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Preface

Stable1. Firmly established; not to be easily moved, shaken or overthrown; firmly fixed or settled; as, a
stablegovernment; astablestructure. 2. Inphysics, a term applied to that condition of a body in which, if
its equilibrium be disturbed, it is immediately restored, as in the case when the centre of gravity is below the
point of support. 3. Steady in purpose; constant; firm in resolution; not easily diverted from a purpose; not
fickle or wavering; as, astableman; astablecharacter. 4. Abiding; durable; not subject to be overthrown or
changed; as, this life is notstable. SYN. Fixed, established, immovable, steady, constant, abiding, strong.

Storage1. The act of storing; the act of depositing in a store or warehouse for safe-keeping; the safe-keeping
of goods in a warehouse. 2. The price charged or paid for keeping goods in a store.

Ogilvie’s Imperial Dictionary of the English Language, edited by Charles Annandale, 1895

It is not so surprising that after a hundred years the conjunction of the above two words now has a meaning
in the context of computer storage. This book describes work on stable storage technology undertaken within the
European Union ESPRIT project P5212 (FASST), as well as in the Basic Research Action QMIPS, and will be of
interest to both theoreticians and pragmatists.

The focus of the book is the problem of recovering processor failures in shared memory multiprocessors.
We propose an architecture designed for transparently tolerating processor failures. The main component of this
architecture isStable Memory(SM ), which provides a hardware-supported backward error recovery mechanism.
This technique copes with standard caches and cache coherence protocols and avoids rollback propagation.

That the FASST project, which suffered more than the usual quota of difficulties, most notably the bankruptcy
of its prime contractor, should have engendered more than the usual quota of high quality work, is a continuing
source of interest for those that were involved.

Brian Coghlan
Trinity College Dublin

Germán Fabregat
LISITT
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1.1 Introduction1

Multiprocessor systems based upon standard microprocessors are becoming ever-more commonplace, providing
significant computational power at a fraction of the cost traditionally associated with systems of such power.
While multiprocessors with distributed memory have gained much attention due to their theoretical peak perfor-
mance claims, shared-memory multiprocessors continue to be the focus of development of several manufacturers,
primarily due to the ease with which such systems can support traditional computing environments and program-
ming paradigms. Nowadays, shared memory systems span the complete range of computing requirements from
the personal workstation up to the supercomputer, and with the advent of hardware for distributed shared memory,
shared memory has reclaimed a central architectural role.

The dominant organisation of a typical shared-memory multiprocessor is as shown in Figure 1.1, with a single
shared bus used to connect processing elements to the shared memory and peripherals. Caches private to the
processing elements together with various flavours of snoopycacheing protocols minimise the bottleneck effect of
the single bus. A discussion of the advantages and disadvantages of such architectures is not the concern of this
book, and we merely observe that shared bus systems are likely to continue to be constructed. What is of concern
to this book is how such systems can be constructed such that hardware faults affecting the processors in the system
can be tolerated so that a reliable processing service can be provided in spite of those processor failures.

cache

CPU

cache

CPU

cache

CPU

. . .

bus

I/Oshared memory

Figure 1.1: A typical shared memory architecture

The need for enhanced reliability is becoming an ever-more critical requirement as computing systems are used
for applications where even short breaks in service are unacceptable. Moreover, it is simply infeasible with the
complexity and range of present-day software systems to expect that such systems can be enhanced to implement
hardware-fault tolerance. What is required is a hardware architecture that can transparently tolerate processor
faults, that is, without affecting the executing software and requiring no changes to be made to that software. The
presentation of such an architecture for shared memory multiprocessor systems is the primary purpose of this book.

The remainder of this book is organised as follows. First we examine the fundamental problems of providing
fault tolerance in a shared-memory multiprocessor, identifying the basic facilities that must be implemented and
exemplifying these facilities with examples from some of the fault tolerant multiprocessor systems which are
already available commercially, and discussing further the problems of error recovery in multiprocessor systems.
Results from simulations of various architectures are also discussed.

We then introduce a fault tolerant architecture which directly supports shared memory semantics. The concept
of stable memory, which implements some of the features necessary for transparent fault tolerance, and which is
the key novel feature in the architecture, is described in detail, along with associated architectural components.

For simplicity and brevity, the book concentrates on the problems of tolerating processor failures in a shared
memory environment and the novel solutions to these problems. Other hardware fault scenarios, such as bus
failures, are not covered here, although are clearly important for a complete system.

1.2 Fault Tolerance Issues

The basic principles behind fault tolerance are well understood [Lee et al 90]: a fault in a system will give rise to
errors; the starting point for fault tolerance is the detection of an error, and an exception can be raised to signal that

1This chapter contributed by Pete Lee, Department of Computing Science, University of Newcastle, Newcastle upon Tyne, NE1 7RU, U.K.



the fault tolerance provisions in the system need to be invoked. These provisions have to:

(a) deal with those errors, in particular to remove errors such that the state is no longer erroneous (error
recovery); and

(b) deal with the fault that caused the errors, by identifying its location (fault location), reconfiguring the
system to avoid the fault components (fault treatment), and switching the system back to providing its
normal operation.

If the above actions are successful, such that the behaviour of the system has not breached the specification of
the system, then the system will have successfully tolerated the fault and its effects, and no system failure will be
apparent. Preventing system failure is of course the aim of the fault tolerance provisions.

As mentioned previously, this book is concerned with tolerating the faults caused by failures of the micropro-
cessor processors providing the processing power in a multiprocessor with the structure as shown in Figure 1.1,
and will therefore concentrate on the application of the above basic principles in this situation. Thus, regarding
each processing element as a component of the multiprocessor, we are concerned with providing reliable behaviour
in the face of failures affecting these components.

To provide fault tolerance, the first requirement is that the effects of a processor failure are detected. One
approach, adopted in the Tandem-16 system [Katzman 78], is to use a single CPU per processing element and to
assume that a failure will result in fail-stop behaviour, in that the processing element simply stops if something goes
wrong in its logic. The other processors will detect this cessation in service through the absence of theI’m alive
messages which an active processor regularly broadcasts to all other processors. Note, however, that the Tandem
system is not a shared memory multiprocessor, and such single-CPU configurations for a processing element are
not the focus of this book.

More active forms of error detection are provided by replication checks where the activity of a CPU is replicated
and the outputs from the replicas compared to detect an error. When duplicated CPUs are used, a comparator can
detect differences caused if one of the CPUs fails and can raise an exception (or interrupt) to inform the rest of
the system of the failure of this processing element such that the fault tolerance actions can be undertaken. This
organisation is used in the processing elements of both the Stratus [Wilson 85] and Sequoia [Bernstein 88] fault
tolerant systems.

Higher levels of replication, such as using triplicated CPUs in a TMR organisation, can also be used, for
instance as in the Tandem S2 system [Jewett 91]. Here a different approach to fault tolerance is being taken as will
be seen. In the case of the duplicated CPU discussed previously, a failure of a CPU results in the failure of the
processing element of which it is a part: this processing element failure is a fault in the multiprocessor system, and
actions elsewhere in the multiprocessor (as will be discussed shortly) have to provide the fault tolerance such that
overall system behaviour is not impacted. In contrast, the application of TMR (and higher levels of replication) is
simply the application of fault tolerance internal to the processing element such that failures of components within
the processing element are never seen by the rest of the system, and for this reason such applications of redundancy
are sometimes referred to as masking redundancy. Thus when a CPU fails in a TMR configuration, the divergence
of its results from the other two CPUs can be detected by a voter which rejects theodd man out(error recovery),
ignores the suspect CPU (fault treatment) and passes on the result of the majority to the rest of the system without
interruption.

Returning to the situation of the dual-CPU processing element, errors in the system state (i.e. in the global
memory) will have to be dealt with if a processing element fails. Errors could have spread in the system by there
being a delay between the CPU failure occurring and the processing element actually stopping, during which time
erroneous results could have been generated in the shared memory and hence propagated through the system. In
the dual-CPU case, there is unlikely to be such a delay and consequent propagation. However, there may still
be errors since some of the state of the system will be contained within the failed processing element and this
information may be inaccessible. For instance, the contents of the CPU registers and indeed the program counter
are all part of the overall system state, and the caches on the processing element may also contain the up-to-date
values of some memory locations. Thus, the global memory state may not be consistent with the processing that
has been undertaken in the failed processing element, and some form of error recovery will be needed to cope with
these errors. Without such error recovery, successful fault tolerance may not be achievable.

Two overall forms of error recovery could be applied: forward error recovery and backward error recovery
[Lee et al 90]. Forward error recovery would require the ”patching” up of the system state to fix the problems
- for instance, if the failed processing element could be interrogated by another processing element to extract



the necessary values, then the system state could be updated appropriately. However, it is unlikely that such an
interrogation could take place reliably if a CPU failure has occurred - some of the information may be within the
failed chip (e.g. in on-chip caches). Even withduplicated CPUs, it may be difficult to determine which of the pair
has failed with the aim of extracting the information from the remaining ”good” CPU. The alternative recovery
strategy of backward error recovery requires the state of the whole system to be recovered to a prior known state
(simulating the reversal of time, and hence called backward error recovery) such that all of the errors are eradicated.
This approach is discussed in detail within this book.

The Stratus system effectively uses a forward error recovery scheme, but avoids the need to interrogate the
failed processing element by running a computation simultaneously on two processing elements,each of which
contains two CPUs (i.e. on 4 CPUs in total). If one processing element fails, then the other processing element can
be used to provide all of the ”internal” values, such that a new processing element can be brought into lock-step
and the processing continued (alternatively, the computation can be continued on the single processing element
pair with the hope that another failure does not affect that processing element, in which case no error recovery
is required). In contrast, the Sequoia system effectively employs backward error recovery, and their scheme is
described in the next section.

After error recovery has been carried out, the errors caused by the processing element fault have been dealt
with, and so the next stage of fault tolerance is to deal with the fault itself. The location of the fault will be identified
by the exception raised in the dual-CPU configuration. If the fault was deemed to be transient (determined, for
example, by running diagnostic checks on the faulty processing element), it may be appropriate to permit that
processing element to continue to play a part in the system’s activity. If, however, the fault is permanent, then that
processing element will not be used further, and the computation it was involved in can be restarted on another
of the processing elements in the system. If forward error recovery has been used, for instance as in the Stratus
system, no processing will have been lost, whereas if backward recovery has been invoked, as in the Sequioa
system, some processing will have to be repeated. Note, however, that in a shared memory environment it is a
relatively straightforward task to ensure that a computation can be picked up by another processing element - all
of the information concerning that computation can be in shared memory and is accessible to all of the processing
elements. In a distributed memory situation, as in the Tandem-16 system, this task can be much more complex.

Thus the designer of a fault tolerant multiprocessor is faced with typical engineering trade-offs. Indeed, the
different designs taken by Sequoia, Stratus and the Tandem S2 systems suggest that a number of engineering trade-
offs are feasible, and that each approach has its place. By adopting triplicated (or higher) levels of redundancy in the
processing elements, the need for error recovery can be avoided. However, the cost and difficulties associated with
this approach suggest that a design based on duplicated CPUs with provisions for backward error recovery might
be more cost-effective. In this book we concentrate on this dual-CPU, backward error recovery approach and on
the design of a special form of memory which supports backward error recovery in a shared memory environment.
First, though, the basic problems of, and terminology for, backward error recovery in this environment must be
discussed so that the facilities that must be provided can be identified.

1.3 Backward Error Recovery in a Shared Memory Environment

The basic functions required for backward error recovery are that a processor can:

(a) establish a recovery point;

(b) recover the state back to that recovery point (roll back); and

(c) commit a recovery point.

The time between the establishment of a recovery point and its eventual commitment is termed a recovery
region. A recovery point is thus a point in a computation to which the state can be reset and hence the computation
can be restarted from that point. If the establishment of the recovery point preceded the occurrence of a processor
failure, then recovery to that recovery point must eradicate all of the potentially erroneous effects of that fault (as
discussed in the previous section).

To provide recovery, recovery data must be recorded, for which one of several techniques can be adopted.
For example, a checkpoint can be taken when the recovery point is established, that is, a complete copy of the
state taken and kept somewhere safe. Since the complete state is likely to be large, and a processor is unlikely to



update a significant percentage of its state, more dynamic and optimal facilities can be provided. Shadow paging
[Reuter 80] provides a form of incremental checkpointing, by keeping a copy of only those memory pages that
have been altered. The recovery cache [Lee et al 80] also provided incremental recording of recovery data.

The Sequoia system makes use of a blockingcache [Bernstein 88] to provide recovery: having established
a recovery point, a processor is not permitted to update main memory. Instead all writes are kept local to the
processor in a blocking (i.e. non-write-through)cache. If the processor fails, then the state in the main memory
represents the state at the recovery point. The commitment of a recovery point by a processor consists of flushing
its cache and its internal registers to main memory. Modified data are flushed into two distinct memory modules
under processor control in order to handle memory and processor failures.

The CARER architecture [Wu et al 90] makes also use of a blocking cache with the assumption of fault free
memory and cache. Assuming that memory is fault free avoids the need for a second memory module for recovery
data and hence avoids the loss of time that would be necessary for copying modified data between the two modules.
Assuming that caches are fault free limits the work to bedone at commit time because blocks residing in cache
can be included as recovery data. At commit time, all processor registers are first flushed to the cache and then
all modified blocks in the cache are markedunwritable. This terminates the commit operation.Unwritableblocks
belong to the recovery point and have to be written back to memory if they are subsequently modified or replaced
(i.e. copy on write).

While the changes a processor makes to memory can be undone by state restoration techniques such as those
described above, not all of the manipulatable entities in a system can be recovered. For instance, as discussed in
the previous section, the processing element itself may be unrecoverable in that its contents (registers etc.) may not
be accessible if that element has failed, so these have to be explicitly recorded when a recovery point is established
(e.g. the program counter must be recorded to allow the computation to be restarted from that point). Also, a
processor may manipulate other unrecoverable objects, such as peripherals, and the fault tolerant system must
cope with the problem of backward recovery in this situation also.

Since recovery data occupies some system resources, it is normal to commit recovery points at some interval,
to allow this recovery data to be discarded. For example, in CARER a recovery point is committedeach time
modified data in the cache has to be replaced, while in the Sequoia system a recovery point has to be committed
when the blocking cache of a processor becomes full. For the tolerance of processor faults it is, in general, sufficient
to allow a processor to have a single extant recovery point such that the commitment of a recovery point can be
synonymous with the establishment of the next recovery point, and thus two distinct operations (establish and
commit) are not needed. In a more general situation, for instance if providing software-fault tolerance by recovery
blocks [Horning et al 74], nested recovery regions and hence multiple extant recovery points and separate establish
and discard operations make sense. As will be seen, even in the simple case it is useful to be able to separate the
completion of a recovery region from the commencement of the next.

In a shared memory multiprocessor, there is another complication to recovery that must be dealt with, con-
cerning the parallel processors that will be executing simultaneously and the possible flow of information between
these processors via shared memory. Consider the following simple situation: two processors P1 and P2 have sep-
arately established recovery points, and P1 has written to a memory location that P2 has subsequently read from
and acted upon. Now if P1 fails and backward recovery has to be applied, then it is also necessary to recover P2
to its recovery point which preceded the interaction with P1. Only by recovering P1 and P2 is a consistent system
state restored. The recovery points of P1 and P2 which correspond to a consistent state are termed a recovery line
[Lee et al 90].

One strategy for identifying a recovery line is to ensure that all processors establish recovery points simultane-
ously - that is, a system-wide recovery point. If recovery is then required because a processor fails, all processors
have to be rolled back. This strategy has the disadvantage of unnecessarily recovering processors when no interac-
tions between a processor and the failing processor have occurred. To avoid this disadvantage effectively requires
processors to be recovered independently (rather than globally), and hence requires some other means for solving
the problem of interdependencies (i.e. the problem of identifying a recovery line). One method is to avoid the need
to identify a recovery line by ensuring that there are no inter-processor dependencies. This can be achieved by
not actually providing shared memory (a strategy adopted in the Sequoia architecture) or by committing aftereach
interprocessor interaction in order to remove the dependency (this is essentially what happens in CARER where
a processor has to commit its recovery point each time one of its modified blocks in cache is accessed by another
processor).



The Sequoia architecture prohibits direct data sharing between processors, leading to significant complications
being imposed on the operating system software. While all memory modules can beaccessed by all processors,
shared data structures must be accessed within explicit critical sections protected by test-and-set locks, and the
operating system has to carefully establish and commit recovery points and flush the blocking cache appropriately,
to ensure the correct semantics [Bernstein 88].

An alternative solution to identifying recovery lines, which removes the need for the software complexities of
the Sequoia approach and the frequent commitments of the CARER approach, is to actually compute a recovery
line if recovery is required [Lee et al 90]. In order to do this it is necessary to record inter-processor dependencies
which can be used to determine the set of processors which are dependent upon the processor which has failed
[Banâtre et al 90a].

It should also be noted that in the Sequoia system it has been necessary to provide custom caches to provide the
blocking behaviour. This precludes the use of standard snoopycaches and protocols in such a system. However,
the speed of the latest generation of RISC chips is such that their manufacturers provide cache control logic (and
chips) as part of their offerings, and it is increasingly difficult (and cost-ineffective) to design custom cacheing
systems (and CPUs). Hence, it is desirable that standard processors, caches and cacheing protocols can be used in
a shared memory multiprocessor, while still allowing fault tolerance using backward error recovery to be provided.

One may conclude that the concept ofbackward error recoveryis now well established as a means of restoring
a consistent state to a fault tolerant system should some faults occur [Randell 75]. Several algorithms have been
proposed in the literature for providing backward error recovery depending upon the type of faults to be tolerated,
the system characteristics, and the fault tolerance strategy.

In a system of communicating processes, should a fault occur, therecovery control protocolmust determine a
set of process states which together constitutea consistent state of the system. Many recovery protocols that assume
message passing communication have been proposed in the literature (see for instance [Wood 85, Strom et al 85]).
In contrast, the recovery protocol discussed below relies on the fact that communication takes place through shared
data, and that the memory itself tracks directly the dependencies between the processors’ references to the shared
data.

1.4 A Basic Recovery Protocol for a Shared Memory Environment2

Before we present a basic recovery protocol for processes communicating through shared data, we must first intro-
duce some definitions and background notions concerning backward error recovery in a system of communicating
processes.

1.4.1 Definitions

A recovery pointis establishedby a process at a point in time at which the state of the process is saved for possible
regeneration in the event of recovery action. A processcommitsa recovery point when it no longer requires the
capability to initiate recovery action to that point. The period of process activity between theestablishmentof a
recovery point and the commitment to it is called theprocess transactionassociated with that point (notice that the
meaning of the word transaction here should be distinguished from the one which is usually given in transactional
systems [Gray 78] where a transaction may refer to a consistency unit preserving some invariant of the system).
The most recently established recovery point of a process is said to beactiveor equivalentlycurrent. A recovery
point which cannot possibly be recovered to as a result of a recovery action initiated anywhere in the system is said
to bediscardable. Some of the above definitions are borrowed from [Lee et al 90].

We assume a model of computation of communicating processes where processes implement a succession of
non-nestedtransactions, establishing a recovery point immediately on commitment to the preceding one. This is
depicted in Figure 1.2 where vertical bars denote the bounds of process transactions. The recovery control man-
agement offers the primitiveNewProcessTransaction(p)for committing the active recovery point and establishing
a new recovery point for processp (as a simplification, initialization is not considered). Information flows between
processes are assumed to be directed (unidirectional), and are represented by arrows in Figure 1.2 when occurring
between distinct processes. It is further assumed that all information sent out by a process is dependent on all
information previously received by that process.

2This section contributed by Michel Banˆatre, Maurice J´egado, Philippe Joubert and Christine Morin, Campus universitaire de Beaulieu,
35042 Rennes Cedex, France



Definition 1 For any two recovery pointsrp andrp0 belonging to processesp andp0 respectively,rp is adirect
propagatorto rp0 if and only if information flows fromp to p0 while rp andrp0 are the respective active
recovery points of the two processes.

As a particular case, a recovery point of a process is a direct propagator to the next recovery point of the
same process (for example, in Figure 1.2, recovery pointB:2 is a direct propagator toA:2 andC:3 whileA:1 is
a direct propagator toA:2). For convenience we will sometimes refer to the propagator relation between process
transactions instead of recovery points. A process transactiont1 is a direct propagator tot2 if the recovery point
established at the beginning oft1 is a direct propagator to the initial recovery point oft2.

Definition 2 For any two recovery pointsrp andrp0 belonging to processesp andp0 respectively,rp is apropa-
gator to rp0 if and only if the following holds : Eitherrp is a direct propagator torp0 or else, recursively,
there exists a recovery pointrp00 belonging to processp00 such thatrp is a direct propagator torp00 andrp00

is a propagator torp0

For example, in Figure 1.2, recovery pointB:2 is a propagator toA:2, C:2, C:3 andD:2. As an obvious
consequence of the notion of apropagator, we will often refer to the recoveryancestorsand recoverydescendants
of a recovery pointrp:

Definition 3 An ancestor recovery point ofrp is a propagator torp. Conversely, if a recovery pointrp0 is descen-
dant ofrp, rp is a propagator torp0.

For example, in Figure 1.2, recovery pointsA:2; B:2; C:2; C:3andD:2 are ancestors ofD:2, and in Figure 1.2,
recovery pointsA:2; C:2; C:3;D:2 andB:2 are descendants ofB:2. As a particular case, notice that a recovery
point is both ancestor and descendant of itself.
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Figure 1.2: Communicating processes and recovery

A recovery protocol must ensure that the system reverts to a consistent state in the event of one (or many)
process(es) initiating recovery action. As stated in [Wood 85],a process initiating recovery must cause recovery of
the descendants of its active recovery point(including the active recovery point itself) in order to reach a consistent
state. Another way to say this is that the recovery control protocol must look for arecovery linedelimiting the
boundary of anatomic activity[Randell 75].

Definition 4 An atomic action conveys both the meaning of (i) an action which does notinterferewith its en-
vironment, and (ii) a unitary action which has anall or nothingeffect despite failures, where the first of
these properties is referred to ass atomicity(synchronisation) while the second is referred to asu atomicity
(unitary). The word atomic alone conveys both meanings.



Recovery lines are depicted as curved lines in Figure 1.2. Not all the processes need be represented on a
recovery line, reflecting a situation where one process is not affected by recovery initiated by another. For instance,
in Figure 1.2, the recovery line (L(D)) associated to processD entails this single process only. Notice also that
recovery may in general cause recovery of a process beyond its active recovery point. For instance, in Figure
1.2, recovery initiated by processB will lead to recovery lineL(B) thus causing the restoration of processC to
recovery pointC:2 even thoughC:3 is the active recovery point ofC.

A process may belong to several recovery lines. For instance, in Figure 1.2, processD belongs to both recovery
linesL(D) andL(B). As far as recovery is concerned, we are interested in the recovery line which will lead to the
minimal undo of computation (L(D) in this example). This recovery line will be referred to astherecovery line of
the process.

No information flow crosses from the inside of the recovery line to the outside but the converse is not the
case. This requires that the recovery mechanism be capable, in case of recovery, to reproduce the information
entering into the domain delimited by the recovery line. For instance, should processD recover in Figure 1.2, the
information which has been produced by processC must be available after recovery takes place.

Recovery protocols fall into two broad categories namelyplannedandunplanned[Lee et al 90, Randell 75].
Planned (or pessimistic) protocols bound the amount of system activity to be undone in case of recovery at the
price of slowing down failure-free computation. In contrast, unplanned (or optimistic) protocols do not slow down
failure-free computation but are prone to the so-calleddomino effect(cascading rollbacks) which in the extreme
case could invalidate the whole computation in case of recovery.

A recovery protocol must provide the garbage collection of the discardable recovery points that are no longer
required to provide backward error recovery capability. While we do not expand on this issue, it should be noted
that this might be surprisingly difficult to implement when an unplanned approach to recovery is taken, as illus-
trated in [Wood 85].

1.4.2 The protocol principles

Assume that processes implement a succession of non-nested transactions. A process mayaccess a local state (the
process registers) and a shared state represented in shared memory. Processes communicate throughshared data
of the shared memory. In other words, the significant events produced by a process consist of a trace of accesses
to private registers and shared memory.

As a requirement of the protocol, the amount of recovery data must be bounded and limited to a single recovery
point per process. Consequently, the protocol must adopt a planned approach to recovery and satisfy the following
condition:

R : Recovery of a process must not go beyond its active recovery point

From theR condition, we infer:

(a) the domino-effect is prevented, and

(b) it is easy to determine when a recovery point becomes discardable - it is discardable when it is commit-
ted.

In order to implement theR condition, the recovery protocol may implicitly establish a recovery point for a
process. Notice that this contradicts somewhat the characteristics of the model of computation above since then the
decision to establish a new recovery point may be not only explicitly performed by a process but also implicitly by
the recovery protocol itself. However, this distinction does not affect the following argument, in which we assume
that a process implements a succession of non-nested transactions without further refinement.

In order to give insights into the protocol development, we will use an execution model based on
traces and adopt similar notations to those of [Best 82]. An executionU is modelled as asequence
s0a0s1:::sjajsj+1:::au�1su whereaj(0 � j < u) denotes an action andsj as well assj+1 denote states. The
state spaceS is defined as the set of mappings from the shared variables space to values. Each actionaj is an
s atomicaction belonging to a component processpi(1 � i � n) denotedcomponent(aj ). An action ofpi is
either a write of a valuee into a shared variablev denotedwi(v; e) or a read of a shared variablev denotedri(v)
or a commitment action denotedci(). The accesses of a process to its local state are not modelled since these are
not relevant as far as communication is concerned. It should be noted that processes proceed asynchronously, and
therefore flows of information between them arenon-deterministic(this model may result from the implementation



of an abstract model of computation not detailed here; we may understand non-deterministic flows of information
in the model proposed as an implementation property of the abstract model [Gries 81]).

Let s0 belonging toS be an arbitrary initial state. The semanticsm of the actions performed by a process is a
relationS � S which can be characterized as follows:

(a) s0 m(wi(v; e)) s wheres(v) = e ands(w) = s0(w) for all elementsw of the state space different tov.

(b) s0 m(ri(v))) s wheres = s0 (the read action is supposed to deliver the values0(v) not modelled here).

(c) s0 m(ci()) s wheres = s0.

A projectionof an executionU onto a component processpi, denotedprojection(pi; U ), is obtained by
deleting fromU all statess0:::su and allaj such thatcomponent(aj) 6= pi. We callU a standard(or correct)
execution if it satisfies the two following properties [Best 82]:

(P1) : for all i, projection(pi; U ) is a sequential control sequence of processpi.

(P2) : (sj ; sj+1) belongs tom(aj) for all j.

A standard execution is said to becompleteif projection(pi; U ) for all i is a complete control sequence of
processpi. While propertyP1 captures the control aspect of an execution, propertyP2 captures the semantic
aspects with respect to data (further information can be found in [Best 82]).

Let us turn our attention to recovery now. Should a processpi roll back when an execution has reached the
sequenceU , the recovery protocol builds a new sequenceW (by undoing the effects of all actions performed
within the current transactions of the processes belonging to the recovery line of the process invoking recovery)
from which post recovery computation will start. The post recovery computation concatenated withW must be
identical to a complete standard execution that would have taken place if recovery did not occur.

To better understand the computation of the recovery line of the process invoking recovery, and more generally
into the necessary recovery actions to be taken, let us model the undoing of the effects of a single rolled-back
process as the computation of an outputstring U 0 from an input stringU . The stringU 0 is such thatU 0 =
[q0]b0[q1]:::[qj]bj[qj+1]:::[qu0�1]bu0�1[qu0] where[qj] denotes chains of states, andbj actions. As a particular case,
notice that a sequence is a string. The stringU 0 is obtained by:

(Step1) : Erasing fromU the actions performed within the current process transaction of the rolled back
process (but not the states), and

(Step2) : Appending if necessary a final state to the string denoting the effect of the state restoration applied
to the variables of the state space whose values must be recovered by the protocol.

The final outputU 0 of the recovery protocol (after having possibly executed the procedure above for several
processes including the process invoking recovery) must beequivalentto a standard sequenceW satisfying prop-
ertiesP1 andP2. This is defined in the following. LetW = t0b0:::tjbjtj+1:::tu0�1bu0�1tu0 such that:

(a) the string of actionsbj of W is identical to the string of actions ofU 0, and

(b) the initial statet0 of W is equal to the initial statefirst(q0) of U 0.

The stringU 0 is said to be equivalent to the standard sequenceW if:

(Q1) : last([qu0 ]) (final state ofU 0) equalstu0 (final state ofW ), and

(Q2) : for each read actionbj, last([qj])(v) equalstj(v) assuming thatv is the variable read bybj .

If U 0 is equivalent to the standard sequenceW as defined above, it is clear that the output of the recovery
protocol is correct; the post recovery computation concatenated withW will be identical to a complete standard
execution that would have taken place if recovery did not occur, since the rolled back processes will redo their
computation from their current recovery points.

The previous characterization of a correct output of the recovery protocol gives a direct insight into the protocol
development. For example, consider the sequenceU = s0ci()s1cj()s2wi(v; e)s3rj(v

0)s4ri(v
0)s5 and assume that

processpi initiates recovery. LetU 0 be the string obtained by erasing the actions performed within the current



process transaction ofpi and appending a final states6 (result of state restoration) such thats6(v) = s0(v) and
s6(w) = s5(w) for all w 6= v. More precisely,U 0 = [q0]ci()[q1]cj()[q2]rj(v

0)[q3] where[q0] = [s0]; [q1] =
[s1]; [q2] = [s2; s3]; [q3] = [s4; s5; s6]. The recovery line ofpi entails this single process sinceU 0 is obviously
equivalent (as defined above) to the standard sequenceW = t0ci()t1cj()t2rj(v

0)t3 wheret0 = s0.
In practice, things might be more difficult than illustrated by the example above, since processes can be depen-

dent. How the protocol deals with this situation is discussed below in a non-formal way by considering in turn the
so-called write read and write write dependencies.

1.4.2.1 Write Read dependencies

Let v be a variable written to within the current process transaction ofpi, the first subsequent access to this variable
being a read action ofpj within its current transaction. Erasing only the write access fromU will not be sufficient
to produce a correct stringU 0 since the read action ofv by pj would then not deliver the previous value written to
v in U 0, and henceU 0 would not be equivalent to the standard sequenceW as defined previously (the propertyQ2
above would not be satisfied). Processpi is in this case a direct propagator topj (or equivalentlypj is dependent
onpi), denoted bypi

wr
�! pj , and meaning that rolling backpi should cause a rollback ofpj. More generally, any

process which reads a non-committed value written bypi iswr dependent onpi.
Recall that we do not want recovery of a process go beyond its active recovery point (theR condition). In order

to ensure this,the commitment of a process transaction will force the commitment of all its ancestors(ancestors’
recovery points are referred to as potential recovery initiators in [Wood 85]). If this were not the case, an ancestor
initiating recovery might require some of its descendants to rollback beyond the current recovery point.

1.4.2.2 Write Write dependencies

Let U 0 denote the string obtained by erasing fromU all actions performed within the process transactions that are
descendants of the current recovery point (as explained above) of a processpi invoking backward error recovery.
Let v be a variable which has been written to inU . If the last write tov in U is not erased inU 0, the value ofv in
the final state ofU 0 (as given byStep2 above) is correct, but elsewhere the value ofv is not correct, sinceU 0 would
not be equivalent to the standard sequenceW as defined previously (the propertyQ1 would not be satisfied). Let
U 0 = [q0]:::wi(v; e):::[qu0] wherewi(v; e) denotes the last write tov in U 0 and assume that the last write tov in
U has been erased inU 0. A correct string could be obtained by appending toU 0 the result of a state restoration
re-establishing the valuee of v and repeating this for all variables whose last write to inU has been erased inU 0.
The difficulty here resides in finding out the valuee within the whole history of the values taken by the variablev.
How this is achieved is discussed in the following.

Definition 5 A processp is said to be theactive writerof a variablev if p has been writing tov within its current
(active) transaction andv has not been subsequently written to by other processes.

The protocol does not maintain the whole history of a variable but only acurrentvalue and arecoveryvalue.
At commitment of a process, the recovery value of a variable is replaced by the current value if the process is the
active writer of the variable. Symmetrically, at rollback of a process, the current value of a variable is replaced
by the recovery value if the process is the active writer of the variable.In order to re-establish a valid final state
of the stringU 0 above, the protocol ensures that the last write action tov, wi(v; e), of the stringU 0 is committed
and will thus restore the recovery valuee of v. This implies that a process committing its current transaction must
force commitment of the active writers of the variables written within the committing transaction, while rollback
of a process transaction must cause the rollback of all transactions which have been writing to a variable whose
active writer is the rolling back transaction. A simple way to achieve this goal is to record a dependencypi

ww
 � pj

(i.e. pj
ww
�! pi) when a variable is successively written by two processespi andpj within their current process

transaction; this dependency will have the same effect as thewr
�! dependency as far as commitment and rollback

are concerned. Notice that theww�! dependency is a predecessor relation, as opposed to thewr
�! dependency, which

captures a successor relation.

1.4.3 A more rigorous approach to the protocol

In this section, we attempt to give some proof arguments of the protocol whose operational principles have been
described above. The properties of a standard execution have already been given. We require a weaker property



for exceptional sequences than for standard sequences, namelyvalidity. An executionU is said to bevalid if it
satisfies the following properties:

(P ’1) : The same as propertyP1 above.

(P ’2) : For all read actionsaj of U , sj+1(v) = sj(v) if v is the variable read byaj.

(P ’3) : Let U = s0a0:::au�1su followed by an optional state restoration action on behalf of the recovery
process (s0u denoting the final state ofU ). There exists a standard executionW = t0a0:::au�1tu
(satisfyingP1 andP2) wheret denotes a state such thatt0 = s0 andtu (final state ofW ) is identical
to s0u (final state ofU ).

WhileP2 captures the exact intermediate states of a standard execution, propertiesP ’2 andP ’3 together say
that we only need to have a partial knowledge of the intermediate states for checking the validity of an execution.
The intuitive rationale behind this is that we wish to be allowed to erase a write action from an execution without
being obliged to systematically consider invalid the following sub-sequence, as would be so when assuming prop-
ertyP2. It should be noted that formally, a standard execution is valid but the contrary might not be the case; we
will, however, construct exceptional valid sequences in such a way that an exceptional execution will correspond
to an equivalent standard execution (in fact the standard executionW described inP ’3).

Let U be a valid execution (equivalent to a standard execution) whenpi rolls back. Letremove(U; pi) be
the sequenceU from which are deleted allajsj+1 such thatcomponent(aj) = pi, whereaj has been performed
within the current process transaction ofpi. Let us attempt to prove that the sequenceU 0 obtained by applying
successivelyremove for all processes that are descendants of the current transaction ofpi (according to both
relations

wr
�! and

ww
�! defined above) is valid, i.e. satisfies propertiesP ’1, P ’2 andP ’3.

Theorem 1 The sequenceU 0 satisfiesP ’1.

Proof : SinceU is valid (satisfyingP ’1), removing the accesses of the rolled back processes within their current
process transactions will lead toprojection(U 0; pi) being a prefix ofprojection(U; pi) for all i, so thatP ’1 is
maintained.
2

Theorem 2 The sequenceU 0 satisfiesP ’2.

Proof : Assume thatU 0 does not satisfyP ’2: there exists a substringsk0ri(v)sk0+1 of U 0 such thatsk0+1(v) 6=
sk0(v). By construction,sk0+1(v) is the result of the last write tov in U , say bypj , before the read actionri by pi
took place. This write has been erased inU 0 and thus has been performed within the current process transaction
of pj. Two cases arise. First, the read action might have been performed within the current process transaction of
pi, but in that case a dependencypj

wr
�! pi would have been recorded, and the rollback ofpj would have forced

the rollback ofpi and therefore the case cannot arise. Second, the read action might have been performed within a
process transaction ofpi which is not the current transaction, but then the write cannot have been erased since the
commitment of this process transaction ofpi would have forced the commitment of the process transaction ofpj
in which the write would have been performed.
2

Theorem 3 The sequenceU 0 satisfiesP ’3.

Proof : LetW 0 be the standard sequence built fromU 0 byP ’3. Assume thattw0(v) 6= s0u0(v), thereby invalidating
P ’3. Two cases arise. First the last write tov in U might not have been erased inU 0, but in that case the state
restoration action would not modifyv, since the active writer tov would not have been rolled back, and therefore
P ’3 would be valid, withsw0(v) = su0 (v) = s0u0(v). Second, the last write tov in U might have been erased in
U 0, which would force the removal of all the write operations tov since the last committed write tov due to the
relation ww

�!. But it is this value of the last committed write which must be the recovery value ofv re-established
by the state restoration action, since commitment induces the commitment of all ancestors, including the active
writer tov, thereby updating the correct recovery value ofv.
2

Thus api
wr
�! pj dependency is recorded whenpj reads a variable whose active writer ispi, while api

ww
 � pj

dependency is recorded whenpj writes to a variable whose active writer ispi (pj becoming then the new active



writer). Rollback of a processpi will induce a rollback of its descendantsaccording to both relationswr�! and
ww
�!; the recovery values will be re-established for those variables whose active writer is a process member of this
group. Commitment of a process will induce the commitment of all its ancestorsaccording to both relations

wr
�!

and
ww
�!; the recovery values will be logically replaced by their current values for those variables whose active

writer is a process member of this group.

1.5 Summary

We now have defined the essence of the FASST Recovery Protocol : a commitcheckpointsprocesses as outlined
above, and a rollbackrestorescheckpointed process state, again as above. All of the above is process oriented, and
says nothing about where the processes are executing, as long aseach process has a consistent view of the shared
memory.

For the simplistic case where a separate processor is dedicated to each process, the above principles may be
applied simply by mapping aprocess transactionto aprocessor transaction. We will examine this, and the more
realistic case where a multiprocessor may support the execution of an arbitrary number of processes competing for
a limited number of available processors, in Chapter 7. For the moment, let us assume that all of the above remains
valid if we replace processpi with processorPi, where a commit checkpointsprocessorsas outlined above, and a
rollback restores checkpointedprocessorstate, again as above. This is a basic, but very important, assumption of
the FASST architecture.

In a symmetric multiprocessor (SMP) all of this is made more interesting by the behaviour of the coherent
caches. Before introducing the FASST architecture, we will examine this behaviour, and try to quantify what
happens when it is coupled with a recovery protocol.
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2.1 SMP Cache Coherence Protocols1

A cache system is said to becoherentif every read of a memory location returns the value most recently written
to that location [Censier et al 78]. In a shared memory multiprocessor where processorsaccess shared memory
through privatecaches, there can be potentially as many copies of the same memory location as there are processors
in the architecture. Inconsistencies may occur when several processors access writable shared data. When data
is modified, the modification has to be reflected into all the other caches which hold a copy of the data. The unit
of information managed by the caches is referred to as aline, while a processor accesses acell (e.g. 4 bytes).
Typically a cache line size ranges from 4 to 32 cells.

The protocols for avoiding cache inconsistencies are often referred to ascache coherence protocols(the term
cache consistency protocolscan also be found in the literature). These protocols divide into two main classes,
directory-basedandsnoopy. The less common of the two classes,directory-basedprotocols, rely on a directory
structure to identify the location of any cache line and its state.Snoopycache coherence protocols are by far
the more common, and rely on the fact that broadcasted bus traffic can be monitored (snooped on) by all the
caches. Snoopycaches maintain atag fieldstored along with each loaded line to indicate the line state in each
cache. The tag field generally encodes whether the line is modified with respect to shared memory and whether the
line is loaded into another cache. Two main classes of snoopingcache coherence protocols can be distinguished,
depending upon the actions performed bycaches when a shared line is modified:

Write Invalidate protocols cause an invalidation message to be broadcast on the bus whenever data poten-
tially present in other caches isupdated. Allcaches snoop these invalidation messages and invalidate
their corresponding entry. A further read miss will cause the up-to-date data to be loaded into the
cache.

Write Update protocols broadcast the new value whenever data potentially present in other caches is up-
dated. All caches snoop the write and update their copy of the dataaccordingly.

These protocols mainly differ by their relative hardware cost and their performance in terms of bus traffic
generated to maintain coherence (see [Archibald 86] for a survey and performance evaluation of those protocols).

2.1.1 Berkeley Cache Coherency Protocol

The Berkeley coherence protocol [Katz et al 85] was originally designed for the SPUR workstation at the Univer-
sity of California at Berkeley; it is a write invalidate protocol. This protocol introduces the notion of ownership of a
line, the owner being responsible for writing the line back to main memory as well as for supplying the line directly
to any other cache requesting it. In this protocol, the tag field of a memory line of a given cache can be in one of
the following four states (line states are described according to the terminology found in [Sweazey et al 86]) :

Invalid ( I) : The cache copy is not up-to-date.

Non-modified Shared (S) : The line has not been modified since it was loaded into this cache. Other
caches may also have a copy; one of these copies might be in stateO while others must be in stateS.

Modified Exclusive (M ) : The line is modified with respect to shared memory. No other copy exists. This
cache is the owner of the line.

Modified Shared (O) : The line is modified with respect to shared memory. Other caches may have a copy
(in stateS). This cache is the owner of the line (hence the abbreviationO).

Figure 2.1 depicts the state transition diagram for the Berkeley protocol.

ProcessorPi performs a Read Miss If there exists a cache with a copy of the line in stateM or O, this cache
must supply a copy of the line to the requestingcache and set its state toO. Otherwise the line comes from
shared memory. In both cases, the line is loaded in stateS in the requesting cache.

1This section contributed by Michel Banˆatre, Maurice J´egado, Philippe Joubert and Christine Morin, Campus universitaire de Beaulieu,
35042 Rennes Cedex, France
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Figure 2.1: Berkeley state transition diagram

ProcessorPi performs a Write Hit If the line is already in stateM , the write proceeds without delay. Otherwise,
(in stateS orO) an invalidation signal must be sent on the bus (see figure 2.1). All other caches invalidate
their copy if they have one that matches the line address. The line state is changed toM in the originating
cache.

ProcessorPi performs a Write Miss Like a read miss, the line comes from its owner or from shared memory.
All other caches invalidate their copy if any. The line is loaded in stateM .

Similar principles to those discussed above in the framework of Write Invalidate protocols also apply to
Write Update protocols, such as the Firefly protocol [Thacker et al 88]. In fact, quite a number of both types
of snoopy coherence protocols have been proposed and implemented (e.g., [Goodman 84, Fielland et al 84,
Rudolph et al 84, Katz et al 85, Archibald 86, Archibald et al 86, Goodman 87]). These range from the sim-
ple Write-Throughprotocol [Fielland et al 84, Goodman 87], whereby every writeaccess to a cache line is ac-
companied by an update of main memory, to the rather complex, such as theDragon and R4000protocols
[Archibald et al 86, Mirapuri et al 92] (and theBerkeleyexample above), which delegate most of the book-keeping
operations to the caches and attempt to minimize memory accesses. The idea behind the latter designs is to exploit
the fact that a cache-to-cache transfer is generally faster than a cache-to-memory one.

2.2 Analytical Modelling of SMP Caches2

By way of example, let us illustrate the effects ofcache behaviour by modelling and evaluating the performance
of cache coherence protocols. Two distinct versions will be considered, both resembling the Berkeley protocol
but also differing from it in some important respects. These will be referred to as theInvalidateand theUpdate
protocols. The difference between them lies in the way they handle awrite hit access to a shared cache line: the
former broadcasts a signal which causes all other caches to invalidate their copies, whereas the latter broadcasts
the new content of the line and all other cachesupdate their copies. There are non-trivial trade-offs involved in
choosing one or the other of the two variants, and the model can be used to assess the effect of various system
parameters.

A two-stage approximate analysis, similar to the one introduced in [Greenberg et al 88] in the context ofWrite-
Through, Write-BackandDragon, is applied to the evaluation of theInvalidateandUpdateprotocols. First, the
behaviour of an individual cache line is modelled by a finite-state Markov process. Its parameters are the number
of processors, the ratio ofreadto write accesses and the ratio ofhit to missaccesses. The protocols exhibit certain

2This section contributed by Ekaterina Ametistova and Isi Mitrani, Department of Computing Science, University of Newcastle, Newcastle
upon Tyne NE1 7RU, UK



complications which were not present in the cases examined in [Greenberg et al 88]. Here one has to resort to
a fixed-point approximation, since in order to reflect properly the interactions between processors, the generator
matrix of the Markov chain needs to depend on its own stationary distribution.

The solution of the cache line model, together with the various access time characteristics of the hardware,
provides the relevant bus traffic parameters: rate of bus requests per processor and average service time per request.
In the second stage of the analysis, the bus is modelled as a single-server, finite-source queue, in order to determine
the system power and other performance measures.

The two protocols are described in section 2.2.1. The approximate analyses of the cache line states and of the
bus are presented in sections 2.2.2 and 2.2.3. Section 2.2.5 contains numerical and simulation results, while some
generalizations and extensions of the approach are outlined after that.

2.2.1 Protocol Definitions

The system containsK identical processors and their caches (by ‘cache’ we mean the medium-sized, secondary
memory unit associated with a processor, rather than the small, primary one which is really part of the processor
itself). These are connected to each other and to the large main memory by means of a bus (Figure 2.2). Exchange
of information between processors, or between a processor and main memory, takes place through thecaches.

cache

CPU

cache

CPU

cache

CPU

. . .

bus

I/Oshared memory

Figure 2.2: A multiprocessor system

Each cache consists ofN ‘lines’. The size of main memory isM lines, which we shall assume, for simplicity,
to be a multiple of thecache size:M = mN for somem > 0. There are thusmmain memory line addresses which
are mapped onto a given cache line address. At any time, one of thosem main memory addresses is associated
with the cache line. If, when referring to a cache line, a processor accesses the main memory address currently
associated with it, then the access is said to be ahit; otherwise it is amiss. In addition, the access may be areador
a write (a loador astore).

When the same main memory address is associated with cache lines in several caches, the latter are said to be
sharinga line. The content of such a line must be the same in all sharing caches, although it need not necessarily
be the same as the corresponding main memory line. So, theaccesses by one processor to its cache may have
implications for other caches and/or main memory. The precise consequences of each access depend on its nature,
on the current state of the line, and on the cache coherence protocol that is employed.

2.2.1.1 The Invalidate Protocol

A cache line may be in one of the following states:

StateI : The line is invalid (it does not contain useful information).

StateD(n) : The line is dirty (main memory does not have an up-to-date copy);n other caches have a copy
of that line (n = 0; 1; : : : ;K � 1), but this cache is its ‘owner’ and is responsible for saving it should
the processor make amissaccess to it. Also, this cache will supply the line if a processor outside the
sharing group accesses it.

StateS(n) : The line is dirty;n other caches have a copy of it (n = 1; 2; : : : ;K � 1); this cache is not the
owner (in one of the othern caches, the line is in stateD(n) ).



StateC(n) : The line is clean (main memory has an up-to-date copy);n other caches also hold this line
(n = 0; 1; : : : ;K � 1), but there is no owner. Main memory supplies the line if a processor outside the
sharing group accesses it.

It should be noted that the hardware implementation of the protocol does not involve the integern. A cache
line is tagged as being either ‘invalid’, ‘clean exclusive’, ‘dirty exclusive’, ‘dirty shared’ or ‘shared’. The first
four of those tags correspond to our statesI, C(0), D(0) andD(n) (n > 0) respectively; the tag ‘shared’ may
correspond to statesC(n) or S(n), for n > 0. We need the more detailed state description given above in order to
model the evolution of line states, and also to keep track of the different types of bus operations. For example, if a
processor makes aread missaccess to a line and joins a sharing group where all members are in stateC(n), then
main memory supplies the information and a bus operation of type “main memory to cache” is performed. On the
other hand, if the processor joins a sharing group where one member is in stateD(n) (the others being inS(n) ),
then a cache supplies the information and a bus operation of type “cache to cache” is performed. Those operations
take different times.

It should also be pointed out that, while bus operations involve whole lines (e.g. 16 bytes), a processor can
load or store information into part of a line (e.g. 4 bytes). This discrepancy implies that anymissaccess, even a
write one, requires a new line to be brought into thecache.

An access by a processor to a line in its cache is said to belocal if it does not involve the bus. Otherwise it is
remote. All read hitaccesses to lines in stateC(n), D(n) or S(n) are local and do not change the state.Write hit
accesses to lines in stateC(0) orD(0) are also local and the resulting state isD(0). All other accesses are remote
and have the following effects:

(a) A read missto one in statesC(n), D(n) or S(n), results in a line in stateC(j) (for somej that may be
0) if main memory supplies it, or in stateS(j) (j > 0) if another cache does so. The remote operation
is “main memory to cache” in the former case and “cache to cache” in the latter. Aread missaccess
to a line in stateD(n) also causes a “cache to main memory” operation saving the old line. In this last
case, the othern lines in the old sharing group change their state fromS(n) toC(n � 1), otherwise
only the integern in their state description changes ton� 1.

(b) A write access to a line in any state results in a line in stateD(0). All other cache lines in the old
sharing group (if the access is awrite hit), or the new one (if awrite miss), enter stateI. The effect of
a write misson the old line and its sharing group is the same as that of aread miss. The bus operation
is ‘broadcast invalidate signal’ if the access is awrite hit in states other thanC(0) andD(0); ‘cache to
cache’ ifwrite missand the new line comes from another cache; ‘main memory to cache’ otherwise.

2.2.1.2 The Update Protocol

A cache line may be in one of the statesD(n), S(n) andC(n), whose definition is the same as in the previous
subsection. The stateI does not exist. The effect of aread access is the same as for theInvalidateprotocol. A
write hit access to a line in stateC(0) orD(0) is local as before, and the resulting state isD(0). All other write
accesses are remote operations, the content of the new line being broadcast on the bus. The following state changes
and additional bus operations take place:

(a) A write hit access causes a line to change its state fromC(n) or S(n) to D(n), and to remain in state
D(n) if it was there before. In all cases, the othern lines in the sharing group enter (or remain in) state
S(n). The “cache to cache” broadcast of the line is the only bus operation.

(b) A write missaccess causes a line to join a new sharing group of some sizej (possiblyj = 0), and
to enter stateD(j). The otherj lines in that group enter stateS(j). If the state of the accessed line
wasD(n), then the othern lines in the old sharing group change their state fromS(n) toC(n � 1),
otherwise only the integern in their state description changes ton � 1. The bus operation consists
of saving the old line (“cache to main memory”), if its state wasD(n) ; bringing the new line, part of
which is to be overwritten (“main memory tocache” or “cache to cache”, depending on the nature of
the new sharing group); broadcasting the new line (“cache to cache”).



2.2.2 Cache Line States

We assume that theK processors are statistically identical, and that their accesses are uniformly distributed over
cache and main memory addresses. Those assumptions can be generalized, but at the expense of considerable
increase in complexity. A processor ‘computes’ for an interval of time of average duration� . At the end of that
interval, which will be referred to as a ‘think period’, it accesses any one of its cache lines with probability 1=N . If
the access happens to be local, a new think period starts immediately; otherwise the processor joins the bus queue
and remains passive until the required bus operation is complete.

Denote the steady-state probability that a given processor is ‘thinking’, by� . Then the average number of
thinking processors is� = K� . This quantity, which indicates the total rate at which useful work is being carried
out, is called thesystem power; it is the performance measure of principal interest and the main object of the
analysis.

An access to a cache line is aread with probability�, so awrite occurs with probability1 � �. Also, and
independently, ahit occurs with probability and amisswith probability1� . These probabilities are assumed
fixed and known. Sincemmain memory lines are mapped onto one cache line, the uniform addressing assumption
implies that amissaccess will request any of the otherm � 1 lines with probability1=(m � 1).

Consider a particular line in one of the caches. Because of the symmetrical assumptions, we can concentrate
on line1 in cache1. The state of this line at timet is assumed to be a Markov process. Transitions between states
may occur when either processor1 or one of the other processors make various kinds of accesses to line1. The
instantaneous rates of all these transitions have a common factor�=(N� ) (the rate at which a processor emerges
from a think period and accesses line1). Since the steady-state distribution of a Markov process does not change
if all elements of its generator matrix are multiplied by the same number, we shall ignore this factor and include
only those components of the transition rates which depend on the state. The two protocols have to be considered
separately.

2.2.2.1 Equations for the Invalidate Protocol

Assuming the steady-state probabilities that the line is in stateI, C(n), D(n) or S(n) arepI , pC(n), pD(n) and
pS(n), respectively, let us consider stateI. Any access by processor1 to line 1, be it read or write, causes it to
leave that state. On the other hand, it can enter stateI from statesC(n),D(n) or S(n), n > 0, if :

(a) one of the othern processors in the sharing group makes awrite hit access to line 1;

(b) one of theK � n� 1 processors outside the sharing group is in stateI and makes awrite access to line
1 which hits the main memory address currently in line 1 of processor 1;

(c) one of theK � n � 1 processors outside the sharing group is in a state other thanI and makes awrite
missaccess to line 1 which hits the main memory address currently in line 1 of processor 1.

