
An extensible administration and configuration tool for
Linux clusters

John D. Fogarty B.Sc

A dissertation submitted to the University of Dublin,
in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

1999



ii

Declaration

I declare that the work described in this dissertation is, except
where otherwise stated, entirely my own work and has not
been submitted as an exercise for a degree at this or any other
university.

Signed: ___________________
John D. Fogarty
15th September, 1999

Permission to lend and/or copy

I agree that Trinity College Library may lend or copy this
dissertation upon request.

Signed: ___________________
John D. Fogarty
15th September, 1999



iii

Summary

This project addresses the lack of system administration tools for Linux clusters. The

goals of the project were to design and implement an extensible system that would

facilitate the administration and configuration of a Linux cluster. Cluster systems are

inherently scalable and therefore the cluster administration tool should also scale well to

facilitate the addition of new nodes to the cluster.

The tool allows the administration and configuration of the entire cluster from a single

node. Administration of the cluster is simplified by way of command replication across

one, some or all nodes. Configuration of the cluster is made possible through the use of a

flexible, variables substitution scheme, which allows common configuration files to

reflect differences between nodes. The system uses a GUI interface and is intuitively

simple to use.

Extensibility is incorporated into the system, by allowing the dynamic addition of new

commands and output display types to the system. Through the use of a menus

configuration file the system is easily extended to include additional commands. This can

be accomplished without reprogramming for the majority of commands. An API has been

provided to allow different types of component to be displayed on the main GUI panel.

The system thus exhibits extensibility in supporting different types of display

components such as text or graphics. This extensible scheme can then be used to support,

for example, graphical output.

Through the use of a configuration file for the nodes in the system, the system can scale

well. New nodes are easily added through a single entry in this configuration file.

Scalability is also incorporated into the design of the system, whereby as much work as

possible is distributed to the server nodes.



iv

Acknowledgements

I would like to thank my supervisor Dr. Paddy Nixon for his advice and assistance

throughout the project. I would also like to express my appreciation to Dr. Simon Dobson

who also assisted me during this work. Stefan Weber was unstintingly generous with his

time and his expertise so “danke schon”.  Finally, cheers to my classmates.



v

TABLE OF CONTENTS

CHAPTER 1     INTRODUCTION ............................................................................................................. 1

INTRODUCTION ............................................................................................................................................ 1
MOTIVATIONS.............................................................................................................................................. 1
GOALS ......................................................................................................................................................... 2
ROADMAP.................................................................................................................................................... 2
SUMMARY ................................................................................................................................................... 3

CHAPTER 2     BACKGROUND RESEARCH......................................................................................... 4

INTRODUCTION ............................................................................................................................................ 4
CLUSTER DEFINITION................................................................................................................................... 4
CLUSTER CHARACTERISTICS........................................................................................................................ 4
TYPES OF CLUSTERS .................................................................................................................................... 5

Server farms............................................................................................................................................ 6
Failover clusters ..................................................................................................................................... 6
Coupled clusters ..................................................................................................................................... 6

shared nothing cluster ..........................................................................................................................................6
shared memory cluster .........................................................................................................................................6

CLUSTER CONFIGURATIONS ......................................................................................................................... 7
CLUSTER FORCES ........................................................................................................................................ 7
CLUSTER TAXONOMY.................................................................................................................................. 9

Pile Of PCs ............................................................................................................................................. 9
Cluster of Workstations (COW) .............................................................................................................. 9
Network of Workstations (NOW) .......................................................................................................... 10
Beowulf ................................................................................................................................................. 10

Beowulf History.................................................................................................................................................11
Advantages of a Beowulf ...................................................................................................................................11

D-Shared memory Clusters and SMPs.................................................................................................. 11
NT-PC ................................................................................................................................................... 12

CLUSTER EXAMPLES .................................................................................................................................. 12
Beowulf class ........................................................................................................................................ 12

Loki/Hygalc .......................................................................................................................................................12
Avalon................................................................................................................................................................13
Stone  SouperComputer .....................................................................................................................................13
ASCI Red ...........................................................................................................................................................14
Other Examples..................................................................................................................................................14

CAG Cluster.......................................................................................................................................... 14
Windows NT example............................................................................................................................ 15

CLUSTER SOFTWARE.................................................................................................................................. 15
Operating system software.................................................................................................................... 15

Linux..................................................................................................................................................................15
Linux Modules ...................................................................................................................................................16

Administration software........................................................................................................................ 17
SMILE ...............................................................................................................................................................18
Windows NT class cluster software ...................................................................................................................20

SUMMARY ................................................................................................................................................. 21

CHAPTER 3     PROBLEM SPECIFICATION ...................................................................................... 22

INTRODUCTION .......................................................................................................................................... 22
GOALS ....................................................................................................................................................... 22
REQUIREMENTS OF THE SYSTEM ................................................................................................................ 22

Command replication and configuration changes across multiple nodes. ........................................... 22
Variable substitution............................................................................................................................. 23
Module management............................................................................................................................. 23
Formatted output from some menu commands ..................................................................................... 23



vi

Shutdown & reboot of nodes and unloading of server software ........................................................... 23
Output comparison between nodes ....................................................................................................... 23

SYSTEM CONSTRAINTS............................................................................................................................... 24
CORBA ................................................................................................................................................. 24
Java....................................................................................................................................................... 24

Advantages of Java ............................................................................................................................................24
SUMMARY ................................................................................................................................................. 24

CHAPTER 4     CLUSTER MANAGER DESIGN.................................................................................. 25

INTRODUCTION .......................................................................................................................................... 25
OVERVIEW................................................................................................................................................. 25

Clusters ................................................................................................................................................. 25
Cluster System Manager Overview....................................................................................................... 26
Client Overview .................................................................................................................................... 26
Communications Overview ................................................................................................................... 27
Server Node Operation Overview ......................................................................................................... 27

CLUSTER MANAGER DETAILED DESIGN .................................................................................................... 28
CLIENT ...................................................................................................................................................... 28

Client GUI............................................................................................................................................. 28
GUI Design ........................................................................................................................................................28

Menus Generation................................................................................................................................. 29
Flexibility through Variable Text Substitution...................................................................................... 31
Scalability ............................................................................................................................................. 32
Client StartUp ....................................................................................................................................... 32

Node selection....................................................................................................................................................32
Command Execution ............................................................................................................................. 33
Configuration File Management........................................................................................................... 34

Editing a file.......................................................................................................................................................35
Saving a file .......................................................................................................................................................35

CLIENT - SERVER INTERFACE .................................................................................................................... 35
Communication between nodes & cluster manager.............................................................................. 36

SERVER...................................................................................................................................................... 36
Command Execution Responses............................................................................................................ 36
Command Execution ............................................................................................................................. 37

PP.......................................................................................................................................................................38
GP ......................................................................................................................................................................39
NP ......................................................................................................................................................................39
NPP ....................................................................................................................................................................39
Error messages ...................................................................................................................................................39

MODULES .................................................................................................................................................. 40
SUMMARY ................................................................................................................................................. 40

CHAPTER 5     IMPLEMENTATION..................................................................................................... 41

INTRODUCTION .......................................................................................................................................... 41
CLIENT GUI............................................................................................................................................... 41

Menus Generation................................................................................................................................. 43
Example .............................................................................................................................................................44

VARIABLE TEXT SUBSTITUTION ................................................................................................................ 44
SCALABILITY – NODES CONFIGURATION FILE ............................................................................................ 46
CLIENT STARTUP....................................................................................................................................... 46
NODE SELECTION....................................................................................................................................... 47
COMMAND EXECUTION ............................................................................................................................. 49

Redesign................................................................................................................................................ 49
ExecThreads.......................................................................................................................................... 50
SwingUtilities invokeLater() ................................................................................................................. 51
SaveThreads.......................................................................................................................................... 51

CONFIGURATION FILE MANIPULATION...................................................................................................... 52



vii

‘Edit File’.............................................................................................................................................. 52
‘Save File’............................................................................................................................................. 52
‘Cancel Edit’......................................................................................................................................... 53
‘Cat File’ .............................................................................................................................................. 53
Log Files ............................................................................................................................................... 54

CLIENT – SERVER INTERFACE.................................................................................................................... 54
Communication between nodes & cluster manager.............................................................................. 54

SERVER...................................................................................................................................................... 55
Server Operation................................................................................................................................... 55
PP - Perl Script..................................................................................................................................... 55
GP - Generic Parsing ........................................................................................................................... 57
NP - Perl but no parsing....................................................................................................................... 58
NPP - No Perl, no parsing.................................................................................................................... 58
NRP - No reply...................................................................................................................................... 58
Error messages ..................................................................................................................................... 59

MENUS IMPLEMENTED...............................................................................................................................59
File........................................................................................................................................................ 59
System ................................................................................................................................................... 59

Shutdown server daemon ...................................................................................................................................59
ShutDown / Reboot............................................................................................................................................60

Modules................................................................................................................................................. 60
Module Manipulation.........................................................................................................................................61
‘Load Module’ ...................................................................................................................................................61
‘Unload module’ ................................................................................................................................................62
System Statistics ................................................................................................................................................64

IMPLEMENTATION PROBLEMS.................................................................................................................... 64
SUMMARY ................................................................................................................................................. 64

CHAPTER 6     ANALYSIS....................................................................................................................... 65

INTRODUCTION .......................................................................................................................................... 65
REVIEW OF WORK ..................................................................................................................................... 65
ANALYSIS .................................................................................................................................................. 65

Goals..................................................................................................................................................... 66
Extensibility .......................................................................................................................................... 66

Commands .........................................................................................................................................................66
GUI components ................................................................................................................................................66

Scalability ............................................................................................................................................. 67
Flexibility .............................................................................................................................................. 67
Ease of use ............................................................................................................................................ 68
Portability ............................................................................................................................................. 68
Functional Requirements ...................................................................................................................... 68

Command replication across a number of nodes................................................................................................68
Variable substitution ..........................................................................................................................................68
Module management..........................................................................................................................................68
Formatted output from some menu commands ..................................................................................................69
Shutdown or reboot of nodes .............................................................................................................................69
Comparison of nodal output...............................................................................................................................69

COMPARISON WITH OTHER TOOLS ............................................................................................................. 69
SMILE CMS .......................................................................................................................................... 69

FUTURE WORK .......................................................................................................................................... 70
Provide a web interface ........................................................................................................................ 70
Extend the menus framework ................................................................................................................ 70
Implement callbacks ............................................................................................................................. 71
Automatic on-line node checking.......................................................................................................... 71
Build a dynamic Perl parser ................................................................................................................. 71
Integrate with existing cluster tools ...................................................................................................... 71

CONCLUSIONS............................................................................................................................................ 72



viii

Personal Achievements .......................................................................................................... ............... 72
SUMMARY ................................................................................................................................................. 72

APPENDIX 1     LINUX MODULES........................................................................................................ 73

INTRODUCTION .......................................................................................................................................... 73
LINUX MODULES ....................................................................................................................................... 73
ADVANTAGES ............................................................................................................................................ 73
MODULE ELEMENTS .................................................................................................................................. 74
IMPLEMENTATION...................................................................................................................................... 74

Manual loading : Command line operation.......................................................................................... 74
Automatic loading : kerneld.................................................................................................................. 75

COMPILING THE KERNEL............................................................................................................................ 75
SYSTEM CALLS SPECIFIC TO MODULES....................................................................................................... 75
THE KERNEL DAEMON................................................................................................................................ 78

BIBLIOGRAPHY....................................................................................................................................... 80



ix

Table of Figures

Figure 1 :  A Taxonomy of Parallel Computing ___________________________________________ 9
Figure 2 :  The Smile Cluster Management system _______________________________________ 19
Figure 3 : Basic architecture of a cluster system_________________________________________ 25
Figure 4 : Cluster System Manager Architecture Overview ________________________________ 26
Figure 6 : Screenshot of the Cluster Manager Interface ___________________________________ 42
Figure 7 :  Node selection___________________________________________________________ 48
Figure 8 : Client –Server Communication Implementation_________________________________ 50
Figure 9 : Output of the ‘mount’ command _____________________________________________ 57
Figure 10 : The Load Module list box __________________________________________________ 62
Figure 11 : The UnLoad Module list box________________________________________________ 63
Figure 12 : The xosview utility _______________________________________________________ 64

Table of Tables

Table 1 : menus configuration file format _____________________________________________ 30
Table 2 : Output types from command executions _______________________________________ 37



- 1 -

Chapter 1     Introduction

Introduction
Clusters of computers, where a cluster is a group of independent systems that act and

appear as a single system, have become popular in both research establishments in need

of high performance computing power and in business organisations seeking high

availability from their computing resources. The popularity of clusters has arisen due to a

number of factors. Not least amongst these, particularly with regards to research

computing, has been the dramatic increase in price-performance of PC chips which has

shown much greater improvement vis a vis traditional supercomputer components. This

has led people to experiment with using commodity off the shelf components in building

their supercomputers out of clusters of PCs. Other factors that have reinforced the interest

in clusters include the fact that clusters scale well. They can grow very large,

accommodating a large number of nodes and also nodes can be added in a piecemeal

fashion.

Linux is the dominant operating system with regard to cluster systems. It is a popular

choice mainly because it is free, stable and full source code is available. Additionally

Linux implements a feature of operating system customisability whereby modules can be

loaded and unloaded on-demand. This is particularly important in relation to clusters,

where often, small kernels are desired in order to maximise performance. It also means

that different nodes in the cluster can run modified versions of the kernel if needed.

Motivations
Concomitant with the deployment of clusters, is the need for tools to facilitate their

administration. Administration in this context relates to the normal administrative duties

needed to effectively manage a single machine. The bulk of research effort related to

cluster software has up to now been devoted to the development of management tools to

aid parallel programming, job scheduling and load balancing. A lack of administration

tools continues to render the management, particularly of large scale clusters, more

difficult. This has been the main motivation underpinning this project.



- 2 -

Goals
The goals of the project were to design and implement an extensible system that would

facilitate the administration of a Linux cluster. Extensibility would allow new commands

to be easily added to the system – the system should easily accommodate commands that

return different types of output.

One of the features and main attractions of cluster systems is their scalability, which

allows nodes to be added incrementally and supports a large number of nodes. The

cluster administration tool should also scale well. In addition to these general design

goals, a number of specific requirements are demanded of the system.

Roadmap
A conventional thesis pattern is used. This chapter has given an introduction to the

project and the problem that is being addressed. The motivations & goals of the project

were described.

Chapter 2 reviews the field of cluster systems and cluster administration tools. It explains

the essential characteristics of clusters and describes the different classes of clusters. It

also gives examples of the major types of clusters in use today. The place of cluster

machines in the hierarchy of parallel computing machines is examined. The chapter then

turns its attention to the software that is used on these machines. Specifically a

description of available administration tools is also given.

