
Real Time Implicit Bulging and Volume Preservation

Niall Linden, Hugh Reynolds, Carol O' Sullivan

Image Synthesis Group
Trinity College

Dublin 2
Republic of Ireland

{niall.linden,hugh.reynolds,carol.osullivan}@cs.tcd.ie

Abstract
Implicit Surfaces are particularly suitable for the animation of deformable objects, although some
problems still remain, especially in real time applications. One problem is that of volume loss
when objects are squashed. This paper presents a real time solution for the preservation of
volume using dynamic creation of primitives in two dimensions. We also look at the unwanted
blending problem and propose a more efficient solution.

Keywords: Implicit Surfaces, Volume Preservation, Unwanted Blending, Real Time Animation.

1 Introduction

As time has passed, and the power of computers
has increased dramatically, problems that could
only be solved off line are now becoming real time
issues. One such problem is that of animating
deformable objects. These are objects whose
topology can change over time and which can join
and separate.

The use of Implicit Surfaces provides an
elegant solution to these problems. The idea of
Implicit Surfaces has been around for over 15
years and was initially described as blobby
molecules [Blinn 1982]. This was soon followed by
metaballs [Nishimura et al 1985] and soft objects
[Wyvill et al 1986] although they now all come
under the broad category of Implicit Surfaces.
However this solution can lead to problems of
volume control during animation if one wishes to
represent non-compressible material. In this paper
we propose a solution to control volume loss and
address the issue of unwanted blending.

The paper is organised as follows: Section 2
gives an overview of Implicit Surfaces and
discusses previous work in relation to
polygonisation, volume control and animation;
Section 3 proposes a new method of preventing
volume loss during collisions and a new method of

keeping track of objects that have split or blended.
Section 4 presents the results achieved in a two
dimensional setting and finally section 5 reviews
the results and discusses future work and extension
to three dimensions.

2 Overview of Implicit Surfaces
In this section we will describe implicit surfaces
and review related work.

2.1 Implicit Surfaces

As with many computer techniques the idea of an
implicit surface is a very simple one, but with
many advantageous consequences for computer
modelling. An Implicit Surface can be defined as
all the points P:

0)(=− IsoPF
13:)(ℜ→ℜPF

where F(P) is the implicit function (scalar field
function), and Iso is the threshold value or Iso
value at which an Iso surface is extracted.

Each implicit function has an associated
primitive (e.g. a point or a line) around which it
acts. For a function to be defined as an implicit

function it needs to meet only one simple criterion.
It must be a decreasing continuous function.
Generally implicit functions have a value of 1 at a
distance r = 0 (where r is the distance from P to
the primitive) and a value of zero or approximately
zero at a predefined distance. Note also how F(P)
takes 3D space and returns a 1D value. This is why
it is sometimes referred to as the scalar field
function.

An interesting property of the implicit model is
that it allows us to consider a surface consisting of
m primitives by simply adding their scalar fields
[1] (fig. 1). This process is called blending and
defines a method for calculating overall field
values. We also consider a terminating value T at
which the field value is zero (radius of influence).
In our model, we have used [2] as our field
function due to its polynomial equation and
blending characteristics.

)()(
1

IsoPFPF i

m

i

−= ∑
=

 [1]

 0

 1
9

22

9

17

)(2

2

4

4

6

6

≥

≤+−+−
=

Tr

Tr
T

r

T

r

9T

4r
PF [2]

Figure 1 Two Primitives blending.

2.2 Surface Sampling and Seeds

One of the major drawbacks of implicit models is
the difficulty of visual representation. The implicit
representation provides a simple method for
inside/outside tests but is not easily rendered at
real time or even at interactive speeds. Most
methods for visualisation involve some sort of
spatial sampling technique (Fixed cell [Ning and
Bloomenthal 1993], Surface tracking [Wyvill et
al 1986] [Lorensen and Cline 1987] or Spatial
subdivision techniques [Bloomenthal 1988] [Karla
and Barr 1989] [Snyder 1992])

Other methods are particle based. In non-fixed
particle systems, particles are scattered throughout
space and then migrate to the implicit surface
using the function’s sign and direction gradient.
Once the particles reach the surface they repel
each other to produce a uniform sampling
distribution [Bloomenthal and Wyvill 1990] [de
Figueiredo et al 1992]. A birth and death scheme
balances the distribution and eliminates the
dependency of feedback terms [Witkin and
Heckbert 1994].