Note that transitions (b) and (c) depend on the states of caches outside the group encompassed by the integern.
We approximate that dependency by introducing the steady-state probabilities into the transition rates. Moreover,
the probability that a line is in a particular state, given that itscache is outside a sharing group of sizen + 1, is
different from the corresponding unconditional probability. For example, such a line cannot be in stateS(j) for
values ofj exceedingK � n � 2. To take account of this, the unconditional probabilities are multiplied by the
‘renormalization factor’,a(n), given by:

a(n) =

(
pI +

K�n�2X
`=0

[pC(`) + pD(`) + pS(`)]

)�1
: (2.1)

Here and from now on,pS(0) = 0 by definition.
As a consequence of the above approximations, the equation balancing the transitions into and out of stateI is

non-linear in the steady-state probabilities:

pI =
K�1X
n=0

[pC(n) + pD(n) + pS(n)] f n(1� �) + (K � n� 1)(1� �)a(n)



[pI
1

m
+

K�n�2X
j=0

(pC(j) + pD(j) + pS(j))(1 � )
1

m � 1
] g : (2.2)

Analogous arguments lead to equations concerning statesC(n), S(n) andD(n). To write them, we need the
probability,qC(i; j), that after leaving a sharing group of sizei + 1 (as a result of amissaccess), the line enters
stateC(j). This is approximated as:

qC(i; j) =
pC(j)PK�i�1

`=0 [pC(`) + pS(`)]
; j < K � i : (2.3)

Similarly, the probability,qS(i; j), that after leaving a sharing group of sizei+ 1, the line enters stateS(j), is
approximated as:

qS(i; j) =
pS(j)PK�i�1

`=0 [pC(`) + pS(`)]
; j < K � i : (2.4)

The balance equation for stateC(n) has the following form:

pC(n) f (1 � �) + �(1� ) + n(1� �) + n(1� ) + (K � n� 1)a(n)

[pI
1

m
+

K�n�2X
j=0

(pC(j) + pD(j) + pS(j))(1 � )
1

m � 1
] g

= (n + 1)(1� )pC(n + 1) + (1� )pS (n + 1) + pI�qC(0; n) + �(1� )

K�1X
i=0

[pC(i) + pD(i) + pS(i))]qC(i; n) + (K � n)�a(n� 1)

pC(n� 1) f pI
1

m
+

K�n�1X
j=0

[pC(j) + pD(j) + pS(j)](1 � )
1

m � 1
] g : (2.5)

The first term in the right-hand side of (2.5) reflects a reduction of the sharing group from(n + 1) to n. The
second corresponds to a transition from stateS(n + 1) to C(n) when the line in the sharing group which is in
stateD(n + 1) gets amissaccess. The other terms are concerned with either the line in cache 1 moving out of its
old sharing group into a new one, or another line joining the sharing group from outside. This equation holds for
n = 0; 1; : : :K � 1, with the understanding thatpC(�1) = pD(�1) = pS(�1) = 0.

The equation for stateS(n) is very similar:

pS(n) f (1 � �) + �(1� ) + n(1� �) + n(1� ) + (K � n� 1)a(n)

[pI
1

m
+

K�n�2X
j=0

(pC(j) + pD(j) + pS(j))(1 � )
1

m � 1
] g

= n(1� )pS(n + 1) + pI�qS(0; n) + �(1� )

K�1X
i=0

[pC(i) + pD(i) + pS(i))]qS(i; n) + (K � n)�a(n� 1)

pS(n� 1) f pI
1

m
+

K�n�1X
j=0

[pC(j) + pD(j) + pS(j)](1 � )
1

m � 1
] g : (2.6)

In order to combine the statesD(n) (n > 0) andD(0) into a single equation, let�B be the indicator function
of conditionB : it is 1 if B holds and 0 otherwise. Then we can write:

pD(n) f (1� �)�n>0 + �(1� ) + n(1 � �) + n(1� ) + (K � n� 1)a(n)

[pI
1

m
+

K�n�2X
j=0

(pC(j) + pD(j) + pS(j))(1 � )
1

m � 1
] g



= (n + 1)(1� )pD(n+ 1) + (1� �)[1� pD(0)]�n=0 + (K � n)�a(n� 1)

pD(n� 1) f pI
1

m
+

K�n�1X
j=0

[pC(j) + pD(j) + pS(j)](1 � )
1

m � 1
] g : (2.7)

Equations (2.2) - (2.7) can be easily rewritten in a way that expresses the vector of steady-state probabilities,
p = (pI ; pC(n); 0 � n � K � 1; pS(n); 1 � n � K � 1; pD(n); 0 � n � K � 1), in terms of itself. That is, they
can be written in the form

p = f(p) (2.8)

Fixed-point equations of this type are normally solved iteratively: starting with an initial guess,p0, one computes
successivelypi+1 = f(pi), until two consecutive iterations are sufficiently close to each other. Of course, sincep

is a probability vector, its elements must be re-normalized at every iteration to ensure that they add up to 1.

2.2.2.2 Equations for the Update Protocol

Remember that stateI does not exist in theUpdateprotocol. The specification in subsection 2.2.1.2 leads to the
following set of approximate equations.

StateC(n) :

pC(n) [ (1� �) + �(1� ) + n(1 � �) + n(1� ) + (K � n� 1)(1� )
1

m � 1
]

= (n+ 1)(1� )pC (n+ 1) + (1 � )pS (n+ 1)

+(K � n)�(1� )pC(n � 1)
1

m � 1

+�(1� )
K�1X
i=0

[pC(i) + pD(i) + pS(i))]qC(i; n) ; (2.9)

whereqC(i; n) is defined as in the previous subsection.
StateS(n) :

pS(n) [ (1� �) + �(1� ) + n(1� �) + n(1 � ) + (K � n� 1)(1� )
1

m � 1
]

= n(1� )pS (n+ 1) + n(1� �)[pC(n) + pD(n)]

+(K � n)(1� )
1

m � 1
f pS(n � 1) + (1� �)[pC(n� 1) + pD(n� 1)] g

+�(1� )
K�1X
i=0

[pC(i) + pD(i) + pS(i))]qS(i; n) : (2.10)

Again,qS(i; n) is defined as in the previous subsection.
StateD(n) :

pD(n) [ (1� ) + n(1� �) + n(1� ) + (K � n� 1)(1� )
1

m � 1
]

= (n+ 1)(1� )pD(n+ 1) + (1� �)[pC(n) + pS(n)] + (K � n)�(1� )
pD(n� 1)

m � 1

+(1� �)(1� )
K�1X
i=0

[pC(i) + pD(i) + pS(i))]qD(i; n) ; (2.11)

whereqD(i; j) is defined as:

qD(i; j) =
pD(j)PK�i�1

`=0 pD(`)
; j < K � i :

Once more, the vector of unknown probabilities can be expressed, through equations (2.9) - (2.11), in terms
of itself. The fixed-point problem is solved iteratively, starting with an initial guess and re-normalizing at every
iteration.



2.2.3 Bus Queue Metrics

The bus can be modelled as a single server FIFO queue which is fed with requests byK finite sources (Figure 2.3).

bus

bus queue

processors

-

-

-

--
>
qR

Figure 2.3: The cache queue

If a processor is in ‘think’ state, then the rate,�, at which it makes a request for bus service is equal to the rate
at which the think period is completed, multiplied by the probability that the resultingcache access is not local. In
the case of theInvalidateprotocol, this gives:

� =
1

�
f 1� �(1 � pI)� (1� �)[pC(0) + pD(0)] g :

For theUpdateprotocol, that rate is equal to:

� =
1

�
f 1� � � (1� �)[pC(0) + pD(0)] g :

Bus service times may have different averages, depending on the protocol and on the kind of operation that is
carried out. These differences could be taken into account by introducing multiple request types. However, the
resulting model would not have a product-form solution and its number of states would rise very quickly withK.
An acceptable approximation is obtained by using a common average service time, taken as a weighted mean of
the possible bus operation times. Thus, if a bus operation of average lengthbj is requested with probabilityrj , for
j = 1; 2; : : : ; J , then the the overall average bus service time,b, is equal to:

b =
JX
j=1

rjbj :

Clearly, in order to determine the probabilitiesrj, it is necessary first to solve the appropriate cache line model.
The weighted averages for theInvalidateandUpdateprotocols are evaluated below.

2.2.3.1 Average Bus Service Time for Invalidate Protocol

Denote by�1, �2 and�3 the average lengths of the ‘cache to cache’, ‘cache to main memory’ (or ‘main memory to
cache’) and ‘invalidate signal’ operations, respectively. Thenunder theInvalidateprotocol, there are 5 types of bus
requests, with service timesb1 = �1, b2 = �2, b3 = �1 + �2, b4 = 2�2 andb5 = �3. These occur in the following
circumstances and with the following probabilities:

Type 1 : A missaccess in stateC(n) or S(n) or any access in stateI, after which the line joins a sharing group
where one of the lines is in stateD(j). Let d(n) be the probability that a line is in stateD(j), given that it is
outside a sharing group of sizen+ 1 :

d(n) =

PK�n�2
i=0 pD(i)PK�n�2

i=0 [pC(i) + pS(i) + pD(i)] + pI
:



Then we have

r1 =
K�1X
n=0

[pC(n) + pS(n)](1� )(K � n� 1)
d(n)

m � 1
+ pI(K � 1)

d(0)

m� 1
:

Type 2 : A missaccess in stateC(n) or S(n) or any access in stateI, after which the line joins a sharing group
where there is no line in stateD(j).

r2 =
K�1X
n=0

[pC(n) + pS(n)](1� )[1 � (K � n� 1)
d(n)

m� 1
]

+pI [1� (K � 1)
d(0)

m � 1
] :

Type 3 : A missaccess in stateD(n), after which the line joins a sharing group where one of the lines is in state
D(j).

r3 =
K�1X
n=0

pD(n)(1� )(K � n � 1)
d(n)

m � 1
:

Type 4 : A missaccess in stateD(n), after which the line joins a sharing group where there is no line in state
D(j).

r4 =
K�1X
n=0

pD(n)(1 � )[1 � (K � n� 1)
d(n)

m� 1
] :

Type 5 : A write hit access in any state other thanI, C(0) andD(0).

r5 = [1� pI � pC(0)� pD(0)](1� �) :

2.2.3.2 Average Bus Service Time for Update Protocol

Under theUpdateprotocol, there are 7 types of bus requests, with service timesb1 = �1, b2 = �2, b3 = �1 + �2,
b4 = 2�1, b5 = 2�2, b6 = 2�1 + �2 and b7 = 2�2 + �1. The circumstances in which these occur, and their
probabilities, are as follows:

Type 1 : A write hit access in any state other thanC(0) andD(0), or aread missaccess in statesC(n) or S(n),
after which the line joins a sharing group where one of the lines is in stateD(j).

r1 = (1 � �)[1� pC(0)� pD(0)] +
K�1X
n=0

[pC(n) + pS(n)]�(1� )(K � n� 1)
d(n)

m � 1
:

Type 2 : A read missaccess in statesC(n) or S(n), after which the line joins a sharing group where there is no
line in stateD(j).

r2 =
K�1X
n=0

[pC(n) + pS(n)]�(1� )[1� (K � n� 1)
d(n)

m� 1
] :

Type 3 : A read missaccess in stateD(n), after which the line joins a sharing group where one of the lines is in
stateD(j), or awrite missaccess in statesC(n) or S(n), after which the line joins a sharing group where
there is no line in stateD(j).

r3 =
K�1X
n=0

pD(n)�(1� )(K � n� 1)
d(n)

m � 1

+
K�1X
n=0

[pC(n) + pS(n)](1� �)(1� )[1 � (K � n� 1)
d(n)

m� 1
] :



Type 4 : A write missaccess in statesC(n) or S(n), after which the line joins a sharing group where one of the
lines is in stateD(j).

r4 =
K�1X
n=0

[pC(n) + pS(n)](1� �)(1� )(K � n� 1)
d(n)

m� 1
:

Type 5 : A read missaccess in stateD(n), after which the line joins a sharing group where there is no line in state
D(j).

r5 =
K�1X
n=0

pD(n)�(1� )[1� (K � n� 1)
d(n)

m � 1
] :

Type 6 : A write missaccess in stateD(n), after which the line joins a sharing group where one of the lines is in
stateD(j).

r6 =
K�1X
n=0

pD(n)(1 � �)(1� )(K � n� 1)
d(n)

m � 1
:

Type 7 : A write missaccess in stateD(n), after which the line joins a sharing group where there is no line in
stateD(j).

r7 =
K�1X
n=0

pD(n)(1� �)(1� )[1 � (K � n � 1)
d(n)

m � 1
] :

2.2.4 Performance Metrics

Assuming that the service times and think periods are exponentially distributed, the steady-state probability ,pi,
that there arei requests in the bus queue is equal to (e.g., see [Mitrani 87]):

pi =
K!

(K � i)!
(�b)ip0 ; (2.12)

where:

p0 =

"
KX
i=0

K!

(K � i)!
(�b)i

#�1
:

The following performance measures are then obtained [Mitrani 87]:

Bus utilisationU :

U = 1� p0 :

Average response timeW for a request :

W =
Kb

U
�

1

�
:

Probability � that a given processor is thinking :

� =
1
�

1
� +W

=
U

Kb�
:

System power� :

� = K� =
U

b�
:



2.2.5 Comparison to Numerical Simulation Results

Several numerical experiments have been carried out, where the performance of theInvalidateandUpdateproto-
cols was evaluated as described in the previous sections. The ratio of main memory size to cache size was taken as
m = 11, and the average think period,� , was 1. In the first, and larger group of results, the following average bus
transfer times were used: ‘cache to cache’=1/6; ‘cache to main memory’=‘main memory to cache’=1/4; ‘invalidate
signal’=1/54.

Figure 2.4 shows how the performance of the the two protocols, measured by the system power, varies with
the number of processors. The fraction ofread accesses, and the fraction ofhit accesses, are quite high, at 0.85
and 0.8, respectively. In this case, theUpdateprotocol gives better throughout. Moreover, theInvalidateprotocol
displays clear symptoms of ‘thrashing’, whereby having reached a maximum, the power begins to deteriorate if
the number of processors continues to increase.

The figure also includes performance curves obtained by simulation, for both exponentially distributed (with
the above mean values) and constant bus transfer times. The analytical approximations and the simulations are
very close.

For Figure 2.5, the number of processors and thehit probability were fixed, while theread probability was
varied between 0 and 1. It can be seen that when most accesses arewrite, theInvalidateprotocol is better (because
it takes less time to send aninvalidatesignal than a whole line), whereas the situation is reversed when most
accesses areread (because there are fewer transfers between cache and main memoryunder theUpdateprotocol).

Figure 2.6 shows that the effect of fixing the probability ofread and varying that ofhit is similar. When the
hit probability is low there is no advantage in broadcasting the new content of changed lines, only the penalty of
longer bus operations.

Figure 2.7 is of the same type as Figure 2.6, but deals with a system where the bus operations are much longer
relative to the processor think periods: ‘cache to cache’=6; ‘cache to main memory’=‘main memory to cache’=8;
‘invalidate signal’=2. Now thehit probability needs to be almost 1 before the system power rises above 2. The
processors spend most of their time waiting for the bus, and because theinvalidatesignal is faster, that protocol is
slightly better.

These figures show that rather complex cache coherence protocols can be analysed approximately and their
performance can be evaluated with acceptable accuracy. Such approximations are certainly worthwhile, because a
numerical solution, even one involving fixed-point iterations, is several orders of magnitude faster than a detailed
simulation.

The methods described above can be applied to different protocols and different computer architectures, e.g.,
two multiprocessing nodes connected to a single shared memory as in Figure 2.8, a likely scenario in a fault
tolerant system (and a minimalist example of a distributed shared memory system composed from more than one
multiprocessor). Moreover, these models can be extended to cover other aspects of system behaviour, in addition
to cache coherence.

The difficulty with this analytical approach to modelling is that if the mathematics is not appropriate to a new
architecture, or even a new variant of an architecture already being studied, then a new mathematical formulation
may be needed, and this is not conducive to the rapid evaluation of a number of disparate alternatives within the
design process. This has led most designers to more direct numerical simulation methods using commercially
available software tools based on queueing models. It is to this approach we now turn.



Figure 2.4: System power versus number of processors,� = 0.85, = 0.8

Figure 2.5: System power versusreadprobability, K = 25, = 0.8



Figure 2.6: System power versushit probability, K = 25,� = 0.5

Figure 2.7: System power versushit probability, K = 8,� = 0.95
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Figure 2.8: Two multiprocessing nodes connected to a single shared memory

2.3 Queueing Models that include Checkpointing and Recovery3

The great virtue of numerical simulation is that it is supported by a wide range of computer software, such as the
QNAP2 and SMPL packages. This immediately allows more complex structures to be evaluated. We now present
extended cache coherent queueing models that incorporate checkpointing and recovery operations.

Checkpointing and recovery involve thecaches, so the system behaviour must still be studied at the lowest
level. The basic component of the workload is still thecache line, while the basic components of the simulation
model remain the processors, the caches, the cache controllers, the bus and the shared memory. The processor
module will generally incorporate an internal or primarycache and an external or secondarycache, as in Figure
2.9, but we may simplify this model by assuming that the internal pipelined structure of modern RISC processors
allows the access to the internal cache to proceed in parallel with the instruction execution, yielding the processor
model shown in Figure 2.10.

For comparison, five different types of multiprocessing systems have been simulated, three with different
checkpointing and recovery mechanisms, plus two that do not include checkpointing and recovery. The multi-
processors that include checkpointing and recovery are a CARER system [Wu et al 90, Ahmed et al 90], a system
using the FASST Recovery Protocol as described in Chapter 1 [Morin et al 92], and a system that uses the SMRC
protocol [Ors et al 94a, Ors et al 94b]. The latter two assume specialized recoverable shared memory (stable mem-
ory). The two systems without checkpointing and recovery differ by their use of theDragonandBerkeleycache
coherence protocols respectively.

The three recoverable architectures are represented by the queueing model of Figure 2.11. The stations repre-
sent the processors (Pn), the external caches (CHn), and the bus. The recoverable shared memory is modelled by
three stations. The model includes some sources to simulate unrecoverable operations (interrupts and I/O’s) and
rollbacks. The sources connected to the processors simulate the establishment of a checkpoint due to an atomic
operation, which is generally of two types:

Explicit Recovery Points : The main source of these checkpoints are interrupts and I/O operations.

Implicit Recovery Points : These arise from to the special characteristics of the recovery protocol.

3The following sections contributed by R. Ors, J.J. Serrano, V. Santonja and P. Gil, Universidad Polit´ecnica de Valencia, and A. P´erez and
S. Rodr´ıguez, Universidad Polit´ecnica de Madrid



Processor

Processor

Module

To shared memory

External Cache

Internal Cache

Figure 2.9: Processor Model

Processor

Module

To shared memory

External Cache

Internal Cache

+

Processor

Figure 2.10: Simplified Processor Model

These models have been simulated firstly with QNAP2 and later with SMPL [MacDougall 89], which is three
times faster than QNAP2. A Smalltalk version has also been developed. In all cases the the mean number of active
processors in the system, theProcessing Power, is used as a performance index, since it is representative for a
comparative analysis. In general the analyses assume the following input parameters:

Cache size (lines) : 128 (L)
Program size (lines) : 5120 (40L)
Shared memory size (lines) : 51200 (400L)
Number of Processors : 20
Probability of repeating a line : 0.5
Read probability : 0.8
Relation table size : 2L
Threshold for dirty lines : 0.75L
Atomic operations rate : 10�5

Workload parameterA : 5
Locality parameter� : 2.5



The performance analysis is highly dependent on the workload used, so the workload needs to be much more
carefully specified. Four kinds of test workloads have been used to analyse these models, one called WL-I that is
based on a probabilistic model, one fixed workload or natural trace, called WL-II, for debugging and testing, and
another two, called WL-III and WL-IV, based on a synthetic trace. In the first, WL-I, the workload is characterized
by the following parameters:

(a) The probabilityPrep of making an access to the same block,

(b) The probabilityPsh of making an access to a shared block, and

(c) A uniform distribution in the interval (0; Sdh) for shared data and (Shd; NSdh) for private data.

The latter workloads, WL-III and WL-IV, are taken from [Thiebaut et al 92], adapted to the models under con-
sideration. WL-IV is used when the number of shared lines is limited, otherwise WL-III is used. These workloads
simulate, based on a hyperbolic distribution, the jumps made by the program counter during the execution of a
program, and are parameterized by:

(a) Cache capacity,

(b) A constant that characterizes the load, and

(c) A parameter that characterizes the spatial locality and the memory size.

Since these are simulations, it is relatively easy to examine the sensitivity of the results to the various workload
parameters. In Figure 2.12 we can see the influence of cache size on the performance of the three checkpointing
and recovery systems and the multiprocessors. The performance is obviously sensitive to thecache size and the
influence is similar for all the systems.

Figure 2.13 illustrates the influence of the program size on the performance of the different systems. When the
program reaches 16 times the cache line size, the performance does not change anymore. The variability is similar
for all the systems.

Figure 2.14 shows the influence of the read probability on the performance of the different systems. As reads
produce fewer dependencies than writes, the best case arises when we do not have writes, i.e. forPr = 1:0. We
can see that in all the systems this parameter has a significant influence on the system performance.

Figure 2.15 shows the influence of the checkpointing rate on the performance of the different systems. Obvi-
ously CARER is the better at high checkpointing rates.

2.4 Dependability analysis

Performance is an important issue for any computing system, but at the heart of a fault-tolerant computer system
must be its ability to survive when a non-fault-tolerant system would fail. This gives rise to notions of depend-
ability, reliability, availability and performability (see [Lee et al 90]). Reliability and availability can be analysed
using Markov chain models. Performability can be analysed using Reward Markov models, where the reward is the
Processing Power, i.e. the mean number of active processors in the configuration considered. Each configuration
has a queue equivalent model with the number of processors that are not in a crash state. The parameters used in
the reliability, availability and performability models are:

Pp Permanent fault rate
ft Transient fault rate
�e Fault rate for a processor module
�b Fault rate for the bus
�m Fault rate for the shared memory
� Repair rate
C Transient fault coverage
D Permanent fault coverage
E Shared memory fault coverage
1=� Average time between two recovery points
1=� Average time for a recovery point
1=� Average time for a rollback
N Number of processor



2.4.1 Multiprocessor system without checkpointing and recovery

By way of reference, let us first consider a multiprocessor without checkpointing and recovery, so that the effects of
introducing these features can be clearly seen. Figure 2.16 shows the time evolution of the reliabilityR(t) for such
a system. We can see two sets of lines on the graph, corresponding to two fault rates�m for the shared memory.
The influence of the fault rate�e for processor modules can be more clearly observed for one of these sets than the
other.

In Figure 2.17 we can see the availabilityA(N ) versus the number of processorsN , using the fault rate�m for
the shared memory and the fault rate�e for processor modules as parameters. The influence of these parameters
on the availability is similar to their influence on the reliability.

In Figure 2.18 we can see the time evolution of the performabilityP (t) of the system. We can observe that
this evolution is similar to the time evolution of the reliabilityR(t) shown in Figure 2.16. Figure 2.19 shows the
influence of the number of processorsN on the time evolution of performabilityP (t) for such a system.

2.4.2 Non-degradable multiprocessor system with checkpointing and recovery

Now let us consider a CARER system, which is notdegradable, in the sense that it cannot survive permanent
processor faults. This will allow us (later) to more easily assess the effects of introducing degradability. Figure
2.20 shows the time evolution of the reliabilityR(t) for such a system, while in Figure 2.21 we can see the
availabilityA(�) against the repair rate�.

Figures 2.22, 2.23, 2.24 and 2.25 show the time evolution of the performabilityP (t). In Figure 2.22 the
processor and memory fault rates�e and�m are used as parameters, in Figure 2.23 the transient fault coverageC
is a parameter, in Figure 2.24 the permanent fault ratePp is a parameter, and finally in Figure 2.25, we can see the
influence of the number of processorsN on the performability.

2.4.3 Degradable multiprocessor system with checkpointing and recovery

Finally, let us now consider a degradable multiprocessor system (i.e. one that can survive permanent processor
faults) with checkpointing and recovery, such as is proposed for FASST. Figure 2.26 shows the time evolution of
the reliabilityR(t) for such a system, parameterized by the transient fault coverageC.

Figure 2.27 shows the availabilityA(�) for such a system versus the repair rate�. We can see two set of lines,
one for each memory fault rate�m, indicating the influence of this parameter on the availability; ineach set the
lines are very close, indicating that the processor fault rate�e has very little influence.

Figure 2.28,2.29,2.30,2.31 and 2.32 show the temporal evolution of the performabilityP (t). In Figure 2.28 the
processor and memory fault rates�e and�m are used as parameters. In Figure 2.29 the transient fault coverageC
is a parameter, in Figure 2.30 the permanent fault coverageD is a parameter, in Figure 2.31 the permanent fault
ratePp is a parameter, and finally in Figure 2.32 we can see the influence of the number of processorsN .

2.5 Summary

In Figures 2.33 and 2.34, we can see the temporal evolution of the system performability. As one might expect, a
basic multiprocessor system without checkpointing and recovery initially has the best performability, but quickly,
due to its low reliability, becomes the worst system. Systems with checkpointing and recovery but no degradation
again have good initial performance, but since they do not tolerate permanent faults, their reliability decreases and
their performability is affected as a result. Good long term performability is offered only by systems that tolerate
permanent and transient faults, like those that use the FASST or SMRC recovery protocol. The FASST and SMRC
protocols have the same functionality; the improved performance of the SMRC protocol is due to migration of
most of the algorithms into the recoverable shared memory, which then becomes a system bus master to establish
a recovery point by using the cache coherency mechanisms to broadcall state from the processors.

Bear in mind that these performability results are for a singlecache coherent multiprocessing node. The
situation is a little more complex with more than one multiprocessing node, in that a mechanism (let us call it a
bridge) must be constructed to carry coherence traffic between the busses of the nodes, since although there is more
than one bus, there is only one set of common data. Thebridgefunction can be modelled probabilistically or with



a boundary analysis that considers only the upper and lower bounds of the system performance [Yang et al 88]; let
us just briefly consider this last option for a minimalist dual-node configuration.

The upper bound is obtained by assuming that the two busses don’t have any shared data, i.e. the bridge is
never used, so that there are, in effect, two independent busses (see Figure 2.36). For the lower bound we assume
that all the data is shared, so the bridge is always used, and effectively the system has only one bus (see Figure
2.37). The sources and sinks in these models represent the extra load due to the cache coherence protocol.

These models have been studied withWrite-Once[Goodman 84],Write-through[Fielland et al 84],Berkeley
[Katz et al 85],Synapse[Frank 84],Illinois [Patel et al 84],Firefly [Thacker et al 87], andDragon[McCreight 84]
cache coherence protocols. As an example, the results for theWrite-Onceprotocol (using the workload parameters
fr = 0:7, fw = 0:3, h = 0:9,md = 0:2, umd = 0:1, Nsb = 32, qs = 0:2, Sc = 2K, Z = 2, tcc = 1, tcb = 1
andtcm = 4) are shown in the Figure 2.35.

As we shall see in the next chapter, however, the FASST architecture is defined for just a single multiprocessing
node; extension to more than one such node is really beyond the scope of this book.
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Figure 2.11: FASST queueing model
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Figure 2.15: Influence of the checkpointing rate on performance
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Figure 2.17: Availability for a multiprocessor system without checkpointing and recovery
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Figure 2.18: Influence of the processor and memory fault rates on the performability of a multiprocessor system
without checkpointing and recovery
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Figure 2.19: Influence of the number of processors on the performability of a multiprocessor system without
checkpointing and recovery
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Figure 2.21: Availability for a non-degradable (CARER) multiprocessor system with checkpointing and recovery
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Figure 2.22: Influence of processor and memory fault rates on the performability of a non-degradable (CARER)
multiprocessor system with checkpointing and recovery
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Figure 2.23: Influence of transient fault coverage on the performability of a non-degradable (CARER) multipro-
cessor system with checkpointing and recovery
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Figure 2.24: Influence of permanent fault rate on the performability of a non-degradable (CARER) multiprocessor
system with checkpointing and recovery
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cessor system with checkpointing and recovery



0

0.2

0.4

0.6

0.8

1

0 20000 40000 60000 80000 100000

R(t)

time (hours)

D=0.95, E=0.97, ft = 0:95, �e = 1E � 6, �m = 1E � 5, Pp = 0:2 and N=10

C=0.8
C=0.7
C=0.6
C=0.5

Figure 2.26: Reliability for a degradable (FASST) multiprocessor system with checkpointing and recovery

0.9997

0.99975

0.9998

0.99985

0.9999

0.99995

1

0 0.2 0.4 0.6 0.8 1

A(�)

repair rate �

C=0.8, D=0.95, E=0.97, ft = 0:95, Pp = 0:2, and N=10

�e = 1E � 7 �m = 1E-6
�e = 1E � 6 �m = 1E-6
�e = 1E � 5 �m = 1E-6
�e = 1E � 7 �m = 1E-5
�e = 1E � 6 �m = 1E-5
�e = 1E � 5 �m = 1E-5.

Figure 2.27: Availability for a degradable (FASST) multiprocessor system with checkpointing and recovery
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Figure 2.28: Influence of processor and memory fault rates on the performability of a degradable (FASST) multi-
processor system with checkpointing and recovery
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Figure 2.29: Influence of transient fault coverage on the performability of a degradable (FASST) multiprocessor
system with checkpointing and recovery
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Figure 2.30: Influence of permanent fault coverage on the performability of a degradable (FASST) multiprocessor
system with checkpointing and recovery
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3.1 The FASST Architecture1

This chapter elaborates on the salient features of the FASST architecture, and then attempts to further model its
performance. The general architecture of Figure 3.1, which is designed to transparently tolerate processor failures,
mainly consists of processing elements, a bus, and a recoverable shared memory (stable memory, or SM ) which
provides normal memory functionality as well as a backward error recovery mechanism.

cache

CPU

cache

CPU

cache

CPU

. . .

bus

recoverable shared memory

Figure 3.1: The FASST architecture

The architecture has been designed to require specialised hardware only for theSM . Standard processors,
caches and cache coherence protocols can be used, and thus memory can be freely shared between processors. In
particular, the recovery protocol avoids the use of dedicated blocking caches which require custom hardware and
penalise the overall performance of the architecture. In principle, it should be possible to plugSM boards into an
off-the-shelf shared memory multiprocessor to provide an error recovery mechanism for that system.

In the following, we further explain the FASST backward error recovery protocol that was introduced in Chap-
ter 1 (see Section 1.4), and discuss how this protocol is implemented by theSM . The basic features and operation
of theSM are introduced in 3.1.1 with the simplifying assumption that there are no caches interposed between
the processors and theSM . The additional complexities added when snoopycaches are incorporated into the
multiprocessor are discussed in 3.1.2.

3.1.1 Basic Features of the Stable Memory

As discussed in 1.4, the backward error recovery protocol has to permit recovery points to be established, re-
covered to and committed, and must permit a recovery line to be identified when recovery is required (also see
[Banâtre et al 92a, Joubert 93]). The basic mechanism in theSM for providing recovery is to record recovery
data for each memory location, essentially by maintaining two copies of each location. When a recovery point is
established, each copy contains the same data. Subsequentupdates to a location are made to only one of the copies
and thus the second copy retains the state of that location at the time the recovery point is established. As only a
single extant recovery point is needed for tolerating processor faults, only two copies of a location are ever needed.

To permit the identification of recovery lines it is necessary for the recovery protocol to:

(a) detect and record the existence of inter-processor dependencies which arise through their sharing of data
in the memory; and

(b) synchronise the recovery protocol operations of those dependent processors.

The synchronisation is a vital part of the recovery protocol. In Chapter 1, for instance (remembering the final
assumptions of Section 1.5), we showed that if processorPj reads a cell previously modified by processorPi
within its current recovery region, then ifPi is recovered because the processor on which it was executing fails,
thenPj must also be recovered. We also showed that if processorPi writes into a cell previously modified by
processorPj within its current recovery region, then ifPi is recovered thenPj must also be recovered, since the
value written byPj has been overwritten byPi and so cannot otherwise be recovered. In both previous cases, an

1This section contributed by : Michel Banˆatre, Alain Gefflaut, Philippe Joubert and Christine Morin, IRISA/INRIA, Campus universitaire
de Beaulieu, F-35042 Rennes cedex France, and Pete Lee, Department of Computing Science, University of Newcastle, Newcastle upon Tyne,
NE1 7RU, UK.



extant recovery point is required forPj so that the recovery line linkingPi andPj actually exists. Thus dependent
processors have to synchronise their actions on establishing, recovering to, and committing recovery points. One
simplification can be obtained by ensuring that a processor always has an extant recovery point, by ensuring that
a new recovery point is automatically established when a previous one is committed or restored. Thus theSM
protocol does not provide a separateestablishoperation.

Clearly, a key part of the recovery protocol is in detecting and tracking interprocessor dependencies. This is
achieved in theSM by means of recordingdependency relationships. A dependency has to be recorded by the
SM in two cases :

(a) Whenever a processorPi reads a cell previously modified by processorPj within its current recovery
region.

(b) Whenever a processorPi modifies a cell previously modified by processorPj within its current recovery
region.

A processorP is said to be theactive writerof a cellc if P has written toc within its current recovery region
andc has not been written to subsequently by another processor.

This dependency information is stored within theSM and used to compute recovery lines, or more specifically
the dependency groupof processors involved in the commitment or restoration of a recovery point. Recovery
of a processorPi must induce recovery of its dependency group; this requires the values of all of the memory
locations which have been updated by any processor in that group to be restored by theSM to their prior values,
using the recovery data recorded by theSM for this purpose. Similarly, commitment of a process will induce
the commitment of all processors in the dependency group; in this case the values of all of the memory locations
which have been updated by any processor in that group must be committed. This entails theSM in making the
two copies of the memory location identical.

One important assumption for dependency tracking is that theSM is only connected to the bus of the ar-
chitecture and dependencies are tracked bysnooping bus information, i.e. it requiresbroadcastedinformation;
non-broadcast mechanisms (for instance some of those used in distributed shared memory systems) will require
redefinition of the recovery protocol. In order to record dependencies, when a memory location isaccessed by a
processor, theSM needs the following information:

(a) The identity of the processor performing theaccess. This requires that each processor has a unique
identifier which is transmitted whenever that processor generates a read or write request.

(b) The type of access (read or write)

(c) The identifier of the processor that is active writer of the cell if any.

The commitment of a recovery point by a processor obeys a simple distributedtwo-phase commit[Gray 78]
protocol. Processors are participants while theSM is the coordinator of the protocol. In contrast to the standard
two-phase commit protocol where the coordinator is responsible for triggering the protocol, it is a participant which
initiates commitment; yet it is the coordinator itself which is responsible for actually committing data. When a
participant wishes to issue a commit request, it must first flush its internal registers out to theSM (since the values
in these registers, which form part of the global state, cannot otherwise beaccessed). It can then send ado commit
command to theSM and wait for an interrupt signalling that commitment has terminated and that the processor
can resume processing.

Upon receiving ado commitcommand, theSM scans its dependency information (to determine the recovery
line) and informs all of the processors in the dependency group. A dependent processor can then flush its registers
into theSM if necessary and must acknowledge its completion of the first phase of the protocol. When all
acknowledgements from the participant processors have been received, theSM enters the second phase of the
commit protocol. During this second phase, the recovery data of the cells whose active writers belong to the
dependency group is discarded. Once this has been achieved, commitment is complete and a new recovery point
is established for each processor belonging to the group. Thus the processors in the group are no longer dependent
uponeach other, and the dependency information in theSM can be discarded and the participants allowed to
proceed with their computations.

Let us consider now the implementation of theSM in greater detail.



Servicing read and write requests

TheSM actions are best described by a finite state automaton. The automaton includes aninitialisation state
together with aservice andcommit phase2 states. In the service state of theSM , most of the work is concerned
with dependency management. Assume that dependency data is stored in an � n boolean matrixM ; n being the
maximum number of processors in the architecture. A matrix itemM (i; j) is set to true when processorPi is
dependent onPj.

While read and write requests may refer toSM cells, theSM itself may record dependencies on a larger
granularity. In the following, it is assumed that theSM physical space is divided into a set of contiguousblocks
of identical size that is a power of two of the cell size. There is no constraint that the block be, say, the size of a
cache line or a memory management page; it may be either or neither. Each block consists of:

(a) current values of the cells,

(b) a tag field containing either the identity of the active writer to the block (if any) or thenil value, and

(c) recovery data.

Basically a read request involving cellc requires theSM to compute the identity of the containing target block
b, record a dependency between the processor making the request and the active writer of the block (if any) in the
matrixM , and deliver the current value of the cell. A write to a cellc will compute the target blockb, record a
dependency with the active writer if any, change the active writer of the block, and update the current value of the
cell within the blockb.

First phase of the commit protocol

Upon receiving ado commitcommand from processorPi, theSM has to scan the dependency information it
has recorded in matrixM duringPi’s current recovery region to determine thegroup of processors which are
required to commit atomically withPi according to the recovery protocol. Once the dependency group has been
computed, each processor in that group has to be informed that it is required to participate in this commitment, by
means of aprepareto commitinterrupt. This can be implemented in a variety of ways, using interrupt or message
passing facilities provided by the bus. TheSM could generate such interrupts directly. Alternatively, theSM
could broadcast on the bus a bit vector conveying the group of dependent processors, with dedicated logic on each
processor board checking whether the processor it is attached to has to participate to the group and generating the
prepareto commitinterrupt appropriately (this checking could also be implemented in software). Each processor
in the dependency group must also issue ado commitcommand in acknowledgement, meaning that as far as it is
concerned, the first phase of the commit protocol is OK.

It should be noted that within the interval between the initialdo commitcommand and the receipt of acknowl-
edgements from the dependent processors, some new dependencies may have been created, since theSM can
continue servicing read and write commands from processors that are not blocked waiting for the end of the com-
mit protocol. These processors have to be added to the dependency group if this concurrency is permitted. It may
also occur that a processor not already part of the group decides to commit its current recovery point and sends
a do commitcommand to theSM . This processor is added to the (current) group as well as all the processors
dependent upon it. This mechanism provides a simple means for implementing multiple concurrent processor
groups.

One crucial point is that computation of the dependency group has to be atomic with respect to read and write
accesses to theSM . If it is not atomic, the group could be incorrectly calculated by theSM . A simple way to
implement this atomicity is to serialise the group computation and normal read and write accesses.

The dependency group computation algorithm is given in the C programming language in Figure 3.2, with
the assumption that the number of processorsn can be encoded within an integer variable, and the matrixM is
implemented by an integer array where each array element is considered as a bit vector indexed by a processor
identifier. Upon reception of ado commitcommand, theSM executes thedo commitprocedure. The bit vector
group denotes the processors which are members of the dependency group, whiledo commit received is the
bit vector denoting the processors that have completed the first phase of the commit protocol. Thedo commit
procedure of Figure 3.2 will cause a state transition of theSM automaton into thecommit phase2 state that
implements the second phase of the commit protocol if the following condition is verified :

Q : ((group = do commit received) ^ (8i : i 2 group : immediate ancestors(i) 2 group)



This condition expresses the requirement that all processors belonging to the group of dependent processors
have completed the first phase.

Q may not be satisfied in two situations. Firstly, some processors that have already been informed that they are
group members have not yet completed the first phase, in which case theSM must wait for the reception of their
do commitacknowledgement commands. Secondly, some new processors have become group members since the
last computation ofgroup and thus must be informed. Notice also that the dependency computation algorithm
must avoid interrupting a given processor more than once.

int state; /* current state of the automaton */
int group; /* dependency group computed so far (bit vector) */
int do_commit_received; /* bit vector of do_commit commands */

/* received from the processors */
int M[n]; /* dependency matrix */

INITIALISATION:
do_commit_received = 0; group = 0;
for(j=0;j<n;j++) M[j] = (1<<j); /* a processor is an ancestor of itself */
state = SERVICE;

SERVICE:
read(address) {

/* create a dependency if necessary and return the value stored at address */
}

write(address, value) {
/* create a dependency if necessary and perform the write */

}

do_commit(int i) /* i is a processor id */
/* the processor i is willing to commit or acknowledges a request of

the SM following a commit request from a dependent processor */
{

int dependent_members;
int j; /* processor id */

/* add processor i to the group */
group |= (1<<i);

do_commit_received |= (1<<i);

/* compute new dependent members */
dependent_members = group;
for(j=0; j<n ; j++)

{ if ((group & (1<<j)) != 0) /* if processor j is a member */
/* of the group */

dependent_members |= M[j]; /* add immediate ancestors */
}

/* {dependent_members = group ==> group is exact} */

/* check for termination condition Q and inform new members if necessary */
if ((do_commit_received == group) && (dependent_members == group))

state = COMMIT_PHASE2;
else if (dependent_members != group)

{ /* broadcast (dependent_members&˜group) onto the bus */
group = dependent_members;

}
} /* do_commit */

Figure 3.2: Computing a dependency group

There are many ways to devise an algorithm satisfying the previous requirements. In Figure 3.2, a simple
solution is given. The algorithm checks theQ condition and as a side-effect computes a new value ofgroup. If
the new value ofgroup is different from the last value, the new members are informed. The complexity of the
algorithm isO(n), with thedo commitprocedure being executed at mostn times. The first phase of the commit
protocol is thusO(n2). Note that termination is obvious from Figure 3.2 assuming that a processor acknowledges



a prepareto commitrequest within a finite time and since the number of processors is bounded.

Second phase of the commit protocol

The basic actions which have to be performed in the second phase of the commit protocol are the following:

(a) Discard the recovery data of all the blocks whose active writers belong to the dependency group and
establish a new recovery point. This can be achieved by setting the active writer field of those blocks
to thenil value and by setting the recovery data values to the current values.

(b) Break the dependencies by updating the dependency matrixM appropriately.

(c) Broadcast acommitdoneinterrupt to the processors belonging to the dependency group to permit them
to restart computations.

As in the first phase of the commit protocol, these operations need to be atomic with respect to read and write
accesses.

The implementation of the second phase of the commit protocol has a great impact on the overall performance
of the architecture since a processor must not modify a block for which the new recovery data has yet to be recorded.
Several implementations of the second phase can be devised. A trivial solution would consist of sequentially
checking every block of theSM and copying the current value of the block to its recovery counterpart if necessary.
This leads to the second phase of the commit protocol taking a time proportional to the size of theSM , which
may not be desirable. Moreover, the processors must be prevented from restarting before this copying has been
completed.

Several refinements to this straightforward algorithm can be made. TheSM could maintain a per processor
linked list of modified blocks. The time needed to perform the second phase is then proportional to the number of
memory blocks which had been updated by the processor group, but at the cost of extra storage within theSM .

Alternatively, it is possible to permit theSM to restart normal memory operations, and to delay the effective
copying of a block (to provide recovery data for the new recovery point) until it is really needed, that is, if a
processor attempts to modify that block. This copy on write mechanism allows the second phase time to be
interleaved with normal processor accesses, and processors do not need to be stalled until all the copying has
been done in one fell swoop. However it is still necessary to mark blocks within theSM to determine whether a
given block has to be copied or not on a subsequent write access. One approach is to usecheckpoint identifiers
[Wu et al 90]. In this approach, a checkpoint identifier is associated within theSM with each block and with each
processor. When a block is modified, the current value of the checkpoint identifier of the active writer is stored
along with the block. When a processor commits, its checkpoint identifier is incremented. Uponeach write access,
if the checkpoint identifier of the block is less than the checkpoint identifier of its last active writer, the current
value of the block is needed for recovery data and so needs to be copied. Before allowing the write to perform, the
block is copied to its recovery counterpart and the active writer and checkpoint identifier fields of the block are set
accordingly. Similar optimisations were provided in various implementations of the recovery cache [Lee et al 90].

Tolerating processor failures

In this paper we have assumed that the processors used arefail-stop [Schneider 87], and that a failed processor
can be easily identified. This is not a severe constraint on the architecture, for fail-stop processors are common
practice in the field of hardware fault tolerance (e.g. through the use of duplicated processors). In case of failure,
the processor ideally will signal a failure interrupt on the bus which will be caught by one of the live processors.
This processor can trigger the recovery process by issuing ado rollback(i) command to theSM , wherei denotes
the processor that failed.

Upon reception of thedo rollback(i) command, the dependency group ofi is computed by theSM , thus
identifying the group of processors which must be recovered in order to reset the system state to a consistent state,
that is the state at a recovery line, in a manner similar to the second phase of the commit protocol discussed earlier.
However, the values of the blocks modified by the members of the dependency group have to be reset to their prior
state by copying the values held in the recovery data associated with those blocks. Each dependent processor must
be interrupted by aroll back interrupt to cause them to abandon their current processing. The dependencies are



broken by resetting matrixM appropriately, and theSM reenters the service state. Recovering back to a recovery
point is a simple protocol requiring a single phase compared to the commit protocol which requires two phases.

A particular situation may occur if group commitment is in progress when recovery is demanded. Since the
same processor may belong both to a recovery group and a commit group, it is necessary to check for this at the end
of the recovery procedure. Members of the recovery group are removed from the commit group. If the remaining
commit group is not empty, thedo commit procedure of Figure 3.2 is executed taking one member of the commit
group as an argument.

Finally, after recovery has taken place, the global system state is consistent, and the processors which have
been recovered can recommence execution of normal computations. The computation that was running on the
failed processor can be re-executed on one of the remaining processors and hence a system failure will have been
averted. Moreover, the processor failure will have been tolerated transparently, since no alterations were required
to the software of the application to provide these tolerance actions.

3.1.2 Influence of cache coherence protocols

Now we know the basic operation of theSM and how the recovery mechanisms work, we must examine what the
complexities arise when the architecture contains coherentcaches, as is the case with any realistic multiprocessor.
As we shall see, the primary changes needed to theSM concern the dependency tracking mechanisms, so we must
examine the influence of thecache coherence protocolon these mechanisms.

Most hardware cache coherence protocols proposed so far rely on the fact that broadcasted bus traffic can be
monitored (snooped) by all caches attached to that bus; the remainder (non-broadcast protocols such as directory
protocols, or some of those used in distributed shared memory systems) behave differently. Snoopycaches maintain
a tag fieldstored along with each loaded line to indicate the state of that line. The tag field generally encodes
whether the line has been modified with respect to the contents of the corresponding shared memory location,
and whether the line has been loaded into another cache. As discussed in Sections 2.1 and 2.2, two main classes
of snoopingcache coherence protocols can be distinguished, depending upon the actions performed bycaches
when a shared line is modified.Write Invalidateprotocols cause an invalidation message to be broadcast on the
bus whenever any data potentially loaded into other caches isupdated, to cause thecache lines to be invalidated
elsewhere.Write Updateprotocols broadcast the new value whenever data potentially resident in other caches is
updated. As in Section 2.1.1, we shall examine theBerkeleyprotocol [Katz et al 85], as a representative of the
write invalidate family of protocols. In theBerkeleyprotocol, a cache line can be in one of the four states: Invalid
(I), Non-modified Shared (S), Modified Exclusive (M ), and Modified Shared (O), as shown in Figure 2.1.

Recall that theSM maintains dependencies on memory blocks. In contrast to the previous section, where the
block granularity could be as small as aSM cell, when caches are present theSM must record dependencies on
at least a cache-line size granularity, since a cache-line is the minimal unit of transfer on the bus. Therefore, let us
examine the operations performed by the cache protocol and the various actions taken by theSM so as to track
the dependencies when a processor performs respectively a read miss, a write hit, and a write miss on its cache (a
read hit does not generate any action on the bus and thus does not need to be considered further).

ProcessorPi performs a Read Miss If there exists a cache with a copy of the line in stateM or O, this cache
must supply a copy of the line to the requestingcache and set its state toO. Otherwise the line must come
from shared memory. In both cases, the line is loaded in stateS in the requesting cache. If the target block
containing the line has an active writerPj, a dependency must be created in theSM betweenPj andPi. As
far as dependency management is concerned, no distinction is made whether the requested line comes from
another cache or from theSM , although the inter-cache transfer must be detected by theSM snooping on
the bus.

ProcessorPi performs a Write Hit If the line is already in stateM , the write proceeds without delay. Otherwise,
(in stateS orO) an invalidation signal must be sent on the bus. All other caches invalidate their copy if they
have one that matches the line address. The line state is changed toM in the originating cache. The
invalidation signal is snooped by theSM . If the corresponding block has no active writer,Pi becomes its
active writer. Otherwise, ifPj was the active writer, a dependency is created betweenPj andPi andPi
becomes the active writer of the block.

ProcessorPi performs a Write Miss Like a read miss, the line comes from its owner or from shared memory.
All other caches invalidate their copy if any. The line is loaded in stateM . TheSM snoops the data transfer



if the line comes from another cache. As above, if the corresponding block has no active writer,Pi becomes
the active writer; otherwise, a dependency is created betweenPi andPj andPi becomes the active writer
of the block. Since cache lines can contain several processor addressable cells and the line is now cached
by Pi in stateM , theSM cannot detect a further read on a different cell of the line because it would not
generate any bus traffic. So, a dependency betweenPj andPi is also created to prevent the case in which a
cell previously modified byPj would be locally read byPi. In other words, theSM adopts a conservative
approach by creating some dependencies which are not strictly required by the protocol to preserve the
coherence of processor checkpoints.

It should be noted that theSM must keep pace with the information exchange rate on the bus due to the cache
coherence protocol. If this were not the case, theSM might miss some dependencies that need to be recorded.

The commitment of a recovery point when caches are present is similar to the situation where no caches
are present. What is required is that when a participant processor initiates commitment or acknowledges apre-
pare to commitrequest from theSM , the processor must flush its cache as well as its internal registers. Similarly,
recovery must cause a cache invalidation.

In summary, no special purpose caches or coherence protocols are needed in the architecture being presented
here, which can accommodate standard cache behaviour with theSM performing dependency tracking by snoop-
ing the bus traffic. This is a notable difference with other proposals for fault tolerant shared memory multiproces-
sors [Bernstein 88, Wu et al 90, Ahmed et al 90].

3.2 Performance Evaluation

In the light of this, we may now extend the performance evaluation to a shared memory multiprocessor machine
that incorporates aSM , i.e. to the FASST architecture. Through simulation, the performance of FASST has been
compared against the performance of a standard multiprocessor architecture without any fault tolerance capabilities
and against that of two other approaches for fault tolerant shared memory multiprocessors, namely CARER and
Sequoia.

3.2.1 Methodology and workload

The simulations were conducted using an instruction level simulator driven by a set of memory references gener-
ated by instrumenting application code with the Abstract Execution technique [Larus 90]. The simulator imple-
ments an efficient execution driven simulation method similar to that described in [Davis et al 91] (further informa-
tion on the simulation tool may be found in [Gefflaut 92]). Execution driven simulation controls the address trace
generation to ensure that the trace corresponds to that which would be obtained if that application was actually
executed on the architecture being simulated. This technique thus supports the derivation of simulations which
accurately model the architecture. The simulation models were parameterized with the characteristics of Sun mul-
tiprocessor SparcServers, with a 320MBytes/sec synchronous bus, 64KBytes unified direct-mappedcaches with
32 bytes lines and IEEE write invalidate cache coherence protocol. To simplify the performance comparison, all
of the fault tolerant architectures were modelled with these parameters in common.

For FASST, the error recovery protocol is that described in Section 3.1. For the second phase of the commit
protocol the stable memory implements the copy on write mechanism described in Section 3.1.1. Since the extent
of recovery regions in the FASST architecture is not controlled by any hardware or application parameter, it is nec-
essary to fix a rate for the frequency of recovery point establishment (and hence commitment) for the simulations.
The only situation where FASST may be forced to commit a recovery point and to establish a new one is to prevent
the loss or duplication of an operation on an unrecoverable object, for instance, I/O devices [Lee et al 90]. This
classical technique for dealing with unrecoverable operations is used by CARER and Sequoia, and ensures that an
I/O operation cannot be repeated. Thus, for the FASST simulations,each I/O operation leads to the establishment
of a recovery point. To obtain an average I/O rate, the interrupt rate on a NFS file server was measured, and from
this measurement a rate of 1000 interrupts per second was used in the simulations.

For the CARER simulation, a recovery point is committed and a new one established whenever a modified
line in a cache needs to be replaced and whenever a modified line is read by a different processor. For Sequoia,
recovery points are established and committed as described in Section 1.3, that is, whenever a blockingcache is



full or a modified cache line needs to be flushed, or on exit from any critical section which requires coherence of
the shared memory.

The workload comprises four parallel applications drawn from the SPLASH benchmark suite [Singh et al 91].
The applicationcholesky performs sparse matrix factorisation;mp3d simulates rarefied hypersonic flows;pthor
simulates digital circuits at the logic level; andwater simulates the evolution of a system of water molecules.
Only the parallel phase of the computation was simulated, resulting in 65 to 80 million memory references for
each application. The four applications were simulated on the four architectures for 1 to 8 processors.

3.2.2 Experimental results

3.2.2.1 Performance of the architectures

Figure 3.3 shows the MIPS (million instructions per second) performance of the four architectures for the four
simulated applications. The performance degradation for FASST compared against the standard (non fault-tolerant)
architecture is relatively small, despite a high commit rate for FASST (1000 per second). Performance degradation
with eight processors remains below 15% except formp3d where it is about 30% (for reasons discussed below).

For the other fault tolerant approaches, the performance of CARER is relatively close to that of FASST for
cholesky andwater (10% performance degradation) but the degradation grows to 65% forpthor andmp3d.
CARER achieves these results despite the restrictive failure hypothesis (i.e. thecaches are fault-free) that per-
mit a very efficient implementation of its commit protocol. The Sequoia approach appears to offer the lowest
performance of all three fault tolerant architectures. Performance remains below 100 MIPS independent of the
application or number of processors used. The performance degradation for this architecture always exceeds 20%
for one processor and can be as high as 85% (pthor with 8 processors).

These results are very encouraging for the FASST approach to fault tolerance. Some degradation in perfor-
mance over a non fault tolerant architecture is inevitable, due to the error recovery provisions in FASST archi-
tecture. Nevertheless, these simulations suggest a relatively modest degradation in general. When compared to
the other fault tolerance approaches, the simulations suggest that the FASST approach provides the best overall
performance.

3.2.2.2 Behaviour of the applications

It may be observed from Figure 3.3 that for all the architectures considered, the performance degradation varies
significantly and is application dependent. Figures 3.4 and 3.5 show, for each application, the distribution of bus
transactions for 10000 memory references:

(a) misses serviced by shared memory;
(b) misses serviced by caches;
(c) write invalidations;
(d) write backs arising from the replacement of a modified cache line (only for FASST since Sequoia and

CARER use blocking caches); and
(e) write backs arising from cache flushes for FASST and Sequoia or from the replacement ofunwritable

cache lines for CARER.

The figures also show the number of recovery points established for 10000 memory references. Three reasons
for establishment are distinguished: the recovery points established because of interrupts (only for FASST), the
recovery points established before replacing a modified cache line (for CARER and Sequoia) and the recovery
points established because of data sharing. For FASST the latter are the recovery points established because of
dependencies; for CARER they are established because of a miss on a cache line that has been modified in another
cache; and for Sequoia they are the recovery points established upon exit from a critical section.

Cholesky

The standard architecture attains good performance forcholesky, with a speedup of 6.8 with 8 processors. This
good behaviour is caused by a highcache hit rate of 99.2%. Data sharing is at a coarse granularity in this appli-
cation. Although the 6% write ratio is comparable to other applications, thecaches contain a low proportion of
modified data due to the good locality of write references. Only 30% of replacements require a write back.



