
Abstract -- The Scalable Coherent Interface (SCI) is one of the
enabling interconnect technologies for high performance
computing on PC Clusters. Trinity College Dublin has
designed and is currently prototyping a trace instrument that
allows deep traces of SCI interconnect traffic.

Such an instrument is essential for a detailed spatial and
temporal analysis of parallel executed algorithms on loosely
coupled clusters. Currently, there are no commercial
instruments available that sample and store very deep (>>
10Mbyte) interconnect traces per target node.

The technology enables the non-intrusive monitoring of SCI
interface traffic. The primary observation of interface traffic
is accomplished through snooping on the Blink™ [3],
Dolphin’s implementation of the SCI IEEE standard [4]
transfer cloud. Snooping on SCI cable traffic, via SCILAB’s
SCITRAC [9], is also supported. The tracer’s configuration
consists of three modules, a trace probe, a deep trace memory
and a trace database. The database, which over time is
expected to represent the major investment, provides a
powerful means for a fine-grained analysis of a large quantity
of trace data. This paper describes the technical features of the
SCI trace instrument and outlines the tool’s potential for
further research and development activities.

Keywords -- SCI, Blink™ , Non-Intrusive Interconnect
Tracing, Trace Analysis, Trace Database

I. INTRODUCTION

This paper describes a trace instrument for SCI-based
systems. The instrument provides hardware designers and
software developers with a tool that allows a deeper
understanding of the temporal behaviour of their hardware
and software on any given target system. Unlike other
systems, e.g. see [6], this trace instrument is targeted to
commercially available interconnect hardware and therefore
provides the user with information about the true temporal
behaviour of clusters made up of standard components.

 This work has been supported by ESRIT project 25257 SCI
Europe

Figure 1. shows how the trace instrument’s hardware and
software components are related to each other during trace
data acquisition and a subsequent off-line data analysis.

Fig. 1. Trace data flow overview

The instrument is designed to fulfil the following main
objectives:

• Non-intrusive monitoring of SCI interconnect traffic
• Very deep (>> 10Mbyte) interconnect traces per node
• Acquisition of all the interconnect traffic
• Synchronous trace acquisition on multiple nodes

through a shared trigger mechanism
• Allowance for various probes to accommodate SCI

cable traffic and Blink traffic.
• Straightforward adaptation to various SCI interface

implementations.
• Trace data storage in commercial relational database
• Ability to analyse causal relationships in

synchronously acquired traces from different targets

The utilisation of a relational database provides the user
with an easy means to extend and to adapt the predefined
database queries to their specific needs.

Non-Intrusive Deep Tracing of SCI Interconnect
Traffic

Michael Manzke and Brian Coghlan
Computer Architecture Group
Trinity College Dublin, Ireland

{Michael.Manzke, Brian.Coghlan}@cs.tcd.ie

Fig. 2. Trace hardware overview including three possible trace targets

I. TRACE INSTRUMENT HARDWARE

The hardware of the trace instrument [1] comprises of a
portable PC, two deep trace memory boards, two probe
adapters [2] and two trace probes (see Fig. 2.).

A. Trace Probes
Blink traces from Dolphin’s SCI-PCI bridge can be
acquired via a probe card supplied by Dolphin that attaches
to their SCI interface cards via elastomeric connectors. This
card breaks out the Blink signals to a number of connectors
that will accept cables for a HP16500 series logic analyser
(see Fig. 2, Option 1). The same pin-out and connectors are
used in a proprietary avionics SCI-PCI Bridge
implementation (see Fig. 2, Option 2). Furthermore
SCILAB’s SCITRAC cable tracer provides broadly similar
connectivity (see Fig. 2, Option 3).

Fig. 3. Trace probe block diagram

The instrument requires two trace probes [2] that attach to
the trace target via HP16500 series compatible cables and
are synchronised by an inter-probe cable. Each trace probe
attaches to 48bits of the 96bit-sample data path. A block
diagram for a trace probe is shown in Figure 3. The trace
probe multiplexes the trace samples onto LVDS cables,
which connect the probes to the trace instrument’s adapter
cards. They allow a maximum sample rate of 66 MHz, and
consequently they are suitable for LC2 applications. The
Mach445 PAL can be used as a test pattern generator,
deriving its clock from a local crystal oscillator. The PAL
can further be employed to match input patterns.

