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Summary

Recently, many distributed applications have been based on Common Object

Request Broker Architecture (CORBA) compliant middleware. Such distributed

computing middleware provides the components of a distributed application with a

uniform view of local and remote application objects. It shields distributed application

programmers from having to deal with network and protocol layers and lets them

concentrate on the design of the distributed application itself.

To date, most CORBA compliant Object Request Brokers (ORBs) have been

based on monolithic implementations. Vendors typically offer the same ORB

implementation for use in any number of different application scenarios. Recently,

some ORB implementations have appeared that target specific application domains,

for example real-time applications and fault-tolerant applications. These ORBs,

however, focus on one specific application scenario.

The purpose of this thesis is to explore the alternative approach of designing

not a “one size fits all” ORB, but rather an object-oriented framework that allows

application developers to instantiate their own customised ORBs from components

available in the framework. Thus, one user may, for example, use the framework to

create a “standard” ORB supporting mobile computing, or fault-tolerance.

In order to understand the characteristics of ORBs in general, and of those aimed at

specific application domains in particular, a number of freely available ORBs were

studied. From this, it was possible to infer which components are commonly found in

ORBs aimed at specific application scenarios.

Based on this study, an object-oriented framework for CORBA ORBs was

designed. Its design is described using the Unified Modeling Language (UML) to

illustrate its principal components. To aid in its comprehension, the framework is also

documented by describing which principal design patterns it implements. This

dissertation also documents the design process that was employed. An actual

implementation of the framework was not part of the project. Finally, a set of C++

header files is also provided to document the framework class definitions.
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Chapter 1 

Introduction

1.1 The Problem

The Object Management Group (OMG) Common Object Request Broker

Architecture (CORBA) is an emerging standard that combines the fields of distributed

computing and object oriented programming. An Object Request Broker (ORB) is a

piece of software that enables the implementation of distributed applications that use

the object oriented paradigm. ORBs are also known as middleware.

Recently, many distributed applications have been based on the CORBA

standard by using CORBA compliant ORBs as middleware. Such middleware

provides the components of a distributed application with a uniform view of local and

remote application objects. It shields distributed application developers from having

to deal with network and protocol layers and lets them concentrate on the design of

the distributed application itself.

Most CORBA compliant ORBs have been based on monolithic

implementations. Vendors typically offer a single ORB implementation for use in any

of a number of different application scenarios. Some ORB implementations have

appeared recently that target specific application domains, such as fault-tolerance

applications and real-time applications. The problem, however, is that each of these

ORB implementations focuses on one specific application scenario. In order to

provide an ORB that is tailored to a specific application scenario, generally such an

ORB needs to be built from the ground up. This, however, is a non-trivial task,

especially when an application developer is more concerned with designing and
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implementing a distributed application, than having to worry about implementing the

required middleware.

1.2 Proposed Solution

This thesis proposes that an object-oriented ORB framework would allow an

application developer to focus on the distributed object application at hand, while

providing him or her with the ability to easily implement the required ORB

middleware, tailored to the particular application scenario. Such a framework

provides the architectural design for any ORB created by instantiating it.

In order to arrive at a design for an ORB framework, a number of steps were

taken. First, the CORBA specification was studied in detail in order to understand the

requirements of a CORBA compliant ORB. In addition to this, the process of

designing and developing frameworks in general was studied. Particularly relevant to

this study was the area of object-oriented design patterns, which pervade most

frameworks.

Next, a number of publicly available CORBA compliant ORBs were analysed.

These included one ORB aimed at general distributed object applications, and two

ORBs aimed at specific application areas. The findings of this analysis influenced the

requirements formulation of the framework design and the design of the framework

itself.

Finally, the actual ORB framework was designed. The design was documented

using Unified Modeling Language (UML) object and sequence diagrams. Design

patterns played an important role in the design of the framework.

1.3 Achievements

A number of things were achieved by this project. Firstly, a design for an ORB

framework was developed. The design includes UML object and interaction diagrams.

C++ class definitions were also created. These can be used in a possible future

implementation of the framework.

