%
BVH PS
256x256 27.1543% 9.3232%
512x512 31.3039% 18.9633%
768x768 35.8362% 26.2707%
1024x1024 40.2724% 32.1637%

P Primary Rays

PS Primary & Shadow Rays

Table 5.28: Dynamic Scene Cache Hit Rates

69

5.4 Branch Divergence

In this section the results of the branch divergence experiment are presented. Branch

divergence is important as it can have a direct effect on the performance of a piece

of code due to the SM units not being fully utilised. Looking at these results of this

experiment we can see that for BVHs the branch divergence percentage is very low,

while with the K-d tree it sits around ten to thirteen percent. This means that the K-d

tree may be able to be optimised to gain better performance from a branch divergence

perspective as the warp is not fully utilised when branch divergence occurs.

5.4.1 Stanford

The results for the branch divergence experiment when using the Stanford models

should a divergent branch rate of around 13% for the K-d tree. In the case of the BVH

the divergent branch rates are very low, less than 1% in all cases. The results of this

experiment can be seen in the tables 5.29 and 5.30 below.

Bunny 256x256 512x512 768x768 1024x1024
K-d Tree
Primary 12.3271% 11.5262% 10.7446% 10.0655%
Shadow 12.2952% 11.3501% 10.5450% 9.82812%
BVH
Primary 0.16306% 0.29513% 0.37713% 0.43166%
Shadow 0.09765% 0.17580% 0.22524% 0.25670%

Table 5.29: Stanford Bunny Branch Divergence

Dragon 256x256 512x512 768x768 1024x1024
K-d Tree
Primary 13.0173% 12.7861% 12.7861% 11.9662%
Shadow 13.1575% 12.9589% 12.9589% 12.1049%
BVH
Primary 0.04943% 0.09297% 0.09297% 0.18208%
Shadow 0.02675% 0.05204% 0.05204% 0.10196%

Table 5.30: Stanford Dragon Branch Divergence

70

Buddha 256x256 512x512 768x768 1024x1024
K-d Tree
Primary 12.8408% 12.7178% 12.4213% 12.0739%
Shadow 12.9624% 12.8977% 12.5958% 12.2889%
BVH
Primary 0.05601% 0.10336% 0.07722% 0.20588%
Shadow 0.02827% 0.05184% 0.15518% 0.10252%

Table 5.31: Stanford Buddha Branch Divergence

5.4.2 MGF

With the MGF models we can see that the K-d tree exhibits a branch divergence rate

of 3% to 7% while again the BVH has a branch divergence rate of less than one percent.

We can see the results of this experiment in the tables 5.32, 5.33 and 5.34 below.

Theatre 256x256 512x512 768x768 1024x1024
K-d Tree
Primary 6.5332% 4.8082% 3.8410% 3.2119%
Shadow 6.7160% 4.9502% 3.9702% 3.3312%
Reflect 7.2184% 6.0835% 5.3738% 4.8726%
BVH
Primary 0.1113% 0.1118% 0.1110% 0.1102%
Shadow 0.0916% 0.1038% 0.1092% 0.1123%
Reflect 0.0643% 0.0725% 0.0777% 0.0815%

Table 5.32: MGF Theatre Branch Divergence

Conference 256x256 512x512 768x768 1024x1024
K-d Tree
Primary 7.5441% 6.5076% 5.7711% 5.1906%
Shadow 7.0218% 5.9486% 5.2271% 4.6778%
Reflect N/A N/A N/A N/A
BVH
Primary 0.1545% 0.1699% 0.1746% 0.1771%
Shadow 0.1046% 0.1345% 0.1500% 0.1597%
Reflect 0.0958% 0.1222% 0.1378% 0.1483%

Table 5.33: MGF Conference Branch Divergence

71

Office 256x256 512x512 768x768 1024x1024
K-d Tree
Primary 6.6141% 4.9841% 4.0503% 3.4318%
Shadow 6.7019% 4.9063% 3.9104% 3.2688%
Reflect 6.7083% 4.9313% 3.9353% 3.2932%
BVH
Primary 0.2022% 0.2229% 0.2324% 0.2388%
Shadow 0.1481% 0.1779% 0.1916% 0.1996%
Reflect 0.1477% 0.1772% 0.1909% 0.1989%

Table 5.34: MGF Office Branch Divergence

5.4.3 BART

When carrying out this experiment with the BART set of models we get a branch

divergence rate between 2% to 5% with the K-d tree and again the BVH divergent

branch rate is less than one percent. We can see the results of this experiment in the

tables 5.35, 5.36 and 5.37 below.