B. Probe Adapter
The probe adapters demultiplex the trace probes’ LVDS
signals. Each adapter attaches to one of the deep trace
memory boards and provides the memory board with 48bits
of a 96bit data path.

Fig. 4. Probe adapter block diagram

C. Trace Memory Boards
The deep trace memory boards are inserted into the PC’s
EISA slots. Each trace board contains 12 Mbytes of dual
ported VRAM; one port receives trace data from the probe
adapter while the second connects the trace memory to the
EISA I/O bus of the trace instrument.

Fig. 5. Trace memory board block diagram

The first trace board inserts absolute time stamps following
each packet into the trace memory while the second board
inserts relative time stamps.

D. Control software
The trace board’s operation is controlled by a suite of
driver, API and GUI application software through the EISA
bus (see Fig. 6.). The trace tool API may be employed by
the user to adapt the instrument to their specific needs.

Fig. 6. Trace instrument control GUI

The trace boards implement a trigger and filter mechanism
via additional SRAM that is used to store associative match
patterns (see Fig. 5). Both boards are interconnected to
enable triggering over the full 96-bit sample width.
Furthermore, it is intended that a number of instruments
could be interconnected for a synchronised trace data
acquisition on two or more target nodes. The trigger

mechanism provides four level triggering. The filter and
trigger patterns are configured through the instrument’s
API. A trigger and filter GUI implementation is shown in
Fig.7.

Fig. 7. Trace instrument trigger and filter GUI

A view of the trace board memory contents is provided
through the instrument’s control software (see Fig. 8.).

Fig. 8. Trace memory viewer

II. TRACE DATABASE

The trace instrument employs a relational database to store
and analyse trace data [2]. The trace database is designed to
accommodate all SCI packet types encountered on SCI
cable links and Blinks. The following packet classification
satisfies the Blink specification [3] and the SCI IEEE
standard [4]. This categorisation is used for the decoding,
the trace database storage and the retrieval of SCI and Blink
packets.

A. SCI cable links
Type 1 Request-send-packet with extended

header and 0 byte data
Type 2 Request-send-packet with extended

header and 16 byte data

Type 3 Request-send-packet with extended
header and 64 byte data

?
?
?

Type 17 Response-send-packet with 256 byte data
Type 18 Response-echo-packet
Type 19 Idle Symbols
Type 20 Sync packets

B. Blinks
Type 21 Encapsulated request-send-packet with

extended header and 0 byte data
Type 22 Encapsulated request-send-packet with

extended header and 16 byte data
Type 23 Encapsulated request-send-packet with

extended header and 64 byte data
?
?
?

Type 34 Encapsulated response-send-packet with
16 byte data

Type 35 Encapsulated response-send-packet with
64 byte data

Type 36 Encapsulated response-send-packet with
56 byte data

Subsequent to a trace acquisition the instrument’s control
software writes the trace memory contents into two trace
files. A Java decoding application reads the trace-data from
those trace files and reunites the two 48bit fractions into a
full 96bit-sample.

Fig. 9. Trace data flow from Blink into DB-table-files

The software also detects the packet types as categorised
above and decodes the packets. The trace database is
broken up into a number of tables to accommodate the
various types of SCI packets. The database design provides
space-optimised storage. The decoded SCI-packets are
written into trace-database-table-files according to their
packet type specification. These trace-database-table-files

are used for a subsequent bulk import into the trace
database.

Each trace-database-table-file is associated with a table in
the trace database. The file format reflects the database
table design to accommodate bulk imports. Figure 9
demonstrates how trace data flows from a target node’s
Blink into the trace-database-table-files. Figure 10 gives an
example of how a specific packet type, in this case a
Response-send-packet with 64 bytes data - Type 16, is distributed
into the appropriate trace-database-table-files.