These characteristics allow performance degradation for FASST to remain always below 10% for this applica-
tion. The caches do not contain a lot of modified data; on average with 4 processors, 360 cache lines are flushed
at each commit. Also, the data sharing pattern of the application only creates a small number of dependencies (the
average size of the group of dependent processors is 2.8 with 8 processors). These two factors explain the good
performance of FASST for this application.

The performance of CARER is close to that of FASST for this application despite disproportionate recovery
point establishment rates (CARER establishes 15 times more recovery points than FASST), due to the low cost
of establishing a recovery point in CARER. Most recovery points are established when modified cache lines are
replaced; only a few result from data sharing.

Sequoia suffers from an even higher recovery point establishment rate than CARER, mostly caused by critical
sections that require frequent cache flushes. Moreover, the invalidation of unmodified cache lines on entry of a
critical section contributes to lowering the hit rate from 99.2% to 98%.

mp3d

The behaviour ofmp3d is clearly worse thancholesky for the standard architecture with a speedup of 5 for 8
processors. The cache hit rate is lower (98.3%) due to a worse write locality and to a 10% write ratio with 70% of
replacements leading to write backs. Data sharing is very prevalent in this application; 77% of reads and 87% of
writes reference shared data. Due to this heavy data sharing, half of the misses are serviced by caches. The large
number of cache-to-cache transfers lowers the performance since a cache servicing a miss cannot service requests
coming from its processor.

Of all four applications, FASST has the worse performance degradation for mpd3. Performance degradation
is 13% for one processor and reaches 33% for eight processors. The major factor contributing to this result is the
large amount of modified data resident incaches when a recovery point is committed; with four processors, an
average of 1250cache lines are flushed to memory. Moreover, due to the heavy data sharing, all processors are
dependent. This considerably lengthens the duration of the first phase of the commit protocol.

CARER also does not behave well for this application because the heavy data sharing forces the establishment
of a large number of recovery points. Moreover, a high number of modified cache lines are replaced.

Although synchronisation operations are infrequent, Sequoia suffers from the large number of modifiedcache
lines replaced.

pthor

The standard architecture obtains low performance for thepthor application, with a speedup of 4 for 8 processors.
The cache hit rate is low (97.5%) due to a large working set, and the caches perform a significant number of write
backs. Data sharing, although less intensive than formp3d, contributes to limiting performance.

Performance degradation for FASST is much less forpthor than formp3d (13% degradation for 8 processors).
This behaviour is caused by the different amount of data flushed to memory when a recovery point is committed.
With 4 processors, 570 cache lines are flushed, compared to1250 formp3d.

For CARER, although data sharing is less intense forpthor than formp3d (38 cache-to-cache transfers vs89
for 10000 memory references), the number of recovery points established because of data sharing is higher for
pthor than formp3d (12 vs5 for 10000 memory references). This is caused by the data sharing pattern which
is different for the two applications. Inpthor, shared variables are accessed within short, but frequent, critical
sections, thus leading to the establishment of a lot of recovery points.

The large number of locking operations and the large data set that causes a lot of replacements severely limits
Sequoia performance for this application. No improvements of performance are achieved above 3 processors. Due
to data cache invalidationsupon exit of critical sections, thecache hit rate is lowered (84% instead of 97.5%).

water

Thewater application offers high performance for the standard architecture because of a high hit rate (99.88%)
and a small data set. Moreover, data sharing is negligible.

As might be expected, FASST performance is very good for this application because of the small amount of
modified data resident in caches when recovery points are committed and of the few dependencies (2.6 dependent



processors on average for 8 processors). CARER also behaves well for this application because of the small
working set that only causes a few replacements of modified cache lines.

For Sequoia, only a small number of recovery points are established because of the replacement of modified
cache lines, since the working set is small. Most of the recovery points are established because of critical sections.

3.2.3 Stable memory implementation

As there are several ways in which aSM could be implemented, it is important to consider the influence such
implementations would have on the performance of a system incorporating aSM . Of particular concern is the
potentially expensive operation of copying the current values ofSM cells for use as recovery data whenever a
recovery point is established.

Figure 3.6 shows the influence of this aspect of theSM implementation on performance degradation. Three
implementations are considered: one using copy on write, one using a per processor list of modified memory
blocks and the last which is a control case where the copying time is assumed to be nil, i.e. instantaneous.

As can be seen, and as might be expected, the different implementations greatly influence the performance
degradation suffered by an application. However, the degradation ratio between the different implementations
remains constant independent of the application. The copy on write implementation behaves better than the imple-
mentation using a per processor list of modified memory blocks, although the number of blocks to be copied (and
so the time needed to copy those blocks) is the same for both. With the list of modified blocks, the duration of the
copy is concentrated at the end of the first phase of the commit protocol. Although the processors can restart their
computation at the end of the first phase, they are not allowed to perform bus transactions until all blocks have been
copied, and so quickly become stalled waiting for the copy to be completed. If copy on write is used, the copying
can be interleaved with normal memory accesses. Thus the processors are only kept waiting for short periods of
time resulting in better overall performance. The performance is naturally the best for the control (instantaneous
copy) case, which indicates the upper performance bound for theSM .

3.2.4 Dependency management

Dependency management adds some complexity to the implementation of theSM . In a simple implementation,
all processors could establish a global recovery point, thus avoiding the burden of dependency management within
theSM . In this case, a standard memory interface is sufficient for theSM since it no longer needs to snoop bus
transactions to log dependencies. The commit protocol is also simpler. However, the potential gain of dependency
tracking is in minimising the number of processors that have to be recovered in the event of a failure of one
processor. Thus, it is useful to examine the impact of dependency management on performance to investigate
whether it is worth the added implementation complexity.

Figure 3.7 shows, for each application, the performance degradation observed with eight processors, with and
without dependency management. The figure also shows the average number of dependent processors ateach
commitment of a recovery point. Forpthor andmp3d, the performance of the two versions of theSM are nearly
identical since for these applications all processors are dependent, and hence the presence of dependency tracking
is irrelevant. In contrast, forcholesky andwater, where the average group size never exceeds three processors, the
dependency management shows its efficiency since it reduces the performance degradation by a factor of two. The
main reason for this is that with dependency management less data is flushed when a recovery point is committed,
since fewer processors are dependent. For example, with thewater application, 190 cache lines on average are
flushed to memory each time a recovery point is committed. When dependency management is suppressed, the
number of cache lines flushed increases to330.

3.3 Summary

These simulations have demonstrated that the CARER and Sequoia approaches to implementing a fault tolerant
shared memory multiprocessor both exhibit similar performance behaviour. Both require the commitment of a
previous recovery point and the establishment of a new recovery point each time a modified cache line has to be
replaced, as well as when data sharing occurs (for Sequoia, data sharing is enforced explicitly by means of the
locking protocol). The difference in performance of these two architectures primarily results from the differing
costs of recovery point operations. A realistic implementation of CARER should consider the possibility of errors



within caches and so would obtain roughly the same performance as Sequoia because of the consequent cache
flushes. The rate at which recovery points are established and committed is controlled bycache parameters (size,
associativity, replacement policy) and by the data sharing pattern of the application programs. This results in a
high, uncontrollable and unpredictable frequency of recovery point establishment (between 25 and 100 times more
than for the FASST approach). Some memory access patterns in the applications can even force the establishment
of a recovery point at each data reference.

The FASST approach to implementing fault tolerance in a shared memory multiprocessor eliminates most of
these disadvantages. The need for commitment/establishment of a recovery point is controlled primarily by the
interactions of the architecture with its external environment (e.g. for I/O) independently of any architectural
parameter. These interactions are much less frequent than cache line replacement. Recovery points are also inde-
pendent of the communication patterns of the application programs, owing to the dependency tracking mechanism.

The fault tolerance overhead is concentrated in the commitment phase of the recovery protocol. Three factors
can influence this overhead:

(a) the amount of modified data,

(b) the number of dependent processors,

(c) the bus load of the machine.

The amount of modified data is the major factor that influences performance degradation. The duration of the
commit is directly proportional to the amount of data that has been modified. In turn, the amount of data is governed
by the number of processors that are dependent upon the processor that issued the commit. Thus, the dependency
management mechanism in theSM minimises the number of processors that are affected by the commit (except
of course if they are all dependent). The dependent processors impose another overhead on commitment, since
some modified data may be resident in their caches, and commitment requires the modified lines in the caches to
be flushed back to theSM . Thus, the importance of the dependency tracking mechanism in theSM increases
with the number of processors in a system, in that minimising the number of dependent processors will minimise
the amount ofcache flushing and data committed. Note, of course, thatcache flushing is required in an ordinary
shared memory multiprocessor.

The bus load also influences the performance degradation. Performance degradation grows with the number
of processors as does the bus load. Ideally the bus is lightly loaded, so that cache flushes can proceed without
interfering with the activity of the processors that do not participate in the commit protocol, and in this case the
performance degradation remains constant whatever the number of processors.

As stated in [Janssens et al 91], the key issue in obtaining good performance is to keep the frequency of re-
covery point operations independent of any architectural parameter. This is what the FASST approach attempts to
do. The FASST architecture presented here allows processor failures to be tolerated transparently, that is, without
affecting the software being executed on the architecture. The only specific hardware component required is the
SM , and it is believed that theSM can be implemented at a reasonable cost. TheSM copes with standard caches
and cache coherency protocols, and this provides an advantage over the other approaches studied, such as CARER
and Sequoia. The dependency tracking mechanism provided by theSM allows shared memory to be provided for
and to be used by the software. In contrast, the Sequoia system only permits memory sharing within the operating
system, and requires complex software structures to ensure the correct semantics.

From a performance point of view, simulation results show that the FASST architecture offers better perfor-
mance than the Sequoia and CARER approaches, mainly due to a lower frequency of recovery point committments.
Moreover, the amount of data copied in a commit operation is kept as low as possible by the fine-grained recovery
protocol presented in Section 3.1 together with the dependency tracking mechanism.

The following chapters discuss the design of aSM , as well as a fail-stopdual-processing unit(DPU ) and
a stable disk(SD), before considering the system software issues. This chapter has only considered the case of
parallel applications which consist purely of computation, with no input/output operations. Providing backward
error recovery in the face of unrecoverable operations such as I/O is a further challenge. Extensions to the recovery
protocol are necessary to provide the required abstraction of backward error recovery with both shared memory
and other unrecoverable operations being executed by applications programs.
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Figure 3.4: Application behaviour with 8 processors
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Figure 3.5: Application behaviour with 8 processors
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Figure 3.6: Stable memory implementation
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4.1 FASST Recovery Protocol1

This chapter describes more precisely the FASST recovery protocol and discusses issues in the design of a stable
memory (SM ), which is the main agent of the protocol (also see [Morin et al 92]).

We assume the FASST architecture as shown in Figure 4.1. A cache is associated with each processor, but we
do not need to distinguish betweencache levels (e.g. between primary and secondarycaches). TheSM may be
composed of several memory modules. For the purposes of this discussion, we assume that it is not possible to
insertSM modules during system operation (i.e. tohot-insert), so that to change the memory configuration the
machine must be stopped and then restarted in a cold start mode.

cache

CPU

cache

CPU

cache

CPU

. . .

bus

I/Ostable memory

Figure 4.1: The FASST architecture

4.1.1 Stable Memory

EachSM module has the logical structure depicted in Figure 4.2, with two DRAM banks of the same size,bank1
andbank2, represented by an array of cells2:

type t_bank = array[0..bank_size-1] of block ;
t_bank Bank1, Bank2 ;

In the following, we assume that theSM physical space is divided into a set of contiguousblocks of identical
size. Each block consists of a current value inbank1 and a recovery value inbank2. While read and write
commands refer toSM cells, theSM records dependencies on a block granularity.

Various attributes need to be stored with each block, e.g. the processor identifier of the last writer to a block;
this information is stored in thevectorstructure, which may be represented algorithmically as a record :

type t_vector_elt = record
t_owner owner ;

.... additional information ....
end ;

type t_vector = array[0..block_nb-1] of t_vector_elt ;
t_vector Vector ;

Theownerfield contains either the identity of the active writer to the block (if any) or thenil value.
TheSM also maintains a dependency matrixM which records dependencies between processors which share

memory blocks. This matrix is updated when necessary during read and write operations.M is an � n Boolean
matrix;n being the maximum number of processors in the architecture. A matrix itemM (i; j) set totrue means
that processorPi is dependent onPj. Once a dependency group is computed by a processor it is stored in each
SM module in thegroupfield.

In order to optimize bank to bank copy during phase 2 of the commit, theSM maintains a list of blocks
modified since the last commit in theupdatelist. The ends of theupdatelist are pointed to by theupdate ptrs.

1This chapter contributed by : Christine Morin, IRISA/INRIA, Campus universitaire de Beaulieu, F-35042 Rennes cedex France, and
Cornelius Frankenfeld, Stollmann GmbH, Hamburg, Germany

2For the C dialect used here, a Boolean valuefalseis represented by zero, while a Boolean valuetrue is represented by a non-zero
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Figure 4.2: Stable memory structure

4.1.2 Dependency management

Data sharing between processors implies processor dependencies. TheSM distinguishes between :

(a) read after write dependency, and

(b) write after write dependency.

In the FASST recovery protocol, dependencies are recorded by theSM when processors access memory
blocks. TheSM also records some dependencies by snooping thecache coherence traffic on the bus. First let
us assume that processorPi is independent from all other processors. WhenPi commits then it flushes its cache
to bank1 and copies all the blocks it has modified since its last commit frombank1 to bank2. When processorPi
rolls back then all the blocks it has modified since its last commit are copied frombank2 to bank1 and its cache
is invalidated. To detect which blocks have been modified byPi, each time a block is written to by a processor
its identity is recorded with the block in theownerfield. In other words, theownerfield associated with a block
contains the identity of the last writer to the block. A commit or a rollback of processorPi implies a bank to bank
copy of blocks whose last writer isPi.

4.1.2.1 Read after write dependency

Consider that processorPi writes to a memory blockB. Later processorPj reads the same blockB (see Figure
4.3). If the reader ofB, Pj, commits at timet then the writer ofB, Pi, must also commit dependently withPj . In
fact, if this was not the case then a subsequent rollback ofPi would imply thatPj would have read a value ofB
which was never written, leading to an inconsistent state.

Symmetrically, if the writer ofB,Pi, rolls back at timet then the reader ofB,Pj, must also rollback dependently
with Pi (see Figure 4.4). IfPj does not rollback whenPi rolls back, thenPj possesses a value ofB which was
never written. Because ofnon-deterministic behavior in a system, nothing guarantees that (after rollback)Pi will
write the same value toB as it wrote before rollback.
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In summary, whenPj reads a block previously modified byPi thenPj is said to be dependent onPi, i.e.
(Pj�!Pi). A commit ofPj implies a commit ofPi and a rollback ofPi implies a rollback ofPj.

4.1.2.2 Write after write dependency

Consider that processorPi writes to a memory blockB. Later processorPj writes to the same blockB (see Figure
4.5). If the first writer,Pi, commits then the second writer,Pj must also commit. The commitment ofPi implies
that it is the value written byPj which is copied frombank1 to bank2. If Pj does not commit whenPi commits,
then a subsequent rollback ofPj implies thatB is restored to a value which was never written (the value committed
byPi was written toB byPj, which has rolled back).

Time

t

Pj

W

Pi
Commit

W

Figure 4.5: Write after write dependency:Commit

Symmetrically, ifPj rolls back thenPi must rollback (see Figure 4.6). The rollback ofPj implies that it is the
value of blockB contained inbank2 which is restored, which in the general case is different from the one written
to by Pi or Pj. If Pi does not rollback whenPj rolls back, then in generalPi possesses a value ofB which is
different to the one it wrote.
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In summary, whenPj writes to a block previously modified byPi thenPi is said to be dependent onPj, i.e.
(Pi�!Pj). A commit ofPi implies a commit ofPj and a rollback ofPj implies a rollback ofPi.

4.1.3 Synchronization

In the following algorithms, commits or a rollbacks are calledrecoveryoperations, and are begun by a processor
called theinitiator. Timeouts are used to guarantee their progress. The following data structures are used:

int p_nb ; /* number of processors */
int sd_nb ; /* number of stable devices, so number of SM modules */
int active_p[0..p_nb-1] ; /* array indicating which are the active */

/* (valid) processors */
/* active[i] = = 1 : processor i is active */
/* active[i] = = 0 : processor i is inactive */

The processor andSM behaviours can be described by two interdependent state automatons.

4.1.3.1 Processor synchronization states

Processor synchronization variables are not stored in theSM . When they are accessed, no dependency is recorded.

/* Synchronization registers - one per processor */
type t_p_synchro = array [0 .. p_nb-1] of p_synchro_state ;
t_p_synchro Sync ;

/* Processor synchronization states */
type p_synchro_state = (stopped, stopping, recovery, restart,
atomic_operation, failure, error_handling, waiting, normal) ;

A processor may be in the following states (see Figure 4.7):

normal The processor is not involved in a recovery operation, nor has it failed.

stopping This is the state theinitiator adopts once it starts recovery (commit or rollback). All other proces-
sors have to transitate into thestoppedstate. Theinitiator remains in statestoppinguntil it knows that
all other processors are in thestoppedstate ortimer(2)expires. Only one processor is allowed to be in
this state; this is enforced by a lock operation.

stopped All processors excepting theinitiator are in thestoppedstate during the computation of the depen-
dency group; they wait in this state until either the bank to bank copy begins ortimer(1)expires.

recovery The initiator remains inrecoverystate until either theSM communicatescopydoneor timer(3)
expires. The next normal transition is either to theatomic operationstate or to therestartstate.

restart Theinitiator stays in this state until it has restarted all the other processors and has released the lock.

atomic operation The initiator is in this state if an operation is to be atomically executed and committed.
It remains in this state until the end of this operation, and then returns to therecoverystate. If it fails
in this state, then a recovery procedure takes place (see Section 4.1.8).
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waiting This is the state of any processor, excepting theinitiator, that is waiting for completion of the bank
to bank copy. It waits in this state until it is restarted ortimer(4)expires.

failure This is the state of a failed processor. Any processor that is in this state is denied access to the bus.
It remains in this state until it is physically removed from the system.

error handling This state is reached by a processor when a timer expires. It may also be reached if some
other system failures occur, but these cases are beyond the scope of this book. At least one valid
processor enters this state after a processor failure, and normally all of them do. From this state,
rollback recovery will always take place. It is possible that more than one processor can fail; one of the
failed processors may be theinitiator itself. In this state, a newinitiator is chosen, and then the new
initiator enters thestoppingstate, while all other processors enter thestoppedstate. Once instopping
state, the newinitiator has to compute a rollback group incorporating the newly failed processors.

4.1.3.2 SM synchronization states

Synchronization betweenSM modules is implemented via status and command registers, which can be represented
by a single synchronization variable per module.

/* Synchronization variables - one per stable device */
type t_sd_synchro = array [0..sd_nb-1] of sd_synchro_state ;
t_sd_synchro sd_state ;

/* Stable device synchronization states */
type sd_synchro_state = (normal, ready, commit_copy,

rollback_copy, failure) ;

If we assume that the processors are not allowed to restart their execution before the end of the bank to bank
copy, this leads to a relatively simple state diagram for theSM (see Figure 4.8). The bank to bank copy (states
commitandrollback) occurs when theinitiator is in therecoverystate. The transition betweennormalandready
states occurs after reception of the dependency group. The transition fromreadyto commitor rollbackstate occurs
when theSM receives acommitor rollback command, respectively.
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4.1.3.3 Timeout protection

In the following algorithms, theWait primitive is utilized to synchronize concurrent activities. It is is used to stop
a processor until the condition given as a parameter is verified by a set of devices or the timer has expired. It is
structured as 2 imbricated loops. The internal loop is a loop on the number of devices to be tested (nb is the number
of processor or of stable devices depending on the condition which is checked). Inside the loop, there is a case on
the condition to be tested foreach device. As soon as all devices respect the condition, or if the timer expires, the
most external loop is terminated.

Wait (condition, nb, t_max)
{

timer_expiration = false ;
set_timer (t_max) ;
do
{

one_not_ready= false ;
for (i = 0; i < nb; i++)

switch (condition)
{

case all_stopped :
/* condition to be tested = Sync [*] == stopped */
one_not_ready = ((active_p[i]) &&

(Sync[i] != stopped) &&
(Sync[i] != stopping)) ;

break ;

case all_have_flushed :
/* condition to be tested = Sync[in group] == waiting */
one_not_ready = ((group & (1<<i)) &&

(Sync [i] != waiting)) ;
break ;

case all_sd_ready :
/* All stable devices must be in the ready state */
one_not_ready = (sd_state[i] != ready) ;
break ;

case all_sd_copy_done:
/* All stable devices must be in the normal state */
one_not_ready = (sd_state[i] != copy_done) ;

}
}



while ((one_not_ready) && ˜(timer_expiration))
if ˜(one_not_ready) unset_timer ;

}

Let us examine the different timers used in the protocol (see Figure 4.9).
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Figure 4.9: Timeout protection

In order to assure fault tolerance, at least two timers must be active during the so-calledstop phase. After
checking which processors are alive, theinitiator ”sends” a commit interrupt to all of them and startstimer(1),
which covers the maximum duration of this phase. All other processors start their own timers after receiving the
commit interrupt. These timers ensure that a failure of theinitiator can be detected by at least one other processor.
The commandscommit group mb, rollback group mbandnot group mbstop these timers when thestop phase
is finished in order to avoid exceptions due to timer expiration. Without these commands, we would have either
to deal with exceptions on every other processor, or to use just the timer on theinitiator (which would not assure
fault tolerance).

The expiration oftimer(3)means that aSM module has failed during the bank to bank copy. Recovery from
this requires processor access tobank2.

Timer(5)allows theinitiator to detect the failure of a processor while it is flushing its cache.Timer(6)allows
theinitiator to detect the failure of aSM module which does not react to the reception of the dependency group.

Concerning timer durations,timer(2)must be longer than any critical section in the system software that is not
interruptible by the commit interrupt.Timer(1)covers the duration oftimer(2). Timer(3)covers the duration of the
copy phase, and its duration can be calculated by theinitiator if it knows the top and the bottom pointers of the
updatelist. The duration oftimer(4)has to cover the maximum bank to bank copying time.

Outside these phases, the failure of a processor is detected by some other processor-specific mechanism.

4.1.4 Read and Write Commands

Let us assume that theSM is in normalstate, i.e. no commit or rollback is in progress, and that a processor is not
allowed to issue read and write commands during the bank to bank copy. In thenormalstate, most of the work
concerns dependency management. A dependencyi�!j is noted for:



(M[i] & (1<<j) == 1)

Let us also assume that the conversion between a cell address and a block number is done by theatb function, a
very basic function implemented in hardware using relevant address lines, and that only line values are exchanged
between memory and caches.

Let us further assume that the processor is identified by auserfield, and that the direction of the transfer is
given byreador write indicators:

user & read_op <=> reader
user & write_op <=> writer

4.1.4.1 Read

A read from a cellc will compute the target blockb, record a dependency with the active writer of the block (if
any) in the matrixM , and will deliver the current value of the cell. Thus:

Read (address, reader)
{

block = atb (address) ;
owner = Vector[block].owner ;
if (owner != NIL)

/* recording a dependency */
M[reader] |= (1<<owner) ;

return (bank1[address]) ;
}

4.1.4.2 Write

A write to a cellc will compute the target blockb, record a dependency with the active writer (if any), change the
active writer of the block, and update the current value of the cell within the blockb. If this is the first update to
the block since the last commit, the block number is appended to the end of theupdatelist

Write (address, writer, value)
{

block = atb (address) ;
owner = Vector[block].owner ;
if (owner == NIL)

/* first time this block is modified since the last commit */
*update_ptr++ = block ;

else
/* recording a dependency */
M[owner] |= (1<<writer) ;

Vector[block].owner = writer ;
Bank1[address] = value ;

}

4.1.5 Behaviour of the processor initiating a commit

4.1.5.1 Body of the initiator

We assume in the following algorithm that theinitiator of the commit protocol is a member of the commit group.

Initiate_Commit ()
{

/* ensure that there is only one initiator, */
/* i.e. only one commit in progress at a time */
Obtain_Commit_Lock () ;

Sync[my_pid] = stopping ;

/* Stop all other active processors */
send (commit_interrupt, all_other_processors) ;



Wait (all_stopped, p_nb, timer2) ;

/* Every processor is stopped except the initiator */
/* The dependency group is computed by the initiator */
Compute_Group (commit, my_pid, group) ;

/* Inform members of the dependency group that they are */
/* involved in the commit */
Inform_p (group, commit_group_mb) ;

WriteRegisters () ;
Flush_Cache () ;
Flush_TLB () ;

/* Wait for all members of dependency group to finish saving */
/* registers and flushing caches */
Wait(all_have_flushed, p_nb, timer5) ;

/* Inform non group members to stop timer1 and start timer4 */
Inform_p (˜group, not_group_mb) ;

/* Copy dependency group to all stable devices */
Broadcast (group, stable devices) ;

/* What is important here is that all stable devices commit */
/* or none of them does. Problems may arise if the initiator */
/* fails while it is requesting the stable devices to commit. */
/* Some stable devices may commit while others may rollback, */
/* leading to an inconsistent state. */

/* Wait until all stable devices are ready to commit */
Wait (all_sd_ready, sd_nb, timer6) ;

Sync[my_pid] = recovery ;

/* Commit stable devices */
Inform_sd (commit) ;

/* Wait until all stable devices have finished the */
/* bank to bank copy */
Wait (all_sd_copy_done, sd_nb, timer3) ;

Inform_sd (normal) ;

Sync[my_pid] = restart ;

/* Restart all processors except the initiator */
Inform_p (((group |˜group)&˜(1<<my_pid)), normal) ;

/* end of the commit from initiator point of view */
Sync[my_pid] = normal ;
Release_Commit_Lock () ;

}

4.1.5.2 Group computation

WhenPi commits then all its descendants according to the dependency relation must commit. The commit group
is obtained by computing the transitive closure of the dependency relation. If processorj commits then everyk
which verifies the following equality has to commit too and recursively:

(M[j] & (1 << k)) == 1)

Symmetrically, whenPi rolls back then all its ascendants according to the dependency relation must rollback.
The rollback group is obtained by computing the transitive closure of the inverse matrix. If processorj rolls back
then everyk which verifies the following equality has to rollback too and recursively:



(M[k] & (1 << j)) == 1)

The Compute Group primitive forms the global dependency matrix from local dependency matrix located in
eachSM module and then computes the dependency groupgrouprelated to the processorp (given as a parameter).
If the typeparameter equalscommitor rollback this primitive computes the commit or rollback dependency group,
respectively.

Compute_Group (type, p, group)
{

/* Computation of the dependency group from the dependency matrix */
/* -- Read all matrices from stable devices */
/* -- Build the global matrix */
/* -- Compute dependency group */

/* Initialization of M with no dependency */
for (i = 0; i < sd_nb; i++)

M[i] = (1<<i) ;

/* Reading all matrices from stable devices and building */
/* the global matrix */
for (i = 0; i < sd_nb; i++)

for (j = 0; j < p_nb; j++)
M[j] |= Mi[j] ;

/* Compute dependency group */
group = (1<<p) ;
tempo_group = new = group ;
group_computed = false ;
do
{

for (i = 0; i < p_nb; i++)
if (new & (1<<i))

/* i is a new member of dependency group */
for (k = 0; k < p_nb; k++)

/* looking for dependencies */
switch (type)
{

case commit :
if ((M[i] & (1<<k)) &&

(tempo_group & (1<<k)) == 0))

/* k not already in tempo_group */
tempo_group |= (1<<k) ;
break ;

case rollback :
if (M[k] & (1<<i)) &&

(tempo_group & (1<<k)) == 0))

/* k not already in tempo_group */
tempo_group |= (1<<k) ;

}

/* Checking for termination */
if (group == tempo_group) group_computed = true ;
new = tempo_group &˜group ;
group = tempo_group ;

}
while (group_computed == false)

}

4.1.6 Behaviour of other processors

Let us assume that the rollback interrupt is the highest level (HL) interrupt, that the commit interrupt is the (HL-1)
level interrupt, and that all other interrupts have a lower level. When a commit or rollback takes place theinitiator



sends acommit interrupt or rollback interrupt interrupt, respectively, to all other processors; those processors
behave as follows:

handling commit_interrupt ()
{

int old = splx (COMMIT_PRIORITY) ;

/* Save registers in local scratch */
Save_Registers () ;

Sync[my_pid] = stopped ;
Wait ((Sync[my_pid] == commit_group_mb) ||

(Sync[my_pid] == not_group_mb), timer1) ;
switch (Sync[my_pid])
{

case commit_group_mb :
/* The current processor belongs to the dependency group */
/* save registers in SM and flush cache */
Write_Registers () ;
Flush_Cache () ; /* write_back and perhaps invalidate */
Flush_TLB () ;
Sync[my_pid] = waiting ;
Wait (Sync[my_pid] == normal, timer4) ;
break ;

case not_group_mb:
/* The current processor does not belong to the dependency */
/* group. It waits for the end of the bank to bank copy */
Sync[my_pid] = waiting ;
Wait (Sync[my_pid] == normal, timer4) ;

}
splx (old);

}

handling rollback_interrupt ()
{

int old = splx (ROLLBACK_PRIORITY) ;

/* Save registers in local scratch */
Save_Registers () ;

Sync[my_pid] = stopped ;
Wait ((Sync[my_pid] == rollback_group_mb) ||

(Sync[my_pid] == not_group_mb), timer1);
switch (Sync[my_pid])
{

case rollback_group_mb :
/* The current processor belongs to the dependency group */
/* Invalidate cache */
Invalidate_Cache () ;
Invalidate_TLB () ;
Sync[my_pid] = waiting ;
Wait (Sync[my_pid] == normal, timer4) ;
/* Read registers from SM */
Read_registers () ;
break ;

case not_group_mb:
/* The current processor does not belong to the dependency */
/* group. It waits for the end of the bank to bank copy */

Sync[my_pid] = waiting ;
Wait (Sync[my_pid] == normal, timer4) ;

}
splx (old) ;

}



4.1.7 SM behaviour during recovery operations
main ()
{

/* A recovery operation starts with a write by the initiator */
/* to the group register. */
Wait (group != NIL) ;

/* Update dependency matrix */
/* in order to break dependencies */
for (i=0 ; i < sd_nb ; i++)

for(k=0; k < p_nb; k++)
{

if (group & (k<<1)) Mi[k] |= (1<<k) ;
}

sd_state = ready ;

/* The initiator can observe that the bank to bank copy is */
/* progressing by the following mechanism. It reads the bottom */
/* and top pointers of the update list and by their difference */
/* can compute a value for timer(3). A very efficient method */
/* is to check if the working pointer is growing */

Wait ((sd_state == commit) || (sd_state == rollback)) ;
Phase2 (sd_state) ;
sd_state = copy_done;
Wait (sd_state == normal) ;

}

ThePhase2 procedure consists of the bank to bank copy of blocks whose last writer belongs to the dependency
group. If a commit operation takes place the bank to bank copy is done frombank1 to bank2. If a rollback
operation takes place the bank to bank copy is done frombank2 to bank1. A description of this procedure is given
in Section 4.2.6.5.

4.1.8 Atomic operations

Here we propose a mechanism that allows implementation of, for example, critical sections for mutual exclusion
(see Figure 4.10). This mechanism requires no specific hardware but allows a good use to be made of theSM
functionality.

Such a commit begins like a standard one. When the copy is done theinitiator can decide if it wants to do
an atomic operation (i.e., before restarting other processors) or not; otherwise the standard commit sequence is
performed, which ends by restarting all processors. If an atomic operation is to be done, then the other processors
are not restarted immediately, but instead the operation is performed by theinitiator, which then initiates another
copy to validate data modified by its atomic operation. At the end of this copy, the other processors are restarted.

If an atomic operation is to be performed then the intention has to be flagged in the first copy operation and to
be cleared at the end of the second copy operation, so that a rollback during the execution of the atomic operation
can use this flag to uniquely determine the consistent state (K).

4.1.9 Rollback due to a processor failure

Let us assume that processorPi detects the failure of processorPk by some mechanism.Pi initiates the rollback
of the set of processors which are dependent onPk. Two situations must be considered:

(1) A commit or a rollback operation is being executed. Consider if a commit operation is already in
progress:

(a) If a commit operation is in progress and a rollback operation is triggered before the bank to
bank copy phase and before the group has been sent to allSMs, then the dependency matrix
is lost, so all the processors must rollback.

(b) If a commit operation is in progress and a rollback operation is triggered before the bank to
bank copy phase and after the group has been sent to allSMs, then the dependency group has
been computed, so the rollback can be executed (i.e. the commit operation is aborted).
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Figure 4.10: Atomic operation

(c) If a commit operation is in progress and a rollback operation is triggered during the bank
to bank copy phase, then firstly the bank to bank copy must complete before handling the
rollback.

Similarly for rollback when a rollback operation is already in progress.

(2) No recovery operation is in progress. Two approaches are considered below:

(a) Rollback of only those processors that are in the dependency group.

(b) Rollback of all processors; this leads to a simpler algorithm.

These two algorithms are outlined below.

4.1.9.1 Rollback of the dependency group

This algorithm minimizes the number of processors that arestoppedat the expense of algorithmic complexity.

Initiate_Rollback (k)
{

/* First, check if there is a commit in progress */
/* It seems that the commit-lock has to be acquired by the */
/* processor initiating a rollback if it is free in order */
/* to prevent the beginning of a commit operation (this does */
/* not appear in the following code) */
if ((test (commit_lock)) != 1)
{

/* No commit in progress */
Initiator = my_pid ;

Sync[my_pid] = stopping ;

/* Stop all other active processors */
send (rollback_interrupt, all_other_processors) ;



Wait (all_stopped, p_nb, timer2) ;

/* Every processor is stopped except the initiator */
/* The dependency group is computed by the initiator */
Compute_Group (rollback, k, group) ;

/* Inform members of the dependency group that they are */
/* involved in the rollback */
Inform_p (group, rollback) ;

/* Check if the current processor is a member of the */
/* dependency group */
if (group & (1<<my_pid)) == 1
{

/* Current processor belongs to the group and so must */
/* invalidate its cache */
Invalidate_Cache () ;
Invalidate_TLB () ;

}

/* Wait for all members of dependency group to finish */
/* cache invalidation */
Wait(all_have_flushed, p_nb, timer5) ;

/* copy dependency group to all stable devices */
Broadcast (group, stable devices) ;

/* Wait until all stable devices are ready to rollback */
Wait (all_sd_ready, sd_nb, timer6) ;

Sync[my_pid] = recovery ;

/* Rollback stable devices */
Inform_sd (rollback) ;

/* Wait until all stable devices have finished the bank */
/* to bank copy */
Wait (all_sd_copy_done, sd_nb, timer3) ;

Inform_sd (normal) ;

Sync[my_pid] = restart ;

/* Restart all processors except the initiator */
Inform_p (((group |˜group)&˜(1<<my_pid)), normal) ;

/* end of the rollback from initiator point of view */
Sync[my_pid] = normal ;
Release_Commit_Lock () ;

}
else

{
/* A commit is in progress */

}

4.1.9.2 Rollback of all processors

Alternatively, if we envisage that rollbacks will be infrequent, we can systematically stop all processors instead of
stopping only the processors belonging to the rollback group. This leads to a simpler algorithm, which minimizes
the algorithmic complexity at the expense of all processors beingstopped.

Initiate_Rollback (k)
{

/* First, check if there is a commit in progress */
if ((test (commit_lock)) != 1)
{



/* No commit in progress */
Initiator = my_pid ;

Sync[my_pid] = stopping ;

/* Stop all other active processors */
send (rollback_interrupt, all_other_processors) ;

Wait (all_stopped, p_nb,timer2) ;

/* Every processor is stopped except the initiator */

group = all_processors ;

Inform_p (group, rollback) ;

/* Current processor belongs to the group and so must */
/* invalidate its cache */
Invalidate_Cache () ;
Invalidate_TLB () ;

/* Wait for all processors to finish cache invalidation */
Wait(all_have_flushed, p_nb, timer5) ;

/* copy dependency group to all stable devices */
Broadcast (group, stable devices) ;

/* .....same algorithm as the previous one ..... */
}

}

4.1.10 Various primitives used in the protocol description

The following primitives have been written in order to clarify the presentation of the recovery protocol.

4.1.10.1 Updating and consulting synchronization registers

The Inform p primitive is used by theinitiator to update the synchronization registers of a set of processorsgroup
with the valuestate.

Inform_p (group, state)
{

for (i = 0; i < p_nb; i++)
if ((group & (1<<i)) == 0 ) Sync[i] = state ;

}

In the same fashion, theInform sd primitive is used to update the stable device synchronization variable.

Inform_sd (state)
{

for (i = 0; i < sd_nb; i++)
sd_state[i] = state;

}

4.1.10.2 Locking

Only one commit or rollback is allowed at the same time. This property is ensured by using a global lock.

/* Global lock preventing 2 concurrent executions of the commit */
/* or the rollback protocol */
integer commit_lock = 0 ;

Obtain_Commit_Lock ()
{

while (test_and_set (commit_lock) == 1) ;



Initiator = my_pid ;
}

Release_Commit_Lock ()
{

Initiator = NIL ;
commit_lock == 0 ;

}

4.2 Stable Memory Hardware

There are a number of ways to implement aSM . By way of example, we now look at one design that has not
been implemented, but is a good illustration of how aSM could be made. TheSM module is structured as two
identical boards which communicate over a Fast Serial Link (FSL), and which are programmed symmetrically as
bank1 or bank2. Each board is organized as 4M x 64bits (32MBytes), protected by 8bits of ECC, using 16Mbit
DRAM chips. Table 4.1 estimates complexity, Figure 4.11 shows the board architecture, and Figure 4.12 shows
how two of them are interconnected.

4.2.1 Information flow

Figures 4.13, 4.14 and 4.15 illustrate the information flow for the following phases of the commit protocol:

Update TheSM is in normal state, dependencies are tracked and the locations of writes to memory are
written to theupdatelist on thebank1 board. The same values are sent to thebank2 board over the
Fast Serial Link to be written to itsupdatelist. After this operation, the contents of theupdatelists on
both boards are identical.

Commit The group register information is sent to thebank2 board, which also starts a commit operation
onbank2. After this command, packets of block addresses and block data are sent to thebank2 board,
which compares incoming addresses to its copy in itsupdatelist. If the comparison is successful, the
block data is written tobank2 and the packet is acknowledged; otherwise aNACK is sent tobank1,
which repeats the transfer. TheFSL protocol is responsible for ensuring the integrity of its communi-
cations.

Rollback In the case of rollback, the process is identical to that for commit, except thatbank2 becomes
the active sender andbank1 compares incoming addresses, writes data, and returnsACK or NACK to
bank2. The description of the frame formats is given in Section 4.2.2

4.2.2 Fast Serial Link

Communication between the two boards of aSM module is via the Fast Serial Link, in this case using theAutobahn
II chip set. These have a data transfer rate of 400 MBytes per second (a whole bank to bank copy would take about
100 milliseconds) over a bidirectional multidrop differential coaxial connection (max.length 50cm) (see Figure
4.16). Alternatively the functionality can be emulated by the hardware shown in Figure 4.17. It is assumed theFSL
utilizes the 32bit Autobahn frame format (see Figure 4.18), so that any 64bit information which is to be sent over
theFSL must be split into 32bit words.

4.2.3 Futurebus+ Interface

In this design the system bus is based on the IEEE-896 Standard Futurebus+ [Futurebus+ 94a], and uses a dedicated
interface chipset [Texas Instruments 94], for which the following has to be borne in mind:

Partial transactions The use of write-throughcaches at byte level has to be avoided (uncached data are
used for instance for flags).

Split transactions are not supported.

Packet transactions Cache line transfers are possible only as packet transactions. Maximal size of a packet
is 8 memory cells (64 bits). Packets have to be aligned on the beginning of a block.



Master property TheSM cannot become master of the Futurebus+, and so cannot generate interrupts.

User field There are several ways that theuserfield could be provided over Futurebus+, for example, the
upper bits from the 64bit address could be used for this purpose, or some of the tag bits could be used.

4.2.4 Other considerations

The following issues need to be considered:

(a) As noted in 4.1.3.3, the expiration oftimer(3) means that aSM module has failed during the bank
to bank copy, and recovery from this requires processor access tobank2. This requires a second
Futurebus+ interface.

(b) Given the power requirements for such a large memory capacity, the battery necessary for maintaining
power tobank2 during mains AC power failures needs to be implemented externally.

(c) In order to increase fault tolerance, the connection tobank1 could utilize the Futurebus+ capability to
reduce the bus width in the event of a failure of some bus components.

(d) Thevectormemory,updatelist and dependency matrixM are implemented using Static RAMs, and are
protected with ECC. TheMATRXCTL andCOPYCTLunits that control these contain general logic, and
are implemented with FPGAs.

4.2.5 Copy-on-write

Copy-on-write is an optimization that allows processors to be restarted before the end of the bank to bank copy.
Such a mechanism could be implemented, but first it is necessary to establish whether global performance is
improved or not, because:

(a) During the requested memory transfer, it is possible to compare theownerfield in thevectormemory
with the dependency group information, and if the block belongs to the group, send the block directly
to thebank2 board. If a commit is in progress, and is interrupted to perform the copy-on-write, then
care must be taken that synchronization is not lost between the interrupted address and corresponding
data, especially if they are pipelined. On the other hand, it is possible to wait until the commit has
completed, at the expense of performance.

(b) In the case of copy-on-write, the operation to copybank1 tobank2 has to be interrupted in order to allow
the old memory data to be copied even if theupdate ptr does not reach the corresponding location. If
the block has already been copied the new data (from the Futurebus+) can be copied intobank1 and
new dependency information can be generated. The Futurebus+ operation and the bank to bank copy
have to be synchronized, and consequently, some clock periods are lost for every Futurebus+ transfer
and for every location copy.

(c) Copy-on-write is only reasonable if the commit time is quite long.

Where Why What Speed bits/chip quantity/32MB Icc mA
bank1=bank2 4M locations
2 x 32MB 64bits data DRAMs 60nS 4M x 4bits 2 x 16 64/5

8bits ECC DRAMs 60nS 4M x 4bits 2 x 2 8/1
vector 256k locations
2 x 2MB 9bits data SRAMs 70nS 1Mbits 4 + (4) 70

7bits ECC SRAMs 20nS 256kBits 16 + (16) 145
update 256k locations
2 x 4MB 22bits data SRAMs 70nS 1Mbits 8 + (8) 70

7bits ECC SRAMs 20nS 256kBits 32 + (32) 145

Table 4.1: Assessment of chip count necessary to implement aSM



Figure 4.11:SM board block diagram



Figure 4.12: Connecting two boards to build anSM module



Figure 4.13: Update information flow



Figure 4.14: Commit information flow



Figure 4.15: Rollback information flow



Figure 4.16: Autobahn chipset



Figure 4.17: Autobahn chipset emulation



Figure 4.18: Frame format and frames used



4.2.6 System Interface

4.2.6.1 Command and Status Registers (CSR)

Processors interact with theSM via the Futurebus+ CSR area, which is memory mapped. The communication
registers are shown in Figure 4.19.

Command register
(write-only)

01516192021

Group informationInitiatorDirectionreserved 

31

Configuration register
(write-only)

0

Start regenerationWarning acknowledge

151617

EDCM(2:0)
Data

19

Data
clear

2021

EDCM

UPD

232425

clear

UPDreserved

31

Status register
(read-only)

0

Group information

1516

Recovery status

19

MERRInitialize

B2 B2B2B1 B1 B1

202122

Warnings

23242526

MXERRCNT

(3:0)

MTX

MERRMERR

VTOR

293031

Figure 4.19:SM registers

Two EDC chips are used, one for protecting data and the other one to protect theupdatelist. The configuration
register contains the diagnostic registers for both EDC chips. Three configuration bits,EDCM(2:0), select the EDC
mode. A fourth bit,EDCM(3), clears the diagnostic registers.

For recovery purposes, allSM modules involved in the recovery protocol have to deliver their current condition
in the status register.MXERRCNT(3:0) count the EDC correction operations on the dependency matrixM and
vectorinformation. FourMERR bits indicate multiple bit errors inbank1, bank2, M andvector. Additionally, 4
bits are used for recovery state and two bits (1 per bank) are used to control the initialization process.

The EDC units also allow diagnostic or error information to be read from two 64bit registers, the Error data
register and the diagnostic register.

4.2.6.2 Bank addressing

For theSM described,bank1 contains 32MBytes of memory. The position of this (itsbase address) within the
global address space can be programmed into using a register in the Futurebus+ CSR area. The otherSM address
spaces are described below.

4.2.6.3 Vectormemory

The nine active bits ofvector(see Figure 4.20) are protected by ECC. The information is accessed during depen-
dency tracking via the Futurebus+ transfer address or during copying via the addresses in theupdatelist. The
processor can address the information of thevector memory for read and write using the Futurebus+ two-step
indirect addressing; in the first step the location address is written into the indirect address register, while in the
second step, data is transferred via the indirect data register (see [Futurebus+ 91] page 42).MERR B1andMERR
B2 indicate a multiple bit error inbank1 andbank2, respectively.

4.2.6.4 Dependency matrix memory

Dependencies are tracked for normal accesses and cache coherency traffic. The dependency matrix memory is or-
ganized as an area of 16 x 16 bits (allowing up to 16 processors), protected by ECC, integrated into theMATRXCTL
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Figure 4.20:Vectorinformation

FPGA. The information is updated during the normal activity of theSM , and also can be read by the processor
via the CSR area.

4.2.6.5 Update memory

Theupdatememory is a single list which records the block number of all modified blocks. A block number is kept
in theupdatelist until the two corresponding blocks ineach bank are made identical by copying. Theupdatelist
management algorithm is a 2 pointer sorting algorithm implemented in hardware:

Gap_location = update ;
i = update ;
while (i < update_ptr)
{

block = *i ;
owner = Vector[block].owner ;
if (owner & Group)
{

switch on type
{

case commit : Bank2[block] = Bank1[block] ; break ;
case rollback : Bank1[block] = Bank2[block] ;

}
Vector[block].owner = NIL ;

}
else
{

*Gap_location = *i ;
Gap_location++ ;

}
i++ ;

}

At the end of the reorganization of theupdatelist, theupdate ptr must be loaded withGap locationvalue,
which is initialized to point to the bottom of theupdatelist after power-on.

4.2.6.6 Snooping

TheSM must snoop oncache coherency traffic for dependency tracking. This snoop interface is very system-
dependent, leading to questions about the compatibility of thecache coherency protocol and the FASST recovery
protocol, and about the implications of this protocol for the dependency tracking, that are outside the scope of this
book.

By way of example, let us assume that a flush does not invalidate data in cache. Consider a cache line in the
exclusive modifiedstate of theBerkeleyprotocol, that is subjected to a flush at acommit. Consider also that this
line is not referenced in the interval to the nextcommit. The line must be invalidated after the flush by some other
mechanism, otherwise it will be flushed again at the nextcommit. Issues like this are very system-specific.

4.2.7 Initialization phase

After power-on the system can be in eithercold-init or warm-init state. From theSM point of view, acold-init
means that both banks must be cleared, and all previous history (even inbank2) discarded, whereas awarm-init
means that all ofbank2 must be copied tobank1 using theregeneratecommand. At the beginning of the bootstrap
theMonarchprocessor (see [Futurebus+ 94a]) must determine by some means whether it is acold or warm-init.
The system is organized such that an area of memory inbank2 contains valid data which allows theMonarchto



make this decision. As this data is crucial to system integrity, it must be made proof against multiple errors, using
N-modular redundancy if needs be. The initialization phase is as follows:

(a) Bank1 is first initialized;bank2 is not initialized.

(b) TheMonarchtries to find valid information inbank2.

(c) If the Monarchdoes not find valid information inbank2, it assumes acold-init.

(d) If the Monarchfinds valid information then it assumes awarm-init. Bank1 initialization will take up to
1 second; during this time, theMonarchpolls a status bit in the status register.

(e) System dependent information invectormemory can then be restored from information contained in
bank2. Theowner andMERR fields are reset to NIL.

(f) TheMonarchsends the commandregenerateto theSM modules and waits for the whole ofbank2 to
be copied tobank1. Vectorandupdateinformation is ignored. The dependency matrixM is cleared.

(g) At this point, the system is ready to be booted.

As it can be seen above, battery backup is not needed forbank1, vectoror the dependency matrixM . The
consistency of data inbank2 must be assured by battery backup, and to assure refresh during power-down, the
bank2 DRAM controller must also be battery-powered. There must also be a sufficient reserve of battery power to
accomodate a power failure during any copy ofbank1 to bank2; this requires abattery-power-failsignal at least
160mS before battery power fails (new recovery requests which arrive after abattery-power-failis detected may
be ignored by all processors andSM modules).

4.3 Fault tolerance issues

The processors request services from theSM and receive results. They can request to read or write data in theSM ,
or to readSM status, or to start aSM command. The results can be in memory or CSR space. For the processors,
a SM command and its results are atomic. It is important to look at the paths over which the information flows
(represented by arrows in Figure 4.21). We can distinguish between normal operations, where data is read or
written to memory, and status reads or command writes.

Normal activity The processor issues address, direction and size information, and for writes, data, to the
Futurebus+. This information flows through the Futurebus+ interface,COPYCTLunit, and EDC chip
to the DRAM. The resulting read data and/or acknowledgement flows back over the EDC chip and the
Futurebus+ interface to the processor.MATRXCTL tracks dependencies both for normal accesses and
cache coherency traffic.

Failures There is always a finite possibility of a failure of any functional unit, or of the connections between
them. The Futurebus+ interface can detect one bit errors on every byte of the address, command or data.
The EDC and memory bank can detect two bit errors and correct one bit errors. TheCOPYCTL can
compare memory address lines against the address information received from the Futurebus+ interface.
MATRXCTL counts corrections to errors inM andvector, and the counts can been read from the status
register. A failure of theMATRXCTL, the COPYCTL or of the Futurebus+ interface is detected by
timeouts of the Futurebus+ interface.

Recovery operation The recovery operation additionally requires error-free operation of the Fast Serial
Link.

Notice that a second Futurebus+ interface is necessary to allow recovery from a failed Futurebus+ interface or
COPYCTLunit.

4.4 Expected performance

The expected performance relates to the services theSM modules deliver. Mostly these depend on the timings
achieved by the Futurebus+ interface. Assuming a 50MHz clock for the bus activity, and that bus arbitration
is overlapped with data transfers as for the Futurebus+ parallel protocol, then we can expecting the following
performance:



Normal memory read or write Here we assume that dependency tracking is performed without loss of
performance.

write tAA >= 60nsec
tcyc >= 100nsec.

read tAA >= 80nsec
tcyc >= 100nsec.

Packetized memory read or write Assume that the packet begins at a block boundary. The cycle time
encompasses eight memory line transfers; the first of these needs a full DRAM access, but every
subsequent line can use the page mode capability of the DRAMs, taking just 40nS.

write tcyc >= 700 nsec
read tcyc >= 700 nsec

This timing assumes no correction activity is needed. If there are one bit read errors then three addi-
tional clock periods need to be added for every corrected memory line. Note that (a) partial transfers
are as slow as memory line transfers, because any modified data has to be written back to the memory,
taking an extra three clock periods, i.e. 60nS, for every partial write, and (b) if copy-on-write is im-
plemented (see Section 4.2.5) then two synchronisation states (each of20nS duration) are needed for
every memory transfer, so that:

tcyc >= 140nsec

CSR operations (read or write) The CSR operations are assumed to have:

tcyc >= 100nsec for Registers
tcyc >= 200nsec for ROM reads

Recovery operation Recovery operations (commit or rollback) are assumed to occur without errors on data
or address transfers over theFSL, and without ECC errors during data reads frombank1 for commit
or bank2 for rollback, respectively. Times are calculated for one block. The total time is obtained by
multiplying the block time by the number of blocks to be recovered. A block transmission which is
NACK-ed takes the same time to be retransmitted:

tcyc >= 900nsec/block.

Initialisation This operation takes place after power-on. We assume that the initialisation uses the page
mode of the DRAMs (a page has 16384 memory lines) and takes:

tini(page) >= 82usec/Page
tini >= 170msec/bank.



Figure 4.21:SM information flow





Chapter 5

Processing Units

115



5.1 Fail-stop Processors1

During normal system operation, theSM keeps track of dependencies between processing modules, both during
normal accesses to theSM , and by snoopingcache coherency traffic on the bus. This information is used to es-
tablish consistent checkpoints of dependent processors when it is required [Ahmed et al 90, Banˆatre et al 90a] as
described in the preceding chapters, essentially by flushing processor and cache state tobank1 of the stable mem-
ory and then copying modified data frombank1 to bank2. When an error is detected, a rollback is performed in
the stable memory by copying the corresponding data back frombank2 to bank1, and invalidating the information
present in the processors caches. If any part of the system suffers a permanent failure, the system can reconfigure
itself by gracefully degrading (any processor could be disabled in a similar way) and only the system performance
will suffer.

With this approach to fault-tolerance, failed processing modules are not required to take any active part in
the error recovery mechanisms. The only requirement imposed on them is not to propagate erroneous data to
the system. Taking into account this philosophy, afail-stop or fail-silent design [Johnson 84, Laprie et al 90,
Schlichting et al 83] is enough to meet the desired degree of fault-tolerance in the system.

This chapter describes an example design of a fail-stop processor module for the FASST architecture, called
a Dual Processing Unit(DPU ). TheDPU has been designed for use with a Futurebus+ backplane, as has the
exampleSM design of the last chapter. This bus standard is particularly suitable for fault-tolerant computer
systems, and perhaps it is now appropriate to discuss it in greater detail.

5.2 Futurebus+

Futurebus+ is a high performance, versatile backplane bus. Its specification [Futurebus+ 90, Futurebus+ 94a,
Futurebus+ 94b] is technology independent to take advantage of future improved technologies. A set of basic
configurations, suitable for different applications, have been standardized asProfiles[Futurebus+ 91] that are sub-
sets of the options offered by the specification.

Futurebus+ includes two main logical busses, thedata transferand thearbitration bus, both using asyn-
chronous and distributed protocols.

The data transfer bus width is specified from 32 to 256 bits (in powers of two). The address bus, multiplexed
with the data signals, is either 32 or 64 bits wide. There are also parity signals, eight command signals, seven
general control signals and seven unspecified tag signals. The information present on each bus signal is relative to
the type of transaction and its phase, resulting in a very complete and complex data transfer protocol.