Robots 256x256 512x512 768x768 1024x1024
K-d Tree
Primary 4.9341% 3.3518% 2.5719% 2.1057%
Shadow 4.8862% 3.3007% 2.5282% 2.0733%
Reflect 5.0801% 3.5670% 2.7996% 2.3371%
BVH
Primary 0.1087% 0.1173% 0.1204% 0.1219%
Shadow 0.1113% 0.1206% 0.1240% 0.1257%
Reflect 0.1034% 0.1147% 0.1193% 0.1217%

Table 5.35: BART Robots Branch Divergence

72

Kitchen 256x256 512x512 768x768 1024x1024
K-d Tree
Primary 8.1629% 6.3662% 5.2883% 4.5539%
Shadow 8.4829% 6.6189% 5.5156% 4.7678%
Reflect 9.3218% 7.9368% 7.0375% 6.3906%
BVH
Primary 0.1293% 0.1322% 0.1321% 0.1319%
Shadow 0.0905% 0.1114% 0.1203% 0.1253%
Reflect 0.0678% 0.0831% 0.0920% 0.0982%

Table 5.36: BART Kitchen Branch Divergence

Museum 256x256 512x512 768x768 1024x1024
K-d Tree
Primary 9.5702% 7.6559% 6.4748% 5.6434%
Shadow 9.2671% 7.3506% 6.1856% 5.3772%
Reflect 10.4329% 9.1405% 8.2340% 7.5476%
BVH
Primary 0.1344% 0.1606% 0.1703% 0.1752%
Shadow 0.1416% 0.1747% 0.1881% 0.1952%
Reflect 0.0878% 0.1183% 0.1364% 0.1484%

Table 5.37: BART Museum Branch Divergence

73

5.5 Instruction Statistics

The results of the instruction statistics experiment are presented in this section. The

experiment was carried out over four hundred kernel launches where each kernel launch

renders a single frame.

5.5.1 Stanford

The results of the instruction statistics experiment executed with the Stanford models

shows that there is some correlation to the results of the traversal experiment where

as the resolution increases the gap between the K-d tree and BV narrows. The results

of this experiment can be seen in the tables 5.38, 5.39 and 5.40 below.

Figure 5.1: Dragon Primary Rays Instructions Executed

5.5.2 BART

The instruction statistics experiment using the BART set of models shows that the

BVH executes more instructions during the robots and kitchen scenes which correlates

74

Bunny Min Max Avg
Primary K-d
256x256 8,113,908 13,821,294 10,689,697
512x512 25,789,073 44,737,749 34,735,123
768x768 50,421,151 88,162,328 68,504,532
1024x1024 81,381,976 141,499,549 110,479,822
Primary BVH
256x256 10,259,705 16,944,892 13,146,725
512x512 21,166,874 32,657,490 26,101,344
768x768 35,662,501 53,705,256 43,527,602
1024x1024 53,865,371 80,495,600 65,599,326
Primary, Shadow K-d
256x256 16,603,083 26,685,409 21,306,060
512x512 52,240,964 87,138,315 68,235,223
768x768 102,646,942 173,398,160 134,479,161
1024x1024 165,052,302 280,365,628 216,162,378
Primary, Shadow BVH
256x256 22,040,755 28,567,205 24,760,668
512x512 45,116,619 57,611,733 50,428,857
768x768 75,198,461 95,232,629 84,242,856
1024x1024 113,533,466 143,505,662 127,528,932

Table 5.38: Instructions Executed Stanford Bunny

75

Dragon Min Max Avg
Primary K-d
256x256 9,810,782 19,040,104 14,152,982
512x512 33,393,987 64,770,057 47,888,486
768x768 68,016,269 132,084,320 96,986,543
1024x1024 111,611,486 217,125,478 159,368,537
Primary BVH
256x256 23,537,422 68,516,898 44,444,564
512x512 46,063,384 125,441,885 88,310,362
768x768 68,928,640 174,121,535 126,357,093
1024x1024 94,100,223 228,627,963 166,748,826
Primary, Shadow K-d
256x256 23,370,475 37,054,622 29,147,271
512x512 78,823,337 126,290,561 98,050,145
768x768 159,499,607 256,865,496 198,245,056
1024x1024 260,283,086 421,853,659 323,800,439
Primary, Shadow BVH
256x256 74,650,892 106,911,410 90,992,207
512x512 153,367,748 210,955,588 185,736,296
768x768 225,309,683 308,279,530 271,221,728
1024x1024 300,313,293 406,280,033 357,970,041

Table 5.39: Instructions Executed Stanford Dragon

76

Buddha Min Max Avg
Primary K-d
256x256 5,485,062 13,391,526 10,362,370
512x512 18,460,528 46,263,618 35,245,910
768x768 37,310,467 94,356,821 71,562,185
1024x1024 61,392,361 155,703,732 117,758,349
Primary BVH
256x256 13,653,712 52,337,691 36,253,867
512x512 31,045,644 105,081,374 76,185,802
768x768 47,004,872 153,494,709 111,550,610
1024x1024 64,008,190 197,192,819 146,123,606
Primary, Shadow K-d
256x256 13,785,464 25,987,887 21,220,451
512x512 46,832,152 88,817,687 72,286,267
768x768 95,049,723 181,681,576 146,776,536
1024x1024 156,137,620 298,500,257 241,167,324
Primary, Shadow BVH
256x256 58,262,629 92,241,679 77,329,485
512x512 126,406,565 196,892,463 170,539,690
768x768 192,863,632 291,627,325 257,035,295
1024x1024 255,670,909 380,905,597 338,346,077

Table 5.40: Instructions Executed Stanford Buddha

77

directly with the results of the full render experiment. The results of this experiment

can be seen in the tables 5.41, 5.42 and 5.43 below.