 Chapter 3 gives a detailed problem specification. The chapter details the goals of the

project and outlines the requirements of the system.

Chapter 4 details the design of the cluster management system. It explains how the

various goals and requirements of the system will be accomplished through the proposed

design.



- 3 -

Chapter 5 describes the implementation of the system. It details how particular design

features were incorporated into the system. It also outlines any problems encountered

during the implementation.

Chapter 6 gives a detailed analysis of the cluster tool developed in this project. It reviews

the goals and requirements of the system and assesses the extent to which these have

been achieved. The chapter also suggests what future work might be carried out to extend

and improve the system.

Summary
A broad overview of the project has been given in this chapter. The problem under

consideration has been outlined along with the motivations and goals of the project. The

next chapter examines the field of cluster computing and examines the software tools

available to administer a Linux cluster.



- 4 -

Chapter 2     Background Research

Introduction
The problem being investigated by this project is the design and implementation of a

Linux cluster administration tool. This chapter explains the essential characteristics of

clusters and examines the different types of clusters that are in use today. Contrasts are

made with other types of parallel machines such as SMPs (Symmetric Multi-Processors)

and NOWs (Network of Workstations).   Examples of the different types of clusters are

used to illustrate the flexibility and power of this type of system.

The chapter concludes with an examination of the software that is used on these

machines. Specifically, software relating to system administration is detailed.

Cluster definition
Achieving a precise definition for a cluster is difficult, as evidenced by the inconclusive

and sometimes rancorous electronic submissions of the IEEE Task Force on Cluster

Computing [HREF1]. However a consensus of sorts was formed around the following

definition:

“$�FOXVWHU�LV�D�W\SH�RI�SDUDOOHO�RU�GLVWULEXWHG�V\VWHP�WKDW�FRQVLVWV�RI�D�FROOHFWLRQ�RI�LQWHUFRQQHFWHG

ZKROH�FRPSXWHUV�XVHG�DV�D�VLQJOH��XQLILHG�FRPSXWLQJ�UHVRXUFH” [FIS97].

[Whole computer in this context is taken to mean a normal computer that can be used on

its own: i.e. contains processor(s), memory, I/O, OS, software subsystems and

applications.]

An alternative but similar definition given by Microsoft [HREF2]:

“$�FOXVWHU�LV�D�JURXS�RI�LQGHSHQGHQW�V\VWHPV�ZRUNLQJ�WRJHWKHU�DV�D�VLQJOH�V\VWHP��$�FOLHQW

LQWHUDFWV�ZLWK�WKH�FOXVWHU�DV�LI�LW�ZHUH�D�VLQJOH�VHUYHU��$�QRGH�LV�D�VHUYHU�LQ�WKH�FOXVWHU.”

Cluster characteristics
Taking the loosest interpretation of this definition would allow that the PCs on a LAN,

can together be considered a form of cluster. In general though, clusters can be

distinguished from distributed systems which tend to be loosely connected and use slow



- 5 -

interconnects (not always). Furthermore nodes in a cluster have a strong sense of

membership which generally nodes in a distributed system do not.

Other characteristics of a cluster include:

• it can be managed as a single system, reflecting the tight coupling

• services are cluster wide

• it can tolerate component failure

• components can be added transparently to users

Types of Clusters
In general there are two broad categories of clusters in use today:

i) research machines comprising many compute nodes which are used for massively

complex computations such as weather forecasting or N-body particle

simulations.

ii) smaller >=2 clusters which are used in business as web servers, mail servers,

database servers etc. These might be classified as commercial clusters and are

popular as a preferred alternative to other forms of high availability technology

such as data mirroring, server mirroring and fault tolerant systems.

The former type of machine is generally found in academic institutions or government

installations and generally uses Linux or some other free Unix operating system

distribution to run the machine. On the other hand the latter is found in business and

frequently uses Windows NT as its operating system of choice.  Both these types of

system are described in further detail below.

Within these two broad categories, a further classification of clusters can be made on the

type of use to which they are put and the type of service they are expected to provide:



- 6 -

Server farms
These are the oldest and simplest type of cluster whereby a cluster consists of a group of

compute nodes which demand work from a central server. This is well suited to

applications that require large amounts of processing and that need limited inter-node

communication. In this cluster, if a node fails, the server merely assigns its work to an

alternative compute node.

Failover clusters
The focus here is on availability rather than scalability. Typically there are two nodes,

one that serves as a primary the other as a backup and together they aim to provide

continuous service. This is the type of cluster often used by business for e-mail or web

servers.

Coupled clusters
These are essentially a combination of the features of the above two. They work closely

together and there is a considerable amount of inter-nodal communication –consequently

high-speed inter-nodal interconnect is extremely important. Availability is a group

responsibility so that failures can be handled gracefully by the cluster.

There are two types of coupled cluster, a shared nothing cluster and a shared memory

cluster.

shared nothing cluster

Each node has its own memory space. So the programming model must be smart

enough to know what nodes are in the cluster and what processes are running on

what nodes, so that recovery from failure can be accomplished.

shared memory cluster

All nodes share the same address space and an application running on this type of

cluster sees it as a single entity. Nodes communicate using the IEEE’s Scalable

Coherent Interface [HREF15].



- 7 -

Coupled clusters probably represent the future of this technology. They scale seamlessly,

handle nearly any kind of application, use commodity hardware and offer high

availability.

Cluster configurations
Various types of cluster configurations can be constructed [SHA97]. The ability to cluster

nodes together can be implemented in hardware, in software or in a combination of both.

In hardware, specialized interconnects facilitate cluster creation.  Examples of this

include various storage area networks.

Both hardware, as described above and the Operating System can combine to form the

cluster. The IBM NetFinity or Dell Enterprise Server provide examples of this approach.

Components of the Operating System can communicate to form a cluster though there is

a blurring of distinction between this and distributed Operating Systems. Systems that

adopt this method include MSCS (Microsoft Scalable Cluster Server) and Solaris

Enterprise Cluster, AIX clusters & HP_UX clusters.

Another type of cluster allows middleware running over the Operating System to

implement the cluster functionality. The Beowulf class of clusters (see below) use MPI

and PVM to achieve this.

Finally some applications have internal code that allows them to create clusters with

other nodes running the same application, e.g. Oracle Parallel Server.

Cluster Forces
Supercomputing may be a small part of the computer industry, but yet is a segment worth

$2.2billion [POL99]. Supercomputing applications involve extremely complex

mathematical computations and thus require large amounts of computing power. Until

recently this computing power was sourced from specially constructed machines that

were characterized not alone by their massive speeds (now measured in TeraFlops) but



- 8 -

also by their relative cost. They were and remain very expensive and beyond the means

of most organizations.

Undoubtedly the rapid accelerated growth in computational performance has supported

the developing interest in clusters. In the last decade, a 3-order of magnitude increase in

the number of devices per chip has been achieved [RID97]. A similar increase in chip

speed has also been made. The much bigger economies of scale attainable in the PC

market has resulted in a major realignment of cost/performance ratios between PCs and

workstations. For example in the past four years PC microprocessors have had a

performance rate increase of approximately 200% per annum as against 50% per annum

for workstation microprocessors. This trend is even more pronounced when comparing

PC performance against mainframes and supercomputers. Due to the smaller sales

volumes of mainframe and supercomputer products, advances in these systems are

amortized over a smaller number and cost/performance ratio vis a vis that of PCs have

slipped considerably. It is this changing price performance ratio that is the major driving

force behind the cluster revolution [HAL99].

Furthermore clusters scale well, both absolutely and incrementally. This allows

organizations to achieve incremental growth and to match the growth of their

supercomputing facility to the extent of their budgets.

Despite the enormous advances achieved, the requirement for ever increasing

computational power remains. For example, the US Department of Energy’s ASCI

(Advanced Strategic Computing Initiative) has targeted a benchmark of 100 TeraFlops

per second by the year 2005 [GRE97]. Indeed many of the national agencies in the US,

DOE, NASA, DARPA, NSA have targeted Petaflop machines by 2010. These incredibly

fast machines would be a thousand times faster than today's fastest machines.



- 9 -

Cluster Taxonomy
A taxononomy as given by Thomas Sterling of the NASA JPL [STE97],  illustrates the

different classes of cluster computing and provides a useful depiction of the place of

clusters in the hierarchy of Parallel Computing.

Para lle l C om puting

C luste red     M etaC om puting  T ightly V ector …
C om puting C oupled

P ileO fPC s C O W W S Farm s/cyc le
harvesting  (N O W )

B eow ulf N T -PC -C lusters D -Shared M em ory

Figure 1: A Taxonomy of Parallel Computing

This taxonomical breakdown of cluster computing is discussed in detail and the

differences between the different elements of the Clustered Computing branch are

explained.

Pile Of PCs
The term, Pile Of PCs, is used to describe a loose ensemble of PCs working together on a

single problem. It is similar in concept to both Cluster of Workstations (COW) and

Network of Workstations (NOW) but emphasizes the following:

• Pile of PCs uses mass market components

• dedicated processors

• private system area network

Cluster of Workstations (COW)
A cluster of workstations is a group of workstations that can be formed from existing

‘‘idle’’ workstations and PCs overnight and on weekends. In principle, no cost is involved



- 10 -

and hence is very attractive. Experience has shown that they perform many parallel tasks

effectively.

Network of Workstations (NOW)
The Network of Workstations [AND95] concept extends the COW concept by also using

idle workstation cycles even during normal working hours. This was done in response to

the finding that even during daylight hours in an electrical engineering lab, over 60% of

workstations are available 100% of the time.

The idea of using idle resources over the network is not new but a number of recent

technological advances has made it more feasible:

• high speed LAN interconnects such as ATM and Myrinet

• continued dramatic increases in workstation performance which means that the

harvesting of idle workstation cycles is more worthwhile than ever.

• while processor speeds have experienced dramatic increases, disk technology

advances have been made mainly in terms of capacity, which inevitably will lead to

disk I/O being a retardant to overall performance increases. NOWs provide a way

around this by offering a huge pool of memory as a disk cache.

Beowulf
Perhaps one of the more important recent developments in the field of cluster computing,

Beowulf is a series of modifications to the Linux kernel and a message passing system,

that allows scaling of computers (not SMP), connected via a standard networking

medium [STE98]. Beowulf further refines the Pile of PC concept as defined above, by

stressing the following:

• no custom components

• easy replication from multiple vendors

• scalable I/O

• freely available computing tools. To this end Linux is used as the operating system of

choice on Beowulf systems.



- 11 -

Beowulf History

In 1994, two NASA researchers began investigating the use of commodity components to

build a functional cluster supercomputer to address problems associated with the large

data sets that are often encountered in Space science applications. They built a cluster

computer consisting of 16 DX4 processors connected by 10Mbit/s Ethernet (The

processors were too fast for a single Ethernet and Ethernet switches were still too

expensive. So the Ethernet drivers for Linux were re-written to build a "channel bonded"

Ethernet where the network traffic was striped across two or more Ethernets. As

100Mbit/s Ethernet and 100Mbit/s Ethernet switches have become cost effective, the

need for channel bonding has diminished.). They called their machine Beowulf. The

machine was an instant success and the idea of using COTS (Commodity Off The Shelf)

base systems to satisfy specific computational requirements quickly spread through

NASA and into the academic and research communities.

Advantages of a Beowulf

• no single vendor controls the product.

• since Beowulf systems are constructed from commodity components, this facilitates

technology tracking – i.e. as new components become available they can be included

in the system. Consequently, Beowulfs are very flexible.

• the use of free software with available source code allows system software to be

customized for particular applications.

D-Shared memory Clusters and SMPs
Shared memory clusters have been mentioned previously as a type of coupled cluster.

This type of cluster presents four advantages over single larger machines such as SMPs:

Note that these advantages are shared by other classes of clusters [BRE97].

• absolute scalability, cluster can grow much larger than SMPs

• incremental scalability, clusters enable pay-as-you-go growth

• high availability, the failure of a node in the cluster does not cause the system to fail

• superior price/performance



- 12 -

Several companies sell hardware optimized for shared-memory clusters (SMCs). These

machines simplify the porting of applications as they do not require re-coding. However

there are two disadvantages [HREF3]:

Firstly, partial failures on an SMC can be a problem, whereby the failure of even one

request typically causes the whole program to fail. It is possible to re-code the application

to circumvent this problem but this defeats the purpose of using SMCs. Secondly,

application performance varies by orders of magnitude depending on whether the data

requested resides in local memory or cache or if it must be called from another node.

NT-PC
Clustering applications for clusters that use Windows NT as their operating system are

still in their infancy as are the clusters themselves. Up to this point the clusters have been

really just failover devices used in business to provide a degree of fault tolerance. To

illustrate this point, Microsoft is preparing an update of its Windows clustering software

with a goal of demonstrating clusters of up to four servers by spring 2000 [GAR99].

These systems have not been used to any great extent in the research community where

Linux clusters have been predominant. The clustering tools for Windows NT are dealt

with in the software section.

Cluster examples
Some examples of existing clusters are given below. Architectural features (size and cost)

are used to illustrate the relative power and cost of these machines. The systems are being

used in a wide range of applications.

Beowulf class
Firstly due to the impact of the Beowulf class of machines, some examples of this type of

system are given.

Loki/Hygalc

As an example of a Beowulf class computer, these two machines are pretty representative

of the genre. They are considered together as they were constructed by the same research

group and differ primarily in their network topology. The cost of the machines in Autumn



- 13 -

1996 was $50,000-$60,000 but by Autumn 1997 because of continued dramatic

reductions in PC component costs, this had fallen to about $30,000  - and continues to

fall.

Loki is comprised of 16 Pentium Pro microprocessors connected by fast ethernet. The

whole machine contains 2 Gbytes of memory and 50 Gbytes of disk. This configuration

has attained sustained performance in excess of one Gigaflop [WAR97a].

The configuration of Hyglac is practically identical to that of Loki, the major difference

being the choice of network cards and network switches. Sustained performance is

approximately equivalent.

These two machines were joined at the Supercomputing ’96 conference for the first time

and recorded sustained performance of 2.19 Gigaflops [WAR97b]. The cost of the

combined system was $103k which gave a price/performance result of $47/Mflop.

Avalon

Avalon [WAR98] is an Alpha/Linux cluster that was the co-winner of the 1998 Gordon

Bell Price/Performance prize. Built by the same team responsible for the Loki system and

constructed entirely from commodity components and freely available software, Avalon

used 70 DEC Alpha processors (the same processors used in the Cray T3E series) to

achieve a 10 Gigaflop performance for a cost of $150k.