The arbitration bus is composed of seven signals onto whichcompetition numbersare issued, plus five addi-
tional control signals and parity. An undetermined number of signals should be added if centralized rather than
distributed arbitration is used. Also there are fiveGeographical Addresssignals, a globalResetand two signals
for a serial bus. Futurebus+ uses theGeographical Addresssignals to identify each module’s address on the bus.
This allows for a maximum of 31 (one geographical address is reserved and not valid for any module) uniquely
identified modules oneach bus segment. Any of these modules may be a bridge to another Futurebus+ segment,
arbitrarily extending the complexity of the interconnection network.

Futurebus+ uses the IEEE P1212 Control and Status Register (CSR) Architecture [CSR 91a, CSR 91b] to
provide a standard means for system reset and configuration, management of nodes with different capabilities and
functionalities, and system coordination activity such as messaging and interrupts. Each physical module of a
bus can host up to two nodes that are logical entities with their own CSR space in the system memory map. The
Futurebus+ memory map has an addressing structure that allows for a hierarchy of busses, modules and nodes
when assigning CSR space addresses (see Figure 5.1).

5.2.1 Data Transfer Bus

A Futurebus+ module requests the Data Transfer Bus to perform a system transaction, formed by a request and a
response. There are two basic types of transactions:

1The following sections contributed by Rafael Mart´ınez and Gregorio Mart´ın, Instituto de Rob´otica, Universitat de Val`encia, Hugo de
Moncada, 4 Entlo., 46010 Valencia, Espa˜na, and Germ´an Fabregat, Departamento de Inform´atica, Universidad Jaume I, Campus del Penyeta
Roja sn, 12071 Castell´on, Espa˜na.
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Figure 5.1: CSR Space Address Format

Connected transactions,when the request and the response take place during a unique bus tenure.

Split transactions, when the request and the response take place during two different bus tenures. The
responder module has to gain the bus and send the response to the requester.

In the latter case, a bus transaction is composed of two different bus tenures, each of them having the same
structure of a connected transaction. Each transaction occupying only one bus tenure (that is, a connected or both
halves of a split transaction) have the following structure:

(a) A connection phase, when the master selects the desired slave and establishes communication.

(b) An optionaldata transfer phase, where data communication is performed.

(c) A disconnection phasewhen the master ends the transaction by disconnecting from the slaves.

The connection and disconnection phases of the transaction follow an asynchronous handshake protocol. The
data transfer phase can be performed in one of the following three ways:

Address only transactions,having no data transfer phase. All the information of the transaction is ex-
changed during the connection and disconnection phases.

Compelled transactions,where after the connection phase follows one or more data transfers to contiguous
addresses. Each data transfer is controlled by an asynchronous protocol.

Packet transactions,where after the connection phase follows a block of data of fixed size. Each individual
transfer is synchronous, being the frequency negotiated between the master and the slave during the
connection phase.

5.2.2 Arbitration bus and system coordination

The arbitration scheme offered by the Futurebus+ standard is one of the most powerful and versatile included in
any existing bus. There is a simple,centralarbitration scheme where the arbiter receives a pair of request signals
for eachnode capable of being a master, and gives toeach of them a bus grant and a preemption signal. Priorities
and arbitration policy reside in the central arbiter, although modules can request change of any of its two priority
numbers.

There is also adistributedarbitration protocol, and the standard specifies the switch from central to distributed
arbitration in case the central arbiter fails. In this distributed protocol, each competingnode writes its arbitration
number into the corresponding signals of the arbitration bus, and a distributed algorithm, involving one or two
passes, starts. At the end, only the competing node with the higher number becomes the master elect [Howles 94].

The master elect can be deposed if another arbitration process is started before the tenure takes place, and
there is a new competitor with a higher priority number. Also a master can be preempted if it observes that the
master elect has a higher priority. These two characteristics make the Futurebus+ specially well suited for the
implementation of real time systems.

The arbitration bus and protocols are also used for the sending of messages along the system. Arbitration
messages are seven bit numbers, most of them left unspecified by the standard. When distributed arbitration
coexists with arbitration messages, the latter have higher priority than arbitration competition numbers. Among
the standardized messages are thePower Fail (highest priority) and theBroadcast Interrupts. The two highest
priority messages are not maskable; all others than are maskable by means of the correspond CSR registers.



5.2.3 Cache Coherence

One of the most important features of Futurebus+ as a multiprocessor system bus is the specification of a com-
plete cache coherence protocol, merging the best characteristics of other proposed protocols [Archibald et al 86,
Handy 93]. The Futurebus+ protocol is write-back, based on bus snooping. Four states are specified for configuring
MESI(Modified, Exclusive, Share, Invalid) protocols. The attributes of the states are:

Invalid : Any cache line not holding an up to date copy of the system value of the memory line. All lines
are placed in theinvalid state after system reset.

Shared : Any cache line holding an up to date copy of the system value of the memory line, that is also
present in other caches of the system.

Exclusive : Any cache line holding an up to date copy of the system value of the memory line, that is
consistent with its value in main memory but is not present in any other cache of the system. The
module can write to the line privately, changing its state tomodified.

Modified : Any cache line holding an up to date copy of the system value of the memory line, that is not
consistent with its value in main memory (that is, has been written to by thecache’s module) and is not
present in any other cache of the system. The module is theownerof the line, being responsible for
responding to transactions requesting it and copying it to memory in the case of replacement.

The specification also defines a set of coherent transactions, that are generated in response to internal activity
and cause, either by direct request or by snooping, the state transitions of the protocol. Figure 5.2 depicts the state
graph of the protocol. The following coherent transactions are specified as connected transactions:

Read Shared : Non-exclusive read of a line. It is most frequently used to request a line after a read miss.
The returned line enters thesharedor exclusivestate. Snooping of this transaction forces any existing
exclusivecopy of the line change to thesharedstate.

Read Modified : Read of a line requesting exclusivity. It is most frequently used to request a line after a
write miss. The returned line enters themodifiedstate. Snooping of this transaction forces invalidation
of all valid copies of the line.

Invalidate : Request for invalidation of other copies of asharedline. It is used to satisfy a write hit on a
sharedline. Snooping of this transaction forces invalidation of all valid copies of the line.

Copyback : Copy of the line to memory by the module that owns it. The action is mainly caused by a line
replacement forced by a miss.

Read Invalid : Read request of a line that isinvalid before and after the transaction. This transaction is
used by I/O devices.

Write Invalid : Copy of a line to memory whose contents have been created by a module not previously
having a valid copy of it. Every copy of the line becomesinvalid after the transaction. It is used by I/O
devices.

For the Futurebus+, any snooping protocol that includes the concept of ownership should provide an inter-
vention mechanism to provide valid copies of modified lines. When theownerof a (modified) line recognizes
a transaction requesting that line it must inhibit the memory from supplying the information, and respond to the
transaction by providing the requested line.

In addition, and to obtain higher performance, asnarfingmechanism is specified. When a module waiting to
gain the bus to satisfy a read miss recognizes a non-exclusive transaction involving the missing line, it is allowed
to load the line on the fly and then retire the pending request.Snarfingis indicated by the assertion of a special bus
signal to prevent the snarfed line from appearing asexclusivein the (possible) requesting cache.

5.2.4 Reliability

Futurebus+ specification pays special attention to the reliability of the systems. The specification defines two
levels of application of measures to improve system reliability. Firstly, a general policy is given for error detection
and management, to which standard compliant systems must adhere, and secondly, general recommendations and



Figure 5.2: Futurebus+ Cache Coherence Protocol

preferred options are stated in the specification wherever reliability critical issues are presented. In addition, the
documentation of the standard includes specific examples for fault-tolerant systems.

Maintainability is a key point in Futurebus+. Mechanical and electrical specifications are provided for live
insertion and withdrawal of modules. In addition, a hierarchy of tests and verifications is detailed, establishing
the minimum coverage requirements for each type of fault for all levels. The main objectives of this system of
testing are unequivocal detection of faulty nodes, high coverage of system faults, and isolation of failures in the
replaceable units of eachnode.

One of the main requirements is a Built In Self Test (BIST) capability oneachnode. The basicBISTand the
extensions recommended by the specification are organized according to the following hierarchy:

Initialization Tests activated after system or node reset, to be built ineachnode and to be capable of
unambiguously finding errors in it.

Extended Testsneeding a buffer in system memory. These require a node that is capable of becoming a
bus master, and detect errors in the interface to the Futurebus+.

System Testsneeding a buffer in system memory, and the cooperation of two nodes. These are used to
detect global system functions such as parallel protocol, arbitration, etc.

Manual Intervention Tests requiring the intervention of a human operator, generally used to verify exter-
nal interfaces and devices (I/O subsystem).

These tests include a set of executives, classified according to their characteristics and duration. A very useful
distinction is betweendefault teststhat last less than 10 seconds, andfull testswithout specified time limit. The
interface between the tests and the system is a set of CSR registers that used to identify the test capabilities of the
nodes, to activate certain tests when written to, and to hold the results of those tests that have been performed.



Error management is also performed in a hierarchical, layered structure. When any level of the specification
detects an error, it tries to resolve it at the same level, and only when this is not possible does it store the information
about the error in the standard CSR registers, and send an exception to the upper level.

Futurebus+ is very well suited to fault-tolerant systems. Every Futurebus+ protocol includes basic means for
error detection. In addition, every set of bus signals is protected with transversal parity, and watchdog timers are
included to ensure the progress of the protocol phases. Furthermore, arbitration, cache coherence and message
passing are all distributed protocols, which are not affected by the failure of any of the nodes. In addition, a great
level of detail of the specification is dedicated to bus bridges (allowing for the implementation of duplicated bus
systems), to fault-tolerant power supplies, and to allowing for several levels of live insertion and withdrawal of
modules.

5.3 Dual Processing Units

The Dual Processing Unit (DPU ) [Martı́nez et al 95] is the execution engine of the FASST architecture, but the
example design outlined below has also been designed as a research vehicle that had to satisfy other constraints:

(a) The system’s hardware had to offer, without conflicting with the FASST philosophy, the maximum
facilities to build an open fault tolerant multiprocessor.

(b) It had to be designed for future upgrading.

(c) Current standards had to be used where they did not interfere with (a) or (b).

In relation to the FASST architecture, the most important decisions regarding the design of theDPU were:

(a) TheDPU had to be a fail-stop processing unit, based on two Intel i486/DX processors running in lock
step, for all the obvious reasons.

(b) The system had to be designed around the IEEE Standard P896 Futurebus+ bus, given its suitability to
the task.

(c) The Futurebus+ interface had to be implemented using a dedicated Texas Instruments chipset
[Texas Instruments 94]. This was a pragmatic choice.

At the time, the Texas Instruments Futurebus+ chipset was the most complete chipset available, but still did
not offer the full functionality required for the system. As a result of this, although the design follows the Future-
bus+ standard, it does not comply with any of the standard profiles, although almost every feature of profile B is
supported except central arbitration and a standardcache coherence protocol.

The system is able to support up to 31 Futurebus+ modules, and the same number of nodes (the Texas Instru-
ments chipset does not allow for more than one node per module). These modules can be of any type with the
only restriction that at least one of them be capable of arbitration. The normal configuration of a complete system
would be a number ofDPU modules, all of them capable of arbitration, a number of memory modules without
arbitration capability, and a number of I/O modules capable of arbitration.

In general, as it will be explained later, a module needs to be capable of arbitration in order to be able to send
interrupts. A global interrupt scheme provides a common mechanism to broadcast interrupts to the system, or to
send interrupts only to individual modules, i.e. to a particular target. Targeted interrupts are supported using the
standard CSR registers and both the normal data bus and the arbitration bus. Interrupts can be broadcast using
arbitration messages (targeted interrupt messages) or sent to individual modules byaccessing them in a normal
write to the appropriate CSR register. This feature is fully supported by the Texas Instruments chipset.

Apart from stable devices like theSM , the only other devices the FASST architecture requires to be specifically
designed for fault-tolerance are theDPUs. Nevertheless, The Texas Instruments chipset provides parity protection
to all local memory devices and local module busses, is able to detect longitudinal parity errors in Futurebus+
transactions and to retry any faulty transactions, and allows for level 2 live insertion-withdrawal as defined in the
Futurebus+ standard.

TheDPU is designed to allow local or global memory checkpointing, to implement a suitable backward error
recovery scheme. As a small extension, the local resources of a failedDPU module may be read by another
processor, assuming the fault is confined to theDPU ’s processor/cache subsystem.



5.3.1 System Memory Map

The system has a 32 bit address physical memory map, thus allowing for a physical global memory of up to
4GBytes. The Futurebus+ standard defines an area of 256MBytes, at the top of the addressable memory, for CSR
use, leaving 3840MBytes for System Memory. This memory is distributed into three logical memory spaces in
the System Memory; theLocal Private Memory, theLocal Shared Memoryand theGlobal Shared Memory(see
Figure 5.3):
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Figure 5.3:DPU System Memory Map

Global Shared Memory (GSM) This space is dedicated for memory modules or I/O modules that do not
need to be capable of arbitration. It is an external address for any Futurebus+ master, and is located
from the lowest address upwards.

Local Shared Memory (LSM) This space is dedicated for local memory of modules that are capable of
arbitration, and should be globallyaccessible. The maximum amount allowed is 8MBytes per module,
for a maximum of 31 modules (assuming there is noGSM). LSM addresses are dependent on theGeo-
graphical Addressof the module they belong to, and are located from just below theLPM downwards.

Local Private Memory (LPM ) This space is dedicated for local, private memory such as for start-up and
diagnostics code, and should not beaccessible outside a module. It is allocated a maximum of 8MBytes
per module, all sharing the same global address space equal to theLSM space corresponding to the non-
existent module 31 (remember, module 31 does not exist in so that its address can be used for CSR
broadcast accesses). This space is located from just below the CSR reserved addresses downwards.

With this scheme, and mapping theLSM for each module’s local memory and theLPM for local extended units
using the standard CSR registers, most of the on- and off-module transaction address decoding is performed by the
Texas Instruments chipset, making the local decoding logic extremely simple.

5.3.2 Interrupt scheme

Interrupts are the most common mechanism of inter-module event signalling. TheDPU supportsUnit Specific
andUnit Broadcastinterrupts as defined in Futurebus+ profile B [Futurebus+ 91]. The interrupt scheme is based
on two standardized CSR registers: theINTERRUPT TARGET and theINTERRUPT MASK. These two registers



allow for 32 prioritised interrupts, the highest order bit flagging the highest priority, and so forth.Unit Specific
interrupts are set by a normal Futurebus+ write to theINTERRUPT TARGET register in the selected module. The
contents of this register are bitwise ANDed with theINTERRUPT MASK register, and if the result is nonzero then
the local moduleINT* signal is activated to indicate an interrupt is pending.

Unit Broadcastinterrupts are set by using any of the 32 arbitration messages (0x80 to 0x9F) related with the
interrupt bits, which set the corresponding bits in theINTERRUPT TARGET register (0x80 sets the MSBit, and so
forth), and if the correspondingINTERRUPT MASK bit is set and the result is nonzero then the local moduleINT*
signal is activated.

The Texas Instruments chipset provides a more complete set of registers for activating local interrupts in re-
sponse of general system events. These will be explained later. Among them there is a bit signalling the standard
Futurebus+Power Failarbitration message [Futurebus+ 91].

Since the mechanism for setting interrupts is through writes to CSR space or through arbitration messages, it is
clear that only those modules that are capable of arbitration will be able to activate interrupts. Therefore, any I/O
device that needs to synchronise through interrupts must be arbitration capable.

5.3.3 Arbitration Messages

TheDPU only allows distributed arbitration messages as defined in the [Futurebus+ 94a] and [Futurebus+ 91]
standards. These messages are broadcast over the arbitration bus, and received by modules that are capable of
arbitration concurrently with normal Futurebus+ data transfer activity. Messages that are not targeted interrupts
are stored in a local FIFO if their message bit pattern meets the criteria defined by two sets of message mask
registers. These two sets allow classification of messages into two classes. Whenever a message is received in the
local FIFO, the localINT* signal is activated.INT* is also activated when a local interrupt is signalled, or when
the message FIFO is full.

Messages 0xfe and 0xff are not maskable; the latter is defined in the [Futurebus+ 94a] standard asPFAIL
(Power Fail). Messages can be prevented from being lost by either stalling the arbitration process or signalling an
arbitration error when a message is being broadcast and any local FIFO is full. The Texas Instruments chipset is
also able to ignoring incoming messages, while still storing them in the local FIFO.

5.4 The Demonstrator

In order to demonstrate the assumptions made in FASST architecture and in the processor modules, a simpler
machine, composed of twoDPUs and several standard boards, has been constructed. The implementation of
Figure 5.4 has twoDPU modules, a memory module, and an I/O module that acts as a bridge between the
Futurebus+ and a VME bus that contains a hard disk controller. Table 5.2 gives a more detailed description of the
non-DPU components.

As previously intimated, the memory map is software reconfigurable and also depends on the geographical
address of the module. Table 5.1 shows the memory map of the Demonstrator. The bus-bridge is inserted in slot 3,
the memory in slot 4 and the twoDPUs in slots 1 and 5.

Futurebus+ Global Memory
# Slot Board Starting Ad. Ending Ad. Description

Slot 1 DPU 20 0000 28 0000 Local Shared Memory
Slot 2
Slot 3 Technobox 600 0000 600 3FFF Two-port memory
Slot 4 Nanotek 1000 0000 1FFF FFFF Global Memory
Slot 5 DPU A0 0000 A8 0000 Local Shared Memory

Table 5.1: Futurebus+ global memory map for the Demonstrator

5.5 DPU Prototype

TheDPU is a fail-stop processing module intended to serve as building block for use in fault-tolerant shared
memory multiprocessors, using the Intel i486/DX2 processor. Its most unique characteristic is its ability to detect



MUPAC 512 series FB+ 5 slots Futurebus+ rack with power
NMEM-1 16 MB of memory

Compliant with A, B and F IEEE 896.2 standard Futurebus+ profiles
32 bits addressing
Cache coherence protocols implemented
Data bus width of 32 and 64 bits

FBV68LC040 Futurebus+ to VME bus bridge
Motorola 68LC040 (25 MHz) processor
16 KB two-port RAM of 16 KB (Addressable from 68LC040, VME and Futurebus+)
512 KB SRAM (Addressable from VME and 68LC040)
RS232 Port
IEEE 1394 serial interface

ATX-630 Motorola MC68030 processor
2 MB two-port RAM
SCSI Controller
Floppy disk controller
2 serial ports
1 parallel port
Ethernet interface
Watch-dog
2 programmable timers

Table 5.2: Demonstrator non-DPU components

Figure 5.4: TwoDPUs in the Demonstrator chassis (theDPUs are the modules with cables attached)

errors and isolate itself from the system bus once they occur [Fabregat et al 94]. It is also able to be inserted into or
withdrawn from a live system, and it has two independentTest Access Portsconforming to the JTAG specification.

There are various different mechanisms for error detection. Data parity errors, timeout errors and processor
disagreement are all able to bring theDPU to the faulty state. In addition, errors on accesses to local resources
are also detected and treated by means of an interrupt.

Having chosen the Texas Instrument chipset to interface theDPU to the Futurebus+, and given the require-
ments imposed by the Futurebus+ standard, theDPU consists on a set of subsystems built around the several
busses of the chipset (see Figure 5.5), joined together by means of several EPLDs (which are key components in



the design).
Two of the subsystems relate to the i486/DX2 system interface: theDual Processors and Compare Logic, and

theCache Memory and Control. Two others, theFuturebus+ Interfacesubsystem and theLocal Memory, relate
to theHost Bus, which is a local bus defined by the Texas Instrument chipset. Finally, there are globalClock and
ResetandDiagnosticssubsystems. The interface between the i486 system bus and theHost Busis performed by
theFB FPLA EPLD.

The Texas Instrument chipset also defines a 8bitCSR Bus, where, in addition to the standard CSR registers
and some non-standard ones required by itself, it expects any ROM or 8 bit I/O devices to be attached. The
interface between theHost Busand theCSR Bus, as well as part of the memory decoding task, is carried out by the
CSR LMC FPLA EPLDs.
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Figure 5.5: Block Diagram of theDPU

The core of theDPU is a pair of Intel i486/DX2 processors working in lock-step, whose busses are compared
to provide the fail-stop characteristic to the system. Each set of i486 signals is driven independently to each of
the comparators, and converted into aSingle i486 Busby means of some appropriate transceivers and buffers that
allow incoming signals to reach both i486s, while selecting only one of them to provide outgoing signals to the
system. One of the EPLDs that form the comparators is also in charge of activating the appropriate signals to
control the transceivers. Beyond the transceivers, and connected to theSingle i486 Bus, are two cache subsystems,
one per i486. These are based in the HT44cache controller and form a write-through, direct-mapped, read-allocate
cache.

The rest of theDPU resources are located in theHost Buspart of the system, thus interfacing between both
busses is required. TheFB FPLA performs this task, plus some others. TheDPU module has 512KBytes ofLocal
Private Memoryand 128KBytes ofLocal Shared Memory, both connected directly to theHost Bus, and mapped
to the lowest addresses of their respective spaces.

The Host Bushas only two possible masters; one is theFB FPLA translating i486 requests; the other is the
Texas instruments chipset, comprised of the TFB2002, TFB2010 and TFB2022 devices. The TFB2002 performs
most of theHost Bushandshake protocol, while the TFB2022 supplies and receives data to/from both theHost Bus
and the Futurebus+. The TFB2002 and the TFB2010 are also connected to theCSR Bus, as they contain some CSR
registers. The TFB2022 is in charge of address decoding for both theHost Busand the Futurebus+ transactions,
and so it manages its CSR registers using theHost Bus.

TheCSR LMC FPLA controls partial local memory decoding and accesses, andCSR Businterfacing. It relies
on the decoding information supplied by the TFB2022 to fully decode local memory and CSR space addresses. It
provides the protocol to interface local memory andCSR Busaccesses with theHost Busprotocol.

All the local resources other than the local memory are mapped in the CSR space, and connected to theCSR
Bus(apart from the TFB2022 CSR registers). There are a DS1397 Timer, an 82510 UART, a 74BCT8373 register,



an 82C59-A Interrupt Controller, theCapability ROM(an 8Kx8 bits PROM), and the CSR registers within the
TFB2002 and the TFB2010ABC.

The system of Figure 5.4 contains twoDPU modules, a Nanotek NMEM-1 16MBytes memory module,
and a Technobox FBVL68LC040 Futurebus+ to VME bridge, where some standard VME communication ports
and SCSI Hard Disk controllers are connected. Everything is housed in a 5-slot MUPAC 512-series powered
Futurebus+ rack.

5.5.1 Intel i486/DX2 Bus Subsystem

This subsystem has two active devices: the two i486 microprocessors,i486A andi486B, working in lock-step. Any
disagreement between them must cause the module to stop and, in some cases, to isolate itself from the Futurebus+.

The Intel i486/DX2 has a 32bit synchronous system bus. The memory space is byte-addressed by 32 logical
address bits that are translated into 30 address signals and 4 byte enable signals. Data and address busses are
not multiplexed; they working in parallel during transfers, and can support overlapped address and data transfers.
The bus allows for single, multiple and burst transfers, and the type can be dynamically negotiated between the
processor and the slave during the transfer. The bus is mastered by the processor, and released in response to a
request by an external device. It also supports locked and pseudo locked cycles, interrupt acknowledges and several
other special cycles (cycle backoff and restart, cache invalidation...)

All data and parity signals are connected to the data bus without modification. The parity status pin is fed
directly into theERROR PAL, which controls the response to errors. Although the bus width can be dynamically
adjusted, in theDPU it is always 32bits wide. 8bit devices are located on theCSR Bus, and accesses to them
are converted to 32bit values as described later. The byte enable signals are used by theFB FPLA to generate the
low order address signals for theHost Bus. TheFB FPLA also uses the i486 cycle definition and control signals to
generate the corresponding activity on theHost Bus, and interfacing to the cache subsystem.

5.5.2 Comparators and error control

This subsystem contains five EPLDs that perform the tasks of comparing the i486 busses to detect errors, of
signalling any such errors to theERROR PAL, and of managing the interface between the two i486 busses and the
Single i486 Bus.

Four of these EPLDs behave as comparators. Data and address comparison has been duplicated, using com-
plementary logic, to give four pairs of error outputs, each of them coded in a 1-of-2 code.ERRa[0:1]andERRb[0:1]
signal an address error, whileERRa[2:3]andERRb[2:3]signal a data error. These comparators fully adhere to the
standard i486 bus protocol.

The fifth EPLD, theComparators Controller, checks the outputs of the comparators to signal an error in any
of the following cases:

(a) Any of the comparator pairs indicate an error

(b) Both comparators of the same pair give different results

(c) Any of the four error inputs do not follow the 1 of 2 code

This EPLD also uses some of the i486 control signals to validate the results of the comparison; this allows the
comparators to match the speed of the processors without introducing wait states.

A pair of watchdog timers increase the fault coverage of the module, on per processor. These timers are meant
to detect infinite loops that will not be detected by the comparators if both i486 execute the same code. These
watchdogs are constructed from two cascaded counters, and a retriggerable monostable multivibrator. An error is
signalled to theERROR PALwhen the monostable output level goes low. To avoid this situation, the counters are
clocked by the i486LOCK# signal, and the monostable retriggered off one of the four outputs of the high order
counter. TheLOCK# signal has been selected to control the time out as it is easily detected, frequently activated in
a multiprocessor system and not likely to appear in a loop.

5.5.3 Cache memory and controller

TheDPU module contains 256KBytes of write-through direct-mappedcache, with 16 data bytes per line and 12
tag bits. Each line has an associated valid bit.



The cache system is controlled by a Headland HT44 chip. Basically this chip responds with data on read hits,
updates its contents on write hits, and allocates lines transparently during read misses. The system is only able
of cacheing 1GByte out of the 4GBytes i486 address space. To select the cacheable area, theMemory Mapping
PAL acts upon theKEN* input of the HT44. Typically theMemory Mapping PALis programmed to only allow
cacheability of the lower 1GByte of system memory, since this is whereGlobal Shared Memory(GSM) resides.

The 256KBytes ofcache memory are implemented using two sets of four MCM62486 32K x 9bit SRAMs.
Address signalA17 is used to select the set. Each set stores 8K cache lines, so 8K x13bits of tag storage is needed
per set, as well as 8K validity bits. This is achieved with four P4C164 8K x 8bit SRAMs (two per cache data set).
The HT44 does not provide parity over the tags. Address signalsA18 to A28 are used to form the tags. The 12th
tag bit is supplied by the Memory Mapping PAL, usingA29.

5.5.4 Host Bussubsystem

TheHost Bus[Texas Instruments 94] (orHost Interfaceaccording to the latest version of the Texas Instruments
Futurebus+ Interface Family Data Manual) is a 32bit synchronous bus used to interface the Texas Instruments
Futurebus+ chipset with the module built around it. It can also be configured as a 64bit bus, but only for burst
transactions). TheHost Busprovides 32 or 36 address signals, and allows for single and burst transactions. The
characteristics of the later (speed, data bus width and transfer length) are negotiated between the master and the
slave prior to the start of a transaction.

Arbitration is performed via bus request and grant signals, and a unique bus idle (bus grant acknowledge)
wire-ORed signal. There is no arbitration policy specified, as the arbiter should be designedaccording to the local
module requirements.

The bus includes a lock signal to force Futurebus+ locked transactions, and the ability to group multipleHost
Bustransactions into a single Futurebus+ transaction. There is also an interrupt signal and anIGNORE* signal to
prevent local transactions from propagating to the Futurebus+.

5.5.5 FB FPLA EPLD

The FB FPLA is the name given to one of the most important parts of the design. It is an EPM7064QC100-10
EPLD that provides many different functions, the most important of which is to act as the interface between the
i486 bus and theHost Bus. Its remaining functions are to arbitrate for theHost Bus, to manage the interrupt
protocol, and to manage cache line invalidation.

The HT44 invalidates cache lines duringnon-cacheable read cycles in which theFLUSH* signal is asserted,
regardless of the hit status. TheFB FPLA participates in an invalidation procedure that also requires the collabo-
ration of special invalidation software, and it detects i486 interrupt acknowledge cycles from the cycle definition
signals (the rest of the interrupt handling procedure is carried out by theCSR LMC FPLA). TheFB FPLA is also
the arbiter of theHost Bus, requesting the i486 bus whenever aHost Busmastership request is issued. There are
only two possible masters of theHost Bus, the i486 and the Texas Instruments chipset. The latter will request use
of the bus only when the module is acting as a Futurebus+ slave, which is not likely to happen frequently. The
arbitration obeys aRelease On Requestpolicy.

One of the most important tasks of theFB FPLA is to provide an interface between theSingle i486 Busand
theHost Bus, taking into account the type of transaction in progress, the adaptation of some address signals and
some special behaviour given certain particular transactions. It translates every i486 read or write cycle, except
cacheable reads, into the corresponding non-burstHost Buscycle.

TheDPU Local Memory is formed of 512KBytes ofLocal Private Memory(LPM) for ROM, and 128KBytes
of Local Shared Memory(LSM) for RAM. The two sets of memory are mapped to the lowest addresses of theLPM
andLSM address spaces, respectively, as indicated in theDPU memory map. This local memory is physically
connected to theHost Bus. The TFB2022 decodes the memory space by means of theMS[0:1] signals, and the
CSR LMC FPLA generates the corresponding control signals. Buffers are used to drive the address and control
signals to the memory chips.

The ROM is composed of four AM29F010 128K x 8bit FLASH PROMs plus a fifth to store one parity bit per
byte. To simplify the design, and given that the four parity bits are stored together, there is only one chip select
signal for the five chips



The RAM is made of four CY7C188 32K x 9bit SRAMs, each one including a parity bit per byte. Each RAM
chip has its own chip select and a common write enable signal. TheCSR LCM FPLA also generates an output
enable common to all the memory chips.

5.5.6 CSR LMC FPLA and CSR Bussubsystem

The Configuration and Status Registers (CSR) are a set of standard registers specified by the Futurebus+ standard.
The standard specifies the CSR as a 32bit word-aligned address space (the two least significant address bits must
be zero), that supports only 32bit addresses. Unimplemented locations must return zeroes when read, and incorrect
writes (to read-only or unimplemented addresses) must be ignored. CSR registers should beaccessed as32bit
data transfers. The CSR memory map appears in Figure 5.6. As mentioned above, the Texas Instruments chipset
specifies a simple 8bit bus to access these standard registers.

The CSR LMC FPLA controls the access to every local device connected to theHost Busother than the
TFB2022 CSR registers. It is divided into two main functional units, theLocal Memory Controller(LMC) that
controls local memory accesses, and the CSR controller (CSR) that handles accesses to CSR, decodes I/O port
addresses, and interfaces with every device in the CSR address space (apart from the TFB2022 internal CSR
registers). It is composed of an EPM7192QC160-12 and an EPM7032LC44-12 EPLD.
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Figure 5.6: Bus 0, Node 2, CSR memory map

To perform the decoding tasks, theCSR LMC FPLA relies on theMemory Spacesignals provided by the
TFB2022; these provide easier decoding and allow for programmable system global addressing. TheMemory
SpacesignalsMS[0:1] distinguish between four different address spaces:

Local CSR SpaceThis is the standard CSR address space.

Local Extended Units A programmable address space that in the case of theDPU module is used for the
Local Private Memory.

Local Memory A programmable address space that in the case of theDPU module is used for theLocal
Shared Memory.

Futurebus+ AddressesThe decoded address does not belong to any local resource, i.e. does not correspond
to any of the three previous spaces. This combination of theMS[0:1] signals is a don’t care transaction
indication to the system. The TFB2022 signals this combination, rather than theLocal CSR Space,
during any transaction to its own internal CSR registers.

The CSR registers are not programmed after reset, and thus the decoding cannot rely on the provided signals
at this stage. To accomodate this, theCSR LMC FPLA includes a simpleRESETprocedure that allows ROM reads
and CSR programming before the Texas Instruments chipset becomes fully functional.



As each RAM memory chip stores its own parity bit, partial transactions are straightforward, activating only
the addressed chip enables. If the access is to the ROM, all five (four plus parity) modules are selected, since all
the parity bits are stored together, bearing in mind that the i486 to read only the bytes selected by BE[0:3]#.

The CSR Buscontroller part of the EPLD is in charge of decoding accesses to the CSR address space, by
selecting the appropriate device. Also it transforms the 32bitHost Busdata to the 8bitCSR Busdata and vice-versa,
generating the corresponding address signalsCA0andCA1, plus any parity bits not supplied by the devices (actually
only the Texas Instruments device’s CSR access supplies the parity bit, so the remainder must be generated by the
EPLD). When accessing to CSR registers or theCapabilities ROM, theCSR LMC FPLA performs fourCSR Bus
accesses to consecutive locations. For simplicity, the rest of the CSR devices each have a byte address mapped
onto a 32bit word boundary, and theCSR LMC FPLA performs a single access, supplying zeroes for the upper
bytes during reads.

The CSR LMC FPLA detects several kinds of errors during accesses. These include read access to anon-
implemented device or memory location, to a write-only device, or non-aligned CSRaccess, in which case the
EPLD will supply zeroes to theHost Bus; write access to anon-implemented device or memory location, to ROM
or a non-aligned CSR address, in which case the write will be ignored; read or writeaccesses toLocal Memory
where the size of the transaction and the least significant address signals form a non-valid combination, in which
case an interrupt is signalled via theIR5 signal of theInterrupt Controller. The EPLD also controls timing for
every device access, as well as generating the required handshake signals for theHost Bus.

As the I82C59A resides in theCSR Bus, theCSR LMC FPLA collaborates with theFB FPLA during interrupt
acknowledge cycles to allow the 8bit interrupt number to reach the corresponding i486 data byte in keeping with
the i486 interrupt acknowledge protocol.

In addition to the TFB2002 and TFB2010 standard and non-standard CSR registers, there are a number of other
devices located in the CSR address space and physically connected to theCSR Bus. A brief description of these
devices and their applications in the system follows.

Capability ROM This is a 1K x 8bit ROM that holds the standard values specified in the IEEE P1212 documents
[CSR 91a, CSR 91b]. Most of these values hold the defaults to be loaded in the CSR registers to allow
proper system operation. Some module identification information is also stored in this ROM.

DS1397 Real-Time ClockThe DS1397 is a real-time clock device that contains 64bytes of data, including regis-
ters and some uncommitted RAM. It generates anIR4 interrupt signal from three different sources: an alarm
interrupt, a periodic interrupt, and a cycle-end interrupt.

82510 UART The 82510 is a well known dual serial port controller. It activates theIR6 interrupt signal when any
of interrupt conditions occur.

74BCT8373 Latch This device is a write-only register used to store various system information and configuration
bits. Bits 0 to 2 are used to control the illumination of the Futurebus+SWAP, FAULT andRUN front panel
LEDs. Bit 5 feeds the signalPATHSELused to select the i486 that is to propagate its outputs to theSingle i486
Bus; this bit is fed into theComparators Controlleras explained above. Bits 6 and 7 are the configuration
signalsERRSEL1andERRSEL2that modify the behaviour of theERROR PAL, as also explained above. Bits 3
and 4 are not used.

I82C59A Interrupt Controller The I82C59A Priority Interrupt Controller handles all the interrupt activity of the
DPU (with the exception ofNMI, as explained above). It generates the maskable interrupt signalINTR to the
i486, and supplies an 8bit interrupt vector for the interrupt acknowledge cycle. The interrupt acknowledge
protocol is carried out with the help of theFB FPLA andCSR LMC FPLA, again as described above.

Various devices are able to generate interrupts. These are outlined below:

IR0 TFB2010PFAIL* . The Arbitration Controller activates this signal upon reception of aPower Fail
arbitration message.

IR1 TFB2010INT* . The Arbitration Controller activates this signal whenever any of the standard Future-
bus+ interrupt mechanisms (Targeted Interrupts, Arbitration Messages,...) sets an interrupt condition
in the module. Some internal TFB2010 conditions can also cause this signal to be activated.



IR2 TFB2002INT* . The I/O Controller activates this signal whenever any of the interrupt conditions as
specified by theERROR HI, ERROR LOandINTERRUPT MASK ENABLECSR registers is active.

IR3 ExternalSWITCH. This interrupt is activated when a user toggles an external switch.

IR4 DS1397 TIMERIRQ. The TIMER activates this signal.

IR5 LMC ERR. TheCSR LMC FPLA activates this signal to indicate a severe error as explained above.

IR6 82510 UARTINI. The UART activates this signal whenever any of the internal interrupt conditions
occur.

IR7 Not used.

5.5.7 Futurebus+ interface

TheDPU module interfaces to the rest of the system, based on the standard Futurebus+, by means of the Texas
Instruments chipset. This chipset conforms to the Futurebus+ profile B with the exception of a central arbitration.
It is composed of three devices that perform the bus arbitration, protocol handshake and transaction management,
plus a number of BTL transceivers.

The chipset behaviour is configurable using the required standard CSR registers and some other CSR registers
specific to the chipset itself. The CSR registers are distributed (and in a few cases shared) among the three devices.
A brief description of the devices, their functionality and their relation to theDPU module is given below:

TFB2002 Futurebus+ I/O Controller The TFB2002 performs protocol handshaking to both the Futurebus+ and
the Host Bus. It translates incoming and outgoing transactions between both busses. It is also in charge
of participating as requester in theHost Busarbitration protocol. Several kinds of errors produced in the
transactions are detected by the TFB2002 and signalled (if not masked) to the host system by the activation
of the INT* signal (connected to the Interrupt ControllerIR2 request input). This chip also generates the
global system reset signalSYSRESET*to indicate that a global system reset is required. It interacts with the
TFB2010 and the TFB2022 to handle all incoming and outgoing transactions, and to theCSR Busto allow
access to its internal CSR registers.

TFB2010 Futurebus+ Arbitration Bus Controller The TFB2010 is connected to the Futurebus+ arbitration bus.
It performs the distributed arbitration protocol to gain tenure of the bus (in distributed mode) and to manage
arbitration messages. It signals Futurebus+ interrupts to the module activating theINT* signal (connected to
the Interrupt ControllerIR1 request input). It also activates thePFAIL* signal (connected toIR0) on reception
of a Power Failmessage. The TFB2010 interacts with the TFB2002 to coordinate Futurebus+ requests and
master signalling, and to theCSR Busto allow access to its internal CSR registers.

TFB2022 Futurebus+ Data Path Unit The TFB2022 is connected to the Futurebus+ andHost Busdata and ad-
dress busses. It performs address decoding and high speed data transfer tasks. It is provided with an internal
FIFO memory to handle both compelled and packet modes, and the necessary CSR registers to perform
address decoding according with the system memory map. It provides the address space selection signals
MS[0:1] to the host module to simplify local decoding logic. Access to its internal CSR registers does not
involve theCSR Bus, since that bus is managed by the TFB2022 itself. The TFB2022 interacts with the
TFB2002 to handle all Futurebus+ andHost Busdata bus transactions.

BTL Transceivers Futurebus+ uses BTL standard logic levels in its signals. All the signals connected to the Fu-
turebus+ must then be translated to BTL from the TTL levels used within the module. The BTL transceivers
are also provided with special Vcc connections to allow, in conjunction with the Futurebus+ connector ge-
ometry, for live insertion and withdrawal. Three types of transceiver are used in theDPU ; one of them,
theCompetition Transceiver, is a very specific devices that presents the module’s competition number to the
Futurebus+ arbitration bus.

The ERROR PAL generates theERROR1* signal that serves to isolate the module from the Futurebus+ by
disabling the outputs of all the transceivers except theCompetition Tranceiver, which is disabled by means of the
ERROR PAL’s OEB output. This is specifically because this is a fail-stop processor module; after module failure
the interface remains fully functional but is not able to compete for access to the Futurebus+ and thus is precluded
from propagating its erroneous behaviour to the system.



5.5.8 Support and Miscellaneous Logic

A MAX700 chip is used to generate two system reset signals, one active-low and one active-high. Each of these is
fed into a buffer and generates four pairs of buffered reset signals,MRESET[1:4]andMRESET[1:4]*. The MAX700
is used to ensure the minimum reset period is met. It also assertsRESETas soon the power supply voltage decreases
below an acceptable limit. ARESETcan also be triggered from theSYSRESET*signal generated by the TFB2002,
or by the boundary scanTRSTsignal.

TheDPU requires two primary clock frequencies. These are 33MHz for the i486/DX2 processors andHost
Bus, and 40MHz for the Texas Instruments chipset as a clock for its Futurebus+ interface. These frequencies are
generated from a single AV9194 oscillator. In addition, these frequencies can be changed by means of a DIL
switch, principally for debugging. To reduce clock skew, and also because there are two processors and thus
two different areas to propagate the clock signal to, the 33MHz clock is divided by 2 or 4 (selected by another
DIL switch, but normally 2) before being propagated to the processors. The divided signal will have half of the
skew and can be propagated with less problems than the original one. At the processors, CYB992 clock drivers
multiply the clock back to full frequency. These drivers are located nearest to the critical components. To solve
possible skew problems due to trace length, small additional skew variations can be introduced using some other
DIL switches.

To assist in debugging and testing, and also to test their usefulness, five 74ACT8994Digital Bus Monitors
have been connected in parallel with theHost Bus. These devices can be programmed to trigger on certain events
and store the result internally to a limited depth. They are set up and interrogated via a boundary scan loop, but
because of the complexity of the setup and the possible volume of data being returned, a separateboundary scan
loop is used to service them. Logically the two loops would be in operation at different times. The main boundary
scan loop is intended to be used early to test that data paths are correctly working. Having proven the electrical
operation of the card, theDPU software can then be debugged, using theDigital Bus Monitorto monitor certain
transactions to see that they complete as expected.

5.5.9 Error detection levels

As was indicated above, in order to obtain high dependability in the system, the data processing modules have to
detect errors as soon as possible to prevent corrupted data from contaminating the non-faulty parts of the system,
i.e. they must exhibit the fail-stop behaviour previously described. The design of the fault-tolerant mechanisms
and algorithms of theDPU must be very carefully done to ensure both low fault detection latencies and a high
fault detection coverage. Let us now examine the different error detection levels that have been included in the
prototypeDPU . Figure 5.7 shows the structure of the hardware involved in this schema:
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(a) In the first level, the processor performs its basic fault detection. Whenever it raises an exception due
to an error in the execution of the current instruction, the processor is halted after showing diagnostic
information on the system console.

(b) The module is a fail-stop one, incorporating two Intel 486/DX2-66 processors running in lock-step. Both
processors execute the same instructions with identical data and most signals are compared at every
clock cycle in order to detect errors. In the event of an error it is assumed to be a transient condition and
the processor activity is stopped by asserting the signalBACKOFF#for 16 cycles. Following this the
last cycle is restarted to recover the transient fault. If the error is reproduced again then the Futurebus+
output transceivers and the arbitration transceivers are disconnected from the system bus.

(c) In order to detect comparator errors, inverted logic is used to build pairs of comparators that perform the
same function. In consequence, the main voter receives the information regarding processor errors in
a duplicate complementary code that allows differentiation between three possibilities:OK, error in
the processorsanderror in the comparators. If an error occurs the module is disconnected from the
system and the processor held inactive.

(d) Both data buses are protected with parity. The i486 checks these bits at the end of every read cycle and
asserts the signalPCHK#in the case of an error, which isolates the module from the system.

(e) Errors that affect the normal instruction flow of the processor are detected by the timeout of one or both
of a pair of watch-dog timers. The watch-dog internal counters are reset by assertion of the processor
LOCK signal. The operating system must be programmed to periodically activate this signal once the
watch-dogs are enabled. Again, an error results in the isolation of the module.

(f) A memory controller monitors the accesses inside the address space of the module, and interrupts the
processor when an invalid address or an invalid transaction is detected, thereby aborting the transaction.

(g) The last protection level is part of the Futurebus+ chipset. These circuits incorporate a complex protec-
tion and monitoring facility that may be programmed via the CSR registers to interrupt the processor
in the case of an error. The processor can poll the state of the CSR registers within the interrupt routine
to determine the origin of the error.

5.6 DPU Demonstrator software2

TheDPU incorporates a software monitor in EPROM in order to:

(a) Allow access to the whole addressing space of Futurebus+, including I/O and CSR registers, in order to
configure the hardware of the system (interrupts,alarms, RTC, serial port, ROM, RAM and Futurebus+)

(b) Implement a set of low-level procedures within ROM to ease the application programming and driver
implementation. In addition the amount of memory required by the applications is drastically reduced
by using this ROM library.

On system restart, boot software in the EPROM switches the processor to 32bit mode, resets the segment
registers and programs the interrupt vectors, performs a local memory test and finally, if everything is correct after
thePower-ON Self-Test(POST), it displays a welcoming message. Following this it checks for any key pressed to
start the monitor; otherwise the user’s application is executed. The most important utilities provided by the monitor
are:

(a) memory write, read, fill, compare and copy,

(b) write, read or dump the CSR registers,

(c) serial port configuration and checking,

(d) real time clock programming (time, alarms and interrupts),

(e) program loading and debugging (in S-Record format), and

2The following section contributed by Carlos P´erez and Vicente Cerver´on, Dpto. de Inform´atica y Electr´onica, Universitat de Valencia, Av.
Doctor Moliner, 50, 46100 Burjassot, Valencia, Espa˜na,



(f) interrupt programming (enable register handlers and exceptions).

Another important alternative is the possibility of debugging the module using the GNU symbolic de-
bugger (gdb), which allows remote execution through serial port. Three debug functions,putDebugChar() ,
getDebugChar() andexceptionHandler() , allow communication with the serial port and control of the interrupt
handlers.

Figure 5.8 is a photograph of the Demonstrator, showing the twoDPUs working in parallel, each executing
its own user tasks. When one module detects an error, the system is reconfigured, isolating the faulty module and
allowing the task to migrate to the other non-faulty module. This process is based on the establishment of recovery
points, the sending ofI’m alive messages and the use of watch-dog timers. The user can trigger an artificial failure
by activating an external switch which forces the cancellation of message generation. A further activation of the
switch returns the system to normal behaviour, simulating live insertion of the module.

Figure 5.8: Photograph of the application execution environment

The software that perform the system recovery and reconfiguration has been split into two modules that are
described in the two following sections.

5.6.1 Event-driven State Machine

An Event-driven State Machine (ESM) performs error detection and reconfiguration and builds an interface to com-
municate with upper levels. Hardware interrupts are converted to events (see Table 5.3), which produce changes of
state. On power-ON one of theDPUs is elected as theMonarch, which is responsible for system reconfiguration
and recovery when failure or live insertion occur. If theMonarchfails, the otherDPU takes on that role. For each
DPU , this state machine differentiates among the following states:

OK : The system is free of failures.

ALONE : The otherDPU has failed and now I’mMonarch.

DEBUG : Test mode (I’m disabled during the test).

FAILURE : I’ve failed (until live insertion occurs).

READY : Debugging has ended or a new board has been inserted (I’m awaiting anI’m alive message).



When a module is live-inserted, it has to wait until theMonarchactivates the master enable bit in the modules’s
CSR registerCSR LOGICAL MODULE CONTROL. Following this the board goes to theREADYstate and begins to
sendI’m alive messages. TheMonarchgoes from theALONEstate to theOK state when it receives the firstI’m
alivemessage, and begins to send new messages. In the same way, when the new board receives the firstI’m alive
message it goes to theOK state. The changes of state can be seen in Figure 5.9.

System state is defined by four flags (AmIAlive, AmIOnline, IsAliveandAmIMonarch) and two variables (Tics
andTicsLastAlive). Ticscounts the elapsed time since system boot andTicsLastAliveholds the value ofTicswhen
the lastI’m alive message was received. The timer interrupt handler detects an error whenTics - TicsLastAliveis
greater than a defined value, thereby forcing the state machine into theALONEstate.

Event Cause Action
I’m alive I’m alive received TicsLastAliveis updated
Alignment Monarchdetected live insertion the newDPU is configured
Timeout error detected system recovery is initiated
Exception debugger exception debugger is started
End of debug debugger ended demonstration is continued
Power failure power failure DPU is isolated from the system
nmi error detected DPU is isolated from the system
Live insertion live insertion DPU waits forI’m alive message
Start-up power-up DPU waits for response after having sent

I’m alive messages

Table 5.3:ESMEvents

time-out

time-out

alignment

I´m alive receivedI´m alive received

I´m alive
received
I´m alive
received

I´m alive receivedI´m alive received

exception
power failpower fail

nmi

debug enddebug end
until live-insertionuntil live-insertion

live
insertion

live
insertion

power uppower up

power uppower up

Monarch

OKOK

READY

ALONE

DEBUG FAILED

READY
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5.6.2 Application Executor

The Application Executor (AE) module does not deal with events nor system messages. It uses the state of theESM
to drive the user application, and can handle system reconfiguration through task migration since it establishes
recovery points in shared memory. Depending on the state of theESM, theAE performs the following tasks:



OK : TheAE executes theDPU user application.

ALONE : TheAE recovers the state of the task of the failed module from the last recovery point and shares
the processor time among the two tasks.

ALONE ! OK : TheAE informs theESMthat a new module is ready to continue with the task from the
last checkpoint.

The module first checks for the detection of an alignment, indicating that the module has been live inserted.
If this is not the case, then a system start-up must be in progress, so the monarch election phase begins. Every
module sends an arbitration message with its geographical address and waits for the arrival of a new message
which indicates the newMonarch. The newMonarchperforms system configuration, programs the memory map
and initializes the CSR’s of the other boards, allowing Futurebus+accesses. If a module has been live inserted, it
has to wait until theMonarchsets the corresponding bit of the CSR register to enable bus mastership.

5.7 Evaluation of the dependability of theDPU Demonstrator3

One of the most important aspects to consider in the design of a general purpose fault-tolerant computer is the
evaluation of the dependability of the system [Laprie 90]. The main objective must be to demonstrate that the
behaviour of the system conforms to its specifications. This process is an essential prerequisite to knowing how
well the system will tolerate faults; it also quantifies some parameters that allow comparisons to be made with
other systems. Any evaluation of fault-tolerant characteristics within the FASST architecture must recognize that
the dependability of the system strongly depends on the existence of fail-stop processors, and also depends on the
rollback recovery capabilities of the remaining processors. When aDPU fails, firstly it has to be isolated from the
system in order to prevent it from corrupting the remainder of the system, and then eventually the other modules
have to detect its failure in order to begin the reconfiguration and recovery of the system. In this way, the evaluation
strategy needs to measure two important sets of parameters:

(a) Error detection latencies and coverages

(b) System reconfiguration latencies and coverages

These parameters are required to distinguish between several dependability models of the system, so that we
may calculate some dependability attributes, such as reliability, safety and availability.

We can apply many techniques to evaluate the system, depending on the level of the models and the set of
parameters and functions we want to calculate. [Siewiorek et al 92] considers these aspects in depth. In the fol-
lowing we choose to use Markov models to estimate reliability, availability and safety, since they easily allow the
inclusion of the coverage parameters [Carter et al 71] and also take into account the repairing process.

A Markov chain is composed from states which represent the system description (in this case the state will
show the number of processor modules that have failed) and a set of transitions based on probabilities which drive
the changes of state. Figure 5.10 depicts a macroscopic model of a fault tolerant system with two modules that
allows functional degradation and repair; it also takes into account any fail-stop violations of aDPU . The model
represents the essence of theDPU Demonstrator.

In stateS2the twoDPUs are working perfectly. Let us assume that eventually a failure occurs. If the error
is detected then the model evolves to stateS1, where the system is also operative but degraded. If the error is not
detected, we suppose that the system fails in a non-safe way, since we cannot predict the consequences of the error,
and the model evolves to stateNSF. Lastly, the model evolves to stateSFwhen the system safely detects the error
but cannot reconfigure itself, and as a consequence is inoperative.

In order to estimate the reliability function of the system, let us assume that when aDPU fails (the model
enters stateS1), it can be live-withdrawn, repaired and live-inserted back into the system in 1/� hours. An analytical
solution of the chain will then give the probability of being in statesS1or S2as a function of the failure and repair
rates� and�:

R(t) = pS2(t) + pS1(t)

3The following section contributed by Rafael J. Mart´ınez Durá, Instituto de Rob´otica, Universitat de Val`encia, Hugo de Moncada 4, Entlo.,
46010, Valencia, Espa˜na, and Pedro Gil, Departamento de Ingenier´ıa de Sistemas, Computaci´on y Automática, Universidad Polit´ecnica de
Valencia, Camino de Vera, s/n, Valencia, Espa˜na.
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CD Fault detection coverage of theDPU 69.7 %
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CR Error recovery coverage of the system 72.7 %

CDR Safe error recovery coverage of the system 67.8 %
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Figure 5.10: Macroscopic model
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where anyk is a constant, and:

f1(�; �) =
p
kA�2 + kB�� + kC�2 (5.2)

The availability of the system can be calculated in the same way, but with care to avoid the absorbing states of
the model adding system repairing rates from the statesSFandNSFto the statesS1andS2. A similar procedure
can be applied to obtain the safety of the system but by considering the probability of being in the statesS1, S2and
SF. The computations can be simplified by using the SHARPE software [Sahner et al 95]. In the steady state the
equations for availability and safety reduce to:

Availability = pS2 + pS1 =
k12��+ k13�

2

f22 (�; �)
(5.3)

Safety = pS2 + pS1 + pSF = 1� pNSF = 1�
k14�

2 + k15��

f22 (�; �)
(5.4)

where:
f2(�; �) =

p
kD�2 + kE��+ kF�2 (5.5)

In order to quantify these functions, it is necessary to estimate the values of�, �, CD, C1�D, CR, CDR and
CD(1�R) by means of a process called experimental validation [Iyer 95]. This can be done at several points in



the life of a system: in the design phase a system can be simulated to obtain the parameters; when a prototype is
available it can be stimulated with synthetic faults, using a complex process called fault injection [Hsueh et al 97],
and the consequences measured4.