In fixed axis models [Desbrun and Gascuel
1994], particles or seeds are used. These seeds are
on fixed axes along which they migrate until they
reach the surface (fig. 2). Using the field function
we can determine the correct position by an inner
and outer value determined by the Iso value. The
value of the field can then be considered. If the
field is greater than the Iso value then we continue
to step out. When the value becomes less than the
Iso value, we stop the seed migration. This allows
seeds to move to the surface. Because in general
the surface does not undergo large differences from
frame to frame this allows us to have a good
approximation for the next instance.

Figure 2 Seed Migration

Desbrun et al [1995] ordered the seeds to produce
a set of polygons that fit the surface at run time.
Due to the nature of the fixed axis it is simply
necessary to run through the set of polygons to
display the surface at any time. The vertices of the
polygons simply correspond to the seed positions.
We have chosen this method for its real time
performance characteristics.

2.3 Seed Invalidation

When several primitives have blended together,
not all the seeds will be drawn (fig. 3). The process
by which we decide not to draw seeds is called
invalidation.

We invalidate a seed positioned at point P if the
field value Fi(P) generated by the primitive i is
smaller than another field contribution [3]. In
figure 3, we see how the seeds migrate, but if any
seed finds a field produced by another (blending)
primitive that exceeds the field due to its own
primitive then the seed is invalidated and the next

T
P Inner Outer

seed is considered. We will consider this further in
Section 3.

)()(| PFPFij ij >≠∃ [3]

Figure 3 Seed Invalidation

2.4 Animation

Although seeds may seem to be just another
method of surface representation, their strength
becomes apparent in animation. When two objects
collide we may wish them to blend or to form a
contact surface. Gascuel [1993] proposed a method
of producing piecewise contact. A negative
contraction field ci(P) caused by the colliding
object i is considered [4]. This value is than added
to the blending field. This has the effect of
reducing the field (as ci(P) < 0) and so the seed
will migrate towards the primitive centre. The
final field at point P is shown in [5].

ci (P) = Iso - Fj (P) [4]

∑∑
∈∈

+=
gContractini

ii
Blendingi

PcPFPF)()()([5]

)()()(PcPNPR ∝ [6]

We can extend this idea to one of compression
before blending by simply ensuring that a value of
c is exceeded before we decide that the objects are
to blend. This method can be readily used by seeds
in collision detection and its subsequent response.
We can use seeds to sample the surface and use the
contraction field as a metric for the force R(P) of
the response of the collision [Desbrun and Gascuel
1994] where N represents the normal at the point
P. Extending the idea to seeds we sum all the
reaction forces on the seed to produce a primitive
response vector.

3 Volume Control
In this section we discuss how volume may be
preserved. Controlling the volume of an object
during animation can often be very important, as
the eye can be quite keen at sensing volume
discrepancies.

3.1 Volume Preservation

In previous methods, attempts were made to keep
the volume constant under blending of more than
one primitive. In Desbrun et al [1995] local
volume variation was considered by creating
territories forming tetrahedral pyramids from the
seeds. These were then used to create a translation
that was combined with the field function to
reduce the field strength of the primitive reducing
volume. This idea was extended by changing the
Iso value [Gesquiere et al 1999]. However, one
problem is that neither of these methods produce a
global method for when volume is lost (fig. 4).
This is arguably a more visually unacceptable
occurrence than volume increase. A more ideal
solution to the eye would be one where squashing
would produce bulging giving rise to volume
preservation (fig. 5).

Figure 4 Volume Loss

Figure 5 Visually appealing squashing

Previous methods spread volume loss around the
entire primitive and do not localise the bulging to
the parts that are squashed. This does not cause the
desired affect. We also wish to keep the bulging
global, i.e. if another object hits a bulge it should
react to it.