Experience was gained in applying design patterns to the development of

object-oriented software in general, and frameworks specifically. Experience was also
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gained in framework development in general, especially with regard to problems

encountered in framework design.

Insight was gained into the OMG CORBA specification and how it can be

implemented, by the analysis of various publicly available CORBA ORBs.

1.4 Format of Thesis

The following chapter is a survey of CORBA and frameworks in general.

Chapter 3 is an analysis of three publicly available ORBs. Chapter 4 describes the

design of the ORB framework. Chapter 5 is an evaluation of the framework. Finally,

Chapter 6 finishes with some concluding remarks about the project.

1.5 Summary

In this chapter, an ORB framework was proposed as an approach to providing flexible

and customised ORB middleware. The steps that were taken in the development of

such a framework were outlined, and the achievements of the project were stated. The

overall format of the following chapters was also described.
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Chapter 2 

Survey

2.1 Introduction

The purpose of this chapter is to introduce some of the concepts and areas of

research that are relevant to this project. The survey begins with a brief introduction to

design patterns. Design patterns are relevant to both framework and ORB design. Next,

frameworks are introduced and some characteristics of frameworks are given. Some

different types of framework are explained, and frameworks are compared to other types

of software reuse. Strategies for framework development are also outlined. After

frameworks are discussed, the CORBA architecture is briefly introduced. Some possible

CORBA application scenarios are described. Finally, the approach to developing the

framework is discussed.

2.2 Design Patterns

Design patterns play an important role in framework design. Since they will be

referred to in subsequent sections, they are briefly introduced at this point. The idea of

design patterns was adopted from the field of architecture where it was first formulated

by Alexander [Ale77]. He and his colleagues formulated a pattern language for the design

and construction of buildings and towns. In his own words “Each pattern describes a
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problem which occurs over and over again in our environment, and then describes the

core of the solution to that problem, in such a way that you can use this solution a million

times over, without ever doing it the same way twice”.

This idea also sums up design patterns in object-oriented software design. A

design pattern systematically names, motivates, and explains a general design that

addresses a recurring design problem in object-oriented systems. It describes the

problem, the solution, when to apply the solution, and its consequences. It also gives

implementation hints and examples. The solution is a general arrangement of objects and

classes that solve the problem. The solution is customised and implemented to solve the

problem in a particular context [Gam95].

The seminal work on design patterns is [Gam95]. In it, the authors catalog some

23 design patterns which were found to recur over and over again in well designed object

oriented application designs. A pattern consists of four major parts: the pattern name, the

problem, the solution, and the consequences.

The pattern name concisely describes the pattern in a word or at most a few words. It

provides designers with a vocabulary that can be used to communicate to others a

particular design. It also allows designers to describe designs at a higher level of

abstraction.

The problem describes a particular situation which may occur over and over again in

object oriented designs and which must be solved in some way.

The solution describes an arrangement of classes and objects that implement the pattern’s

solution to the stated problem. It is not a concrete solution to one particular instance of

the problem, but rather an abstract solution which can be used like a template in different

situations.

The consequences describe the implications of applying the solution to the problem.

Implications might be, for example, tradeoffs between subtly varying solutions given to

the problem. Consequences may also be used in evaluating different solutions to a

problem.

2.2.1 A Design Pattern Example: Facade
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As an example of a design pattern, the Facade pattern is briefly introduced here. This

pattern is taken from [Gam95].

Often in the design of large applications, it is desirable to divide the overall design into a

number of subsystems. Reasons for this might be that different subsystems of the

application might be implemented by different programmers and to reduce the overall

complexity by allowing the designer to (recursively) think of the overall system as that of

a number of subsystems. The complexity is reduced by reducing the amount of

dependencies and communication between different subsystems. Ideally, this should be

minimal as otherwise small changes in one part of the application will ripple through the

entire application thereby preventing easy modification of a system.

To overcome this problem, the Facade pattern proposes that a unified interface be

implemented to a set of interfaces in a subsystem. In other words, Facade provides a

single higher level interface to a subsystem that might contain a number of interfaces.

The Facade pattern is illustrated in Figure 1.