Stone  SouperComputer

The Stone SouperComputer [HOF1] named after a children’s fictional story, is a

development of the Oak Ridge National Laboratory and was their first attempt at building

a Beowulf class computer. It is mentioned here as it exhibits the absolute flexibility of

Beowulfs and probably represents the low-end extreme of what is possible with regard to

building these machines.



- 14 -

Having grown tired of seeking funding to build a Beowulf machine, the proponents of the

SouperComputer used surplus personal computers donated by individuals and other

departments to build a parallel machine. They used public domain compilers and message

passing libraries to have a functional system, built at virtually no cost. The system is

already being used to do large scale computations on landscape analysis.

ASCI Red

This machine as winner of the 1997 Gordon Bell Performance prize and co-winner of the

1997 Gordon Bell Price/Performance prize, represents the cutting edge of clustered

supercomputers. The machine is built entirely out of commodity components leading

Intel to claim that “ 7KH�V\VWHP�ZLOO�EH�WKH�ILUVW�ODUJH�VFDOH�VXSHUFRPSXWHU�WR�EH�EXLOW�HQWLUHO\�RI

FRPPRGLW\�� FRPPHUFLDO� RII�WKH�VKHOI� �&�&276�� FRPSRQHQWV� ±� WKH� VDPH� SURFHVVRUV�� PHPRU\�

GLVNV�DQG�RWKHU�PRGXOHV� IRXQG� LQ�PLOOLRQV�RI�GHVNWRS� FRPSXWHUV�DQG�VHUYHUV”.  The complete

machine consists of 4,360 compute nodes, each containing two 200 MHz Pentium Pro

processors. At the time of evaluation, only 3,400 nodes were available but these had a

theoretical peak speed of 1.36 Teraflops [WAR97b].

Other Examples

There are many other examples of Beowulf class machines which has proved extremely

popular as a means of achieving significant performance at affordable prices. A good

starting point is the Beowulf Project home page [HREF4].

CAG Cluster
The Computer Architecture Group at Trinity College Dubin maintains a cluster system.

Physically, it is divided into three sub-clusters: a cluster of 16 compute nodes each

running Linux, a storage cluster running Windows NT and a cluster of workstation nodes.

The sixteen compute nodes, CAGnode0 - CAGnode15, are ordinary Pentium II/450 PCs.

Further details are available on the CAG Cluster web page at [HREF12].

The CAG cluster has been constructed primarily as a platform to conduct systems

software experiments and systems performance analysis i.e. it is not used as a mini-

supercomputer. Though the objectives of the CAG cluster may be different to those of a



- 15 -

normal cluster implementation, the fundamental problems of administering a cluster

remain.

Windows NT example
The National Center for Supercomputing Applications (NCSA) at the University of

Illinois created one of the world’s largest Windows NT based clusters [HREF5]. The

cluster consists of 128 dual processor Pentium II workstations and it is planned to

upgrade this to 512 processors within the next year.

In terms of performance this cluster compared with a Linux based cluster system from the

University of New Mexico. The tests were conducted on a 3D weather prediction model.

It should be noted though that as the number of processors being used increased, the NT

performance did not scale as well as the Linux system.

Cluster software
Two broad areas with regard to cluster software are examined now. A brief overview of

the issues important in operating system software for clusters is followed by a more

detailed examination of cluster administration tools.

Operating system software
Modern operating system (OS) designs have favoured modular microkernel approaches

instead of the traditional monolithic kernel design. Microkernel architectures can be

easier to tune for performance, reliability and customized for different uses. Improved

performance is achieved by allowing unnecessary functionality to be eliminated. This has

particular resonance for those with an interest in high-performance parallel computing

Linux

Linux is a popular choice of operating system in the field of cluster computing for a

number of reasons:

• it is free

• it has shown itself to be a stable product

• full source code is available



- 16 -

• good near real-time scheduling

• Linux uses Intel I/O port protection

• can run DOS tools

Even though the trend of operating system design in recent years, as described above, has

been toward microkernels, LINUX has a monolithic kernel. As of version 2.0 of LINUX

for the Intel architecture, the kernel consisted of around 470,000 lines of C code and 8000

lines of Assembler [BEC98]. The assembler coding is principally used in emulating the

maths co-processor, booting the system and controlling the hardware. Of the C code,

approximately only 5% is concerned with what might be considered the core activities of

the operating system in a microkernel context i.e. process and memory management. The

remainder implements other aspects of the system such as file systems, device drivers and

network drivers. However within this monolithic architecture LINUX does present many

of the desirable features of microkernel design in its flexibility and customisability. The

feature of the kernel design which facilitates this is loadable modules, which are object

code that can be dynamically loaded and integrated fully with the kernel at run time.

Linux Modules

Modules are object code that can be dynamically loaded/unloaded and integrated fully

with the kernel at run time. This means that the modules do not run as separate processes

and do not affect the monolithic nature of the kernel. Mostly they are device drivers,

pseudo-device drivers such as network drivers or file systems. The idea of loadable

modules is not unique to LINUX and also exists in other UNIX implementations such as

Solaris albeit in a different form [CAR98]. The functions modules export to the kernel

are added to its symbol table and it is through this that they are invoked. When a module

is loaded into the kernel, it runs with the same rights as the kernel and runs in system

mode.



- 17 -

Advantages

• Small kernels can be built with other functions only being added as and when

required and as mentioned this is of particular importance when trying to eke

maximum performance from a cluster of machines.

• Easier to develop, test and debug modules

• If  kernels that only differ slightly have to be built, it is much easier to build just one

kernel and accommodate differences through loadable modules.

There is a slight memory and performance penalty associated with kernel modules.

Loadable modules are slightly longer than if they were coded directly into the kernel and

this and the extra data structures take a little more memory. There is also a level of

indirection introduced that makes accesses of kernel resources slightly less efficient for

modules. However this not withstanding, the advantages outlined above point to

continued use of loadable modules. A detailed description of loadable modules is given in

Appendix 1.

Extreme Linux

The Extreme Linux Society is a collaboration of industry, academic and government

concerns whose goal is to make Linux and software that runs on Linux more effective for

High Performance Computing. Extreme Linux [CHO98] is a Red Hat product that

merges the clustering technologies of NASA’s Beowulf project with Linux.

Administration software
A recurring theme in the literature is the need for software tools to more effectively and

efficiently manage clusters. Brewer [BRE97] notes the problem that the available tools

are relatively immature but that essentially they should be able to do two things. First,

they should ensure that all machines are functionally equivalent. Second, the tools should

be able to remotely monitor and configure all nodes – otherwise management entails

logging in to each node, which doesn't scale well.



- 18 -

The bulk of the research effort, particularly in the Unix community has been towards

developing tools that facilitate the execution of parallel programs on clusters. These tools

are reviewed in [BAK95].

Development of tools to facilitate the normal system administration of a large number of

machines has not been pursued to any great extent. The notable exception to this is the

SMILE Cluster Management System, which was developed specifically to address this

problem.

SMILE

SMILE is a 16 node Beowulf cluster based at the Department of Computer Engineering

at Kasetsart University in Thailand [UTH98a]. The team responsible for building SMILE

also developed a cluster system administration tool. By its own claims it facilitates the

execution of a variety of tasks across a cluster. Repeated attempts to run and test this

system were unsuccessful.

Motivation

The motivation behind the development of this package was, as has been noted, the

difficulty in managing a cluster system due to the lack of a powerful resource monitoring

and management tool.

Key features

The following is a list of features that the system is purported to support [UTH98b]:

• Statistics reporting, such as CPU load or memory usage, from any node or the whole

cluster

• Remote login and remote command execution from any node

• Supports cluster wide parallel command execution

• Location transparent

• Shutdown or reboot any nodes

• Browse system configuration of any node from a single point

• Platform independent user interface using WWW



- 19 -

• APIs available for C, TCL/TK & Java to develop management applications

System Architecture

Figure 2: The Smile Cluster Management system

Each compute node has a CMA (Control and Monitoring Agent) that collects statistics on

that node continuously and reports them to the central SMA (system management agent).

Management information is presented to the user by a set of specific management

applications. A set of APIs called the Resource Management Interface (RMI) is provided,

to facilitate developers of management applications. These interfaces are available as a C

library, Java class library and TCL/TK. This interface is then used to develop

management applications and utilities.

System architecture justification

Using a centralised server increased the simplicity and efficiency of the system and

simplified the design of the SMA. It also reduces concern about an information

inconsistency and provides a uniform view of resources through an API.

However it does mean that there is a single point of failure. The intended solution to this

particular problem is to have a backup SMA A centralised server does not scale well - the

focus of the system is on a small to medium sized cluster (4 to 64 nodes).

R M I
L ib r a r y

S M A

C M A C M A
M g t .
A p p .



- 20 -

Windows NT class cluster software

By way of comparison, a description of administration software available for Windows

NT based clusters is given.

Microsoft

Microsoft provides clustering software called MSCS (Microsoft Scalable Cluster server)

formerly called WolfPack in Windows NT [HREF6]. It currently provides for a simple

two-node failover system. The benefits are higher availability, better manageability and

scalability. MSCS can be remotely managed from any Windows NT workstation or NT

Server. It provides the following services:

• a single system image

• audit status of all servers

• set up new applications, file shares, print queues etc.

• administer the recovery policies for applications and resources

• take applications offline, online and move from one server to another

Though it is probably easier to administer, it tends not to perform as well as the free Unix

versions run on clusters, such as Linux, Free BSD & NetBSD [HREF7]. Further

information on using Windows NT for parallel computation can be obtained at the

Concurrent Systems Architecture Group at the University of Illinois who maintain the

Resources for High Performance Computing on Windows NT web page [HREF8].

Compaq

The Compaq Intelligent Cluster Administrator is the first industry standard cluster utility

providing web enabled cluster administration [HREF9]. It also provides a single point of

control for Microsoft Windows NT MSCS clusters. The design decisions underlying the

product were ease of use through an intuitive and consistent user interface and

extensibility. The benefits claimed are for reduced system management costs and

improved administrator efficiency.



- 21 -

Others

Many other companies including IBM, HP and Tandem provide clustering products.

Information on these are available at these companies web sites [RUL97].

Summary
Clusters are being used extensively in both research and commercial installations. They

provide an improved price performance and viable alternative to supercomputers and

forms of high-availability such as data mirroring, server mirroring and fault tolerant

machines. This illustrates the flexibility and adaptability of cluster systems and ensures

ongoing interest in their development and application.

Linux is the dominant operating system with regard to cluster systems particularly in the

realms of research and supercomputing. Even on commercial clusters, Linux is a popular

choice because of its cost, flexibility and performance. A major research area, not just in

reference to cluster computing but also with respect to OS design, is microkernels. These

architectures can be made both small and flexible leading to improved performance for

targeted applications. Linux implements a form of microkernel design through the use of

modules, which can be loaded and unloaded on-demand and incorporated into the kernel.

A lack of administration tools for larger scale clusters renders their management more

difficult. This is the problem being addressed in this project. In the next chapter, a

detailed problem specification describes the goals and requirements of the system. It also

details the constraints under which the system was designed and developed.



- 22 -

Chapter 3     Problem Specification

Introduction
Clearly the growing interest in cluster systems seems likely to persist given continued

improvements in price-performance ratios of cluster components and the rising

affordability of these systems. Concomitant with this interest is a large body of research

devoted to these systems. However to date the majority of research in software tools for

Unix based systems has been focussed on tools designed to assist programmers in parallel

programming paradigm. There remains a need for tools to facilitate the daily

administration of these systems.

Goals
Arising from this perceived deficit, the goals of this project are to design and implement

an extensible system to ease the administration of a Linux cluster. The essence of such a

system would allow command replication and configuration changes across multiple

nodes. Extensibility would allow new commands to be easily added to the system. In

general command output is textual however extensibility should allow the system to

easily accommodate commands that return different types of output.

One of the features and main attractions of cluster systems is their scalability, which

allows nodes to be added incrementally and accommodates a large number of nodes. The

cluster administration tool should also scale well.

Requirements of the system
The requirements of the system were developed from a review of what other similar

cluster administration tools offered. Also the requirements as specified by the cluster

system manager were included. From this the general requirements of the system can be

stated as:

Command replication and configuration changes across multiple nodes.
– the system should be capable of executing commands on one some or all nodes of

the system.  Accompanying this requirement is the need for users of the system to



- 23 -

be able to easily select which nodes are to participate in the execution of the

command.

Variable substitution
- for maximum flexibility the system should support a scheme of variable substitution

whereby variables are replaced by their actual values (similar to the Unix scheme of

variable substitution).

A number of additional features were added as requirements to ensure a flexible system

implementation. These are listed below:

Module management
- the importance of microkernel architectures with respect to high performance

computing has been identified. Linux offers both manual and automatic loading as a

means of supplying operating system customisability. The system should incorporate

this functionality.

Formatted output from some menu commands
- output from commands should be formatted. This formatted output may be used for

display or used to dynamically create a list of selectable items from which the user

can select an items.

Shutdown & reboot of nodes and unloading of server software
- for changes in configuration to take effect it is often necessary to reboot the system

on which the change has occurred. The cluster manager should enable any or all

nodes in the cluster to be rebooted.

Output comparison between nodes
- this requirement is to handle scaling effectively. As the number of nodes increases it

becomes increasingly infeasible for the output of all nodes to be displayed on screen.

( and is of particular relevance to the situation in which nodal output is merely an

acknowledgement of successful execution of the command). It is anticipated that a

more acceptable solution is to contrast output from the nodes. If the output is the



- 24 -

same from more than one node, then only one copy is displayed with an indication of

which nodes it is from.

System constraints
There were some constraints with regards to the design and implementation of the

system. Both CORBA and Java were to be used in the design of the system.

CORBA
The Common Object Request Broker Architecture (CORBA) [HREF10] is an open

distributed object computing infrastructure standardized by the Object Management

Group (OMG). CORBA automates many common network programming tasks and eases

the burden on the network programmer. It was pre-selected as the middleware to be used

for this project. Furthermore a free (for non-commercial use), publicly available CORBA

compliant ORB implementation, called ORBacus [HREF11], was used.

Java
Java was also a given of the system. It is a popular well-supported language and again

there are many sound technical reasons to support this choice. The Blackdown [HREF14]

implementation of the Java virtual machine was used.

Advantages of Java

• provides platform independence i.e. portable

• reduces development time - object oriented language which promotes reusable code

• brings new levels of interactivity to web pages.

• has in-built facilities to promote the use of distributed systems.

Summary
This chapter outlines the problem that this project is addressing namely the design and

implementation of an extensible configuration and administration tool for Linux clusters.

It details the goals and the requirements of the system and the constraints under which the

system is to be developed. The next chapter describes the design of the system and

highlights how the goals and requirements of the system are met.