It is obvious to see that bulging will occur
around the ends of parts that have been squashed.
We can easily identify those seeds that have been
squashed by considering the contraction field c on
the seed. If c is not zero we know that the seed has
been squashed. We can also surmise that the more
the object is squashed the larger the bulge will be.
To accommodate this, we introduce a metric for
volume loss. Simply considering the tetrahedral

volumes would not suffice. If we have an object
composed of many primitives we cannot say
exactly where a seed should be in terms of distance
from the primitive centre. We thus introduce the
concept of an equilibrium distance.

When we update the seed so that it is on the
surface, we consider its position relative to its
primitive if there is no contraction field c(P). We
remember this as its equilibrium position, i.e. the
position of the seed when no external forces are
acting on it. Then when the object collides and the
seed migrates towards the primitive centre, we can
use the difference between its equilibrium position
and its new position, d to approximate volume
loss [7].

∑
<∈

∝
0 c / sseedss

sdVol loss [7]

By having a polygon list created at run time, we
can easily determine that the bulging should
commence from the first seed that has polygon
neighbours squashed while it remains untouched.
It should be noted that both these pieces of
information come for “free” with the seed method,
as the information (in its raw form) is already
calculated.

3.2 Bulge Creation

Now we must consider how we can create a bulge.
In essence all that is required is something that can
create extra volume. We decided that dynamic
creation of small primitives positioned in the
correct place would produce such an effect. This
would have the effect of increasing the field
locally, producing effects such as in fig. 5, but
actually keeping the primitive information global.

The difficulty in this method is trying to place
a primitive of correct strength in the correct
position.
No method for inserting volume is obvious and the
following issues arise (fig. 6).

1 When volume loss occurs, a bulging
primitive must have a certain strength to
influence the surface.

2 As d increases, the amount of volume loss
increases. The difference between
subsequent volume losses also increases.

3 As bulging primitive strength increases, the
area it encompasses increases by a square
law.

Obviously a simple linear equation would not
suffice. It would need to have components of both
the primitive field function f(x) and the metric d. A
solution of the form [8] was used to produce a
visually acceptable result. This was a summation
of two principle criteria. If we place the bulge
primitive slightly away from the surface, we need a
certain strength to influence it. This is given by the

)(xFα component where scalarα is dependent on

the distance of the bulge primitive from the

surface. The βd term accounts for the volume
loss. Due to the non-linear relationship between
the volume loss metric d and actual volume loss a
power relationship was chosen.

βα dxf +)([8]

3.3 Inclusion of Bulge Primitive

Having created a small primitive of desired
strength we are now faced with the problem of
placing it in the correct place. Our first approach
was to calculate the position of the bulge for the
frame and insert it into the next frame. This meant
that the bulging was one frame out of time, but this
would not be a serious issue at real time frame
rates.

A problem arose with violent collisions. Not
knowing how the object was going to deform
meant that occasionally bulges were placed outside
the surface (fig 7). This would create primitives
outside that would cause further bulges, and the
system would degenerate into chaos (fig 8).
Therefore a two-pass system was required. This
involves first calculating the bulge positions, and
then recalculating seed positions in these deformed
areas. Thus at each step:

• We compute the seeds' positions and note
those that are squeezed (c < 0) and sum
the distances ds to produce a metric for
volume to be added.

• This is then distributed around seeds
whose neighbours are squeezed.

• Small primitives are inserted at the seeds
next to the last squeezed ones.

• Seed positions are recalculated in
important areas where bulging has
occurred.

Note the three
bulges all
outside and
squeezing the
 seeds.

Figure 7 Bulges incorrectly placed.

Lost
Volume

r

d

Figure 6 Volume Loss

Objects animated with this method can then
interact with rigid or other objects with apparent
volume preservation.

Figure 8 Bulges causing further bulges

3.4 Primitive Positioning

The positioning of the primitive can obviously
produce different results. One problem is that of
soft objects colliding. Due to the symmetric nature
of the contact, primitives will be created opposite
each other (fig. 9). One problem is that these
opposite bulges will have the effect of cancelling
each other out. This is hard to avoid, but by
moving the primitives away from the surface we
can keep some volume preservation. This is
achieved by placing the bulge primitive at a
fraction of the distance to the edge along the seed
axis. A bulge will occur slightly above the point of
contact, and then will taper off. But this bulge can
deceive the eye, especially in 3D. If we are looking
down, we will see the bulge but not the fact that it
tapers away towards the contact surface.