Facade

client classes

subsystem
classes

Figure 1 Facade Design Pattern

2.3 Frameworks

2.3.1 Introduction to Frameworks

Frameworks are an attempt to prevent the rediscovery and reinvention of concepts and

components in the software industry [Fay97]. Their objective is to facilitate the
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development of applications in particular domains (eg. Graphical User Interfaces) or

business units (eg. manufacturing). In essence, frameworks are one approach to software

reuse.

A framework can be defined as a set of cooperating classes that make up a reusable

design for a specific class of software. It provides architectural guidance by partitioning

the design into abstract classes and defining their responsibilities and collaborations. A

developer customises the framework to a particular application by subclassing and

composing instances of framework classes [Gam95]. A framework dictates the

architecture of an application developed with it. It defines the application’s overall

structure, its partitioning into classes and objects, the key responsibilities of those classes

and objects, how they collaborate, and the thread of control.

Since a framework is more abstract than a finished application, in order to use a

framework to develop a particular application, the developer will need to extend

framework classes to implement application specific behaviour.

The objective of developing frameworks is to achieve both design and code reuse, as well

as shorter development times for applications, thereby reducing the cost of developing an

application. Frameworks leverage the domain knowledge of the framework developers,

thereby leaving the application developer to focus on specific application design issues

and problems.

Advantages of using frameworks are the already mentioned code and design reuse,

portability, rapid prototyping, and possibly performance customisation [Cam92].

Portability can be achieved through the separation of machine dependent parts of the

framework from machine independent parts. Rapid prototyping is achievable because the

framework provides code and design reuse, thus making it possible to quickly test various

implementations of a particular application built with the framework. Performance

customisation can be achieved through the use of one or another framework component

depending on the particular application.

2.3.2 Characteristics of Frameworks

Frameworks possess the following characteristics [Fay97]:
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Modularity: Because a framework’s potentially unstable implementation details are

encapsulated by a stable interface, applications developed with the framework are not

exposed to changes in framework implementation and design, as long as the interface

remains stable.

Reusability: Since a framework encapsulates application domain specific knowledge and

prior effort of the framework developer, the application developer is able to reuse

common solutions to recurring application requirements, thereby saving development

time and improving the quality and reliability of the application.

Extensibility: Frameworks provide hook methods that allow the application developer to

extend the framework where needed.

Inversion of Control: Frameworks generally control the flow of control within an

application via event dispatching patterns. This is also known as the “Hollywood

Principle”, or “Don’t call us, we’ll call you”. When events occur, the framework’s

dispatcher reacts by invoking hook methods on pre-registered handler objects, which

perform application specific processing on the events.

2.3.3 Types of Framework

There are different ways of categorising frameworks. One classification is that of

whitebox versus blackbox frameworks [Joh88]. In a whitebox framework the application

developer adds methods to subclasses of one or more of the framework’s classes. These

methods implement application specific behaviour. Since these methods must be

designed and implemented as was intended by the designer of the superclasses, the

application developer needs to have an understanding of the framework’s

implementation.

In a blackbox framework, on the other hand, an application is created by composition

rather than inheritance, as in the whitebox framework. Various components may be

available as part of the framework and the application developer decides which

components are required to create a particular application. The application developer only

needs to know the public interface of the components, but not their implementations.

Blackbox frameworks have the advantage of being easier to learn, but have the

disadvantage of being less flexible, than whitebox frameworks. If there is a good
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selection of components, the amount of programming required to create an application

with the framework will be much less than to do the same with a whitebox framework.

Thus, whitebox frameworks rely on inheritance whereas blackbox frameworks rely on

object composition. Of course, there is a continuous range from whitebox to blackbox

frameworks with some frameworks using both inheritance and object composition to

achieve application creation.

2.3.4 Frameworks in relation to other approaches to reuse

Other approaches to software reuse are design patterns, class libraries, and components

[Fay97]. These are related to frameworks in the following ways:

Design Patterns: Both design patterns and frameworks are approaches to software reuse.

