Fault Tolerance using Stable Memory

Edited by
Brian Coghlan
Trinity College Dublin

Germdn Fabregat
LISITT



Authors

Michel Bardtre

IRISA/INRIA

Campus universitaire de Beaulieu
F-35042 Rennes cedex

France

michel.banatre@irisa.fr

David Boyce

ex Bull U.K.
Cherry Tree Lane
Hemel Hempstead
U.K.

Brian Coghlan

Department of Computer Science
Trinity College Dublin

Ireland

brian.coghlan@cs.tcd.ie

Mark Cotton

ex Bull U.K.
Cherry Tree Lane
Hemel Hempstead
U.K.
mcotton@sco.com

Gernan Fabregat

Departamento de Inforatica

Universidad Jaume |, Campus del Penyeta Roja sn
12071 Castetin

Espaia

fabregat@vents.uji.es

Alain Gefflaut

IRISA/INRIA

Campus universitaire de Beaulieu
F-35042 Rennes cedex

France

alain.gefflaut@irisa.fr

Jeremy Jones

Department of Computer Science
Trinity College Dublin

Ireland

jeremy.jones@cs.tcd.ie




Philippe Joubert

ex IRISA/INRIA

Campus universitaire de Beaulieu
F-35042 Rennes cedex

France

philippe.joubert@bull.net

Pete Lee

Department of Computing Science
University of Newcastle

Newcastle upon Tyne, NE1 7RU
U.K.

p.a.lee@newcastle.ac.uk

Antonio Marquez

ETRA

Valencia

Espaia
antonio.marques@dg&c.be

Rafael Marthez

Instituto de Robfica

Universitat de Vahcia

Hugo de Moncado, 4 Entlo., 46010 Valencia
Espaia

rafael.martinez@uv.es

Isi Mitrani

Department of Computing Science
University of Newcastle

Newcastle upon Tyne, NE1 7RU
U.K.

isi.mitrani@newcastle.ac.uk

Christine Morin

IRISA/INRIA

Campus universitaire de Beaulieu
F-35042 Rennes cedex

France

christine.morin@irisa.fr

Antonio Rérez

Departamento de Arquitecturay Tecnolagle Sistemas Inforaticos
Facultad de Informatica

Universidad Poligcnica de Madrid

Espaia

aperez@fi.upm.es

Juan Jos'Serrano

Departamento de Ingeniarde Sistemas
Computaah y Autonsdtica

Universidad Polikcnica de Valencia
Espaia

juanjo@aii.upv.es



Axel Wegner

ARTTIC Hamburg GmbH
Katharinenstr. 11,3. Stock
D-20457 Hamburg
Germany

aw@arttic.com

Contributors

Ekaterina Ametistova

ex Department of Computing Science
University of Newcastle

Newcastle upon Tyne, NE1 7RU

U.K.

Vicente Cervenh

Dpto. de Infornatica y Electonica

Universitat de Vag¢nhcia

Doctor Moliner, 50, 46100 Burjassot Valencia
Espaia

vicente.cerveron@uv.es

Henry Vui Chung

ex Department of Computer Science
Trinity College Dublin

Ireland

Maryléene Clatin

IRISA/INRIA

Campus universitaire de Beaulieu
F-35042 Rennes cedex

France

Andrew Cockburn
ex Bull U.K.
Cherry Tree Lane
Hemel Hempstead
U.K.

Cornelius Frankenfeld
ex Stollmann GmbH
Hamburg

Germany



A. Garaa

Departamento de Arquitectura y Tecnalagle Sistemas Inforaticos
Facultad de Informatica

Universidad Poligcnica de Madrid

Espaia

Pedro Gil

Departamento de Ingeniarde Sistemas
Computaadn y Autorrdtica

Universidad Policnica de Valencia
Espaia

Brian Hennessy

ex Department of Computer Science
Trinity College Dublin

Ireland

Dominic Herity

ex Department of Computer Science
Trinity College Dublin

Ireland

Keith Heron

Department of Computing Science
University of Newcastle

Newcastle upon Tyne, NE1 7RU
U.K.

Madhu Kashup
Bull U.K.

Cherry Tree Lane
Hemel Hempstead
U.K.

Danny Keogan

ex Department of Computer Science
Trinity College Dublin

Ireland

M. A. Li'ebana

Departamento de Arquitectura y Tecnalagle Sistemas Inforaticos
Facultad de Informatica

Universidad Poligcnica de Madrid

Espaia



Gregorio Marth

Instituto de Robtica

Universitat de Vathcia

Hugo de Moncado, 4 Entlo., 46010 Valencia
Espaia

gregorio@glup.irobot.uv.es

Paula McGrath

ex Department of Computer Science
Trinity College Dublin

Ireland

L. M. Muhoz

Departamento de Arquitectura y Tecnalagle Sistemas Inforaticos
Facultad de Informatica

Universidad Poligcnica de Madrid

Espaia

Philip O’Carroll

ex Department of Computer Science
Trinity College Dublin

Ireland

Rafael Ors

Departamento de Ingeniarde Sistemas
Computaadn y Autorrdtica

Universidad Poligcnica de Valencia
Espaia

Carlos Rftez

Dpto. de Infornatica y Electonica

Universitat de Vagnhcia

Doctor Moliner, 50, 46100 Burjassot Valencia
Espaia

carlos.perez@uv.es

L. Prieto

Departamento de Arquitectura y Tecnalagle Sistemas Inforaticos
Facultad de Informatica

Universidad Poligcnica de Madrid

Espaia

Santiago Rodguez

Departamento de Arquitectura y Tecnalagle Sistemas Inforaticos
Facultad de Informatica

Universidad Poligcnica de Madrid

Espaia



Vicente Santonja

Departamento de Ingeniarde Sistemas
Computaadn y Autorrdtica

Universidad Policnica de Valencia
Espaia

Andrew Thomas

ex Department of Computing Science
University of Newcastle

Newcastle upon Tyne, NE1 7RU

U.K.



Preface

Stable 1. Firmly established; not to be easily moved, shaken or overthrown; firmly fixed or settled; as, a
stablegovernment; a&tablestructure. 2. Imphysics a term applied to that condition of a body in which, if

its equilibrium be disturbed, it is immediately restored, as in the case when the centre of gravity is below the
point of support. 3. Steady in purpose; constant; firm in resolution; not easily diverted from a purpose; not
fickle or wavering; as, atableman; astablecharacter. 4. Abiding; durable; not subject to be overthrown or
changed; as, this life is ngtable SYN. Fixed, established, immovable, steady, constant, abiding, strong.

Storagel. The act of storing; the act of depositing in a store or warehouse for safe-keeping; the safe-keeping
of goods in a warehouse. 2. The price charged or paid for keeping goods in a store.

Ogilvie’s Imperial Dictionary of the English Language, edited by Charles Annandale, 1895

It is not so surprising that after a hundred years the conjunction of the above two words now has a meaning
in the context of computer storage. This book describes work on stable storage technology undertaken within the
European Union ESPRIT project P5212 (FASST), as well as in the Basic Research Action QMIPS, and will be of
interest to both theoreticians and pragmatists.

The focus of the book is the problem of recovering processor failures in shared memory multiprocessors.
We propose an architecture designed for transparently tolerating processor failures. The main component of this
architecture iStable Memory S M), which provides a hardware-supported backward error recovery mechanism.
This technique copes with standard caches and cache coherence protocols and avoids rollback propagation.

That the FASST project, which suffered more than the usual quota of difficulties, most notably the bankruptcy
of its prime contractor, should have engendered more than the usual quota of high quality work, is a continuing
source of interest for those that were involved.

Brian Coghlan
Trinity College Dublin

Gernan Fabregat
LISITT
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1.1 Introduction?

Multiprocessor systems based upon standard microprocessors are becoming ever-more carenpmapiding
significant computational power at a fraction of the cost traditionally associated with systems of such power.
While multiprocessors with distributed memory have gained much attention due to their theoretical peak perfor-
mance claims, shared-memory multiprocessors continue to be the focus of development of several manufacturers,
primarily due to the ease with which such systems can support traditional computing environments and program-
ming paradigms. Nowadays, shared memory systems span the complete range of computing requirements from
the personal workstation up to the supercomputer, and with the advent of hardware for distributed shared memory,
shared memory has reclaimed a central architectural role.

The dominant organisation of a typical shared-memory multiprocessor is as shown in Figure 1.1, with a single
shared bus used to connect processing elements to the shared memory and peripherals. Caches private to the
processing elements together with various flavours of snoaplyeing protocols minimise thetbleneck effect of
the single bus. A discussion of the advantages and disadvantages of such architectures is not the concern of this
book, and we merely observe that shared bus systems are likely to continue to be constructed. What is of concern
to this book is how such systems can be constructed such that hardware faults affecting the processors in the system
can be tolerated so that a reliable processing service can be provided in spite of those processor failures.

CPU CPU CPU
cache cache e cache
e = =
| |
shared memory /0

Figure 1.1: A typical shared memory architecture

The need for enhanced reliability is becoming an ever-more critical requirement as computing systems are used
for applications where even short breaks in service are unacceptable. Moreover, it is simply infeasible with the
complexity and range of present-day software systems to expect that such systems can be enhanced to implement
hardware-fault tolerance. What is required is a hardware architecture that can transparently tolerate processor
faults, that is, without affecting the executing software and requiring no changes to be made to that software. The
presentation of such an architecture for shared memory multiprocessor systems is the primary purpose of this book.

The remainder of this book is organised as follows. First we examine the fundamental problems of providing
fault tolerance in a shared-memory multiprocessor, identifying the basic facilities that must be implemented and
exemplifying these facilities with examples from some of the fault tolerant multiprocessor systems which are
already available commercially, and discussing further the problems of error recovery in multiprocessor systems.
Results from simulations of various architectures are also discussed.

We then introduce a fault tolerant architecture which directly supports shared memory semantics. The concept
of stable memory, which implements some of the features necessary for transparent fault tolerance, and which is
the key novel feature in the architecture, is described in detail, along with associated architectural components.

For simplicity and brevity, the book concentrates on the problems of tolerating processor failures in a shared
memory environment and the novel solutions to these problems. Other hardware fault scenarios, such as bus
failures, are not covered here, although are clearly important for a complete system.

1.2 Fault Tolerance Issues

The basic principles behind fault tolerance are well understood [Lee et al 90]: a fault in a system will give rise to
errors; the starting point for fault tolerance is the detection of an error, and an exception can be raised to signal that

1This chapter contributed by Pete Lee, Department of Computing Science, University of Newcastle, Newcastle upon Tyne, NE1 7RU, U.K.



the fault tolerance provisions in the system need to be invoked. These provisions have to:

(a) deal with those errors, in particular to remove errors such that the state is no longer erroneous (error
recovery); and

(b) deal with the fault that caused the errors, by identifying its location (fault location), reconfiguring the
system to avoid the fault components (fault treatment), and switching the system back to providing its
normal operation.

If the above actions are successful, such that the behaviour of the system has not breached the specification of
the system, then the system will have successfully tolerated the fault and its effects, and no system failure will be
apparent. Preventing system failure is of course the aim of the fault tolerance provisions.

As mentioned previously, this book is concerned with tolerating the faults caused by failures of the micropro-
cessor processors providing the processing power in a multiprocessor with the structure as shown in Figure 1.1,
and will therefore concentrate on the application of the above basic principles in this situation. Thus, regarding
each processing element as a pament of the multiprocessor, we are concerned with providing reliable behaviour
in the face of failures affecting these components.

To provide fault tolerance, the first requirement is that the effects of a processor failure are detected. One
approach, adopted in the Tandem-16 system [Katzman 78], is to use a single CPU per processing element and to
assume that a failure will result in fail-stop behaviour, in that the processing element simply stops if something goes
wrong in its logic. The other processors will detect this cessation in service through the absendémhbthe
messages which an active processor regularly broadcasts to all other processors. Note, however, that the Tandem
system is not a shared memory multiprocessor, and such single-CPU configurations for a processing element are
not the focus of this book.

More active forms of error detection are provided by replication checks where the activity of a CPU is replicated
and the outputs from the replicas compared to detect an error. When duplicated CPUs are used, a comparator can
detect differences caused if one of the CPUs fails and can raise an exception (or interrupt) to inform the rest of
the system of the failure of this processing element such that the fault tolerance actions can be undertaken. This
organisation is used in the processing elements of both the Stratus [Wilson 85] and Sequoia [Bernstein 88] fault
tolerant systems.

Higher levels of replication, such as using triplicated CPUs in a TMR organisation, can also be used, for
instance as in the Tandem S2 system [Jewett 91]. Here a different approach to fault tolerance is being taken as will
be seen. In the case of the duplicated CPU discussed previously, a failure of a CPU results in the failure of the
processing element of which it is a part: this processing element failure is a fault in the multiprocessor system, and
actions elsewhere in the multiprocessor (as will be discussed shortly) have to provide the fault tolerance such that
overall system behaviour is not impacted. In contrast, the application of TMR (and higher levels of replication) is
simply the application of fault tolerance internal to the processing element such that failures of components within
the processing element are never seen by the rest of the system, and for this reason such applications of redundancy
are sometimes referred to as masking redundancy. Thus when a CPU fails in a TMR configuration, the divergence
of its results from the other two CPUs can be detected by a voter which rejeadddhman ou(error recovery),
ignores the suspect CPU (fault treatment) and passes on the result of the majority to the rest of the system without
interruption.

Returning to the situation of the dual-CPU processing element, errors in the system state (i.e. in the global
memory) will have to be dealt with if a processing element fails. Errors could have spread in the system by there
being a delay between the CPU failure occurring and the processing element actually stopping, during which time
erroneous results could have been generated in the shared memory and hence propagated through the system. In
the dual-CPU case, there is unlikely to be such a delay and consequent propagation. However, there may still
be errors since some of the state of the system will be contained within the failed processing element and this
information may be inaccessible. For instance, the contents of the CPU registers and indeed the pnaggerm c
are all part of the overall system state, and the caches on the processing element may also contain the up-to-date
values of some memory locations. Thus, the global memory state may not be consistent with the processing that
has been undertaken in the failed processing element, and some form of error recovery will be needed to cope with
these errors. Without such error recoverycaassful fault tolerance may not be achievable.

Two overall forms of error recovery could be applied: forward error recovery and backward error recovery
[Lee et al 90]. Forward error recovery would require the "patching” up of the system state to fix the problems
- for instance, if the failed processing element could be interrogated by another processing element to extract



the necessary values, then the system state could be updated appropriately. However, it is unlikely that such an
interrogation could take place reliably if a CPU failure has occurred - some of the information may be within the
failed chip (e.g. in on-chip caches). Even withplicated CPUs, it may be difficult to determine which of the pair
has failed with the aim of extracting the information from the remaining "good” CPU. The alternative recovery
strategy of backward error recovery requires the state of the whole system to be recovered to a prior known state
(simulating the reversal of time, and hence called backward error recovery) such that all of the errors are eradicated.
This approach is discussed in detail within this book.

The Stratus system effectively uses a forward error recovery scheme, but avoids the need to interrogate the
failed processing element by running a computation simultaneously on two processing elemaemntsf which
contains two CPUs (i.e. on 4 CPUs in total). If one processing element fails, then the other processing element can
be used to provide all of the "internal” values, such that a new processing element can be brought into lock-step
and the processing continued (alternatively, the computation can be continued on the single processing element
pair with the hope that another failure does not affect that processing element, in which case no error recovery
is required). In contrast, the Sequoia system effectively employs backward error recovery, and their scheme is
described in the next section.

After error recovery has been carried out, the errors caused by the processing element fault have been dealt
with, and so the next stage of fault tolerance is to deal with the fault itself. The location of the fault will be identified
by the exception raised in the dual-CPU configuration. If the fault was deemed to be transient (determined, for
example, by running diagnostic checks on the faulty processing element), it may be appropriate to permit that
processing element to continue to play a part in the system'’s activity. If, however, the fault is permanent, then that
processing element will not be used further, and the computation it was involved in can be restarted on another
of the processing elements in the system. If forward error recovery has been used, for instance as in the Stratus
system, no processing will have been lost, whereas if backward recovery has been invoked, as in the Sequioa
system, some processing will have to be repeated. Note, however, that in a shared memory environment it is a
relatively straightforward task to ensure that a computation can be picked up by another processing element - all
of the information concerning that computation can be in shared memory and is accessible to all of the processing
elements. In a distributed memory situation, as in the Tandem-16 system, this task can be much more complex.

Thus the designer of a fault tolerant multiprocessoriefl with typical engineering trade-offs. Indeed, the
different designs taken by Sequoia, Stratus and the Tandem S2 systems suggest that a number of engineering trade-
offs are feasible, and that each approach has its placed@tiag triplicated (or higher) levels of redundancy in the
processing elements, the need for error recovery can be avoided. However, the cost and difficulties associated with
this approach suggest that a design based on duplicated CPUs with provisions for backward error recovery might
be more cost-effective. In this book we concentrate on this dual-CPU, backward error recovery approach and on
the design of a special form of memory which supports backward error recovery in a shared memory environment.
First, though, the basic problems of, and terminology for, backward error recovery in this environment must be
discussed so that the facilities that must be provided can be identified.

1.3 Backward Error Recovery in a Shared Memory Environment
The basic functions required for backward error recovery are that a processor can:

(a) establish a recovery point;
(b) recover the state back to that recovery point (roll back); and

(c) commit a recovery point.

The time between the establishment of a recovery point and its eventual commitment is termed a recovery
region. A recovery point is thus a point in a computation to which the state can be reset and hence the computation
can be restarted from that point. If the establishment of the recovery point preceded the occurrence of a processor
failure, then recovery to that recovery point must eradicate all of the potentially erroneous effects of that fault (as
discussed in the previous section).

To provide recovery, recovery data must be recorded, for which one of several techniques can be adopted.
For example, a checkpoint can be taken when the recovery point is established, that is, a complete copy of the
state taken and kept somewhere safe. Since the complete state is likely to be large, and a processor is unlikely to



update a significant percentage of its state, more dynamic and optimal facilities can be provided. Shadow paging
[Reuter 80] provides a form of incremental checkpointing, by keeping a copy of only those memory pages that
have been altered. The recovery cache [Lee et al 80] also provided incremental recording of recovery data.

The Sequoia system makes use of a blockiaghe [Bernstein 88] to provide recovery: having established
a recovery point, a processor is not permitted to update main memory. Instead all writes are kept local to the
processor in a blocking (i.e. non-write-througiaiche. If the processor fails, then the state in the main memory
represents the state at the recovery point. The commitment of a recovery point by a processor consists of flushing
its cache and its internal registers to main memory. Modified data are flushed into two distinct meoclogsn
under processor control in order to handle memory and processor failures.