Fig. 10. Packet trace database distribution

A Trace-ID and a Packet-ID uniquely identify every SCI
packet in every trace. Every trace-data-table contains these
two IDs as primary keys. A main table is shared by all
packets and contains a packet-type-ID but all packets
occupy only a subset of the available tables. Figure 11
shows the relations between the trace database tables.

Fig. 11. Trace database relations

The fields in the trace-database table exhaustively
enumerate SCI-packet information, preserving the
maximum level of detail, e.g. targetID, command type,
sourceID, etc. This allows for very detailed queries, e.g. all
request-send packets with targetId = X, sourceId = Y and

addressOffset between A and B. It is expected that an
extensive query set will be accumulated as time goes by,
some within specialised GUIs.

The user may give meaningful interpretation to trace data
fields through the implementation of additional tables and
additional one-to-many relations.

The design allows the analysis of subsets of the packet’s
data while maintaining a relation to the full packet
information e.g. a query result-set is easily associated with
the full packet information.

C. Trace database Performance
A preliminary investigation has shown that direct SQL
insertions of individual packets subsequent to the packet’s
decoding are too expensive. The estimated execution time
exceeds 1 hour for a full trace while a bulk import into the
trace instrument’s MS Access database can be achieved in
less than 10 minutes. MS SQL-Server imports are expected
to be even less time consuming.

The following SQL-query reconstructs a specific Type 1
Request-send-packet with extended header and 0 bytes
data. The packet has a TraceID = 3 and a PacketID = 40200
and is retrieved from a trace database with 100,000 packets.
The query must retrieve 39 fields in 6 tables in order to
reassemble this packet and it’s associated trace information.
CREATE PROCEDURE [SCI_Packet_Type_01] AS SELECT
 SCI_Packets.TraceId,
 SCI_Packets.PacketId,
 SCI_Packets.Packet_Type_Id,
 SCI_Packet_Type_Id.Packet_Type_Description,
 ··· (place holder 33 fields in 6 tables)
 SCI_Packets.relative_Time_2,
 SCI_Packets.relative_Time_3
FROM SCI_Packets
 INNER JOIN SCI_FlowControl ON
 SCI_Packets.TraceId = SCI_FlowControl.TraceId AND
 SCI_Packets.PacketId = SCI_FlowControl.PacketId
 INNER JOIN SCI_Cmd ON
 SCI_Packets.TraceId = SCI_Cmd.TraceId AND
 SCI_Packets.PacketId = SCI_Cmd.PacketId
 INNER JOIN SCI_Control ON
 SCI_Packets.TraceId = SCI_Control.TraceId AND
 SCI_Packets.PacketId = SCI_Control.PacketId
 INNER JOIN SCI_AddressOffset ON
 SCI_Packets.TraceId = SCI_AddressOffset.TraceId AND
 SCI_Packets.PacketId = SCI_AddressOffset.PacketId
 INNER JOIN SCI_Extended ON
 SCI_Packets.TraceId = SCI_Extended.TraceId AND
 SCI_Packets.PacketId = SCI_Extended.PacketId
 INNER JOIN SCI_Trace_Information ON
 SCI_Packets.TraceId = SCI_Trace_Information.TraceId
 INNER JOIN SCI_Packet_Type_Id ON
 SCI_Packets.Packet_Type_Id = SCI_Packet_Type_Id.Packet_Type_Id
WHERE (SCI_Packets.TraceId = 3) AND
 (SCI_Packets.PacketId = 40200)

The query was executed using a Microsoft SQL-Server 7.0
on a 450 MHz Intel Pentium II with 128 MB memory and
required less than 1second. The same query into an MS
Access database requires about 15 seconds.

These preliminary results indicate that a Microsoft SQL-
Server is a suitable database engine for a Packet Viewer
(see Fig. 13 for an example of a packet viewer applet).

III. TRACE DATA PRESENTATION AND ANALYSIS

The primary trace data acquisition, the decoding and the
trace bulk import are associated with the trace instrument
itself. But trace data will in all likelihood be transferred to a
remote note for performance and accessibility reasons.
Figure 12 provides a system overview. Trace data is easily
transferred from one trace database to another. A remote
node hosts a web server and a Java trace database server.
Client nodes may load trace viewer and analysis applets
into their web browser. The trace instrument can behave as
a client in this scenario. The applet establishes a socket
connection to the trace database server.