However, they differ in a number of ways [Gam95]. Firstly, patterns are more abstract

than frameworks. Patterns enable design reuse whereas frameworks allow design and

code reuse. Patterns have to be implemented in code every time they are used. Secondly,

design patterns are smaller architectural elements than frameworks. This implies that

frameworks can contain a number of patterns, but never the other way around. Thirdly,

frameworks are specialised to a particular application domain. Design patterns, on the

other hand, can be used in any type of application.

Class libraries: Class libraries also are an approach to software reuse. Frameworks

extend the benefits of class libraries in the following ways: Firstly, class libraries

generally are less domain specific than frameworks. Generally they are lower level than

frameworks and thus don’t offer as high a level of reuse as frameworks. Frameworks, on

the other hand, can be viewed as semi-complete applications. Secondly, class libraries

don’t exhibit the inversion of control that frameworks do. Frameworks often make use of

class libraries. An example is the C++ Standard Template Library.

Components: Yet another approach to reuse, components are self-contained instances of

abstract data types [Fay97]. They can be plugged together to form complete applications.

Components are reused on the knowledge of their interfaces, not their implementations.

They can be reused without having to subclass from existing base classes. Thus they

represent blackbox reuse. Frameworks can be used to develop components, but

components can also be used to develop frameworks.
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2.3.5 Examples of Frameworks

Numerous examples of frameworks exist. Here is a brief description of some of them:

Choices is an object-oriented operating system framework implemented in C++. It was

developed at the University of Illinois at Urbana-Champaign [Cam92, Joh91]. The

motivation behind the development of Choices was that different users of operating

systems have different needs. For example, some applications for operating systems

require large virtual address spaces, whereas others, such as real-time embedded systems

don’t require virtual memory at all. The Choices framework addresses this problem by

providing a family of operating systems that the user can tailor to specific requirements.

The Choices framework consists of a number of subframeworks, such as virtual memory,

process management, persistent storage, message passing, and device management.

These subframeworks are used to implement subsystems of the operating system. The

subframeworks provide abstract classes that are reused through inheritance, making

Choices a whitebox framework.

Smalltalk Model/View/Controller (MVC) is a framework for constructing Smalltalk-80

user interfaces [Gam95]. It consists of three types of object: the Model, the View, and the

Controller. The Model is the application object and the View is its screen representation.

Each Model can have multiple Views. If the Model’s data changes, the Views are notified

to update themselves. The Controller defines how the user interface reacts to user input.

An important aspect of MVC is that it contains a number of design patterns, such as

Observer, Composite, and Strategy. Thus it demonstrates how design patterns can be

used in the development of frameworks. Observer is a pattern that allows a one-to-many

dependency between objects to be created so that when one object changes its state, all

the other objects are notified and updated automatically. Composite is a pattern that

allows a tree-like structure of objects to be created. It allows clients to treat individual

objects and compositions of objects in the same way. Strategy is a pattern that allows

algorithms to be encapsulated by objects. It allows clients to freely interchange these

objects if the algorithm is to be varied. These patterns are described in more detail in

[Gam95].

Microsoft’s Microsoft Foundation Classes (MFC) is a framework for the development of

GUIs for the Microsoft Windows operating system [She96]. Its name is slightly
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misleading, as it is in fact a framework, though parts of it can be used as a class library.

To create a Windows GUI application with MFC, the user needs to subclass from a

number of abstract classes. The relationships and constraints between these classes is

known as the document-view architecture, similar to the Model and View architecture in

MVC. To be able to create any but the most trivial applications, the user needs to have

some understanding of these relationships and constraints. Therefore, the MFC could also

be classified as a whitebox framework.

2.3.6 Strategies for developing Frameworks

Various methods or strategies for developing frameworks have been proposed. [Bec94]

[Dem96] [Kos] [Rob97]. Of these, the method that seems most inclusive of all

framework application domains, and pertains to the entire life cycle of framework

development is Evolving Frameworks, a pattern language for framework development. It

is described in more detail below.