The CARER architecture [Wu et al 90] makes also use of a blocking cache with the assumption of fault free
memory and cache. Assuming that memory is fault free avoids the need for a second merdakhy for recovery
data and hence avoids the loss of time that would be necessary for copying modified data between the two modules.
Assuming that caches are fault free limits the work tadbee at commit time décause blocks residing in cache
can be included as recovery data. At commit time, all processor registers are first flushed to the cache and then
all modified blocks in the cache are markeavritable This terminates the commit operatidsnwritableblocks
belong to the recovery point and have to be written back to memory if they are subsequently modifiedoadrepl
(i.e. copy on write).

While the changes a processor makes to memory can be undone by state restoration techniques such as those
described above, not all of the manipulatable entities in a system can be recovered. For instance, as discussed in
the previous section, the processing element itself may be unrecoverable in that its contents (registers etc.) may not
be accessible if that element has failed, so these have to beitxpicorded when a recovery pointis established
(e.g. the program counter must be recorded to allow the computation to be restarted from that point). Also, a
processor may manipulate other unrecoverable objects, such as peripherals, and the fault tolerant system must
cope with the problem of backward recovery in this situation also.

Since recovery data occupies some system resources, it is normal to commit recovery points at some interval,
to allow this recovery data to be discarded. For example, in CARER a recovery point is comeaittedime
modified data in the cache has to be replaced, while in the@a system a recovery point has to be committed
when the blocking cache of a processor becomes full. For the tolerance of processor faultsitis, in general, sufficient
to allow a processor to have a single extant recovery point such that the commitment of a recovery point can be
synonymous with the establishment of the next recovery point, and thus two distinct operations (establish and
commit) are not needed. In a more general situation, for instance if providing software-fault tolerance by recovery
blocks [Horning et al 74], nested recovery regions and hence multiple extant recovery points and separate establish
and discard operations make sense. As will be seen, even in the simple case it is useful to be able to separate the
completion of a recovery region from the commencement of the next.

In a shared memory multiprocessor, there is another complication to recovery that must be dealt with, con-
cerning the parallel processors that will be executing simultaneously and the possible flow of information between
these processors via shared memory. Consider the following simple situation: two processors P1 and P2 have sep-
arately established recovery points, and P1 has written to a memory location that P2 has subsequently read from
and acted upon. Now if P1 fails and backward recovery has to be applied, then it izeéssary to recover P2
to its recovery point which preceded the interaction with P1. Only by recovering P1 and P2 is a consistent system
state restored. The recovery points of P1 and P2 which correspond to a consistent state are termed a recovery line
[Lee et al 90].

One strategy for identifying a recovery line is to ensure that all processors establish recovery points simultane-
ously - that is, a system-wide recovery point. If recovery is then required because a processor fails, all processors
have to be rolled back. This strategy has the disadvantage of unnecessarily recovering processors when no interac-
tions between a processor and the failing processor have occurred. To avoid this disadvantage effectively requires
processors to be recovered independently (rather than globally), and hence requires some other means for solving
the problem of interdependencies (i.e. the problem of identifying a recovery line). One method is to avoid the need
to identify a recovery line by ensuring that there are no inter-processor dependencies. This can be achieved by
not actually providing shared memory (a strategy adopted in the Sequoia architecture) or by committeaghfter
interprocessor interaction in order to remove the dependency (this is essentially what happens in CARER where
a processor has to commit its recovery point each time one of its modified blocks in cache is accessed by another
processor).



The Sequoia architecture prohibits direct data sharing between processors, leading to significant complications
being imposed on the operating system software. While all memory modules eaedssed by all processors,
shared data structures must be accessed within explititatrsections protected by test-and-set locks, and the
operating system has to carefully establish and commit recovery points and flush the blocking cache appropriately,
to ensure the correct semantics [Bernstein 88].

An alternative solution to identifying recovery lines, which removes the need for the software complexities of
the Sequoia approach and the frequent commitments of the CARER approach, is to actually compute a recovery
line if recovery is required [Lee et al 90]. In order to do this it is necessary to record inter-processor dependencies
which can be used to determine the set of processors which are dependent upon the processor which has failed
[Banatre et al 90a].

It should also be noted that in the Sequoia system it has Emssary to provide custom caches to provide the
blocking behaviour. This precludes the use of standard snocagyes and protocols in such a system. However,
the speed of the latest generation of RISC chips is such that their manufacturers provide cache control logic (and
chips) as part of their offerings, and it is increasingly difficult (and cost-ineffective) to design custom cacheing
systems (and CPUSs). Hence, it is desirable that standard processors, caches and cacheing protocols can be used in
a shared memory multiprocessor, while still allowing fault tolerance using backward error recovery to be provided.

One may conclude that the concepbaickward error recoverys now well established as a means of restoring
a consistent state to a fault tolerant system should some faults occur [Randell 75]. Several algorithms have been
proposed in the literature for providing backward error recovery depending upon the type of faults to be tolerated,
the system characteristics, and the fault tolerance strategy.

In a system of communicating processes, should a fault occuretbgery control protocomust determine a
set of process states which together constitute a consistent state of the system. Many recovery protocols that assume
message passing communication have been proposed in the literature (see for instance [Wood 85, Strom et al 85]).
In contrast, the recovery protocol discussed below relies on the fact that communication takes place through shared
data, and that the memory itself tracks directly the dependencies between the processors’ references to the shared
data.

1.4 A Basic Recovery Protocol for a Shared Memory Environmertt

Before we present a basic recovery protocol for processes communicating through shared data, we must first intro-
duce some definitions and background notions concerning backward error recovery in a system of communicating
processes.

1.4.1 Definitions

A recovery points establishedby a process at a point in time at which the state of the process is saved for possible
regeneration in the event of recovery action. A proasamitsa recovery point when it no longer requires the
capability to initiate recovery action to that point. The period of process activity betweastdigishmenof a
recovery point and the commitment to it is called pnecess transactioassociated with that point (notice that the
meaning of the word transaction here should be distinguished from the one which is usually given in transactional
systems [Gray 78] where a transaction may refer to a consistency unit preserving some invariant of the system).
The most recently established recovery point of a process is saidactibeor equivalentlycurrent A recovery

point which cannot possibly be recovered to as a result of a recovery action initiated anywhere in the system is said
to bediscardable Some of the above definitions are borrowed from [Lee et al 90].

We assume a model of computation of communicating processes where processes implement a succession of
non-nestedransactions, establishing a recovery point immediately on commitment to the preceding one. This is
depicted in Figure 1.2 where vertical bars denote the bounds of process transactions. The recovery control man-
agement offers the primitiddewProcessTransaction(fr committing the active recovery point and establishing
a new recovery point for proceggas a simplification, initialization is not considered). Information flows between
processes are assumed to be directed (unidirectional), and are represented by arrows in Figure 1.2 when occurring
between distinct processes. It is further assumed that all information sent out by a process is dependent on all
information previously received by that process.

2This section contributed by Michel Batré, Maurice dgado, Philippe Joubert and Christine Morin, Campus universitaire de Beaulieu,
35042 Rennes Cedex, France



Definition 1 For any two recovery pointgp andrp’ belonging to processgsandp’ respectivelyyp is adirect
propagatorto »p’ if and only if information flows frony to p’ while rp andrp’ are the respective active
recovery points of the two processes.

As a particular case, a recovery point of a process is a direct propagator to the next recovery point of the
same process (for example, in Figure 1.2, recovery pBiftis a direct propagator td.2 andC'.3 while A.1 is
a direct propagator td.2). For convenience we will sometimes refer to the propagator relation between process
transactions instead of recovery points. A process transaftisna direct propagator t&, if the recovery point
established at the beginning#afis a direct propagator to the initial recovery point of

Definition 2 For any two recovery points andrp’ belonging to processesandp’ respectivelyyp is apropa-
gatorto rp’ if and only if the following holds : Eitherp is a direct propagator tep’ or else, recursively,
there exists a recovery poing” belonging to procesg’ such thatp is a direct propagator tap’’ andrp’’
is a propagator tep’

For example, in Figure 1.2, recovery poiBit2 is a propagator to1.2, C'.2, C.3 and D.2. As an obvious
consequence of the notion opeopagator we will often refer to the recovergncestorand recovergescendants
of a recovery pointyp:

Definition 3 An ancestor recovery point @p is a propagator tep. Conversely, if a recovery poinp’ is descen-
dant ofrp, rp is a propagator top’.

For example, in Figure 1.2, recovery point2, B.2, C.2, C.3andD.2 are ancestors df.2, and in Figure 1.2,
recovery pointsi.2, C.2,C.3, D.2 and B.2 are descendants @&f.2. As a particular case, notice that a recovery
point is both ancestor and descendant of itself.

L(B
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B.1 / B.2
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c |
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Figure 1.2: Communicating processes and recovery

A recovery protocol must ensure that the system reverts to a consistent state in the event of one (or many)
process(es) initiating recovery action. As stated in [Wood &p}ocess initiating recovery must cause recovery of
the descendants of its active recovery pgimtluding the active recovery pointitself) in order to reach a consistent
state. Another way to say this is that the recovery control protocol must lookroaery linedelimiting the
boundary of aratomic activityjRandell 75].

Definition 4 An atomic action conveys both the meaning of (i) an action which doesterfere with its en-
vironment, and (ii) a unitary action which has a or nothing effect despite failures, where the first of
these properties is referred tosatomicity(synchronisation) while the second is referred to.@agomicity
(unitary). The word atomic alone conveys both meanings.



Recovery lines are depicted as curved lines in Figure 1.2. Not all the processes need be represented on a
recovery line, reflecting a situation where one process is not affected by recovery initiated by another. For instance,
in Figure 1.2, the recovery lind.( D)) associated to proce$3 entails this single process only. Notice also that
recovery may in general cause recovery of a process beyond its active recovery point. For instance, in Figure
1.2, recovery initiated by proceds will lead to recovery line.(B) thus causing the restoration of procésso
recovery point_.2 even thouglC'.3 is the active recovery point @f.

A process may belong to several recovery lines. For instance, in Figure 1.2, ptbbekmgs to both recovery
linesL(D) andL(B). As far as recovery is concerned, we are interested in the recovery line which will lead to the
minimal undo of computatior’(( D) in this example). This recovery line will be referred talasrecovery line of
the process.

No information flow crosses from the inside of the recovery line to the outside but the converse is not the
case. This requires that the recovery mechanism be capable, in case of recovery, to reproduce the information
entering into the domain delimited by the recovery line. For instance, should ptbaes®ver in Figure 1.2, the
information which has been produced by procgssust be available after recovery takes place.

Recovery protocols fall into two broad categories nanmgnnedandunplannedLee et al 90, Randell 75].
Planned (or pessimistic) protocols bound the amount of system activity to be undone in case of recovery at the
price of slowing down failure-free computation. In contrast, unplanned (or optimistic) protocols do not slow down
failure-free computation but are prone to the so-catledchino effec{cascading rollbacks) which in the extreme
case could invalidate the whole computation in case of recovery.

A recovery protocol must provide the garbage collection of the discardable recovery points that are no longer
required to provide backward error recovery capability. While we do not expand on this issue, it should be noted
that this might be surprisingly difficult to implement when an unplanned approach to recovery is taken, as illus-
trated in [Wood 85].

1.4.2 The protocol principles

Assume that processes implement a succession of non-nested transactions. A proeesessay local state (the
process registers) and a shared state represented in shared memory. Processes communicateatiecbdgta

of the shared memory. In other words, the significant events produced by a process consist of a trace of accesses
to private registers and shared memory.

As a requirement of the protocol, the amount of recovery data must be bounded and limited to a single recovery
point per process. Consequently, the protocol must adopt a planned approach to recovery and satisfy the following
condition:

R : Recovery of a process must not go beyond its active recovery point

From theR condition, we infer:

(a) the domino-effect is prevented, and

(b) itis easy to determine when a recovery point becomes discardable - it is discardable when it is commit-
ted.

In order to implement thé? condition, the recovery protocol may implicitly establish a recovery point for a
process. Notice that this contradicts somewhat the characteristics of the model of computation above since then the
decision to establish a new recovery point may be not only explicitly performed by a process but also implicitly by
the recovery protocol itself. However, this distinction does not affect the following argument, in which we assume
that a process implements a succession of non-nested transactions without further refinement.

In order to give insights into the protocol development, we will use an execution model based on
traces and dopt similar notations to those of [Best82]. An executibnis modelled as asequence
500051 ...550;5)41...au—15, Wherea; (0 < j < u) denotes an action and as well ass;, denote states. The
state space' is defined as the set of mappings from the shared variables space to values. Each;astiam
s.atomicaction belonging to a component procesél < ¢ < n) denotedcomponent(a;). An action ofp; is
either a write of a value into a shared variable denotedw; (v, ) or a read of a shared variabledenotedr; (v)
or a commitment action denoteg(). The accesses of a process to its local state are not modelled since these are
not relevant as far as communication is concerned. It should be noted that processed pgynclumously, and
therefore flows of information between them amn-deterministi¢this model may result from the implementation



of an abstract model of computation not detailed here; we may understand non-deterministic flows of information
in the model proposed as an implementation property of the abstract model [Gries 81]).

Let s’ belonging toS be an arbitrary initial state. The semantiasof the actions performed by a process is a
relationS x S which can be characterized as follows:

(@) s" m(w;(v,e)) s wheres(v) = e ands(w) = s’(w) for all elementsv of the state space different to
(b) s" m(r;(v))) s wheres = s’ (the read action is supposed to deliver the valije) not modelled here).
(¢) 8" m(c;()) s wheres = s'.

A projectionof an execution/ onto a component process, denotedprojection(p;,U), is obtained by
deleting fromU all statessy...s,, and alla; such thatomponent(a;) # p;. We calllU a standard(or correct)
execution if it satisfies the two following properties [Best 82]:

(P1) : forall i, projection(p;, U) is a sequential control sequence of proggss
(P2) : (s;,s;41) belongs tan(a;) for all 5.

A standard execution is said to bempletef projection(p;,U) for all i is a complete control sequence of
processy;. While propertyP1 captures the control aspect of an execution, prop@ycaptures the semantic
aspects with respect to data (further information can be found in [Best 82]).

Let us turn our attention to recovery now. Should a progessll back when an execution has reached the
sequencd’/, the recovery protocol builds a new sequene(by undoing the effects of all actions performed
within the current transactions of the processes belonging to the recovery line of the process invoking recovery)
from which post recovery computation will start. The post recovery computation concatenated’ wilst be
identical to a complete standard execution that would have taken place if recovery did not occur.

To better understand the computation of the recovery line of the process invoking recovery, and more generally
into the necessary recovery actions to be taken, let us model the undoing of the effects of a single rolled-back
process as the computation of an outptiing I/’ from an input stringl/. The stringlU’ is such thatl’ =
[q0b0[qa].--[g5]0; (g5 41]-- - [gu—1]bur—1[gqu’] Where[g;] denotes chains of states, andactions. As a particular case,
notice that a sequence is a string. The stfitigs obtained by:

(Stepl) : Erasing fromlJ the actions performed within the current process transaction of the rolled back
process (but not the states), and

(Step2) : Appending if necessary a final state to the string denoting the effect of the state restoration applied
to the variables of the state space whose values must be recovered by the protocol.

The final output/’ of the recovery protocol (after having possibly executed the procedure above for several
processes including the process invoking recovery) muefjbévalento a standard sequengg satisfying prop-
ertiesP1 andP2. This is defined in the following. Lét’ = tqbg...¢;0¢541 ... 0w —1by—1¢y Such that:

(a) the string of actiong; of W is identical to the string of actions 6f', and
(b) the initial statey of IV is equal to the initial statéirst(qo) of U”.

The stringl/’ is said to be equivalent to the standard sequétiaé

(Q1) : last([qu]) (final state of/’) equalst,: (final state ofit’), and
(Q2) : for each read actioby, last([¢;])(v) equalst;(v) assuming that is the variable read biy;.

If U’ is equivalent to the standard sequenieas defined above, it is clear that the output of the recovery
protocol is correct; the post recovery computation concatenatedtithill be identical to a complete standard
execution that would have taken place if recovery did not occur, since the rolled back processes will redo their
computation from their current recovery points.

The previous characterization of a correct output of the recovery protocol gives a direct insight into the protocol
development. For example, consider the sequéheesqc; ()s1¢;()saw; (v, €)ssr;(v')sar; (v')ss and assume that
process; initiates recovery. Let/’ be the string obtained by erasing the actions performed within the current



process transaction @f and appending a final state (result of state restoration) such tha{v) = s¢(v) and
se(w) = ss(w) for all w # v. More preciselyU’ = [qo]ei()[q1]c; () g2]7;(v")[gs] where[go] = [so], [¢1] =
[s1], [g92) = [s2; s3], [g3] = [sa4; s5;s6]. The recovery line op; entails this single process sinté is obviously
equivalent (as defined above) to the standard sequé&nheetqc; ()t1¢;()tar; (v’ )ts wherety = sg.

In practice, things might be more difficult than illustrated by the example above, since processes can be depen-
dent. How the protocol deals with this situation is discussed below in a non-formal way by considering in turn the
so-called write read and write write dependencies.

1.4.2.1 Write Read dependencies

Let v be a variable written to within the current process transactign,dhe first subsequent access to this variable
being a read action gf; within its current transaction. Erasing only the write access ftowill not be sufficient
to produce a correct stririg’ since the read action efby p; would then not deliver the previous value written to
vinU’, and hencé/’ would not be equivalent to the standard sequéiicas defined previously (the prope®2
above would not be satisfied). Processs in this case a direct propagatorip(or equivalentlyp; is dependent
onp;), denoted by; — p;, and meaning that rolling bagk should cause a rollback pf. More generally, any
process which reads a non-committed value writtep;ig wr dependent op;.

Recall that we do not want recovery of a process gmhd its active recovery point (thé condition). In order
to ensure thisthe commitment of a process transaction will force the commitment of all its ancéstaestors’
recovery points are referred to as potential recovery initiators in [Wood 85]). If this were not the case, an ancestor
initiating recovery might require some of its descendants to rollback beyond the current recovery point.