Fig. 12. Trace system software

A. Java Trace Database Server
The Java database server creates a new thread for every
connecting client, thereby allowing concurrent access from
multiple clients. The client applet initiates the server to
connect to a particular trace database either on the local
node or a remote node. The Java server establishes the trace
database connection through an ODBC server. The trace
database server holds a set of prepared SQL statements. A
client may invoke a specific prepared SQL statements and
forward parameters to the server. The server then invokes
the statement with the inserted client parameters and returns
the query result-set to the applet.

B. Java Packet Viewer Applet

Figure 13 shows a SCI packet viewer applet. The user
provides the applet with a TraceID and PacketID. The
software then initially queries the packet type and adjusts
its layout accordingly. A subsequent type-specific query for
the full set of trace-data provides the applet with the
required data.

Fig. 13. Java Packet Viewer

IV. CONCLUSION AND FURTHER WORK

This trace instrument provides a non-intrusive method of
measuring SCI interconnect traffic and consequently will
not influence the temporal behaviour of the system. It will
enable researchers and developers to analyse the true
temporal behaviour of clusters made up of standard
components.

The employment of a relational database for trace-data
storage provides the user with well understood and easy-to-
use tools to extend and to adapt the predefined database
queries to their specific needs. The use of Java and SQL
makes the software platform independent.

The prototype will be enhanced through the implementation
of important methods for the analysis and visualisation of
the dynamic behaviour of parallel processes [10]. It is
proposed to employ time state diagrams (gantt charts) and
causality diagrams (hasse diagrams).

The instrument will be evaluated on a proprietary SCI-PCI
Bridge avionics implementation within the scope of the
SCIEurope project [8].

Further, the instrument will be employed in the evaluation
of Infineon’s [5] 75 metre parallel optical SCI links [7].

The instrument is a vital tool for the validation of global
state estimation algorithms. In this context Trinity’s
research interest is aimed at the runtime optimisation of
DSM systems.

REFERENCES

[1] Coghlan, B.A., Manzke, M., Barnstedt, E., Cunniffe, R., Dukes,
J., Deep Trace DT200.1, Prototype Tracer, technical manual,
http://www.cs.tcd.ie/Brian.Coghlan/scieuro/scieuro.htm, Esprit
Project 25257, SCI Europe, Work package, Trinity College
Dublin, 1998

[2] Coghlan, B.A., Manzke, M., Prototype Trace Probe and
Probe Adapter and Prototype Tracer Software,
http://www.cs.tcd.ie/Brian.Coghlan/scieuro/scieuro.htm, Esprit

Project 25257, SCI Europe, Deliverables, Trinity College
Dublin, 1999

[3] Dolphin: A Backside Link (Blink™) for Scalable Coherent
Interface (SCI) nodes, Draft 2.41, 1996

[4] IEEE 1596, IEEE Standard for Scalable Coherent Interface
(SCI), IEEE Std 1596-1992, IEEE Computer Society,
Aug.1993.

[5] Infineon Technologies AG,
http://www.infineon.com/fiberoptics/, 1999.

[6] Karl, W., Leberecht, M., Ein Monitorkonzept für Systeme mit
verteiltem gemeinsamen Speichern, ARCS'97: Architektur
von Rechensystemen, Sept. 1997.

[7] PAROLI, Parallel Optical Links,
http://www.infineon.com/products/37/37671.htm, 1999

[8] SCIEurope, Esprit Project 25257,
http://www.oslo.sintef.no/ecy/projects/SCI_Europe/index_net.h
tml

[9] Skaali, B., Birkeli, I., Nossum, B.A., Wormald, D., SCITRAC –
an LSA Preprocessor for SCI Link Tracing, in Proc. SCI
Europe, Bordeaux, France, Sept. 1998.

[10] Klar, R., Dauphin, P., Hartleb, F., Hofmann, R., Mohr, B.,
Quick, A., Siegle, M., Messung und Modellierung parralleler
und verteilter Rechensysteme, ISBN 3-519-02144-7,
Teubner Stuttgard, 1995.