2.3.6.1 A Pattern Language for developing Frameworks

One strategy, proposed by Roberts and Johnson, for developing frameworks, applies

design patterns to the problem of framework development [Rob97]. More specifically, a

pattern language for developing object-oriented frameworks is proposed. It is called

Evolving Frameworks. A pattern language can be described as a set of patterns that are

used together to solve a problem. Evolving Frameworks comprises of the following

patterns: Three Examples, Whitebox Framework, Blackbox Framework, Component

Library, Hot Spots, Pluggable Objects, Fine-grained Objects, Visual Builder, Language

Tools. The above sequence is the sequence in which the patterns generally will be applied

as the framework evolves, although this is not totally rigid.

Three Examples is the first and fundamental pattern in this pattern language. It argues

that it is impossible to design, from scratch, a framework without first having built at

least three applications of the type that the framework is intended to build. The

framework abstractions can then be determined from these examples.

The Whitebox Framework pattern proposes that the initial framework design, arrived at

by generalising from the classes in the individual applications, should be based on
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inheritance. This framework subsequently could be changed into a Blackbox Framework,

but only when it is known which parts of the framework will consistently change across

applications and which parts remain constant.

Component Library proposes common classes that should be collected from the

application examples to form a component library.

Hot Spots proposes to separate code which changes between applications from code

which doesn’t. Ideally, the varying code is then encapsulated within objects. This

promotes reuse through composition of objects instead of subclassing from other classes.

The objective of the Pluggable Objects pattern is to avoid unnecessary subclassing when

the subclasses differ only in trivial ways. It achieves this by using parameters in the

instance creation protocol. In this way the subclass can be parameterised, in other words,

customised for its particular application.

Fine-Grained Objects proposes that objects be broken down into granularities as fine as

possible. The reason for this is that code duplication can be avoided in this way. If objects

are not broken down like this, some classes may end up encapsulating multiple

behaviours that could possibly vary independently. It is better to replace such a class with

a composition that recreates the behaviour of that class.

The creation of Pluggable Objects and Fine-Grained Objects leads to the ability to create

applications using composition. Therefore, the next step the design of the framework is to

reorganise the framework into a Blackbox Framework, which favours composition over

inheritance.

The Visual Builder pattern proposes a graphical program that lets the application

developer specify the objects of the application and how they are interconnected.

The last pattern in the language, Language Tools, suggests that specialised inspecting and

debugging tools be created for the framework.

Figure 2 shows how the patterns in Evolving Frameworks are related in time. It can be

seen that many patterns will be applied in parallel.
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Three Examples

White Box Framework Black Box Framework

Component Library

Hot Spots

Pluggable Objects

Fine-Grained Objects

Visual Builder

Language Tools

Time

Figure 2 Evolving Frameworks

2.3.7 Documenting Frameworks

An approach to documenting frameworks using patterns has been suggested by Johnson

[Joh92]. He proposes that the documentation of a framework has three purposes.

Specifically, the framework documentation needs to 1) describe the purpose of the

framework, 2) describe how to use the framework, and 3) describe the detailed design of

the framework.

The first pattern in the framework documentation describes the purpose of the framework

and its application domain. It gives examples of framework applications and introduces

the rest of the patterns describing the framework, and which of those patterns should be

studied next. This next set of patterns is used to describe how to use the framework.

Finally, the detailed design of the framework is described.

2.3.8 Problems regarding Framework Development

The following are some of the problems and challenges that are encountered and that

need to be overcome for effective framework development and utilisation [Fay97]:
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Development effort: The effort and domain knowledge required for successful framework

development is higher than that required for application development in a particular

domain.

Learning curve: The learning curve involved in learning to use a particular framework is

often quite high. If only a few applications are ever going to be built using a framework,

the value of creating such a framework needs to be questioned, since in this case it might

not be a cost effective solution. Also, the suitability of a framework to building a

particular application may only become apparent after an amount of time has been

invested in learning the framework.

Integratability: If applications are built using more than one framework, compatibility

and integration problems may result. Specifically, the inversion of control principle of

frameworks could cause problems, as event loops in the frameworks may not be designed

to allow interoperability.

Maintainability: As application requirements change frequently, the requirements of

frameworks may change with them. Modifying and adapting a framework may prove

difficult for application developers since a deep understanding of framework internals

and relationships between framework components is essential.