1.4.2.2 Write Write dependencies

Let U’ denote the string obtained by erasing fréhall actions performed within the process transactions that are
descendants of the current recovery point (as explained above) of a pppdessking backward error recovery.
Let v be a variable which has been written tdlin If the last write tov in U is not erased i/, the value ofv in

the final state of/’ (as given byStep2 above) is correct, but elsewhere the value @ not correct, sinc&” would

not be equivalent to the standard sequelitas defined previously (the prope®l would not be satisfied). Let

U = [qo0]...wi(v, €)...[qu] Wherew;(v, ¢) denotes the last write toin U’ and assume that the last write:itan

U has been erased Ii’. A correct string could be obtained by appendind/tathe result of a state restoration
re-establishing the valueof v and repeating this for all variables whose last write t&/ihas been erased .

The difficulty here resides in finding out the valuevithin the whole history of the values taken by the variable
How this is achieved is discussed in the following.

Definition 5 A proces is said to be thactive writerof a variablev if p has been writing te within its current
(active) transaction anghas not been subsequently written to by other processes.

The protocol does not maintain the whole history of a variable but oclyrentvalue and aecoveryvalue.
At commitment of a process, the recovery value of a variable is replaced by the current value if the process is the
active writer of the variable. Symmetrically, at rollback of a process, the current value of a variable is replaced
by the recovery value if the process is the active writer of the varidblerder to re-establish a valid final state
of the stringl/’ above, the protocol ensures that the last write action,ta; (v, €), of the stringl’’ is committed
and will thus restore the recovery valaef v. This implies that a process committing its current transaction must
force commitment of the active writers of the variables written within the committing transaction, while rollback
of a process transaction must cause the rollback of all transactions which have been writing to a variable whose
active writer is the rolling back transaction. A simple way to achieve this goal is to record a depepﬂé”n%)pj
(i.e. p; == p;) when a variable is successively written by two procegsesndp; within their current process
transaction; this dependency will have the same effect ashelependency as far as commitment and rollback
are concerned. Notice that theé> dependency is a predecessor relation, as opposed-&thgependency, which
captures a successor relation.

1.4.3 A more rigorous approach to the protocol

In this section, we attempt to give some proof arguments of the protocol whose operational principles have been
described above. The properties of a standard execution have already been given. We require a weaker property



for exceptional sequences than for standard sequences, neafidiyy. An executionl/ is said to bevalid if it
satisfies the following properties:

(P'1) : The same as properfyl above.
(P'2) : For all read actions; of U, s;11(v) = s;(v) if v is the variable read by;.

(P'3) : LetU = spay...a,_15, followed by an optional state restoration action on behalf of the recovery
process £, denoting the final state df). There exists a standard executidn = #gag...ay—1ty
(satisfyingP1 andP2) wheret denotes a state such that= s, andt,, (final state ofit) is identical
to s, (final state ofU/).

While P2 captures the exact intermediate states of a standard execution, prop&ttéesi P'3 together say
that we only need to have a partial knowledge of the intermediate states for checking the validity of an execution.
The intuitive rationale behind this is that we wish to be allowed to erase a write action from an execution without
being obliged to systematically consider invalid the following sub-sequence, as would be so when assuming prop-
erty P2. It should be noted that formally, a standard execution is valid but the contrary might not be the case; we
will, however, construct exceptional valid sequences in such a way that an exceptional execution will correspond
to an equivalent standard execution (in fact the standard exeddtidascribed irP’3).

Let U be a valid execution (equivalent to a standard execution) wheolls back. Letremove(U,p;) be
the sequenc& from which are deleted all; 5,1 such thatomponent(a;) = p;, wherea; has been performed
within the current process transactionggf Let us attempt to prove that the sequenteobtained by applying
successivelyremouve for all processes that are descendants of the current transactign@fcording to both
relations— and— defined above) is valid, i.e. satisfies properfies, P'2 and P'3.

Theorem 1 The sequencE’ satisfiesP’1.

Proof : Sincel is valid (satisfyingP'1), removing the accesses of the rolled back processes within their current
process transactions will lead t@ojection(U’, p;) being a prefix ofprojection(U, p;) for all i, so thatP'1 is
maintained.

O

Theorem 2 The sequencE’ satisfiesP’2.

Proof : Assume that/’ does not satisf{P’2: there exists a substringr;(v)sy 41 of U’ such thatsy: 41 (v) #

sg(v). By constructionsg:41 (v) is the result of the last write toin U, say byp;, before the read action by p;

took place. This write has been erased/inand thus has been performed within the current process transaction

of p;. Two cases arise. First, the read action might have been performed within the current process transaction of

p;, but in that case a depender}gy% p; would have been recorded, and the rollback pWould have forced

the rollback ofp; and therefore the case cannot arise. Second, the read action might have been performed within a
process transaction of which is not the current transaction, but then the write cannot have been erased since the
commitment of this process transactiornpofiwould have forced the commitment of the process transactign of

in which the write would have been performed.

O

Theorem 3 The sequencE’ satisfiesP’3.

Proof : Let I’ be the standard sequence built fréthby P'3. Assume that,,: (v) # s, (v), thereby invalidating
P’3. Two cases arise. First the last writedan U7 might not have been erasediifi, but in that case the state
restoration action would not modify, since the active writer to would not have been rolled back, and therefore
7’3 would be valid, withs,, (v) = s, (v) = s!.(v). Second, the last write toin I might have been erased in
U, which would force the removal of all the write operationsitsince the last committed write todue to the
relation—=. But it is this value of the last committed write which must be the recovery valug®f®established
by the state restoration action, since commitment induces the commitment of all ancestors, including the active
writer tov, thereby updating the correct recovery value of
O

Thus ap; —» p; dependency is recorded whgnreads a variable whose active writepiswhile ap; & D;j
dependency is recorded whepwrites to a variable whose active writersis (p; becoming then the new active



writer). Rollback of a procesg; will induce a rollback of its descendanscording to both relations”s and

2% the recovery values will be re-established for those variables whose active writer is a process member of this
group. Commitment of a process will induce the commitment of all its anceatomding to both relations™

and —; the recovery values will be logically replaced by their current values for those variables whose active
writer is a process member of this group.

1.5 Summary

We now have defined the essence of the FASST Recovery Protocol : a conatipointprocesses as outlined
above, and a rollbadlestorescheckpointed process state, again as above. All of the above is process oriented, and
says nothing about where the processes are executing, as leaghaprocess has a consistent view of the shared
memory.

For the simplistic case where a separate processor is dedicated to each process, the above principles may be
applied simply by mapping process transactioto aprocessor transactiarWe will examine this, and the more
realistic case where a multiprocessor may support the execution of an arbitrary number of processes competing for
a limited number of available processors, in Chapter 7. For the moment, let us assume that all of the above remains
valid if we replace procegs with processorP;, where a commit checkpoinpsocessorss outlined above, and a
rollback restores checkpoint@docessorstate, again as above. This is a basic, but very important, assumption of
the FASST architecture.

In a symmetric multiprocessor (SMP) all of this is made more interesting by the behaviour of the coherent
caches. Before inbducing the FASST architecture, we will examine this behaviour, and try to quantify what
happens when it is coupled with a recovery protocol.
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2.1 SMP Cache Coherence Protocols

A cache system is said to lseherentif every read of a memory location returns the value most recenttyenr
to that location [Censier et al 78]. In a shared memory multiprocessor where procassess shared memory
through privateeaches, there can be potentially as many copies of the same memory location as there are processors
in the architecture. Inconsistencies may occur when several processors access writable shared data. When data
is modified, the modification has to be reflected into all the other caches which hold a copy of the data. The unit
of information managed by the caches is referred to &ag while a processor accessesed (e.g. 4 bytes).
Typically a cache line size ranges from 4 to 32 cells.

The protocols for avoiding cache inconsistencies are often referredcche coherence protocdlthe term
cache consistency protocatan also be found in the literature). These protocols divide into two main classes,
directory-basedandsnoopy The less common of the two classdggectory-basecprotocols, rely on a directory
structure to identify the location of any cache line and its st&eoopycache coherence protocols are by far
the more common, and rely on the fact that broadcasted bus traffic can be monstooegdd onby all the
caches. Boopycaches maintain tag fieldstored along with each loaded line to indicate the line state in each
cache. The tag field generally encodes whether the line is modified with respect to shared memory and whether the
line is loaded into another cache. Two main classesi0bpingcache coherence protocols can be diptished,
depending upon the actions performeddaghes when a shared line is modified:

Write Invalidate protocols cause an invalidation message to be broadcast on the bus whenever data poten-
tially present in other caches ipdated. Allcaches Boop these invalidation messages and invalidate
their corresponding entry. A further read miss will cause the up-to-date data to be loaded into the
cache.

Write Update protocols broadcast the new value whenever data potentially present in other caches is up-
dated. All cachesr®op the write and update their copy of the dataordingly.

These protocols mainly differ by their relative hardware cost and their performance in terms of bus traffic
generated to maintain coherence (see [Archibald 86] for a survey and performance evaluation of those protocols).

2.1.1 Berkeley Cache Coherency Protocol

The Berkeley coherence protocol [Katz et al 85] was originally designed for the SPUR workstation at the Univer-
sity of California at Berkeley; it is a write invalidate protocol. This protocol introduces the notion of ownership of a
line, the owner being responsible for writing the line back to main memory as well as for supplying the line directly
to any other cache requesting it. In this protocol, the tag field of a memory line of a given cache can be in one of
the following four states (line states are described according to the terminaogg fin [Sweazey et al 86]) :

Invalid (7) : The cache copy is not up-to-date.

Non-modified Shared &) : The line has not been modified since it was loaded into this cache. Other
caches may also have agy; one of these copies might be in st&evhile others must be in state

Modified Exclusive (1) : The line is modified with respect to shared memory. No other copy exists. This
cache is the owner of the line.

Modified Shared (O) : The line is modified with respect to shared memory. Other caches may have a copy
(in stateS). This cache is the owner of the line (hence the abbreviabipn

Figure 2.1 depicts the state transition diagram for the Berkeley protocol.

ProcessorP; performs a Read Miss If there exists a cache with a copy of the line in stafeor O, this cache
must supply a copy of the line to the requestdaghe and set its statedh Otherwise the line comes from
shared memory. In both cases, the line is loaded in staethe requesting cache.

1This section contributed by Michel Batré, Maurice dgado, Philippe Joubert and Christine Morin, Campus universitaire de Beaulieu,
35042 Rennes Cedex, France
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Figure 2.1: Berkeley state transition diagram

ProcessorP; performs a Write Hit If the line is already in stat&/, the write proceeds wibut delay. Otherwise,
(in stateS or O) an invalidation signal must be sent on the bus (see figure 2.1). All other caches invalidate
their copy if they have one that matches the line address. The line state is chardded the originating
cache.

ProcessorF; performs a Write Miss Like a read miss, the line comes from its owner or from shared memory.
All other caches invalidate their copy if any. The line is loaded in stéte

Similar principles to those discussed above in the framework of Write Invalidate protocols also apply to
Write Update protocols, such as the Firefly protocol [Thacker et al 88]. In fact, quite a number of both types
of snoopy coherence protocols have been proposed and implemented (e.g., [Goodman 84, Fielland et al 84,
Rudolph et al 84, Katz et al 85, Archibald 86, Archibald et al 86, Goodman 87]). These range from the sim-
ple Write-Throughprotocol [Fielland et al 84, Goodman 87], whereby every waiteess to a cache line is ac-
companied by an update of main memory, to the rather complex, such @rdfen and R4000protocols
[Archibald et al 86, Mirapuri et al 92] (and tiizerkeleyexample above), which delegate most of the book-keeping
operations to the caches and attempt to minimize memory accesses. The idea behind the latter designs is to exploit
the fact that a cache-to-cache transfer is generally faster than a cache-to-memory one.

2.2 Analytical Modelling of SMP Cacheg

By way of example, let us illustrate the effectsaafche behaviour by mollieg and evaluating the performance
of cache coherence protocols. Two distinct versions will be considered, both resembling the Berkeley protocol
but also differing from it in some important respects. These will be referred to devhkdateand theUpdate
protocols. The difference between them lies in the way they handiéta hit access to a shared cache line: the
former broadcasts a signal which causes all other caches to invalidate their copies, whereas the latter broadcasts
the new content of the line and all other cachigslate their copies. There are non-trivial trade-offs involved in
choosing one or the other of the two variants, and the model can be used to assess the effect of various system
parameters.

A two-stage approximate analysis, similar to the one introduced in [Greenberg et al 88] in the cowifeitéof
Through Write-Backand Dragon is applied to the evaluation of thevalidateand Updateprotocols. First, the
behaviour of an individual cache line is modelled by a finite-state Markov process. Its parameters are the number
of processors, the ratio ofadto write accesses and the ratiohuf to missaccesses. The protocols exhibit certain

2This section contributed by Ekaterina Ametistova and Isi Mitrani, Department of Computing Science, University of Newcastle, Newcastle
upon Tyne NE1 7RU, UK



complications which were not present in the cases examined in [Greenberg et al 88]. Here one has to resort to
a fixed-point approximation, since in order to reflect properly the interactions between processors, the generator
matrix of the Markov chain needs to depend on its own stationary distribution.

The solution of the cache line model, together with the various access time characteristics of the hardware,
provides the relevant bus traffic parameters: rate of bus requests per processor and average service time per request.
In the second stage of the analysis, the bus is modelled as a single-server, finite-source queue, in order to determine
the system power and other performance measures.

The two protocols are described in section 2.2.1. The approximate analyses of the cache line states and of the
bus are presented in sections 2.2.2 and 2.2.3. Section 2.2.5 contains humerical and simulation results, while some
generalizations and extensions of the approach are outlined after that.

2.2.1 Protocol Definitions

The system contain&™ identical processors and their caches (by ‘cache’ we mean the medium-sizatjasc

memory unit associated with a processor, rather than the small, primary one which is really part of the processor
itself). These are connected to each other and to the large main memory by means of a bus (Figure 2.2). Exchange
of information between processors, or between a processor and main memory, takes place thcadgeshe

shared memory /0

Figure 2.2: A multiprocessor system

Each cache consists of ‘lines’. The size of main memory &/ lines, which we shall assume, for simplicity,
to be a multiple of theache sized = mN for somem > 0. There are thug: main memory line addresses which
are mapped onto a given cache line address. At any time, one of thosg&n memory addresses is associated
with the cache line. If, when referring to a cache line, a processor accesses the main memory address currently
associated with it, then the access is said to big; atherwise it is aniss In addition, the access may beaad or
awrite (aload or astore.

When the same main memory address is associated with cache lines in several caches, the latter are said to be
sharinga line. The content of such a line must be the same in all sharing caches)gitit need notecessarily
be the same as the corresponding main memory line. S@dtesses by one processor to its cache may have
implications for other caches and/or main memory. The precise consequences of each access depend on its nature,
on the current state of the line, and on the cache coherence protocol that is employed.

2.2.1.1 The Invalidate Protocol

A cache line may be in one of the following states:

State/ : The lineis invalid (it does not contain useful information).

State D(n) : The lineis dirty (main memory does not have an up-to-date capgiher caches have a copy
of thatline @ = 0,1, ..., K — 1), but this cache is its ‘owner’ and is msnsible for saving it should
the processor makeraissaccess to it. Also, this cache willipply the line if a processor outside the
sharing group accesses it.

StateS(n) : The line is dirty;n other caches have a copy ofit &€ 1,2,..., K — 1); this cache is not the
owner (in one of the other caches, the line is in stafe(n) ).



StateC'(n) : The line is clean (main memory has an up-to-date copyjther caches also hold this line
(n=0,1,..., K — 1), but there is no owner. Main memory supplies the line if a processor outside the
sharing group accesses it.

It should be noted that the hardware implementation of the protocol does not involve the inteyeache
line is tagged as being either ‘invalid’, ‘clean exclusive’, ‘dirty exclusive’, ‘dirty shared’ or ‘shared’. The first
four of those tags correspond to our stafeg’'(0), D(0) and D(n) (n > 0) respectively; the tag ‘shared’ may
correspond to states(n) or S(n), for n > 0. We need the more detailed state description given above in order to
model the evolution of line states, and also to keep track of the different types of bus operations. For example, if a
processor makesraad missaccess to a line and joins a sharing group where all members are i'$tatethen
main memory supplies the information and a bus operation of type “main memory to cache” is performed. On the
other hand, if the processor joins a sharing group where one member is ivétatéthe others being it (n) ),
then a cacheupplies the information and a bus operation of type “cache to cache” is performed. Those operations
take different times.

It should also be pointed out that, while bus operations involve whole lines (e.g. 16 bytes), a processor can
load or store information into part of a line (e.g. 4 bytes). This discrepancy implies thatiaegiccess, even a
write one, requires a new line to be brought into tdaehe.

An access by a processor to a line in its cache is said todaif it does not involve the bus. Otherwise it is
remote All read hitaccesses to lines in statdn), D(n) or S(n) are local and do not change the statéite hit
accesses to lines in staté0) or D(0) are also local and the resulting statdif)). All other accesses are remote
and have the following effects:

(a) A read misdo one in state€’(n), D(n) or S(n), results in a line in stat€'(j) (for some; that may be
0) if main memory supplies it, or in stat#(j) (; > 0) if another cache does so. The remote operation
is “main memory to cache” in the former case and “cache to cache” in the lattefadAmissaccess
to aline in stateD(n) also causes a “cache to main memory” operation saving the old line. In this last
case, the othet lines in the old sharing group change their state fte{n) to C'(n — 1), otherwise
only the integer in their state description changesite- 1.

(b) A write access to a line in any state results in a line in sfag@). All other cache lines in the old
sharing group (if the access isnaite hit), or the new one (if avrite mis3, enter statd. The effect of
awrite misson the old line and its sharing group is the same as thated@ miss The bus operation
is ‘broadcast invalidate signal’ if the access iwidte hitin states other thafi'(0) and D(0); ‘cache to
cache’ ifwrite missand the new line comes from another cache; ‘main memory to cache’ otherwise.

2.2.1.2 The Update Protocol

A cache line may be in one of the statB$n), S(n) andC(n), whose definition is the same as in the previous
subsection. The statedoes not exist. The effect ofread access is the same as for tiwalidateprotocol. A

write hit access to a line in staté(0) or D(0) is local as before, and the resulting stat®i®). All other write

accesses are remote operations, the content of the new line being broadcast on the bus. The following state changes
and additional bus operations take place:

(a) A write hit access causes a line to change its state figm) or S(n) to D(n), and to remain in state
D(n) if it was there before. In all cases, the othdines in the sharing group enter (or remain in) state
S(n). The “cache to cache” broadcast of the line is the only bus operation.