5.5.3 MGF

When carrying out this experiment using the MGF models we can see that in the

conference and office scenes the BVH executes less instructions than the K-d tree which

shows some correlation to the full render experiment. The results of this experiment

can be seen in the tables 5.44, 5.45 and 5.46 below.

78

Robots Min Max Avg
Primary K-d
256x256 3,893,960 19,080,977 9,703,300
512x512 15,436,000 61,200,474 33,421,200
768x768 34,352,243 121,605,285 70,027,189
1024x1024 60,657,049 198,705,107 119,394,738
Primary BVH
256x256 6,928,423 21,036,077 14,501,004
512x512 27,289,497 73,557,999 52,795,158
768x768 61,298,382 157,952,756 114,987,234
1024x1024 108,543,525 274,514,668 201,111,415
Primary, Shadow K-d
256x256 9,008,077 34,362,925 18,637,198
512x512 35,716,748 109,945,633 64,960,026
768x768 80,134,883 218,138,939 136,899,949
1024x1024 142,235,943 357,383,559 234,312,674
Primary, Shadow BVH
256x256 12,517,192 39,412,250 26,893,168
512x512 49,379,705 135,818,771 97,475,622
768x768 110,802,706 289,572,993 211,809,459
1024x1024 196,366,131 501,104,144 370,034,776
Primary, Shadow, Reflect K-d
256x256 8,993,357 40,151,500 19,969,385
512x512 35,670,317 126,904,435 68,876,338
768x768 80,039,650 249,282,651 144,230,498
1024x1024 142,075,106 405,586,261 245,617,725
Primary, Shadow, Reflect BVH
256x256 11,546,323 53,537,135 28,094,209
512x512 45,554,743 165,353,722 97,877,201
768x768 102,217,739 333,908,341 208,766,957
1024x1024 181,157,263 562,925,193 360,683,141

Table 5.41: Instructions Executed BART Robots

79

Museum Min Max Avg
Primary K-d
256x256 6,915,683 24,174,990 18,393,939
512x512 24,120,852 76,965,655 59,430,693
768x768 51,630,527 151,682,443 119,131,803
1024x1024 89,252,944 248,263,007 196,681,745
Primary BVH
256x256 6,003,565 15,205,904 12,254,406
512x512 23,184,787 47,364,325 38,978,725
768x768 51,212,868 99,777,941 81,240,263
1024x1024 87,620,119 171,853,325 139,200,067
Primary, Shadow K-d
256x256 23,775,747 56,265,591 46,495,781
512x512 85,523,712 180,219,941 151,768,362
768x768 184,265,095 358,144,079 306,388,323
1024x1024 319,439,432 587,407,925 507,895,994
Primary, Shadow BVH
256x256 18,012,363 40,359,200 33,511,315
512x512 67,244,864 121,298,101 103,876,158
768x768 148,006,798 245,764,159 213,406,456
1024x1024 260,140,661 414,139,306 362,306,073
Primary, Shadow, Reflect K-d
256x256 27,909,854 111,816,926 89,539,788
512x512 98,005,465 358,388,986 290,216,904
768x768 208,265,363 710,647,850 580,092,571
1024x1024 358,790,136 1,159,457,233 952,226,235
Primary, Shadow, Reflect BVH
256x256 20,738,613 123,330,855 91,935,270
512x512 74,346,218 331,648,786 251,475,802
768x768 161,265,755 611,743,865 471,190,428
1024x1024 281,492,451 965,165,374 751,378,516

Table 5.42: Instructions Executed BART Museum

80

Kitchen Min Max Avg
Primary K-d
256x256 2,202,990 21,504,402 14,480,209
512x512 8,735,391 67,863,897 46,618,121
768x768 19,598,835 134,604,958 93,636,909
1024x1024 34,787,269 219,757,721 154,656,529
Primary BVH
256x256 7,742,298 26,768,593 18,133,653
512x512 30,224,992 75,639,120 57,285,970
768x768 67,526,863 149,275,073 118,577,499
1024x1024 119,647,759 248,506,499 202,204,437
Primary, Shadow K-d
256x256 21,374,975 100,733,199 66,963,934
512x512 81,968,914 320,082,911 219,009,182
768x768 181,525,823 634,199,828 443,521,130
1024x1024 320,188,057 1,035,395,153 736,988,233
Primary, Shadow BVH
256x256 41,898,795 123,177,816 87,539,293
512x512 164,097,920 345,722,982 266,108,855
768x768 366,810,402 671,126,230 539,373,130
1024x1024 649,838,268 1,103,591,463 907,716,152
Primary, Shadow, Reflect K-d
256x256 21,075,353 151,920,019 94,517,448
512x512 80,880,321 492,378,465 308,438,507
768x768 179,166,880 986,674,577 621,356,706
1024x1024 316,075,336 1,614,622,767 1026,222,116
Primary, Shadow, Reflect BVH
256x256 41,118,480 349,917,717 167,763,894
512x512 161,065,481 971,043,595 488,551,935
768x768 360,043,993 1,809,405,642 941,268,890
1024x1024 637,854,153 2,842,246,878 1,518,959,409