Validation and defect removal: Debugging applications created with a framework may be

difficult. For example, since the flow of control is controlled by the framework, it may be

difficult to step through the application specific code of the application.

Efficiency: The generality and flexibility of a framework may reduce its efficiency.

2.4 CORBA and Frameworks

2.4.1 Introduction to CORBA Object Request Brokers

The Common Object Request Broker Architecture (CORBA) is a standard model for

distributed object-oriented systems. The CORBA standard forms part of the Object

Management Group’s (OMG) Object Management Architecture (OMA). The current

standard is CORBA 2.0. The purpose of the CORBA standard is to abstract distributed
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object applications, which may run in a heterogeneous environment, away from

underlying networking protocols and transports. This facility is provided by Object

Request Brokers (ORBs), which lie at the heart of the OMA. An ORB allows a client to

deliver a request to a target object acting as a server, and it returns any responses to the

clients making the requests. The target object may reside in the same process, on the

same machine but in a different process, or on a different machine in a different process

somewhere on the network. The client-server relationship is only valid on a request basis.

A client object for one request could be a server object for another [Vin97].

CORBA consists of the following main elements:

ORB Core: The ORB core lets client objects transparently make requests to server

objects, and receive responses from them, whether they are in-process out-of-process, or

remote servers.

Interface Definition Language (IDL): The IDL enables interfaces between client and

server objects to be defined in a declarative, language independent manner. An interface

specifies the operations and types that the server object supports.

IDL Client Stub: The client stub acts as a local proxy for a remote server object. It

provides static interfaces to server object’s services. It is created by compiling the

interface definition using an IDL compiler.

IDL Server Skeleton: The server skeleton provides the static interface to each service

exported by the server. Like the client stubs, it is created by compiling the interface

definition using an IDL compiler.

Dynamic Invocation Interface (DII): The DII allows the client to discover at runtime the

server interface method to be invoked.

Dynamic Skeleton Invocation (DSI): The DSI is the server equivalent of the DII. It

provides a run-time binding mechanism for servers to handle incoming method calls for

components that do not have IDL-based compiled skeletons.

Object Adapter: The Object Adapter serves as the glue between object implementations

and the ORB core.

Interface Repository: The Interface Repository is a database that contains machine

readable versions of the IDL-defined interfaces.
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Implementation Repository: The Implementation Repository contains information about

the classes supported by a server, which objects are instantiated, and their IDs.

ORB Interface: The ORB Interface contains APIs to some ORB services that may be

useful to an application.

Inter ORB Protocols: Inter ORB Protocols, such as GIOP and IIOP, allow ORBs from

different vendors to communicate with one another.

2.4.2 Some CORBA Application Scenarios

The objective of developing an ORB framework is to facilitate the implementation of

customised ORBs. Customised ORBs are ORBs that are tailored towards one or more

particular application scenarios. The following are examples of some such scenarios and

the issues that need to be addressed when developing ORBs, and therefore ORB

frameworks, for such scenarios.

2.4.2.1 Reliable Distributed Systems

A distributed system can be considered reliable if its behaviour is predictable despite

partial failures, asynchrony, and runtime reconfiguration of the system. Building reliable

distributed systems using CORBA is a priority in areas such as electronic commerce,

flight reservation systems, and real-time data feeds. It is, however, difficult to achieve for

a number of reasons. For example, because of partial failures of the system, the mean

time to failure of components in the distributed system decreases as the number of nodes

and communication links increases. Complex execution states can lead to situations such

as race conditions, deadlocks, and communication failures [Maf97].

Some approaches to implementing reliable distributed systems are message queues,

transaction processing monitors, and virtual synchrony. [Maf97] describes how these

approaches can be combined into an extended CORBA architecture for reliable systems.

2.4.2.2 Performance in CORBA Distributed Systems

Some distributed applications have specific Quality of Service (QoS) demands. Real time

systems, such as avionics or motion control systems, and constrained latency systems,

such as teleconferencing or telecommunications systems, fall into this category. Until
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recently, the CORBA specification did not provide definitions for policies or mechanisms

for providing QoS guarantees in distributed applications. Recently A/V streams have

been added to the CORBA specification.