(b) A write missaccess causes a line to join a new sharing group of somej gjzessibly; = 0), and
to enter statéD(j). The otherj lines in that group enter statf(j). If the state of the accessed line
was D(n), then the other lines in the old sharing group change their state ftgm) to C'(n — 1),
otherwise only the integer in their state description changessto- 1. The bus operation consists
of saving the old line (“cache to main memory”), if its state w2@:) ; bringing the new line, part of
which is to be overwritten (“main memory tache” or “cache to cache”, depending on the nature of
the new sharing group); broadcasting the new lfeache to cache”).



2.2.2 Cache Line States

We assume that th& processors are statistically identical, and that their accesses are uniformly distributed over
cache and main memory addresses. Those assumptions can be generalized, but at the expense of considerable
increase in complexity. A processor ‘computes’ for an interval of time of average duratigthe end of that

interval, which will be referred to as a ‘think period’, it accesses any one of its cache lines with flitpblatdv . If

the access happens to be local, a new think period starts immediately; otherwise the processor joins the bus queue
and remains passive until the required bus operation is complete.

Denote the steady-state probability that a given processor is ‘thinkingt,.by¥hen the average number of
thinking processors i¥ = K« . This quantity, which indicates the total rate at which useful work is being carried
out, is called thesystem powerit is the performance measure of principal interest and the main object of the
analysis.

An access to a cache line isr@ad with probability o, so awrite occurs with probabilityl — «. Also, and
independently, &it occurs with probabilityy and amisswith probability1 — ~. These probabilities are assumed
fixed and known. Since: main memory lines are mapped onto one cache line, the uniform addressing assumption
implies that amissaccess will request any of the other— 1 lines with probabilityl /(m — 1).

Consider a particular line in one of the caches. Because of the symmetrical assumptions, we can concentrate
on linel in cachel. The state of this line at timeis assumed to be a Markov process. Transitions between states
may occur when either processbor one of the other processors make various kinds of accesses fo liffe
instantaneous rates of all these transitions have a common fgttdtr) (the rate at which a processor emerges
from a think period and accesses life Since the steady-state distribution of a Markov process does not change
if all elements of its generator matrix are multiplied by the same number, we shall ignore this factor and include
only those components of the transition rates which depend on the state. The two protocols have to be considered
separately.

2.2.2.1 Equations for the Invalidate Protocol

Assuming the steady-state probabilities that the line is in gtatgn), D(n) or S(n) arepr, pc(n), pp(n) and
ps(n), respectively, let us consider state Any access by processorto line 1, be itread or write, causes it to
leave that state. On the other hand, it can enter $thtem states” (n), D(n) or S(n), n > 0, if :

(a) one of the othen processors in the sharing group makegrée hit access to line 1;

(b) one of thek” — n — 1 processors outside the sharing group is in stated makes arite access to line
1 which hits the main memory address currently in line 1 of processor 1;

(c) one of theK — n — 1 processors outside the sharing group is in a state other/thad makes avrite
missaccess to line 1 which hits the main memory address currently in line 1 of processor 1.

Note that transitions (b) and (c) depend on the states of caches outside the group encompassed by the integer
We approximate that dependency by introducing the steady-state probabilities into the transition rates. Moreover,
the probability that a line is in a particular state, given thatéshe is outside a sharing group of sizg- 1, is
different from the corresponding unconditional probability. For example, such a line cannot be ifi(g}ater
values ofj exceedingk’ — n — 2. To take account of this, the unconditional probabilities are multiplied by the
‘renormalization factor’a(n), given by:

a<n):{p,+ T [pc<€>+pD<£>+pS<£>]} | 2.1)

Here and from now orps(0) = 0 by definition.
As a consequence of the above approximations, the equation balancing the transitions into and out isf state
non-linear in the steady-state probabilities:

pr= 3 lpe(n) + po(n) + ps()] { a1 - a)y + (K —n - 1)(1 - a)a(n)



K—n-2

it > (o) +po () +ps N0~ 7)) (2.2)

m—1
7=0

Analogous arguments lead to equations concerning stitel S(n) and D(n). To write them, we need the
probability,qc (¢, j), that after leaving a sharing group of size 1 (as a result of anissaccess), the line enters
stateC'(j). This is approximated as:

pc ()

TS e (0) + ps (0]

Similarly, the probabilitygs (¢, j), that after leaving a sharing group of siz¢ 1, the line enters stat&(;), is
approximated as:

ps(j)
o " pe(0) + ps(0)]

The balance equation for statén) has the following form:

qs(1,J) = y J< K —1. (2.4)

pe(m) {(1 = a) +a(l=2) + n(1 — a)y +n(l =)+ (K ~n ~ Da(n)
[pf—+KZ“pc )+ 2o () P51 7)1}

D= e+ 1)+ (1= s+ 1)+ pragc(0,m) + a1 1)
Ij :[pc + i)+ ps(@lgc(in) + (K ~ maa(n — 1)

po(n—1) {pr—+ Z o) + o () +ps (D1 = 1) ——11 . (2.5)

m—1

The first term in the right-hand side of (2.5) reflects a reduction of the sharing group(freml) to n. The
second corresponds to a transition from stéte + 1) to C'(r) when the line in the sharing group which is in
stateD(n + 1) gets amissaccess. The other terms are concerned with either the line in cache 1 moving out of its
old sharing group into a new one, or another line joining the sharing group from outside. This equation holds for
n=0,1,... K — 1, with the understanding that: (—1) = pp(—1) = ps(—1) = 0.

The equation for stat&(n) is very similar:

ps(m){ (I —a)+a(l=7) +n(l—a)y+n(l—7)+ (K —-n-1a(n)

[P1—+ Z (pc() +po(d) +rs() (1 —v)——=1}
= n(l —ps(n+1) + prags(0,n) + ol — )

S Ipeli) + p (i) + ps(i)las (i, ) + (K ~ n)oa(n 1

K—-n-1

psin—1) {pr-+ Z o) + o () +ps (1 —7)——11 . (2.6)

m—1

In order to combine the staté3(n) (n > 0) and D(0) into a single equation, léiz be the indicator function
of conditionB : itis 1 if B holds and O otherwise. Then we can write:

po(n) { (1 = a)dnso + a(l =7) +n(l —a)y +a(l —7) + (K —n—1)a(n)
K—-n-2 1

[P1—+ Z pc(i) +po(d) +ps()(1 —v)—]}

m—1



=+ 1)1 =)pp(n+1)+ (1 =) =pp(0)]dn=0 + (K — n)aa(n—1)
K—-n-1
. 1
(n—l){P1—+ Z [pc(7) +pp () +ps (DL =) —11 (2.7)
Equations (2.2) - (2.7) can be easily rewrltten in a way that expresses the vector of steady-state probabilities,
p=(pr;pc(n),0<n< K—1;ps(n),1 <n<K-1;pp(n),0 <n < K—1),interms of itself. That is, they
can be written in the form

p=f(p) (2.8)

Fixed-point equations of this type are normally solved iteratively: starting with an initial gpgsshe computes
successivelyp; 1 = f(p;), until two consecutive iterations are sufficiently close to each other. Of coursegsince
is a probability vector, its elements must be re-normalized at every iteration to ensure that they add up to 1.

2.2.2.2 Equations for the Update Protocol

Remember that statedoes not exist in th&lpdateprotocol. The specification in subsection 2.2.1.2 leads to the
following set of approximate equations.
StateC'(n) :

pC(”)[(1_0‘)‘1‘0‘(1—7)+n(1—Oz)’y—l—n(l—'y)—i—(K—n—l)(l_»y)ﬁ]

=+ =Ypc(n+1)+ (1 =7)ps(n+1)

H(K = mja(l = )pe(n — 1)
Z[Pc +pp (i) + ps(i)]ac(in) (2.9)
whereqc (i, n) is defined as in the previous subsection.
StateS(n):
ps(n) [(1 =)+ a1 =)+ n(1 = o)y (1l =) + (K —n = 1)(1 = 7)—
=n(l=7)ps(n+1) + n(l = a)ylpc(n) + pp(n)]
(K — )1 —7)% {psn—1)+ (1= a)lpe(n— 1)+ po(n - 1)] }
Z[Pc +pp (i) +ps(i)]as(i,n) . (2.10)
Again,¢s (i, n) is defined as in the previous subsection.
StateD(n):
pp() [(1 =)+ n(l =y + (1 =) + (K~ 0~ 1)(1 =) —]
= (n+ (L= )pn(n + 1) + (1= a)ylpe(n) + ps(m)] + (K - ma(1 - 522
H1=a)(1=2) Y e )+ po (i) + ps(ilan(im) @11)

whereqp (4, j) is defined as:

po(J)
Yz, pn(0)
Once more, the vector of unknown probabilities can be expressed, through equations (2.9) - (2.11), in terms

of itself. The fixed-point problem is solved iteratively, starting with an initial guess and re-normalizing at every
iteration.

api.j) = <K



2.2.3 Bus Queue Metrics

The bus can be modelled as a single server FIFO queue which is fed with requéstaiig sources (Figure 2.3).

processors

bus queue

| (—

' bus

Figure 2.3: The cache queue

If a processor is in ‘think’ state, then the rake at which it makes a request for bus service is equal to the rate
at which the think period is completed, multiplied by the probability that the resuttinbe access is not local. In
the case of thénvalidateprotocol, this gives:

A= {1 31— p) — (1= allpe(0) + po(0)] )

For theUpdateprotocol, that rate is equal to:

/\:%{1— ay — (1 —a)ylpc(0) +pp(0)] } .

Bus service times may have different averages, depending on the protocol and on the kind of operation that is
carried out. These differences could be taken into account by introducing multiple request types. However, the
resulting model would not have a product-form solution and its number of states would rise very quickhy.with
An acceptable approximation is obtained by using a common average service time, taken as a weighted mean of
the possible bus operation times. Thus, if a bus operation of average lgngtfequested with probability;, for

j=1,2,...,J,thenthe the overall average bus service titnes equal to:
J
b = Z ijj .
j=1

Clearly, in order to determine the probabilitigsit is necessary first to solve the appropriate cache line model.
The weighted averages for thevalidateandUpdateprotocols are evaluated below.

2.2.3.1 Average Bus Service Time for Invalidate Protocol

Denote byr;, 7 andrs the average lengths of the ‘cache to cache’, ‘cache to main memory’ (or ‘main memory to
cache’) and ‘invalidate signal’ operations, respectively. Tineder thdnvalidateprotocol, there are 5 types of bus
requests, with service timés = 1, b2 = 7, bs = 1 + 7, ba = 27 andbs = 75. These occur in the following
circumstances and with the following probabilities:

Type 1 : A missaccess in stat€'(n) or S(n) or any access in state after which the line joins a sharing group
where one of the lines is in stafg(j). Letd(n) be the probability that a line is in stafg(;), given that it is
outside a sharing group of sizet 1:

d(n) _ Zf(:_on_zpD(i) .
S 2 e (i) + ps (i) + po ()] + pr



Then we have

. d(n) . d(0)
Z[PC ) +ps()](1 =) (K —n—1) == +pr(K-1)——
Type 2 : A missaccess in stat€'(n) or S(n) or any access in state after which the line joins a sharing group
where there is no line in sta@( ).

Z[pc )+ ps(m)](1 =1 — (K —n—-1)

Type 3 : A missaccess in stat®(n), after which the line joins a sharing group where one of the lines is in state

D(j).
rg_ZpD WK —n—1) d(il)l
Type 4 : A missaccess in stat®(n), after which the line joins a sharing group where there is no line in state
D(j).
r4_ZpD 1—(1(—71—1)7765(7_1)1].

Type 5 : A write hitaccess in any state other tharC'(0) and D(0).
rs = [ = pr = pc(0) = pp(0)](1 =)y .

2.2.3.2 Average Bus Service Time for Update Protocol

Under theUpdateprotocol, there are 7 types of bus requests, with service thinesr,, by = 7, bs = 7 + T,
by = 21, bs = 2m, bg = 27 + ™ andb; = 27 + 7. The circumstances in which these occur, and their
probabilities, are as follows:

Type 1 : A write hitaccess in any state other thaii0) and D(0), or aread missaccess in statesS(n) or S(n),
after which the line joins a sharing group where one of the lines is in Statg

d(n)

r1 = (1 —a)y[l = pc(0) +Z[Pc ) +ps(n)]a(l =) (K —n—1)——=.

Type 2 : A read missaccess in stateS(n) or S(n), after which the line joins a sharing group where there is no
line in stateD(j).

Z[pc T ps(ma(l = [ — (K —n— 120

m—1

Type 3 : A read missaccess in stat®(n), after which the line joins a sharing group where one of the lines is in
stateD(j), or awrite missaccess in stateS(n) or S(n), after which the line joins a sharing group where
there is no line in stat® ().

rg = Z_: pp(n)a(l —y)(K —n—1) ()

+ Z[PC ) +ps(n)](1—a)(l =7)[1 = (K —n—1)—



Type 4 : A write missaccess in stataS(n) or S(n), after which the line joins a sharing group where one of the
lines is in stateD(j).

7“4—2[1)0 +rs(m)](1—a)(1-7)(K —n—-1)

Type 5 : A read missaccess in stat®(n), after which the line joins a sharing group where there is no line in state
D(j).
d(n)

m—1

= Z_:pp(n)a(l—'y)[l—(l(—n—l) ].

Type 6 : A write missaccess in stat®(n), after which the line joins a sharing group where one of the lines is in
stateD(j).

d(n)

m—1

pr )1 —a)(1—4)(K —n—1)

Type 7 : A write missaccess in stat®(r), after which the line joins a sharing group where there is no line in
stateD(j).

d(n)

m—1

m—ZpD )1 —a)(1 =1 = (K —n—1) ]
2.2.4 Performance Metrics

Assuming that the service times and think periods are exponentially distributed, the steady-state propgbility ,
that there aré requests in the bus queue is equal to (e.g., see [Mitrani 87]):

(Ab) o, (2.12)

where:
-1

Po = [Z (AL_'Z),(/V’)Z

=0

The following performance measures are then obtained [Mitrani 87]:

Bus utilisation U :

U=1 —Po -
Average response timé/’ for a request :
o Kbl
U
Probability = that a given processor is thinking :
m = % = U
s+ W KbA
System powerT :
T=Knr= 2



2.2.5 Comparison to Numerical Simulation Results

Several numerical experiments have been carried out, where the performancéneétiteteandUpdateproto-

cols was evaluated as described in the previous sections. The ratio of main memory size to cache size was taken as
m = 11, and the average think periozl,was 1. In the first, and larger group of results, the following average bus
transfer times were used: ‘cache to cache’=1/6; ‘cache to main memory’=‘main memory to cache’'=1/4; ‘invalidate
signal'=1/54.

Figure 2.4 shows how the performance of the the two protocols, measured by the system power, varies with
the number of processors. The fractionredd accesses, and the fractionhif accesses, are quite high, at 0.85
and 0.8, respectively. In this case, tpdateprotocol gives better throughout. Moreover, thealidateprotocol
displays clear symptoms of ‘thrashing’, whereby having reached a maximum, the power begins to deteriorate if
the number of processors continues to increase.

The figure also includes performance curves obtained by simulation, for both exponentially distributed (with
the above mean values) and constant bus transfer times. The analytical approximations and the simulations are
very close.

For Figure 2.5, the number of processors andhit@robability were fixed, while theead probability was
varied between 0 and 1. It can be seen that when most accessesi@rthelnvalidateprotocol is better (because
it takes less time to send anvalidatesignal than a whole line), whereas the situation is reversed when most
accesses aread (because there are fewer transfers between cache and main mementheJpdateprotocol).

Figure 2.6 shows that the effect of fixing the probabilityedd and varying that ofit is similar. When the
hit probability is low there is no advantage in broadcasting the new content of changed lines, only the penalty of
longer bus operations.

Figure 2.7 is of the same type as Figure 2.6, but deals with a system where the bus operations are much longer
relative to the processor think periods: ‘cache to cache’=6; ‘cache to main memory’=‘main memory to cache’'=8;
‘invalidate signal'=2. Now thénit probability needs to be almost 1 before the system power rises above 2. The
processors spend most of their time waiting for the bus, @edlse thenvalidatesignal is faster, that protocol is
slightly better.

These figures show that rather complex cache coherence protocols can be analysed approximately and their
performance can be evaluated with acceptable accuracy. Such approximations are certainly worthwhile, because a
numerical solution, even one involving fixed-point iterations, is several orders of magnitude faster than a detailed
simulation.

The methods described above can be applied to different protocols and different computer architectures, e.g.,
two multiprocessing nodes connected to a single shared memory as in Figure 2.8, a likely scenario in a fault
tolerant system (and a minimalist example of a distributed shared memory system composed from more than one
multiprocessor). Moreover, these models can be extended to cover other aspects of system behaviour, in addition
to cache coherence.

The difficulty with this analytical approach to modelling is that if the mathematics is not appropriate to a new
architecture, or even a new variant of an architecture already being studied, then a new mathematical formulation
may be needed, and this is not conducive to the rapid evaluation of a number of disparate alternatives within the
design process. This has led most designers to more direct numerical simulation methods using commercially
available software tools based on queueing models. It is to this approach we now turn.
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Figure 2.8: Two multiprocessing nodes connected to a single shared memory

2.3 Queueing Models that include Checkpointing and Recovery

The great virtue of numerical simulation is that it is supported by a wide range of computer software, such as the
QNAP2 and SMPL packages. This immediately allows more complex structures to be evaluated. We now present
extended cache coherent queueing models that incorporatepciieitng and recovery operations.

Checkpointing and recovery involve tleaches, so the system behaviour muiditlse studied at the lowest
level. The basic component of the workload is still taehe line, while the basic cgranents of the simulation
model remain the processors, the caches, the cache controllers, the bus and the shared memory. The processor
module will generally incorporate an internal or primagche and an external or sedarycache, as in Figure
2.9, but we may simplify this model by assuming that the internal pipelined structure of modern RISC processors
allows the access to the internal cache to proceed in parallel with the instruction execution, yielding the processor
model shown in Figure 2.10.

For comparison, five different types of multiprocessing systems have been simulated, three with different
checkpointing and recovery mechanisms, plus two that do not include checkpointing and recovery. The multi-
processors that include checkpointing and recovery are a CARER system [Wu et al 90, Ahmed et al 90], a system
using the FASST Recovery Protocol as described in Chapter 1 [Morin et al 92], and a system that uses the SMRC
protocol [Ors et al 944, Ors et al 94b]. The latter two assume specialized recoverable shared stainl@rynem-
ory). The two systems without checkpointing and recovery differ by their use dbtagonandBerkeleycache
coherence protocols respectively.