Table 5.43: Instructions Executed BART Kitchen

81

Conference Min Max Avg
Primary K-d
256x256 16,854,794 37,494,106 27,911,959
512x512 53,122,044 114,483,586 85,453,180
768x768 105,518,814 218,205,088 163,435,149
1024x1024 172,617,314 344,102,462 259,374,342
Primary BVH
256x256 13,285,274 25,157,138 19,671,433
512x512 39,981,855 67,630,919 55,049,208
768x768 80,868,911 127,675,202 106,877,915
1024x1024 135,700,207 206,863,511 175,309,331
Primary, Shadow K-d
256x256 38,689,920 79,027,809 64,141,677
512x512 123,778,986 245,734,974 199,838,447
768x768 247,125,460 474,459,892 386,564,576
1024x1024 407,126,661 754,599,232 618,477,868
Primary, Shadow BVH
256x256 35,772,327 70,281,563 56,185,600
512x512 107,840,494 189,138,522 155,924,804
768x768 216,080,068 357,900,168 298,931,376
1024x1024 361,386,129 576,356,466 485,383,263
Primary, Shadow, Reflect K-d
256x256 N/A N/A N/A
512x512 N/A N/A N/A
768x768 N/A N/A N/A
1024x1024 N/A N/A N/A
Primary, Shadow, Reflect BVH
256x256 37,334,609 81,297,261 64,889,040
512x512 110,037,241 219,665,775 177,859,152
768x768 217,755,856 402,301,337 332,412,734
1024x1024 360,133,816 631,253,217 528,070,215

Table 5.44: Instructions Executed MGF Conference

82

Office Min Max Avg
Primary K-d
256x256 11,881,185 17,347,495 14,931,366
512x512 37,508,613 52,579,038 45,832,265
768x768 74,547,840 102,349,813 90,078,543
1024x1024 122,598,058 166,143,944 147,253,403
Primary BVH
256x256 9,411,016 12,527,982 11,188,651
512x512 29,865,112 37,937,003 34,464,561
768x768 61,326,571 76,464,852 69,720,029
1024x1024 103,102,298 127,850,154 116,774,156
Primary, Shadow K-d
256x256 50,850,809 60,904,499 56,552,214
512x512 162,613,907 190,557,369 178,034,182
768x768 328,693,749 380,471,543 356,665,276
1024x1024 547,213,764 628,242,585 590,481,703
Primary, Shadow BVH
256x256 42,053,396 49,152,448 45,867,812
512x512 134,579,333 151,825,923 143,868,974
768x768 275,657,047 308,630,425 293,040,132
1024x1024 465,684,433 517,279,362 493,029,710
Primary, Shadow, Reflect K-d
256x256 51,090,413 60,552,907 56,394,823
512x512 162,830,975 189,252,084 177,211,481
768x768 328,615,895 377,573,370 354,734,615
1024x1024 546,485,778 623,290,065 587,025,135
Primary, Shadow, Reflect BVH
256x256 42,552,714 48,843,412 45,749,832
512x512 134,693,538 150,047,767 142,671,755
768x768 274,664,809 304,336,491 289,762,925
1024x1024 462,976,395 509,308,775 486,769,533

Table 5.45: Instructions Executed MGF Office

83

Theatre Min Max Avg
Primary K-d
256x256 4,745,966 40,903,308 21,052,700
512x512 17,569,671 130,698,856 66,875,047
768x768 38,308,847 264,168,078 134,541,174
1024x1024 67,391,584 441,949,397 223,512,457
Primary BVH
256x256 10,035,066 39,568,036 20,847,203
512x512 38,698,152 150,353,436 71,791,766
768x768 85,947,617 331,928,713 152,314,081
1024x1024 151,949,123 585,002,923 262,580,169
Primary, Shadow K-d
256x256 23,321,616 81,713,347 52,114,573
512x512 85,178,041 257,548,321 167,409,981
768x768 184,774,540 520,164,654 338,780,981
1024x1024 322,168,452 867,820,226 564,610,044
Primary, Shadow BVH
256x256 29,754,531 86,394,063 56,594,810
512x512 112,023,782 307,901,896 187,888,177
768x768 246,659,993 663,259,074 391,361,900
1024x1024 434,303,177 1,153,353,380 666,869,977
Primary, Shadow, Reflect K-d
256x256 30,299,378 157,597,159 77,091,884
512x512 106,111,669 497,247,546 245,310,020
768x768 225,448,617 988,644,301 490,600,582
1024x1024 387,058,854 1,618,106,458 808,463,165
Primary, Shadow, Reflect BVH
256x256 38,835,425 224,463,045 117,063,714
512x512 144,093,745 695,823,205 362,734,548
768x768 314,979,004 1,372,233,168 713,573,324
1024x1024 535,098,839 2,238,891,545 1,162,336,266

Table 5.46: Instructions Executed MGF Theatre

84

Chapter 6

Conclusions & Future Work

6.1 Conclusion

The goal of this dissertation was to look at the characteristics that K-d trees and BVHs

exhibit when used for real-time ray tracing, in particular looking at the traversal of

these data structures. To compare these structures I used the codebase from the paper

“Ray Tracing on a GPU with CUDA Comparative Study of Three Algorithms” which

had a CUDA based implementation of the acceleration structures I required.