TheDPU Demonstrator model has been validated using a pin level fault injector designed at the Universidad
Politécnica de Valencia [Gil et al 97], plus a DAS (Digital Analysis System) to avoid the noise induced by the
high frequencies and to trigger several events in the same injection. Figure 5.11 shows a diagram of the injection
environment.
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Figure 5.11: The injection environment

The main purpose of validation experiments is to calculate the fault detection and recovery coverages, and
to measure the latency time of the fault tolerant algorithms and mechanisms within the system. In the following
paragraphs we show the progression towards the calculation of the most important dependability parameters of the
system. The experiment involves injecting a number of stuck-at faults in the masteri486A, the slavei486B, the
Host Bus and the CSR Bus. The faults can be classified as permanent, transient or intermittent,according to the
time of activation of the fault. Table 5.4 shows the experimental results.

Injection point
Master Slave Host Bus CSR Bus

Kind Permanent 2640 2640 750 630
of Transient 2640 2640 750 630

Fault Intermittent 2640 2640 750 630
Total: 7920 7920 2250 1890

Total injected faults: 19980

Table 5.4: Injected faults

Once the fault is injected, it is possible to determine whether the fault is detected by the comparators, by
parity or by the watch-dog timers included in theDPU , and also to measure the latency of the comparators in the
detection of the error, the time it takes to halt theDPU (in order to analyze the fail-stop characteristics), and the
latency in the reconfiguration of the system. The results show that the system detects the fault 72.1% of the time
and successfully reconfigures 75.1% of the time. Figure 5.12 shows the coverages.

1.9 % 4.9 %

Detection Recovery

70.2 %

Figure 5.12:DPU Demonstrator coverages

The next step is to solve the analytical model discussed above, which depends on the failure and repair rates,�
and�, of the modules of the system. Although these parameters can be roughly estimated using several reliability
standards (such as MIL-HDBK 217F), it does not make much sense to solve the model to obtain single numbers in

4The table of Figure 5.10 shows the values of the coverages obtained from fault injection experiments.



order to show the dependability of the system; it is more useful to compare several systems for similar failure and
repair rates, solving the respective models with the same values.

One of the most important steps in the experimental validation is the measurement of the latency times of the
error detection, module halt and system reconfiguration. This yields direct observation of the fail-stop character-
istics of the module, and also the real time capabilities of a simple application. Table 5.5 shows the measures
acquired in injection experiments:

Comparator Parity Watch-Dog Global
Error Detection 528,0000 5242,000 1145,000 810,0000

Module halt 6697,500 5242,000 1145,000 5170,000
System recovery 6,27E+08

Table 5.5: Median of the latency times in nanoseconds

To finish the analysis, the following graphs show the distribution functions of the several fault coverages versus
time, and also the reconfiguration time of the system. These show the fault detection coverage of the comparators,
parity errors, and also of the errors that modify the normal instruction flow (which are detected by the watchdogs).
Figure 5.13 shows a comparison of the three detection error mechanisms. The abcises show the elapsed time from
the activation of a effective error to the detection of the error. The ordinates measure the percentage of cases where
the error has been detected before the elapsed time.

The comparators exhibit the best coverage and the least latency time, as could be expected, since they have
been designed especially for theDPU . Adding the three functions yields the asymptotic fault detection coverage
of theDPU , covering about 70% of the injected faults.

Figure 5.13: Error detection coverages versus time

The graph of Figure 5.14 shows the halt time of theDPU , i.e. the time elapsed from injection of the fault until
theHOLD signal of the processor is activated, thereby isolating theDPU from the system. Again it is valuable to
differentiate between the errors detected by the comparators, the parity protection mechanisms and the watch-dogs.
The initial low coverage by the comparators is due to the activation of the transient error recovery mechanism when
a comparison error is detected; the module performs aBACKOFFcycle for 16 clock cycles to avoid the system
from halting due to a transient fault, and if the effect of the fault is still active when the processor executes the
previous instruction the module is stopped - this causes the halt percentage to be very low for the first 300 ns after
fault activation.

The last graph (Figure 5.15) measures the reconfiguration time of the system. This process begins with the
error detection phase. When the timer that accounts for the arrival ofI’m alive messages expires, the system
reconfigures itself and the failed application is recovered. The figure depicts a histogram with the frequencies



Figure 5.14: Module halt coverages versus time

of the several measured reconfiguration times, as well as the cumulative function of them, which represents the
asymptotic recovery coverage of the system.

A more detailed description of the experiment can be found in [Mart´ınez 97].

Figure 5.15: System reconfiguration coverages versus time

5.8 Summary

As can be seen, a fail-stop processor is not like a normal one; it requires considerable extra design effort and care,
and a lot more logic. In order to obtain the dependability attributes of the system and to demonstrate the efficiency
of the various algorithms and mechanisms, a complex high speed injection environment needs to be constructed so
that physical fault injection can be used to test the behaviour of the system in the presence of faults. Futurebus+
does not contribute to this, but does provide a relatively protected environment within which errors can be detected.
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6.1 Secondary Storage1

Now we turn to an important secondary issue, not to stress the pun too far: that of secondary storage in a fault-
tolerant system. The primary concern here is to extend the ability to tolerate processor failures to secondary
storage, i.e. to extend the FASST architecture and recovery protocol to include secondary storage. This is done in
three steps:

(a) By using redundancy in secondary storage.

(b) By designing the disk controller cache as stable memory.

(b) By incorporating the disk controller cache within the recovery protocol.

First let us look at the use of redundancy in secondary storage, now a standard way of introducing fault-
tolerance, and a clear descendant of attempts to increase the performance of secondary storage. These attempts
arose from the disparity between the rates of improvement of processor and secondary storage performances. Bill
Joy predicted that processor performance would increase according to:

MIPS = 2year�1984 (6.1)

While millions of instructions per second (MIPS) have long since fallen from favour, Joy’s Law provides us
with a useful rule of thumb; that processor performance approximately doubleseach year. Advances in disk tech-
nology, relying on advances in mechanical and magnetic technologies, have shown relatively modest improvements
as Table 6.1 shows.

Areal Density 27% p.a.
Linear Density 13% p.a.
Inter-Track Density 10% p.a.
Transfer Rate 10% p.a.
Seek Time 8% p.a.
Rotation Speed 8% p.a.

Table 6.1: Historical Rates of Improvement in Disk Technology

Amdahl’s Law [Amdahl 67] calculates the effective speedupS of a system when some fractionf of the work
can be performed in a faster mode, the speedup in the faster mode beingk.

S =
1

(1� f) + f
k

(6.2)

This implies that for a given application, if 10% of its work is I/O bound, then a 100-fold increase in processor
speed, in the absence of any improvement in disk performance, will only increase the performance of the applica-
tion by a factor of 10. In recent years, the growing disparity between CPU and disk speeds has been bridged by
increased main memory size, caches on disk controllers and improved file system technology. All of these methods
are based on the observation that disk access patterns demonstrate temporal and spatial locality; one of the most
compelling application areas today, multimedia, often requiresaccess to large amounts of data which areaccessed
in a sequential manner. Clever cacheing and buffering alone will not be able to provide the high, sustained data
rates required by these applications.

6.1.1 Disk Arrays

One solution to the impending I/O crisis is to use multiple disks in parallel. This allows multiple small requests to
be serviced simultaneously, while larger requests can be carried out more quickly by reading data from a number
of disks in parallel. Cray Research used one such method, known as disk striping, to improve the I/O performance
of their super-computers [Cray 85]. Disk striping involves interleaving data over a set of disks, that is, placing sub-
sequent blocks of data on different disks. The size of a block of data may vary from one bit to multiple kilobytes.

1The following sections contributed by Brian Coghlan, Jeremy Jones, Danny Keogan and Philip O’Carroll, Department of Computer
Science, Trinity College Dublin
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For IBM, Kim [Kim 85, Kim et al 85, Kim 86, Kim et al 87, Kim et al 91] argued that these super-computing tech-
niques could also benefit database applications. To address the concern for reliability in this context, she proposed
extending the striping approach to include a checksum disk. This checksum disk would store error correction codes
(ECC). She concluded that this approach would provide improved performance, parallelism through interleaving,
and a uniform distribution of requests over a set of disks.

6.2 Redundant Arrays of Independent Disks (RAID)

In 1987/88, Patterson, Gibson and Katz, a group of researchers at the University of California at Berkeley, pub-
lished first a technical report [Patterson et al 87], then a paper [Patterson et al 88] which built on Kim’s work,
providing an analysis of the reliability of an array of disks, coining the term RAID and defining a set of RAID
levels. Disk manufacturers quote the reliability of their disks in terms of mean time to failure (MTTF ). Patterson
et al asserted that for an array of N disks, the mean time to failure for an arrayMTTFarray could be calculated in
terms of theMTTF for a single diskMTTFdisk thus:

MTTFarray =
MTTFdisk

N
(6.3)

At that time, theMTTF for a typical commodity disk was 30,000 hours, this meant that for a ten disk array
theMTTF would be less than 20 weeks. Clearly, redundancy in disk arrays was not an optional extra. Patterson
et al. also developed an expression for the mean time to failure of a RAID,MTTFRAID. If an array ofD data
disks is arranged intoNG groupseach protected byC disks holding ECC information, and the mean time to repair
of a disk isMTTR then:

MTTFRAID =
MTTF 2

disk

(D + G�NG)�(G+C � 1)�MTTR
(6.4)

The above equation only deals with disk failures, and does not take into account failures in power supplies, ca-
bling, controllers or software. A more detailed analysis of possible modes of failure can be found in [Schultze 88].

6.2.1 Taxonomy of RAID

Patterson et al defined a number of schemes governing the placement of data and ECC information over an array
of disks. These schemas were referred to as RAID levels. Each RAID level attempts to redress some weakness or
flaw in a previous one. Before discussing the details of individual levels, some general concepts and terminology
will be introduced. The definitions below are slightly modified versions of those given in [E.K.Lee 90].

(a) A sector is the minimal unit of data that can be read or written to a disk.

(b) A block is the unit of data interleaving, the amount of data placed on one disk before placing data on
another, also referred to as a stripe unit. A block is an integral number of sectors.

(c) A stripe is the set of blocks that ECCs are calculated over, also referred to as a parity group, or a parity
stripe.

(d) A rank is the set of disks a stripe is placed on.

(e) A string is the set of disks formed by taking one disk from each rank; a disk may not belong to two
strings.

Although it is common practise, particularly in software RAIDs, to attach more than one string to a disk
controller, the string becomes a single point of failure, and so we will confine the discussion to configurations
where every string is attached to a different disk controller.

Five RAID levels were defined. Additional levels have since been proposed, see [Katz et al 89, RAB 93].



6.2.1.1 RAID 0

RAID Level 0 could perhaps be more accurately referred to as AID 0 since this data placement scheme includes
no redundant (ECC) information. RAID 0 improves performance through parallelism and incurs none of the
performance or capacity overheads associated with redundant schemes. However, if one of the disks in the array
fails, data will be lost. As stated in section 6.2 this gives a mean time to failure which is inversely proportional to
the number of disks in the array. As the number of disks in the array increases, this quickly reduces theMTTF of
the array to an unacceptable level.

Data is striped over the drives. No parity is stored. The drive spindles may be synchronised, but this is not
mandatory. Each successive block of the disk subsystem is stored on a successive drive, with wraparound. Thus
logical block 1 will in all likelihood be on physical block 1 of drive 1, logical block 2 on physical block 1 of drive
2, logical block 3 on physical block 1 of drive 3, logical block 4 on physical block 1 of drive 4, and so on. At the
time that each block is being accessed from its drive, the other drives are free for other accesses. This in no way
precludes, say, a simultaneous access involving all drives. The advantage is that a number of disks can be seeking
and transferring data in parallel, giving improved throughput. The disadvantage is that since there is no parity or
any other form of redundant information stored, there is no tolerance to disk faults nor any increase in availability.

6.2.1.2 RAID 1

RAID Level 1 mirrors each disk in the array to provide redundancy and thus improve on the reliability of RAID
0. Data is still interleaved onto the disk in a similar way to RAID 0, buteach disk now has a mirror disk. Data is
written to both a disk and its mirror. Reads can be distributed to either disk so as to balance the load between the
two. The advantages are that this gives the very best tolerance to disk faults and availability of all RAID levels, and
that pairs of disks can be seeking and transferring data in parallel, giving improved throughput. The disadvantage
is that this yields the most expensive level of RAID with the least storage capacity.

For RAID 1 disks are paired and the data is duplicated on each drive pair. No parity is stored, since100%
redundant data is already available. The drive spindles may be synchronised, but this is not mandatory. RAID
1 shows better read performance than RAID 0 due to the possibility of distibuting requests over more disks.
Writes will incur the overhead inherent in transferring to two disks simultaneously. Recovery of a failed disk is
accomplished by simply copying the contents of the remaining good disk onto a replacement disk. Data losses
only occur in RAID 1 in the unlikely event of a disk and it’s mirror disk failing simultaneously. RAID 1 effectively
solves the reliability problems of RAID 0, but at an extremely high cost. Only half the storage capacity of the
array is useable, doubling the cost per megabyte of storage space. The remaining levels cut down on this capacity
overhead.

6.2.1.3 RAID 2

For RAID Level 2 the data is striped over the drives, with a number of redundant drives dedicated to storing
a Hamming code [Hamming 50] formed by bit or byte-interleaved parity over the data on the other disks. The
coding provides for single error correction and double error detection. This is similar to the ECC protection of data
in memory. The drive spindles may be synchronised, but this is not mandatory.

The advantages are that the redundancy improves tolerance to disk faults and availability over RAID level 0,
and that it is both less expensive and gives greater storage capacity than RAID level 1. The disadvantages are that
other disks cannot be seeking nor transferring data in parallel (since allaccesses involve the same redundant disks),
and that every write involves a parity read-modify-write.

RAID 2 reduces the capacity overhead of RAID 1 by using the Hamming code. If data is bit or byte-interleaved
onto a group of G disks, and C check disks, then for a given G the value of C is determined by choosing the lowest
integral value for which the following inequality is true:

(G+C + 1) � 2C (6.5)

For example, for a group of 10 disks, 4 check disks would be required; a group of 25 would only require 5
check disks. Although RAID 2 reduces the capacity overhead of RAID 1 with minimal degradation of reliability,
because it uses bit or byte interleaving, it requires that all disks in a rank be involved in each operation on that rank.
This reduces the ability of the system to perform multiple requests in parallel, since only requests which involve
different ranks can be executed simultaneously, causing small operations to be handled inefficiently.
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6.2.1.4 RAID 3

RAID Level 3 further reduces the capacity overhead of RAID 2 by taking a slightly different approach to error
detection and correction. Essentially, Hamming codes use one bit to indicate that a single bit error occurred; the
remaining check bits identify which one. For a disk array, it is not necessary to encode all this information. If a
disk fails, its controller will be aware of the failure, making the additional bits of the Hamming code superfluous.
RAID 3 uses parity to detect single bit errors, the additional information provided by the controller allowing it to
recreate the contents of a failed disk.

For RAID Level 3 the disks are accessed in parallel, with one redundant drive that stores the parity formed by
exclusive-ORing the data on the other disks (see Figure 6.1). The drive spindles should be synchronised to allow
all the disks to be accessed in parallel.
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Figure 6.1: RAID Level 3

The advantages are that the redundancy improves tolerance to disk faults and availability over RAID level 0,
that, along with levels 4 and 5, this yields the least expensive solution with the greatest storage capacity, and that
parallel access to all the disks gives the highest block transfer rate of all RAID levels. The disadvantages are that
there is no potential for benefit from other disks seeking in parallel (since all accesses involve all disks), that it
gives poor performance with small block sizes, and that the spindles should be synchronised.

RAID 3 suffers the same performance impediments as RAID 2 since it also uses bit or byte interleaving. Both
RAID levels perform particularly badly under workloads with many small operations, especially small writes. The
advantage of RAID 3 lies in the fact that bit and byte interleaving systems are easy to implement in hardware, and
applications which require streaming of data on and off disks in large blocks can be made to perform well.

6.2.1.5 RAID 4

Low performance for small operations under RAID 2 and 3 is purely an artifact of bit or byte interleaving. RAID
Level 4 employs the block interleaving approach used by RAID 0 and 1 and combines it with parity for error
correction. Data is striped over the drives, with one redundant drive that is dedicated to store the parity formed by
exclusive-ORing the data on the other disks. The drive spindles may be synchronised, but this is not mandatory.

The advantages are that the redundancy improves tolerance to disk faults and availability over RAID level 0,
and that along with levels 3 and 5, this is the least expensive solution with the greatest storage capacity. The
disadvantages are that other disks cannot be seeking nor transferring data in parallel (since allaccesses involve the
same redundant disks), and that every write involves a parity read-modify-write.



RAID 4 is more reliable than RAID 0, has a lower capacity overhead than RAID 1 or 2, and performs better
than RAID 3 for small operations. For large operations RAID 4 performs similarly to RAID 3. However, RAID 4
has one major disadvantage. All parity information for a rank is held on a single disk. This means that all writes
to any portion of that rank of disks must access the parity disk. This disk can soon become a bottleneck.

6.2.1.6 RAID 5

In RAID Level 5, parity information is shuffled through the array of disks, as shown in Figure 6.2. Shuffling
the parity avoids the problem of the parity disks becoming bottlenecks in the system. A variety of placement
patterns have been proposed [Muntz et al 90, Merchant et al 92, Holland et al 92, Chen et al 95], and it has been
suggested that for certain workloads parity placement may have performance consequences, both in failure-free
state [E.K.Lee 90, E.K.Lee et al 91], and in failure state [Muntz et al 90, Chandy et al 93, Ng et al 92].

Data is striped over the drives. Parity is still stored on a drive, where the parity is formed by exclusive-ORing
the data on the other drives, but no particular drive is dedicated to store the parity. Instead the parity associated with
each data block is stored on a different drive. The drive spindles may be synchronised, but this is not mandatory.
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Figure 6.2: RAID Level 5

The advantages are that redundancy improves tolerance to disk faults and availability over RAID level 0, that,
along with levels 3 and 4, this is the least expensive solution with the greatest storage capacity, and that other disks
can be seeking and transferring data in parallel, giving improved throughput. The disadvantage is that every write
involves a parity read-modify-write.

6.2.1.7 Multiple-Rank and Multiplex-Controller RAIDs

Most disk interconnection technologies allow more than one disk to be attached toeach disk controller, which may
then control disks from several ranks. When multiple RAID controllers are connected to the same disk array in
duplex (see Figure 6.3), triplex or quadruplex configurations, this gives an increased tolerance to RAID controller
faults.
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6.2.2 The First RAID Prototype

The first RAID prototype, RAID-I, was built at the University of California at Berkeley [Schultze 88]. It consisted
of the following off-the-shelf components:

(a) 1 Sun-4/280 with 128MB of memory.

(b) 7 32-bit VME-SCSI Host/Bus Adapters.

(c) 32 CDC Wren-IV 340MB 5.25 disks.

(d) 1 Ethernet Interface.

The Berkeley RAID group discovered a hierarchy of bottlenecks which limited the overall performance of their
system [E.K.Lee 90, Chervenak 90, Chervenak et al 91, Chervenak 91]. Performance was critically affected by a
pathological interaction between the Sun-4/280’s memory system and the Sprite operating system. These problems
were addressed in their second generation RAID-II prototype [E.K.Lee 91], and strongly influenced the approach
taken below.

6.3 Stable Disk

A special disk subsystem has been proposed for the FASST architecture, initially intended for use in a Futurebus+
environment [Futurebus+ 94a], and subsequently retargeted for the EISA I/O bus [EISA 92] of a shared memory
multiprocessor PC system manufactured by Corollary Inc. [Corollary 92]. The basic principles, however, are not
dependent upon any specific host bus features.

The Corollary machine is based on a dual bus architecture. An EISA bus provides support for normal PC I/O
cards while a proprietary Extended C-Bus (EC-Bus) provides access to shared global memory and implements
a proprietary multiprocessingcache coherency protocol. The system is typicallypopulated with a base CPU
board, one asymmetric CPU board, and four symmetric CPU boards. Asymmetric and symmetric boards are
distinguished by the fact that only symmetric boards haveaccess to both the EC bus and EISA bus. All boards
have Intel i486/DX2 66MHz processors, and 1MB of second levelcache. The system typically might have 64MB
of global shared memory.

The special disk subsystem, the Stable Disk [Coghlan et al 92a], has been developed by Tolsys Ltd., a campus
company of Trinity College, Dublin. It consists of one or more RAID Controllers, one or more companion Stable
Memories, plus a large array of disks (see Figures 6.4 and 6.5).

The Stable Disk is principally designed for astreamingenvironment, where data flows to and from disk in large
blocks, such as would be the case when using RAID 3 with a Log Structured Filesystem (LFS) [Ousterhout et al 88,
Ousterhout et al 89]. It is also designed to be integrated into the FASST recovery protocol.



Figure 6.4: Stable Disk : RAID Controller and Stable Memory

Figure 6.5: Stable Disk : RAID Chassis and Corollary host



6.4 RAID Controller for the Stable Disk

Figure 6.6 illustrates the low level architecture of the RAID Controller, which includes:

(a) Plug-in SCSI modules that allow for 1 to 5 SCSI-2 ports.

(b) Plug-in array modules that allow for 8bit, 16bit or 32bit RAID strings.

(c) Hardware support for RAID levels 0, 1, 3 and 5.

(d) An EISA host bus interface that supports voting for nMR operation.

(e) A private 100MB/s VSBus interface.
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Figure 6.6: RAID Controller Block Diagram

This RAID Controller is designed to allow high-performance fault-tolerant disk subsystems to be constructed
that have up to five 32bit RAID strings,each with up to seven ranks, and with multiplex controllers. In concept, it
comprises a host bus programming interface, an external VSBus interface for stream-like data transfers independent
of the host bus, an array data path that provides hardware support for RAID operations, and a set of disk controllers
for interfacing to disks.

The logic of the array and disk interfaces is separated. An array module implements a byte-wide slice of the
array data path; up to four of these may be installed. A SCSI disk controller module implements a single disk
interface, five of which may be installed. This flexibility allows non-array disk subsystems, or array subsystems
that do not need the usual hardware support, to be constructed.

A SCSI disk controller module contains a 16bit SCSI-2 disk controller [NCR53C916a, NCR53C916b] plus a
SCSI bus extender [NCR53C932] that expands the SCSI bus width to 32bits. These are very comprehensive de-
vices, which support a wide range of SCSI-2 operating modes. They may be set up for asynchronous, synchronous,
fast or wide SCSI bus protocols. Both low-level commands and high-level macro-commands are accepted. The
latter execute instructions to perform multiple-phase SCSI-2 sequences including phase and information decision



making, program flow control, status reporting, error recovery and progress indication. These eliminate many time
consuming interrupts and thus significantly reduce the overheads of managing the SCSI-2 bus. Nonetheless, per-
formance still suffers from close interaction between the disk controller and array data path actions, and therefore
would benefit from their decoupling via some form of randomlyaccessible buffering.

An array module implements an 8bit slice of the array data path, using a device [NCR53C920a, NCR53C920b]
that provides hardware support for RAID levels 0, 1, 3 and 5. These modules are not absolutely necessary for
an array subsystem, but if configured without them, performance suffers badly. To construct a minimal array
configuration with hardware support, at least one array data path module must be installed. This will allow an
array with 8bit SCSI interfaces. For16bit interfaces, two array data path modules must be installed, whilst for
32bit interfaces all four modules must be installed.
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Figure 6.7: Layout of modules on the RAID Controller

Particular attention has been paid to provisions for redundancy. A single RAID Controller is clearly a single
point of failure, although it may well be reliable enough for certain applications. For fault-tolerant operation a
number of controllers can operate together in a nMR fault-tolerant arrangement. For example, 3 controllers may
work in a triple modular redundancy (TMR) arrangement. The host CPUs would broadcast data and commands
to all replicas, and would read data from all replicas (a gross simplification, since the nMR does not extend to the
SCSI interfaces). If a controller detected a difference between the data on the host bus and the data at the input
to its output buffers, it would trap to an error handler. The faulty controller would isolate itself from the bus and
indicate that it needed repair. A tri-state host bus such as EISA is not entirely suited to this arrangement (a wire-OR
host bus such as the open-collector Futurebus+ would suit better), so the RAID Controller has a generic host bus
interface allowing a single active master with multiple passive slaves, with role reversal if needed.

Each RAID Controller is a member of a nMR group of up to three controllers, which all respond to the same
addresses and hence operate in parallel. Its operation is controlled by a number of memory mapped registers, and
is symmetrically redundant in that all the registers can beaccessed from the host bus and the VSBus.

The control registers are located in window slots at the top of the companion Stable Memory’s address space.
The top 64KB of each Stable Memory is reserved for memory mapped I/O, and a RAID controller occupies 4kB
within this address space, located at a base address derived fromnMR group no andnMR controller no straps.



Accessing the control registers within this region allows commands to be written to a single RAID Controller
within a group or broadcast to all controllers in a group, or even all groups. Accesses from the host bus can be
disabled if felt necessary; e.g. for the determination of which controller is faulty in a nMR group.

The companion Stable Memory is designed to be able to check on each access whether a processor is allowed
to access or modify the relevant memory page. By locating the RAID Controller’s control registers in slot windows
within the Stable Memory’s address space, this protection mechanism is automatically extended to the controller
whenever it is used in conjunction with the memory. Any accesses from the host bus will be checked by the
memory’s protection mechanism, and violations of that protection will be handled by that mechanism.

6.4.1 Information Flow

The array data path modules connect to a 128kB DMA buffer for read data, and another of the same size for write
data, which allow burst transfers to or from the array data paths. These buffers are structured as FIFOs. The DMA
buffers decouple the array DMA activity from any DMA activity on the host bus or VSBus, so that the two can
proceed at independent rates, and may even occur concurrently. Typically for transfers to disk, for example, the
transfer to disk of blockJ of data would be conducted via DMA out of the DMA buffers to the array concurrently
with the transfer of blockJ + 1 of data from the VSBus into the DMA buffers.

Normally DMA is used to transfer data on the VSBus from/to the VSBus in/out of the DMA data buffers.
However, a mode bit may be programmed to divert the DMA transfers so that they may be performed from/to the
host bus. In either case the DMA width is fixed at 32bits and theTRSHTOBUSor TRSHFRBUSregister is written
to initiate the shift:

*TRSHTOBUS = count; -- word count

When the DMA is diverted via the host bus, it may proceedunder hardware control or via host bus memory
mapped I/O accesses toTRHOSTDMA. In the first case the DMA proceeds automatically. In the latter case the
DMA accesses must be programmed:

for (i=0; i<count; i++)
*TRHOSTDMA = data[i]; -- loop doing DMA

DMA between the buffers and the array data path proceedsunder hardware control. TheTRSHTOARRYor
TRSHFRARRYlocation is written to initiate the transfer:

*TRSHTOARRAY = count; -- word count

While DMA can be performed via the host bus, it is intended to be done to or from Stable Memories
via the VSBus. This bus is modelled on the DT-Connect II standard proposed by Data Translation Ltd.,
and is defined as an open interface specification, a 32bit extension to their earlier 16bit DT-Connect standard
[DT-Connect, DT-Connect II]. Generally these busses are used for connecting data-acquisition, frame-grabber and
image processing boards together by a ribbon cable, so that transfers of information between them need not involve
the system bus. The VSBus does likewise. Figure 6.8 illustrates how a number of RAID Controllers and Stable
Memories may be interconnected by the VSBus. Transfers along the VSBus take place at 100MB/s with negligible
reduction in host bandwidth (<2%).

There can only be one master of the bus at any time, the others being either slaves or inactive. A master can
communicate with more than one slave, in broadcast fashion. The master and slaves must be selected as such by
the host via the host bus. There are no addresses on the bus, and data transfers occur sequentially (i.e. in burst
mode). It is up to the master and slaves to handle the data as necessary. The control algorithm is as follows :

{
set-up slaves
start master
wait for completion

}
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6.4.2 nMR Operation

Both the RAID Controllers and the Stable Memories contain an interesting voting circuit for use in nMR fault-
tolerant configurations. Groups of 2 or 3 RAID Controllers can be configured with the same group address;
similarly for the Stable Memories. One unit must be set up as the nMR master and the others as nMR slaves.

For all write accesses (memory and host bus memory mapped I/O) all units in the group perform the writes.
For memory read accesses all units in the group respond internally, but only the master drives the host data bus.
Both master and slaves compare the host data with their own internal data. If a discrepancy is found the host bus
error signal is activated before the host bus wait signal is released, an interrupt is registered and possibly forwarded
to the VSBus or the host bus. The faulty unit must be identified and isolated. This can be performed by disabling
the host bus buffers and testing each unit in turn. A new master may need to be selected.

For host bus memory mapped I/O read accesses all units in the group respond internally, but only the master
drives the host data bus bitsd30-d0. Both master and slaves compare these host data bus bits with their own internal
data. If a discrepancy exists, data bitd31 is driven low by the unit(s) to indicate disagreement (no error or event is
signalled). This allows broadcall status reads where a CPU may busy-wait ond31. Whend31==1 all units have
reached identical status. Obviously timeouts need to be used to limit the busy-wait duration. The special circuitry
generatingd31on each unit performs the following function:



MASTER: SLAVE:
if (agreement & d31) if (disagreement)

d31 = 1; d31 = 0;
else else

tristate(d31); tristate(d31);

For host bus memory mapped I/O accesses, onlyd0-d30are checked. For memory accessesd31will be checked
as well, so eventually a faultyd31will be detected on memory accesses anyway. However, even if this were not
so:

(a) if d31should be 1 and it is 0, then a timeout will occur, so this is not a problem, since that unit would
then be identified by diagnostics and its host interface disabled. Note that a 0 will override a 1 for both
open-collector busses (eg. Futurebus+) and TTL busses (eg. EISA).

(b) if d31should be 0 and it is 1, then that unit is a nMR slave anyway, since only a slave activatesd31=0.
It is faulty, but does not affect the operation of the nMR master. If it is subsequently chosen as a nMR
master, this fault will not affect its behaviour as a master.

6.5 Stable Memory for the Stable Disk

The second step in extending the ability to tolerate processor failures to secondary storage is to design the disk
controller cache as a stable memory. The purpose of such a cache is to provide private memory for intelligent use
by the disk controller. The system would be simpler without this, but in the absence of a private path to memory
many disk interactions will unnecessarily consume system bus bandwidth. Unfortunately, too, the trend is to larger
disk caches. If they were small then they might be managed within the recovery protocol as a special case. For
larger disk caches it is more efficient if they are designed to have the same functionality as main memory (i.e. the
SM ).

The Stable Memory of Figure 6.10 is designed with this in mind, and also as an experimental testbed. It has
the following interesting features:

(a) It includes 8MB (or 32MB) of ECC protected VRAM.

(b) It supports multiple checkpointing methods (intra-bank, interbank, log-mode and [optionally] instanta-
neous) that can checkpoint at rates from 100MB/s to 40GB/s.

(c) Protection logic is optionally supported, with per pageaccess control & statusupdate, and CPU-CPU
centralised dependency tracking.

(d) It is managed by an embedded controller with cache, that includes serial links that may be used for data
recovery.

(e) The EISA host bus interface supports voting for nMR operation.

(f) A private 100MB/s VSBus interface is also provided.

The Stable Memory is an intelligent memory system based on video-RAMs (VRAMs). VRAMs are dual ported
memories having a parallel and a serial port. The host CPUs can access the VRAMs as normal memory from a
host bus using the VRAM’s parallel port. The VRAM serial ports are interconnected via a local bus which also is
connected via buffers to the external VSBus, so that it can be used as a private path for high speed I/O (principally
disk I/O).

The primary support for the recovery protocol is through checkpointing and rollback. Memory can be dynam-
ically partitioned into normal and stable 4KB pages. For a stable page, two pages are allocated. One page is active
and the other is the backup. After a system failure, data stored in a stable page is recoverable from the backup
copy.

A number of checkpointing methods are supported. Firstly, there are several checkpointing methods based
on physically copying between the active and backup pages [Coghlan et al 89, Coghlan et al 91, Coghlan et al 93],
the speed of which is greatly enhanced by the use of VRAMs. Alternatively, log-mode checkpointing maintains a
log of the addresses and original values of all modified locations, which may be replayed in reverse order to return
to the previous checkpointed state. Finally, switch-mode checkpointing [Coghlan et al 92b] reverses the active and
backup roles by simply writing to a control register.
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As with the RAID Controller, a number of Stable Memories can operate together in a nMR fault-tolerant
arrangement, utilising the same mechanisms and protocols. If the bus itself turns out to be the point of failure, then
the data held in the VRAMs may be transferred to an alternate (perhaps clustered) system over high speed serial
links.

The Stable Memory has 8MBytes (or 32MBytes) of ECC protected memory organised as 8 banks of 10 VRAMs
each (see Figure 6.11), and hence each Stable Memory occupies thatquota of address space. Again as with the
RAID Controller, each Stable Memory is a member of a nMR group of up to three memories, which all respond to
the same addresses and hence operate in parallel. The Stable Memory is located at a base address derived from its
nMR group no, and successive 4KB memory pages reside in successive banks. The top 64KB of its address space
is reserved for memory mapped I/O, and its operations are controlled by a set of memory mapped control registers
located within this region at a base address derived fromnMR group no andnMR memoryno straps. Again, the
addressing scheme allows accesses to or from an individual Stable Memory, broadcast to all memories within a
group, or broadcast to all groups in a system.

The Stable Memory has an embeddedT800 transputer [InMOS 88] controller. A Stable Memory’s address
space is accessible from both the host bus and theT800so that its operation can be controlled by either. Access
via the host bus can be enabled/disabled by writing to the appropriate control registers (TVBUFEN, TVMEMEN &
TVMMIOEN), so that theT800can be totally in control. It is also possible forT800 firmwarein VRAM to execute
high level commands on behalf of the host CPUs. To reduce contention for VRAM access, a 32KB write-through
cache is provided for the transputer. TheT800transputer links may be used for remote recovery of Stable Memory
state. AC012 [InMOS 88] is also provided for compatibility with the Transputer Development System (TDS)
[InMOS 90].

6.5.1 Intra-bank Checkpointing

A VRAM is a DRAM with the addition of a serialaccess register and a serial port (see Figure 6.12). In addition
to the standard DRAM cycles, transfer and shift operations can be performed on the serial access register and the
serial port. A transfer operation copies a complete memory row (typically 512 bits) between the memory array and
the serial access register or vice-versa. A shift operation selects the next data bit in the serial access register to be
output on the serial I/O port (or vice versa). These additional cycles can be used to copy data efficiently. Copying
data within a VRAM (device) is called an intra-bank transfer and copying between different VRAMs (devices) is
called an inter-bank transfer.

column

row

parallel
I/O

512 bit serial access registerVRAM
only

serial
clock

serial
I/O

selectorptr

Figure 6.12: Simplified VRAM Block Diagram

An intra-bank transfer within a VRAM requires a read transfer cycle followed by a write transfer cycle. Since
each bank of the memory is 32 bits wide (excluding ECC), there are 32 x 512 bit serial access registers so 2kB of
data is transferred in two memory cycles (approximately 400ns), as shown in Figure 6.13. Only complete rows can
be transferred using intra-bank transfers.
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If the two pages of a stable page are allocated in the same bank (VRAM device) thencheckpointingcan be
performed using VRAM intra-bank transfer cycles. A read transfer cycle followed by a write transfer cycle can
copy 2kBytes of data. A transfer masked cycle is also available making it possible for all, or a subset, of the 8
VRAM banks to perform transfer cycles in parallel. The banks are specified by an 8bit stability mask (a bit for
each bank) from the protection logic or as an immediate mask from the data field of the transfer cycle. The stability
mask is useful for global checkpointing where some of memory is non stable (eg. code areas). Given that transfer
cycles can take place in parallel over all banks, only 100�s (256 rows x 200ns x 2) is needed to checkpoint all of
memory using intra-bank transfers. The checkpointing time depends only on the organisation of a bank, and not
on the number of banks per Stable Memory or the number of Stable Memories in a system.

A read transfer cycle is performed by writing to registerTVRXFR with the data being the ”transfer address”. A
write transfer cycle is performed by writing toTVWXFR. Note that the low order 11 bits of the ”transfer address”
are not used. Hence an intra-bank transfer is performed as follows:

*TVRXFR = src;
*TVWXFR = dst;

To perform simultaneous transfer cycles on all or a sub-set of the 8 VRAM banks by executing a ”transfer
masked” operation, the low order 9 bits of the ”transfer address” is split into a single bitALL field and an 8 bit
MASKfield. If ALL=0, theMASKbits are used to enable/disable the transfer cycle on each of the 8 banks. A
transfer of all 8 banks simultaneously from source to destination is performed as follows (assuming the source
(src) and destination (dst) addresses are aligned on 2KB boundaries):

*TVRXFRM = (src | 0xff);
*TVWXFRM = (dst | 0xff);

For global checkpointing, non-stable pages must not be checkpointed. If present, the protection logic outputs
a per-page 8bit stability mask oneach access, and ifALL=1 the stability mask is used, as above, to enable transfer
cycles on each VRAM bank. To avoid replication of the stability mask, masked transfers need to be aligned on 8
page boundaries. A transfer of all 8 banks which depends on the associated stability mask is performed as follows:

*TVRXFRM = (src | ALL);
*TVWXFRM = (dst | ALL);

Pseudo-write transfers are used to turn the VRAM serial I/O buffers to input mode without transferring the data
from the serial access register to a memory row. A pseudo-write transfer is performed by:

*TVPWXFR = dst;



6.5.2 Inter-bank Checkpointing

An inter-bank transfer between different VRAM banks requires the following steps:

(1) read transfer of source row into VRAM serial access register.

(2) shift the data between the source & destination VRAM serial access registers using the serial bus.

(3) write transfer from VRAM serial access register to destination row.

A complete row is transferred with 2 memory cycles and 512 serial clock cycles. The memory is 32bits
wide and the serial port is also 32bits wide. Since the serial clock operates at 25MHz, this corresponds to 2kB
transferred in 20.88�s (100MB/s). An important point is that while the VRAM parallel port is occupied for the
two transfer cycles, lasting approximately 400ns, it remains available for the next 20.48�s, resulting in negligible
reduction (<2%) in host bus bandwidth during inter-bank transfers. Note that partial rows can be transferred using
inter-bank transfers.

Although the VSBus is used to interconnect Stable Memories and RAID Controllers, it also is used for inter-
bank transfers when the source and destination banks are on different memories. The transfer operation is similar
to the inter-bank transfer described above, except the data is enabled onto the external VSBus. Data is transferred
between a master and a number of slaves. As with local inter-bank transfers, transfers along the VSBus take place
at 100MB/s with negligible reduction in host bandwidth.

If the two pages of a stable page are allocated in different banks thencheckpointingcan be performed by using
inter-bank transfers to copy data from the active page to its backup. Inter-bank checkpointing involves the same
three steps outlined above, and thus takes place at 100MB/s with negligible reduction in host bandwidth.

In each case the data must be shifted in or out of the serial access registers. TheSHIFT register is written to
initiate the shift. The shift count and source bank are encoded in the data value. A typical inter-bank transfer
sequence would be performed as follows:

*TVPWXFR = dst;
*TVRXFR = src;
*TVSHIFT = ((src & 0x3800) | 512); -- 512 bit serial

; access registers
*TVWXFR = dst;
*TVRXFR = src;
*TVSHIFT = ((src & 0x3800) | 512); -- 512 bit serial

; access registers
*TVWXFR = dst;

Data can be shifted between units by writing toTVSHTOSBUSor TVSHFMSBUSdepending on whether data is
being transmitted or received from the VSBus . To send data to a slave via the VSBus:

*TVSHTOSBUS = ((src & 0x3800) | 512); -- 512 bit serial
; access registers

In this mode only one Stable Memory (in a nMR group) drives the VSBus. The destination for the data is
determined by which memories have been set up as VSBus slaves. The current value of the shift count can be
obtained by readingTVSHIFT.

6.5.3 Log-mode Checkpointing

Log-mode checkpointing involves recording a log of memory updates, similar toSM ’s use of itsupdatelist (see
section 4.1.1). On every write, the original value of the location together with its physical address are stored in a
log. In this implementation the log is stored in a reserved area of VRAM (see Figure 6.15). On rollback, memory
can be returned to its previously checkpointed state by replaying the log in reverse order.

Log-mode checkpointing is enabled by settingTVMODEto LOGMODE. The starting address of the log is set
by writing to the register atTVLOGADDR. On a checkpoint,TVLOGADDR can be reset to this value (only one
log), or set to a different value (more than one log). On a write, the original value of the location together with its
address are saved in the log, the value ofTVLOGADDR is incremented by 8 (bytes) and then the memory location
itself is updated. The advantage of log-mode checkpointing is that it uses less memory, but at the cost of slower
writes (a factor of 3 in this implementation).
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6.5.4 Switch-mode Checkpointing

Assume that the two locations of a stable location are in different memory banks. One acts as the active location,
the other as the backup. The idea of switch-mode checkpointing is to reverse the active and backup roles by writing
to a single memory mapped registerTVSWITCH. This gives effectively instantaneous checkpointing. Switch-mode
checkpointing is enabled by settingTVMODEto SWITCH.

An active/backup location has two status bits associated with it. TheM (modified) bit indicates whether the
location has been modified since the last checkpoint. Immediately after a checkpoint, the active and backup
locations are the same until the active location is modified. TheAB bit indicates which is the active bank (i.e. most
up to date). The mechanism assumes that theM bits are stored in a memory which can be cleared (reset) by writing
to registerTVSWITCH. Circuit operation is explained by the state transition diagram and truth table for a single
location, as shown in Figure 6.16 and Table 6.2.

M AB read write checkpoint rollback
0 0 read bank 0 (bank 0! bank 1) state! 00 state! 00

write to bank 1
state! 11

1 1 read bank 1 write to bank 1 state! 01 state! 00
0 1 read bank 1 (bank 1! bank 0) state! 01 state! 01

write to bank 0
state! 10

1 0 read bank 0 write to bank 0 state! 00 state! 01

Table 6.2: Switch-mode Checkpointing Truth Table for a Stable Location

If M = 0 (unmodified) andAB = 0 (state 00) then reads are from bank 0 (assume this is the initial state of all
locations) until a write occurs which is directed to bank 1, while the state is simultaneously set to 11. Subsequent
reads are now from bank 1 and theM bit has been set to indicate that the location has been modified. If a failure
occurs at this point, rollback is achieved by simply reverting back to state 00. On a checkpoint theM bit is cleared
to move into state 01. Checkpointing in states 01 (and 00) leaves the state unchanged as the the backup and active
locations are in the same bank.
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Figure 6.16: Switch-mode Checkpointing State Transition Diagram for a Stable Location

Notice that checkpointing isaccomplished by simply writing to TVSWITCH, but rollback (a hopefully less
frequent event) requires the status array to be selectively updated. If status information has a larger granularity
than one location then copy-on-write operations are needed. This is the case for the Stable Memory.

6.5.5 Protection Logic

The protection logic is designed to be implemented on an interchangeable module that plugs into the Stable Mem-
ory. It checks if a CPU has the necessary rights to access a particular memory page,updates per page status
information and maintains a CPU-CPU dependency matrix. Protected window slots are provided in the address
space for access to companion RAID Controllers. When a companion controller is accessed using the host bus
the protection is provided by the Stable Memory. It is also possible to access the RAID Controllers in the same
protected manner via the VSBus. The protection logic deals with the following issues:

(a) Checking whether a process is allowed to access a particular memory page. The protection logic checks
each CPU access against a set of access rights. These are a function of the currently executing process
and the memory address. ACPU number is bound to a process index (PIX) by the operating system
scheduler on a context switch. Each process, thread or interrupt handler should be given a separate
process index. CPUs are identified by host bus user-defined signals or by the higher-order host bus
addresses. Each bus master (including DMA controllers) should be given a separateCPUnumber.

(b) Maintenance of per page status information. Per page status information is obtained by indexing into a
status RAM (STSRAM). EachSTSRAMentry has a number of fields such as a referenced bit, a modified
bit and a stability mask which are updated appropriately oneach access.



(c) Maintenance of a CPU-CPU dependency matrix. A dependency matrix (DM) tracks read-write and
write-write dependencies between CPUs. TheDM is used to make sure that dependent processes are
checkpointed (or rolled-back) together. The dependency matrix is an N x N bit matrix, where N is the
number of CPUs. IfCPUi is dependent onCPUj, thenDM[CPUi, CPUj ] will be set.

The protection mechanism can be thought of as executing over 3 phases, as shown in Figure 6.17, although
these phases are not necessarily reflected directly in the hardware implementation:

(1) The CPU number is used to fetch the process indexPIX (not the same as the operating systemPID)
from thePIXRAM. Simultaneously the page number is used to index into theSTSRAM to obtain the
per-page status information (STS) and theCPU number of the last modifier (LM) of the page.

(2) TheTAGRAM cache is searched for thePIX and the page number to obtain the access rights which the
process has to the page. If there is a cache miss, higher level software should fill theTAGRAM cache
line appropriately. At the end of phase 2 the access rights are available. Simultaneously theCPU
number and theLM are used to access the dependency matrix.

(3) TheSTSRAMand dependency matrix are updated appropriately.
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Figure 6.17: Protection Logic Operation

The page-based protection is very much in excess of what is required for the FASST recovery protocol, which
needs just the dependency information. TheDM values are 1bit entries in a matrix, that indicate the dependencies
between the current process and the last modifier (last owner) of the page that is being accessed. The matrix rows
are indexed by theCPU number. The matrix columns are indexed by the last modifierLM, which is updated on a
write with the currentCPUnumber.

For read-write dependencies, the current process is dependent on the last modifier of the page that is being
accessed. This requires that the entryDM[CPU, LM] be set. For write-write dependencies, the last modifier of
the page that is being accessed becomes dependentupon the current process. This requires that both the entries
DM[CPU, LM] andDM[LM, CPU] be set.



6.6 Integration into the FASST Recovery Protocol

The protection logic allows the Stable Disk (SD), consisting of RAID Controllers and Stable Memories, to take
part in the FASST Recovery Protocol described in [Morin et al 92] and Chapter 4. This section outlines how this is
done. The protocol is extended as necessary, with theSM definitions of Chapter 4 abbreviated and the extraSD
definitions in bolded italics. The recovery commands are in general emulated by software or firmware.

EachSD has the logical structure shown in Figure 6.18, and is composed of a single array of memory cells,
grouped in pages :

type t bank = array[0..bank size-1] of block ;
t bank Bank1, Bank2 ;

type SD mem = array[0..SD memsize-1] of page ;
SD mem SDMemory ;
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Status Register

Command Register

Group
TSMV200
Registers

TSMR200
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Figure 6.18: Stable Disk logical structure

The way that this memory is used depends upon the checkpointing mode in use. FASST uses selective rather
than global checkpointing, so the intra-bank checkpointing mode is most natural. This assumeseach page is paired
with another to form a single stable page :

type SD t bank = array[0..(SD memsize/2)-1] of page ;
SD t bank SD Bank1, SD Bank2 ;

As for theSM , space is divided into a set of contiguous areas of identical size, with a current value inbank1
and a backup value inbank2, but for theSD the granularity is a page rather than a block.SD read and write
commands refer toSD memory cells, but theSD records dependencies at page granularity.

The following information is stored for each page :

type t vector elt = record
:

t vector Vector ;

type SD t vector elt = record
t LM LM ;
t status status ;



... additional information ...
end ;

type SD t vector array[0..page nb-1] of SD t vector elt ;
SD t vector SD vector ’

TheLM field contains the identity of the last modifier of the page, and is analogous to theownerfield in the
SM . TheSD dependency matrixDM is analogous to the matrixM of theSM , also being updated during read and
write operations, and henceforth will be referred to synonomously. It records dependencies between processors (or
any other bus masters) that share memory blocks, and hence is ann x n Boolean matrix wheren is the maximum
number of processors. A matrix itemM (i; j) is set to true to indicate that bus masterPi is dependent onPi.

Once a dependency group is computed by a processor it is stored in eachSM andSD in the group field.
Unlike theSM , theSD does not maintain anupdatelist (although if this is essential it may be obtained by
selecting log-mode checkpointing, at the expense of longer memoryaccess times).

As in Chapter 4 the following algorithms are in psuedo-C, withfalserepresented by 0 andtrue represented by
a non-zero value.

6.6.1 Dependency management

TheSD distinguishes between two types of dependencies:

(a) read after write dependency.

(b) write after write dependency.

In the FASST recovery protocol, dependencies are recorded bySM boards when processors access memory
blocks and when necessary due to cache coherency actions. TheSD performs the same recording but at page
granularity. Since theSD memory is disjoint from theSM , this only affects the recovery protocol granularity -
the algorithms remain valid.

AssumePi is independent from all other processors. WhenPi commits then firstly its cache is flushed to
bank1, then secondly all the pages it has modified since its last commit point are copied frombank1to bank2.
When processorPi rolls back then all the pages it has modified since its last commit point are copied frombank2
to bank1and its cache is invalidated. To detect which pages have been modified byPi, each time a page is written
by a processor, the processor identity is recorded with the page in theLM (last modifier) field.

6.6.1.1 Read after write dependency

Consider a processorPi writes to a pageB. Later the processorPj reads the same pageB. If Pj commits at timet
then the last modifier ofB, Pi, must also commit due to the dependency withPj (otherwise a subsequent rollback
of Pi would imply thatPj would have read a value ofB which has never been written, so leading to an inconsistent
state).

Symmetrically, if the last modifier ofB, Pi, rolls back at timet then the reader ofB, Pj, must also rollback
due to the dependency withPi (otherwise it posesses a value ofB which has never been written to). Because of
indeterministic behaviour of a system, nothing guarantees that after rollbackPi will write into B the same value
as the one it wrote before rollback.

In summary, whenPj reads a page previously modified byPi thenPj is said to be dependent onPi (Pi Pj).
A commit ofPj implies a commit ofPi and a rollback ofPi implies a rollback ofPj .

6.6.1.2 Write after write dependency

Consider a processorPi writes to a pageB. Later the processorPj writes the same pageB. If Pi commits at timet
then the last modifier ofB, Pj, must also commit due to the dependency withPi (otherwise a subsequent rollback
of Pj would imply thatB is restored with a value which has never been written, so leading to an inconsistent state).
Commitment ofPi implies that the value written byPj is copied frombank1to bank2.

Symmetrically, if the last modifier ofB, Pj , rolls back at timet thenPi must also rollback due to the depen-
dency withPj (otherwise it posesses a value ofB which is different to that it wrote).

In summary, whenPj writes a page previously modified byPi thenPi is said to be dependent onPj (Pi! Pj).
A commit ofPi implies a commit ofPj and a rollback ofPj implies a rollback ofPi.



6.6.2 Synchronisation

6.6.2.1 Assumptions

int p nb ; /* number of processors */
int sd nb ; /* number of stable devices, */
int active p[0..p nb-1] ; /* array indicating which */

/* are active (valid) */
/* processors */

/* active[i] == 1 : processor i active */
/* active[i] == 0 : processor i inactive */

int SM nb ; /* number of SM boards */
int SD nb ; /* number of SD subsystems, */
sd nb = SM nb + SD nb ;

6.6.2.2 Processor synchronisation states

The synchronization registers are in the processor boards, and the processor synchronization mechanisms are not
affected by the presence of theSD. The processor automaton statesnormal, stopping, stopped, recovery, restart,
atomicoperation, waitingandfailure are as described in Chapter 4. The only proviso is that the initiator remains
in recoverystate until eitherSMs andSDs communicatecopydoneor timer(3)runs over.

6.6.2.3 Stable device synchronization states

As for theSM , synchronization between processors andSDs is implemented with the status and command regis-
ters of theSDs. However, these registers are emulated in software or in the TSMV200 transputer firmware. The
emulated command and status register values are stored in fixed non recoverable (non-stable) pages in theSD
memory :

/* synchronization variables - one per stable device */
type t SMsynchro = array [0..SM nb-1] of sd synchro state ;
t SMsynchro SM state ;
type t SD synchro = array [0..SD nb-1] of sd synchro state ;
t SD synchro SD state ;

Apart from this emulation theSD is just another stable device :

/* stable device synchronization states */
type sd synchro state = (normal,

ready,
commit copy,
rollback copy,
failure ) ;

The SD emulates theSM automaton as presented in Chapter 4. The emulation is performed in software
or in the TSMV200 transputer firmware. The only difference is that for most failures theSD can return from
the failure state to thecommitor rollback state, as described in the discussion of TSMx200 exceptions errors in
[Coghlan et al 92a].

6.6.2.4 Time-out protection

Timeouts are implemented with theWait primitive. This primitive only needs to be modified to function with the
emulatedSD synchronization registers, which are in memory mapped pages in theSD memory rather than in
CSR registers as in theSM :

Wait (condition, nb, t max)
{

timer expiration = false ;
:
:

case all SMready :



/* all SMs must be in the ready state */
one not ready = (SM state[i] != ready) ;

case all SMcopy done :
/* all SMs must be in the normal state */
one not ready = (SM state[i] != copy done) ;

case all SD ready :
/* all SDs must be in the ready state */
one not ready = (SD state[i] != ready) ;

case all SD copy done :
/* all SDs must be in the normal state */
one not ready = (SD state[i] != copy done) ;

}
}

while ((one not ready) && ˜(timer expiration))
if ˜(one not ready) unset timer ;

}

The use of the various timers is as specified in Chapter 4, excepting that separate timersSM timer3, SMtimer6,
SD timer3andSM timer6are used, and that expiry ofSD timer(3)onSD failure during bank to bank copying can
be handled, as discussed in [Coghlan et al 92a].

6.6.3 Read and Write Commands

For FASST, a processor is not allowed to issue read and write commands to stable devices during the bank to bank
copy. Although not strictly necessary, this constraint is retained for theSD. In thenormalstate of theSD, most
of the work is concerned with dependency management. A dependency i! j is noted for :

for theSMs :

(M[i] & (1<<j)) == 1)

for theSDs :

(M[i, j] == 1)

Unlike theSM , theSD records dependencies atpagegranularity, where the conversion between a cell address
and apagenumber is done by theSD atb function, implemented in the hardware of theSD protection logic.