The three recoverable architectures are represented by the queueing model of Figure 2.11. The stations repre-
sent the processor$y), the external cacheg'(H,,), and the bus. The recoverable shared memory is modelled by
three stations. The model includes some sources to simulate unrecoverable operations (interrupts and 1/O’s) and
rollbacks. The sources connected to the processors simulate the establishment of a checkpoint due to an atomic
operation, which is generally of two types:

Explicit Recovery Points : The main source of these checkpoints are interrupts and 1/0O operations.
Implicit Recovery Points : These arise from to the special characteristics of the recovery protocol.

3The following sections contributed by R. Ors, J.J. Serrano, V. Santonja and P. Gil, Universidadride Valencia, and AeRéz and
S. Rodrguez, Universidad Poétnica de Madrid
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Figure 2.10: Simplified Processor Model

These models have been simulated firstly with QNAP2 and later with SMPL [MacDougall 89], which is three
times faster than QNAP2. A Smalltalk version has also been developed. In all cases the the mean number of active
processors in the system, tReocessing Poweris used as a performance index, since it is representative for a
comparative analysis. In general the analyses assume the following input parameters:

Cache size (lines) : 128
Program size (lines) : 5120 (40
Shared memory size (lines) : 51200 (490
Number of Processors : 20
Probability of repeating aline: 0.5

Read probability : 0.8

Relation table size : R

Threshold for dirty lines : 0.756

Atomic operations rate : 1073
Workload parametes : 5

Locality parameteé : 25



The performance analysis is highly dependent on the workload used, so the workload needs to be much more
carefully specified. Four kinds of test workloads have been used to analyse these models, one called WL-I that is
based on a probabilistic model, one fixed workload or natusaktrcalled WL, for debugging and testing, and
another two, called WL-IIl and WL-1V, based on a synthetace. In the first, WL-I, the workload is characterized
by the following parameters:

(a) The probability”,., of making an access to the same block,
(b) The probabilityP;, of making an access to a shared block, and
(c) A uniform distributionin the interval( S4) for shared data andf ., NV S4) for private data.

The latter workloads, WL-11l and WL-1V, are taken from [Thiebaut et al 92], adapted to the models under con-
sideration. WL-1V is used when the number of shared lines is limited, otherwise WL-1ll is used. These workloads
simulate, based on a hyperbolic distribution, the jumps made by the program counter during the execution of a
program, and are parameterized by:

(a) Cache capacity,
(b) A constant that characterizes the load, and
(c) A parameter that characterizes the spatial locality and the memory size.

Since these are simulations, it is relatively easy to examine the sensitivity of the results to the various workload
parameters. In Figure 2.12 we can see the influence of cache size on the performance of the tkpeantihgc
and recovery systems and the multiprocessors. The performance is obviously sensitiveatththeize and the
influence is similar for all the systems.

Figure 2.13 illustrates the influence of the program size on the performance of the different systems. When the
program reaches 16 times the cache line size, the performance does not change anymore. Tl igesiadilar
for all the systems.

Figure 2.14 shows the influence of the read probability on the performance of the different systems. As reads
produce fewer dependencies than writes, the best case arises when we do not have writeg),.i.e. fdr. We
can see that in all the systems this parameter has a significant influence on the system performance.

Figure 2.15 shows the influence of the checkpointing rate on the performance of the different systems. Obvi-
ously CARER is the better at high checkpointing rates.

2.4 Dependability analysis

Performance is an important issue for any computing system, but at the heart of a fault-tolerant computer system
must be its ability to survive when a non-fault-tolerant system would fail. This gives rise to notions of depend-
ability, reliability, availability and performability (see [Lee et al 90]). Reliability and availability can be analysed
using Markov chain models. Performability can be analysed using Reward Markov models, where the reward is the
Processing Poweti.e. the mean number of active processors in the configuration considered. Each configuration
has a queue equivalent model with the number of processors that are not in a crash state. The parameters used in
the reliability, availability and performability models are:

P,  Permanent fault rate

fe Transient fault rate

Ae Fault rate for a processor module
Ap Fault rate for the bus

An  Fault rate for the shared memory
) Repair rate

C Transient fault coverage

D Permanent fault coverage

E Shared memory fault coverage
1/« Average time between two recovery points
1/5  Average time for a recovery point
1/p  Average time for a rollback

N Number of processor



2.4.1 Multiprocessor system without checkpointing and recovery

By way of reference, let us first consider a multiprocessor without checkpointing and recovery, so that the effects of
introducing these features can be clearly seen. Figure 2.16 shows the time evolution of the reiéifiby such
a system. We can see two sets of lines on the graph, corresponding to two fault,ydtasthe shared memory.
The influence of the fault rate. for processor modules can be more clearly observed for one of these sets than the
other.

In Figure 2.17 we can see the availability/V') versus the number of processd¥fsusing the fault rate,,,, for
the shared memory and the fault ratefor processor modules as parameters. The influence of these parameters
on the availability is similar to their influence on the reliability.

In Figure 2.18 we can see the time evolution of the performab#ity) of the system. We can observe that
this evolution is similar to the time evolution of the reliabili(t) shown in Figure 2.16. Figure 2.19 shows the
influence of the number of processad¥son the time evolution of performability (¢) for such a system.

2.4.2 Non-degradable multiprocessor system with checkpointing and recovery

Now let us consider a CARER system, which is degradable in the sense that it cannot survive permanent
processor faults. This will allow us (later) to more easily assess the effects of introducing degradability. Figure
2.20 shows the time evolution of the reliabilify(¢) for such a system, while in Figure 2.21 we can see the
availability A(§) against the repair raté

Figures 2.22, 2.23, 2.24 and 2.25 show the time evolution of the performabifity In Figure 2.22 the
processor and memory fault ratesand),,, are used as parameters, in Figure 2.23 the transient fault cowerage
is a parameter, in Figure 2.24 the permanent fault Fatis a parameter, and finally in Figure 2.25, we can see the
influence of the number of processd¥son the performability.

2.4.3 Degradable multiprocessor system with checkpointing and recovery

Finally, let us now consider a degradable multiprocessor system (i.e. one that can survive permanent processor
faults) with checkpointing and recovery, such as is proposed for FASST. Figure 2.26 shows the time evolution of
the reliability R(¢) for such a system, parameterized by the transient fault covérage

Figure 2.27 shows the availability(d) for such a system versus the repair rat¥Ve can see two set of lines,
one for each memory fault rats,,, indicating the influence of this parameter on the availabilityeach set the
lines are very close, indicating that the processor faultxateas very little influence.

Figure 2.28,2.29,2.30,2.31 and 2.32 show the temporal evolution of the perform&itlityn Figure 2.28 the
processor and memory fault ratesand,,, are used as parameters. In Figure 2.29 the transient fault cov€rage
is a parameter, in Figure 2.30 the permanent fault coveraggea parameter, in Figure 2.31 the permanent fault
rate P, is a parameter, and finally in Figure 2.32 we can see the influence of the number of progéssors

2.5 Summary

In Figures 2.33 and 2.34, we can see the temporal evolution of the system performability. As one might expect, a
basic multiprocessor system without checkpointing and recovery initially has the best performability, but quickly,
due to its low reliability, becomes the worst system. Systems with checkpointing and recovery but no degradation
again have good initial performance, but since they do not tolerate permanent faults, their reliability decreases and
their performability is affected as a result. Good long term performability is offered only by systems that tolerate
permanent and transient faults, like those that use the FASST or SMRC recovery protocol. The FASST and SMRC
protocols have the same functionality; the improved performance of the SMRC protocol is due to migration of
most of the algorithms into the recoverable shared memory, which then becomes a system bus master to establish
a recovery point by using the cache coherency mechanisms to broadcall state from the processors.

Bear in mind that these performability results are for a siroglehe coherent nftiprocessing node. The
situation is a little more complex with more than one multiprocessing node, in that a mechanism (let us call it a
bridge) must be constructed to carry coherence traffic between the busses of the nodes, since although there is more
than one bus, there is only one set of common data. bFiggefunction can be modelled probabilistically or with



a boundary analysis that considers only the upper and lower bounds of the system performance [Yang et al 88]; let
us just briefly consider this last option for a minimalist dual-node configuration.

The upper bound is obtained by assuming that the two busses don't have any shared data, i.e. the bridge is
never used, so that there are, in effect, two independent busses (see Figure 2.36). For the lower bound we assume
that all the data is shared, so the bridge is always used, and effectively the system has only one bus (see Figure
2.37). The sources and sinks in these models represent the extra load due to the cache coherence protocol.

These models have been studied vilhite-Once[Goodman 84]Write-through[Fielland et al 84] Berkeley
[Katz et al 85],SynapséFrank 84],lllinois [Patel et al 84]Firefly [Thacker et al 87], an®ragon[McCreight 84]
cache coherence protocols. As an example, the results favtite-Onceprotocol (using the workload parameters
fr=07fw=03h=09md=0.2umnd =01, Nsb =32,¢95s = 0.2,S5¢c = 2K, 7 = 2,tcc = 1,tcb = 1
andtcm = 4) are shown in the Figure 2.35.

As we shall see in the next chapter, however, the FASST architecture is defined for just a single multiprocessing
node; extension to more than one such node is really beyond the scope of this book.
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Figure 2.11: FASST queueing model
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Figure 2.13: Influence of program size on performance
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Figure 2.19: Influence of the number of processors on the performability of a multiprocessor system without
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Figure 2.20: Reliability for a non-degradable (CARER) multiprocessor system with checkpointing and recovery
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Figure 2.21: Availability for a non-degradable (CARER) multiprocessor system with checkpointing and recovery
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Figure 2.22: Influence of processor and memory fault rates on the performability of a non-degradable (CARER)
multiprocessor system with checkpointing and recovery
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Figure 2.23: Influence of transient fault coverage on the performability of a non-degradable (CARER) multipro-
cessor system with checkpointing and recovery
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Figure 2.24: Influence of permanent fault rate on the performability of a non-degradable (CARER) multiprocessor
system with checkpointing and recovery
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Figure 2.25: Influence of the number of processors on the performability of a non-degradable (CARER) multipro-
cessor system with checkpointing and recovery
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Figure 2.26: Reliability for a degradable (FASST) multiprocessor system with checkpointing and recovery
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Figure 2.27: Availability for a degradable (FASST) multiprocessor system with checkpointing and recovery
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Figure 2.28: Influence of processor and memory fault rates on the performability of a degradable (FASST) multi-
processor system with checkpointing and recovery
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Figure 2.29: Influence of transient fault coverage on the performability of a degradable (FASST) multiprocessor
system with checkpointing and recovery
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Figure 2.30: Influence of permanent fault coverage on the performability of a degradable (FASST) multiprocessor
system with checkpointing and recovery
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Figure 2.31: Influence of permanent fault rate on the performability of a degradable (FASST) multiprocessor
system with checkpointing and recovery
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Figure 2.32: Influence of the number of processors on the performability of a degradable (FASST) multiprocessor
system with checkpointing and recovery
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Figure 2.33: Performability comparison with memory fault rate = 10=°



—0E0 T RE~nNDdOO=TD

1.8
1.6
1.4
1.2

0.8
0.6
0.4
0.2

Figure 2.35: Processing power for cache coherent dual bus model usMgiteeOnceprotocol

C=0.8, D=0.95, A, = 1E — 6, A\, = 1E —5, P, = 0.2 and N=10
I I I I

SMRC — n
CARER —

= basic —

0 20000 40000 60000 80000 100000

time (hours)

Figure 2.34: Performability comparison with memory fault rate = 105

= lower bound —
upper bound —

0 2 4 8 16 20

Number of Processors



Processor h Ext-Cache. h rA =
IO

Figure 2.36: Upper bound model foache coherent dual bus



/

10~

Processor 4

Ext-Cache.
| |Sc

70~

Processor y Ext-Cache. 1

Processor Ext-Cache. h :A

h
e ©)xs —~—{ IO~
1= - . Y]

Usc |

Processor h Ext-Cache. h rA =
OO

Figure 2.37: Lower bound model feache coherent dual bus






Chapter 3

FASST Architecture

65



3.1 The FASST Architecturet

This chapter elaborates on the salient features of the FASST architecture, and then attempts to further model its
performance. The general architecture of Figure 3.1, which is designed to transparently tolerate processor failures,
mainly consists of processing elements, a bus, and a recoverable shared netaineyntemoryor S M) which

provides normal memory functionality as well as a backward error recovery mechanism.

recoverable shared memory

Figure 3.1: The FASST architecture

The architecture has been designed to require specialised hardware only fov/th&tandard processors,
caches and cache coherence protocols can be used, and thus memory can be freely shared between processors. In
particular, the recovery protocol avoids the use of dedicated blocking caches which require custom hardware and
penalise the overall performance of the architecture. In principle, it should be possible fHiglbgards into an
off-the-shelf shared memory multiprocessor to provide an error recovery mechanism for that system.

In the following, we further explain the FASST backward error recovery protocol that was introduced in Chap-
ter 1 (see Section 1.4), and discuss how this protocol is implemented BWth& he basic features and operation
of the SM are introduced in 3.1.1 with the simplifying assumption that there are no caches interposed between
the processors and tht&l/. The additional complexities added when snoepghes are incorporated into the
multiprocessor are discussed in 3.1.2.

3.1.1 Basic Features of the Stable Memory

As discussed in 1.4, the backward error recovery protocol has to permit recovery points to be established, re-

covered to and committed, and must permit a recovery line to be identified when recovery is required (also see

[Bandtre et al 92a, Joubert 93]). The basic mechanism insthe for providing recovery is to record recovery

data for each memory location, essentially by maintaining two copies of each location. When a recovery point is

established, each copy contains the same data. Subseguadeits to a location are made to only one of the copies

and thus the second copy retains the state of that location at the time the recovery point is established. As only a

single extant recovery pointis needed for tolerating processor faults, only two copies of a location are ever needed.
To permit the identification of recovery lines it is necessary for the recovery protocol to:

(a) detect and record the existence of inter-processor dependencies which arise through their sharing of data
in the memory; and

(b) synchronise the recovery protocol operations of those dependent processors.

The synchronisation is a vital part of the recovery protocol. In Chapter 1, for instance (remembering the final
assumptions of Section 1.5), we showed that if procesjarads a cell previously modified by processgér
within its current recovery region, then H; is recovered because the processor on which it was executing fails,
then P; must also be recovered. We also showed that if proce8surrites into a cell previously modified by
processorP; within its current recovery region, then#; is recovered the; must also be recovered, since the
value written by”; has been overwritten bi; and so cannot otherwise be recovered. In both previous cases, an

1This section contributed by : Michel Batre, Alain Gefflaut, Philippe Joubert and Christine Morin, IRISA/INRIA, Campus universitaire
de Beaulieu, F-35042 Rennes cedex France, and Pete Lee, Department of Computing Science, University of Newcastle, Newcastle upon Tyne,
NE1 7RU, UK.



extant recovery pointis required fé} so that the recovery line linking; and P; actually exists. Thus dependent
processors have to synchronise their actions on establishing, recovering to, and committing recovery points. One
simplification can be obtained by ensuring that a processor always has an extant recovery point, by ensuring that
a new recovery point is automatically established when a previous one is committed or restored. Thus the
protocol does not provide a separattablishoperation.

Clearly, a key part of the recovery protocol is in detecting and tracking interprocessor dependencies. This is
achieved in the&s M by means of recordingependency relationship#\ dependency has to be recorded by the
SM in two cases :

(a) Whenever a processat; reads a cell previously modified by procesggrwithin its current recovery
region.

(b) Whenever a processét modifies a cell previously modified by procesggrwithin its current recovery
region.

A processoP is said to be thactive writerof a cellc if P has written tac within its current recovery region
andc has not been written to subsequently by another processor.

This dependency information is stored within & and used to compute recovery lines, or more specifically
the dependency groupf processors involved in the commitment or restoration of a recovery point. Recovery
of a processol’; must induce recovery of its dependency group; this requires the values of all of the memory
locations which have been updated by any processor in that group to be restoredsBy toetheir prior values,
using the recovery data recorded by th&/ for this purpose. Similarly, commitment of a process will induce
the commitment of all processors in the dependency group; in this case the values of all of the memory locations
which have been updated by any processor in that group must be committed. This entail$ thenaking the
two copies of the memory location identical.

One important assumption for dependency tracking is thatstieis only connected to the bus of the ar-
chitecture and dependencies are tracked/ypping bus information, i.e. it requiresroadcastednformation;
non-broadcast mechanisms (for instance some of those used in distributed shared memory systems) will require
redefinition of the recovery protocol. In order to record dependencies, when a memory locatioaessed by a
processor, th& M needs the following information:

(a) The identity of the processor performing thecess. This requires that each processor has a unique
identifier which is transmitted whenever that processor generates a read or write request.

(b) The type of access (read or write)
(c) The identifier of the processor that is active writer of the cell if any.

The commitment of a recovery point by a processor obeys a simple distritwepghase comm[Gray 78]
protocol. Processors are participants while $ti¢ is the coordinator of the protocol. In contrast to the standard
two-phase commit protocol where the coordinator is responsible for triggering the protocol, it is a participant which
initiates commitment; yet it is the coordinator itself which is responsible for actually committing data. When a
participant wishes to issue a commit request, it must first flush its internal registers ousttfgnce the values
in these registers, which form part of the global state, cannot otherweechesed). It can then sendacommit
command to thes M and wait for an interrupt signalling that commitment has terminated and that the processor
can resume processing.

Upon receiving alo.commitcommand, theés M scans its dependency information (to determine the recovery
line) and informs all of the processors in the dependency group. A dependent processor can then flush its registers
into the SM if necessary and must acknowledge its completion of the first phase of the protocol. When all
acknowledgements from the participant processors have been receivety/tiemters the second phase of the
commit protocol. During this second phase, the recovery data of the cells whose active writers belong to the
dependency group is discarded. Once this has been achieved, commitment is complete and a new recovery point
is established for each processordrgjing to the group. Thus the processors in the group are no longer dependent
uponeach other, and the dependency information in§i¢ can be discarded and the participants allowed to
proceed with their computations.

Let us consider now the implementation of &/ in greater detail.