- 25 -

Chapter 4     Cluster Manager Design

Introduction
The last chapter defined the goals of the project as designing and implementing an

extensible configuration and administration tool for Linux clusters. The requirements of

such a system were also detailed. This chapter presents the high level and detailed design

of the essential features of the cluster management system. Specifically it highlights those

design features of the system that will enable extensibility, scalability and flexibility.

Overview
Clusters
The basic architecture of a cluster system is outlined in Figure 3 below:

Figure 3: Basic architecture of a cluster system

Nodes communicate with one another through a shared communications medium with

software to facilitate parallel programming. The Cluster Management System is designed

to facilitate the administration of a cluster of Linux machines. The normal administrative

duties associated with the administration of a single Linux machine must be replicated for

each machine in the cluster. The Cluster Management System should reduce the amount

of replication involved by automatically and transparently, replicating changes or

command invocations on one machine to some or all other machines in the cluster.

Generally changes will be reflected to all nodes so that a consistent image across the

cluster is maintained.

Node 0

Node 3

Node 1 Node 2

Node 4 Node 5

Communications
Medium



- 26 -

Cluster System Manager Overview
An overview of the general architecture of the cluster system manager is illustrated in

Figure 4 below. A client-server architecture forms the basis of the system. In this context,

the client side of the system represents that part of the system which presents the user

interface and through which the user issues command invocations. The server side is

represented by the nodes of the system i.e. each node in the system acts as a server on

which commands are executed.

Figure 4 : Cluster System Manager Architecture Overview

Client Overview
In a cluster management system, the cluster manager (that is the client side presenting the

user interface) should be capable of being loaded on any of the nodes in the cluster. The

node on which it is loaded still remains as a functional part of the cluster and therefore

commands which are invoked on all nodes will also be invoked on the cluster manager

node.



- 27 -

The cluster manager essentially accepts two inputs from the user of the system. The first

is the command that the user wants executed on the server node (plus any parameters to

the command) and the second is the list of nodes on which the command should be

executed. The system calls each node on the list of nodes and passes the specified

command to it. The cluster manager operates asynchronously, so it does not wait for the

command to execute before calling the next node on the list. As the nodes complete

execution of the command, they initiate a callback to the cluster manager to return the

response. The cluster manager takes the response and displays it on screen.

Communications Overview
The system uses Corba as its communication middleware. The user of the system chooses

which nodes a particular command is to execute on and the cluster manager connects to

these nodes and issues the command.

As mentioned, the cluster manager will operate asynchronously, i.e. it doesn’t wait for an

individual node to finish before invoking the command on another node. This improves

the overall functionality of the system at the cost of dealing with replies being slightly

more difficult. In single node command operation, or where the server node will reply

immediately, synchronous operation of the cluster manager might be more appropriate.

Certainly replies can be dealt with more efficiently.

On completion of their task, the nodes make a call back to the cluster manager, returning

the output of the command execution. The client implementation accepts the response

data from the node and displays it on the screen. In effect, this acts as a queuing

mechanism whereby the output of only a single node can be displayed at a time, which is

surely how output from a number of different sources should be displayed anyway.

Server Node Operation Overview
Each node in the cluster will run a cluster system management daemon, which can be

launched on node start-up. This daemon merely listens for connections from the cluster

manager through the CORBA interface. When a call from the cluster manager arrives, the

specified command is executed and a callback to the cluster manager is initiated.



- 28 -

Cluster Manager Detailed Design

As mentioned, the cluster manager design follows a client-server architecture. There are

three elements in this relationship:

• the client

• the server

• the client-server interface

A description of each of these elements is given below.

Client
The client side of the cluster manager system is that part of the system with which the

user interacts. This is done through a graphical user interface. Through this, the user

controls the system and issues command invocations to be run on the server nodes.

Extensibility and customisability are enshrined in the system through the use of a user

adaptable menus configuration file. Flexibility in command invocations is achieved using

a user defined variables configuration file. Easy scalability is incorporated in the system

by using a nodes configuration file in which new nodes can easily be added.

Client GUI
The requirement that the system be easy to use suggests the use of a graphical user

interface to interact with the user of the system.

GUI Design

The GUI consists of a frame upon which other components may be drawn. It offers a

menu driven interface through which the user can choose commands to be executed. The

menu is constructed through parsing the menus configuration file as described later.

The GUI proper will contain two distinct areas:

1. a panel, that contains a list of selectable buttons that designate server nodes. From this

the user can choose the nodes that are to participate in the execution of a particular

command.



- 29 -

2. a panel that is used to display the output from the execution of commands on server

nodes. In the most common case, two text areas will be visible on this panel, one on

which normal output is presented, the other being used to display error messages.

The most common case caters for the situation of a standard Unix command being

executed on the server nodes. Output from this command is plain text and can be

displayed on a text area component. However, the design of the GUI allows for easy

extensibility, so that other types of output can be displayed. For example if a statistics

program generated graphical output then the system should be flexible enough to deal

with this. To this end an API is provided to allow for the retrieval of the various display

components.  If a different form of output is required, the visible components can be

hidden and the alternative component displayed.

Menus Generation
To give the system manager as much control as possible over the type of command

selection facility offered by the system, a flexible implementation of menu generation has

been implemented. A menus configuration file, is used to generate the menus that appear

on the GUI screen. The client reads this configuration file on start-up. From this a system

of menus and submenus can be generated. Each entry in the configuration file appears on

a separate line and the meaning of each entry is shown in Table 1 below. Effectively this

makes the entire system very flexible by allowing new utilities or commands to be added

to the system without any reprogramming or recompiling.

Menu entry/ symbol Meaning

* The appearance of an asterisk denotes the start of a new

menu. Note that the start of the menus configuration file

implicitly assumes the presence of an asterisk, i.e. the first

entry is assumed to be the name of a menu.

menu name On the line after an asterisk, the name of the menu should

appear.

menu selection mnemonic The letter that can be used as keyboard shortcut to select



- 30 -

this menu.

menu item name After the menu name and menu selection mnemonic

appear the menu items that form the menu. Each menu

item consists of four entries beginning with the menu item

name. This is the name of the menu item as it is to appear

on the menu.

menu item mnemonic The letter that can be used as keyboard shortcut to select

this menu item.

command The command that is to be executed by the server. This is

blank if the menu command is implemented locally, for

example the Clear TextArea command. In this case the

command is implemented within the Java program.

parsing action The parsing action choices are explained more fully in the

Server section. Briefly, the following codes are used to

denote these actions:

PP  : execute a Perl [HREF13] script with defined parsing

NP : no script execution, return the output of the

command execution as a string

NPP : execute a Perl script with no parsing

GP: a generic parsing of the output of the command

execution

- A dash indicates that a separator should be placed in the

menu

# A hash symbol is used to denote a new submenu.

Following a hash the name of the submenu and its

mnemonic should follow.

Table 1: menus configuration file format

The use of a configuration file allows the system manager to tailor and extend the menus

GUI to the uses to which the system is being put. This in effect means that there are just 2

simple steps to extend the system to provide additional functionality:



- 31 -

1. make the command or utility available to users by adding it to the menus

configuration file

2. ensure that the command or utility is accessible from the server node

Flexibility through Variable Text Substitution
The flexibility of the system is further enhanced through the implementation of a variable

text substitution scheme. This scheme allows the user of the system to use a variable

which will be replaced with associated text. Checking for variable text substitution is

done at the following times:

i) on commands prior to their execution on server nodes.

ii) on file names prior to them being saved

iii) on the contents of files prior to their being saved

Two schemes are implemented for maximum flexibility and choice.

In the first scheme a simple direct variable substitution mechanism is used. In each of the

circumstances listed above, a search through the text of the command, file name or file

contents for the special variable $hostname is made. Each occurrence of it found is

replaced with the actual hostname of the server node on which the action is taking place.

So for example, the command "rm /dd/$hostname/file.txt" running on sever node

cagnode00 will be replaced by the command "rm /dd/cagnode00/file.txt" which is the

command that will be executed.

The previous scheme is merely a shortcut for what is probably a frequent substitution. In

the second scheme, a variables configuration file is used to allow flexible variable

substitution to be applied. The format of the file is the hostname of the server followed on

the next line(s) by a variable identifier and the text that is to be substituted into the

command, filename or file. The variable identifier is of the form $var-xxx where xxx is

replaced by any three letter identifier for the variable. If the text $var-xxx is found in a

command, file name or file, it is replaced with the associated text from the variables

configuration file.



- 32 -

The variables configuration file should be read on each command execution. So

effectively the configuration file can be amended between command executions so that

different textual substitutions can take place.

Scalability
One of the features of Linux based cluster systems is the ability to seamlessly increase

the number of nodes in the system. Consequently a cluster management system must also

be able to handle extra nodes being added to the system. This is accomplished in this

implementation through the use of a configuration file, which contains a list of all the

nodes that form the cluster. Note that this is not a list of all the active nodes in the cluster

but a list of all the nodes that may form the cluster at any time.

On client start-up, the client reads the nodes configuration file and uses this to draw part

of the GUI. A selectable list of nodes is placed on the main GUI screen from which the

user can choose which nodes are to participate in the execution of a command.

Client StartUp
On client startup, the client reads the list of nodes that form the cluster, from the nodes

configuration file. This list is used by the client to attempt to make contact with each of

the server nodes. It is a requirement of the system that all participating server nodes are

started prior to the client. The server nodes once started must store their ORB references

in a known location accessible by the client. ORBacus supports the storing of ORB

references in a shared file system or at a Web location. As the proposed solution does not

at this time incorporate a Web interface, it was decided to store ORB references in the

shared file system of the cluster. The client retrieves the reference and uses it as a basis to

assess whether a node is active or not. Once the client has built the list of nodes, it starts

building the client GUI.

Node selection

The user of the system should be able to execute commands on one, some or all nodes of

the cluster. The list of nodes that the client has built from the nodes configuration file is



- 33 -

used by the client GUI to offer a list of selectable nodes. From this the user can select

which nodes are to execute a particular command.

Command Execution
The system is designed to provide both a menu-driven system through which various

commands can be invoked and also an open specification using a dialog box through

which free format text can be entered allowing any command or utility to be invoked.

On the menu system, there will be certain commands that are implemented locally and do

not require a call to a server node. Otherwise when a command is chosen, either from the

menu system or by entering it in the dialog box, the system establishes which nodes have

been selected to execute this command.

A thread is spawned to handle communication and command invocation on all of the

selected server nodes. The thread invokes the command on each server implementation in

turn. It does not wait for a reply but continues on to the next server to invoke the

command. In that sense it operates asynchronously.

When the server has completed the execution of the command, it initiates a callback on

the client implementation. It passes the output of the command execution to the call. The

client displays this on its GUI. An extension to the original design is needed if the output

from the separate server nodes is to be compared. This revised design is shown in Figure

5 below.



- 34 -

Figure 5: Revised design to handle output comparison

In this revised design, the client still calls the server nodes and in turn, the servers make a

call back to the client implementation, on completion of the execution of the specified

command. This is the same as the original design. However, now the client

implementation stores the command output in a Holder class. A monitor thread can

retrieve it from this class for normal command output. When output comparison is

required, the output of the different servers in the holder class can be compared and

displayed only if a difference exists.

Configuration File Management
The system supports the editing and saving of text files. This feature is useful in that

changes to configuration files can easily be accomplished particularly with the flexibility

offered by the variable text substitution. Both the editing and saving commands, are

available as menu options.



- 35 -

Editing a file

When this option is selected, it begins the process of opening the file for display on the

GUI text area. This option represents a special case of command execution in that the

command should only be executed on one node, i.e. it is not suspected that the user might

want to edit more than one file simultaneously. Therefore the editing of files results in the

named file being opened on the local node only.  It is intended that the contents of the

text area be saved prior to editing. These can then be restored once the editing session is

complete.

When the option is selected, a dialog box is opened through which the user enters the

name of the file to be edited. If the file exists, it is opened and its contents are displayed

in the text area. The file does not remain open and changes are not interactively written to

the file.

Saving a file

This option can be selected at any time. The result of choosing this option is that the

contents of the text area of the client GUI are saved to the named file. This means that not

only can file edits be saved but also normal text area contents so log files of sessions can

be constructed. It is worth noting that though the ‘Edit File’ option is implemented

locally, this option is effected on all selected server nodes, that is, the file is saved in the

specified location on all selected nodes.

On choosing the option, a dialog box is displayed that requests the filename (including

pathname) under which the file is to be stored. The contents of the text area are saved to

the file.

Client - Server Interface
The client-server interface describes the interface between the cluster manager and the

nodes of the cluster. It outlines how communication occurs between them and what kind

of responses the nodes return to the cluster manager.



- 36 -

Communication between nodes & cluster manager
Communication between the cluster manager and nodes occurs using CORBA. It is

envisaged that each node in the cluster will run a cluster system management daemon,

which can be launched on node start-up. This daemon merely listens for connections

from the cluster manager through the CORBA interface. When a call from the cluster

manager arrives, the specified command is executed. The client thread does not wait for

the response from the server node. Instead the server initiates a callback to the client with

the output from the command execution. The list of nodes on which the command is to be

executed is selected through the cluster manager GUI.

Server
The server side of the cluster manager system is that part of the system that runs on each

node of the cluster as a daemon. The server implements a number of functions that the

client invokes. However the essence of the server can be summarised as a resource which

executes Unix commands and in most cases, formats the output of the command

execution for return to the client.

Command Execution Responses
Dependent on the command that is executed on a server node, the output that is produced

is potentially different. These different types of output have been classified into the

following broad categories of response in Table 2 below.

Type Explanation

Successful Status

Response

This category is for commands that have executed successfully

and from which there is no output, i.e. from a command line

invocation, successful execution would result in a return to the

command prompt. An example of this command is a successful

mount command, e.g. mount /export

Failure Status Response This is for commands that have generated an error in their

execution. The error is reported on STDERR.

Display only response This response will occur for commands whose result is a

display type output, for example the ls, or df commands.



- 37 -

Display type responses will require that the output form each

node is displayed one node at a time.

Display and Act

response

This is an enhancement to the Display type outlined above. In

this type, the response is parsed and selected elements of the

response can be chosen for further manipulation. As an

example, if the load module option is chosen off the cluster

manager GUI, this results in the modprobe –l command being

executed, and a list of the available modules that can be loaded

being displayed in a dialog box. From this list the user is able

to select the module to load by the insmod command.

No response expected This category of response is for programs or command

executions from which no response is needed or expected. This

feature allows other utilities to be incorporated into the system.

Table 2 : Output types from command executions

Command Execution
To manage each of the potential responses and to manipulate the output from commands

a high degree of flexibility is in-built into the system. This takes the form of an indication

from the client to the server implementation of the action that the server is to take. It is

envisaged that all command invocations will occur from within a Java runtime object.

The different types of action that the server can take and the client codes to achieve this

are described below.