From the results of this dissertation we can see that in most cases K-d tree performs

better at lower resolutions than the BVH for just the traversal of the tree. The K-d

tree also performs better in the dynamic scene in all cases but we must also consider

the cost of building or refitting the acceleration structure in which case it is possible

that the BVH will end up being faster overall. Overall based on the results of full

render experiment in the previous chapter the BVH performs better than the K-d tree.

We can also see in the branch divergence experiment that the K-d tree has around a

ten percent divergent branch rate which means there is a potential performance gain

to be had whereas the branch divergence percentage with the BVH implementation is

very low.

The instruction statistics experiment shows some correlation to the traversal exper-

85

iment, in most cases the number of instructions executed was higher with the BVH

with the exception of with the Stanford Bunny for a number of resolutions.

Finally we come to the dynamic scene experiment, the goal of this experiment was

to look at the performance of the acceleration data structure when it is rebuilt every

frame. In this experiment the K-d tree outperformed the BVH in all cases. Even

though the K-d traversal is faster in this experiment we should also look at the cost

of refitting or rebuilding the acceleration data structure with a dynamic scene in this

case the BVH could possibly be faster.

6.2 Future Work

Looking towards future work there are a number of experiments that could be carried

out or improved upon.

One area to look at would be to render at an even higher resolution such as 1080P

(1920x1080) as this is the standard at the moment for real-time gaming applications

(With just under 32 percent of gamers running at that resolution based on the steam

hardware survey [34]). An even more challenging task for real-time ray-tracing would

be to render at the upcoming 4K (3840x2160) resolution, in these particular cases the

BVH traversal looks like it would be faster then the K-d tree traversal based on the

results shown in this dissertation.

The NVidia tools nvprof and NSight provide a large number of performance metrics

which I have only touched upon the full list of available metrics. Some of the metrics

I think would be interesting to look at would be SM activity which shows how much

each SM is being utilized, a more indepth look at memory statistics such as memory

bandwidth between global memory and the caches and finally the achieved floating

point operations per second (FLOPS). These are only a small number of the available

metrics, the full list of metrics can be seen in the appendix table A.1 or by running

’nvprof –query-events’ from the command line.

In the branch divergence experiment we found that there was around a 13% branch

86

divergence rate for the K-d tree in places. It would be interesting to look at this

in detail to find out where exactly this occurs and if it can be optimized to gain a

performance improvement.

With new GPU architectures being released every couple of years it would also be

interesting to see the performance change. Some research can currently be done here

as the GTX 780 or the GTX titan are now available which are based on the newer

Kepler architecture whereas the research in this dissertation was based on a Fermi

based GPU.

87

Appendix A

List of nvprof Metrics

sm cta launched Number of thread blocks launched on a multipro-

cessor.

l1 local load hit Number of cache lines that hit in L1 cache for

local memory load accesses. In case of perfect

coalescing this increments by 1, 2, and 4 for 32,

64 and 128 bit accesses by a warp respectively.

l1 local load miss Number of cache lines that miss in L1 cache for

local memory load accesses. In case of perfect

coalescing this increments by 1, 2, and 4 for 32,

64 and 128 bit accesses by a warp respectively.

l1 local store hit Number of cache lines that hit in L1 cache for

local memory store accesses. In case of perfect

coalescing this increments by 1, 2, and 4 for 32,

64 and 128 bit accesses by a warp respectively.

l1 local store miss Number of cache lines that miss in L1 cache for

local memory store accesses. In case of perfect

coalescing this increments by 1, 2, and 4 for 32,

64 and 128 bit accesses by a warp respectively.

88

l1 global load hit Number of cache lines that hit in L1 cache for

global memory load accesses. In case of perfect

coalescing this increments by 1, 2, and 4 for 32,

64 and 128 bit accesses by a warp respectively.

l1 global load miss Number of cache lines that miss in L1 cache for

global memory load accesses. In case of perfect

coalescing this increments by 1, 2, and 4 for 32,

64 and 128 bit accesses by a warp respectively.

uncached global load transaction Number of uncached global load transactions. In-

crements by 1 per transaction. Transaction can

be 32/64/96/128B.

global store transaction Number of global store transactions. Incre-

ments by 1 per transaction. Transaction can be

32/64/96/128B.

l1 shared bank conflict Number of shared bank conflicts caused due to

addresses for two or more shared memory requests

fall in the same memory bank. Increments by N-

1 and 2*(N-1) for a N-way conflict for 32 bit and

64bit shared memory accesses respectively.

tex0 cache sector queries Number of texture cache requests. This incre-

ments by 1 for each 32-byte access.

tex0 cache sector misses Number of texture cache misses. This increments

by 1 for each 32-byte access.

elapsed cycles sm Elapsed clocks

fb subp0 read sectors Number of DRAM read requests to sub partition

0, increments by 1 for 32 byte access.

fb subp1 read sectors Number of DRAM read requests to sub partition

1, increments by 1 for 32 byte access.

fb subp0 write sectors Number of DRAM write requests to sub partition

0, increments by 1 for 32 byte access.

89

fb subp1 write sectors Number of DRAM write requests to sub partition

1, increments by 1 for 32 byte access.

l2 subp0 write sector misses Number of write misses in slice 0 of L2 cache.

This increments by 1 for each 32-byte access.

l2 subp1 write sector misses Number of write misses in slice 1 of L2 cache.