Existing ORBs exhibit significant runtime throughput and latency overheads. To be able

to construct real-time ORBs that can exhibit end to end QoS guarantees, the factors that

affect performance of ORBs need to be addressed. Some of these factors are [Sch97]:

specification of end to end QoS requirements, operating system and network resource

scheduling, communication protocols performance, request demultiplexing and

dispatching optimisation, memory management optimisation, and presentation layer

conversions.

2.4.2.3 Mobile Distributed Systems

Mobile distributed systems entail some of the following aspects: the frequent movement

of users and hosts, the scarcity of network and local computing resources available to the

mobile host, the possibility of disconnections. These lead to the following problems with

which mobile distributed systems are faced: frequent disconnections from the network,

widely varying bandwidths among wired and wireless links, limited CPU power and

device capacity on a mobile host, transient servers due to frequent handoff.

These problems lead to the following design guidelines for mobile distributed systems

[Che97]:

Minimum host-network coupling: Applications should be designed with minimum

coupling between the mobile host and the server as connections generally are unreliable.

Connection transparency: An application should be able to continue operating

transparently even if there are changes in the connection between mobile host and server,

such as handoff and disconnections.

Indirect interaction: To minimise interaction over the wireless link, user input processing

should be performed as close to the mobile host as possible.

Adaptive communication protocols: Because of variable bandwidth and heterogeneous

networks, communication protocols need to be adaptable.

Application partitioning: Because of unreliable connections, applications need to be

designed so that parts of them can be migrated to and run on the mobile host.
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2.4.2.4 Developing a Framework for Customisable ORBs

The previous sections have introduced a number of topics which are fundamental to the

project, the development of a framework for customisable ORBs. The content of these

sections is to serve only as an introduction to some of the issues and approaches which

are relevant to this project.

The suggested approach to developing the framework is to apply the pattern language

Evolving Frameworks mentioned in the frameworks section. This pattern language begins

with the Three Examples pattern. Considering the limited amount of time allocated to this

project, it would obviously not be feasible to implement three separate ORBs, which may

cover various application scenarios, as is suggested by that pattern. On the other hand, a

deep, hands-on understanding of the application domain, customisable ORBs, is required

in order to attempt the design and implementation of an ORB framework. A possible

approach to overcome this problem would be to examine the implementations of a

number of different existing ORBs. ORBs exist for which the source code is publicly

available, and some of these are also well documented from a design point of view.

Some CORBA ORB implementations which focus on some of the different application

scenarios described above and for which source code is available are TAO, Electra, and

OmniORB.

OmniORB is a CORBA compliant ORB that has been developed by the Olivetti and

Oracle Research Laboratory. It is a plain, “vanilla” ORB, not geared towards any

particular application domain.

TAO is a CORBA compliant ORB that has been developed at the Department of

Computer Science, Washington University. It is an ORB aimed at applications with real-

time QoS requirements. It is designed to be extensible, maintainable, and dynamically

configurable. To achieve these objectives its design relies heavily on the use of  design

patterns. Its design is well documented using these patterns in [Sch98].

Electra is a CORBA compliant ORB that is geared towards fault-tolerance and group

communication. It allows object groups, reliable multicast communication, and object

replication. It is designed to run on top of platforms such as Horus and Isis which are

low-level toolkits for the implementation of fault-tolerant distributed systems.
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The first step will be to study the implementations of these three ORBs. This would

involve the study of both any documentation and literature that is available about them,

and also the source code which is publicly available. For the latter, an object-oriented

browsing tool, such as Takefive Software’s Sniff+, might be useful. Some of these tools

provide the ability to ‘reverse engineer’ source code to object notation, such as UML.