• Execution of the command through a Perl script, with encoding of command output

by the Perl script, for subsequent parsing by the server node. Perl is an excellent tool

for text formatting and manipulation and is used to format or re-structure the output

of certain commands.

• Execution of the command through a Perl script, with no encoding of command

output but subsequent generic parsing. Generic parsing merely means that the parsing

is based on the fact that output from a lot of commands consists of columns and rows.

So it can be easily parsed using newlines and spaces as separators.



- 38 -

• Execution of the command through a Perl script, with no encoding of command

output and no parsing subsequently. This is for commands for which no script has

been written and for which generic parsing is unsuitable.

• Execution of the command directly through the Runtime object, with no encoding of

command output no parsing subsequently. Certain programs will not run within a Perl

script, for example other Perl scripts.

• Execution of the command directly through the Runtime object, with no output

returned to the client.

Indirectly, the user can choose which of these options is to be used through the use of the

menus configuration file. The fourth parameter to a menu item entry, consists of one of

the following coded character sequences, PP, GP, NP, NPP, NRP. Each of these are

explained in detail below.

PP

This encoding signals the server to execute the named Perl script with defined parsing.

The command output is parsed and returned to the server. The server parses the command

output and returns it to the client. Perl provides excellent text formatting abilities and is

used in this system to manipulate the output from the UNIX command that has been

executed. The alternative was to code the text formatting functions in Java, but Perl is

optimised for text manipulation and is a more efficient implementation. Furthermore, Perl

provides better manipulation of the standard and error input streams.

With all categories of response output, the result of Perl manipulation will be to return a

coded string to the server node that invoked it. Within the string body, individual

elements are separated by delimiters. On the server node the string is parsed once again

using these delimiters and then returned to the client. The reason the parsing is done on

the server nodes rather than the client is to facilitate scalability.



- 39 -

GP

Execute the command from within a Perl script with no manipulation. Command output

is returned to the server unparsed. Generic parsing of this takes place at this point and the

output is returned to the client.

Since the output of each command is unique, a separate Perl script to parse the output is

needed for each command. However the output of many Unix commands consists of

rows and columns. This kind of output can be generically parsed using newlines and

spaces as separators. Generic parsing works quite well for the output of many UNIX

commands whose output is inherently formatted this way.

NP

Execution of the command occurs through a Perl script but with no encoding or

manipulation of command output. Furthermore the string that is returned to the server

node is not parsed and is returned as is to the client.

NPP

The command is executed directly from within the Runtime object. The output of the

command execution is returned as an unformatted string to the client.

Error messages

For those commands executed through a Perl script, the error stream is captured and

redirected to the standard output stream. When an error occurs it is marked by the Perl

script by pre-pending the word “ERROR:” to the command output. The string returned to

the client begins with the word “ERROR:” which the client uses to direct the output onto

the text area used for error messages. The string also contains notification of which server

node generated the error and a copy of the original error message.



- 40 -

Modules
The potential of microkernels to provide greater performance has been described. Linux

simulates microkernel features through the use of dynamically loadable modules. Clearly

a cluster manager system must be able to manipulate this feature of the Linux operating

system. The system must be able to allow the user to easily load and unload modules and

this will be accomplished by providing GUI tools to facilitate this. The system should

provide facilities to view:

• loaded modules and loadable modules

• a list of loaded modules from which they can be selected to be unloaded

• a list of loadable modules from which they can be selected to be loaded

The manipulation of Linux modules in the system could be accomplished in a number

ways including:

• through the Java Native Interface interfacing directly with existing C code

• through a substantial re-write of existing C code into Java, retaining only direct

system calls

• through a Runtime object calling Unix commands directly

The design does not suggest which option should be used. Instead each option will be

investigated and the most suitable option for this system will be used.

Summary
The design of the cluster manger uses a client-server architecture. It includes features to

ensure extensibility, flexibility and scalability. These features include the use of

configuration files for menus generation, variable substitution and to represent the nodes

of the system. Extensibility and flexibility are also incorporated into the design through

the provision of an API for alternative component display and different command

execution mechanisms. The next chapter describes how these design features were

implemented and highlights any problems that were encountered during the

implementation.



- 41 -

Chapter 5     Implementation

Introduction
The Cluster Management System is designed to facilitate the administration of a cluster

of Linux machines. The design is based on a client-server architecture and incorporates

extensibility, flexibility and scalability. The implementation of the design is described

below. It details how the various design features were incorporated into the system.  The

client-server architecture - client, client-server interface, server  - is used as a basis under

which to describe the implementation. Initially the client GUI is described.

Client GUI
The implementation uses a graphical user interface to interact with the user of the system.

Java Swing components which are part of the Java Foundation Classes (JFC) and are

designed to supersede the AWT components of previous versions of the Java JDK, are

used to build the GUI. With release JDK1.1.7, the version under which the system is

developed, Swing is downloaded as a separately installable package. As and from

JDK1.2, it is included as a core element of the JDK.

Three classes are used to construct the GUI :

Interface class

eTest class

Borders class

The GUI uses a frame upon which other components are added. A menus configuration

file as described in the Design chapter is used to help build the menu bar. The

implementation of this design is described later. The rest of the frame consists of the

following components:

• a scrollable JPanel, that contains a list of selectable JCheckBoxes that designate

server nodes and from which the user can choose the nodes that they want to

participate in the execution of a particular command.

• a JPanel that contains a JSplitPane that in turn contains two scrollable JTextAreas.

The larger JTextArea is used to display output from the successful execution of



- 42 -

command. The second and smaller JTextArea is used to display error messages in

response to the unsuccessful execution of a command as shown in Figure 6 below:

Figure 6: Screenshot of the Cluster Manager Interface

The JFrame part of the GUI and the construction of the menu bar is implemented in the

Interface class. This class also implements the ActionListener for the menu commands.

The ActionListener specifies what action is to be taken by the system when a menu

command is chosen.

The eTest class constructs the other components of the GUI. This is a helper class that

helps to produce the client GUI. In fact most of the GUI is created in this class. The class

is a JPanel itself, created by extending JPanel and is instantiated by the Interface class.

The design of the eTest class allows for easy extensibility. The JPanel that contains the

two JTextAreas can be retrieved by any class through a call on the method getJP(). If a

different form of output is required, the JTextAreas can be hidden and the alternative



- 43 -

component displayed. For example if tree type output is to be displayed to allow file

system navigation, then a JTextArea is not the appropriate component upon which to

display it. Instead the text areas can be hidden and a tree output displayed.

The class provides methods through which a reference to any particular component can

be retrieved. This API provides in-built extensibility and allows the system to be easily

extended in the future. The methods are also used by other classes in the system that need

a reference to a GUI component. For example, a reference to the text areas is used by the

ExecThreads class to display output on them.

A Borders class is used to create and set borders for the components of the GUI. Two

classes are used to implement ItemListeners for the list of selectable nodes on the GUI.

The AllCheckListener class is implements an ItemListener for the JcheckBox used to

select or deselect all nodes. Class CheckBoxListener implements an ItemListener for the

JCheckBoxes of the individual nodes. Node selection is described in a later section.

Menus Generation
To make the system very extensible, a menus generation file is used to generate the

menus on the GUI. The configuration file, currently hard coded to be "menus.cfg", is

used to generate the menus that appear on the GUI screen. The client reads this

configuration file on start-up. From this a system of menus and submenus can be

generated. The design of the menus configuration file was explained in the Design

chapter. Each entry is made on a new line and each menu item consists of four separate

entries. A menu has two entries. This design was used in the implementation of the

system and an example of its use illustrates the simplicity, extensibility and flexibility of

the scheme.

The use of a configuration file allows the system manager to tailor and extend the menus

GUI to the uses to which the system is being put. This provides two simple steps to

extensibility:



- 44 -

i) make the command or utility available on the server nodes

ii) edit the menus configuration file and add the new menu item

Example

For example if network information relating to the routing table and interface table for

each node is routinely required. A new menu is easily added to the system to handle this.

Just edit the menus configuration file and add the following lines:

* // Start a new menu, denoted by an asterisk

Networks // Name the menu Networks

N // The keyboard shortcut

Routing Table // The name of the menu item that appears on the menu

R // The keyboard shortcut

netstat –r // The Unix command to be executed on the server node

GP // The parsing action to be taken

Interface Table // The name of the menu item that appears on the menu

I // The keyboard shortcut

netstat –I // The Unix command to be executed on the server node

GP // The parsing action to be taken

The parsing action suggested here is generic parsing. This should work quite well as the

output from these commands is in the form of columns of data for which generic parsing

is particularly effective. However if this formatting action degrades the display the

parsing action can be changed to NP for No parsing or a Perl script could be written to

format the output. In this case the parsing action would be PP for Perl parse.

Variable Text Substitution
The flexibility of the system is enhanced through the implementation of a text

substitution scheme. The design of this scheme is explained in the Design chapter. The

VariableParser class implements the variable substitution scheme. As implemented this

class is invoked to check the following instances for variable text substitution:



- 45 -

• command lines

• file names

• the contents of files

At execute time the variable is replaced by pre-defined text. The class merely loops

through the contents of the command string, filename string or file contents string

replacing occurrences of the special character sequences.

The variables configuration file, “variables.cfg”, is read on each occasion that the

VariablesParser class is instantiated. This occurs prior to command execution and file

saving. So effectively the configuration file can be amended between command

executions so that different textual substitutions can take place. No limit is set on the

number of variables that can be included in the variables configuration file to allow for

maximum flexibility.

As a simple example of the use of this scheme, consider the task of saving a “/etc/hosts”

file to each node in the cluster. An excerpt from a typical “/etc/hosts” file might appear as

something like:

…..

127.0.0.1       localhost       localhost.localdomain

134.226.72.150  cagnode00.cs.tcd.ie     cagnode00

134.226.72.150   enya.dsg.cs.tcd.ie      enya

….

where cagnode00 is the node on which this “hosts” file resides and enya is the NFS

server for the cluster. A similar “hosts” file is required on every node in the cluster.

Conventionally this would require the system administrator to remotely login to each

node and manually amend the hosts file on that node. However with this scheme, the task

is greatly simplified. Just edit the “variables.cfg” file. Only two entries are needed for

each node. The entries for cagnode01 are shown below:



- 46 -

cagnode01

$var-add = 134.226.72.151

$var-nam = cagnode01

Then edit the hosts file and enter the following.

127.0.0.1       localhost       localhost.localdomain

$var-add  $var-nam.cs.tcd.ie     $var-nam

134.226.72.150   enya.dsg.cs.tcd.ie      enya

Save this to each node in the cluster. Through variable substitution the variables in the

hosts file will be replaced with the correct information. This greatly simplifies the task

and is much quicker.

Scalability – nodes configuration file
To allow new nodes to be added to the cluster easily a nodes configuration file is used.

The nodes configuration file, “nodes.cfg”, contains a list of all the nodes that form the

cluster. Note that it is not a list of all the active nodes. The file is a static list of all the

nodes that may form the cluster at any time.

On client startup, the client reads the nodes into an array. This array is used by the client

to attempt to make contact with the server node. The array is also used by the client to

draw part of the GUI. The list of nodes is placed in a scrollable list of JcheckBoxes on the

main GUI screen from which the user can choose which nodes are to participate in the

execution of a command.

Client StartUp
To start the client, the class execClient is called. This builds the list of nodes that form the

cluster, from the nodes configuration file. The list is stored in an array that is used by the

client to attempt to make contact with each of the server nodes. It is a requirement of the

system that all participating server nodes are started prior to the client. The server nodes



- 47 -

once started, store their stringified ORB references in a known location in the shared file

system. The file in which the server stores its ORB reference is simply the server

hostname and a “.ref” extension. Therefore the client can use the array of node names to

search for an ORB reference for that node. If present, the client retrieves and destringifies

this reference. The execClient class then instantiates the Interface class with an array of

the orb references - one for each active server and a null entry for inactive servers - and

the array of server hostnames. There is a direct correlation between the two arrays. i.e.

the same index in both arrays refers to the same server node. The array of hostnames is

used by the eTest class to draw part of the GUI. The list of hosts is placed in a scrollable

list on the main GUI screen from which the user can choose which nodes are to

participate in the execution of a command. If the associated ORB reference in the orb

references array is null - presumably through the server being inactive - that server node

is marked as inoperable and its entry in the client GUI is disabled. Node selection and

command replication are explained below.

The Interface class instantiates the eTest class to help building the client GUI as

described previously.

Node selection
As explained above, the nodes array is used by the eTest class primarily for client GUI

construction. A second array of booleans, called selectedNodes, containing one entry for

each node is also constructed. Again there is a direct correlation between the two arrays.

Initially each entry in this array is set to true. A value of true for a node in the

selectedNodes array means that the command should be executed on that node.

Conversely a false value means that the command should not be executed on that node. If

the client has been unable to retrieve the ORB reference for a particular server node, then

the entry for that node in the GUI list is disabled and consequently the value of the

boolean in the selectedNodes array is ignored. The value for any server node in the

selectedNodes array is changed by selecting or deselecting its checkbox. When a

checkbox for a node is deselected, the selectedNodes value is set to false. It is set true

again when the checkbox is selected again.



- 48 -

Whenever a command is to be executed, the selectedNodes array is checked to see which

nodes are to participate in the execution of the command. Only those nodes whose entry

is set to true are called to execute the command. In Figure 7 below, in the list of server

nodes, only the nodes venus and dusty are enabled and both of these nodes are selected.

The same command is executed on each node, save for variable text substitution

potentially modifying the format as described previously.

Figure 7: Node selection

The ‘All nodes’ check box is essentially a toggle box, used to select or deselect all nodes.

It does not indicate whether all nodes should execute a particular command. This is only

determined through examining the selectedNodes array.



- 49 -

Command Execution
The client GUI facilitates two ways by which a command may be executed. It supports a

menu system through which various commands can be invoked. It also implements an

open specification through which any command can be called. Commands are entered in

a dialog box.

On the menu system, there are certain commands that are implemented locally and do not

require a call to a server node. For example the “Clear Text Area” command is

implemented locally on the client. Otherwise when a command is chosen, either from the

menu system or by entering it in the dialog box, the system checks the selectedNodes

array to see which nodes have been selected to execute this command.

For each node that is selected, a new type of Thread class is instantiated on the client, to

handle communication with and command invocation on, the server node. There are two

types of Thread class implemented on the client, ExecThreads & SaveThreads. Both are

responsible for invoking the server implementation and in most cases waiting for the

server reply.