Figure 9 Opposite Bulging primitives

3.5 Unwanted Blending

The problem of unwanted blending has been
around since the creation of implicit surfaces.
Some objects may never blend (e.g. oil and water),

and some may blend only after contact and
compression (e.g. modelling clay). It is also
important in animation (e.g. the arms and legs of a
figure should not blend together but all the limbs
should blend with the torso joints). The situation
where objects split and fuse is particularly
problematic.

Wyvill and Wyvill [1989] discussed the idea of
a predefined blending graph, where only
primitives with a connection can blend.
Unfortunately this method will not work with
objects splitting and blending during an animation.
Desbrun and Gascuel [1995] proposed a method
using radii of influence. A dynamic influence
graph is created by considering transitive closure
of primitive field intersections. Primitives are
removed from the list when neighbours are no
longer in the same influence component. This may
lead to problems as the fields generally reach
considerably further than the surface. Hart et al
[1997] made the observation that any split or blend
would lead to change in critical points, which
could be used to detect topological change.

Our approach uses the idea of an influence
graph that can be used to keep the connectivity of
the primitive components of an object, but instead
of using the radius of influence we consider seed
invalidation (Section 2.2). As discussed, a seed is
invalidated when it encounters a field stronger
than the one from its own primitive. Thus when
primitive B invalidates a seed from primitive A we
receive the information that primitive A and B are
joined. We can use this information to trivially
construct a multi-primitive influence graph that
updates itself at every frame.

This method may be extended to many
primitives. If we have primitive A blending
(invalidating) with primitive B and we have
primitive B blending (invalidating) with primitive
C then a simple algorithm can tell us that A, B and
C form one single object. When an object splits,
its seeds are no longer invalidated by primitives
from the other object so new object detection is
done automatically. Fusion is handled similarly.
The main advantage is that this information has
already been calculated and is known when we
update the seeds position at each step. It is also
virtually cost free in terms of computation time.

4 Implementation and Results
Although at first the problems of unwanted
blending and volume preservation may have little
in common, the link becomes apparent when we
come to implement the system.

When we include the bulging primitives in the
system we associate them with their ‘parent’
primitive. Each bulge primitive is a global

This results in a
new bulge being
produced, but is
a considerable
distance form
the edge of
contact.

primitive in its own right (to ensure global
contact). However blending properties must be
consistent with their squashed parent. Thus we use
the parents influence graph when including a
bulge primitive in the system. This saves us having
to create and manage new graph connections at
every time frame.

4.1 Results of Volume Preservation

In our test to measure the volume preservation we
conducted a test of dropping a blob on the ground.
As volume measurement is difficult, Monte Carlo
methods were used. A box was placed around the
primitive and 20,000 points were sampled in the
box. Using a simple inside/outside test against the
Iso Value the results in figure 10 were obtained.
This ensured volume was kept within a 7%
tolerance of its original value.

Figure 10 Volume Results

4.2 System Results

The volume preservation method outlined above
was designed for use in real-time systems where
there is a trade off between accuracy and speed. To
test the system, we identified 3 variables.

• Number of primitives
• Volume preservation on or off
• Frequency of bulging

In all cases rendering time was not included in
timing results. We consider the cases of 4, 18 and

36 primitives. Each primitive is a simple point
system with 60 seeds distributed evenly around its
surface. The environment is a box of size 700x700
with the radius of each circular primitive being 40
units. There is also a funnel in the top left through
which the primitives can fall. We consider results
for 4, 18 and 36 primitives each with 3 cases for
frequency of collisions, low medium and high. In
the low case, objects are blendable and are spread
throughout the system. In the medium case, the
objects start above the funnel (with the exception
of 36 primitives where 18 start above and 18
below). In the high case, the primitives do not
blend with each other, start above the funnel and
collide constantly. Figure 11 shows the results of
the experiments. In each case we consider the
result as a % increase against the case of the
objects with no volume preservation. A point to
note is that in the medium cases the result drops
for more primitives. This is due to the fact that the
primitives form large objects and thus reduce the
number of bulge primitives that have to be added.
For single primitives colliding (as in the high
cases) processing time increases dramatically as
calculation of position, size and recalculation of
seed positions takes time.

