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Abstract
Artificial Neural Networks (ANNs) are very popular as classification or regression
mechanisms in medical decision support systems despite the fact that they are unstable
predictors. This instability means that small changes in the training data used to build the
model (i.e. train the ANN) may result in very different models. A central implication of this is
that different sets of training data may produce models with very different generalisation
accuracies. In this paper we show in detail how this can happen in a prediction system for use
in In-Vitro Fertilisation. We argue that claims for the generalisation performance of ANNs
used in such a scenario should only be based on k-fold cross validation tests. We also show
how the accuracy of such a predictor can be improved by aggregating the output of several
predictors.

1. Introduction

Artificial Neural Networks (ANNs) are hugely popular in research on medical
decision support systems (see Baxt’s review of clinical applications of ANNs [2]).
This is despite significant practical problems with their application. A practical
problem that has come to prominence recently is that ANNs are unstable predictors.
That is to say that small changes in the training data set may produce very different
models [4][5][7] and consequently different performance on unseen data. Breiman
suggests that these different models may result from the training of the ANN getting
caught in different local minima in the error surface [5]. In this paper we show that
this instability means that estimations of the generalisation performance of an ANN
for a particular task may vary considerably depending on the training data used. We
argue that, because of this, estimations of the generalisation performance of a single
ANN should be based on a k-fold cross validation. Finally we describe how this
instability problem can be fixed by building an ensemble of ANNs and aggregating
the results of the networks in the ensemble to produce reliable predictions.

This paper begins with an overview of machine learning techniques in general and
neural networks in particular in the next section. In section 3 a detailed study of the
generalisation performance of an ANN for predicting outcome in In-Vitro
Fertilisation (IVF) treatment is presented. This study clearly shows how the instability
problem with ANNs results in high-variance estimates of generalisation error. The
paper concludes with a description of the ensemble solution and a demonstration of
how it improves performance in narrow domain medical fields like IVF treatment
outcome prediction.
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2. Learning from examples

The objective in using Machine Learning (ML) in medicine is to have the ML system
learn to model a relationship that is represented explicitly in a set of historic data. The
objective might be to learn the diagnosis associated with particular symptom
combinations or likely treatment outcomes in particular situations. These are
classification problems where the learning system learns to classify new examples
into outcome categories or diagnostic classes. Alternatively the objective may be a
regression task where the outcome to be predicted is a numeric value rather than a
category – e.g. predicating chemical concentrations or determining dosage levels.
There are many factors that influence the performance of such decision support
systems applied to medicine. They have been proven to work best in ‘narrow domain’
medical fields where the cognitive span is narrow, an abstraction is available and
hence prediction is amenable to structured queries [3]. Also the degree of
representation of the biological/physiological process of the disease or medical event
by those variables used in the machine learning algorithm influences the performance.

In any Machine Learning system the competence of the systems will improve with the
amount of training data available. This competence (or accuracy) will follow a
learning curve like that shown in Figure 1. Indeed the technical use of this term shares
much in common with the vernacular use. Up to a certain point additional training
data will produce appreciable increases in accuracy. However, beyond the knee point
in the graph additional data produces little increase in accuracy. At the knee point the
learning system has seen a useful cross section of data samples that represent a good
coverage of the problem domain.

While this knee point will be clearly evident in a study such as that described in [20]
it is very difficult to determine a priori the amount of training data that is required in
a particular problem domain to give good coverage. The amount of data required for
good coverage reflects the complexity of the input-output relationship being modelled
(e.g. symptoms & diagnoses), the predictivness of the input features and the amount
of noise in the data. All the nuances of straightforward problems may be represented
in less than 100 examples but more complex problems may require several hundred or
thousands of examples to provide good coverage.

Accuracy

Training Data

Knee point

Figure 1. A typical learning curve plotting accuracy against data – the ‘knee point’ indicates where
improvements in accuracy with increases in data starts to tail off (taken from [20]).
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It is usually the case in studies of the use of ML in medicine that training data is
scarce compared with the complexity of the problem being modelled. In that case the
learning process is operating to the left of the knee point shown in Figure 1.
Researchers often report that they expect the accuracy of their systems to increase
with more data. A particular problem in developing ML systems with relatively small
amounts of training data is that the training process may over-fit the training data. An
example of this involving a Neural Net is shown in Figure 2 (a plot of error rather
than accuracy). It can be seen that as the training of the network proceeds the error on
the training data continues to drop but after 200 epochs (200 presentations of all the
training data) the error on unseen test data starts to rise. After this point the network is
overfitting to peculiarities in the training data and is loosing generalisation accuracy.

The standard solution to this problem is to hold out some of the available data from
training and stop training when error on this validation set starts to rise. Unhappily,
overfitting is more of a problem when data is scarce and using precious data in a
validation set can ill be afforded. In situations where an abundance of training data is
available, all the details of the problem will be well represented in the training data
and overfitting is unlikely to be observed.
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Figure 2. This graph shows overfitting where error on unseen test data starts to rise after 200 epochs
while training error continues to fall.(this graph is taken from an unpublished ANN model of

physicians’ prescription quantities of a certain drug).