Redesign
This is a departure from the original design, which had suggested callbacks for

communication of server replies to the client. However the vast majority of Unix

commands are catered for in this modified design. The use of callbacks is needed from

streaming output from commands such as ping and it is suggested in the Analysis section

of this thesis that callbacks be implemented as a future enhancement. This modified

design however represents a more efficient handling of calls that execute immediately

(which for the cluster manager tool represents the vast majority of commands). This was

noted in the original design.  Within the context of this project this new design supports

the vast majority of needed commands and a more realisable implementation within the

timeframe, at the expense of being able to handle streaming output. Figure 8 below shows

the modified design for communication between the client and server.



- 50 -

In this redesign, for each node that is selected, a thread is spawned on the client to handle

communication with and command invocation on, the server node. For most calls to the

server the thread waits until a reply has been received. When a reply has been received, it

is displayed on the client GUI. Normal responses are displayed in the main text area

while error messages are displayed in the error text area.

Figure 8 : Client –Server Communication Implementation

ExecThreads
The ExecThreads class is the most common Thread class that is instantiated. It takes as

constructor parameters, a string representing the command that is to be executed by the

server node and a string that represents the parsing action to be carried out. Using this

latter string allows fine tuning of the server response. Parameters for references to the

server’s ORB, the two GUI text areas and the hostname of the server are also passed to

the class via its constructor.



- 51 -

For each selected server node, a new ExecThread object is created to handle the call and

reply to/from that server. For most calls to the server the thread waits until a reply has

been received. It is blocking to that node in the sense that though further calls to that node

can be made, no replies will be displayed until the original thread has completed. The

execNoReply() call on the server does not expect a reply and is therefore non-blocking.

When a reply has been received, the class uses the invokeLater() method of the

SwingUtilities class to co-ordinate output from the various threads to the normal text area

assuming successful command execution and to the error text area assuming an error

message response from the server.

SwingUtilities invokeLater()
Using the invokeLater() method of the Swing utilities class effectively means that control

of the text areas is passed to the event-dispatching thread. The invokeLater() method can

be called from any thread and requests that the event-dispatching thread run certain code.

The code must be put in the run method of a Runnable object and the Runnable object is

then specified as the argument to invokeLater(). The event-dispatching thread then

schedules for the code to run. An example of using invokeLater() to put a message on

either of the text areas is given below:

Runnable paintGUI = new Runnable() {

                 public void run() {

                        if (reply.startsWith("ERROR"))

                                jte.append(reply+"\n\n");

                        else

                                jta.append(reply+"\n\n");

                 }  };

                SwingUtilities.invokeLater(paintGUI);

SaveThreads
The SaveThreads class is the second type of Thread class implemented by the system. Its

function is similar to that of the ExecThreads class but is used exclusively to create

and/or save text files. The text to be saved is taken directly from the text area of the client



- 52 -

GUI. For each selected server node, a new SaveThread object is created to handle the call

and reply to/from that server. The reply is merely an acknowledgement that the file has

been saved successfully or an error message in the case where the file has not been saved.

The class uses the invokeLater() method of the SwingUtilites class to co-ordinate output

from the various threads to the text area.

Configuration File Manipulation
Configuration file management or just plain text file manipulation is possible through the

editing and saving file options. The flexibility of these options is greatly enhanced

through variable text substitution as described previously. Both commands are available

as menu options.

‘Edit File’
This option is one of the few that is implemented locally in that no call is made to a

server node. Consequently the file is assumed to be local. If it is not an alternative way of

editing it is described in the ‘Cat File’ section below.

On choosing ‘Edit File’, the Interface class stores the contents of the GUI textarea in a

buffer. These can then be restored once the editing session is complete. A dialog box is

then opened through the instantiation of the EditDialog class. This dialog box allows the

user to enter the name of the file to be edited. The class also implements a

WindowListener, PropertyChangeListener and an ActionListener to control the dialog

box and detect when a filename has been input. When this happens, a check is done to

ensure that the file exists on the local file system. If it does not an error dialog box is

created. If the file does exist it is opened and its contents are displayed in the text area.

The borders of the text area are changed to indicate that the user is now in editing mode.

This is merely an exercise in cosmetics however as changes are not reflected back until

the ‘Save File’ option has been chosen.

‘Save File’
The ‘Save File’ option is selected after all changes to the file have been effected. It is

worth noting that though the ‘Edit File’ option is implemented locally, this option is



- 53 -

effected on all selected server nodes, that is, the file is saved in the specified location on

all selected nodes.

On choosing the option, a dialog box is displayed that requests the filename (including

pathname) under which the file is to be stored. If this ‘Save File’ is called while in an

editing session, then as a prompt the name of the file being edited is displayed in the

dialog box. As long as the filename entered is not zero length it is assumed to be valid at

this stage. Note though that invalid filenames will result in failure on the server nodes.

Now for each selected node in the selectedNodes array, a new SaveThread object is

created, which is used exclusively to create and/or save text files. The text to be saved is

taken directly from the text area of the client GUI and is passed as a parameter to the

SaveThread constructor along with the filename, references to the server node’s ORB and

references to the GUI text areas.  The reply from the server node is merely an

acknowledgement that the file has been saved successfully or an error message in the

case where the file has not been saved.

 ‘Cancel Edit’
The ‘Cancel Edit’ option is a related option that if chosen, as the name suggests, ends the

editing session and replaces the current text area contents with the contents of the text

area that were saved prior to editing. Since the file currently being edited, is not open, it

does not need to be closed.

‘Cat File’
For simplicity, when the ‘Edit file’ option is chosen the system searched only on the local

node for the specified file. Sometimes it may be necessary to edit a file that is not present

on the local node but is on one of the other server nodes. A way around this is to only

select the server node on which the file resides for command execution. Then issue the

command ‘cat filename’ on that node. This will result in the contents of the file being

displayed on the text area. Changes can be made as normal and the contents of the text

area saved back to file again.



- 54 -

Log Files
This facility is merely an extension of the file manipulation options described previously.

The ‘Save File’ option merely takes the current contents of the text area and saves them

in a file named by the user. No checking is done to see if an editing session is taking

place and therefore it is possible to use this feature to save the details of your current

session to a type of log file. This may be used subsequently to generate an executable

script.

Client – Server Interface
The cluster manager-server node interface describes the interface between the cluster

manager and the nodes of the cluster. It outlines how communication occurs between

them, how the cluster manager invokes the specified command on each of the designated

nodes and how the output from the execution of the command on the node is returned to

the cluster manager.

Communication between nodes & cluster manager
The list of nodes on which the command is to be executed is selected through the cluster

manager GUI. Communication between the cluster manager and nodes occurs using

CORBA. It is envisaged that each node in the cluster will run a cluster system

management daemon, which can be launched on node start-up. This daemon merely

listens for connections from the cluster manager through the CORBA interface. [Ideally,

there will also be a script to start up and closedown ORBs on all nodes as and when

needed.] Currently however, the server nodes must be manually started, though they then

remain operational until called to shut down.

When a call from the cluster manager arrives, the specified command is executed and the

client thread associated with that call, in most cases, waits for the response from the

server node. The exception to this rule is where no response is expected and the

command is merely executed on the server node.



- 55 -

Server
Each node in the cluster will run a cluster system management daemon, which can be

launched on node start up. This daemon merely listens for connections from the cluster

manager through the CORBA interface.

Server Operation
When a call from the client arrives, an attempt is made to execute the specified

command. The server currently supports different types of command execution that affect

the response that the client will receive. Indirectly, the user can choose which of these

options is to be used through the use of the menus configuration file. Recall that the

fourth parameter to a menu item entry, consisted of a coded character sequence that the

server interpreted to define what action to take. The implementation of these is explained

below.

PP - Perl Script
Execute a Perl script with defined parsing, command output is parsed and returned as an

encoded string to the Java Runtime object. On the server the string is parsed once again

and returned to the client as a serialized object of type DisplayClass.

Perl is used to manipulate the output from the UNIX command that has been executed.

With all categories of response output, the result of Perl manipulation will be to return a

coded string to the Runtime object on the server node that invoked it. For example, if the

response is a successful execution that results in no output from the UNIX command,

then the Perl script generates a response output of the form “Successful command

execution on server node xx”.

Within the string body, individual elements are separated by delimiters. The delimiter “|”

is used to separate individual column elements, while the delimiter “¬” is used to separate

columns. On the server node the string is parsed once again and returned to the client as a

serialized object of type DisplayClass. This class acts as holder class for the output from

command execution on the server nodes. It provides a number of set methods whereby

information from the server can be stored. The get methods of this class are used by the



- 56 -

client implementation to retrieve the information. Note the class implements the

Serializable interface as this class is first serialized to a byte array before being returned

to the client. The command output is stored in a 2-dimensional array. There is also a

header that is included for situations where the return from the server is empty.

As an example of this sequence, consider the output of the mount command on a server

node. The encoded command response from the Perl script following the execution of

this command on the server node might appear as shown below with individual column

elements separated by a “|” and rows by a “¬”.

/dev/hda2|none|/dev/hda8|/dev/hda6|/dev/hda3|/dev/hda7|none|automount(pid623)|automo

unt(pid635)|clare:/export/home1/fogartjd|//WILDE/FOGARTJD¬/|/proc|/export|/tmp|/usr|

/var|/dev/pts|/misc|/home|/home/fogartjd|/smb_mnt/wilde¬ext2|proc|ext2|ext2|ext2|ext2|de

vpts|autofs|autofs|nfs|smbfs

The server node parses this output and saves it to the DisplayClass. The client thread

responsible for communication with the server node, receives the serialized DisplayClass

object. It de-serializes the object and retrieves the command output information and

displays it on the text area in the form shown below in Figure 9:



- 57 -

Figure 9 : Output of the ‘mount’ command

GP - Generic Parsing
The command is executed within a Perl script with no manipulation. Command output is

returned to the Runtime object as an unparsed string. Generic parsing of the string takes

place at this point and the output is returned to the client as a serialized DisplayClass

object.

This mechanics of generic parsing are quite similar to those of the previous case.

However in this case, no encoding of the command output occurs in the Perl script. The

string is returned with no encoding to the Runtime object. This generically parses the

string using newlines and spaces as separators. Generic parsing works quite well for the

output of many UNIX commands whose output is inherently formatted this way. The

parsed elements of the string are stored in the DisplayClass which is returned to the client

for display.



- 58 -

NP - Perl but no parsing
Execute the command from within a Perl script, with no manipulation. Command output

is returned to the Runtime object as an unchanged, unformatted string. Furthermore the

string that is returned to the Runtime object is not parsed and is returned as is to the

client. The exception to this last statement occurs in the case of a successful status

response where the string is empty. In this case, a message to indicate the successful

execution of the command and the node on which the command executed, is included in

the string.

The reason both NP and GP are executed from within a Perl script is to allow easy

capture of the error stream. Attempting to do this from within the Runtime object can

result in blocking of either of the Input Streams, i.e. the normal InputStream or the Error

Stream, unless precautions are taken to avoid this.  These were considered overly

complex to be implemented at this stage. However certain programs cannot be invoked

from within a Perl script, e.g. another Perl script, and therefore NPP below caters for this.

NPP - No Perl, no parsing
No script execution occurs, the command is executed directly from within the Runtime

object. The output of the command execution is returned as an unformatted string to the

client except in the circumstances as outlined in the previous section i.e. in the case of a

successful status response where the string is empty.

NRP - No reply.
This is an additional code to the original design. It was needed once the use of callbacks

was not being implemented. In the revised design the calling thread would hang waiting

for a reply. In this scheme no reply is expected or waited for, from the execution of the

command. Execution of the command occurs directly through the Runtime object. This is

used for utilities, for example xosview, which do not return a reply to the cluster manager.

No message indicating success or otherwise of the command execution is returned to the

client.



- 59 -

Error messages
For those commands executed through a Perl script, the error stream is captured and

redirected to the standard output stream. When an error occurs it is marked by the Perl

script by pre-pending the word “ERROR:” to the command output. The string returned to

the client begins with the word “ERROR:” which the client uses to direct the output onto

the text area used for error messages. The string also contains notification of which server

node generated the error and a copy of the original error message.

Menus Implemented
The system facilitates easy manipulation of the menus displayed by the client GUI

through editing of the menus configuration file. As implemented the menus listed below

are displayed. Some of the options on these menus have already been explained in the

context of  the implementation of that feature of the system.

File
This menu has the following menu items:

• Edit File

• Cancel Edit

• Save File

• View mounted file systems

• Mount a file system

• Unmount a file system

• Exit Client

This last option unloads the client software and closes the client GUI. The servers remain

active.

System
Any node in the cluster can be shutdown, rebooted or have its server daemon shut down.

Shutdown server daemon

When a call to shut down a server daemon is made, again the first action taken is to check

the selectedNodes array to check on which nodes the command is to be executed. For



- 60 -

each node that is selected, a call is made to that server’s CORBA implementation to

deactivate the BOA_impl. The client also deletes the stringified ORB reference file that

the server and client use to communicate. This is necessary so that when the client is

restarted it does not use a reference to an ORB that is potentially out of date if the server

had not been restarted.

ShutDown / Reboot

Arbitrary nodes can be shutdown or rebooted.  Effectively this just means running the

UNIX shutdown or reboot command on the node. The effect of this, in terms of the

cluster manager system is to unload the server daemon, though the ORB reference is not

deleted. As mentioned previously, when the node reboots the server daemon does not

automatically restart but must be manually invoked. Furthermore the client does not

automatically detect the newly booted server as it checks for active servers only at the

start up of its own program. Hence for the client to be made aware of the rebooted server

node, it is necessary to reboot the client program also.

Modules
The manipulation of modules in the system could be accomplished in a number ways:

• through the Java Native Interface (JNI) interfacing directly with existing C code

• through a substantial re-write of existing C code into Java, retaining only direct

system calls

• through a Runtime object calling Unix commands directly

The JNI offers a set of standard interface functions through which JNI functions can be

called from native method code to do such things as access and manipulate Java objects,

release Java objects, create new objects, call Java methods, and so on. Also Java methods

can call various native methods implemented in C or C++.

This approach and the second option represented the initial research direction. A number

of “proof of concept” experiments were successfully conducted. However a point was

reached where further research in this direction would have represented further detailed



- 61 -

examination of Linux operating system configurability and precluded development of the

cluster administration tool.

In assessing which of the options to use within the cluster, it was concluded that the

UNIX commands that will be made available through the cluster management system are

tightly coded in well-written C and it is unlikely that making direct system calls will

significantly improve call times. Instead a runtime object is invoked to execute the UNIX

command on the target node. This option is also used with regard to managing modules

in the cluster.

Module Manipulation

Module manipulation in the system occurs in much the same way as execution of any

other UNIX commands. The module related commands available through the menu

interface of the system are:

• View loaded modules

• View loadable modules

• Load module

• Unload module

When the ‘View loaded modules’ option is chosen from the menu system, the UNIX

command lsmod is executed on each node that is selected in a manner similar to that

described previously in the Command Execution section. The ‘View loadable modules’

results in the UNIX command modprobe –l being executed.