6.6.3.1 Read

A read to cell c will compute the target page b, record any dependency in the matrixM and will deliver the current
value of the cell. In FASST the processor identifier is a 4bit field calleduser. To accomodate theSD the read

command must be renamedSMread and a newSD read command defined :

user & read op <=> reader
user & write op <=> writer

Thus :

SMread (address, reader)
{

block = atb (address) ;
owner = Vector[block].owner ;
if (owner != NIL)

/* recording a dependency */
M[reader] |= (1<<owner) ;

return (bank1[address]) ;
}

SD read (address, reader)



{
block = SD atb (address) ;
owner = SD vector[page].LM ;
if (SD vector.status == clean)

/* recording a reference */
SD vector.status = referenced ;

elseif (SD vector.status == modified)
/* recording a dependency */
M[reader, owner] = 1 ;

return (bank1[address]) ;
}

6.6.3.2 Write

A write to cell c will compute the target pageb, record any dependency in the matrixM, updateLM, and then
update the current value of the cell. Again, toaccomodate theSD thewrite command must be renamedSMwrite

and a newSD write command defined :

SMwrite (address, writer, value)
{

block = atb (address) ;
owner = Vector[block].owner ;
if (owner == NIL)

/* first time this block is modified since the last commit */
*update ptr++ = block

else
/* recording a dependency */
M[owner] |= (1<<writer) ;

Vector[block].owner = writer ;
Bank1[address] = value ;

}

SD write (address, writer, value)
{

block = SD atb (address) ;
owner = SD vector[page].LM ;
if ((SD vector.status == clean) ||

(SD vector.status == referenced))
/* first time this block is modified since the last commit */
SD vector.status = modified ;

elseif (SD vector.status == modified)
/* recording a dependency */
M[owner, writer] = 1 ;
M[writer, owner] = 1 ;

SD vector[page].LM = writer ;
Bank1[address] = value ;

}

6.6.4 Behaviour of the processor initiating a commit

6.6.4.1 Body of the initiator

The initator algorithm only needs to be adapted to accomodate the different numbers ofSMs andSDs, and their
different timers. As in Chapter 4, the initiator is assumed to be a member of the commit group.

Initiate Commit ()
{

/* ensure there is only one initiator */
/* i.e. only one commit in progress at a time */
Obtain Commit Lock () ;

:
:

/* Copy dependency group to stable devices */
Broadcast (group, SMs) ;
Broadcast (group, SDs) ;



/*
What is important here is that all stable devices commit or none of them
does. roblems may arise if the initiator fails while he is requesting the
stable devices to commit. Some stable devices may commit while others
may rollback leading to an inconsistent state.
*/

/* wait until all stable devices are ready to commit */
Wait (all SMready, SM nb, SM timer6) &&
Wait (all SD ready, SD nb, SD timer6) ;

Sync[my pid] = recovery ;

/* commit stable devices */
Inform sd (commit) ;

/* wait until all stable devices have finished bank to bank copy */
Wait (all SMcopy done, SM nb, SM timer3) &&
Wait (all SD copy done, SD nb, SD timer3) ;

Inform sd (normal) ;
:
:

/* end of commit from initiator point of view */
Sync[my pid] = normal ;
Release Commit Lock () ;

}

Note that theinform sd function must accomodate the differentSM andSD command and status register
mappings.

6.6.4.2 Group computation

WhenPi commits then all its decendents according to the dependency relation must commit. The commit group is
obtained by computing the transitive closure of the dependency matrix. IfPj commits then everyk which verifies
the following equality has to commit too and recursively:

for theSMs :

(M[j] & (1<<k)) == 1)

for theSDs :

(M[j, k] == 1)

Symmetrically, whenPi rolls back then all its ascendents according to the dependency relation must rollback.
The rollback group is obtained by computing the transitive closure of the inverse of the dependency matrix. IfPj
rolls back then everyk which verifies the following equality has to rollback too and recursively:

for theSMs :

(M[k] & (1<<j)) == 1)

for theSDs :

(M[k, j] == 1)

TheCompute Group primitive forms the global dependency matrix from the local matrix (located inSMs and
SDs) and then computes the dependency group related to the processorp given as a parameter. If thetypeparame-
ter equalscommitthis primitive computes the commit dependency group. If thetypeparameter equalsrollback this
primitive computes the rollback dependency group. This function is only affected where the dependency matrices
are being read from the stable devices:



Compute Group (type, p, group)
{

/* computation of the dependency group from the dependency matrix */
/* -- read all matrices from stable devices */
/* -- build the global matrix */
/* -- compute dependency group */

/* initialization of M with no dependency */
for (i=0; i<sd nb; i++)

M[i] = (1<<i) ;

/* reading all matrices from stable devices */
/* and building the global matrix */
for (i=0; i<SM nb; i++)

for (j=0; j<p nb; j++)
M[j] |= Mi[j]

for (i=0; i<SD nb; i++)
for (j=0; j<p nb; j++)

for (k=0; k<p nb; k++)
M[j] |= (Mi[j, k]<<1)

/* compute dependency group */
group = (1<<p) ;
tempo group = new = group ;
group computed = false ;
do
{

:
:

}
while (group computed == false)

}

6.6.5 Behaviour of other processors

When a commit or rollback takes place the initiator sends acommitinterruptor rollback interrupt to all the other
processors. The algorithm that describes the behaviour of the processors other than the initiator is not affected by
the presence ofSDs.

6.6.6 Stable device behaviour during recovery operations

Recovery operations are started in theSMs by the initiator write to the group register. This behaviour must
be modified to accomodate the different numbers ofSMs andSDs, their different dependency matrices, their
different status registers and their different timings.

main ()
{

/*
For the SM, recovery operations start with a write to the group
register by the initiator processor.
*/
Wait (group != NIL) ;

/*
For the SD recovery operation starts with a write to the event
register by the initiator processor.
*/
Wait (event != 0) ;

/* update dependency matrices in order to break dependencies */
for (i=0; i<SM nb; i++)

for (k=0; k<p nb; k++)
{

if (group & (k<<1)) Mi[k] |= (1<<k) ;
}

SMstate = ready ;



for (i=0; i<SD nb; i++)
for (k=0; k<p nb; k++)
{

if (group & (k<<1)) Mi[k, k] = 1 ;
}

SD state = ready ;

/*
The initiator processor can observe that the SM bank to bank copy is
progressing by the following mechanism. It reads the bottom and top
pointers of the update list and by their difference can compute a
value for SMtimer(3) . A very efficient method is to check
if the working pointer is growing. */
Wait ((SM state == commit) || (SM state == rollback) ;
SMPhase2 (SM state)
SMstate = copy done ;
Wait (SM state == normal) ;

/*
The progress of the SD bank to bank copy can be observed by waiting
for the SD interrupt status register event flag to be cleared. The
value of SD timer(3) can be computed from the number of pages
modified.
*/
Wait ((SD state == commit) || (SD state == rollback) ;
SD Phase2 (SD state)
SD state = copy done ;
Wait (SD state == normal) ;

}

The SMPhase2 procedure for theSM consists of the bank to bank copy of blocks whose last writer belongs
to the dependency group. For theSD, SD Phase2 consists of the bank to bank copy of pages whose last modifier
LM belongs to the dependency group. If a commit operation takes place the copy is done frombank1to bank2. If
a rollback operation takes place the copy is done frombank2to bank1. The following algorithms are abstracted
from Section 4.2.6.5 :

SMPhase2 ()
{

Gap location = update ;
i = update ;
while (i<update ptr)
{

block = *i ;
owner = Vector[block].owner ;
if (owner & Group)
{

switch on type
{

case commit :
Bank2[block] = Bank1[block] ; break ;

case rollback :
Bank1[block] = Bank2[block] ;

}
Vector[block].owner = NIL ;

}
else
{

*Gap location = *i ;
Gap location++ ;

}
i++ ;

}
}

SD Phase2 ()
{



i = 0 ;
while (i<SD memsize/2)
{

owner = SD vector[i].LM ;
if (owner & Group)
{

switch on type
{

case commit :
SD bank2[i] = SD bank1[i] ; break ;

case rollback :
SD bank1[i] = SD bank2[i] ;

}
SD vector[i].state = clean ;

}
i++ ;

}
}

Note that the algorithm forSD Phase2 can be optimized by use of themarkedstate to allow the processes to
restart execution while the bank to bank copy proceeds, with either rescheduling or priority copy of a bank if it is
updated during the bank to bank copy process.

6.6.7 Atomic operations

Chapter 4 proposes a mechanism to allow for atomic critical section implementation, where no other processors
are executing. The mechanism is composed from standard low level functions. The action ofSDs is buried within
the low level functions involved so that at the higher level the mechanism is unaffected by the presence ofSDs.

6.6.8 Rollback due to a processor failure

We assume processorPi detects the failure of processorPk. Pi initiates a rollback of the set of processors which
are dependent onPk. Two situations must be considered.

Firstly, what if a recovery operation is in progress. The mechanisms to handle all permutations of this event
are not defined in Chapter 4, but since most actions invoked are likely to be a compendium of standard low level
functions, it is expected that theSD will integrate without difficulty.

Secondly, what if no recovery operation is in progress. The algorithms for two approaches to this are outlined
below.

6.6.8.1 Rollback of the dependency group

This algorithm minimizes the number of processors that arestoppedat the expense of algorithmic complexity. The
algorithm only needs to be adapted to accomodate the different numbers ofSMs andSDs, and their different
timers.

Initiate Rollback (k)
{

/* first, check if there is a commit in progress */
:
:
/* copy dependency group to stable devices */
Broadcast (group, SMs) ;
Broadcast (group, SDs) ;

/* wait until all stable devices are ready to rollback */
Wait (all SMready, SM nb, SM timer6) &&
Wait (all SD ready, SD nb, SDtimer6) ;

Sync[my pid] = recovery ;

/* rollback stable devices */
Inform sd (rollback) ;



/* wait until all stable devices have finished */
/* the bank to bank copy */
Wait (all SMcopy done, SM nb, SM timer3) &&
Wait (all SD copy done, SD nb, SD timer3) ;

Inform sd (normal) ;
:
:

/* end of rollback from initiator point of view */
Sync[my pid] = normal ;
Release Commit Lock () ;

else
{

/* a commit is in progress !!! */
}

}

6.6.8.2 Rollback of all processors

This algorithm minimizes the algorithmic complexity at the expense of all processors beingstopped. Again, the
algorithm only needs to be adapted to accomodate the different numbers ofSMs andSDs, and their different
timers.

Initiate Rollback (k)
{

/* first, check if there is a commit in progress */
:
:
/* copy dependency group to stable devices */
Broadcast (group, SMs) ;
Broadcast (group, SDs) ;

/* wait until all stable devices are ready to rollback */
Wait (all SMready, SM nb, SM timer6) &&
Wait (all SD ready, SD nb, SDtimer6) ;

Sync[my pid] = recovery ;

/* rollback stable devices */
Inform sd (rollback) ;

/* wait until all stable devices have finished */
/* the bank to bank copy */
Wait (all SMcopy done, SM nb, SM timer3) &&
Wait (all SD copy done, SD nb, SD timer3) ;

Inform sd (normal) ;
:
:

/* end of rollback from initiator point of view */
Sync[my pid] = normal ;
Release Commit Lock () ;

else
{

/* a commit is in progress !!! */
}

}

6.6.9 Various primitives used in the protocol description

6.6.9.1 Updating and consulting synchronization registers

The Inform p primitive is used by the initiator to update the synchronization registers of a set of processors group
with the valuestate, and as such is not affected by the presence ofSDs.



The Inform sd primitive is used to update stable device synchronization variables. This is implemented via
commands in the prototype, and must be altered :

Inform sd (state)
{

for (i=0; i<SM nb; i++)
SMstate[i] = state ;

for (i=0; i<SD nb; i++)
SD state[i] = state ;

}

6.6.9.2 Locking

Only one commit or rollback is allowed at the same time. This is ensured by using a global lock. This operation is
not affected by the presence ofSDs.

6.7 Influence on performance2

Secondary storage records are buffered in a Stable Memory. This is a fast operation, since it only involves the
system bus. The RAID Controller is designed to then transfer the records to/from the buffer with minimal impact
on the host processors. This process is illustrated in Figure 6.19. How does this affect performance ?
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Figure 6.19: Buffered disk requests

To evaluate the performance of the Stable Disk, we model the system as a network of two nodes in tandem, such
as the one in Figure 6.20. The first node represents the bus. Jobs (output requests generated by the processors)
arrive there in a Poisson stream with rate�, and join an unbounded queue. After completing service at node 1
(exponentially distributed with parameter� ), they proceed tonode 2, which represents the Stable Disk. At node
2 there is a finite buffer with room for a maximum ofN jobs (including the one in service). If, at the start of a
bus service, the buffer is full, the bus waits until the completion of the current service at node 2 (exponentially
distributed with parameter� ). In this last case, server 1 is said to be ‘blocked’. Transfers from node 1 to node 2
are instantaneous. Since bus operations are usually much faster than writing to a disk, we typically have� >> �.

N

��
� ---

Figure 6.20: A two-node tandem network model

2This section contributed by Isi Mitrani, Department of Computing Science, University of Newcastle, Newcastle upon Tyne NE1 7RU, U.K.



The above type of blocking is referred to as ‘communication blocking’, to distinguish it from ‘manufacturing
blocking’, where node 1 checks the bufferaftercompleting a service.

In this system, the unbounded queue at node 1 operates in a finite-state environment defined by node 2. We say
that the environment,Xt, is in statei if there arei jobs at node 2(i = 0; 1; : : : ; N ). Of course ifi = N and the
queue at node 1 is not empty, then server 1 is blocked.

The pairU = f(Xt; Yt) ; t � 0g, whereYt is the number of jobs at node 1, is an example of a ‘Quasi-Birth-
and-Death’ process. To obtain performance measures of interest, it is necessary to determine the joint steady-state
distribution ofX andY :

pi;j = lim
t!1

P (Xt = i ; Yt = j) ; i = 0; 1; : : : ; N ; j = 0; 1; : : : : (6.6)

These probabilities can be computed by the so-calledspectral expansionmethod. We give a brief outline of the
analysis here. For more details, the reader is directed to [Mitrani 95] and [Mitrani et al 95], and the references
therein.

If the system is in state(i; j), with i > 0, it can move to state(i�1; j) with rate�. In other words, the transition
rate matrix,A, which controls the changes of the environment without altering the unbounded queue, is given by

A =

2
6664

0
� 0

...
...
� 0

3
7775 :

Since the arrival rate into node 1 does not depend on eitheri or j, the transition rate from state(i; j) to state
(i; j + 1) is �, for all i; j � 0. That is, the matrix of transitions which increase the queue size isB = �I, whereI
is the identity matrix of orderN + 1.

The departures from node 1 are alwaysaccompanied by environmental changes: from state(i; j) the process
moves to state(i + 1; j � 1) with rate� for j > 0 andi < N . In state(N; j), server 1 is blocked and there can be
no departure from node 1. The matrix,C, corresponding to these transitions is equal to

C =

2
666664

0 �
0 �

...
...
0 �

0

3
777775 :

Define the row vectors of probabilities corresponding to states withj jobs at node 1:

vj = (p0;j; p1;j; : : : ; pN;j) ; j = 0; 1; : : : : (6.7)

Also, letDA,DB andDC be the diagonal matrices whosei th diagonal element is equal to thei th row sum ofA,
B andC, respectively. Then the steady-state balance equations forj > 0, can be written as:

vj[D
A +DB +DC ] = vj�1B + vjA+ vj+1C ; j = 1; 2; : : : : (6.8)

For j = 0, the equation becomes

v0[D
A +DB ] = v0A + v1C ; j = 1; 2; : : : : (6.9)

In addition, all probabilities must sum up to 1:

1X
j=0

vje = 1 ; (6.10)

wheree is a column vector withN + 1 elements, all of which are equal to 1.
To find the general solution of the vector difference equation (6.8), form the matrix polynomial

Q(x) = Q0 + Q1x+ Q2x
2 ; (6.11)



whereQ0 = B, Q1 = A � DA � DB �DC andQ2 = C. Denote byxk anduk the ‘generalized eigenvalues’,
and corresponding ‘generalized left eigenvectors’, ofQ(x). In other words, these are quantities which satisfy

det[Q(xk)] = 0 ;

ukQ(xk) = 0 ; k = 1; 2; : : :; d ; (6.12)

wheredet[Q(x)] is the determinant ofQ(x) andd is its degree. In our case all eigenvalues are real, positive and
simple. Moreover,N + 1 of them are in the interval (0,1). Let the numbering be such that those are the firstN + 1
eigenvalues,x1; x2; : : : ; xN+1. Then the solution of (6.8) can be expressed as a linear combination,

vj =
N+1X
k=1

�kukx
j
k ; j = 0; 1; : : : ; (6.13)

where�k (k = 1; 2; : : : ; N + 1), are some constants. The latter are determined from the balance equations (6.9)
(N of them are linearly independent), and the normalizing equation (6.10).

Having determined the coefficients in the expansion (6.13), it is easy to compute performance measures. The
steady-state probability that the environment is in statei (i.e., there arei write requests in the buffer), is given by

pi;� =
N+1X
k=1

�kuk;i
1

1� xk
; (6.14)

whereuk;i is thei th element ofuk.
The conditional average number of jobs in the system,Li, given that the environment is in statei, is obtained

from

Li =
1

pi;�

N+1X
k=1

�kuk;i
xk

(1� xk)2
: (6.15)

The overall average number of jobs in the system,L, is equal to

L =
NX
i=0

pi;�Li : (6.16)

Finally, the average response time of a write request is given byW = L=�.
As an illustration of the results that can be obtained from this model, Figure 6.21 shows the minimum buffer

size required to achieve a given average response time. That size is plotted against the arrival rate, for different
Stable Disk service times. This confirms what one might have expected.
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7.1 System software principles1

Two basic structuring principles are applied in the system software of modern computers. First, the system may
be organized as a hierarchy of layers, each one constructedupon the one below it. Second, system services may
be provided as a set of communicating processes. To request a service, a process (referred to as aclient) sends
a request to aserverprocess which then does the work and sends back the answer. Figure 7.1 illustrates these
principles.

L3

L2

L1

L0

User

Kernel

Seed

Hardware

Figure 7.1: Structure of the system software

Level L0 denotes the hardware, including both theSM and theSD (for brevity, hereafter when we refer to
theSM , the equivalent functionality of theSD is also implied). LevelL1, referred to as theseed, deals with
the basic process management. Above the seed, the operating system kernel services (L2) can then be structured
as a set of communicating processes. Finally, levelL3 deals with users which may request the services of the
kernel from their application programs. In the following, we discuss the design principles of these layers with
particular emphasis on recoverability but first consider the recovery provision for the basic model of computation
as introduced in Section 1.4.

7.1.1 Providing recoverability for the basic model of computation

Recall that in the basic model of computation, a process may access a local state (process registers) and a shared
state which we assume to be represented in theSM . Let us first examine how recoverability can be provided for
this model considering the simplifying case where a separate processor would be dedicated to each process.

Recoverability of a system of communicating processes responding to the basic model is simply provided by
mapping aprocess transactionto aprocessor transaction. When a new process transaction is started (following
an explicit request of the process or an implicit action of the recovery protocol), the local state of the process (the
registers of the processor executing the process) is written into memory, thecache if any is flushed into theSM ,
and the current (active) processor transaction associated to the processor executing the process is committed. The
processor begins a new processor transaction.

The facilities offered by theSM are almost sufficient themselves for implementing correctly the model of
computation defined previously and are very adequate for tolerance to hardware faults (processor failures). When
a processor failure occurs, the current transaction is rolled back and the process can safely restart its computation on
another processor after having loaded the process local state from theSM into the registers of the new processor
allocated to the process. The set of processors forced to roll back their current transaction due to the recovery
protocol must also load their registers with the values safely stored in theSM on the last transaction commitment
before pursuing forward activity. The other processors are not affected.

In summary, the fault tolerance mechanisms of theSM are (almost) sufficient to cope fully with processor
failures so as to make these failurestransparentto the processes obeying the basic model of computation.

1This section contributed by Michel Banˆatre, Maurice J´egado, Philippe Joubert and Christine Morin, Campus universitaire de Beaulieu,
35042 Rennes Cedex, France



Our conjecture is that this is also the case for any abstract model of computation that can be mapped onto
this basic model. A rough argument of this (conjectured) property, based on abstract data type theory, might be
as follows. Consider a programP responding to an abstract model of computation, starting in an initial abstract
states and terminating in a final abstract statef denotedP(s) = f . Assume thatP is mapped to a programP0
responding to the basic model of computation such thatP0(s0) = f0; s0 andf0 denoting respectively the initial
and final concrete states ofP0. Let abs be the abstraction function from the concrete domain onto the abstract
domain. Assume that a correct mapping satisfies the following predicate:((P0(s0) = f0 ^P(s) = f ^ abs(s0) =
s) ) abs(f0) = f). Should a component process ofP0 be rolled back due to a processor failure, the recovery
protocol constructs a programP 00 equivalent toP0 (see Section 1.4) leading to the same final concrete statef0. It
is then easy to see that the abstract programP is not influenced by the recovery actions since the abstract final state
of P will be the same. Clearly, a more formal proof of this property would be desirable.

In the absence of a formal proof, let us assume that it is so. We may extend recoverability to the more realistic
case where a multiprocessor may support the execution of an arbitrary number of processes competing for a limited
number of available processors by introducing the concept of aseed.

7.1.2 The seed

The role of the seed is to deal with the basic process management and to provide higher layers with a useful model
of communicating sequential processes. In addition to the basic model of computation introduced in Section 1.4,
we require that the seed offers abstract synchronisation and communication primitives, and allows for the dynamic
creation and deletion of processes. The seed is needed to hide machine-dependent features (e.g. interrupt handling)
and thereby provide a machine independent interface that facilitates the portability of kernel services. The bulk of
memory management is not considered as being part of the seed but as a kernel service running at a higher layer.
This is discussed below in Section 7.1.4. Conceptually, the seed layer has many similarities with microkernels that
have been discussed in the operating system literature, such as Chorus [Rozier et al 88] or Mach [Baron et al 88].

7.1.2.1 Virtualization of the processor resource

Since dedicating a physical processor toeach process is not realistic in a classical multiprocessor architecture
where the number of available processors is limited, our first step is to virtualize this resource. Avirtual processor
is allocated to each process.

Time sharing is a well known technique to virtualize the processor resource. On a monoprocessor, the physical
processor is allocated to each virtual processor for a time quantum. Virtual processors may be managed by a short
termscheduleraccording to a round robin discipline. This same technique easily extends to a multiprocessor. We
assume, as it is generally the case, that a virtual processor may be mapped to different physical processors during
its activity.

The most straightforward implementation of process recoverability in this context is to conceal the scheduling
activity and provide the notion ofvirtual processor transaction. A single active virtual transaction is associated
to each virtual processor; a process transaction is mapped to a virtual processor transaction. In the following, the
word transaction (alone) stands for virtual processor transaction.

Consider now the scheduler design in greater detail. We assume that a zone of theSM is allocated to each
process forstackingprivate data. We also assume that once a process has consumed its time quantum on a pro-
cessor, some clock device sends an interrupt to the processor. This has the effect to copy the local state of the
process on top of its private stack, and triggers the execution of the scheduler. Symmetrically, returning from the
scheduler has the effect to pop the local state at the top of the current stack into the processor’s registers. We
assume that acontextis allocated at a fixed address in theSM for containing the process local state together with a
link field used for list management. An arrayactive such thatactive[K] refers to the context of the active process
on processorK is maintained by the scheduler. A single listready protected by a global lock chains the contexts
of the processes that are not active. When the scheduler is entered by processorK because the active process on
processorK has consumed its time slice, the active process is descheduled and chained at the tail of theready list
to the benefit of the head process of the ready list which is removed from the list and made active. In other words,
the set of processes contained in the system are the processes pointed to by theactive array plus those chained in
theready list. This set is maintained as an invariant by the scheduler (if we ignore the dynamic creation/deletion
of processes).



Without further constraints on scheduling, a processor transaction will embed activities belonging to distinct
transactions, and a transaction will be mapped to several processor transactions. To overcome this, let us commit
a transaction each time a virtual processor is allocated aphysical processor by the scheduler. The basic steps
performed by the scheduler entered on processorK by processp are then as described by Figure 7.2.

(1) Save the registers’ values residing on top of the stack of p

into the context of p.
(2) Commit the current processor transaction.

Now active[K] = p and ready = q + X

(3) Schedule a new process q.
Now active[K] = q and ready = X + p

(4) Begin a processor transaction.
(5) Install the context of q on top of the stack of q.
(6) Return from the scheduler

Figure 7.2: The short-term scheduler: specifications

Consider the treatment of a failure of processorK, assuming for the moment that this event cannot occur
while performing the scheduling sequence above. LetPi denote a processor member of the set of the rolled
back processors due to the failure of processorK. This set is automatically determined by the recovery protocol.
Basically, recovering from a processor failure boils down to the following actions:

(1) The context pointed to byactive[Pi] must be loaded into the registers of processorPi. Alternatively,
this context could be inserted into the ready list and a new process dispatched onPi. This action can
be performed by processorPi itself.

(2) The process whose context is pointed to byactive[K] must be inserted into the ready list. This action
must be performed by a processorelectedout of the remaining live processors (ignoring the detail of
such an algorithm). The process will then be dispatched on another live processor by the scheduler.

One can see that the failure of a processor does not affect all the processors of the machine, but only those that
are dependent on the failing one.

Consider now the case where processorK may fail while performing the scheduling sequence. Logically,
the data structures maintained by the scheduler itself are not part of the shared state of a process given our basic
model of computation. How should recoverability be provided for those objects ? A first possibility is to exclude
those data structures from the recovery protocol, recoverability being then achieved by explicitforward recovery
[Randell et al 78]. A second possibility is to attempt to include those structures within the recovery protocol. We
illustrate the second possibility in the algorithm of Figure 7.3.

(1) pop(stack[active[K]], context[active[K]])
(2) NewProcessorTransaction
(3.1)test: test_and_set (val, GlobalLock)
(3.2) if val <> 0 then goto test fi
(3.3) PutTail(ready, active[K])
(3.4) RemoveHead (ready, active[K])
(3.5) GlobalLock := 0
(4) NewProcessorTransaction
(5) push(stack[active[K]], context[active[K]])
(6) return

Figure 7.3: The short-term scheduler implementation

Fortunately, for Figure 7.3, if we can guarantee that the section (3.1-3.5) is an atomic action, then failure while
performing this scheduling sequence is equivalent to the previous situation where the failure occurs outside of the
scheduler. Bracketing this sequence within appropriate primitives (NewProcessorTransaction) would not normally
be sufficient to ensure the atomicity property, since implicit commitments due to the recovery protocol might occur
while performing the action. However, in this particular case, within the seed itself where the programmer has a
control over the implicit commitments performed by the recovery protocol, a cheap way to ensure the atomicity of
the above action is to defer the treatment of any commit request until the nextNewProcessorTransactionprimitive



is encountered. Naturally, the defer period should be short (which is the case here), since other processors could
be blocked waiting for the end of the commit protocol.

We can also observe that a commit request cannot happen while performing section (3.1-3.5), since it is tan-
tamount to a processor critical section. By definition, this section can only be entered by a single processor at a
time, and the processor within the section cannot be a potential recovery initiator of another processor willing to
commit.

As a final remark, notice that theNewProcessorTransactionprimitive of Figure 7.3 does not need to trigger a
register flush, but only a cache flush (if any), followed by a call to thedo commit command of theSM .

7.1.2.2 Basic synchronisation primitives

Let us assume that processes can exchangemessages through shared memory objects calledports. To simplify
the presentation, we assume that a port may retain the memory of an arbitrary number of messages, and that a
message may contain a variable size collection of data, although a particular implementation may restrict these
hypotheses. Sending a messagem to a portp (i.e. send (p, m)) is assumed to be an asynchronous operation while
receiving a message from a port (i.ereceive (p, m)) is assumed to be blocking if the port is empty.

Recoverability for this model of computation can be provided in almost the same manner as explained for the
basic model. What is required is that a dependency must be recorded between a process sending a message and the
process receiving it. But, as ports are memory objects, theSM hardware will automatically do this.

It should be noted that the default dependency tracking policy provided by the hardware may lead to more
dependencies than strictly required by the model of computation due to the access to the concrete data representing
the abstract model of computation. For performance reasons, it may be better to have an explicit control mechanism
to escape the default policy in favour of an explicit programmed dependency tracking policy.

We will not go into implementation details of the basic synchronisation primitives here, but just mention that
the scheduler algorithm discussed above is a sound basis upon which to build them.

7.1.3 Standard vs non-standard processes

So far, we have been considering that a process may access a local state (process registers), a shared state in
theSM , and ports which are assumed to be represented in theSM . We say that these objects areimplicitly
recoverable via the recovery protocol. In a realistic architecture, there are clearly other objects to be controlled
by an operating system for which recoverability might not be implicitly provided, particularly I/O devices. A
process which accesses a local state and implicitly recoverable objects will be referred to as astandardprocess
while a process which accesses objects that are not implicitly recoverable will be referred to as anon-standard
process [Banˆatre et al 92a]. Given this distinction, we may expect the kernel services to be programmed as a
set of standard and non-standard communicating processes. User processes should be standard in the sense that
recoverability should be transparent to them.

Programming a non-standard server process will depend on the type of unrecoverable objects the process is
dealing with. However, it is interesting to propose some programming guidelines. These are discussed in the
following.

7.1.3.1 General principles for non-standard servers

If each service of a server is programmed as arestartableoperationO, servicing a request despite a processor
failure can be obtained in the following way [Lampson 81a]:

(1) Save the server’s context in stable storage,

(2) PerformO, and

(3) Erase the server’s context from stable storage.

If a processor failure occurs while performingO, the process will resume after (1) and will performO again,
the resulting execution sequence is equivalent to a single execution ofO by definition.

Given our model of computation, we may embed the server’s operationO within two NewProcessTransaction
primitives so as to ensure service despite failures. There are two aspects of this to consider. First, recall from



Section 1.4 that such a region may be dynamically broken into multiple transactions due to the implicit commit-
ments performed by the recovery protocol. Consequently, the restartable property (if any) of a service does not
lead immediately to a solution, in contrast to above. Second,O will in general be a compound action made of both
recoverable and non-recoverable actions.

The first situation is particularly embarassing. We may think of providing explicitkernel transactions(or
seed transactions) fully under the programmer’s control, as in [Banˆatre et al 91c], leaving the programmer to cope
only with providing recoverability to the non-recoverable objects used within a kernel transaction. Providing
kernel transactions is a very large task. Instead, here we discuss using only the properties of the services to be
programmed, together with some additional provisions, to program a limited number of non-standard servers.

The first provision is a limited amount of non-recoverable memory that may be used to record the state of
objects for which explicit recovery is needed. We define a non-recoverable memory cell as one where its contents
are not restored should its current process transaction be rolled back.

Secondly, in many cases, once its current transaction is rolled back, a non-standard process will wish to per-
form exceptional work before proceeding. Let us assume that the seed provides an exceptional mechanismRoll-
BackAt(address)for that purpose, where the flow of control of the process will be resumed ataddressshould the
current process transaction be rolled back. Such a mechanism might be triggered in different ways by the calling
process. First,RollBackAtmight be provided as an explicit seed primitive. Second, the rollbackaddressmight be
provided as an explicit exceptionalcontinuation[Livercy 78] argument to each seed primitive. Third, if the pro-
gramming language offers a mechanism for handling exceptions, it is appropriate to map the rollback of a process
transaction onto an exception which may then be handled according to the rules defined by the language.

Finally, a non-standard server might wish to explicitly commit its current transaction. Let us assume the seed
offers a primitive,NewProcessTransaction(p), for that purpose, wherep denotes a process. Basically, a call to this
primitive will execute a code sequence similar to the scheduler sequence depicted in Figure 7.3.

7.1.3.2 Communication issues

A client process requests the service of a server by sending its request on the server port. Conversely, the server
replies to the request by sending its reply on the client port. As far as communications are concerned, it is clear
that communications between standard processes (inside the standard domain) themselves do not raise difficulties.
In contrast, communications with non-standard processes need to obey a particular protocol.

In order to facilitate the provision of fault tolerance measures within a non-standard server, the server might
require that the clientcommits its request before further action by the server. In other words, the client’s request is
an intention[Lampson 81a] that has to be performed by the server. The underlying reason is that in general it will
be easier for a non-standard server to restart the processing of a request than to be possibly obliged to cancel the
processing of a request (anorphan execution) retracted by a rolled-back client. In the general case, a client’s call
will give rise to nested calls, which to be cancelled would require recursive cancellation of all orphan executions
raised by the call. Communications with non-standard processes is likely to occur very often and therefore an
efficient implementation is necessary. This dictates that the protocol must be implemented at the bottom layer (the
seed) so as to use the hardware facilities in the most efficient way.

7.1.3.3 Guidelines for non-standard servers

In summary, the following guidelines for programming non-standard servers can be proposed:

(a) A non-standard server may make use of non-recoverable memory in order to record the recovery data of
some objects.

(b) A non-standard server may provide a handler for dealing with a rollback of its current process transaction
(triggered by the recovery protocol due to a processor failure).

(c) A non-standard server may explicitly commit its current process transaction (recall, however, that a
process does have not full control over its transactions, since the recovery protocol may itself implicitly
commit its current transaction).

(d) A non-standard server may require a particular communication protocol so as to facilitate the provision
of its fault tolerance measures.



7.1.4 Memory management

Memory management is a central and complex component in any operating system. Our aim, in this section, is not
to describe in detail the intricacies of sophisticated virtual memory management schemes (this has been discussed
elsewhere [Krakowiak 85]) but to attempt isolate the new problems that virtual memory management may raise as
far as the recovery protocol is concerned. For the purpose of illustration, we introduce below the main features of
a memory management scheme (a particular implementation may not correspond exactly to this example, but this
framework is adequate for us to illustrate the issues discussed).

We assume that that ashared segmented virtual spaceis provided to processes. A process references a word
within a segment by a tuple<SegmentId, SegmentOffset> whereSegmentOffsetdenotes the offset from the be-
ginning of the segment. A segment is a linear address space. For the purpose ofphysical memory management,
each segment is paged. ASegmentOffsetgets decomposed into a further tuple<SegmentPageNo, PageOffset>.
We assume that swap space is available for extending the capacity of the memory. A segment page may then be
resident in memory or not. In the former case, we assume that the page has asinglecopy in memory. In the latter
case, the page is resident in swap space and can be brought into memory if necessary. We assume a perfect model
for swap space, i.e. writing a page is assumed to take place correctly, and reading a page is assumed to return the
correct value.

The model of computation provided above the memory management (residing on top of the seed) is identical
to the one provided by the seed itself except that now dependencies between processes must be (logically) tracked
on thevirtual addresses referenced by the communicating processes. Ideally, we would like theSM hardware
to still provide the necessary abstraction, even though theSM is only aware of the physicalaccesses. It is clear
that as long as a segment page is not relocated, theSM provides the necessary abstraction, since a segment page
can have only a single copy in physical memory. If relocation activity only involved standard processes, we may
also convince ourselves that theSM will achieve the necessary abstraction, since a dependency will be recorded
between a process accessing a pagep before relocation and a process accessingp after relocation, and the relocation
activity itself must access bothphysical locations. Unfortunately, in a realistic environment paging will probably
involve non-standard processes. In that case (without further constraints and assumptions), theSM cannot by itself
provide the necessary abstraction. Consider, for instance, the case where swapping out and swapping in pages are
performed by separate non-standard server processes. Logically, swapping in a given page is dependent on the
last swapping out of the page, but without further assumptions, theSM will not record this dependency as these
activities do not operate within the standard domain.

There are several ways to overcome this difficulty. At one extreme, swapping out and swapping in might
be programmed so as to access explicitly commonSM objects, for which the hardware will implicitly track the
dependencies. At the opposite extreme, commitment might be forced when relocation is performed so as to ensure
that within a group of dependent process transactions, a given virtual access cannot be mapped to distinct physical
locations.

A simplifying principle might be to consider that swap space contains only committed data, since then rolling
back a transaction will not affect the swap space. This principle does not appear very restrictive, for if a page is not
committed, it is likely to be part of the working set of a process anyway, and therefore should reside in memory.
For performance reasons, we would not wish commitment to involve any swap space operation either.

7.2 The Mach Microkernel2

We have noted that the seed has many similarities to existing microkernels. Development of a microkernel is not a
trivial exercise. Not only is it not for the faint-hearted, existing examples represent hundreds of man-years of effort.
In recent years, two microkernels have predominated : thepublic-domain Mach 3.0 microkernel [Accetta 86,
Rashid 86b] and the proprietary Chorus microkernel [Gien 90, Rozier et al 88]. Later we will examine how the
seed concepts can be introduced into one of these, Carnegie-Mellon’s Mach. Let us first examine Mach in some
detail. Those familiar with Mach and OSF1/mk may skip the following sections and continue reading from Section
7.6.

The history of Mach can be traced back to a research project called RIG (Rochester Intelligent Gateway) which
began at the University of Rochester in 1975. The main research goal of RIG was to demonstrate that an oper-
ating system can be organized and structured in a modular way, as a collection of processes which communicate

2This section contributed by Henry Chung and Danny Keogan, Department of Computer Science, Trinity College Dublin



by message passing. The system was designed and built, and showed that such an operating system could be
constructed.

In 1979 one of the RIG designers, Richard Rashid, left the University of Rochester and moved to Carnegie-
Mellon University (CMU). Rashid continued the work on message passing operating systems. He developed a new
operating system for PERQ3 workstations, called Accent. Compared with RIG, Accent had added protection, plus
transparent network operations, 32bit virtual memory, and other features. An initial version was up and running in
1981.

By 1984, Accent was used on over 150 PERQs, but clearly it was lesspopular than UNIX. This led Rashid to
design his third operating system, which he called Mach. By making Mach compatible with UNIX, Rashid hoped
to be able to use the large volume of existing software for UNIX. Mach improved a lot on Accent, with threads,
a better interprocess communication mechanism, multiprocessor support, and a highly advanced virtual memory
system. The first version of Mach was released for the VAX 11/784, a four-CPU multiprocessor machine, in 1986.
Later, Mach was selected by the U.S. Department of Defence’s Advanced Research Agency (DARPA) as part of
its Strategic Computing Initiative. It was made compatible with 4.2BSD by combining Mach and 4.2BSD into a
single (monolithic) kernel. Shortly thereafter the Open Software Foundation (OSF) chose Mach as the basis for
their operating system.

The monolithickernel was quite large. In 1989, CMU removed all the Berkeley UNIX code from the monolithic
kernel, and put it into the user space. What remained was pure Mach, and was much smaller. This was called the
Mach 3.0 microkernel, and the subsequent OSF1/mk operating system releases were based on this microkernel.

The Mach microkernel was designed using object-oriented design techniques. The microkernel can be viewed
as a collection of concurrent objects which communicate with each other by message passing. There are five
fundamental programming abstractions out of which more complex objects are built. Each of these abstractions is
itself a Mach object:

Tasks Mach breaks the UNIX view of a process down into two distinct entities: tasks and threads. Tasks
are containers which hold resources; they possess an address space, a port name space and one or more
threads.

Threads Threads are points of execution. They maintain minimal machine state: a stack, a set of registers
and a set of thread-specific port rights. A thread belongs to only one task and gainsaccess to resources
through belonging to the task which contains them.

Ports All interprocess communication (IPC) in Mach takes place over ports. Ports are unidirectional com-
munication channels. Ports are location-transparent. This allows services to be distributed over dif-
ferent address spaces on the same machine or on different machines on a network without modifying
client programs. This feature is fundamental in allowing Mach to run on uniprocessor, multiprocessor,
multicomputer and networked workstation clusters. It is also provides the ability for the microkernel
to move the implementation of traditional OS services such as paging or device management into user-
space application programs, one of the most important characteristic of Mach. The port system also
provides access control between objects. A thread gains access to a port if its parent task owns a capa-
bility known as a port right. There are three types of port rights:send, receiveandsend once. Further
security is provided by the fact that port rights do not have global names; instead each task maintains a
port name space. A particular port right only has meaning within the context of this name space. This
prevents a task attempting to defeat the access control by sending anillicit port right to another task.

MessagesMessages are typed collections of data which are sent through ports. The interface between Mach
objects is defined in a language independent interface description language (IDL), which describes the
format of the messages handled by the object. These IDL descriptions are compiled with the Mach
Interface Generator (MiG) into a set of stub routines in a target language. A thread sends a message by
calling a MiG stub routine. Messages are received by a thread through parameters passed by reference
to the MiG stub in the case of a synchronous call, or via a callback for an asynchronous call. In this
way, all the details of the Mach IPC system are hidden or encapsulated in a procedure call interface.

Memory Objects The microkernel provides a powerful and flexible virtual memory system. Memory ob-
jects form the basis of this system. Each range of virtual memory is backed by a memory object which
is responsible for providing the microkernel with the data in that range on demand.

3PERQ was an early engineering workstation, with a bitmapped screen, mouse and network connection.



The microkernel uses the five fundamental abstractions described above to build an environment tailored to
emulating OS personalities. The microkernel encapsulates process management, virtual memory management and
device management in a hardware independent manner so that OS servers, the application programs which provide
these personalities, contain little hardware dependent code. It is possible to have multiple OS servers running
simultaneously.

7.3 OSF1/mk4

The Open Software Foundation (OSF) was founded in 1988 by a group of major computer manufacturers5 to
develop and deliver software for open systems. OSF1/mk is an operating system based on the Mach 3.0 microkernel
and various servers running in user mode on top of it. Servers are available for the popular variants of UNIX, such
as BSD, System 5 and HP/UX. Figure 7.4 depicts an overview of its main software components:

MACH 3.0

Mach Task

Mach Task

Mach Task

Mach Task

Server

User Processes

Mach Task

Figure 7.4: Overview of OSF1/mk software architecture

Mach 3.0 kernel The microkernel is the only machine dependent component of OSF1/mk.

UNIX Server The UNIX server performs the system calls requested by user processes using the primitives
provided by Mach 3.0.

User ProcessesThese are the applications to be executed by the computer; they use Mach primitives to
communicate with the server to request the execution of system calls.

Mach 3.0 is a general purpose microkernel, so there is a lot of literature about it. [Accetta 86, Loepere 92a,
Loepere 92b, Rashid 86b] are a good starting point. The details given here are appropriate to Version 4.1 of
OSF1/mk.

7.3.1 BSD Server

At the time when the OSF was looking for a suitable microkernel technology, the group at CMU had demonstrated a
server running on their Mach microkernel which provided a UNIX personality. The OSF BSD server was originally

4This section contributed by A. P´erez, S. Rodr´ıguez, L. M. Muñoz, A. Garc´ıa, M. A. Liébana, L. Prieto, Departamento de Arquitectura y
Tecnolog´ıa de Sistemas Inform´aticos, Facultad de Inform´atica, Universidad Polit´ecnica de Madrid

5OSF is a consortium of computer vendors led by IBM, DEC and Hewlett Packard, and was formed in an attempt to wrest control of UNIX
from its then owner, AT&T.



based on the CMU UNIX server, but concerns about security, integrity, resource management, compatibility, per-
formance and maintenance prompted extensive changes to the source. Although the OSF rewrote and redesigned
large portions of the BSD server so that the OSF server now is quite different from its CMU counterpart, the mi-
crokernel remains unchanged and is identical to the CMU Mach 3.0 microkernel. See [Barbou des Places et al 94]
for a more detailed description of the software architecture of the server. Figure 7.5 shows a more detailed picture
of what happens when a system call is made by a user process; there are four main software components involved.

MACH 3.0

Process
User BSD

ServerRPC/Message Passing

Emulator

Application
BSD

Service Layer

IPC Interface Layer

Layer

Syscall

Base Services

Figure 7.5: Software architecture of BSD server

7.3.1.1 The Emulator

The emulator6 is a shared library, transparently linked at a fixed point in the address space of each application
program, which implements the client side of the OSF1/mk emulation. Access to the emulator is provided by
means of thetask set emulation() calls [Loepere 92a]. This dynamic linking of the emulator code toeach
OSF1/mk process results in binary compatibility with code for other operating systems. When a user process
wants a service from the operating system it performs a system call. The library function invoked by the user
raises a trap into the microkernel, and the trap is redirected to the emulator via a Mach redirection mechanism.
Once in the emulator, the system call is passed to the server using Mach IPC. Although this implies the execution
of a system call requires at least two communications, there are some system calls that can be completely executed
in the emulator with no communication overhead.

7.3.1.2 IPC Interface Between Emulator and Server Layers

When a system call reaches the server, it expects a message containing the system call number and the parameters
of the call. This information is used to get the function in the server that performs the system call. The IPC
interface layer is there to hide all the details of the necessary message handling and parameter passing.

6Also called theemulation library. Note that subsequent releases of OSF1/mk do not rely on an emulation library. When a user program
executes a system call trap, the kernel generates an exception message which it sends to a port that the server created to handle system calls.
The server then copies in and copies out any data necessary for the call from the calling program’s address space. Finally the server returns
into the kernel by replying to the exception message, and the kernel returns to the calling program using the information in the exception reply
to modify the calling thread’s state before resuming it.



There are several types of system calls depending upon the way the communication between the emulator and
the server is done. Section 7.4 describes the different types of system calls. The communication mechanisms used
are:

RPC Mach provides a RPC interface generator, called MiG, for passing parameters between tasks.

Message PassingMach message passing is used in most system calls.

Shared Memory When there is a big buffer to transfer between the server and the emulator, the Mach
virtual memory mapping mechanism is used to maintain a shared memory zone between the emulator
and the server.

When invoked, the IPC interface goes through the following steps:

(1) Identify the calling process.

(2) Activate a thread for each request that has been received.

(3) Call the corresponding system-call-specific routine.

7.3.1.3 BSD Services Layer

This layer implements the semantics specific to the OSF1/mk system. Two parts can be identified in it:

(a) Mapping of the basic system objects onto the Mach objects: as an example, a Unix process is imple-
mented using a Mach task with a thread in it.

(b) Implementation of the operating system services: as far as possible, this part reuses the code of the
previous kernel versions as, for example, in the case of the file system or the networking code.

7.3.1.4 Base Services Layer

This layer supplies the low level functions necessary to allow the reuse of large portions of the previous versions
of the kernel code. This is necessary because when transforming a monolithic operating system into a user mode
server, some low level internal services can no longer beaccessed directly. Examples of such services are the
synchronization primitives and interrupt masking routines.

Device drivers are another example. They remain part of the Mach 3.0 kernel and therefore cannot beaccessed
directly by a user mode operating system server. Instead, the base services layer uses Mach IPC to provide the
necessary interface between user level operating system code and kernel device drivers.

7.3.2 Source Tree of OSF1/mk

The main directories of the source tree provided in Version 4.1 of OSF1/mk, as shown in Figure 7.6, are as follows:

(a) export: Contains the header files and the libraries that are built in theobj directory and are copied into
theexport directory.

(b) obj: Contains the objects and executable files of the Mach kernel and/or the server after their compila-
tion.

(c) tools: Contains the compiler (gcc) and related tools (C-preprocessor, linker, etc).

(d) src: Contains all source files of the Mach kernel, the server, the libraries, and the commands.

(e) src/sbin: Contains the source files of the system commands not using the shared libraries. These
commands are very important in single-user mode or when recovering from an error during shared
libraries preload.

(f) src/setup: Contains all the shell scripts that build the different components of OSF1/mk.

(g) src/kernel: Contains the source files of OSF1/mk.

(h) src/mach servers: Contains the source files of the server and the emulator of OSF1/mk.

(i) src/mach servers/emulator: Contains the source files of the emulator.
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Figure 7.6: Source tree of OSF1/mk Version 4.1

(j) src/mach servers/mach init: Contains the source files of a server that creates ports for globally inter-
esting services, and hands the receive rights to those ports (i.e. the ability to serve them) to whoever
asks.

(k) src/mach servers/server: Contains the source files of the server.

(l) src/mach servers/server/bsd: Contains the source files of the server that implements the POSIX
1003.1 services.

(m) src/mach servers/server/conf: Contains all the configuration files relevant to the OSF1/mk version
to be built in the next compilation.

(n) src/mach servers/server/sys: Contains the header files that are not to be exported to the directory
/usr/include , that is, should be hidden from the user.

(o) src/mach servers/server/uxkern: Contains the source files related to server thread handling and all
the source files for the IPC interface between the emulator and server software layers.

(p) src/mach kernel: Contains the Mach 3.0 source files.

(q) src/usr: Contains the source files of all commands.

(r) src/systemtest: Contains the source files of the tests to be made of the system. Holds internal and
external tests, plus any new tests added to check POSIX 1003.4 correspondence.

(s) logs: Contains the log files of previous compilations. It is important to maintain previous logs to com-
pare them with logs from new compilations in order to check if the compilation has been successful.

(t) hostobj: Contains object and executable files of system commands after their compilation.

(u) hostexp: Contains libraries and header files to be exported to system directories. For example all
libraries in this directory are the last compilation of libraries in the/usr/lib directory.

7.3.3 Monoprocessor & Multiprocessor Configurations

The installation kit, provided by OSF, includes all the binaries and source code needed for building and running
OSF1/mk: the Mach and BSD server source files for different platforms (i386, Encore MultiMax and MIPS), the
source files of all the applications and system commands, and the source files of the tools used for building the
system. Here we will examine the OSF1/mk system for two different installations, one a multiprocessor, the other
a uniprocessor. Both installations are for machines based on the Intel i486 microprocessor. They share the same
source code, and only differ in the binaries obtained from building OSF1/mk.



7.3.3.1 Corollary 486/smp multiprocessor

The Corollary 486/smp [Corollary 92] belongs to a symmetric multiprocessor family that is based on the Intel i486
processor. It features a tightly-coupled shared memory architecture, in which multiple processors haveaccess to
common memory. To prevent memory access from creating a bottleneck, there is acache on each CPU board.
As indicated in Section 6.3, the system uses a dual-bus architecture, featuring a standard EISA bus for peripherals
and a propietary 32-bit bus, the Extended C-bus, for processor and memory traffic. This results in a system that
preserves compatibility with EISA and ISA peripherals yet achieves a performance level only possible with a bus
designed specifically for multiprocessing.

A typical server configuration for compiling, testing and debugging might have 4 processors, 32MBytes of
shared main memory, a controller for SCSI hard disk devices and diskette drives, anEthernetinterface, and finally,
a low resolution graphics controller for the console.

7.3.3.2 i486 PC uniprocessor

A typical i486 PC workstation might have an Intel i486 processor, an EISA bus, 32MBytes of memory, a con-
troller for SCSI hard disk devices and diskette drives, anEthernetinterface and a high resolution SVGA graphics
controller.

7.3.4 Compilations: Scripts, Makefiles & Configurations

The process of building the OSF1/mk operating requires the buildingof all the components of it. Those components
are:

(a) Mach 3.0 kernel

(b) OSF1/mk server

(c) User Libraries

(d) User commands

The compilation is a complex process handled by the Unixmake utility. All the environmental variables that
makefiles expect to be set, are initialized through shell scripts. Those scripts can be found in the directory
src/setup under the subdirectory corresponding to the platform we are building for:AT386 (the i386 reference
platform). Next the most important shell scripts are described:

(a) AT386/setup.sh: Builds the tools necessary to compile the rest of the tree (compiler tools are not
included).

(b) AT386/OSF1MK.sh: Builds the whole OSF1/mk operating system: All libraries and commands, the Mach
3.0 kernel, the server and the emulator.

(c) AT386/mach kernel.sh: Builds the Mach 3.0 kernel.

(d) AT386/mach servers.sh: Builds the server and the emulator.

(e) AT386/onecmd.sh: Builds include files, libraries and commands in the tree, that are specified as param-
eters (e.g. onecmd.sh <directory> <target> ).

The shell scripts must be invoked fromsrc/ directory and with thesh as a command interpreter. For example
to compile the server and the emulator the command is:

sh -x setup/at386/mach_servers.sh >& ../logs/mach_servers.log

When executing these scripts it might be a good idea to redirect the standard output and the standard error to a
log file (as in the example above) in order to have a trace in case any problem is encountered.

The microkernel, server, emulator and machinit binaries built by the above scripts may be found below in the
following paths:

�/obj/at386/mach kernel/$ fMACHKERNELCONFIGg/mach kernel



�/obj/at386/mach servers/server/$ fCONFIGOPTg/vmunix

�/obj/at386/mach servers/emulator/emulator

�/obj/at386/mach servers/mach init/mach init

MACHKERNELCONFIGandCONFIGOPTare environment variables that may be set to select the wished configura-
tion for either the microkernel or the server. They have to be set before using the above mentioned scripts.

The CONFIGOPT environment variable indicates the configuration file used when building the server
(server/conf/AT386/$ fCONFIGOPTg). It is set in theAT386/host.sh script (see below), that is read in by the
other scripts to set up the basic variables used by all the scripts on the Intel i486 platform.

if test $MULTI
then

CONFIG_OPT="MULTI_FASST"
else

CONFIG_OPT="DEB_FASST"
fi

(a) DEBFASST: the configuration file to compile for the monoprocessor platform PC i486. The number of
CPU’scpus is set to 1.

(b) MULTI FASST: the configuration file to compile for the multiprocessor platform Corollary 486/smp. The
number of CPU’scpus is set to 4.

The MACHKERNELCONFIGenvironment variable indicates the configuration file used when building the micro-
kernel (mach kernel/conf/AT386/$ fMACHKERNELCONFIGg).

(a) STD+WS:the configuration file to compile for the monoprocessor platform PC i486.

(b) STD+COROLLARY+6+XCBUS+BULL:the configuration file to compile for the multiprocessor platform Corol-
lary 486/smp.

7.3.5 Booting the built OSF1/mk

There are two ways in order to boot the built binaries:

(1) Specifying a boot prompt:

It is necessary first to copy the builtmach kernel into /mach kernel.new , the built server vmunix
and its emulator into the/mach servers directory asvmunix.new and emulator.new , for instance,
respectively. At the boot prompt, the following should then be entered:

mach kernel.new:/mach servers/vmunix.new -e /mach servers/emulator.new

(2) As the default boot:
It is necessary to copy the builtmach kernel into /mach , the built server vmunix into
/mach servers/startup and its emulator into/mach servers/emulator .

7.3.6 Debugging a Server

The GNUgdb debugger is a symbolic debugger that will be used to debug a OSF1/mk server when it is run as a
second server (/usr/local/gnu-tools/bin/gdb4.6 ); however this implies some specific machine set-up that will
be described later in this section.

The figure 7.7 shows the execution environment of a second server. The second server runs as a child process
of the first server, and can be debugged with a special version of gdb,gdb4.6 , which is provided with the OSF1/mk
sources, and which can debug multiple-thread Mach tasks.