2.1 Learning in an ANN

Figure 3 shows the structure of a feedforward neural network; the problem description
is mapped to the input units (neurons) of the network and this input pattern is feed
forward to produce the appropriate output.

For a numeric input pattern ),...,,...,( 1 ni xxx=x

The activation on the jth unit in the hidden layer will be
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where f is the non-linear transfer function of the neuron – typically a sigmoid
function. ijv is a weight representing the strength of connection between input i and
hidden unit j. In turn the activation of the kth unit in the output layer will be
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In the diagram there is only one output unit.

The network will have been trained by presenting problem descriptions and known
outcomes to the network. The errors produced for the known outcomes will be used to
adjust the weights in the network to reduce the error. The training process involves
several thousands of weight adjustments until error reaches an acceptable level. The
details of the training process will not be presented here but are covered in detail in
[11] for instance.
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Figure 3. This diagram shows how a neural network may be used for decision support. When the
problem description s mapped to the input layer of the network the appropriate output (classification or

prediction) can be read from the output.

For a given network architecture (i.e. number of units in each layer) the actual model
of the decision making process that the network represents depends on the precise
values of the weights v and w. The training of the network is a search through this
weight-space to minimise error. Since the backpropagation training is a gradient
descent process it may get stuck in local minima in this weight-space. It is because of
this potential to get stuck in local minima that neural network models are unstable and
high variance.

3. Evaluating the performance of an ANN for IVF

In order to illustrate this instability problem with neural networks we will now present
an evaluation of a system for prediction of outcome in IVF. The details of this system
are described in [13] and only the evaluation of expected generalisation performance
will be described here. For the purposes of developing the model 1355 data samples
were available. Of these 290 represented successful outcomes while 1065 represented
negative outcomes. These samples were described by 28 input features and the single
outcome feature indicating success or failure. Of these 28 features 18 were numeric
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and the rest were symbolic. These features were all converted to a numeric form
resulting in 53 inputs for the neural network.

It was determined that, with the training regime used, the neural network started to
overfit after training for 250 epochs on average. In order to estimate generalisation
performance 10 networks were built using 1305 data samples and tested using 50 data
samples (25 positive and 25 negative). These produced the estimates of generalisation
accuracy shown in Table 1. The average accuracy was 59%; i.e. the network was able
to predict the outcome correctly for 59% of cases on average. However, because of
the instability of ANNs this value ranged from 46% to as high as 68% across the 10
trials. So if this estimation of generalisation error were only done on one partitioning
of the available data and we were lucky with the network we might be inclined to
report an accuracy of 68% rather than 59%.

Table 1. 10 fold estimates of generalisation accuracy for the task of predicting outcome in IVF

Accuracy Estimates (10 fold) Average Min Max Std. Dev.

46 56 60 68 50 60 66 66 60 58 59% 46% 68% 7

In fact this evaluation of the use of ANNs in medicine using one partitioning of the
training data (i.e. based on the performance of one network only) is quite common in
the research literature. Systems have been evaluated in; auditory brainstem response
analysis [21], in cancer screening [18], in trauma care [16], and in coronary risk
assessment [1] for instance. It seems clear that because of the high variance of these
estimates an evaluation on a single model is not adequate. If this model is retrained
with new data it may have quite a different generalisation accuracy.

This need to use k-fold cross validation in evaluating ANN performance has been
recognised by other researchers and applications using this methodology have been
reported. The work by Kukar et al. [14] on diagnosing isachaemic heart disease uses
10-fold cross validation as does the work by Ulbricht et al. on analysing
cardiotocograms [22]. Indeed Ulbricht et al. provide details of the range of
performance they observe across the 10 networks and that analysis supports the
findings presented here. Their set of 10 networks produces specificity figures (correct
positives) between 72% and 90% and accuracy figures between 71% and 76%. This
range of estimates of generalisation performance (particularly for specificity)
illustrates the problem of instability highlighted in this paper.

3.1. High Variance in ANN outputs

It is important to emphasise that these ranges of accuracy values arising from k-fold
cross-validation do not fully reflect the disagreement between the individual
networks. The fact that ANNs are high variance means that different networks
(differing in small changes in training data for instance) will produce different results
for individual test cases. Two networks tested on the same data may have similar
average accuracies but may disagree on several individual samples. This effect is
shown in the results of the simple experiment described in Table 2. Three pairs of
networks have been built and each pair has been tested on a test set of 25 positive and
25 negative examples. The pairs of networks were built using almost all of the
remaining data for training. The difference between the two was that a small amount
of data was left out in each case, i.e. each had 50 training samples that the other did
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not have. The first pair has accuracies of 56% and 62% resulting in a difference in
accuracy of 6%. However, behind this figure, these networks disagree on 22% of their
predictions. Similarly the next pairs disagree on 16% and 32% of their predictions.
This disagreement reflects the instability or high variance of individual networks.