For either of the two menu options, ‘Load module’ or ‘Unload module’ a special case

pertains, as two commands are executed on the selected servers.

‘Load Module’

This option results in the command modprobe –l being executed on all selected nodes.

The client gathers the replies from each of the server nodes which consists of a list of the

loadable modules on that server. From this it creates a unique list of modules that can be



- 62 -

loaded. [Note that the modules in this list are not necessarily loadable on every server. So

if a particular module is chosen it may fail to load on some servers but this is handled in

the code and results solely in an error message being displayed in the error text area. The

alternative is to have a unique list of modules loadable by every server but it was felt that

this scheme was too restrictive]. The list constructed by the client is shown in a dialog

box (see Figure 10 below) created by the ListDialog class. The user chooses the module

they want to load from this list and an attempt to load the module on each of the selected

server nodes is made.

Figure 10 : The Load Module list box

‘Unload module’

This option results in execution of the Perl script perlRmmodExec on each of the selected

nodes. This script executes the Unix command lsmod. The script then parses the output of

that command to return just a list of the modules loaded on that server. This list is

returned to the client, from which it creates a unique list of modules that can be unloaded.



- 63 -

[Note that the modules in this list cannot necessarily be unloaded on every server as the

module is not necessarily loaded on every server. So if a particular module is chosen it

may fail to unload on some servers but this is handled in the code and results solely in an

error message being displayed in the error text area. The alternative is to have a unique

list of loaded modules that can be unloaded by every server but it was felt that this

scheme was too restrictive.]. The list constructed by the client is shown in a dialog box

(see Figure 11 below) created by the ListDialog class.

Figure 11 : The UnLoad Module list box

The user chooses the module they want to unload from this list and an attempt to unload

the module on each of the selected server nodes is made.

The design of the ListDialog class means it can be used to display any list of selectable

items thereby enhancing the extensibility of the system.



- 64 -

System Statistics

The system uses the xosview package to capture system statistics. xosview is an

application originally developed for Linux that can be summarised as a graphical

performance meter. A sample screenshot of an xosview window that was invoked from

the Cluster Management system is shown in Figure 12. The choice of this package was

for illustrative purposes only. The design of the menus generation facility makes the

addition of any available utilities a trivial matter.

Figure 12 : The xosview utility

Implementation Problems
There were very few problems encountered during the implementation phase. The design

was followed closely and did not present any insurmountable nor persistent difficulties.

The main problem needed to be overcome during implementation appears to be a bug in

the Java Swing classes which manifests intermittently. The effect is total

unresponsiveness of all GUI components. The server nodes are unaffected. The only

solution is to cancel the client program and reload it.

Summary
The system uses Java Swing classes to implement the GUI. The design has by and large

been followed with the exception of callbacks and comparison of nodal output. Otherwise

the design was followed closely and it was not necessary to deviate from it. The next

chapter presents a review of the work carried out. An analysis of the system is given and

suggestions for possible future work to further extend the capabilities of the system are

elucidated.



- 65 -

Chapter 6     Analysis

Introduction
The previous chapter explained how the cluster management tool has been implemented.

This chapter presents an analysis of the cluster management tool. It assesses whether the

goals and requirements of the project have been met. The chapter also suggests what

future work might be carried out to extend and improve the system. But first a review of

the work that has been carried out is presented.

Review of Work
The realm of cluster computers is enjoying unprecedented popularity due to continued

reductions in price combined with increasing performance which has made them

affordable for many organisations that could not afford a traditional supercomputer.

Naturally, that they scale well facilitating incremental growth also endears them to

departments managing tight budgets.

Few software tools have been developed to administer Unix based clusters. The majority

of tools facilitate the management of the parallel nature of these systems i.e. load

balancing, parallel programming tools etc.  Windows NT based clusters have a number of

product offerings that offer administration tools.

This project addresses the lack of administration tools for Linux clusters which continues

to render the management particularly of large scale clusters more difficult. The goals of

the project were to design and implement an extensible system that would facilitate the

configuration and administration of a Linux cluster. Extensibility would allow new

commands to be easily added to the system. Also the system should easily accommodate

commands that return different types of output. Cluster systems are inherently scalable

and therefore the cluster administration tool should also scale well.

Analysis
The system is designed to facilitate the configuration and administration of a Linux

cluster. In the absence of an administration tool to present a single system image, the



- 66 -

common alternative is to remotely login to each node and effect the requisite

administrative tasks. This tool allows the administration and configuration of the entire

cluster from a single node. Administration of the cluster is simplified by way of

command replication across one, some or all nodes. Configuration of the cluster is made

possible through the use of a flexible, variables substitution scheme, which allows

common configuration files to reflect differences between nodes.

Goals
The main goals of the system were extensibility and scalability. These are analysed

below. Additionally the extent to which other features of the system - flexibility, ease of

use and portability – have been achieved is also examined.

Extensibility
The system is very extensible and exhibits such extensibility in a number of key areas.

Commands

Through the use of a menus configuration file the system is easily extended to include

additional commands. This is simply accomplished by the system user with no

reprogramming needed for the majority of commands. There are just two simple steps to

extend the system interface and functionality:

i) make a command available by adding it to the menus configuration file

ii)  ensure that the command or utility executable is accessible from the server node

GUI components

The standard GUI interface uses a panel with two text areas to display the textual output

from commands. However an API has been provided to allow these text areas to be

hidden and a different type of component displayed on the panel. The system thus

exhibits extensibility in supporting different types of display components. The value of

this extensible scheme is evident should the system be extended to support for example

statistics monitoring that uses a graphical output. The API would allow the new graphical

component to be easily added.



- 67 -

Scalability
Through the use of a configuration file for the nodes in the system, the system can scale

well. New nodes are easily added through a single entry in the nodes configuration file.

Ultimately however a problem is encountered in the logistical problem of trying to

display output from a large number of nodes on a small screen of finite size. A proposed

solution to this particular problem is presented in the future section below.

Scalability is also incorporated into the design of the system, through as much work as

possible being distributed to the server nodes. All parsing of command output is

conducted on the server side. Variable substitution is also effected on the server. This

design provides a very scalable solution. The minimal amount of work is devolved to the

client side, which merely dispatches command invocations to servers nodes and displays

the resultant output.

Flexibility
Flexibility is exhibited in the very tractable scheme of variable substitution. The

flexibility and scalability inherent in the design of this scheme makes configuration file

management possible across a large number of nodes. The primary part of the scheme

uses a variables configuration file that contains a list of variables, if needed, for each

node in the cluster.

Flexibility is also evident in the cluster manager tool through the mechanism by which

commands can be executed on the server nodes i.e. Perl scripts, generic parsing etc. This

mechanism is easily set by the system user, in the menus configuration file and allows the

system to gradually evolve. For example, a Perl script is not necessary to be able to add a

new command to the system.  It can be included in the system with one of the alternate

command execution options set. If a Perl script is subsequently developed for that

command, it is a trivial matter of altering the configuration file to reflect this.



- 68 -

Ease of use
The system uses the Java Swing classes to build the GUI that is presented to the user.

Consistent screen views make the system intuitively easy to use. Node selection is easily

achieved through a list of check boxes, so that it is readily apparent which nodes are

selected to participate in the execution of a command. Almost all options are accessible

through one or two clicks of the mouse button i.e the menus system retains a relatively

flat structure and does not descend to confusing depths. The design for extensibility

incorporates an API that ensures that new components retain the standard interface on the

GUI. A standard Panel is used as the top-level container on which all other components

should be drawn.

Portability
Through the use of Java and Corba the system is very portable and should work on all

types of Unix clusters. Indeed there is no reason why the system should not work on

more loosely connected classes of system such as distributed networks of computers.

Functional Requirements
The functional requirements of the system were:

Command replication across a number of nodes

The system allows easy selection of the nodes that are to participate in the execution of a

command, on the client GUI.

Variable substitution

A flexible, scalable scheme of variable substitution has been implemented. This feature

enhances the flexibility of other features of the system, particularly configuration file

management.

Module management

It was decided that module management was well facilitated through the use of UNIX

commands. Manipulating modules directly through the Java Native Interface would have

added little in terms of functionality but represented an alternative research direction.



- 69 -

Modules can be loaded and unloaded across the cluster through the menu system of the

administration tool.

Formatted output from some menu commands

Perl scripts are used to format the output from some menu commands. This is either used

for display on the client GUI or used to construct a list of selectable items from which the

user chooses an item.

Shutdown or reboot of nodes

One some or all nodes can be shutdown or rebooted. Also the server program can be

unloaded.

Comparison of nodal output

This facility was not implemented. The implementation of this feature was predicated on

the original design being followed whereby callbacks were used for communication

between server and client. This would allow the client to store the output of the server in

a holder class. When all servers had replied, the output from each could be compared and

only displayed if it differed from the others. This feature would enhance the scalability of

the server. As the number of servers grow, it is increasingly infeasible to display the

output from each on the cluster manager screen. It is suggested as a future work item that

this feature be implemented.

Comparison with other tools

SMILE CMS
In terms of functionality, both systems are quite similar. Both offer command replication

across a number of nodes and the ability to shutdown or reboot any nodes. The SMILE

package integrates system and performance monitoring whereas this tool outsources the

function and uses the xosview package.



- 70 -

The main perceived advantage of the SMILE package is that it provides a Web interface

and thus can be invoked on any computer with Web access. However it is intended that a

web interface be developed for this tool.

The use of Java and CORBA in this tool brings many advantages. It is very portable and

can be used on more loosely connected systems than a cluster. Java is extensively used on

the Web and this is of greater significance should a web interface be developed for this

tool. Java also promotes re-use and the design of this tool emphasises extensibility and

flexibility. New features are easily incorporated into the system. The system provides a

valuable framework upon which additional functionality can be added.

Despite repeated attempts, it was not possible to run the SMILE system. This would have

enabled a more thorough comparison of the two systems.

Future Work
The cluster manager provides a useful tool for the administration of Linux clusters.

However there are a number of significant enhancements that were not possible to

implement within the timeframe of this project.

Provide a web interface
Clearly the implementation of a web interface enhances the overall flexibility of the

system. Access to the system is possible from any system with web access. That the

system is written in Java will simplify this process.

Extend the menus framework
The menus configuration file makes the system very extensible, allowing new commands

to be easily added to the system without the need for re-programming or re-compiling.

However though this mechanism can deal with the majority of commands, re-

programming is needed for certain command types. For example those commands that

produce lists, such as ‘Load Module’ and in effect use two commands to execute fully –

one used to produce the list from which the user chooses an item and the second

command to take the appropriate action with the command taken. This type of command



- 71 -

will require some programming because the menus configuration file as implemented

cannot cater for this type of command.

Implement callbacks
The use of callbacks was in the original design and they are a required addition so that

the system can accommodate streaming output. It is anticipated that for streaming output,

only one server node will be active at a time. Additionally callbacks would provide a

more flexible implementation for dealing with the output from many nodes, where it is

desired that such output only be displayed if different from other nodes. It is anticipated

that the response from the callback would be stored in a buffer class. When all replies had

been received they could be compared for differences with each other. Only a single copy

of equivalent output is displayed.

Automatic on-line node checking
Currently the system only checks for active server nodes when the client is started.

Ideally the client should automatically check periodically to identify active server nodes.

Alternatively the user should be able to invoke a command to do this.

Build a dynamic Perl parser
Formatting of commands requires a new Perl script for each command as each command

produces a new type of output. To facilitate the overall customisability of the system by

the user of the system, a metadata file can be used to describe the generic output of each

command type. This obviates the need for a Perl script programmer and is in keeping

with the overall design philosophy of the system, such as a user configurable menus

configuration file.

Integrate with existing cluster tools
The cluster manager system certainly facilitates the administration of a Linux cluster.

However there are many other tasks that the administrator of such a cluster must perform

that are not available through this tool but exist as stand alone applications. Ideally all

these tools would be integrated into a single system through which the various functions

used to administer a cluster could be invoked.



- 72 -

Conclusions
The cluster manager is a first-step towards providing an integrated management tool for a

Linux cluster. As currently implemented the tool will facilitate the administration of a

cluster, providing facilities for command replication across multiple nodes and features to

facilitate configuration management across a cluster. Within the development timeframe

involved, much was achieved and the architectural groundwork for further development

has been laid.

Personal Achievements
This project represented on a personal level an opportunity to develop skills and

knowledge in the following areas:

Java in general and Java Swing & Java Native Interface in particular

operating system architectures and research in this area

CORBA

Linux

Without exception my skills in these areas are much improved.

Summary
This chapter presents an analysis of the cluster management tool. It reviews the work

carried out and assesses whether the goals and requirements of the project have been met.



- 73 -

Appendix 1     Linux Modules

Introduction
This Appendix explains the concept of Linux modules and how they are used. It includes

an depth examination of the part of the Linux kernel relating to module manipulation.

LINUX has a monolithic kernel. As of version 2.0 of LINUX for the Intel architecture,

the kernel consisted of around 470,000 lines of C code and 8000 lines of Assembler

[BEC98]. The assembler coding is principally used in emulating the maths co-processor,

booting the system and controlling the hardware. Of the C code, approximately only 5%

is concerned with what might be considered the core activities of the operating system in

a microkernel context i.e. process and memory management. The remainder implements

other aspects of the system such as file systems, device drivers and network drivers. As

discussed below, within this monolithic architecture LINUX does present many of the

desirable features of microkernel design in its flexibility and customisability. The feature

of the kernel design which facilitates this is loadable modules, which are object code that

can be dynamically loaded and integrated fully with the kernel at run time.

Linux Modules
Modules are object code that can be dynamically loaded/unloaded and integrated fully

with the kernel at run time. This means that the modules do not run as separate processes

and do not affect the monolithic nature of the kernel. Mostly they are device drivers,

pseudo-device drivers such as network drivers or files systems. The idea of loadable

modules is not unique to LINUX and also exists in other UNIX implementations such as

Solaris albeit in a different form [CAR98]. The functions modules export to the kernel

are added to its symbol table and it is through this that they are invoked. When a module

is loaded into the kernel, it runs with the same rights as the kernel and runs in system

mode.

Advantages
Small kernels can be built with other functions only being added as and when required

Easier to develop, test and debug modules



- 74 -

If  kernels that only differ slightly have to be built, it is much easier to build just one

kernel and accommodate differences through loadable modules.

There is a slight memory and performance penalty associated with kernel modules.

Loadable modules are slightly longer than if they were coded directly into the kernel and

this and the extra data structures take a little more memory. There is also a level of

indirection introduced that makes accesses of kernel resources slightly less efficient for

modules. However this not withstanding, the advantages outlined above point to

continued use of loadable modules.