5 Analysis and Future Work
This paper has presented a method for preserving
volume for use in real time animation. By using
the seeds to inform us where squashing has taken
place we dynamically create new primitives and
place them in the system. Although it works well
for contact with rigid bodies, problems still have to
be addressed in collision between two deformable
objects. The system is processor intensive,
especially for large number of primitives. This is
mainly due to the difficulty of exploiting coherency
from one frame to the next during violent
collisions. If one bulge primitive is placed
incorrectly the results can perpetuate. A future
development may be to try to differentiate between

0.9

1.1

0 1

fraction of radius displaced

fr
ac

tio
n

of
 v

ol
um

e

Figure 11 Processor Increase for Volumetric Bulging

0

90

low medium high
Frequency of Collisions

%
 P

ro
ce

ss
or

 In
cr

ea
se

4 Primitives

18 Primitives

36 Primitives

collisions that we can place a bulge primitive into
the next frame with certainty, and those which we
cannot be sure that the bulge primitive will lie
inside the surface on the next frame. Another
method may be that of back-tracking. Although
very useful in rigid bodies, this approach may
prove to cause much more processing time and
may lead to cyclic problems in deformable objects.

Currently work is underway to produce a 3D
model, which involves contact surfaces as opposed
to contact lines.

6 References

Blinn. J.(1982) A generalization of algebraic
surface drawing. ACM Transactions on
Graphics, 1(3):235-256.

Bloomenthal. J. (1988) Polygonisation of implicit
surfaces. Computer Aided Geometric Design,
5:341-355.

Bloomenthal J. and Wyvill. B (1990) Interactive
techniques for implicit modeling. Computer
Graphics, 24(2):109-116.

Desbrun M and Gascuel M-P (1994) Highly
deformable material for animation and
collision processing. In Fifth Eurographics
Workshop on Animation and Simulation, Oslo,
Norway, September 1994.

Desbrun M and Gascuel M-P (1995) Animating
soft substances with implicit surfaces.
Computer Graphics, 1995. Proceedings
SIGGRAPH'95.

Desbrun M, Tsingos N, and Gascuel M P (1995).
Adaptive sampling of implicit surfaces for
interactive modelling and animation. In
Implicit Surfaces'95, pages 171-186, Grenoble,
France, April 1995. Proceedings of the first
international workshop on Implicit Surfaces.

de Figueiredo L H ,de Miranda Gomez J,
Terzopoulos D, and Velho L. (1992)
Physically-based methods for polygonization of
implicit surfaces. In Graphics Interface'92,
pages 250-257, Vancouver, Canada, May 1992.

Gascuel M P (1993). An implicit formulation for
precise contact modelling between flexible
solids. Computer Graphics, 27:313-320, 1993.

Gesquiere G, Faudot D and Rigaudiere D. (1999)
Volume control of equipotential implicit
surfaces. Implicit Surfaces Workshop

Nishimura H, Hirai M, Kawai T, Kawata T,
Shirakawa I, and Omura K (1995). Object
modeling by distribution function and a method
of image generation. The Transactions of the
Institute of Electronics and Communication
Engineers of Japan, J68-D(4):718-725.

Ning P and Bloomenthal J. (1993) An evaluation
of implicit surface tilers. IEEE Computer
Graphics and Applications, 13(6):33-41.

Lorensen W and Cline H. (1987) Marching cubes:
a high resolution 3d surface construction
algorithm. Computer Graphics, 21(4):163-169,
July 1987. Proceedings of SIGGRAPH'87
(Anaheim, California, July 1987).

Karla D and Barr A H. (1989) Guaranteed
intersections with implicit surfaces. Computer
Graphics, 23(3):297-306.

Snyder J M. (1992) Interval analysis for computer
graphics. Computer Graphics, 26(2).
Proceedings SIGGRAPH'92

Witkin A and Heckbert P. (1994) Using particles
to sample and control implicit surfaces.
Proceedings of SIGGRAPH'94.

 Geoff Wyvill, Craig McPheeters, and Brian
Wyvill. Data structure for soft objects. The
Visual Computer, pages 227-234, August 1986