This increments by 1 for each 32-byte access.

l2 subp0 read sector misses Number of read misses in slice 0 of L2 cache. This

increments by 1 for each 32-byte access.

l2 subp1 read sector misses Number of read misses in slice 1 of L2 cache. This

increments by 1 for each 32-byte access.

l2 subp0 write sector queries Number of write requests from L1 to slice 0 of

L2 cache. This increments by 1 for each 32-byte

access.

l2 subp1 write sector queries Number of write requests from L1 to slice 1 of

L2 cache. This increments by 1 for each 32-byte

access.

l2 subp0 read sector queries Number of read requests from L1 to slice 0 of

L2 cache. This increments by 1 for each 32-byte

access.

l2 subp1 read sector queries Number of read requests from L1 to slice 1 of

L2 cache. This increments by 1 for each 32-byte

access.

l2 subp0 read tex sector queries Number of read requests from Texture cache to

slice 0 of L2 cache. This increments by 1 for each

32-byte access.

l2 subp1 read tex sector queries Number of read requests from Texture cache to

slice 1 of L2 cache. This increments by 1 for each

32-byte access.

l2 subp0 read hit sectors Number of read requests from L1 that hit in slice

0 of L2 cache. This increments by 1 for each 32-

byte access.

90

l2 subp1 read hit sectors Number of read requests from L1 that hit in slice

1 of L2 cache. This increments by 1 for each 32-

byte access.

l2 subp0 read tex hit sectors Number of read requests from Texture cache that

hit in slice 0 of L2 cache. This increments by 1

for each 32-byte access.

l2 subp1 read tex hit sectors Number of read requests from Texture cache that

hit in slice 1 of L2 cache. This increments by 1

for each 32-byte access.

l2 subp0 read sysmem sector queries Number of system memory read requests to slice

0 of L2 cache. This increments by 1 for each 32-

byte access.

l2 subp1 read sysmem sector queries Number of system memory read requests to slice

1 of L2 cache. This increments by 1 for each 32-

byte access.

l2 subp0 write sysmem sector queries Number of system memory write requests to slice

0 of L2 cache. This increments by 1 for each 32-

byte access.

l2 subp1 write sysmem sector queries Number of system memory write requests to slice

1 of L2 cache. This increments by 1 for each 32-

byte access.

l2 subp0 total read sector queries Total read requests to slice 0 of L2 cache. This

includes requests from L1, Texture cache, system

memory. This increments by 1 for each 32-byte

access.

l2 subp1 total read sector queries Total read requests to slice 1 of L2 cache. This

includes requests from L1, Texture cache, system

memory. This increments by 1 for each 32-byte

access.

91

l2 subp0 total write sector queries Total write requests to slice 0 of L2 cache. This

includes requests from L1, Texture cache, system

memory. This increments by 1 for each 32-byte

access.

l2 subp1 total write sector queries Total write requests to slice 1 of L2 cache. This

includes requests from L1, Texture cache, system

memory. This increments by 1 for each 32-byte

access.

gld inst 8bit Total number of 8-bit global load instructions

that are executed by all the threads across all

thread blocks.

gld inst 16bit Total number of 16-bit global load instructions

that are executed by all the threads across all

thread blocks.

gld inst 32bit Total number of 32-bit global load instructions

that are executed by all the threads across all

thread blocks.

gld inst 64bit Total number of 64-bit global load instructions

that are executed by all the threads across all

thread blocks.

gld inst 128bit Total number of 128-bit global load instructions

that are executed by all the threads across all

thread blocks.

gst inst 8bit Total number of 8-bit global store instructions

that are executed by all the threads across all

thread blocks.

gst inst 16bit Total number of 16-bit global store instructions

that are executed by all the threads across all

thread blocks.

gst inst 32bit Total number of 32-bit global store instructions

that are executed by all the threads across all

thread blocks.

92

gst inst 64bit Total number of 64-bit global store instructions

that are executed by all the threads across all

thread blocks.

gst inst 128bit Total number of 128-bit global store instructions

that are executed by all the threads across all

thread blocks.

local load Number of executed load instructions where state

space is specified as local, increments per warp on

a multiprocessor.

local store Number of executed store instructions where state

space is specified as local, increments per warp on

a multiprocessor.

gld request Number of executed load instructions where the

state space is not specified and hence generic ad-

dressing is used, increments per warp on a multi-

processor. It can include the load operations from

global,local and share state space.

gst request Number of executed store instructions where the

state space is not specified and hence generic ad-

dressing is used, increments per warp on a multi-

processor. It can include the store operations to

global,local and share state space.

shared load Number of executed load instructions where state

space is specified as shared, increments per warp

on a multiprocessor.

shared store Number of executed store instructions where state

space is specified as shared, increments per warp

on a multiprocessor.

branch Number of branch instructions executed per warp

on a multiprocessor.

93

divergent branch Number of divergent branches within a warp.

This counter will be incremented by one if at least

one thread in a warp diverges (that is, follows a

different execution path) via a conditional branch.

warps launched Number of warps launched on a multiprocessor.

threads launched Number of threads launched on a multiprocessor.

active warps Accumulated number of active warps per cycle.