Servicing read and write requests

The SM actions are best described by a finite state automaton. The automaton includéSdisation state
together with aservice andcommit_phase2 states. In the service state of thé/, most of the work is concerned
with dependency management. Assume that dependency data is stored iml@oolean matrixi/; n being the
maximum number of processors in the architecture. A matrix iléi, j) is set to true when processéy is
dependent or®;.

While read and write requests may refer4é/ cells, theSM itself may record dependencies on a larger
granularity. In the following, it is assumed that tB@/ physical space is divided into a set of contigubligk s
of identical size that is a power of two of the cell size. There is no constraint that the block be, say, the size of a
cache line or a memory management page; it may be either or neither. Each block consists of:

(a) current values of the cells,
(b) atag field containing either the identity of the active writer to the block (if any) onthgalue, and
(c) recovery data.

Basically a read request involving celtequires thes' M to compute the identity of the containing target block
b, record a dependency between the processor making the request and the active writer of the block (if any) in the
matrix M, and deliver the current value of the cell. A write to a eelill compute the target block, record a
dependency with the active writer if any, change the active writer of the block, and update the current value of the
cell within the block.

First phase of the commit protocol

Upon receiving ado.commitcommand from processadr;, the SM has to scan the dependency information it

has recorded in matri¥/ during F;’s current recovery region to determine theup of processors which are
required to commit atomically witl¥?; according to the recovery protocol. Once the dependency group has been
computed, each processor in that group has to be informed that it is required to participate in this commitment, by
means of grepareto_commitinterrupt. This can be implemented in a variety of ways, using interrupt or message
passing facilities provided by the bus. THé/ could generate such interrupts directly. Alternatively, thg

could broadcast on the bus a bit vector conveying the group of dependent processors, with dedicated logic on each
processor board checking whether the processor it is attached to has to participate to the group and generating the
prepareto_commitinterrupt appropriately (this checking could also be implemented in software). Each processor

in the dependency group must also issmaommitcommand in acknowledgement, meaning that as far as it is
concerned, the first phase of the commit protocol is OK.

It should be noted that within the interval between the indi@mtommitcommand and the receipt of acknowl-
edgements from the dependent processors, some new dependencies may have been createdS &lncarthe
continue servicing read and write commands from processors that are not blocked waiting for the end of the com-
mit protocol. These processors have to be added to the dependency group if this concurrency is permitted. It may
also occur that a processor not already part of the group decides to commit its current recovery point and sends
a do_commitcommand to thes M. This processor is added to the (current) group as well as all the processors
dependent upon it. This mechanism provides a simple means for implementing multiple concurrent processor
groups.

One crucial point is that computation of the dependency group has to be atomic with respect to read and write
accesses to theéM . If it is not atomic, the group could be incorrectly calculated by $tié. A simple way to
implement this atomicity is to serialise the group computation and normal read and write accesses.

The dependency group computation algorithm is given in the C programming language in Figure 3.2, with
the assumption that the number of processocan be encoded within an integer variable, and the matkiis
implemented by an integer array where each array element is considered as a bit vector indexed by a processor
identifier. Upon reception of do_.commitcommand, the&S M/ executes thelo.commitprocedure. The bit vector
group denotes the processors which are members of the dependency groupdavdil@mit_received is the
bit vector denoting the processors that have completed the first phase of the commit protocdb_cbimemit
procedure of Figure 3.2 will cause a state transition of $ii¢ automaton into theommit_phase? state that
implements the second phase of the commit protocol if the following condition is verified :

Q : ((group = do_commit_received) A (Vi : i € group : immediate_ancestors(i) € group)



This condition expresses the requirement that all processors belonging to the group of dependent processors
have completed the first phase.

© may not be satisfied in two situations. Firstly, some processors that have already been informed that they are
group members have not yet completed the first phase, in which caséthaust wait for the reception of their
do_commitacknowledgement commands. Secondly, some new processors have become group members since the
last computation ofroup and thus must be informed. Notice also that the dependency computation algorithm
must avoid interrupting a given processor more than once.

int state; /* current state of the automaton */
int group; /* dependency group computed so far (bit vector) */
int do_commit_received; /* bit vector of do_commit commands */
/* received from the processors */
int M[n]; [* dependency matrix */

INITIALISATION:
do_commit_received = 0; group = 0;
for(j=0;j<n;j++) M[] = (1<<j); [* a processor is an ancestor of itself */
state = SERVICE;

SERVICE:
read(address) {
/* create a dependency if necessary and return the value stored at address */

}

write(address, value) {
/* create a dependency if necessary and perform the write */

}

do_commit(int i) /* i is a processor id */

/* the processor i is willing to commit or acknowledges a request of
the SM following a commit request from a dependent processor */

{

int dependent_members;
int j; [* processor id */

/* add processor i to the group */
group |= (1<<i);
do_commit_received |= (1<<i);

/* compute new dependent members */
dependent_members = group;
for(=0; j<n ; j++)
{ if ((group & (1<<j)) != 0) /* if processor j is a member */
[* of the group */
dependent_members |= M[j]; /* add immediate ancestors */

/* {dependent_members = group ==> group is exact} */

/* check for termination condition Q and inform new members if necessary */
if ((do_commit_received == group) && (dependent_members == group))
state = COMMIT_PHASEZ2;
else if (dependent_members != group)
{ /* broadcast (dependent_members& group) onto the bus */
group = dependent_members;

}

} /* do_commit */

Figure 3.2: Computing a dependency group

There are many ways to devise an algorithm satisfying the previous requirements. In Figure 3.2, a simple
solution is given. The algorithm checks tfjecondition and as a side-effect computes a new valug-ofip. If
the new value ofjroup is different from the last value, the new members are informed. The complexity of the
algorithm isO(n), with thedo_commitprocedure being executed at mestimes. The first phase of the commit
protocol is thusD(n?). Note that termination is obvious from Figure 3.2 assuming that a processor acknowledges



aprepareto_commitrequest within a finite time and since the number of processors is bounded.

Second phase of the commit protocol

The basic actions which have to be performed in the second phase of the commit protocol are the following:

(a) Discard the recovery data of all the blocks whose active writers belong to the dependency group and
establish a new recovery point. This can be achieved by setting the active writer field of those blocks
to thenil value and by setting the recovery data values to the current values.

(b) Break the dependencies by updating the dependency nidtdappropriately.

(c) Broadcast @ommitdoneinterrupt to the processors belonging to the dependency group to permit them
to restart computations.

As in the first phase of the commit protocol, these operations need to be atomic with respect to read and write
accesses.

The implementation of the second phase of the commit protocol has a great impact on the overall performance
of the architecture since a processor must not modify a block for which the new recovery data has yet to be recorded.
Several implementations of the second phase can be devised. A trivial solution would consist of sequentially
checking every block of the M/ and copying the current value of the block to its recovery counterpagtdéssary.

This leads to the second phase of the commit protocol taking a time proportional to the size5éf thehich
may not be desirable. Moreover, the processors must be prevented from restarting before this copying has been
completed.

Several refinements to this straightforward algorithm can be made.STheould maintain a per processor
linked list of modified blocks. The time needed to perform the second phase is then proportional to the number of
memory blocks which had been updated by the processor group, but at the cost of extra storage within the

Alternatively, it is possible to permit th€ )/ to restart normal memory operations, and to delay the effective
copying of a block (to provide recovery data for the new recovery point) until it is really needed, that is, if a
processor attempts to modify that block. This copy on write mechanism allows the second phase time to be
interleaved with normal processor accesses, and processors do not need to be stalled untibgifitigehas
been done in one fell swoop. However it is stifdaessary to mark blocks within th#&Y/ to determine whether a
given block has to be copied or not on a subsequent write access. One approach isheckpeint identifiers
[Wu et al 90]. In this approach, a checkpoint identifier is associated withii Mievith each block and with each
processor. When a block is modified, the current value of the checkpoint identifier of the active writer is stored
along with the block. When a processor commits, its checkpoint identifier is incrementedeblgowrite access,
if the checkpoint identifier of the block is less than the checkpoint identifier of its last active writer, the current
value of the block is needed for recovery data and so needs to be copied. Before allowing the write to perform, the
block is copied to its recovery counterpart and the active writer and checkpoint identifier fields of the block are set
accordingly. Similar optimisations were provided in various implementations of the recovery cache [Lee et al 90].

Tolerating processor failures

In this paper we have assumed that the processors usédilestop[Schneider 87], and that a failed processor

can be easily identified. This is not a severe constraint on the architecture, for fail-stop processors are common
practice in the field of hardware fault tolerance (e.g. through the use of duplicated processors). In case of failure,
the processor ideally will signal a failure interrupt on the bus which will be caught by one of the live processors.
This processor can trigger the recovery process by issudtgrallback(i) command to the A7, wherei denotes

the processor that failed.

Upon reception of thelo_rollback(i) command, the dependency groupiaf computed by thes' M, thus
identifying the group of processors which must be recovered in order to reset the system state to a consistent state,
that is the state at a recovery line, in a manner similar to the second phase of the commit protocol discussed earlier.
However, the values of the blocks modified by the members of the dependency group have to be reset to their prior
state by copying the values held in the recovery data associated with those blocks. Each dependent processor must
be interrupted by #oll _backinterrupt to cause them to abandon their current processing. The dependencies are



broken by resetting matriX/ appropriately, and th8 M/ reenters the service state. Recovering back to a recovery
point is a simple protocol requiring a single phase compared to the commit protocol which requires two phases.

A particular situation may occur if group commitment is in progress when recovery is demanded. Since the
same processor may belong both to a recovery group and a commit grouggcéssary to check for this at the end
of the recovery procedure. Members of the recovery group are removed from the commit group. If the remaining
commit group is not empty, thé_commit procedure of Figure 3.2 is executed taking one member of the commit
group as an argument.

Finally, after recovery has taken place, the global system state is consistent, and the processors which have
been recovered can recommence execution of normal computations. The computation that was running on the
failed processor can be re-executed on one of the remaining processors and hence a system failure will have been
averted. Moreover, the processor failure will have been tolerated transparently, since no alterations were required
to the software of the application to provide these tolerance actions.

3.1.2 Influence of cache coherence protocols

Now we know the basic operation of tlé/ and how the recovery mechanisms work, we must examine what the
complexities arise when the architecture contains cohegattes, as is the case with any realistidtiptocessor.

As we shall see, the primary changes needed t&'ftieconcern the dependency tracking mechanisms, so we must
examine the influence of thmche coherence protocoh these mechanisms.

Most hardware cache coherence protocotppsed so far rely on the fact that broadcasted bus traffic can be
monitored énoopedi by all caches attached to that bus; the remainden{broadcast protocols such as directory
protocols, or some of those used in distributed shared memory systems) behave differently.c8obepynaintain
a tag field stored along with each loaded line to indicate the state of that line. The tag field generally encodes
whether the line has been modified with respect to the contents of the corresponding shared memory location,
and whether the line has been loaded into another cache. As discussed in Sections 2.1 and 2.2, two main classes
of snoopingcache coherence protocols can be digtiished, depending upon the actions performeddnhes
when a shared line is modifiedVrite Invalidateprotocols cause an invalidation message to be broadcast on the
bus whenever any data potentially loaded into other cachggdated, to cause tleache lines to be invalidated
elsewhere Write Updateprotocols broadcast the new value whenever data potentially resident in other caches is
updated. As in Section 2.1.1, we shall examine Bleekeleyprotocol [Katz et al 85], as a representative of the
write invalidate family of protocols. In thBerkeleyprotocol, a cache line can be in one of the four states: Invalid
(1), Non-modified Shareds), Modified Exclusive {/), and Modified SharedX), as shown in Figure 2.1.

Recall that thes M maintains dependencies on memory blocks. In contrast to the previous section, where the
block granularity could be as small assa/ cell, when caches are present t#h& must record dependencies on
at least a cache-line size granularity, since a cache-line is the minimal unit of transfer on the bus. Therefore, let us
examine the operations performed by the cache protocol and the various actions takets by fiveas to track
the dependencies when a processor performs respectively a read miss, a write hit, and a write miss on its cache (a
read hit does not generate any action on the bus and thus does not need to be considered further).

ProcessorP; performs a Read Miss If there exists a cache with a copy of the line in stafeor O, this cache
must supply a copy of the line to the requestoaghe and set its statedd Otherwise the line must come
from shared memory. In both cases, the line is loaded in statehe requesting cache. If the target block
containing the line has an active writgy, a dependency must be created in$lié¢ between?”; andP;. As
far as dependency management is concerned, no distinction is made whether the requested line comes from
another cache or from the\/, although the intecache transfer must be detected by $he& snooping on
the bus.

ProcessorP; performs a Write Hit If the line is already in stat&/, the write proceeds wibut delay. Otherwise,
(in stateS or O) an invalidation signal must be sent on the bus. All other caches invalidate their copy if they
have one that matches the line address. The line state is chandédinahe originating cache. The
invalidation signal is snooped by th&l/. If the corresponding block has no active writ€f,becomes its
active writer. Otherwise, if?; was the active writer, a dependency is created betwgeand £; and F;
becomes the active writer of the block.

ProcessorF; performs a Write Miss Like a read miss, the line comes from its owner or from shared memory.
All other caches invalidate their copy if any. The line is loaded in statéThe S snoops the data transfer



if the line comes from another cache. As above, if the cpording block has no active write?; becomes

the active writer; otherwise, a dependency is created betWeand P; and F; becomes the active writer

of the block. Since cache lines can contain several processor addressable cells and the line is now cached
by P; in stateM, the SM cannot detect a further read on a different cell of the lieednse it would not
generate any bus traffic. So, a dependency betwtemd 7; is also created to prevent the case in which a

cell previously modified by?; would be locally read by’;. In other words, the&; A/ adopts a conservative
approach by creating some dependencies which are not strictly required by the protocol to preserve the
coherence of processor checkpoints.

It should be noted that the&d! must keep pace with the information exchange rate on the bus due to the cache
coherence protocol. If this were not the case, ¢ might miss some dependencies that need to be recorded.

The commitment of a recovery point when caches are present is similar to the situation where no caches
are present. What is required is that when a participant processor initiates commitment or acknowfgdges a
pare to_commitrequest from the M/, the processor must flush its cache as well as its internal registers. Similarly,
recovery must cause a cache invalidation.

In summary, no special purpose caches or coherence protocols are needed in the architecture being presented
here, which can accommodate standard cache behaviour withithperforming dependency tracking by snoop-
ing the bus traffic. This is a notable difference with other proposals for fault tolerant shared memory multiproces-
sors [Bernstein 88, Wu et al 90, Ahmed et al 90].

3.2 Performance Evaluation

In the light of this, we may now extend the performance evaluation to a shared memory multiprocessor machine
that incorporates &M, i.e. to the FASST architecture. Through simulation, the performance of FASST has been
compared against the performance of a standard multiprocessor architecture without any fault tolerance capabilities
and against that of two other approaches for fault tolerant shared memory multiprocessors, namely CARER and
Sequoia.

3.2.1 Methodology and workload

The simulations were conducted using an instruction level simulator driven by a set of memory references gener-
ated by instrumenting application code with the Abstract Execution technique [Larus 90]. The simulator imple-
ments an efficient execution driven simulation method similar to that described in [Davis et al 91] (further informa-
tion on the simulation tool may be found in [Gefflaut 92]). Execution driven simulation controls the address trace
generation to ensure that the trace corresponds to that which would be obtained if that application was actually
executed on the architecture being simulated. This technique thus supports the derivation of simulations which
accurately model the architecture. The simulation models were parameterized with the characteristics of Sun mul-
tiprocessor SparcServers, with a 320MBytes/sec synchronous bus, 64KBytes unified direct-caappsdvith

32 bytes lines and IEEE write invalidate cache coherence protocol. To simplify the performance comparison, all
of the fault tolerant architectures were modelled with these parameters in common.

For FASST, the error recovery protocol is that described in Section 3.1. For the second phase of the commit
protocol the stable memory implements the copy on write mechanism described in Section 3.1.1. Since the extent
of recovery regions in the FASST architecture is not controlled by any hardware or application parameter, it is nec-
essary to fix a rate for the frequency of recovery point establishment (and hence commitment) for the simulations.
The only situation where FASST may be forced to commit a recovery point and to establish a new one is to prevent
the loss or duplication of an operation on an unrecoverable object, for instance, 1/0 devices [Lee et al 90]. This
classical technique for dealing with unrecoverable operations is used by CARER and Sequoia, and ensures that an
I/O operation cannot be repeated. Thus, for the FASST simulagaih, I/O operation leads to the establishment
of a recovery point. To obtain an average 1/O rate, the interrupt rate on a NFS file server was measured, and from
this measurement a rate of 1000 interrupts per second was used in the simulations.

For the CARER simulation, a recovery point is committed and a new one established whenever a modified
line in a cache needs to be replaced and whenever a modified line is read by a different processaudtar Se
recovery points are established and committed as described in Section 1.3, that is, whenever addobkitig



full or a modified cache line needs to be flushed, or on exit from aitigadrsection which requires coherence of
the shared memory.

The workload comprises four parallel applications drawn from the SPLASH benchmark suite [Singh et al 91].
The applicatiorcholesky performs sparse matrix factorisationp3d simulates rarefied hypersonic flowghor
simulates digital circuits at the logic level; amthter simulates the evolution of a system of water molecules.
Only the parallel phase of the computation was simulated, resulting in 65 to 80 million memory references for
each application. The four applications were simulated on the four architectures for 1 to 8 processors.

3.2.2 Experimental results
3.2.2.1 Performance of the architectures

Figure 3.3 shows the MIPS (million instructions per second) performance of the four architectures for the four
simulated applications. The performance degradation for FASST compared against the standard (non fault-tolerant)
architecture is relatively small, despite a high commit rate for FASST (1000 per second). Performance degradation
with eight processors remains below 15% exceptiipBd where it is about 30% (for reasons discussed below).

For the other fault tolerant approaches, the performance of CARER is relatively close to that of FASST for
cholesky andwater (10% performance degradation) but the degradation grows to 65% fior and mp3d.

CARER achieves these results despite the restrictive failure hypothesis (i.eactines are faulree) that per-

mit a very efficient implementation of its commit protocol. The Sequoia approach appears to offer the lowest
performance of all three fault tolerant architectures. Performance remains below 100 MIPS independent of the
application or number of processors used. The performance degradation for this architecture always exceeds 20%
for one processor and can be as high as 8% with 8 processors).

These results are very encouraging for the FASST approach to fault tolerance. Some degradation in perfor-
mance over a non fault tolerant architecture is inevitable, due to the error recovery provisions in FASST archi-
tecture. Nevertheless, these simulations suggest a relatively modest degradation in general. When compared to
the other fault tolerance approaches, the simulations suggest that the FASST approach provides the best overall
performance.