The second server interacts with the first server in order to write the messages in console. The second server
console is the first server terminal from which the second one started its execution. There are two different families
of processes, which will not be allowed to interact using normal Unix system calls: the first server only knows the
server being debugged, not its descendants, and the second server uses a few services from the first one, namely
for the console emulation for instance.
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Figure 7.7: Execution environment of the second server

To use the facility of running and debugging a second server it is necessary to establish an appropriate environ-
ment. This is, to partition the disk with two different roots (for booting first and second servers), two paging files,
/var and/swap . See the table below, figure 7.8:

FIRST SERVER SECOND SERVER

sd0a

sd0b

sd0e

sd0h sd0j

sd0i

sd0f

sd0g root

paging file

/var

/swap

Figure 7.8: Partition Table

All read-only file systems, such as/usr , can be shared between the two servers because it contains the com-
mands that will not be changed.

7.3.6.1 Running the Second Server

The�/bin/second program starts the execution of the second server. Thegethostname() function gets the name
of the local host, but unfortunately the name of the machine in which the second server must run is hardcoded into
the program.



For a machine with a different name it will be necessary to change and to recompile this program, and then to
establish the ownership and rights to be as follows:

-rwsr-x--- 1 root fasst 77470 Jul 08 06:42 second

When run,�/bin/second mounts the root partition of the second server (/dev/sd0g ) into the/mnt directory
to copy the built emulator into the/mnt/mach servers directory asemulator.new , and then unmounts thesd0g

partition. Finally, it runs the second server, executing:

�/obj/at386/mach servers/server/$ fCONFIGOPTg/vmunix

-w -e /mach servers/emulator.new sd0g

The argument-e specifies a file for the emulator and-w for wired threads only.

7.3.6.2 Debugging the Second Server

Once the second server is running you may debug it. The�/bin/debug script first will recognize the machine in
which the second server is running in order to know the path of the built servervmunix and change the current
working directory to thevmunix directory.

Then execute�/bin/srv gdb 7 vmunix and attach to the process ID of the running second server.

7.4 System Call Extensions to a Server

As stated in section 7.3.1 there are different types of system calls depending upon the way the communica-
tion between the server and the emulator is performed. The type of each system call is specified in the file
server/conf/syscalls.master with one of the following keywords:MSG, STUB, EMULandRMUL:

(a) MSGSystem Calls.
This kind of system call is the most common, it performs the communication between the server and
the emulator via Mach message passing.

(b) STUBSystem Calls.
The key characteristic of these system calls is that they receive special treatment in the emulator. For
eachSTUBsystem call there is one routine in the emulator that do some especial test before communi-
cate to the server. These test check the validity of the system call parameters to avoid the communi-
cation with the server if there is an erroneous value. Once all the tests are passed, the communication
with the server is performed by RPC or via a MiG interface.

(c) EMULSystem Calls.
This type of system calls an the following one are very similar, both can execute completely in the
emulator, without communicating with the server. When the call cannot be completed in the emulator
the communication with the server is done either by message passing as inMSGcalls or by RPC as in
STUBcalls. An example of this type of system calls issigprocmask() , the signal mask of the process
is maintained in a memory zone shared with the server and the only action to carry out is to change it,
so it is not necessary to involve the server in the execution of this system call.

(d) RMULSystem Calls.
The only difference between this kind of system calls and the previous one is an extra parameter
added to all the system calls of this type. This extra parameter contains the registers of the machine.
Obviously the system calls of this type are machine-dependent. An example of such system calls is
sigreturn() called when a process exits from a signal handler and the previous stack frame of the
process must be restored.

If a new systems call has to be added to the server, this is not a very difficult task, but it does force one to
modify several files. As an example of how to do this, below we outline the steps involved in addingmq open and
qseek system calls to the OSF1/mk BSD Server.

7gdb4.6 binaries



7.4.1 Adding themq open System Call

(1) The fileserver/bsd/fasst msg.c contains the source code of all system calls related to message pass-
ing.

(2) A new entry has to be added in the fileserver/conf/syscalls.master :

269 STD SERIAL MSG 4 mq_open

The meaning of each column is the following:

(a) number: system call number that must be in order.
(b) type: one ofSTD, STDALT, OBSOL, UNIMPL, COMPAT.

(c) parallelized: one ofSERIAL, PARALLELor UPARALLEL.
(d) emulation: one ofMSG, STUB, EMULor RMUL.

(e) nargs: number of arguments.
(f) name: name of system call routine.

(3) Depending on the compilation debugging option, extra information has to be inserted in one of the
following files:

(a) No debugging. The fileserver/conf/files has to contain the following line:
bsd/fasst_msg.c standard

(b) Debugging. The fileserver/conf/files remains unchanged; however, the template file
server/conf/template.mk has to be modified by adding the following lines:

OBJS = ${OBJS} fasst_msg.o

CFILES = ${CFILES} bsd/fasst_msg.c

COBJS = ${COBJS} fasst_msg.o

fasst_msg.o: bsd/fasst_msg.c \
${C_RULE_1A_DBG} bsd/${C_RULE_1B}; \
${C_RULE_2}; \
${C_RULE_3}; \
${C_RULE_4}

(4) It is necessary to create a new filemqopen.s in thesrc/usr/ccs/lib/libc/AT386 directory, containing
the following code in the same way that in the other system calls:

#include <syscall.h>
#include <machine/asm.h>

SYSCALL(mq_open)
ret

Moreover, mqopen.o must be added to the object list in the filemachdep.mk in the
src/usr/ccs/lib/libc/AT386 directory.

(5) The prototype of themq open system call is included in thesrc/kernel/mqueue.h header file.

#ifndef _KERNEL
#ifdef _NO_PROTO
extern mqd_t mq_open();
#else
extern mqd_t mq_open(const char *, int, mode_t, struct mq_attr *);
#endif /* _NO_PROTO */
#endif /* _KERNEL */

7.4.2 Adding theqseek System Call to Remove the 2GB Filesystem Limit

The UNIX file system implicitly limits the size of file system to 2GB. This is because thenewfs command that is
used to create a new file system relies on thelseek system call to write file system metadata onto the raw device.
The lseek system call takes a 32 bit offset which determines where future operations will take place. When the



file system is being written this offset is a byte offset on the raw disk, and it is this quantity which introduces the
limitation on file system size. The file system can support large file systems, such as are required for sensible use
of the Stable Disk, but the standardnewfs does not allow them to be created. To work around this problem a new
system call has been added to OSF1/mk: theqseek takes a 64 bit quantity as an offset, andnewfs is then altered
to use this call. Once large file systems can be created, the existing file system code can handle them, since it uses
offsets referring to disk blocks rather than bytes.

7.5 Driver Extensions to the Microkernel8

The development of device drivers is an unpleasant task for a number of reasons. Typically device drivers are
implemented as part of the kernel of the operating system. This means that each time the device driver is modified
the kernel must be recompiled and the machine rebooted before the new version of the driver can be tested. This
need to reboot increases the time taken througheach iteration of the modify-compile-test cycle and also reduces
the usefulness to other users of the machine on which the driver is being developed.

7.5.1 Developing Device Drivers in User-Space

The above difficulties are primarily due to the driver being part of the kernel. Many of these problems disappear if
the kernel provides services which allow user-space programs to provide the functionality of a device driver. The
designers of the Mach 3.0 I/O sub-system went part of the way to providing such a facility, and the extensions
discussed here attempt to carry this work through to its logical conclusion by allowing drivers to be developed as
normal application programs which can be recompiled and run without rebooting the machine. This dramatically
reduces the time taken to test modifications to drivers, allows other users to continue using the machine during
driver development, and facilitates the use of the more sophisticated debugging tools available in user space.

To support user space device drivers which are independent of kernel code, three new facilities have been
added: a service to vector interrupts into user space, a means of mapping a specified portion ofphysical memory
into a task’s address space, and a mechanism fordynamically adding a device driver to the system. In some
multiprocessor configurations, not all the CPUs haveaccess to the I/O bus. A facility has been added to allow
threads which require access to the I/O bus to bind themselves to an I/O-capable CPU, ensuring that they are only
scheduled to run on that processor.

7.5.2 The Spy Device/dev/spy

To facilitate the memory mapping and interrupt vectoring modifications to OSF1/mk, a new pseudo-device
/dev/spy has been added to the system. Adding a pseudo-device is a less complex and more flexible method
of extending the system than adding system calls. The namespy was inspired by thevspy system call which
serves a similar purpose in GENIX [National 85].

7.5.2.1 Mapping Physical Memory

OSF1/mk allows limited access to the I/O space of the i486’s physical address space through the pseudo-device
/dev/iopl . While this is sufficient to control many I/O devices it falls well short of what is needed to control the
Stable Disk. The Stable Disk’s registers are mapped into EISA memory which in turn is mapped to a fixed address
range in the i486’s physical memory map. Toaccess these registers, the spy device has to allow the appropriate
portion of physical memory to be mapped into the device driver’s task.

To map a portion of physical memory, the task first opens the spy device using the standard UNIXopen call.
Next, the task callsmmap, a call normally used to map files into memory. Whenmmapis passed the file descriptor
of the spy device, its arguments take on the following meaning:

mmap(addr,len,prot,flags,file_descriptor,physical_addr)

whereaddr is the location within the task’s virtual address space where the physical memory is to be mapped;
len is the length of the memory range in bytes. The argumentsprot and flags retain their standard meanings,

8This section contributed by Jeremy Jones and Danny Keogan, Department of Computer Science, Trinity College Dublin



details of which can be found inmmap(2) . The file descriptor argument is the file descriptor of the spy device
andphysical addr is the start address of the range in physical memory to be mapped.

The implementation of this call is made difficult by the layers of encapsulation in the microkernel. It is not
possible for the server to create a direct mapping between a region of virtual memory and a region of physical
memory, because the microkernel’s virtual memory interface does not allow access to a task’s page tables from
outside the microkernel. This means that part of the implementation of the spy device has to be in the server and
part in the microkernel.

Under the Mach virtual memory system, the microkernel allows for a region of memory to be backed by a
memory object. A memory object is an abstraction which encapsulates data storage. When a fault occurs in a
region of virtual memory, the microkernel looks up the memory object that is backing that portion of the task’s
address space and sends it a message requesting it to supply the data that ought to be at that location. If, for
example, the region of memory is backed by the default pager, it will read the data from disk and supply it to the
microkernel. The advantage of this system lies in allowing the kernel access to data from heterogeneous sources,
through a single abstraction, that of virtual memory. The data supplied by the memory object may come from disk,
the memory of a remote machine or, as in this case, from a particular area in physical memory.

Whenmmapis called on the spy device, the server creates a new device pager memory object, connects it to the
appropriate region of virtual memory in the calling task’s address space and returns. As the pages of the mapped
region are accessed, they cause page faults which result in messages being sent to the device pager requesting it
to provide the data. The pager then invokes the mapping routine of that portion of the spy device that resides in
the microkernel. Since this routine is in the microkernel it can make the appropriate changes to the faulting task’s
page tables and return.

7.5.2.2 Interrupt Vectoring

The standard support for user space device drivers in OSF1/mk requires thateach driver have an interrupt handler
routine in kernel space. This routine saves volatile registers in a page shared between the kernel and the driver,
acknowledges the interrupt and resumes the previously suspended user driver with a call tothread resume . The
driver then processes the interrupt and, when it has no further work to carry out, suspends itself with a call to
thread suspend until another interrupt occurs.

Although interrupt handlers do not require much code, writing one foreach user space driver is tedious. A
cleaner and more general solution to this problem is to provide a mechanism which allows the user space driver to
acknowledge its own interrupts. The spy device offers this functionality through anioctl call. The syntax for the
call is:

ioctl(file_descriptor, request, argp)

where filedescriptor is the file descriptor of the spy device obtained from a standard UNIXopen call; the value
passed for request should beSPYWFI, defined inspyio.h ; theargp argument should be a pointer to a structspy wfi

which is defined, in the same header file, as:

struct spy_wfi {
int hwlevel;
int swlevel;
int timeout_ticks;

}

The fieldhwlevel refers to the i486 interrupt level,swlevel is a value used by the kernel to attach a software
priority to interrupts, andtimeout ticks is a timeout value measured in milliseconds.

When theioctl call is executed, the calling thread is blocked until such time as an interrupt occurs or the call
times out. The timeout is necessary because the microkernel will not allow a task which has a thread blocked in a
system call to exit. The call will fail if the specified hardware interrupt level is already being used.

The call works by allowing a user space task to alter the tables used by the microkernel to keep track of
interrupt handlers. Three tables (iunit , intpri , and ivect ) keep track of the hardware level, the software level
and the address of a handler, respectively, for each available hardware interrupt. The call first checks to see if the
given hardware level already has a handler defined, in which case it fails, returning an error value; otherwise, it
inserts details of its own generic handlerspyint into the tables, while noting the thread identifier of the caller in a
shadow table which it maintains. The calling thread is then blocked. When an interrupt occurs, the spy interrupt
handlerspyint is called and looks up the shadow table, to find the appropriate thread and wake it up.



7.5.3 Dynamically Adding Device Drivers

The standard support for user-space device device drivers in OSF1/mk does not support dynamically adding device
drivers to the system. This means that user-space drivers must be started as part of the boot process. To test
a modification to a such a driver, a time consuming reboot must be carried out to start the new version of the
driver. A new system calluser device check in was added to the system to allow the dynamic addition of device
drivers. This call maintains a table, which associates user space device driver names with the Mach ports to which
operations on these devices should be sent.

In most cases, when the server receives anopen system call, it simply callsdevice open on the microker-
nel master device port, which returns asendright granting access to the port controlling the device. This se-
quence has been modified to enable theuser device check in call to work as follows: where the server would
normally call device open , it instead calls a routinetcd device open , which consults the table maintained by
user device check in to see if the device is a user space device driver.

If the device is not found in the table,device open is called normally on the kernel’s master device port. If
the device is found in the table, thendevice open is called, but not on the kernel master device port; it is called
on the master port of the user space device driver retrieved fromuser device check in ’s table. Once the device
is open, the server caches thesendright to the device’s port obtained from thedevice open call. Thissendright
is indistinguishible to the server from asendright that it would obtain a kernel driver, so no further modifications
have to be made to any other device operations for it to work with user space drivers.

The server looks up devices in its device switch table based on their major device number to find the appro-
priate driver name for the device. This is a static structure in the kernel source, and therefore cannot be extended
dynamically. Dummy entries are made in this table foreach user space device driver. To speed the operation of
tcd device open , a naming convention has been adopted for these internal names for user space device drivers
(which are independent of the names which appear in the/dev directory): user space device drivers names begin
with an asterisk. If the name does not begin with an asterisk,tcd device open assumes the driver is a normal ker-
nel driver. Altering the kernel device switch table is the only modification of kernel source necessary to implement
a user-space device driver using the framework created by these modifications.

7.5.4 Binding Threads to I/O Capable CPUs

The Mach microkernel provides support for the multiprocessor architecture manufactured by Corollary Inc. In the
original Corollary machines, which incorporate a proprietary cache-coherent bus, the C-Bus, only one CPU, the
base CPU, has access to the EISA I/O bus. With Mach, the first time a thread executes an I/O instruction, it traps
into the microkernel. If the thread has sufficient permissions to execute the instruction, the microkernel binds the
thread to the base CPU, i.e. it ensures the thread will only be scheduled to run on the base CPU. Here the target
machine is a later model that incorporates an Extended C-Bus (or EC-Bus). This provides support for symmetric
CPU boards; boards which can access the EISA bus directly. To make maximum use of these boards, a change
has been made to the behaviour of the trap handler that is called when a thread executes an I/O instruction. This
routine now binds I/O threads in round-robin fashion such that they are spread over all the I/O capable CPUs.

When mapping EISA memory into a task address space using the spy device, no I/O instructions are used. Each
thread which needs to access the spied portion of EISA memory must therefore execute a dummy I/O instruction
to ensure that it has access to this memory, otherwise it will read random values. This instruction can be any I/O
instruction which has no side effects. This arrangement has inspired a further enhancement to the I/O instruction
trap handler: to allow the thread to choose which CPU it is to be scheduled on. If the instruction executed is aninb
instruction and the I/O address is between 0x200 and 0x20e, the trap handler will attempt to schedule the thread
on the CPU number indicated in the 4 least significant bits of the address. If this CPU does not exist, the handler
falls back on the round-robin system. The round-robin system is always used if the address is 0x20f. Two macros
provide a syntactic sugar for this mechanism.BIND TO CPU(x) will attempt to bind the thread to CPU number x,
where x is in the range 0 to 14.BIND TO SYMMETRICCPUwill bind a thread to a symmetric CPU in the round-robin
fashion mentioned above.



7.6 Fault Tolerance Extensions to the Microkernel9

By now we have a good idea of the fundamentals of Mach, and at last can speculate on what enhancements are
needed for it to conform to the principles of Section 7.1. The aim is to provide a fault tolerant virtual machine
(see Figure 7.9) through the use of hardware and the seed, or an equivalent fault tolerant microkernel. This virtual
machine is to have no single point of failure and it should gracefully degrade for multiple points of failure. If
any one hardware component fails, the virtual machine is to recover transparently (although it need not guarantee
recovery from multiple hardware failures).
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Figure 7.9: Virtual machine

We know that in order to ensure that applications continue to run in the face of failure, enough information
about the state of the system must be saved to ensure that if one hardware failure did occur, the most recently
saved system state could be restored and execution of the application could continue from there. We also know
that the system state is comprised of all the individual processor states, and that when recovery is carried out at the
processor level the system is not concerned with the individual state of the currently executing applications, it is
concerned with the system and hence processor states at particular instances of time (therecovery points).

7.6.1 Fault Tolerant Mechanisms required in the Microkernel

The fault tolerant microkernel has to use the mechanisms provided by the underlying hardware to ensure that the
above holds true, i.e. that if a processor fails, its processes should be recovered in a fashion transparent to the user.
It does this by usingprocessor transactions.

7.6.1.1 Processor Transactions

A processor transaction is used to provide backward error recovery in the event of a hardware failure. Each
processor is part of one and only one processor transaction. The microkernel must be able tocreate, commitand
aborta processor transaction. Here the creation and committment of a processor transaction are combined into one
act called acheckpoint.

Processor transactions are initiated oneach processor by the committment of the previous transaction and the
establishment of the next. They are begun by the microkernel on each processor. As each processor accesses shared
memory the processor dependency groups merge and expand, and thus there may be one or more processors as
members of such a transaction. The number of members may increase during the life span of the transaction, but if
one processor withdraws from a transaction before it completes, then all the remaining members of that transaction
must be rolled back.

Each processor must be able to explicitly invoke a checkpoint by issuing the relevant software commands
which use the mechanisms provided by the hardware.

While processors are independent of each other, each processor may decide when to checkpoint, without con-
cern for any other processor’s checkpoints. If every processor in the system was independent and the system was

9This section contributed by Paula McGrath, Department of Computer Science, Trinity College Dublin



rolled back to a consistent state, each processor would have its most recently checkpointed state restored even
though these checkpoints may have occurred at different points in time.

Once processors become dependent on each other, by accessing modified shared data, it is not acceptable
for dependent processors to independently checkpoint. A restoration of the system state in this case (witheach
processor restoring its most recently checkpointed state) would not lead to a consistent system state. Processor
dependencies must be logged and tracked to ensure that dependent processors are checkpointed together. In this
way a consistent state of the system may be restored if necessary.
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Figure 7.10: Three dependent processes subject to rollback

7.6.1.2 Processor Dependencies

Processor dependencies are tracked by theSM . Processor dependency groups are created using this information.
A dependency is created between two processors when one accesses the same area of shared memory that the other
has written to. The dependency tracking is affected by type and order ofaccess. If two processors read the same
area of memory no dependency between the processors is created.

Let us take a concrete example. In Figure 7.10 the three processors, P1, P2 and P3, are initially independent.
If a rollback occurred, the processors would be rolled back to their most recent checkpointed state. But after P3
reads the value written by P2, P3 becomes dependent on P2. If P2 aborts before its next checkpoint, then P1 must
also abort. After the two processors are rolled back, the dependency is created again. This time P2 checkpoints
and P3 is implicitly checkpointed. P1 is not affected as it is still independent of the other two processors.

Again let us take a concrete example. In Figure 7.11, P1 and P2 are processors and P1 is the current writer of
memory locationv. If P2 subsequently reads that same memory location, P2 becomes dependent on P1. Similarly
if P4 writes to locationu, P3 becomes dependent on P4. The arrows indicate the dependency relationships.

Dependencies relationships are: P3(w)P2(r) P4(w)P1(w)

timeP1(w,v ), P2(r,v), P3(w,u), P4(w, u)Actions over time are:

Figure 7.11: Dependency relationships between three dependent processes

A consistent state of the system must be checkpointed where there are processor dependencies. When a pro-
cessor is to be checkpointed, an implicit checkpoint is issued to all the other processors which are in the same
dependency group, and the processors in the descendant dependency groups must also be checkpointed.

In the event of a hardware failure the last saved consistent state of the system is restored and processing
continues with the processes unaware of the failure. When one member of a dependency group issues a rollback
request, all the members of the group must be rolled back.



7.6.2 Checkpointing

When a checkpoint occurs, the state of a processor is saved. TheSM provides the mechanism for checkpointing
the state of a processor. It knows what parts of memory have been modified by each processor. However, the
state of a processor is everything that has been modified by the processor since the previous checkpoint, including
CPU state, registers, cache, etc.. All of this must be saved. As abyproduct, a checkpoint clears a processor of any
dependencies.

7.6.2.1 The Checkpointing Algorithm

The checkpointing algorithm is implemented in software using the mechanisms provided by the hardware (see
Chapter 4.1). There are two phases to the hardware part of the checkpoint and one phase for the microkernel. One
of the processors is theInitiator. It is responsible for coordinating the processor checkpoint; it does not have to
be the processor which requests the checkpoint. The other processors fall into one of two categories: (a) member
of the dependency group, (b) independent of the dependency group. These two categories are mutually exclusive.
There may be zero or more entries in either category. In the following paragraphs a description is given of the tasks
of the Initiator, the other processors and theSM (also see Figure 7.12).

The Initiator

(a) Request the other processors toStop all Activity

(b) Read the dependency matrix from the Stable Memory Unit(s)

(c) Generate the Dependency Group

(d) Request the processors which are not in the Dependency Group toContinue Processing

(e) Tell the processors which are in the Dependency Group toPrepare to Commit

(f) Wait for the Dependency Group to signal their acceptance of the message

(g) Inform the Stable Memory Unit(s) toPrepare to Commit

(h) Request the processors which are in the Dependency Group toContinue Processing

(i) Request the Stable Memory Unit(s) toCommit

The Other Processors

(a) On receipt of aStop All Activitycommand save the registers

(b) Wait for the next command

(c) If command ==Continue ProcessingThen
Resume processing

(d) If command ==Prepare to CommitThen
Save Registers and clear/flush cache
Wait for Continue Processingcommand

Stable Memory Unit(s)

Phase 1 While the checkpoint is active check that the Initiator is still alive
Pass the Dependency Matrix to the Initiator

Phase 2 Committhe Data

TheSMs may be considered as two banks of memory, as in Figure 7.13, one containing the current data and
the other containing the recovery data. When the memorycommitsthe data is copied from the current memory
bank,bank1, to the recovery memory bank,bank2. When the memoryaborts, the data in the recoverybank2is
copied to the currentbank1.

To summarise, when a checkpoint is taken the state of a processor is saved. The checkpoint is taken by the
microkernel using the mechanisms provided by theSM .
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obtain_commit_lock();
stop_all();

saveRegisters();
Sync[myID]=Stopped;
Wait(Sync[myID]);

Wait(Initiator);

Commit Continue

Wait(Sync[*]==Stopped);
ComputeGroup();
Sync[in_Group]=Commit;
Update_M_in_Devices();
Sync[!in_Group]=Continue;

Wait(Sync[in_Group]==Waiting);
Sync[in_Group]=Normal;

FlushCache(); continue ...

Wait(Sync[myID]==Normal);
continue ...

Wait(Commit);Prepare_Devices();
Commit_Devices();

<Perform Commit>continue ...

Figure 7.12: Execution of a checkpointing algorithm
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Figure 7.13: Checkpointing and rollback

7.6.3 Rollback

When a rollback is initiated as the result of one hardware failure in the system, it is necessary to transparently
roll back a processor and resume execution of the process which was executing at the time of the most recent
checkpoint, as though nothing has happened. There may be a problem with rescheduling the process elsewhere in
the system because the checkpoint could have occurred at a time which was not convenient for the process; it may
not always be feasible to reschedule a process.

Rolling back a processor results in the restoration of the state of the processor and hence a consistent state of
the system is also restored. The number of processors rolled back depends on the type of failure. Either all the
processors are rolled back or the members of the affected processor dependency groups are rolled back.

Let us again take some concrete examples. In Figure 7.14 we assume for simplicity that checkpoints occur on
a context switch. Checkpoints terminate one processor transaction and start another. If there is no rollback both
processors continue as normal.

Initially P1 has no dependent processors. If P1 aborts during execution of S2, P1 is rolled back toY; all
modifications made in theSM by the processor P1 on behalf of both the microkernel and the process since the
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Figure 7.14: Two dependent processes that checkpoint at context switches

checkpointY are undone by copying the data in the recoverybank2to the currentbank1. Also in this example,
when process S7 reads a message from process S4, processor P2 becomes dependent on processor P1. If P1 aborts
after S7 reads the message but before its next checkpoint, both P1 and P2 are rolled back to checkpoint Z, causing
all thebank1data modified by both processors to be overwritten by the recovery data frombank2.
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Figure 7.15: Two dependent processes that checkpoint at any time

In Figure 7.15 there are two processors, P1 and P2. In this example checkpointing is assumed to occur at any
point in time during a process’ execution, i.e. there is no guarantee that a checkpoint occurs at a context switch.
P1 checkpoints during the execution of S1 and P2 checkpoints during the execution of S6, where neither occur at a
context switch. P2 becomes dependent on P1 by reading the message M1 from S1. P1 aborts during the processing
of S3 and both processors are rolled back to their last saved state, which happens to be part way through the
execution cycle of the two processes. There is no knowing the state of the processes or what they were doing when
their most recent checkpoints were taken.

7.6.4 Standard and Non-standard processes

With the seed we introduced two types of processes, standard and non-standard, and this concept must be extended
to the microkernel. A process which accesses both a local state and implicitly recoverable objects is a standard
process. A non-standard process is one whichaccesses objects which are not implicitly recoverable. Objects which
are implicitly recoverable are those which are assumed to be represented in the STM. Examples of non-implicitly
recoverable objects are I/O devices, and so I/O traffic should be separated and contained in processes devoted to
I/O alone.

7.6.4.1 Standard processes

A standard process is unaware of the occurrence of either an explicit or implicit checkpoint or abort. If a processor
that is executing a standard process is checkpointed, it should be possible to restart that process from its last
checkpoint. This may not be at a point natural to the process but it should be possible. No message is to be lost



or handled twice by a standard process if a roll-back occurs. If a sender checkpoints and the receiver rolls back
before the message arrives, the microkernel must re-send the message.

t4 t5

M1
M2 M3

C1
S2

C2 C3t1 t2 t3 C4
S1Processor P1

Processor P2

Figure 7.16: Two dependent standard processes

In Figure 7.16 both S1 and S2 are standard processes running on two different processors. No other processes
are scheduled on the processors in the given time frame. Initially there is no dependency between them and they
both checkpoint within their own time frame. If either of them fails before the message M1 is read and after
checkpoints C1 and C2, it will resume execution with the state saved at C1 or C2. After Processor P2 reads the
message from process S1 to process S2, P2 becomes part of the dependency group for P1. The dependency is
registered the moment the message is read (P1 does not become a member of the dependency group for P2).

If S1’s processor fails at time t2, after P2 has read M1 and before checkpoint C3, both processors are rolled
back. If P1 fails after checkpoint C3 and before M2 is sent at time t3, only P1 is rolled back because the dependency
between the two processors has been cleared. If P2 fails before M3 is read at time t4, only P2 is rolled back.
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Figure 7.17: Dependency relationships between the processes in Figure 7.16

New dependencies are created by the processors reading messages sent from each other.

7.6.4.2 Non-standard processes

A non-standard process is informed when either an implicit or explicit checkpoint/abort occurs. It does not differ-
entiate between explicit or implicit. Non standard processes must be made aware of these events because they deal
with devices which may not be rolled back and have to be handled in a special way.
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Figure 7.18: Two dependent processes: S3 is a standard process and NS4 is a non-standard process

In Figure 7.18 there are two processes S3 and NS4 running on processors P1 and P2. S3 is a standard process
and NS4 is a non-standard process. NS4 is not implicitly recoverable because operations are initiated which can not



be rolled back. This causes no difficulties when NS4 is not dependent on S3. After M1 is read, NS4 is dependent
on S3. If S3’s processor fails before checkpoint C3 occurs and after M1 is sent, S3 is rolled back and an attempt is
made to roll back NS4 as well. It is not possible to render void all NS4’s operations since its last checkpoint, as it
interacts with the external world, and these interactions may not be rolled back.

Nevertheless, the state of NS4 (checkpoint C1) is restored, and an attempt is made to undo any of the changes
made to objects in the system. This is possible with STM objects, but the process must also do some extra
processing before it is ready to resume operation. This is done by a special routine that is only executed after a
processor has been rolled back. There is a corresponding routine that is executed when a non-standard process is
checkpointed.

One way of reducing the probability of having to roll back a non-standard process is to checkpoint the pro-
cessor which creates the dependency immediately after the dependency is created, since after a checkpoint all
dependencies created by the checkpointing processor are removed. This is illustrated in Figure 7.19. After reading
message M1, processor P2 is dependent on processor P1. Since NS6 is a non-standard process, the dependency
should be broken as soon as it has been created, by checkpointing as soon as the message has been read. NS6
will rely on the microkernel to re-send it any messages it loses due to the rollback of processor P2. The failure of
processor P1 after checkpoint C3 will have no effect on processor P2 as the dependency has already been cleared.
Any dependencies with a non-standard process should be broken as soon as possible. The microkernel has to
recognise this and explicitly checkpoint the processor. This is an example of where an explicit checkpoint is used.
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Figure 7.19: A standard and a non-standard process, where dependent processes are checkpointed immediately
aftera dependency is created

Another way of reducing the probability of having to roll back a non-standard process is by checkpointing the
processor that could create a dependency before the dependency arises, for example, by checkpointing a processor
after every message is sent to a non-standard process. In this way no dependencies will arise from the message
being read. In Figure 7.20 Processor P1 checkpoints as soon as a message is sent to the non-standard process. No
dependency is created when Processor P2 reads the message M1.
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Figure 7.20: A standard and a non-standard process, where processes are checkpointed immediatelybeforea
dependency is created



7.7 Unresolved Microkernel Issues10

Although it all looks very impressive, Mach actually falls well short of what is required for the recovery protocol.
Most microkernels suffer similarly. A number of problems remain:

(a) Checkpointing algorithm Difficulties with checkpointing arise where checkpoints happen at unknown
points of time. Unresolved issues include what is defined as the start of time, what happens at the start
of time, when is the first checkpoint taken ? How is a checkpoint message treated by the processor - is
it similar to an interrupt ? Can a processor be checkpointed at all times or are there some problem areas,
such as locks ? What happens if there is a crash of the processor which issued the explicit checkpoint
- does the Initiator continue with the checkpoint ? What if the checkpoint is only partially done when
one of the group’s processors dies ?

(b) Rollback For rollback, the major unresolved issue is what exactly is the rollback algorithm ? Also, what
happens if there is a failure during checkpointing which causes a rollback ? What if there is a failure
during rollback ?

(c) Standard processesReferring to Figure 7.16, if S2’s processor fails after M3 is read by processor P1,
both S1 and S2 are rolled back to checkpoint C3. As both are standard processes, enough information
must be saved when the checkpoint occurs to allow the rescheduling of S2 elsewhere in the system.
How to do this is still unresolved.

(d) Non-standard processesFor a standard process, rollback is handled by the combination of the micro-
kernel and hardware. The process itself must do some extra processing before it is ready to resume
operation. It has a special routine which is only executed after a processor has been rolled back. There
is a corresponding routine which is executed when a non-standard process is checkpointed. What
exactly these routines do has yet to be specified. A question which also arises here is should non-
standard processes be part of processor transactions ? If they are not, non-standard processes should
not use stable memory and all their data structures should be stored in non-stable memory. How is a
processor initialised to use stable and/or non-stable memory ? Should the memory locations of a non-
standard process be recoverable ? A non-standard process can be dependent on standard processes, and
vice-versa, but these dependencies should be broken as soon as possible. What about dependencies be-
tween non-standard processes ? If the microkernel is aware of the difference between standard and
non-standard processes, then non-standard processes should register themselves. Also the microkernel
needs a mechanism to store messages which have to be re-sent to non-standard processes. Recovery
measures implemented by non-standard processes have no effect on standard processes. There should
be a firewall between standard and non-standard processes. Rolling back a non-standard process should
not affect any other processes. Another important issue is that within the dependency tracking hard-
ware no dependency is created between processes on the same processor, which is the more usual case
for I/O. In this instance perhaps the processor should checkpoint itself at regular instances to avoid
having to rollback the non-standard process.

(e) User recovery levelUser processes need the ability to control their own transactions (let us call these
user transactions). The fault tolerant microkernel must provide the upper layers with the functions
which allow user processes to Begin, Commit or Abort their own transactions. Thus there are two
levels of checkpoints needed - those which occur at the processor level and are partially under the con-
trol of the microkernel (these may be explicit or implicit checkpoints/aborts), and those which occur
at the user level and which are under user control (these will all be explicit). A user level recovery
mechanism is required because a user level process cannot rely on processor transactions. Processor
transactions are not under user level control; they are used and maintained by the microkernel. Should
a processor abort there is no guarantee that the processor (and hence the active process) will be rolled
back to its most recent explicit checkpoint. It will be rolled back to the most recent checkpoint, which
may be either explicit or implicit, since the life of a user transaction may be longer than one proces-
sor transaction. In contrast, when users explicitly commit a transaction, they might expect that any
processor transactions running beneath the user transaction will be checkpointed, and similarly they
might not expect a processor transaction to last longer than a user transaction. The easiest way to avoid

10This section contributed by Brian Coghlan, Department of Computer Science, Trinity College Dublin



confusion is to allow explicit control of the behaviour by the user. For these user transactions, many
questions remain unanswered. For example, is another process allowed to read the data involved during
the transaction ? How are deadlock and livelock avoided ? Does the Begin command include the data
which will be required by the process ? Is two phase commit used for the user transactions ?

(f) Stable Memory failure Failure of theSM is equivalent to the failure of the whole system, since it is
used to hold the state of the system, and so it should internally handle as many failures as possible. The
extent of this, and whether there is interaction with the microkernel, are as yet undefined.

(h) Processor module failure A processor module failure is equivalent to that module issuing an abort. The
failure of a processor is recognised by the other processors and it is handled by the stable memory and
an elected processor. The processors are fail-stop, and so if a processor module fails, it is taken out of
service immediately. A processor failure must be recognised. One way to detect a processor’s failure
is by using timeouts or interrupts. There is no actual restoration of interrupted processes as a valid
processor state has been saved by theSM . A scheduler runs on each processor and has a local and
global queue. The scheduler is unaware of any abort having taken place. The process running at the
time of the fault and any others which have been run since the last checkpoint are rolled back by the
restoration of that processor’s state and the state of the dependent processors. The microkernel selects
one processor to complete the restoration. The elected processor then has to do a number of functions.
It must redistribute the failed processor’s local scheduler queue if possible [Black 90]. This queue
contains processes that are permanently bound to the failed processors CPU. It must also reschedule
the process which was running when the last checkpoint was taken. If the checkpoint was taken at a
context switch there is no further computing to reschedule a process elsewhere in the system. If the
checkpoint was taken while a process was running some further steps may need to be taken. This is
still an unresolved issue.

(i) Bus failure Failure of the bus should be recoverable, but may be treated as a catastrophic error.

(j) Stable Disk subsystem failure The Stable Disk interface might offer a number of modes of usage to its
users. One might be a regular disk interface and another a disk interface which uses the full potential
of the subsystem. When it operates as a regular disk interface it must be a non-standard process. The
disk driver provides the interface to the subsystem hardware. Disk errors are expected to be handled
by the disk driver, and not to be propagated to any users of the subsystem, such as the file system. It is
intended that the file system be a standard process. If the processor that the file system is running on
is rolled back, the file system should be unaware of having issued any read or write commands to the
stable disk driver since its last checkpointed state, i.e. should be able to assume that any commands
that were sent to the stable disk driver up to the last checkpoint will have been carried out, but that any
commands issued since then will not have been acted upon. It is up to the stable disk driver to ensure
that this is the case. How to do this is still unresolved. Other unresolved issues include whether any
of the processor state is stored on physical disks, if it possible to rollback the physical disk, and how
paging is effected.

(k) Failure of other I/O devices The failure of any I/O device other than the Stable Disk is likely to be
unrecoverable but detectable. Thereafter, the simplest response is to defer use of the failed device until
it is restored, but this requires a means of indicating to the rest of the system that this device is out of
service, otherwise the system may hang due to the unavailability of the device. Any other response
will require a device-specific solution.

(l) Power failure In the event of a power failure, the system must degrade in such a fashion that after power-
up user applications may continue as if there was no such failure. All the processors must restart with
the state of the processes as they were when the processors were last checkpointed. The non-standard
processes will have to perform special actions. Much of this might be integrated into the boot process,
but just how is as yet undefined.

(m) Adding new componentsWhat happens if new component are introduced to the system ? As yet this
is undefined.

This is a formidable list of hurdles, and there is no guarantee as yet that they may be overcome. A number of
proposals have been made that might handle the problems. Most have not been tested. As an example, let us look
at two such proposals, the first for the boot process, and the second for non-standard I/O.



7.8 Proposal 1 : Boot process handling11

The first question posed in Section 7.7(a) above is ”what is defined as the start of time, what happens at the start
of time, when is the first checkpoint taken ?” The start of time can be defined by the boot process, which can
also invoke the first checkpoint. In fact, these are not the only issues that may need attention during booting (for
example, see 7.7(l) above). Before attempting to tackle these problems, let us outline just what happens during a
Mach boot.

7.8.1 Mach booting

The Mach bootstrap starts at a special machine-dependent entry point (i386 for the i486 processor). Firstly, all
necessary CPU and memory initializations are done, including a call topmap bootstrap() , then the first hardware-
independent Mach functionsetup main() is given control. The first processor that gets thestart lock becomes the
master-CPU, while the remainder callslave main() . The flow of control is shown in 7.21.

This first Mach function then calls the initialization routines of the basic Mach modules:

(a) panic init() resets the internal panic flags to enable one panic message to be issued,

(b) sched init() initializes the basic scheduler variables (for example, the minimum context switch time)
and the action and wait queues,

(c) vm meminit() sets up the virtual memory system by defining the resident memory structures (from this
point on only virtual addresses are used),

(d) init timers() initializes the kernel timers and starts the one for themaster-CPU,

(e) initc timeout() sets up the Mach timeout timers, and

(f) mapable time init() starts the internal softclock device.

Then, after the virtual memory system is running, the remaining machine-dependent initialization (FPU, de-
vices, etc.) is done by callingmachine init() . Back insetup main() , the main Mach subsystems, (IPC, task,
thread), are initialized viaipc bootstrap() , task init() , thread init() , swapper init() ) andipc init() , and
the timeout-driven routinesrecompute priorities() andcompute mach factor() are started by calling them for
the first time. recompute priorities() updates the priorities of all threads, andcompute mach factor() calcu-
lates some load statistics.

At this point, the time has come to carefully create the first thread (startupthread()) and activate it (in
cpu launch first thread() ) by setting theactive variables and performing aload context() directly. The
startupthread executes the routinestart kernel threads() (this has been defined during creation of the
startupthread). This function creates theidle threadfor all the processors and also creates the following threads
within the kernel task:

(a) reaper threadruns, like all the others, forever, and destroys threads on request,

(b) swapinthreadsupports swapping of threads,

(c) schedthreadhandles periodic calculations in the scheduler that are not done at interrupt level, and

(d) action threadshuts down processes or changes their assignment.

It then unlocks thestart lock, which in fact starts the other processors (start other cpus() ). After starting
the user bootstrapbootstrap create() , thestartupthreadbecomes the pageout daemon by callingvm pageout() .
The bootstrap create() function creates abootstraptaskand abootstrapthreadto run thebootstrap() func-
tion, which in turn creates auser taskand auser thread to run a startup file to create servers, etc.. Theboot-
strap threadthen becomes thedefault pager() .

In the case of slave processors,slave main() just calls the hardware-dependent function
slave machine init() , which does the remaining machine-dependent initialization, and then gives control
to cpu launch first thread() , where a thread is chosen bychoose thread() and then started directly via
load context() for this slave processor.

11This section contributed by Brian Coghlan, Department of Computer Science, Trinity College Dublin, essentially as a precis of
[Jöhnk et al 92].
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Figure 7.21: Flow of control during a Mach boot

7.8.2 An implementation proposal for boot handling

Now that we understand the boot process, let us consider the extensions that are needed to support the recovery
protocol. This has to handle three different situations [J¨ohnk et al 92]. Firstly, there is the normal startup outlined
above, where an image of the microkernel is loaded from disk and executed. This kind of bootstrap, called acold
boot, is done on the very first startup or after regular shutdowns. The situation is different when the system was
stopped due to a power failure. In this second case the execution should continue at the last checkpoint taken before
the power failure occurred. For this, awarm boot, a few suitable actions have to be taken. In both these situations
all processors have to be started. The third situation requires just one processor to be booted after live-insertion -
this is needed to support non-stop operation of the machine.

The Mach bootstrap is split into a major part done by themaster-CPU, the processor which first got the
start lock, and minor parts done by all other processors, which are blocked by that lock. When themaster-CPUhas
set up the system, it callsstart other cpus()to free thestart lock. The others, knowing that at least one processor
is already running, do their hardware-dependent startup, change a few kernel variables, such asmachineslot, and



just start up a thread to get Mach running. In parallel, themaster-CPUcalls the server bootstrap, for example, that
for the UNIX server.

Four distinct issues need resolution for the booting to support the recovery protocol. First the master-slave
relationship of the processors during booting (and during normal operation) leads to difficulties if themaster-CPU
ever fails. Secondly there is the issue of the first point of commit during acold boot. Thirdly, provision must be
made for awarm boot. Finally, live-insertion must be supported.

7.8.2.1 Master-slave relationship

Master-slave relationships are not generally acceptable in a fault-tolerant system, since the system usually fails
when the master does. Mach uses itsmaster-CPUto do work that can only be done by exactly one processor.
In normal operation this work reduces to keeping the time-of-day accurate, so if themaster-CPUfails, all that is
required is some forward error recovery actions to assign another processor to this work. During booting, however,
all initializationsare done by this processor, and a failure while it holdsstart lockwould lock up the entire machine.
There are two ways to deal with this:

(a) If the machine does not start, the user can try restarting again (maybe some indication of which processor
failed and hence needed removal would help). This solution is not really acceptable, since it precludes
unattended rebooting.

(b) The startup can be controlled by a simple timeout mechanism such that if a processor fails during
booting, other processors will be alerted by expiry of the timeout. Since Mach is not yet running,
the timeout mechanism has to be implemented using additional locks and counting variables. Each
processorPi which does not get thestart lock can attempt to get the previous additional lockLi�1
(of which there should be at least as many as there are slave processors) while counting down from a
huge number. If a processor gets the previous additional lockLi�1, it unlocks its own additional lock
Li so that the processor holding the next additional lockLi+1 can continue at this level. If it times
out, the previous (possiblymaster-CPU) processorPi�1 has probably failed, and so it unlocks its own
additional lockLi and starts at the new level again, counting or running the boot code as if it just got
the previous lock. Therefore no processor failure can prevent another processor from running the boot
code. The synchronization scheme is shown in Figure 7.22.

Although (b) above is a simple mechanism that combines error detection with error recovery, it suffers from
one problem: themaster-CPUmight already have changed some data items during the different phases of system
initialization, and so the initial values will have to be restored somehow. For example:

(a) The relevant initial values of the kernel data could be stored as a different data set, which could be
copied into the relevant data structures at the beginning of the bootstrap. This has the disadvantage of
increasing the size of the kernel data, quite apart from the difficulty of establishing just what needs to
be copied a priori.

(b) When the kernel image is being loaded, it could be loaded into both banks ofSM , and thenbank2could
be copied tobank1at the beginning of the bootstrap. The problem here is that the image loading would
then overwrite any checkpoints inbank2, thereby precludingwarm boots.

(c) The system could beRESETwhenever themaster-CPUfailed during startup. This requires that the
whole system can beRESETby software, and that this does not cause the failed processor to restart.
This is what we assumed in the design of theSM andDPU , and is the basis of the proposed boot
handler.

7.8.2.2 Cold boot

Assuming that the above , the original question arises: ”what is defined as the start of time, what happens at the
start of time, when is the first checkpoint taken ?” The kernel has to be in a consistent state to which it can return
if a rollback arises, and this should not require special precautions. The first suitable state is reached when the
master-CPUis ready tostart other cpus() . At this point all the kernel data structures are initialized, all the
component parts of Mach are running, themaster-CPUis about to start up a server and the slave processors are
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Figure 7.22: Proposed master-slave synchronization

waiting for thestart lock or an additional lock. If themaster-CPUsubsequently fails, then a slave processor can
become the master and can continue with the server startup. Therefore it is here that the first checkpoint is taken
by themaster-CPU, and for acold startthis defines the start of time.

As long as no slave processor is running, themaster-CPU’sfirst checkpoint will not be used in a rollback,
and so all processors have to start error detection and checkpointing immediately after they start running. This is
done by activating a Mach timeout foreach processor. For themaster-CPUthis is done automatically by the first
commit, whereas the slave processors activate their timeout just before they choose their first thread (they do not
need to take a checkpoint at this time because everything that is needed is contained within themaster-CPU’sfirst
checkpoint). Any failure of a slave processor can be ignored at this stage.



There is a critical region during the startup of the slave processors, whereslave main() first indicates that it is
alive and well, and then starts its checkpoint timeout - no checkpoint interrupt can be allowed to occur during the
execution of this sequence of code, otherwise different processors might have different values for the number of
processors and their state.

7.8.2.3 Warm boot

A warm bootis very similar to acold boot. Up to the moment where themaster-CPUtakes the first checkpoint,
exactly the same will happen, but in the case of awarm bootthemaster-CPUcannot take a checkpoint because
this would destroy the last checkpoint before the system stopped. Instead, themaster-CPUcan roll back the old
checkpoint from the stable memory and then do the usual forward error recovery actions to determine the number
of available processors, etc.. This has no effect on the other processors, which will choose the first thread as in the
case of acold boot, except that in this case it will be unlikely that the first thread will be theidle thread.

How does the system know that this is acold boot? One solution requires a flag to be set in an area of memory
that is not recovered during recovery (i.e. in a non-recoverable memory, see Section 7.1.3). This flag can be set
after a checkpoint, reset during a regular shutdown, and examined during booting.

7.8.2.4 Live insertion

The situation where a processor boots while the system is running is exactly the same as that of a non-master-
CPU; it tries to get thestart lock or an additional lock with timeout, and does the normal slave startup. No further
provisions are needed.

7.9 Proposal 2 : Non-standard I/O process handling12

Lest we become complacent, let us now examine a second proposal: a potential solution to the more difficult
problem of non-standard I/O processes. We have proposed above that processes may be classified in two different
types depending on the recoverability of these processes operations. A process which only executes internal
operations (computation, memory accesses) is called a standard process, whilst a process which deals with external
operations, such as I/O, is called a non-standard process [Banˆatre et al 92a]. A standard process state is recoverable
and automatically managed by the recovery protocol, but a non-standard process isn’t. Hence problems may arise
with non-standard process handling, mainly I/O loss or duplication. No general solution exists to solve these
problems, becausenon-standard process handling is highly dependent on machine-specific aspects.

7.9.1 I/O handling in Sequoia

By way of example, let us present the main principles of the I/O handling of the Sequoia computer [Bernstein 88].
This is a tightly coupled multiprocessor:each processor has direct access to all memory and I/O resources and
communicates with other processors through the shared memory. It presents a hardware approach to fault toler-
ance. A Sequoia computer consists of processor elements (PE), memory elements (ME) and I/O elements (IOE)
connected by a system bus.

The system may experience a hardware fault (in a PE, ME, IOE...) at any time. When a fault occurs, it must be
possible to recover the process that experienced the fault without losing its process state, or losing or duplicating
I/O operations. So as to recover that state, a special mechanism is used: all writable pages are shadowed on
two memory elements. These copies are named the backup copy and the primary copy. When a processor element
flushes its cache, it actually flushes twice. First, it flushes to the backup copy of its page and, when that is complete,
it flushes to the primary. There are two interesting aspects for I/O handling:

(a) Avoiding lost and duplicated I/O : Each I/O element has a queue in main memory containing pending
I/O operations to that element. To perform an I/O, a processor element constructs a description of the
operation in its cache and then flushes that description to the appropriate queue in main memory. Once
an I/O is successfully appended to that queue, it is guaranteed to be performed. An I/O is deleted from

12This section contributed by Maryl`ene Clatin and Christine Morin, IRISA/INRIA, Campus universitaire de Beaulieu, F-35042 Rennes cedex
France.



the queue only after the I/O element acknowledges its completion. The flush mechanism ensures the
I/O is not lost and the process will not repeat it. Moreover, the I/O element maintains a list (in its local
memory) of all in-progress I/O operations. Indeed, after a fault, it is not always possible for a processor
element to tell, without assistance, which I/O operations have actually been sent to the I/O element.
This might be the case, for example, when a processor element fails while sending operations to an
I/O element. Therefore, in order to avoid losing I/O, each I/O element is interrogated after a fault to
determine which of its queued I/O operations in main memory it has accepted (i.e. which are present
in its list in local memory).

(b) I/O failures : Disk failures are handled using dual-ported mirrored disks on different I/O elements. The
kernel routes each write to both disks of a mirrored pair. It balances the read load by sending half to
each disk. If a disk fails, the other disk picks up the full load.

In the following, we present a potential solution which has several common aspects with this one, although
realized in a different manner.

7.9.2 Reliable I/O Design Principles

For the FASST architecture, a cache is associated with each processor, and a shared memory is composed of one
or more stable memory units. A recovery protocol determines the set of process states which together constitute
a consistent state of the system. Processes communicate through shared memory, thereby creating dependencies.
Processes establish recovery points, and when a fault occurs all dependent processes are rolled back together to
their last recovery point state, so that they can restart their execution. To establish the recovery point (for the set of
dependent processors) a call is made to theSM functioncommit group .

Again by way of example, let us assume that this architecture is implemented on a Corollary machine
[Corollary 92, Ferrara 91], as in Figure 7.23. P1, P2, P3, P4 andPI=O are computing processors.PI=O (called
the I/O processor) also supports I/O requests.PI=O is the only processor which has access to the AT bus so as to
manage devices (their later models employ symmetric processors to overcome this restriction). All processors ac-
cess shared memory through the Cbus. Most of the shared memory of the Corollary machine must be replaced by
stable memory to allow implementation of the recovery protocol, but, as outlined in Section 7.1.3, some standard
shared memory is still needed to handle unrecoverable objects (such as I/O).

Memory
  board

P1 P2 P3   P4  P I/O SCSI

disk

 Adaptec

   controller

 Ethernet

controller
Console

---

Memory
  board

 Cbus

AT bus

---

Shared memory

Figure 7.23: Corollary architecture

Our aim in this proposal is to ensure, in case of rollback, the coherence of the system when it includes threads
that issue I/O operations, and in particular to avoid both loss and duplication of I/O operations. When a rollback
arises, a standard thread is rolled back to its previous recovery point, so it will restart its execution in a coherent
state. The case is different for a non-standard thread: when a rollback arises, it must not forget non-idempotent



operations, for example, it must not forget if it has initiated an I/O request. Despite its particular behaviour, the
non-standard thread state must be coherent with the system.

We consider the following assumptions:

(a) the I/O processor is reliable,

(b) communications between threads are reliable,

(c) devices (disk, console, ...) are failure-free.

Hypothesis 1 We are only dealing with the failure of a computing-only processor, supporting a thread involved in
an I/O operation.

7.9.2.1 Model of I/O handling

Let us consider the thread which requests an I/O instruction and the thread which realizes the I/O operation itself
as two different entities. When a standard threadt needs an I/O operation, it sends a request to the device port
associated with the device. Then, the non-standard threadtio receives this request from the port, realizes the I/O
operation on the device and acknowledges the I/O by sending a result message to the reply port associated with the
request port. Figure 7.24 illustrates these communications.

Standard 

port

I/O processor
request

result

computing processor
Standard threads (t) on whatever

tio thread on 

thread
(t)

command

device

Figure 7.24: Communications in an I/O operation

An I/O operation happens in the following way:

(1) t sends a request to the port associated with the device,

(2) tio receives the request from the port,

(3) tio executes the I/O request,

(4) when the I/O is completed on the device,tio sends the I/O result to the reply port associated with the
request port,

(5) t receives the result from the reply port.

The communication phase is characterized by message sending and receiving via ports. Therefore, let us
consider a protocol which applies at this level, using atomic operations to introduce commits into message sending
or receiving, specifically in order to prevent the system from losing orduplicating I/O operations due to a processor
rollback (this is further justified in [J¨ohnk et al 92]).

7.9.2.2 Proposed general I/O protocol

Before presenting the protocol detail, let us specify its main features. An atomic operation will be denoted in one
of the two following ways:

(1) begin atomic
sequence of code

commit group

(2) begin atomic
sequence of code

commit(zone)



These atomic operations have the two following properties. Either the code of the atomic operation will be fully
executed, either it won’t be executed at all. This is the all or nothing property. Moreover, it has the indivisibility
property, i.e. the intermediate states are not visible.

The first type of atomic operation will be used by the standard thread, whilst the second one will be used by
the non-standard thread. These are different because a standard thread is involved in the recovery protocol and
therefore is able to use itscommit group primitive to validate the atomic operation and trigger a commit operation
for the set of dependent processors, whilst a non-standard thread is not involved in recovery protocol. Therefore,
let us introduce a new primitivecommit(zone) , which validates theSM area identified by the namezone and
triggers a copy of the correspondingSM blocks frombank1(current value) tobank2(recovery value), thereby
rendering persistent the information contained within those blocks. This function validates the second type of
atomic operation, since the sequence of code only operates on theSM areazone .