For every cycle it increments by the number of

active warps in the cycle which can be in the range

0 to 48.

active cycles Number of cycles a multiprocessor has at least

one active warp.

prof trigger 00 User profiled generic trigger that can be inserted

in any place of the code to collect the related in-

formation. Increments per warp.

prof trigger 01 User profiled generic trigger that can be inserted

in any place of the code to collect the related in-

formation. Increments per warp.

prof trigger 02 User profiled generic trigger that can be inserted

in any place of the code to collect the related in-

formation. Increments per warp.

prof trigger 03 User profiled generic trigger that can be inserted

in any place of the code to collect the related in-

formation. Increments per warp.

prof trigger 04 User profiled generic trigger that can be inserted

in any place of the code to collect the related in-

formation. Increments per warp.

prof trigger 05 User profiled generic trigger that can be inserted

in any place of the code to collect the related in-

formation. Increments per warp.

94

prof trigger 06 User profiled generic trigger that can be inserted

in any place of the code to collect the related in-

formation. Increments per warp.

prof trigger 07 User profiled generic trigger that can be inserted

in any place of the code to collect the related in-

formation. Increments per warp.

inst issued Number of instructions issued including replays.

inst executed Number of instructions executed, do not include

replays.

thread inst executed 0 Number of instructions executed by all threads,

does not include replays. For each instruction it

increments by the number of threads in the warp

that execute the instruction in pipeline 0.

thread inst executed 1 Number of instructions executed by all threads,

does not include replays. For each instruction it

increments by the number of threads in the warp

that execute the instruction in pipeline 1.

atom count Number of warps executing atomic reduction op-

erations for thread-to-thread communication. In-

crements by one if at least one thread in a warp

executes the instruction

gred count Number of warps executing reduction operations

on global and shared memory. Increments by one

if at least one thread in a warp executes the in-

struction

Table A.1: nvprof events

95

Bibliography

[1] Akeley, K., Kirk, D., Seiler, L., Slusallek, P., and Grantham, B.

When will ray-tracing replace rasterization? In ACM SIGGRAPH 2002 conference

abstracts and applications (New York, NY, USA, 2002), SIGGRAPH ’02, ACM,

pp. 86–87.

[2] Campana, R. S3478 - debugging cuda kernel code with nvidia nsight visual

studio edition. In GPU Technology Conference (2013).

[3] Christensen, P. H., Fong, J., Laur, D. M., and Batali, D. Ray Tracing

for the Movie ‘Cars’. Symposium on Interactive Ray Tracing 0 (2006), 1–6.

[4] Cook, S. CUDA Programming: A Developer’s Guide to Parallel Computing with

GPUs, 1st ed. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2012.

[5] Ericson, C. Real-Time Collision Detection (The Morgan Kaufmann Series in In-

teractive 3-D Technology) (The Morgan Kaufmann Series in Interactive 3D Tech-

nology). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

[6] Farber, R. CUDA Application Design and Development, 1st ed. Morgan Kauf-

mann Publishers Inc., San Francisco, CA, USA, 2011.

[7] Foley, T., and Sugerman, J. Kd-tree acceleration structures for a gpu ray-

tracer. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on

Graphics hardware (New York, NY, USA, 2005), HWWS ’05, ACM, pp. 15–22.

[8] Gnther, J., Popov, S., Seidel, H.-P., and Slusallek, P. Realtime ray

tracing on gpu with bvh-based packet traversal, 2007.

96

[9] Goodwin, D. Optimizing application performance with cuda profiling tools. In

GPU Technology Conference (2012).

[10] Günther, J., Popov, S., Seidel, H.-P., and Slusallek, P. Realtime ray

tracing on GPU with BVH-based packet traversal. In Proceedings of the IEEE/Eu-

rographics Symposium on Interactive Ray Tracing 2007 (Sept. 2007), pp. 113–118.

[11] Han, T. D., and Abdelrahman, T. S. Reducing branch divergence in gpu

programs. In Proceedings of the Fourth Workshop on General Purpose Processing

on Graphics Processing Units (New York, NY, USA, 2011), GPGPU-4, ACM,

pp. 3:1–3:8.

[12] Horn, D. R., Sugerman, J., Houston, M., and Hanrahan, P. Interactive

k-d tree gpu raytracing. In Proceedings of the 2007 symposium on Interactive 3D

graphics and games (New York, NY, USA, 2007), I3D ’07, ACM, pp. 167–174.

[13] Caustic series2 raytracing acceleration boards, 2013.

https://caustic.com/series2/index.html.

[14] Quake wars* gets ray traced, 2012. http://software.intel.com/en-

us/articles/quake-wars-gets-ray-traced.

[15] Wolfenstein ray traced, 2012. http://wolfrt.de/.

[16] Ize, T., Wald, I., and Parker, S. Ray tracing with the bsp tree. In Interactive

Ray Tracing, 2008. RT 2008. IEEE Symposium on (2008), pp. 159–166.

[17] Laboratory, L. B. N. Mgf parser and examples, 1996.

http://radsite.lbl.gov/mgf/.