3.2.2.2 Behaviour of the applications

It may be observed from Figure 3.3 that for all the architectures considered, the performance degradation varies
significantly and is application dependent. Figures 3.4 and 3.5 show, for each application, the distribution of bus
transactions for 10000 memory references:

(a) misses serviced by shared memory;

(b) misses serviced by caches;

(c) write invalidations;

(d) write backs arising from the replacement of a modified cache line (only for FASST sigcei8end
CARER use blocking caches); and

(e) write backs arising from cache flushes for FASST angudé or from the reglcement ofinwritable
cache lines for CARER.

The figures also show the number of recovery points established for 10000 memory references. Three reasons
for establishment are distinguished: the recovery points establisggwaige of interrupts (only for FASST), the
recovery points established before replacing a modified cache line (for CARER guodi&eand the recovery
points established because of data sharing. For FASST the latter are the recovery points established because of
dependencies; for CARER they are established because of a miss on a cache line that has been modified in another
cache; and for Spioia they are the recovery points established upon exit from a critical section.

Cholesky

The standard architecture attains good performancetf@isky, with a speedup of 6.8 with 8 processors. This
good behaviour is caused by a higdiche hit rate of 99.2%. Data sharing is at a coarse granularity in this appli-
cation. Although the 6% write ratio is comparable to other applications;dbbes contain a low pportion of
modified data due to the good locality of write references. Only 30% oécephents require a write back.



These characteristics allow performance degradation for FASST to remain always below 10% for this applica-
tion. The caches do not contain a lot of modified data; on average with 4 processors, 360 cache lines are flushed
at each commit. Also, the data sharing pattern of the application only creates a small number of dependencies (the
average size of the group of dependent processors is 2.8 with 8 processors). These two factors explain the good
performance of FASST for this application.

The performance of CARER is close to that of FASST for this application despite disproportionate recovery
point establishment rates (CARER establishes 15 times more recovery points than FASST), due to the low cost
of establishing a recovery point in CARER. Most recovery points are established when modified cache lines are
replaced; only a few result from data sharing.

Sequoia suffers from an even higher recovery point establishment rate than CARER, mostly caused by critical
sections that require frequent cache flushes. Moreover, the invalidation of unmodified cache lines on entry of a
critical section contributes to lowering the hit rate from 99.2% to 98%.

mp3d

The behaviour ofnp3d is clearly worse thamholesky for the standard architecture with a speedup of 5 for 8
processors. The cache hit rate is lower (98.3%) due to a worse writgyaoad to a 10% write ratio with 70% of
replacements leading to write backs. Data sharing is very prevalent in this application; 77% of reads and 87% of
writes reference shared data. Due to this heavy data sharing, half of the misses are serviced by caches. The large
number of cache-to-cache transfers lowers the performance since a cache servicing anoissecgice requests

coming from its processor.

Of all four applications, FASST has the worse performance degradation for mpd3. Performance degradation
is 13% for one processor and reaches 33% for eight processors. The major factor contributing to this result is the
large amount of modified data residentdaches when a recovery point is coitted; with four processors, an
average of 125@ache lines are flushed to memory. Moreover, due to the heavy data sharing, all processors are
dependent. This considerably lengthens the duration of the first phase of the commit protocol.

CARER also does not behave well for this application because the heavy data sharing forces the establishment
of a large number of recovery points. Moreover, a high number of modified cache lines are replaced.

Although synchronisation operations are infrequent, Sequoia suffers from the large number of ncadfizd
lines replaced.

pthor

The standard architecture obtains low performance fopther application, with a speedup of 4 for 8 processors.
The cache hit rate is low (97.5%) due to a large working set, and the caches perform a significant number of write
backs. Data sharing, although less intensive tham#@d, contributes to limiting performance.

Performance degradation for FASST is much lesgfbpr than formp3d (13% degradation for 8 processors).
This behaviour is caused by the different amount of data flushed to memory when a recovery point is committed.
With 4 processors, 570 cache lines are flushed, compare2bi@formp3d.

For CARER, although data sharing is less intense@fbapr than formp3d (38 cache-to-cache transfers8&
for 10000 memory references), the number of recovery points establigicadde of data sharing is higher for
pthor than formp3d (12 vs5 for 20000 memory references). This is caused by the data sharing pattern which
is different for the two applications. Ipthor, shared variables are accessed within short, but frequeétitatr
sections, thus leading to the establishment of a lot of recovery points.

The large number of locking operations and the large data set that causes a lot of replacements severely limits
Sequoia performance for this application. No improvements of performance are achieved above 3 processors. Due
to data cache invalidationgon exit of critical sections, theache hit rate is lowered (84% instead of 97.5%).

water

The water application offers high performance for the standard architecture because of a high hit rate (99.88%)
and a small data set. Moreover, data sharing is negligible.

As might be expected, FASST performance is very good for this applicaticause of the small asant of
modified data resident in caches when recovery points are @tedmand of the few dependencies (2.6 dependent



processors on average for 8 processors). CARER also behaves well for this application because of the small
working set that only causes a few replacements of modified cache lines.

For Sequoia, only a small number of recovery points are establigtealibe of the replacement of modified
cache lines, since the working set is small. Most of the recovery points are established becatisal skations.

3.2.3 Stable memory implementation

As there are several ways in whichSa/ could be implemented, it is important to consider the influence such
implementations would have on the performance of a system incorporatifig.aOf particular concern is the
potentially expensive operation of copying the current valueS &f cells for use as recovery data whenever a
recovery pointis established.

Figure 3.6 shows the influence of this aspect of #ti¢ implementation on performance degradation. Three
implementations are considered: one using copy on write, one using a per processor list of modified memory
blocks and the last which is a control case where the copying time is assumed to be nil, i.e. instantaneous.

As can be seen, and as might be expected, the different implementations greatly influence the performance
degradation suffered by an application. However, the degradation ratio between the different implementations
remains constant independent of the application. The copy on write implementation behaves better than the imple-
mentation using a per processor list of modified memory blocks, although the number of blocks to be copied (and
so the time needed to copy those blocks) is the same for both. With the list of modified blocks, the duration of the
copy is concentrated at the end of the first phase of the commit protocol. Although the processors can restart their
computation at the end of the first phase, they are not allowed to perform bus transactions until all blocks have been
copied, and so quickly become stalled waiting for the copy to be completed. If copy on write is used, the copying
can be interleaved with normal memory accesses. Thus the processors are onlyitkegtfavashort periods of
time resulting in better overall performance. The performance is naturally the best for the control (instantaneous
copy) case, which indicates the upper performance bound fdt the

3.2.4 Dependency management

Dependency management adds some complexity to the implementation%fthén a simple implementation,

all processors could establish a global recovery point, thus avoiding the burden of dependency management within
theSM. In this case, a standard memory interface is sufficient fosthiesince it no longer needs to snoop bus
transactions to log dependencies. The commit protocol is also simpler. However, the potential gain of dependency
tracking is in minimising the number of processors that have to be recovered in the event of a failure of one
processor. Thus, it is useful to examine the impact of dependency management on performance to investigate
whether it is worth the added implementation complexity.

Figure 3.7 shows, for each application, the performance degradation observed with eight processors, with and
without dependency management. The figure also shows the average number of dependent proesstors at
commitment of a recovery point. Fpthor andmp3d, the performance of the two versions of thi&/ are nearly
identical since for these applications all processors are dependent, and hence the presence of dependency tracking
isirrelevant. In contrast, fatholesky andwater, where the average group size never exceeds three processors, the
dependency management shows its efficiency since it reduces the performance degradation by a factor of two. The
main reason for this is that with dependency management less data is flushed when a recovery point is committed,
since fewer processors are dependent. For example, withdhe application, 190 cache lines on average are
flushed to memory each time a recovery point is catred. When dependency management is suppressed, the
number of cache lines flushed increase3360.

3.3 Summary

These simulations have demonstrated that the CARER and Sequoia approaches to implementing a fault tolerant
shared memory multiprocessor both exhibit similar performance behaviour. Both require the commitment of a
previous recovery point and the establishment of a new recovery point each time a modified cache line has to be
replaced, as well as when data sharing occurs (fgu8ia, data sharing is enforced explicitly by means of the
locking protocol). The difference in performance of these two architectures primarily results from the differing
costs of recovery point operations. A realistic implementation of CARER should consider the possibility of errors



within caches and so would obtaioughly the same performance as Sequaeabise of the consequent cache
flushes. The rate at which recovery points are established and committed is contratbehbyparameters (size,
associativity, replacement policy) and by the data sharing pattern of the application programs. This results in a
high, uncontrollable and unpredictable frequency of recovery point establishment (between 25 and 100 times more
than for the FASST approach). Some memory access patterns in the applications can even force the establishment
of a recovery point at each data reference.

The FASST approach to implementing fault tolerance in a shared memory multiprocessor eliminates most of
these disadvantages. The need for commitment/establishment of a recovery point is controlled primarily by the
interactions of the architecture with its external environment (e.g. for 1/0) independently of any architectural
parameter. These interactions are much less frequent than cache line replacement. Recovery points are also inde-
pendent of the communication patterns of the application programs, owing to the dependency tracking mechanism.

The fault tolerance overhead is concentrated in the commitment phase of the recovery protocol. Three factors
can influence this overhead:

(a) the amount of modified data,
(b) the number of dependent processors,
(c) the bus load of the machine.

The amount of modified data is the major factor that influences performance degradation. The duration of the
commit is directly proportional to the amount of data that has been modified. In turn, the amount of data is governed
by the number of processors that are dependent upon the processor that issued the commit. Thus, the dependency
management mechanism in tid/ minimises the number of processors that are affected by the commit (except
of course if they are all dependent). The dependent processors impose another overhead on commitment, since
some modified data may be resident in their caches, and commitment requires the modified lines in the caches to
be flushed back to th8 M. Thus, the importance of the dependency tracking mechanism ifi theéncreases
with the number of processors in a system, in that minimising the number of dependent processors will minimise
the amount otache flushing and data corittad. Note, of course, thaache flushing is required in an ordinary
shared memory multiprocessor.

The bus load also influences the performance degradation. Performance degradation grows with the number
of processors as does the bus load. Ideally the bus is lightly loaded, so that cache flushes can prhoaeed wit
interfering with the activity of the processors that do not participate in the commit protocol, and in this case the
performance degradation remains constant whatever the number of processors.

As stated in [Janssens et al 91], the key issue in obtaining good performance is to keep the frequency of re-
covery point operations independent of any architectural parameter. This is what the FASST approach attempts to
do. The FASST architecture presented here allows processor failures to be tolerated transparently, that is, without
affecting the software being executed on the architecture. The only specific hardware component required is the
SM, and itis believed that th€/ can be implemented at a reasonable cost. Ihkecopes with standard caches
and cache coherency protocols, and this provides an advantage over the other approaches studied, such as CARER
and Sequoia. The dependency tracking mechanism provided jithallows shared memory to be provided for
and to be used by the software. In contrast, the Sequoia system only permits memory sharing within the operating
system, and requires complex software structures to ensure the correct semantics.

From a performance point of view, simulation results show that the FASST architecture offers better perfor-
mance than the Sequoia and CARER approaches, mainly due to a lower frequency of recovery point committments.
Moreover, the amount of data copied in a commit operation is kept as low as possible by the fine-grained recovery
protocol presented in Section 3.1 together with the dependency tracking mechanism.

The following chapters discuss the design of &, as well as a fail-stoplual-processing uni¢(> PU) and
a stable disk(S D), before considering the system software issues. This chapter has only considered the case of
parallel applications which consist purely of computation, with no input/output operations. Providing backward
error recovery in the face of unrecoverable operations such as I/O is a further challenge. Extensions to the recovery
protocol are necessary to provide the required abstraction of backward error recovery with both shared memory
and other unrecoverable operations being executed by applications programs.
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4.1 FASST Recovery Protocdl

This chapter describes more precisely the FASST recovery protocol and discusses issues in the design of a stable
memory M), which is the main agent of the protocol (also see [Morin et al 92]).

We assume the FASST architecture as shown in Figure 4.1. A cache is associated with each processor, but we
do not need to distinguish betweeache levels (e.g. between primary andosetarycaches). Thes M may be
composed of several memory modules. For the purposes of this discussion, we assume that it is not possible to
insertSM modules during system operation (i.e. hot-inser), so that to change the memory configuration the
machine must be stopped and then restarted in a cold start mode.

CPU CPU CPU
cache cache e cache
e = =
| |
stable memory /0

Figure 4.1: The FASST architecture

4.1.1 Stable Memory

EachSM module has the logical structure depicted in Figure 4.2, with two DRAM banks of the saméusizé,
andbank?2, represented by an array of cells

type t_bank = array[0..bank_size-1] of block ;
t_bank Bankl, Bank2 ;

In the following, we assume that tt€l/ physical space is divided into a set of contigubligk s of identical
size. Each block consists of a current valuehimk1 and a recovery value ihank2. While read and write
commands refer t&' M cells, theSM records dependencies on a block granularity.

Various attributes need to be stored with each block, e.g. the processor identifier of the last writer to a block;
this information is stored in theectorstructure, which may be represented algorithmically as a record :

type t_vector_elt = record
t_owner owner ;
.. additional information ....
end ;
type t vector = array[0..block_nb-1] of t vector_elt ;
t_vector Vector ;

The ownerfield contains either the identity of the active writer to the block (if any) ortliesalue.

The SM also maintains a dependency matvbxwvhich records dependencies between processors which share
memory blocks. This matrix is updated whescessary during read and write operatiohsis an * n Boolean
matrix; » being the maximum number of processors in the architecture. A matrix/if¢im;) set totrue means
that processop’; is dependent o’;. Once a dependency group is computed by a processor it is stored in each
SM module in thegroupfield.

In order to optimize bank to bank copy during phase 2 of the commitStife maintains a list of blocks
modified since the last commit in thpdatelist. The ends of thepdatelist are pointed to by thapdate ptrs.

1This chapter contributed by : Christine Morin, IRISA/INRIA, Campus universitaire de Beaulieu, F-35042 Rennes cedex France, and
Cornelius Frankenfeld, Stollmann GmbH, Hamburg, Germany
2For the C dialect used here, a Boolean vdhlseis represented by zero, while a Boolean vatue is represented by a non-zero
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Figure 4.2: Stable memory structure

4.1.2 Dependency management

Data sharing between processors implies processor dependencigsl/THistinguishes between :

(a) read after write dependency, and
(b) write after write dependency.

In the FASST recovery protocol, dependencies are recorded by Mhewvhen processors access memory
blocks. TheSM also records some dependencies by snoopingdlbe coherence traffic on the bus. First let
us assume that process@ris independent from all other processors. Whgrtommits then it flushes its cache
to bank1 and copies all the blocks it has modified since its last commit frenk 1 to bank2. When processab;
rolls back then all the blocks it has modified since its last commit are copiedifzak® to bank1 and its cache
is invalidated. To detect which blocks have been modified’hyeach time a block is vitten to by a processor
its identity is recorded with the block in thewvnerfield. In other words, thewnerfield associated with a block
contains the identity of the last writer to the block. A commit or a rollback of procelsimnplies a bank to bank
copy of blocks whose last writer i5;.

4.1.2.1 Read after write dependency

Consider that processadf; writes to a memory bloclB. Later processof’; reads the same blodk (see Figure
4.3). If the reader oB, P;, commits at time then the writer oB, F;, must also commit dependently withy. In
fact, if this was not the case then a subsequent rollbagk @fould imply that”; would have read a value &
which was never written, leading to an inconsistent state.

Symmetrically, if the writer oB, 7;, rolls back at time then the reader @, P;, must also rollback dependently
with P; (see Figure 4.4). IP; does not rollback whet®; rolls back, then”; possesses a value Bfwhich was
never written. Bcause ohon-deterministic behavior in a system, nothing guarantees that (after rollBaaki)
write the same value tB as it wrote before rollback.
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In summary, when?; reads a block previously modified by; then P; is said to be dependent ad#, i.e.
(P;—F;). A commit of P; implies a commit off; and a rollback of’; implies a rollback ofP;.

4.1.2.2 Write after write dependency

Consider that processét; writes to a memory blocB. Later processof’; writes to the same blodR (see Figure
4.5). If the first writer,P;, commits then the second writd?; must also commit. The commitment &f implies

that it is the value written by’; which is copied frombank1 to bank2. If P; does not commit whe#; commits,
then a subsequent rollback Bf implies thatB is restored to a value which was never written (the value committed
by P; was written toB by P;, which has rolled back).

W Commit
Pi I | %

P {
W
| Time

t

Figure 4.5: Write after write dependendgommit

Symmetrically, if?; rolls back thern?; must rollback (see Figure 4.6). The rollbackifimplies that it is the
value of blockB contained irbank2 which is restored, which in the general case is different from the one written
to by ; or P;. If P; does not rollback whet; rolls back, then in generd?; possesses a value Bfwhich is
different to the one it wrote.
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In summary, wherP; writes to a block previously modified b¥; then F; is said to be dependent dr, i.e.
(P—P;). A commit of ; implies a commit of; and a rollback of”; implies a rollback off;.
4.1.3 Synchronization

In the following algorithms, commits or a rollbacks are caltedoveryoperations, and are begun by a processor
called theinitiator. Timeouts are used to guarantee their progress. The following data structures are used:

int p_nb ; /* number of processors */

int sd_nb ; /* number of stable devices, so number of SM modules */

int active_p[0..p_nb-1] ; /* array indicating which are the active */
/* (valid) processors */
[* active[i] = = 1 : processor i is active  */
[* active[i] = = 0 : processor i is inactive */

The processor antlM behaviours can be described by two interdependent state automatons.

4.1.3.1 Processor synchronization states
Processor synchronization variables are not stored ifi #ie When they are accessed, no dependency is recorded.