The ports used to communicate with devices are standard ports held in stable memory. On the other hand, all
data structures concerned with I/O handling on the device are held in non-recoverable memory associated with the
I/O processor. This information (see Section 7.9.3) reflects the I/O state on the device, therefore it must not be lost
as a result of a rollback.

Both the standard and non-standard threads are able toaccess device ports in stable memory. A standard thread
is recoverable, whilst a non-standard thread isn’t since itaccesses unrecoverable objects (devices). In order to
avoid dependencies created by the interactions between these two types of threads, atomic operations are used for
sending and receiving messages from ports. After anon-standard thread has received the request message from the
device port, it performs the I/O operation on the device (using the data structures in non-recoverable memory) and
then sends the result message to the reply port associated with the device.

An I/O operation takes place synchronously as summarized in Figure 7.25. The standard thread is blocked at
(1) waiting for the I/O result message. The non-standard thread sleeps at (2) waiting for a request, and is woken
up when such a request arises.

standard thread non-standard thread

(1)

begin atomic
send

commit_group

 

(2)

(2)

device port

reply port

result result

request request begin atomic
receive

send
begin atomic

commit(port)

commit(reply_port)

Figure 7.25: General I/O handling

The standard threadt sends a request to the device port and commits in an atomic operation. Then, the non-
standard threadtio receives this request from the port and validates the new port state in an atomic operation too.
tio performs the I/O operation on the device. At completion time, it sends the result message to the reply port
associated with the device, and validates the port state again in an atomic operation.

This protocol is justified below.

7.9.2.3 Sending of the I/O request

If we assume that a commit is not performed when the standard threadt makes a request for an I/O operation,
then the following situation may happen: if we supposet has committed at any time before it sends its request, a
processor failure will causet to rollback and then it will again send its request to the device port. But, during the
interval between the message sending and the rollback, the first request may have been serviced bytio. Hence, the
request will be duplicated.

On the other hand, if the thread sends its request and saves a recovery point in an atomic operation, we avoid
any duplication in the case of a rollback. The message sending delivers a request to the device port, buttio



won’t receive it untilt has validated it by a commit (thanks to the indivisibility property of the atomic operation).
Therefore,t cannot resend this same request in the case of a rollback. This also ensures coherency between the
standard and non-standard threads:tio can only execute an I/O operation for which the request has been validated
by t, thereby avoiding an orphan I/O execution in the case of a rollback.

The standard thread uses the following atomic operation for sending its request:

begin atomic
send request to the device port

commit group

7.9.2.4 Receipt of the I/O request

For tio, things are different because it is not involved in the recovery protocol since it is not recoverable. Thenon-
standard threadtio will receive a request message from the device port in stable memory, and then will perform
the I/O on the device using I/O handling data structures in non-recoverable memory. If no commit is performed,
the following situation can arise: if theSM is rolled back aftertio has received the message from the port and
possibly started its treatment, then theSM will recover a state where the message is still present in the port since
ports are held in stable memory. Hence,tio will be able to receive it again, and again execute the treatment, and
the I/O operation will have been duplicated.

The solution consists of receiving the request from the port and validating the new port state in an atomic
operation. Whentio accesses the port in stable memory, it must neither create any dependency with other threads,
nor validate any port modification performed by another thread. This is achieved through the atomic operation,
more precisely thanks to its indivisibility property, thereby avoiding any duplication and dependency problems.

begin atomic
receive request from the port

commit(port)

7.9.2.5 Sending of the I/O result

Symmetrically, problems may arise in sending the result from the non-standard thread. We can be faced with a
situation in whichtio sends a result message to the reply port, and then theSM is rolled back to a state where the
result message is no longer present in the reply port. The result message will have been lost, andtio won’t resend
it since this thread is not recoverable. Sending the result in an atomic operation will solve these problems:

begin atomic
send result to the reply port

commit(reply port)

We underline that for the receipt of the I/O request and the sending of the I/O result, thenon-standard thread
is committed so as to validate the port states in theSM ; these commits will have no effect on the device data
structures stored in non-recoverable memory or the non-standard thread execution code. We should also note that
no commit is necessary when the standard thread receives the result message from the reply port; if a rollback
arises after the non-standard thread has sent the result message to the reply port and committed, then the standard
thread will find it again (remember ports are held in theSM ).

Moreover, the reply port validationcommit(reply port) after sending the result won’t create any problem by
somehow validating an incorrect port state, sincet is the only thread which has areceiveright for this reply port,
and sincet is blocked waiting for the result message. Such a problem could arise if severalreceiverights existed
for the same reply port or if asynchronous I/O was utilized, essentially as a result of not committing when the
standard thread receives the result message from the reply port.

The atomic operations are the basis of the protocol. Indeed, the indivisibilityproperty ensures the modifications
performed on ports are visible only after the end of the atomic operation, while the all or nothing property ensures
both no I/O loss nor duplication arises due to a rollback operation. From a general point of view, however, we
should note that nocommit group operation should arise while performing acommit(zone) because they both
operate on theSM - a simple solution consists of delaying thecommit group while thecommit(zone) operation is
running, since the latter is much faster.



7.9.2.6 The I/O processor

In the Corollary machine the I/O processor is also a computing processor. It will support both standard and
non-standard tasks, and therefore standard and non-standard threads. However, we will have to separate clearly
standard and non-standard threads, because the former are recoverable whilst the latter aren’t, and therefore any
dependencies created between these two types of threads will cause difficulties. A processor rollback must never
induce rollback of a non-standard thread because of a dependency created by an access to a shared data structure,
such as the Mach run queue.

7.9.3 Device management in the Mach microkernel

This section is inspired by the section ”Device management” of [J¨ohnk et al 92]. Devices are represented as device
ports, and communication with a device in Mach is performed through Inter-Process Communication (IPC). The
microkernel expects each device to provide a small number of functions, and it converts messages to the device
ports into a call to one of these functions. These functions provide a uniform call interface; differences between
devices are introduced through interpretation of the parameters:

(a) device open(...)

(b) device close(...)

(c) device read(...)

(d) device write(...)

(e) device get status(...)

(f) device set status(...)

(g) device map(...)

All data structures associated with devices will be handled in non-recoverable memory, since devices are un-
recoverable objects. Indeed, if these data structures were handled in recoverable memory, we would be faced with
coherence problems. For example, consider a device read message: the non-standard thread updates the kernel
data structures concerned and initiates a read operation on the device; if the thread is rolled back at this time, then
the data structures will be recovered with their backup value, but the read operation will have been initiated on
the device. Hence, we will be faced with a coherence problem between the kernel data structures representing the
device state, and the real device state. The solution consists of handling those data structures in non-recoverable
memory.

The microkernel is structured such that all devices share a generic layer called the device service. Another
layer contains the specific code which depends on the hardware device. Specific layer data structures depend on
the device type. Hence, let us first look at the generic layer, then at the specific layer for two different device types,
SCSI disk and console, and their associated data structures, organization principles and an exampledevicereador
devicewrite function.

7.9.3.1 Generic layer

All the data structures associated with this layer are illustrated in Figure 7.26. All the devices are represented by
ports. To obtain the device port for a particular device, adeviceopenmessage is sent to thedevicemasterport.
Only privileged tasks havesendrights for thedevicemasterport. A string is sent within the message which
names the device in a system specific manner: this name is composed of a major device number and a minor
device number. The kernel interprets this name and extracts the major and the minor device numbers.

The major device number is an entry in thedev namelist table that permits the device type to be determined.
One of the entries in this table isdev ops; it contains pointers to the code for each function of the interface. If the
device is currently in use (i.e. it has been opened), a pointer to thedevicestructure representing the device will be
found in thedev numberhashtable. This table is hashed on minor numbers. If the device is not opened, adevice
structure is created which represents the device and contains, among other things, some state information, a pointer
to the device specificdev opsand a new port. This port is saved into the fieldport within thedevicestructure and
is also returned to the task opening the device; other tasks which will open the device will acquire asendright



device

open_count

dev_ops

state

port

. . . 

. . . 

 dev_ops

dev_name_list[]

  dev_number_hash_table[]

minor

major

. . .

io_req

io_unit

  . . .

dev_number

get_status

set_status

write

mmap

name

close

open

read

io_op

io_mode

io_data

io_done

io_device

io_reply_port
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for this same port. This port is then used to communicate with the device. Several functions are defined in the
interface, but the device specific driver only needs to support those functions which are appropriate for its device.

When a function to open, to read or write data to the device is invoked, the generic code creates an I/O request
structure (io req) which all device specific code understands; it contains information about the requested operation
type, the mode and the device to use. The structure will be passed to the device driver code for the operation. Such
a structure is only created for operations that can be delayed (i.e. open, read or write). Two entries in the structure
specify the return path from the driver code to the user level: a finish-up routine (io done), which generates the
message to be delivered to the reply port and sends it, and a port on which a reply is to be sent (io reply port).

7.9.3.2 SCSI device specific layer

The SCSI device has three layers. The data structures concerned are illustrated in Figure 7.27. The top layer
handles different SCSI devices (disks, tapes, ...). Different classes of devices are handled in various ways, for
example, tapes are handled somewhat differently to disks, even for the same operation. These differences are
encoded in an entry in thescsi devswarray. Entries in this array provide yet another generic interface for reading,
writing and so on. Such an entry has thescsi devswt structure, and provides pointers to the functions for the
specific class.

The middle layer encodes SCSI commands. A SCSI controller (ahost adapter) handles at most 8 physical
device units which are referred to astargets. Each controller is associated with an index into thescsi softc[] table,
which contains pointers toscsi softct structures. Ascsi softct structure contains some general information for
the controller and pointers to per-target status information (target info t), which for each target points to a list of
outstanding I/O requests (ior), and also to thescsi devswentry, amongst other things.

The bottom layer supports few commands. The kernel relies on a single call (aha go) to initiate a command.
Interrupt service routines maintain the transfer, and will indicate termination to higher levels. Some of the data
structures of this layer are illustrated in Figure 7.28. Anaha softcarray provides pointers toaha softc t structures
which represents state descriptors (I/O port, number of targets alive on this SCSI bus, pointer toscsi softct struc-
ture, ...). Other arrays (aha minfoandaha dinfo) provide information for each device controller (aha minfo) and
each device unit (aha dinfo).
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As an example, the SCSI device disk read path is shown in Figure 7.29. Adevicereadmessage is sent to the
device port by a thread. The kernel receives this message and passes it to the generic device handling code for read
(ds deviceread). This code creates a device read I/O request (io req), and then invokes thedevopsread function
(rz read), passing along the I/O request.

At this point the thread has reached the specific layer, i.e. the top of the SCSI device driver. The minor device
number is used to determine the controller (the index for thescsi softcarray), the device unit and the partition.
Then the device unit is used to determine the target in thescsi softc t structure. The I/O request is linked into the
target info t request (ior) chain, using ascdiskstrategyand then adisksortfunction. These strategy routines sort
requests to minimize head movement. Finally, we find a call to thescdiskstart function for the request which
has reached the head of the queue. This function is both the start and completion routine for disks; it calls the
scdiskstart rw function which then invokes thescdiskreadroutine of the driver middle layer.

This scdiskread function builds an I/O command structure (cmd ptr of target info t) and then invokes the
scsi go routine. The latter will just call the machine specific function to start the I/O, and invoke the bottom layer
of the driver. There, the command is passed to theaha go function, which locks the thread onto the I/O processor,
before initiating the operation on the device; if the thread is not on the I/O processor, it has first to ask for migration
to that processor, and then blocks (the scheduler will reactivate it later).

Only the I/O processor can receive device interrupts. When an interrupt arises, it is passed to a device specific
routineaha intr. At the end of the I/O operation, the thread is unlocked (and reverts to its original processor, if it
wasn’t the I/O processor), and the target specific restart functionscdiskstart is invoked. Then, theiodoneroutine
is called which deals with delayed reply sending. It invokes theio donefunction of io req, i.e. ds read done,
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which replies to the message sent to the device.

7.9.3.3 Console device specific layer

The specific layer is simplest in the case of the console device. The data structures are shown in Figure 7.30. A
kd tty structure is associated with the console device. This structure contains pointers to aninput queue, anoutput
queue, a kdstart function, akdstopfunction, and so on. The input and output queues are circular buffers which
store characters. Different functions are also provided at this level (kd dput, kd dmvup, kd dreset, etc.) which
define the interface for the device specific layer.
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Figure 7.30: Console device specific layer data structures

As an example, the console device write path is shown in Figure 7.31. The generic layer treatment is similar to
that for the SCSI device, except for the functions called. A thread sends adevicewrite message to the device port.



The kernel receives this message and passes it to the generic device handling code for write (ds devicewrite). A
device write I/O request (io req) is created. Thedev opswrite function (kdwrite) is invoked, passing along the I/O
request.
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call kdwrite

char_write
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Figure 7.31: Console device write path

At this point the thread has reached the specific layer, i.e. the console driver. Thechar write function is
invoked, which calls thebtoq (”buffer to queue”) function. This last function copiesio req data (io data) to the
kd tty console output queue. The transfer is then performed by calling thekdstart function. If the thread was
running on the I/O processor, it is locked on that processor; otherwise, it first asks for migration onto the I/O
processor and blocks (the scheduler will reactivate it later). This is achieved in thekdstartroutine, before writing
all the characters to the console in a loop. The thread is then unlocked and reverts to its original processor. The
kdstopfunction begins the return path for the device reply. Thechar write doneroutine is invoked for the delayed
reply when the output queue has been emptied. Then, theiodoneroutine invokes theio donefunction of io req,
i.e. ds write done.

As a further example, let’s look at the console device read path (see Figure 7.32). In a similar fashion to the
write path, when a thread asks for adeviceread message on the console, the following steps take place in the
generic layer: send adeviceread message on the device port, call theds deviceread function, create anio req
data structure, and call thekdreadfunction.

Again, at this point the thread has reached the specific layer, i.e. the console driver. Thechar read function
is invoked which delays the treatment until the user has entered the number of characters specified in the request.
The console device read path is a little bit different at the bottom of the specific layer, in that an interrupt service
routine reads in the characters from the keyboard and puts them into thekd tty input queue (using attyinput
function). Console interrupts are only used for input. Thus the input queue is filled up in the interrupt service
routine, somewhat independently from any function of the console specific layer read path. We should note that,
because of this independence, the thread need not be migrated to nor locked onto the I/O processor. The I/O
processor fills in the input queue on interrupts, and then the thread call toqtobfunction just copies the characters
from this input queue to theio datafield of io req. Here again,iodonewill finally call the io donefunction of the
io req structure, i.e.ds read done.
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Figure 7.32: Console device read path

7.9.4 A first implementation proposal for reliable I/O

Clearly, Mach I/O handling is different to the vision of standard and non-standard threads presented in Section
7.9.2. In fact, there is no distinction between threads. A thread which requests an I/O operation can be supported
by any one of the Corollary computing processors, or by its I/O processor (which is also a computing processor).
If the thread is located on the I/O processor, it is locked there; otherwise it first has to migrate to the I/O processor.
Therefore, we have to adapt our model for Mach, and vice versa.

The first problem concerns the I/O processor. As we have seen in Section 7.9.2.6, standard and non-standard
threads should be clearly separated on this processor in order not to create dependencies between them. One
solution is to separate the run queues on the I/O processor: one for standard threads, and another one for non-
standard threads. A simpler solution is to prevent standard threads from running on the I/O processor, i.e. only
allow non-standard threads to run on that processor, using its existing run queue, while the standard threads run on
the computing-only processors.

The second problem is how to handle device data structures. The most obvious approach is to try to handle
the generic and specific layers data structures in theSM , and to handle the bottom layer data structures in non-
recoverable memory (NRM). The main problem with such a solution concerns dependencies created by threads
running on the I/O processor, whichaccess theSM . We have seen non-standard threads are not recoverable, so
many forward error recovery actions (FERA) would be needed in the case of rollback to update theSM state, so
that it would reflect the device state. Indeed, not only the bottom layer data structures are involved, but also some of
the generic layer (like theio reqstructure which is built each time a write, read or open operation is requested) and
some of the specific layer (for example, theior field of the SCSI device’starget info t, which points to the delayed
operations chain). However, we can handle the generic layerdev namelist[] , and any specific layer structure that
only contains pointers to function code (such as the SCSI device’sscsi devsw[] table) within theSM , since these
are not modified (and hence no dependency is created by accesses to them).

Holding the generic layerdevicestructure or thedev numberhashtable[] in theSM is also possible if we
consider that onlydevicewrite and deviceread requests are critical (because they access thephysical device),
and thatdeviceget status, deviceopen, etc., can be re-executed. However, such a solution can create coherence
problems betweenSM and NRM states: for example, anio req structure may contain in itsio devicefield a
pointer to adevicestructure that is no longer valid because of aSM rollback. Again, forward error recovery
actions are necessary (mainly concerning pointers anddevicestructure references) in order to build a consistent
state. Moreover, consideringdevicewrite anddevicereadrequests as the only critical operations may not be such
a good idea, since adeviceopenrequest can also be delayed like adevicewrite or a deviceread, but does not
access thephysical device. Introducing a classification of request types is not so straightforward as it might seem.

On the other hand, the disk specific layer data structuresscsi softc[], scsi softc t, target info t contain state



information, pointers toio req, and so on, representing the device state, and therefore, holding them inNRMis the
better solution that avoids many forward error recovery actions. Similarly, the console specific layer data structures
for input and output queues should be held inNRM in order not to lose any characters.

Thus some device data structures cannot be held in theSM , whilst others can. For the latter, forward error
recovery actions are often needed so as to re-build a consistent state of the system; many of these actions may be
necessary after a rollback, and make it more or less difficult to handle, according to the type of memory chosen to
store each data structure. Therefore, in the following, all the device data structures are stored inNRM. This solution
has two main advantages: no forward error recovery action is needed for those structures, and I/O operations are
clearly separated from the rest of the system according to theirnon-recoverability.

7.9.4.1 Principles

Let us assume the computing-onlyprocessors are able to access theSM , and the I/O processor has non-recoverable
memoryNRM for handling I/O data structures, where thisNRMmemory is also accessible from the other proces-
sors. Let us further assume that the I/O processor is exclusively dedicated to I/O operations on devices, and only
uses theNRM (it does not access theSM , so as not to create any dependency). These two principles and the
associated mechanisms allow a firewall to be constructed between I/O operations and the rest of the system.

Now let us consider astandard thread(ST) running on any computing-only processor, which requests an I/O
operation. This standard thread creates another thread by a thread fork. We call this latter anon-standard thread
(NST) because it will migrate to the I/O processor, and will perform the I/O on the device. A thread fork is used
because a standard thread cannot be used for executing the request on the I/O processor. Indeed, if a rollback arose
on the original processor while a standard thread was bound to the I/O processor, then the rollback would restore
the run queue state at its last recovery point, and would try to restart the standard thread execution on the original
processor, even though it would still be running on the I/O processor, and yet wemustrollback a standard thread
because of its dependencies with other standard threads. In this proposal, the case for the non-standard thread is
different because it only has dependencies with its parent standard thread, and not with any other standard thread.
Judiciously set commit operations can take care of these dependencies between the standard parent thread and its
non-standard children.

The non-standard thread is able toaccess stable memory (and therefore initiate commits, which is the inter-
esting point for us), as well as the I/O processorNRM. In order to keep as much as possible of the original I/O
handling of Mach, it must also be able to locate device ports in theNRM.

After its creation, this non-standard thread first runs on a computing-only processor. It receives the request
message from the device port in theSM , and triggers its transfer toNRM. Then, the non-standard thread is locked
on the I/O processor and performs the requested I/O operation. At completion, it returns to its original processor,
transfers the result message fromNRMtoSM , and then sends it to the reply port. The non-standard thread is then
killed, and the original (i.e. the parent) standard thread can then receive the result message.

Two other interesting points must be borne in mind. Firstly, the standard thread can support rollbacks at any
time between sending its request and receiving the result, including while thenon-standard thread performs the
I/O operation on the device. While the non-standard thread is running on the computing-only processor, it can also
support rollbacks. But once it is running on the I/O processor it cannot. Thus we must be able to detect when the
non-standard thread is locked on the I/O processor.

Secondly, the atomic operations presented in Section 7.9.2 are not implemented by hardware. These atomic
operations have been introduced for message sending and receiving, in order to break the dependencies created by
the interactions between standard and non-standard threads. If a rollback arises between the message sending (or
receiving) and the commit, then the operations must be able to be restarted and the information recovered.

In the following sections, we present the steps within the proposal that characterize an I/O development:

(a) the standard thread code,

(b) the non-standard thread code executed on the computing-only processor, and

(c) the non-standard thread code executed on the I/O processor.

7.9.4.2 Algorithm for the standard thread

The standard thread on the computing processor executes the following code fragment:



...
send(device port,req); /*I/O request sending to the device port*/
commit group();
thread fork(ST,NST); /*thread fork (by ST) creating NST */
commit group();
...
receive(reply port,res); /*I/O result receipt from the reply port*/
...

Once it has deposited its request message in the device port, the standard thread commits. This is done for two
main reasons: it prevents the standard thread from returning to a state prior to its message sending, and thereby
avoids duplication in the case of rollback (see Section 7.9.2.2), and it also validates the port state in stable memory.
At this point, the I/O request can no longer be cancelled, and therefore can be handled by the device.

The standard thread then creates the non-standard thread by a thread fork, and commits to prevent a new fork
being created as a result of a rollback. Thethread fork primitive does not belong to the Mach kernel interface,
but it can be implemented using Mach primitives. The fork creates the non-standard thread context in theSM .

Some time later, the standard thread will receive the result message from the reply port. No commit is necessary
here because the ports are held in theSM , and a commit was performed when the message was deposited in the
port, and so even if a rollback occurs, the result message will still be in the reply port (again, see Section 7.9.2.2).

7.9.4.3 Algorithms for the non-standard thread running on a computing processor

The non-standard thread code executed on the computing processor is as follows:

receive(device port,req); /*I/O request receipt from the device port*/
no io=transfer SMNRM(req,&no buf);

/*I/O request transfer from SM to NRM */
commit group();
enqueue request(no buf,no io);

/*request insertion in the NRM device port*/
lock on master(); /*locks the NST on the I/O processor */

/*Here, the NST is migrated to and locked on the I/O processor.
It will be unlocked at completion time,
after the I/O operation has been performed.*/

res=transfer NRMSM(no io); /*result transfer from NRM to SM */
send(reply port,res); /*result sending to the reply port */
commit group();
notify ack(no io); /*NRM data structures management */
thread terminate(NST); /*kills the NST */

The non-standard thread receives the request message from the device port. We should note that the port state
containing the message has been validated in theSM before the non-standard thread could receive it (by the
commit following the send instruction, before the fork in the standard thread code).

Then, thetransfer SMNRMroutine copies the request message fromSM to NRMmemory, and returns an I/O
number which will be used later for finding the result message. A commit (let us call it C1) validates the new port
state. The request message is then inserted in the device port inNRM (if it has not been done yet, that is if no
rollback has occurred). Special measures have to be used to prevent any commit or rollback during enqueueing;
these are explained below in the description ofenqueue request .

Now the non-standard thread can be migrated to and locked on the I/O processor to perform the I/O operation.
It is unlocked at completion time, and returns to its original processor. Then, thetransfer NRMSMroutine copies
the result message fromNRM to SM , so as to send it to the reply port. A commit validates the port state in the
SM . The last thing the non-standard thread has to do before terminating is to acknowledge the I/O result receipt
for theNRMmemory management.

If a rollback arises while the non-standard thread is running on the I/O processor, the run queue of the original
computing-only processor is restored to its last commit point state. This commit is the one we called C1 above,
which follows the request message receipt and its transfer fromSM to NRM. Some forward error recovery actions
(discussed in Section 7.9.4.5) are necessary after such a rollback in order to update the non-standard thread state
in theSM , and also to update the run queue so that it reflects the fact that the non-standard thread is now running
on the I/O processor. During this time, the non-standard thread on the I/O processor keeps on executing the I/O
operation on the device.

Now let us look at each of the new functions invoked by the code segment above.



�� Transfer SM NRM

In NRM, we have ports associated with devices, just like the ones in theSM . Transfers are needed between these
two types of memories for request and result messages. It is important to remember that the transfer is performed
by the non-standard thread while it is executing on a computing-only processor. The problem with such a transfer
is that the computing-only processor may fail anywhere during the operation, thereby triggering a rollback. The
non-standard thread would give up the transfer it was executing, and the rollback would cause the transfer to be
performed again. In the end, theNRMwould have the complete message plus a part of this message in the device
port. Clearly such a situation must not happen.

To prevent this, this proposal uses buffers for the transfer. The request message is copied into a buffer which is
then locked, and, when the transfer is complete, the request is inserted in the port. Timeouts must be used in order
to detect a processor failure during the transfer operation, so when a buffer is allocated, a timeout is triggered. If
the timeout expires, then it means that the non-standard thread has not completed its transfer and unlocked the
buffer, so its processor must have failed, and therefore the buffer is automatically released.

As well as timeouts, an I/O number (an index into a table) is associated with each I/O in order to find its result
message, and an I/O state is used to avoid duplication in the case of rollback. Initially, the I/O state is equated to
not-done. At completion time, it is set todone, and the result message is stored in the table. An in-progress state
is not necessary, for for several reasons:

(a) Once the non-standard thread runs on the I/O processor it can’t be rolled back,

(b) If the non-standard thread is rolled back on the original computing-only processor while its alter-ego on
the I/O processor is performing the I/O on the device, forward error recovery actions are used to reflect
this, and

(c) Once the non-standard thread has run on the I/O processor, it can recognize and ignore any duplication
that might arise from a subsequent rollback on the computing-only processor (see Section 7.9.4.4).

Before looking at the algorithm, take a look at Figure 7.33. It shows theSM andNRMdata structures involved,
and some of the functions used. These functions (represented by arrows) are called by the non-standard thread on
a computing-only processor.
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Figure 7.33:SM andNRMdata structures

struct buf f
lock t lock; /*a buffer is used in mutual exclusion */
int no io; /*number of the associated I/O request */
char *data; /*points to the buffer */

g buffer[B]; /*B buffers are available in the system*/



transfer SMNRM(req,no buf) /*returns an I/O number */
msg t req; /*input: request message */
int no buf; /*output: allocated buffer number */
f char *adr;int no io;

no io=alloc no io(); /*allocate an I/O number */
no buf=alloc buffer(no io,&adr); /*allocate a buffer */
copy(req,adr); /*data copy */
set state(no io,not done); /*set the I/O state */
return(no io);

g

alloc buffer(no io,adr) /*returns the allocated buffer number */
int no io; /*input: I/O number */
char *adr; /*output: message buffer address */
f for (i=0;i<B;i++%B) /*loops until a buffer is allocated */

if test lock(buffer[i].lock)
/*returns false if locked, else returns true and locks it */
break; /*a free buffer is found */

set timeout(i); /*set the timeout for the buffer */
adr=buffer[i].data; /*give the message buffer address */
buffer[i].no io=no io; /*set the I/O number */
return(i);

g

�� Enqueue request

This routine inserts the request message (which has been stored in a buffer) in theNRM device port. Since it
operates on theNRMstate, it must not be disturbed by a commit or rollback. A commit is inconvenient because it
may not be possible to say how long it will take, and then the buffer timeout could expire before the message has
been inserted into the device port, causing the I/O request to be lost. Similarly with rollback, since theNRMstate
would not be completely updated and then would not be consistent. Therefore, commits and rollbacks have to be
disabled while the enqueueing takes place.

enqueue request(no buf,no io)
f if (locked(buffer[no buf].lock)&&(buffer[no buf].no io==no io))

f mask C/R(); /*mask commit and rollback instructions */
send(NRM device port,buffer[no buf].data);

/*insert the request message in the device port in NRM */
unlock(buffer[no buf].lock); /*free the buffer */
buffer[no buf].no io=-1; /*erase the I/O number */
unmask C/R(); /*unmask commit and rollback instructions */

g
g

�� Lock on master

To force the non-standard thread to run on the I/O processor, the current processor identity is saved in a new
saved processor field in the data structure associated with threads (in order to more easily find it on the way
back), the thread is bound to the I/O processor, and then it is blocked. It will run on the I/O processor after its next
scheduling.

lock on master
f thread t thread;

thread=current thread(); /*give access to the thread structure */
thread->saved processor=thread->bound processor;

/*save the original processor identity*/
thread bind(thread,master processor);

/*bind the thread to the I/O processor*/
thread block((void (*)()) 0); /*suspend the thread execution */

g



�� Transfer NRM SM

On the I/O processor, an I/O operation is performed and its result is stored in a table namedIO result , indexed by
the I/O number. This message then has to be copied from theNRMto theSM . If a processor fails while performing
the transfer, then we just have to restart the copy from this table once the non-standard thread has rolled back.
The non-standard thread will restart its execution at its last recovery point, i.e. just before theenqueue request

function call; it will again be migrated to and locked on the I/O processor, will be ignored (see the description of
enqueue request ), and then be unlocked and will finally call thetransfer NRMSMroutine again.

struct store result f
int state; /*the state is set as not done or done */
char *result; /*points to the I/O result message */

g IO result[N];

transfer NRMSM(no) /*returns a pointer to the I/O result message*/
int no; /*no is the I/O number */
f msg t result;

copy(IO result[no].result,&result); /*data copy */
return(result);

g

�� Notify ack

After the non-standard thread has sent the result message to the reply port associated with the device, and commit-
ted, the result can be released by removing the entry from theIO result table.

notify ack(no)
int no; /*no is the I/O number */
f char *pt;

if (pt=IO result[no].result) != NIL
f free(pt); /*free the result buffer */

pt=NIL;
g

g

7.9.4.4 Algorithms for the non-standard thread running on the I/O processor

When the non-standard thread is locked on the I/O processor, it performs the I/O operation on the device and saves
the result message in theIO result table. It does not access to theSM , so as not to create any dependency, and
therefore rollbacks of the I/O processor will not occur. The I/O processor is dedicated to I/O operations on devices,
and we have built a firewall between this I/O processor and the rest of the system.

set state(no,state) /*set the I/O state in the IO result table */
int no;
int state;
f IO result[no].state=state;
g

get state(no) /*get the I/O state from the IO result table*/
int no;
f return(IO result[no].state);
g

unlock master /*lock a thread on its original processor */
f thread t thread;

thread=NRM current thread(); /*give access to the thread structure in NRM*/
thread bind(thread,thread->saved processor);

/*bind the thread to its original processor*/
thread block((void (*)()) 0); /*suspend the thread execution */

g

... /*code executed by the NST on the */

... /*computing only processor */
lock on master() /*run the NST on the I/O processor */



if get state(no io)==not done
f receive(NRM device port,request);

perform the I/O operation;
IO result[no io].result=malloc(sizeof(result));
save(IO result[no io].result, result);
set state(no io,done);

g
unlock master();
... /*the NST runs again on its original */
... /*processor */

The thread first checks whether the I/O has already been performed. This is necessary because a processor
failure after the non-standard thread has been unlocked from the I/O processor (while the non-standard thread
executes thetransfer NRMSM routine or the message sending) will cause the non-standard thread to again be
migrated to and locked on the I/O processor, but in this case, the I/O operation has already been performed and its
result stored, so it needn’t be performed again.

If the I/O state is not equal todone(i.e. this is the first time the non-standard thread has executed this I/O
operation on the I/O processor), then the non-standard thread has to perform the I/O on the device as described
in Section 7.9.3. The result is stored in theIO result table, and the I/O state is then set todone. Finally, the
non-standard thread is unlocked from the I/O processor.

7.9.4.5 Scheduling and forward error recovery actions

Figure 7.34 illustrates the I/O development on the different processors involved. The computing-only processors
have all their data in theSM , including their run queues and threads state. The I/O processor has all its context
in NRM, in particular its run queue. When the non-standard thread running on the computing-only processor
calls thelock on master routine, the thread is re-scheduled on the I/O processor. To do this, thelock on master

function uses thecurrent thread routine to get a pointer to the thread structure, updates itssaved processor

andbound processor fields, and then blocks the thread execution. At the next scheduling, the thread structure is
removed from the computing-only processor’s run queue and inserted into the I/O processor’s.

In order that the I/O processor does not become dependent on any computing-only processor, it should not
access theSM . Therefore, the thread structures corresponding to the threads running on the I/O processor should
be resident inNRM. This requires the scheduler to be modified so that it duplicates the thread structure inNRM
when it moves from the computing-only processor’s run queue to the I/O processor’s.

On the other side of the coin, when the thread moves at completion time from the I/O processor to the
computing-only processor, the scheduler has to update thethread t structure in theSM accordingly. This is
why the unlock routine only modifies thethread t structure in theNRM and not that in theSM . After the
thread t structure has been updated in theSM , the one inNRMcan be released.

If a rollback arises while the non-standard thread is performing the I/O on the device, we are faced with the
following situation: on the one hand the non-standard thread keeps on performing the I/O on the I/O processor,
and on the other the computing-only processor is rolled back, thereby restoring its run queue to a state in which
the non-standard thread is still present. Assuming the I/O is non-idempotent, it is obvious that the thread on
the computing-only processor will have to be adjusted somehow, allowing that on the I/O processor to continue
undisturbed. One solution is to use some forward error recovery actions here so that the system reflects the fact that
the non-standard thread is now running on the I/O processor. A simple way to deduce whichthread t structures
have to be updated is to examine the I/O processor run queue so as to modify the corresponding structures in the
SM accordingly, i.e. to remove thebound processor field and thethread t structure from the computing-only
processor run queue. The operation could be simplified if theNRM thread t structure included a pointer to the
corresponding structure in theSM , as shown in Figure 7.35.

If the non-standard thread has completed the I/O operation on the device and returned to its original processor
when the rollback arises, then it is no longer present in the I/O processor run queue. The computing-only processor
run queue is restored with the non-standard threadthread t structure chained within. Here, no forward error
recovery action is necessary: the non-standard thread restarts its execution on the computing-only processor and
is migrated to and locked on the I/O processor after its next call to thelock on master routine. The I/O operation
is not duplicated because the I/O processor first checks if it has already been performed. The only concern is the
transfers betweenSM andNRM.



receive(device_port,req);

no_io=transfer_SM_NRM(req,&no_buf);

commit_group();

enqueue_request(no_buf,no_io);

standard thread code non-standard thread code

ANY COMPUTING-ONLY PROCESSOR

non-standard thread code

I/O PROCESSOR

   IO_result[no_io].result=malloc(sizeof(result));

   <save(IO_result[no_io].result,result)>;

   set_state(no_io,done);

  }

unlock_master();

 { receive(NRM_device_port,request);

   <perform the I/O operation on the device>;

if get_state(no_io)==not_done

. . .

send(device_port,req);

commit_group();

thread_fork(ST,NST);

commit_group();

send(reply_port,res);

commit_group();

notify_ack(no_io);

thread_terminate(NST);

res=transfer_NRM_SM(no_io);

receive(reply_port,res);

. . . 

lock_on_master();

Figure 7.34: An I/O operation development for the first implementation proposal
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Figure 7.35: Scheduling and forward error recovery actions

In both the above rollback scenarios, the transfers of thethread t structures betweenSM andNRMare per-
formed by the scheduler in the kernel, so they won’t be disturbed by commits or rollbacks in the way that user
threads would be. The only limitation concerns the data transferred: if a rollback arises while performing the
transfer, the data structures should not be recovered until the transfer completes, i.e. any recovery operation should
be deferred.



7.9.5 A second implementation proposal for reliable I/O

The first implementation proposal relies on one of the original I/O handling principles of Mach: the thread which
requests an I/O operation migrates to the I/O processor to perform it. The transfers betweenSM andNRM (and
conversely) are quite crucial. FromSM to NRM, buffers are necessary to ensure the message insertion in the
device port will insert the whole message, or won’t insert it at all. For theNRM to SM transfer, buffers are not
necessary, and a rollback while performing the routine leads theSM to a new state (the one at its last commit
point) where the piece of the transferred message has been erased. There is an asymmetry in the behaviour of these
two transfers, due to the two different kinds of memory.

Various small things haven’t been considered: we haven’t precisely specified how to manage timeouts, how
to allocate and manage I/O numbers (alloc no io ), or how many buffers should be available (i.e. how large the
constantB in transfer SMNRMshould be). Those problems need to be studied further for a real implementation.
Moreover, we have dedicated the I/O processor exclusively to I/O operations; no standard thread can run on this
processor. If we want to allow standard threads to run on it, another run queue should be available, invalidating the
scheduling modifications suggested in Section 7.9.4.5. Furthermore, the firewall between I/O operations and the
rest of the system would be less strong.

Instead, let us now look at an alternative approach, using a client/server scheme.

7.9.5.1 Principles

Here again, we propose to build a firewall between the computing-only processors and the I/O processor. The
I/O processor is dedicated to handling I/O operations, and has aNRMassociated with it for handling the I/O data
structures. TheNRM is accessible from the computing-only processors, and the I/O processor is able to access the
SM . The computing-only processors can be rolled back, but the I/O processor cannot. Therefore, dependencies
between recoverable and unrecoverable processors have to be managed so as to support this behaviour.

In this proposal, the I/O processor is a server which is dedicated to I/O operations on devices. This processor
has a thread for each device port, each waiting for an I/O request. An I/O operation happens in the following way:

(a) a standard thread, running on any computing-only processor, sends a request to the device port in the
SM ,

(b) a non-standard thread, running on the I/O processor, receives the request message from the device port,
performs the I/O on the device and sends the result message to the reply port,

(c) the standard thread gets the result message from the reply port.

Since the standard thread runs on any computing-only processor, it can support commit and rollback operations.
On the other hand, a non-standard thread cannot support any rollback, since it operates on a physical device which
is an unrecoverable object. It is, however, able to access the device ports held in theSM and to validate the state
of these ports; it does not access any other information in theSM .

Since the non-standard thread is able toaccess the device ports in theSM , dependencies may be recorded
between the I/O processor and the computing-only processors. However, since the I/O processor cannot support
rollback operations, wemustnot allow such dependencies to arise.

First, let’s examine the port structure, where a dependency may be recorded (see Figure 7.36). This figure
illustrates a port containing two messages. The port structure contains two main items of information13: a lock and
a pointer to a queue of messages inserted into that port. For each message, we have some more information and a
pointer to theio data to be transferred, if any (for example, the data to be written for adevice write ).

It is possible to create a dependency with the port lock held during the message insertion into (and retrieval
from) the device port. In order not to create such a dependency, this proposal holds the lock inNRM, and the rest
of the port structure in theSM . Moreover, this lock allows implementation of the atomic operations presented in
Section 7.9.2.2. To use the lock, explicit calls are made to lock and unlock routines, external to the Machsend and
receive primitives, which themselves are modified so as not to manipulate the port locks.

Explicitly locking the port while sending and receiving messages gives an interesting twist to our problem: it
prevents other threads from accessing the port before the current one has performed its operation and validated it
to erase the dependency created by the access. Since the lock is held inNRM, no dependency will be recorded
when acquiring or releasing it.

13We are not concerned here with the other information.
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Figure 7.36: A device port structure

7.9.5.2 Algorithmic description

The general I/O development is illustrated in Figure 7.37, again adhering to the general protocol presented in
Section 7.9.2.2. The standard thread sends a request message to the device port and commits in an atomic operation
(these atomic operations are implemented by means of locks, as explained in the next paragraph). Then the non-
standard thread (the server thread associated with this device port) receives this request and validates the new port
state in an atomic operation. Next, the non-standard thread performs the physical I/O on the device. At completion
time, it sends the result message to the reply port and validates the port state again in an atomic operation. The
standard thread can then receive the result message from the reply port.

standard thread code non-standard thread code

lock(port);

receive(port,request);

unlock(port);

lock(port);

send(port,request);

commit_group();

if locked_by_me(port)

  unlock(port);

<perform the I/O>

lock(reply_port);

send(reply_port,result);

unlock(reply_port);lock(reply_port);

receive(reply_port,result);

. . . 

. . . 

unlock(reply_port);

commit(port);

commit(reply_port);

Figure 7.37: An I/O operation development for the second implementation proposal

For the non-standard thread running on the I/O processor, the new primitivecommit(zone) 14 validates the port
state in theSM , triggering a copy from the current value to the recovery value. Thecommit group primitive is
not used because thenon-standard thread runs on the I/O processor and therefore is not involved in the recovery

14introduced in Section 7.9.2.2



protocol or its primitives.
Atomicity is enforced using locks. The indivisibility property is easily enforced, since no other thread can

access the port until the corresponding lock has been released by the thread currently holding it. The all or nothing
property is enforced through the use of locks and also thanks to theSM design principles, since if a rollback arises
while executing the code of the atomic operation, then the last recovery point state is recovered, and either the
commit group or commit(zone) primitive has been executed, or if not, then all the modifications are undone thanks
to theSM rollback. However, if such a rollback does occur, a forward error recovery action is necessary before
restarting the thread: the port lock must be released in order to avoid a possible deadlock. This is explained in the
next section.

The locking scheme also enforces another important feature for the protocol: it prevents the non-standard
thread from receiving a message before it has been validated in theSM . Indeed, the non-standard thread cannot
access the device port until the standard thread has unlocked it withunlock(port) , since the non-standard thread
is blocked waiting for the lock. An important point here is that no other thread canaccess the port between the
send or receive primitive and the commit or validation.

7.9.5.3 Lock recovery

Remember, in order to avoid creating dependencies with the port lock, it is held inNRM. If a rollback arises during
execution of an atomic operation (i.e. before the lock has been released), then the standard thread will restart its
execution from its last recovery point. But since the lock is held inNRM, it will remain locked and will no longer
be acquirable. One simple solution consists of releasing the lock before restarting the execution, although this
requires the following information to be associated with the lock inNRM:

(a) proc: processor identifier to detect if the processor supporting the thread that holds the lock (if any)
belongs to the dependency group or not (this is used for the forward error recovery action). If the lock
isn’t currently held the value ofproc is nil.

(b) thr: thread identifier that is checked (when a thread wants to release the lock) to see whether this thread
really holds it, since the lock may have been released in the meantime by a forward error recovery
action, and then obtained by another thread, in which case it must not be released.

The lock and these two associated items can be maintained within a structure for each device port and reply
port, and all these structures can be linked together so as to increase the forward error recovery action performance.
After a rollback operation, the forward error recovery action consists of examining the list of port locks, and for
each one locked by a processor which belongs to the dependency group, releasing the lock and resetting the two
associated items. Then the execution can be restarted.

The second item in (b) above concerns the first atomic operation performed by the standard thread. A commit
operation is performed during this atomic operation. This means that subsequent rollbacks (arising before the
next commit operation) will cause the standard thread to restart its execution from the instruction following the
commit group primitive. This instruction aims to unlock the port, but the lock may by then be held by another
thread, therefore the current thread first checks if it is holding the lock before calling theunlock primitive, instead
of releasing it automatically. Thus the first standard thread atomic operation is encoded in the following way:

lock(port);
send(port,request);
commit group();
if locked by me(port)

unlock(port);

The code of thelocked by meprimitive is as follows:

locked by me(port)
port t port; /*port identifier*/
f return (locked(port) && (port->proc==current processor())

&& (port->thr==current thread()));
g

The second atomic operation performed by the standard thread is simpler since it does not involve a commit.
Similarly, the non-standard thread is not involved in the recovery protocol, so it does not face such problems.



7.9.6 Comments

The second implementation proposal relies on a client/server scheme for I/O handling. The standard threads run on
the computing-only processors while the non-standard threads run on the I/O processor (the server). Dependencies
between these two types of threads are handled according to the general I/O protocol principles. The algorithms
come directly from the coding of this general protocol. The main feature of this coding consists of holding the port
locks inNRMso as to support an implementation of the atomic operations. Here again, we have dedicated the I/O
processor exclusively to I/O operations, thereby preventing any standard thread from running on this processor.

Thus both implementation proposals adopt the proposed general protocol for communicating with devices, at
the expense of adding a non-recoverable memory to the architecture to support the I/O processor data management.
While the first implementation proposal is based on transfers between the two types of memories, the second one
relies on an implementation of the atomic operations; both aim to handle dependencies between recoverable and
unrecoverable objects. Both approaches introduce extra commits, but this is not expected to cause performance
problems because few things are expected to be modified between checkpoints, so commits won’t take too much
time. Moreover, for the non-standard thread, these commit operations aim to validate the port state and may be
simplified.

Two important points are satisfied with the I/O protocol: both loss and duplication of I/O requests are avoided
in a simple manner. Therefore a new layer is not needed to resend lost messages or to discard duplicated messages.
Moreover, the modifications proposed apply to different devices independently of their type. The major drawback
is that we have assumed that the I/O processor never fails, nor do any devices, which poses yet another unresolved
issue.
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Control Stable Memory Proposal: System Description.Technical Report, Esprit Project P5212 (FASST),
July 1994.

[Ors et al 94b] ORS, R., SERRANO, J.J., SANTONJA, V., GIL , P., ṔEREZ, A. AND RODRÍGUEZ, S. A Rollback
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RMANN, F., LÉONARD, P., LANGLOIS, S., AND NEUHAUSER, W. The Chorus Distributed Operating
System.Computing Systems-Usenix, pp.305–370, Vo.1, No.4, 1988.



[Rudolph et al 84] RUDOLPH, L., AND SEGALL, Z. Dynamic Decentralized Cache Schemes for MIMD Parallel
Processors.Procseedings of 11th International Symposium on Computer Architecture, pp.340–347, Ann
Arbor, 1984.

[Sahner et al 95] SAHNER, R.A., TRIVEDI, K.S., AND PULIAFITO , A. Performance and Reliability Analysis of
Computer Systems, Kluwer Academic Publishers, November 1995.

[Schlichting et al 83] SCHLICHTING, R.D., AND SCHNEIDER, F.B. Fail-Stop Processors: An Approach to De-
signing Fault- Tolerant Computing Systems.ACM Transactions on Computer Systems, August 1983.

[Schmid et al 82] SCHMID, M., ET AL Upper Exposure by Means of Abstraction Verification.Proceedings of
12th International Symposium on Fault-Tolerant Computing Systems, pp.237-244, St.Monica, June 22-24
1982.

[Schneider 87] SCHNEIDER, F.B. The Fail-Stop Processor Approach. InConcurency Control and Reliability in
Distributed Systems, Chapter 13, pp.370–394, Barghava, 1987

[Schultze 88] SCHULTZE, M.E. Considerations in the Design of a RAID Prototype.Technical Report UCB/CSD
88/448, University of California, August 1988.

[Sha et al 87] SHA, L., RAJKUMAR, R., AND LEHOCZKY, J.P. Priority inheritance protocols, an Approach to
Real-Time Synchronization.Technical Report CMU-CS-87-181, Department of CS, ECE and Statistics,
Carnegie Mellon University, November 1987.

[Siewiorek et al 92] SIEWIOREK, D.P., AND SWARZ, R.S. Reliable Computer Systems: Design and Evaluation.
Digital Press, 1992.

[Singh et al 91] SINGH, J.P., WEBER, W., AND GUPTA, A. Splash : Stanford Parallel Applications for Shared-
Memory. Technical Report CSL-TR-91-469, Computer Systems Laboratory, Stanford University, April
1991.

[Smith 82] SMITH , A.J. Cache Memories.ACM Computing Surveys, pp.473–530, Vol.14, No.3, September 1982.

[Spivey 92] SPIVEY, J.M. The Z Notation - A Reference Manual, 2nd Edition, Prentice Hall, 1992.

[Stonebraker 87] STONEBRAKER, M. The Design of the Postgres Storage System.Proceedings of 13th Interna-
tional Conference on Very Large DataBases, 1987.

[Strom et al 85] STROM, R.E.,AND YEMINI , S. Optimistic Recovery in Distributed Systems.ACM Transactions
on Computer Systems, pp.204–226, Vol.3, No.3, 1985.

[Sweazey et al 86] SWEAZEY, P., AND SMITH , A.J. A Class of Compatible Cache Consistency Protocols and
their Support by the IEEE Futurebus.Proceedings of 13th Annual International Symposium on Computer
Architecture, pp.414–423, ACM/IEEE, Tokyo, June1986.

[Texas Instruments 94] Futurebus+ Interface Family: Protocol, Arbitration and Backplane Transceiver Logic,
Data Manual.Texas Instruments, March 1994.

[Thacker et al 87] THACKER, C., AND STEWART, L. Firefly: A Multiprocessor Workstation.Computer Archi-
tecture News, pp.164–172, Vol.15, No.5, October 1987.

[Thacker et al 88] THACKER, C.P., STEWART, L.C., AND SATTERTHWAITE, E.H. Firefly : A Multiprocessor
Workstation.IEEE Transactions on Computers, pp.909–920, Vol.37, No.8, August 1988.

[Thatte 91] THATTE, S.M. United States Patent Specification No. US-A-5, 008, 786, 1991.

[Thiebaut et al 92] THIEBAUT, D., ET AL Synthetic Traces for Trace-Driven Simulation of Cache Memories.
IEEE Transactions on Computers, pp.388–410, Vol.41, No.4, April 1992.

[Webber et al 91] WEBBER, S., AND BEIRNE, J. The Stratus Architecture. InProceedings of 21st International
Symposium on Fault-Tolerant Computing Systems, June 1991.



[Wensley 81] WENSLEY, J.H. Fault-Tolerant Computers Ensure Reliable Industrial Controls.Electronic Design,
Vol.29, No.13, 1981.

[Wensley et al 82] WENSLEY, J.H., AND HARCLERODE, C.S. Programmable Control of a Chemical Reactor
Using a Fault Tolerant Computer.IEEE Transactions on Industrial Electronics, November 1982.

[Wood 85] WOOD, W.G. Recovery Control of Communicating Processes in Distributed Systems. InReliable
Computer Systems, Edited by Shrivastava, S.K., pp.448–484, Springer Verlag, 1985.

[Wilson 85] WILSON, D. The Stratus Computer System. InResilient Computer SystemsEdited by Anderson, T.,
pp.208–231, 1985.

[Wu et al 90] WU, K.L., FUCHS, W.K., AND PATEL, J.H. Error Recovery in Shared Memory Multiprocessors
Using Private Caches.IEEE Transactions on Parallel and Distributed Systems, pp.231–240, Vol.1, No.2,
April 1990.

[X/Open 91] X/OPEN Distributed Transaction Processing: The XA Specification. InX/Open CAE Specification,
ISBN 1-872630-24-3, The X/Open Company Ltd., 1991.

[Yang et al 88] YANG, Q., AND BHUYAN , L.N. A Queuing Network Model for a Cache Coherence Protocol on
Multiple-bus Multiprocessor.Proceedings of Parallel Processing Conferencepp.130-137, August 1988.



Index

Abstract Execution, 72
Analytical Models, 33

bus queue metrics, 39
cache line states, 36
invalidate protocol, 34
performance metrics, 41
protocol descriptions, 34
update protocol, 35

Autobahn II, 99

Caches, 32
TAGRAM cache forPIX, 159
Berkeley protocol, 32, 71, 110
blocking cache, 23
cache for transputer, 153
flushing timeout, 90
influence onSM , 71
recovery cache, 23, 70
snooping bySM , 110
stable memory as disk cache, 151

CARER, 23, 45, 48, 72
Checkpointing

inter-bank, 155
intra-bank, 153
log-mode, 155
switch-mode, 157

Corollary, 145, 187, 194
base CPU, 145, 194
binding threads to CPUs, 194
EC-Bus, 145, 187, 194
EISA Bus, 145, 187, 194
OSF1/mk configuration file, 188
symmetric CPU, 145, 194

Dependencies
management, 75, 85
tracking inSM , 67
write read, 28
write write, 28

Disk Arrays, 140
DT-Connect I, 149
DT-Connect II, 149
Dual Processing Unit (DPU ), 116

demonstrator, 122
demonstrator software, 131
error detection levels, 130

evaluation of dependability, 134
Futurebus+ interface, 129
prototype, 122

EISA Bus, 145, 187, 194
Experimental Validation, 135

fail-silent, 116
fail-stop, 21, 116
FASST Architecture, 66
Fault Injection, 136
Futurebus+, 116, 129

in stable memory, 99

Models
analytical - see Analytical Models, 33
queueing - see Queueing Models, 45

nMR
in Stable Disk (SD), 150

Queueing Models, 45
bridge function, 48
CARER, 45
degradable with recovery, 48
dependability analysis, 47
FASST recovery protocol, 45
more than one node, 48
non-degradable with recovery, 48
QNAP2, 45
SMPL, 45
SMRC, 45
without recovery, 48

RAID, 141
levels, 141
multiple ranks, 144
RAID 0, 142
RAID 1, 142
RAID 2, 142
RAID 3, 143
RAID 4, 143
RAID 5, 144
the first prototype, 145

Recovery
planned, 26
recovery lines, 26

242



unplanned, 26
Recovery Protocol, 24, 45, 84

SM behaviour during recovery, 95
Inform p primitive, 98
definitions, 24
group computation, 92
initiating processor, 91
locking, 98
model of computation, 24
other processors, 93
principles, 26
rollback due to processor failure, 95
rollback of all processors, 97
rollback of dependency group, 96

Secondary Storage, 140
Sequoia, 21, 23, 72
SMRC, 45, 48
Stable Disk (SD), 145

information flow, 149
integration into recovery protocol, 160
inter-bank checkpointing, 155
intra-bank checkpointing, 153
log-mode checkpointing, 155
nMR, 150
protection logic, 158
RAID controller, 147
stable memory, 151
switch-mode checkpointing, 157
VSBus, 149

Stable Memory (SM ), 66, 84
atomic operations, 95
behaviour during recovery, 95
commit, 67
dependency management, 75, 85
dependency tracking, 67
influence of caches, 71
performance evaluation, 72
read command, 91
synchronization, 87
timeout protection, 89
use as disk cache, 151
write command, 91

Stable Memory Hardware, 99
Vectormemory, 109
C012 link interface, 153
command and status registers (CSR), 109
copy-on-write, 100
dependency matrix memory, 109
expected performance, 111
Fast Serial Link (FSL), 99
fault tolerance issues, 111
for Stable Disk (SD), 151
Futurebus+, 99

information flow, 99
initialization phase, 110
snooping, 110
T800 Transputer, 153
transputer cache, 153
update memory, 110

Stratus, 21

T800 Transputer, 153
C012 link interface, 153
cache, 153
Transputer Development System, 153

Tandem
S2, 21
Tandem-16, 21

TMR, 21

VSBus, 149