[18] Lauterbach, C., Garl, M., Sengupta, S., Luebke, D., and Manocha,

D. Fast bvh construction on gpus. In In Proc. Eurographics 09 (2009).

[19] Lauterbach, C., Garland, M., Sengupta, S., Luebke, D., and

Manocha, D. Fast bvh construction on gpus. Computer Graphics Forum 28, 2

(2009), 375–384.

97

[20] Lee, V. W., Kim, C., Chhugani, J., Deisher, M., Kim, D., Nguyen,

A. D., Satish, N., Smelyanskiy, M., Chennupaty, S., Hammarlund, P.,

Singhal, R., and Dubey, P. Debunking the 100x gpu vs. cpu myth: an

evaluation of throughput computing on cpu and gpu. SIGARCH Comput. Archit.

News 38, 3 (June 2010), 451–460.

[21] Lext, J., Assarsson, U., and Moller, T. A benchmark for animated ray

tracing. Computer Graphics and Applications, IEEE 21, 2 (2001), 22–31.

[22] Moore, D. Fun with kd-trees, 2005. http://onepartcode.com/main/projects.

[23] Nguyen, H. Gpu gems 3, first ed. Addison-Wesley Professional, 2007.

[24] Nvidia. Fermi Compute Architecture Whitepaper.

[25] Nvidia. TUNING CUDA APPLICATIONS FOR KEPLER.

[26] Thinking parallel, part i: Collision detection on the gpu, 2012.

https://developer.nvidia.com/content/thinking-parallel-part-i-collision-detection-

gpu.

[27] Thinking parallel, part ii: Tree traversal on the gpu, 2012.

https://developer.nvidia.com/content/thinking-parallel-part-ii-tree-traversal-

gpu.

[28] NVidia. Cuda c programming guide, 2013. http://docs.nvidia.com/cuda/cuda-

c-programming-guide/.

[29] Geforce gtx titan, 2013. http://nvidianews.nvidia.com/Releases/NVIDIA-

Introduces-GeForce-GTX-TITAN-DNA-of-the-World-s-Fastest-Supercomputer-

Powered-by-World-s-Fa-925.aspx.

[30] Nvidia nsight visual studio edition, 2013. https://developer.nvidia.com/nvidia-

nsight-visual-studio-edition.

[31] Optix, 2013. http://developer.nvidia.com/optix.

98

[32] Popov, S., Günther, J., Seidel, H.-P., and Slusallek, P. Stackless kd-

tree traversal for high performance GPU ray tracing. Computer Graphics Forum

26, 3 (Sept. 2007), 415–424. (Proceedings of Eurographics).

[33] Stanford. The stanford 3d scanning repository, 2011.

http://graphics.stanford.edu/data/3Dscanrep/.

[34] Steam. Steam hardware and software survey: July 2013, 2013.

http://store.steampowered.com/hwsurvey.

[35] Stich, M., Friedrich, H., and Dietrich, A. Spatial splits in bounding vol-

ume hierarchies. In Proceedings of the Conference on High Performance Graphics

2009 (New York, NY, USA, 2009), HPG ’09, ACM, pp. 7–13.

[36] Torres, Y., Gonzalez-Escribano, A., and Llanos, D. Understanding the

impact of cuda tuning techniques for fermi. In High Performance Computing and

Simulation (HPCS), 2011 International Conference on (2011), pp. 631–639.

[37] Zhou, K., Hou, Q., Wang, R., and Guo, B. Real-time kd-tree construction

on graphics hardware. In ACM SIGGRAPH Asia 2008 papers (New York, NY,

USA, 2008), SIGGRAPH Asia ’08, ACM, pp. 126:1–126:11.

[38] Zlatuska, M., and Havran, V. Ray Tracing on a GPU with CUDA – Compar-

ative Study of Three Algorithms. In Proceedings of WSCG’2010, communication

papers (Feb 2010), pp. 69–76.

99

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter Introduction
	Motivation
	Report Roadmap

	Chapter State of the Art
	GPGPU
	Bounding Volumes
	Bounding Sphere
	AABB
	OBB

	Acceleration Data Structures
	Bounding Volume Hierarchies
	K-d trees
	Uniform Grids
	Hierarchical Grids
	BSP Trees

	Specialised Hardware
	Non-Real-Time Applications
	Real-time Applications

	Chapter Method
	Models
	The Stanford Models
	BART
	MGF

	Traversal Time
	Cache Performance
	16kb L1 with 48kb Shared Memory
	48kb L1 with 16kb Shared Memory
	L1 Cache Disabled

	Branch Divergence
	Instruction Statistics
	Dynamic Scene

	Chapter Test Setup
	Hardware
	Tools
	Nvprof
	NSight

	Fermi Architecture
	Streaming Multiprocessors
	Configurable L1 / Shared Memory Cache

	Implementation
	K-d Tree
	BVH

	Chapter The Results
	Full Render
	Stanford
	BART
	MGF

	Traversal Time Per Pixel
	Stanford
	BART
	MGF
	Dynamic Scene Traversal

	Cache Performance
	Stanford
	BART
	MGF
	Dynamic Scene

	Branch Divergence
	Stanford
	MGF
	BART

	Instruction Statistics
	Stanford
	BART
	MGF

	Chapter Conclusions & Future Work
	Conclusion
	Future Work

	Appendix List of nvprof Metrics
	Bibliography