[* Synchronization registers - one per processor */
type t_p_synchro = array [0 .. p_nb-1] of p_synchro_state ;
t_p_synchro Sync ;

/* Processor synchronization states */
type p_synchro_state = (stopped, stopping, recovery, restart,
atomic_operation, failure, error_handling, waiting, normal) ;

A processor may be in the following states (see Figure 4.7):

normal The processor is not involved in a recovery operation, nor has it failed.

stopping This is the state thimitiator adopts once it starts recovery (commit or rollback). All other proces-
sors have to transitate into teppedstate. Thenitiator remains in statstoppinguntil it knows that
all other processors are in teppedstate oitimer(2) expires. Only one processor is allowed to be in
this state; this is enforced by a lock operation.

stopped All processors excepting thmitiator are in thestoppedstate during the computation of the depen-
dency group; they wait in this state until either the bank to bank copy begtiraen(1)expires.

recovery Theinitiator remains inrecoverystate until either th& A/ communicatesopydoneor timer(3)
expires. The next normal transition is either to #temic operatiorstate or to theestartstate.

restart Theinitiator stays in this state until it has restarted all the other processors and has released the lock.

atomic_operation Theinitiator is in this state if an operation is to be atomically executed and committed.
It remains in this state until the end of this operation, and then returns tecbeerystate. If it fails
in this state, then a recovery procedure takes place (see Section 4.1.8).



non restart
&nontimer(4)

nontimer(1) grou or not_group_mb timer(4)
t' mer(L atomic
restart : K not ready
stopped operation
Fotner Error
handling ~
' N timer(3)

K ready copy_done& kernel

timer(2)
or timer(5)
or timer (6)

Non timer (2)
&non timer (5)
&non timer(6)

copy_done& not kernel
restart done

Figure 4.7: Processor automaton

waiting This is the state of any processor, exceptingitiitéator, that is waiting for completion of the bank
to bank copy. It waits in this state until it is restartediarer(4)expires.

failure This is the state of a failed processor. Any processor that is in this state is denied access to the bus.
It remains in this state until it is physically removed from the system.

error _handling This state is reached by a processor when a timer expires. It may also be reached if some
other system failures occur, but these cases are beyond the scope of this book. At least one valid
processor enters this state after a processor failure, and normally all of them do. From this state,
rollback recovery will always take place. It is possible that more than one processor can fail; one of the
failed processors may be tir@tiator itself. In this state, a newitiator is chosen, and then the new
initiator enters thestoppingstate, while all other processors enter sh@ppedstate. Once irstopping
state, the newinitiator has to compute a rollback group incorporating the newly failed processors.

4.1.3.2 SM synchronization states

Synchronization betweef/ modules is implemented via status and command registers, which can be represented
by a single synchronization variable per module.

/* Synchronization variables - one per stable device */
type t_sd_synchro = array [0..sd_nb-1] of sd_synchro_state ;
t_sd_synchro sd_state ;

/* Stable device synchronization states */
type sd_synchro_state = (normal, ready, commit_copy,
rollback_copy, failure) ;

If we assume that the processors are not allowed to restart their execution before the end of the bank to bank
copy, this leads to a relatively simple state diagram for§hé (see Figure 4.8). The bank to bank copy (states
commitandrollback) occurs when thénitiator is in therecoverystate. The transition betwe@ormalandready
states occurs after reception of the dependenaymrThe transition fromeadyto commitor rollback state occurs
when theS M receives aommitor rollback command, respectively.
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4.1.3.3 Timeout protection

In the following algorithms, thevait primitive is utilized to synchronize concurrent activities. It is is used to stop

a processor until the condition given as a parameter is verified by a set of devices or the timer has expired. It is
structured as 2 imbricated loops. The internal loop is a loop on the number of devices to benteistdte(number

of processor or of stable devices depending on the condition which is checked). Inside the loop, there is a case on
the condition to be tested felach device. As soon as all devices respect dmelition, or if the timer expires, the

most external loop is terminated.

Wait (condition, nb, t_max)
{
timer_expiration = false ;
set_timer (t_max) ;
do
{
one_not_ready= false ;
for (i = 0; i < nb; i++)
switch (condition)

{
case all_stopped :
/* condition to be tested = Sync [*] == stopped */
one_not_ready = ((active_p[i]) &&
(Sync[i] != stopped) &&
(Syncfi] != stopping)) ;
break ;
case all_have_flushed :
/* condition to be tested = Sync[in group] == waiting */
one_not_ready = ((group & (1<<i)) &&
(Sync [i] !'= waiting)) ;
break ;
case all_sd_ready :
/* All stable devices must be in the ready state */
one_not_ready = (sd_state[i] != ready) ;
break ;
case all_sd_copy_done:
/* All stable devices must be in the normal state */
one_not_ready = (sd_state[i] = copy_done) ;
}



while ((one_not_ready) && ~(timer_expiration))
if “(one_not_ready) unset_timer ;

}

Let us examine the different timers used in the protocol (see Figure 4.9).

Pother l:)initiator M
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normal commit interrupt mal
nor
stopped stoppin ;
Timerl P9 Timer2
Stop phase
PP stopped
commit_group_mb .
N — Timer5 group
waiting waiting ready
. Flush phase Timer6 ready
Timer4 SM prepareto commit phase commit
recovery commit
Termination phase Copy phase | Timer3
copy_done copy_done
normal normal normal
normal normal

Figure 4.9: Timeout protection

In order to assure fault tolerance, at least two timers must be active during the sostafigthase After
checking which processors are alive, thiiator "sends” a commit interrupt to all of them and statitaer(1),
which covers the maximum duration of this phase. All other processors start their own timers after receiving the
commit interrupt. These timers ensure that a failure ofniitetor can be detected by at least one other processor.
The commandsommit group. mb, rollback_group. mbandnot.group. mbstop these timers when tkeop phase
is finished in order to avoid exceptions due to timer expiration. Without these commands, we would have either
to deal with exceptions on every other processor, or to use just the timer omtthmr (which would not assure
fault tolerance).

The expiration otimer(3)means that & A/ module has failed during the bank to bank copy. Recovery from
this requires processor access$da k2.

Timer(5)allows theinitiator to detect the failure of a processor while it is flushing its cacfimer(6)allows
theinitiator to detect the failure of & M/ module which does noerct to the reception of the dependenayugr.

Concerning timer durationimer(2)must be longer than any critical section in the system software that is not
interruptible by the commit interrupTimer(1)covers the duration dfmer(2). Timer(3)covers the duration of the
copy phase, and its duration can be calculated byrtitiator if it knows the top and the bottom pointers of the
updatdist. The duration ofimer(4)has to cover the maximum bank to bank copying time.

Outside these phases, the failure of a processor is detected by some other processor-specific mechanism.

4.1.4 Read and Write Commands

Let us assume that thel/ is in normalstate, i.e. no commit or rollback is in progress, and that a processor is not
allowed to issue read and write commands during the bank to bank copy. hotimal state, most of the work
concerns dependency management. A dependeney is noted for:



M[i] & (1<<)) == 1)

Let us also assume that the conversion between a cell address and a block number is doabbyrittéon, a
very basic function implemented in hardware using relevant address lines, and that only line values are exchanged
between memory and caches.

Let us further assume that the processor is identified bgeafield, and that the direction of the transfer is
given byread or write indicators:

user & read_op <=> reader
user & write_op <=> writer

41.4.1 Read

A read from a celk will compute the target block, record a dependency with the active writer of the block (if
any) in the matrix/, and will deliver the current value of the cell. Thus:

Read (address, reader)
{
block = atb (address) ;
owner = Vector[block].owner ;
if (owner != NIL)
/* recording a dependency */
M[reader] |= (1<<owner) ;
return (bankl[address]) ;

4.1.4.2 Write

A write to a celle will compute the target block, record a dependency with the active writer (if any), change the
active writer of the block, and update the current value of the cell within the BlotiKhis is the first update to
the block since the last commit, the block number is appended to the endwgfdhedlist

Write (address, writer, value)
{
block = atb (address) ;
owner = Vector[block].owner ;
if (owner == NIL)
[* first time this block is modified since the last commit */
*update_ptr++ = block ;
else
/* recording a dependency */
M[owner] |= (1<<writer) ;

Vector[block].owner = writer ;
Bankl[address] = value ;

4.1.5 Behaviour of the processor initiating a commit
4.1.5.1 Body of the initiator
We assume in the following algorithm that timétiator of the commit protocol is a member of the commit group.
Initiate_Commit ()
{
/* ensure that there is only one initiator, */
/* i.e. only one commit in progress at a time */
Obtain_Commit_Lock () ;
Sync[my_pid] = stopping ;

/* Stop all other active processors */
send (commit_interrupt, all_other_processors) ;



Wait (all_stopped, p_nb, timer2) ;

/* Every processor is stopped except the initiator */
/* The dependency group is computed by the initiator */
Compute_Group (commit, my_pid, group) ;

/* Inform members of the dependency group that they are */
/*  involved in the commit *
Inform_p (group, commit_group_mb) ;

WriteRegisters () ;
Flush_Cache () ;
Flush_TLB () ;

/* Wait for all members of dependency group to finish saving */
I*  registers and flushing caches */
Wait(all_have_flushed, p_nb, timer5) ;

/* Inform non group members to stop timerl and start timer4 */
Inform_p (“group, not_group_mb) ;

/* Copy dependency group to all stable devices */
Broadcast (group, stable devices) ;

/* What is important here is that all stable devices commit */

/* or none of them does. Problems may arise if the initiator */

/* fails while it is requesting the stable devices to commit. */

/* Some stable devices may commit while others may rollback, */
/* leading to an inconsistent state. */
/* Wait until all stable devices are ready to commit */

Wait (all_sd_ready, sd_nb, timer6) ;
Sync[my_pid] = recovery ;

/* Commit stable devices */
Inform_sd (commit) ;

/* Wait until all stable devices have finished the */

I* bank to bank copy */
Wait (all_sd_copy_done, sd_nb, timer3) ;

Inform_sd (normal) ;

Sync[my_pid] = restart ;

/* Restart all processors except the initiator */
Inform_p (((group ["group)& (1l<<my_pid)), normal) ;

/* end of the commit from initiator point of view */
Sync[my_pid] = normal ;
Release_Commit_Lock () ;

4.1.5.2 Group computation

When P; commits then all its descendants according to the dependency relation must commit. The commit group
is obtained by computing the transitive closure of the dependency relation. If progessmmits then every
which verifies the following equality has to commit too and recursively:

M[] & (1 << k) == 1)

Symmetrically, wher?; rolls back then all its ascendants according to the dependency relation must rollback.
The rollback group is obtained by computing the transitive closure of the inverse matrix. If progessiback
then everyk which verifies the following equality has to rollback too and recursively:



MK & (1 << ))) == 1)

The compute Group primitive forms the global dependency matrix from local dependency matrix located in
eachSM module and then computes the dependency ggooygprelated to the processpir(given as a parameter).
If the typeparameter equalsommitor rollback this primitive computes the commit or rollback dependency group,
respectively.

Compute_Group (type, p, group)
{
/* Computation of the dependency group from the dependency matrix */
/* -- Read all matrices from stable devices */
/* -- Build the global matrix */
/* -- Compute dependency group */

/* Initialization of M with no dependency */
for (i = 0; i < sd_nb; i++)
M[i] = (1<<i) ;

/* Reading all matrices from stable devices and building */
I* the global matrix */
for (i = 0; i < sd_nb; i++)
for (j = 0; j < p_nb; j++)
M[] [= Mif] ;

/* Compute dependency group */
group = (1<<p) ;

tempo_group = new = group ;

group_computed = false ;

do

for (i = 0; i < p_nb; i++)
if (new & (1<<i))

/* i is a new member of dependency group */
for (k = 0; k < p_nb; k++)

/* looking for dependencies *
switch (type)
{

case commit :
if (M[i] & (1<<k)) &&
(tempo_group & (1<<k)) == 0))

/* k not already in tempo_group */
tempo_group |= (1<<k) ;
break ;

case rollback :
if (MK] & (1<<i)) &&
(tempo_group & (1<<k)) == 0))

/* k not already in tempo_group */
tempo_group |= (1<<k) ;
}
/* Checking for termination */
if (group == tempo_group) group_computed = true ;
new = tempo_group & group ;
group = tempo_group ;

while (group_computed == false)

4.1.6 Behaviour of other processors

Let us assume that the rollback interrupt is the highest lé¥e) {nterrupt, that the commit interrupt is thel(-1)
level interrupt, and that all other interrupts have a lower level. When a commit or rollback takes plaitetoe



sends a&commit interrupt or rollback_interrupt interrupt, respectively, to all other processors; those processors
behave as follows:

handling commit_interrupt ()

{
int old = splx (COMMIT_PRIORITY) ;

/* Save registers in local scratch */
Save_Registers () ;

Sync[my_pid] = stopped ;

Wait ((Sync[my_pid] == commit_group_mb) ||
(Sync[my_pid] == not_group_mb), timerl) ;

switch (Sync[my_pid])

case commit_group_mb :
/* The current processor belongs to the dependency group */
/* save registers in SM and flush cache */
Write_Registers () ;
Flush_Cache () ; /* write_back and perhaps invalidate *
Flush_TLB () ;
Sync[my_pid] = waiting ;
Wait (Sync[my_pid] == normal, timer4) ;
break ;

case not_group_mb:
/* The current processor does not belong to the dependency  */
/¥ group. It waits for the end of the bank to bank copy *
Sync[my_pid] = waiting ;
Wait (Sync[my_pid] == normal, timer4) ;

~

}
spix (old);
}

handling rollback_interrupt ()

{
int old = splx (ROLLBACK_PRIORITY) ;

/* Save registers in local scratch */
Save_Registers () ;

Sync[my_pid] = stopped ;

Wait ((Sync[my_pid] == rollback_group_mb) ||
(Sync[my_pid] == not_group_mb), timerl);

switch (Sync[my_pid])

{

case rollback_group_mb :
/* The current processor belongs to the dependency group */
/* Invalidate cache */
Invalidate_Cache () ;
Invalidate_TLB () ;
Sync[my_pid] = waiting ;
Wait (Sync[my_pid] == normal, timer4) ;
/* Read registers from SM */
Read_registers () ;
break ;

case not_group_mb:
/* The current processor does not belong to the dependency  */
I* group. It waits for the end of the bank to bank copy */
Sync[my_pid] = waiting ;
Wait (Sync[my_pid] == normal, timer4) ;

}
spix (old) ;



4.1.7 SM behaviour during recovery operations

main ()

/* A recovery operation starts with a write by the initiator
/*  to the group register.
Wait (group != NIL) ;

/* Update dependency matrix
/* in order to break dependencies

*
*

*
*/

for (i=0 ; i < sd_nb ; i++)
for(k=0; k < p_nb; k++)
{
if (group & (k<<1)) Milk] |= (1<<k) ;

sd_state = ready ;

/* The initiator can observe that the bank to bank copy is */
/* progressing by the following mechanism. It reads the bottom */

/* and top pointers of the update list and by their difference */

/* can compute a value for timer(3). A very efficient method */

/* is to check if the working pointer is growing */
Wait ((sd_state == commit) || (sd_state == rollback)) ;

Phase2 (sd_state) ;
sd_state = copy_done;
Wait (sd_state == normal) ;

ThePhase2 procedure consists of the bank to bank copy of blocks whose last writer belongs to the dependency
group. If a commit operation takes place the bank to bank copy is donetfzaiil to bank2. If a rollback
operation takes place the bank to bank copy is done o2 to bank1. A description of this procedure is given
in Section 4.2.6.5.

4.1.8 Atomic operations

Here we propose a mechanism that allows implementation of, for example, critical sections for mutual exclusion
(see Figure 4.10). This mechanism requires no specific hardware but allows a good use to be madé/of the
functionality.

Such a commit begins like a standard one. When the copy is donritia¢or can decide if it wants to do
an atomic operation (i.e., before restarting other processors) or not; otherwise the standard commit sequence is
performed, which ends by restarting all processors. If an atomic operation is to be done, then the other processors
are not restarted immediately, but instead the operation is performed byitthtor, which then initiates another
copy to validate data modified by its atomic operation. At the end of this copy, the other processors are restarted.

If an atomic operation is to be performed then the intention has to be flagged in the first copy operation and to
be cleared at the end of the second copy operation, so that a rollback during the execution of the atomic operation
can use this flag to uniquely determine the consistent skdte (

4.1.9 Rollback due to a processor failure

Let us assume that procesd@rdetects the failure of processtg by some mechanism?; initiates the rollback
of the set of processors which are dependenPgnlTwo situations must be considered:

(1) A commit or a rollback operation is being executed. Consider if a commit operation is already in
progress:

(a) If a commit operation is in progress and a rollback operation is triggered before the bank to
bank copy phase and before the group has been sent¥d/| then the dependency matrix
is lost, so all the processors must rollback.

(b) If a commit operation is in progress and a rollback operation is triggered before the bank to
bank copy phase and after the group has been sent$d&dl, then the dependency group has
been computed, so the rollback can be executed (i.e. the commit operation is aborted).
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Figure 4.10: Atomic operation

(c) If a commit operation is in progress and a rollback operation is triggered during the bank
to bank copy phase, then firstly the bank to bank copy must complete before handling the
rollback.

Similarly for rollback when a rollback operation is already in progress.
(2) No recovery operation is in progress. Two approaches are considered below:
(a) Rollback of only those processors that are in the dependency group.
(b) Rollback of all processors; this leads to a simpler algorithm.

These two algorithms are outlined below.

4.1.9.1 Rollback of the dependency group
This algorithm minimizes the number of processors thastoppecht the expense of algorithmic complexity.

Initiate_Rollback (k)

{
/* First, check if there is a commit in progress */
/* It seems that the commit-lock has to be acquired by the */
[* processor initiating a rollback if it is free in order */
/* to prevent the beginning of a commit operation (this does */
/* not appear in the following code) */
if ((test (commit_lock)) != 1)
{
/* No commit in progress */

Initiator = my_pid ;
Sync[my_pid] = stopping ;

/* Stop all other active processors */
send (rollback_interrupt, all_other_processors) ;



Wait (all_stopped, p_nb, timer2) ;

/* Every processor is stopped except the initiator */
/* The dependency group is computed by the initiator */
Compute_Group (rollback, k, group) ;

/* Inform members of the dependency group that they are  */
/* involved in the rollback */
Inform_p (group, rollback) ;

/* Check if the current processor is a member of the */
/* dependency group */
if (group & (1<<my_pid)) ==
{
[* Current processor belongs to the group and so must */
/* invalidate its cache */

Invalidate_Cache () ;
Invalidate_TLB () ;

/* Wait for all members of dependency group to finish */
/* cache invalidation */
Wait(all_have_flushed, p_nb, timer5) ;

/* copy dependency group to all stable devices */
Broadcast (group, stable devices) ;

/* Wait until all stable devices are ready to rollback */
Wait (all_sd_ready, sd_nb, timer6) ;

Sync[my_pid] = recovery ;

/* Rollback stable devices */
Inform_sd (rollback) ;

/* Wait until all stable de