Table 2. Three pairs of networks with each pair tested on the same data may have similar accuracies
but can disagree on several individual test samples.

Accuracy Disagree Accuracy Disagree Accuracy Disagree

1st Network 56% 60% 50%

2nd Network 62%

22%

56%

16%

62%

32%

The other point to note with these results is that the actual accuracy figures are very
poor. Ironically, the disagreement of individual networks is a key requirement for
improving performance by building an ensemble of networks and aggregating the
results of these nets to produce improved results. Breiman has shown [6] that for
unstable predictors, aggregating the output of several models will reduce variance and
give more accurate predictions. Evidently there is no advantage in aggregating the
results of a committee of experts if they all agree. In the final section of this paper an
ensemble solution to the IVF problem is presented. It is shown that accuracy is
increased significantly by aggregating the results of several networks.

4. The Ensemble Solution

Recently, ANN ensemble techniques have become very popular amongst neural
network practitioners in a variety of ANN application domains. There are many
different ensemble techniques, but the most popular include some elaboration of
bagging Breiman [5], Freund and Schairpe boosting [12] or Wolpert stacking [23].
When applied to ANNs, ensemble techniques can produce dramatic improvements in
generalisation performance -- see e.g. Carney and Cunningham [7] and Opitz and
Shavlik [17]. The underlying idea of all these techniques is to generate multiple
versions of a predictor, which when combined, will provide “smoother” more stable
predictions.

Bagging (an abreviation of “bootstrap aggregation”) is one of the most popular ANN
ensemble techniques. It uses the bootstrap Efron [10], a very popular statistical re-
sampling technique, to generate multiple training sets and networks for an ensemble
(see Figure 4 for an illustration of this). Although other ensemble techniques such as
boosting have been shown to out-perform bagging on some data-sets Opitz and
Shavlik [17], bagging has a number of key advantages when applied to real-world
tasks such as medical decision support. One of the most important is the ease with
which confidence intervals can be computed [8]. Another is the robustness and
stability of the technique itself -- Breiman showed that it will always perform at least
as well as an individual predictor, as long as the predictor is unstable [5].

In this section we repeat the experiments described in section 3.1 but use bagged
ANN ensembles instead of individual ANNs. If bagging stabilises the ANNs then this
should be reflected in how much disagreement there is amongst the ensembles on the
test data. The results are presented in table 3. Notice how there is significantly less
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disagreement amongst the ensembles compared to the individual ANNs in section 3.1.
Also, the stabilising effect of bagging significantly improves overall generalisation
performance.

Table 3. Three bagged ANN ensemble pairs with each pair tested on the same data.

Accuracy Disagree Accuracy Disagree Accuracy Disagree

1st Ensemble 61% 61% 53%

2nd Ensemble 64%

16%

63%

11%

69%

23%

Despite the attractive performance enhancing properties of ANN ensembles, there are
surprisingly few examples in the literature that highlight their potential application in
medical domains. An exception to this is the work of Lovell et al. [15], who applied
their own variety of ANN ensemble to a pregnancy risk prediction task. Their results
are also promising – their ensembles performed significantly better than individual
ANNs and logistic regression techniques.

A variety of algorithms have been proposed to optimise the generalisation
performance of ANN ensembles. In Carney and Cunningham [9] some important
points relating to this issue are discussed in depth. Also, an efficient and robust
technique for optimising the generalisation performance of bagged ANN ensembles is
proposed and evaluated. For a comprehensive overview of other popular ANN
ensemble techniques and issues related to training them effectively see Sharkey [19].
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Figure 4. A bagged ANN ensemble. The ensemble is built by using bootstrap re-sampling to generate
multiple training sets which are then used to train an ensemble of ANNs. The predictions generated by

each network are averaged to generate more stable bagged ANN ensemble predictions.
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5. Conclusions

This paper presents an overview of the instability problem with Artificial Neural
Networks (specifically feedforward ANNs trained using backpropagation of error –
these account for the vast majority of neural nets used in practise). This problem
probably stems from the gradient descent training process settling in local minima.
Different training conditions, such as small differences in training data or differences
in network parameters, will result in the network stopping at different points in the
weight space with resulting variations in performance.

One ramification of this is that estimations of generalisation performance based on a
single network tested on data held back from training will have high variance. In
section 3 it has been shown that another estimate based on a different partitioning of
training and test data may produce a very different result. Thus estimations of training
error should be based on k-fold cross validation testing.

A robust solution to this high variance problem is to build an ensemble of neural
networks and aggregate their outputs to produce a single prediction. This aggregated
output will have lower variance and higher accuracy provided there is disagreement
between the individual networks. If when “doctors differ patients die” the result from
an ensemble of ANNs will actually improve provided there is disagreement between
the networks.
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