Module Elements
Elements of the operating system that are available as modules include [GEL1]:

Most file systems: minix, xiafs, msdos, umsdos, sysv, isofs, hpsmbfs, nfs

mid-level SCSI support

most low-level SCSI support

all SCSI high-level drivers: disk, tape CDROM, generic

most ethernet drivers

most CDROM drivers

many miscellaneous modules, such as: line printer, elf loader, java loader, cdrom

interface, the serial interface.

Implementation

LINUX facilitates both manual and automatic loading of modules. The manual method is

rather cumbersome and therefore automatic loading is the normal method of choice. Also

it is possible to pass parameters to modules at load time.

Manual loading : Command line operation
Manual loading of modules can only be carried out by the super user, using the following

three commands:



- 75 -

insmod takes a module name as a parameter and loads the module

rmmod takes a module name as a parameter and unloads the module

lsmod displays the contents of the file /proc/modules which is essentially a list of

the loaded modules and the number of pages each module is consuming

(4k on Intel machines).

Automatic loading : kerneld
Automatic loading or on demand loading allows modules to be loaded as and when

required. They are also unloaded automatically when they are no longer needed. The

operations are carried out by a kernel daemon, kerneld, which runs as a normal user

process albeit with super user privileges. To install this feature, the CONFIG_KERNELD

option must be enabled during configuration of the kernel. Also System V IPCs must be

enabled when compilation is performed as the kernel and kerneld communicate using IPC

via a message queue.

Compiling the kernel
The kernel must be configured in such a way that it can manage modules. If the option:

Enable loadable module support (Config Modules) [Y/N] is not activated during the

configuration process, then it will not be possible to use loadable modules. Furthermore it

is necessary to identify in the configuration process any modules that are to be available

as loadable modules. Compiled modules are identified as file objects in the library

/lib/modules.

System calls specific to modules
LINUX provides three system calls for implementing modules: create_module,

init_module and delete_module. These system calls are used by loadable module handling

programs such as insmod. A further system call get_kernel_syms, is used by the user

process to get the kernel’s symbol table. The administration of modules in LINUX makes

use of a list, module_list, in which all of the modules that are loaded are included.



- 76 -

As far as the kernel is concerned, modules are loaded in two steps corresponding to the

system calls create_module and init_module. For the user process this divides into four

phases:

Firstly the object code for the module is loaded into the address space of the user process,

which resolves what references it can for relocating the module in kernel space.

The system call create_module is invoked to get the final address of the object module

and then to reserve memory in kernel space for it. This is accomplished by entering a

structure module in the list of modules and for which memory is allocated. The module

has a status of mod_uninitialized (i.e it cannot be used at the moment). The return value

gives the address to which the module will later be copied.

The general structure of the call is:

int create_module (char *module_name, unsigned long size)

The load address received by create_module is used to relocate the module. This still

occurs in the user process address space. Unresolved references can be solved using the

kernel symbols. The system call get_kernel_syms if passed NULL as a parameter returns

the size of the symbol table. Using this to reserve memory, the process can then reissue

the system call with other parameters to get the symbol table. This table must be updated

when a new module is loaded to identify the address of each of the module’s functions.

To achieve the greatest possible degree of flexibility, the modules themselves can add

symbols to the kernel’s symbol table. This allows modules to use the functions of a

module loaded earlier. This mechanism is known as module stacking. For example the

VFAT file system requires the services of the FAT file system module. All the symbols

exported by a module are collected in a separate symbol table.

The system call init_module is now called to move the module into kernel address space.

It puts the code passed as a parameter into the list of modules ( field addr which

corresponds to the memory space allocated by means of create_module). It is only after

this call that the module is usable. As its parameters it takes pointers to a structure

mod_routines and the modules symbol table. The modules administration functions are

entered in the mod_routines structure. The admnistration function init() is called now, to

initialise the module, while cleanup() is called when the module is de-installed to free up

resources.



- 77 -

The general structure of the call is:

int init_module (char *module_name, unsigned long size, unsigned

codesize, struct mod_routines *routines, struct

symbol_table *symtab)

The symbol table for the kernel is defined in the file kernel/ksyms.c. Each exported

function has an entry in the table symbol_table. The name of the function or variable in

each case is transferred to symbol_table by the macro X(). The kernels exported symbols

are kept in pairs containing the symbol’s name and its value, for example its address. The

kernel’s exported symbol table is held in the first module data structure in the list of

modules maintained by the kernel and pointed at by the module_list pointer. Not every

symbol in the kernel is exported to its modules.

Modules that have other modules dependent on them must maintain a list of references at

the end of their symbol table and pointed at by their module data structure. In this way

dependencies between modules can be used to prevent the untimely de-installation of a

module, i.e. one on which other modules depend. A further mechanism to prevent this is

the use of USE_COUNT, which is incremented every time a loaded module is opened

and decremented every time it is closed. To prevent modules ever being removed it is

possible to increment the USE_COUNT during the init() function.

The system call delete_module is used to unload modules. Two preconditions must exist

for this to work, there must be no references to the module and the modules

USE_COUNT must be zero. This call uses two functions: get_mod_name and

find_module which retrieve the name of the module and a pointer to the structure of the

module respectively. The call either unloads a single module if its name is specified, or if

none is, then it scans the whole list of modules and tries to unload each unused module in

turn.

After retrieving the name and the pointer to the module the state of the module is set to

MOD_DELETED. A call to the unloading function free_modules is then carried out. This

scans the list of all modules and deletes those whose state is MOD_DELETED. The



- 78 -

deletion of a module is performed in two stages. Firstly, if the references to the module

are used by other modules, a call to drop_refs is performed. This function re-orders

references between modules. Then free_modules deletes the table of symbols and erases

the module code. Before the module is released its cleanup() function is called which

releases any resources held by the module.

The general structure of the call is:

int delete_module (char *module_name)

The call get_kernel_syms can either return the number of symbols available in the kernel

or one of the symbols themselves. If the table passed as a parameter is NULL, the system

call will return the number of symbols that are actually available in the kernel. It does this

by scanning the list of loaded modules and counting the number of symbols associated

with each. This technique can be used to allocate memory space needed to create the

table receiving the data. If a valid kernel_sym structure is passed as a parameter to the

system call, all names and address of the different symbols contained in the loaded

modules are copied into the table. Note that only modules in the MOD_RUNNING state

are considered. The value field of kernel_sym contains the address in the kernel, of the

structure that describes the module.

The general form of the call is:

int get_kernel_syms (struct kernel_sym *table)

The kernel daemon
The kernel daemon, kerneld, is a user level process, albeit with super user privileges that

automatically loads and unloads modules without the user ever noticing it. When it is

started, usually at system boot time, it opens a shared message queue of type

IPC_KERNELD with the kernel, through which communication over IPC takes place

[RUSxx]. The functions described below rely on the function kerneld_send which is

coded in the file /ipc/msg.c. It puts messages on the message queue. Sending and

receiving of messages is performed by the functions real_msgend and real_msgrcv. The



- 79 -

data which moves through this message queue is expressed using the structure

kerneld_msg as shown below:

struct kerneld_msg {

long mtype; // contains the message.

long id; // indicates whether the kernel expects an answer

short version;

short pid; // holds the PID of the process that triggered the kernel request

char text[1];

};

Responsibility for loading and releasing modules lies with the functions:

request_module the kernel requests the loading of a module and waits until

the request is completed

release_module removes a module

delayed_release_module allows a module to be removed after a specified delay

cancel_release_module cancels the previous function

Dynamically loadable modules require two programs when they are installed:

depmod - enables a dependency file to be generated based on the symbols located

in the module group which is subsequently used by the second command.

modprobe - enables a module or group of modules to be loaded and also to load basic

modules needed for a smooth boot-up of the machine (e.g. NFS, etc).

The kernel daemon converts requests for loading and releasing modules into calls to

modprobe. This system program can assign the names of the modules to be loaded from

the generic requests. It already possesses the names of all the modules used in the LINUX

kernel, so that only new modules must be registered with an entry in the file

/etc/modules.conf or /etc/conf.modules.

Loaded modules are unloaded automatically after a certain period if they are no longer

being used. The default is set to 60 seconds but can be amended using the delay option.



- 80 -

Bibliography

[AND95] T. Anderson et al. (1995) A Case for Network of Workstations (NOW)
IEEE Micro, Feb, 1995.

[BAK95] M. Baker (1995) Cluster Computing Review
http://www.npac.syr.edu/techreports/hypertext/sccs-748/index.html

[BEC98] M. Beck et al. LINUX Kernel Internals, 2nd Ed., Addison-Wesley, 1998

[BRE97] E. Brewer. (1997) “Clustering Multiply and Conquer”. Data
Communications, July 1997.
http://www.data.com/tutorials/clustering.html

[CAR98] R. Card et al. The LINUX Kernel Book, Wiley & Sons Ltd., 1998

[CHO98] P. Chowdhry & H. Baltazar. (1998). “Extreme Linux is Potent but
Complex. Red Hat’s Beowulf based clustering gives PC’s awesome
power.”. PC Week, June 5, 1998.
http://www.zdnet.com/products/stories/reviews/0,4161,323718,00.html

[FIS97] G. Pfister (1997). In Search of Clusters, 2nd edition. Prentice-Hall.
ISBN 0-13-899709-8, page 72.

[GAR99] M.Garvey, M. Hayes, S. Johnston. “More nodes for Win Clusters”.
InformationWeek, March 29, 1999.
http://www.informationweek.com/727/nt.htm

[GEL1] J. Gelinas et al. modules.txt
http://metalab.unc.edu/navigator-bin.cgi?Documentation/modules.txt

[GRE97] D. Greenberg et al. (1997). “A System Software Architecture for High-
End Computing” In Proceedings of SuperComputing ’97. November 15 –
21, 1997. San Jose, USA.

[HAL99] D. Halstead, B. Bode, D. Turner, V. Lewis. (1999). “Giga-Plant Scalable
Cluster”, Usenix Conference, Monterey, CA. June 7-11, 1999.

[HOF1] F. Hoffman, W Hargrove, A. Schultz. ( ) The Stone SouperComputer
http://www.esd.ornl.gov/facilities/beowulf/

[POL99] T. Poletti. (1999) “Plugged In: Linux Showing Up in Supercomputers”.
http://www.eece.unm.edu/pages/plugged-in.html



- 81 -

[RID97] D. Ridge, D. Becker, P. Merkey, T. Sterling. (1997). “Beowulf:
Harnessing the Power of Parallelism in a Pile of PCs”. In Proceedings,
IEEE Aerospace Conference. 1997.

[RUL97] J. Ruley. (1997). “Wolfpack Alternatives”.
http://winweb.winmag.com/library/1997/0501/ntent024.htm

[RUS98] D. Rusling. The Linux Kernel
http://david.ghb.fh-furtwangen.de/LDP/tlk-0.8-2.html/tlk-toc.html

[SHA99] R. Shah. (1999). “Clustering for NT: Smooth scaling?”. Windows
Techedge, July 03, 1999
http://www.windowstechedge.com/wte/wte-1999-07/wte-07-clustering.html

[STE97] T. Sterling. (1997). “Pile of PCs: A Beowulf Perspective”. Pentium Pro
Workshop. April 10, 1997.

[STE98] T. Sterling, T. Cwik, D. Becker, J. Salmon, M. Warren, and B. Nitzberg.
(1998). An assessment of Beowulf-class computing for NASA
requirements: Initial findings from the first NASA workshop on Beowulf-
class clustered computing. In Proceedings, IEEE Aerospace Conference.
March 21-28, 1998, Aspen CO.

[STO97] H.Storner. Kerneld mini-HOWTO,
http://ameli.experiment.db.erau.edu/ldp/HOWTO/mini/Kerneld.html

[UTH98a] P. Uthayopas et al. (1998). “Building a Parallel Computer from Cheap
PCs: SMILE Cluster Experiences”, Proceedings of the Second Annual
National Symposium on Computational Science and Engineering,
Bangkok, Thailand, March 1998.

[UTH98b] P. Uthayopas et al. (1998). “Building a Resources Monitoring System for
SMILE Beowulf Cluster”, Proceedings of the High Performance
Computing Conference ASIA, Singapore, September 1998.

[WAR97a] M. Warren et al. (1997). “Parallel Supercomputing with Commodity
Components”. In Proceedings of the International Conference on Parallel
and Distributed Processing Techniques and Applications (PDPTA’97),
pages 1372-1381, June 30 - July 3, 1997, Monte Carlo Resort & Casino,
Las Vegas, USA.

[WAR97b] M. S. Warren, J. K. Salmon, D. J. Becker, M. P. Goda, T. Sterling, and G.
S. Winckelmans. “Pentium Pro inside: I. a treecode at 430 Gigaflops on
ASCI Red, II. Price/performance of $50/Mflop on Loki and Hyglac”. In
Supercomputing '97, Los Alamitos, 1997. IEEE Comp. Soc.



- 82 -

[WAR98] M. S. Warren, T. C. Germann, P.  S. Lomdahl, D. M. Beazley and J. K.
Salmon. (1998). “Avalon: An Alpha/Linux Cluster Achieves 10 Gflops for
$150k”. In Proceedings of SuperComputing ’98. Los Alamitos, USA.

[HREF1] IEEE Task Force on Cluster Computing, TFCC Newsletter. Volume 1.
No. 1. April, 1999.
http://www.eg.bucknell.edu/~hyde/tfcc/

[HREF2] Microsoft Research : Scalable Servers
http://www.research.microsoft.com/scalable

[HREF3] “Clustering vs SMP”. Data Communications.
http://www.data.com/tutorials/clustering_smp.html

[HREF4] Beowulf Project
http://www.beowulf.org

[HREF5] NCSA NT Cluster
http://www.ncsa.uiuc.edu/General/CC/ntcluster

 [HREF6] Microsoft NT SERVER Clustering Overview
http://www.microsoft.com/ntserver/ntserverenterprise/exec/overview/Clustering/Default.asp

[HREF7] “Introduction to Clusters”. SCL Cluster Cookbook.
http://www.scl.ameslab.gov/Projects/ClusterCookbook/index.html

[HREF8] High Performance Computing on Windows NT
http://www-csag.ucsd.edu/

[HREF9] Compaq Cluster Management Vision
http://www.compaq.com/solutions/enterprise/highavailability-clustermgmt-vision-art1.html

[HREF10] CORBA
http://www.omg.org

[HREF11] ORBacus
http://www.ooc.com/ob

[HREF12] Computer Architecture Group Cluster
http://www.cs.tcd.ie/Brian.Coghlan/cluster/index.html

[HREF13] Perl Practical Extraction and Language
http://www.perl.org

[HREF14] Blackdown JDK
http://www.blackdown.org

[HREF15] IEEE Scalable Coherent Interface
http://standards.ieee.org/catalog/bus.html