2.5 Summary

This chapter provided an introduction to some of the issues regarding the development of

an ORB framework. Object oriented design patterns were defined and an example of a

design pattern was provided. Object oriented frameworks in general were introduced and

some of their characteristics explained. Finally, the CORBA standard was briefly

introduced along with some possible application areas for distributed object applications.
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Chapter 3 

Analysis of existing Object Request
Brokers

3.1 Introduction

This chapter describes an analysis of three publicly available CORBA compliant

ORBs. The three ORBs are OmniORB, TAO, and Electra. OmniORB was developed

by the Olivetti and Oracle Research Laboratory. It is a basic ORB which is not geared

towards any particular application domain. TAO was developed at the Department of

Computer Science, Washington University. It is aimed at applications with real-time

Quality of Service requirements. Electra was developed by Silvano Maffeis while at

the University of Zurich. It is an ORB that is geared towards fault-tolerance and group

communication. It allows object groups, reliable multicast communication, and object

replication.

3.2 OmniORB

3.2.1 Introduction

The first ORB to be analysed was OmniORB2. OmniORB2 is an ORB that

implements version 2.0 of the Object Management Group’s CORBA specification. It

was developed by the Olivetti & Oracle Research Laboratory
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(http://www.orl.co.uk). This section documents the investigation into the

implementation of OmniORB2.

3.2.2 Purpose of the analysis

The purpose of the analysis of the implementation of OmniORB2 was to gain insight

into how the architecture of a typical ORB is structured. Specifically, the internals of

OmniORB2 were to be analysed, in other words, those parts of OmniORB2 that

implement the CORBA specification but that are left to be implemented by the

different ORB vendors. Especially interesting was to determine whether any design

patterns were used. The use of these would facilitate the understanding of the design

of OmniORB2 and would be helpful in the subsequent design of an ORB framework.

They would also make it easier to document the design of OmniORB2.

3.2.3 Main features of OmniORB2

3.2.3.1 CORBA 2 compliancy

As stated in the introduction, OmniORB2 is an ORB that implements version 2.0 of

the OMG’s CORBA specification. It implements the Internet Inter-ORB Protocol

(IIOP) and uses this to communicate with other ORBs, and also uses it as its own

native protocol, i.e. for the communication between its objects residing in different

address spaces.

3.2.3.2 Platform support

OmniORB2 supports the following platforms: Sun Solaris, Digital Unix, HPUX, IBM

AIX, Linux, Windows NT, Windows 95, OpenVMS, ATMos, NextStep. Extensive

use of preprocessor directives is made in the source code to allow compilation for

these numerous supported platforms. This can make the source code quite difficult to

understand at times.

3.2.3.3 Missing features

OmniORB2 is not a complete implementation of the CORBA specification. Some

features are still missing:
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• OmniORB2’s Basic Object Adapter (BOA) does not support dynamic server

activation and deactivation policies. It only supports the persistent server

activation policy.

• The Dynamic Invocation Interface is not supported.

• The Dynamic Skeleton Interface is not supported.

• OmniORB2 does not have its own Interface Repository.

3.2.4 Building and testing OmniORB2

The OmniORB2 distribution was downloaded from the Oracle & Olivetti Research

Laboratory’s web site. Although ready to run binaries are available to download,

OmniORB2 was downloaded in source code form and compiled and linked on site.

The download package comes as a zipped tar file which extracts into a directory tree.

The main parts of the package are:

3.2.4.1 The documentation

This consists of four documents which address the OmniORB2 itself, the OmniNames

naming service, which is an OmniORB2 implementation of the OMG’s COS Naming

Service Specification, OmniThread, which is a portable thread abstraction library used

by OmniORB2, and OmniORB utilities.

Of these documents, the principal one is the OmniORB2 manual. It is addressed at the

application developer who wants to know how to get started using OmniORB2. Some

of the examples that are provided with OmniORB2 are explained. The OmniORB2

API is explained as is the interface to the Basic Object Adapter (BOA). However, the

internal architecture of the ORB is not documented.

3.2.4.2 The source code

Source code is provided for OmniORB2 itself, the OmniThread library, the

OmniIDL2 compiler, which is the IDL compiler supplied with OmniORB2, a number

of examples, the OmniNames naming service, and the OmniORB2 utilities.

3.2.4.3 Makefiles

Makefiles are supplied to build the various binaries under the supported platforms. To

build the binaries under Unix requires GNUmake. To build the binaries under

Windows NT requires the gnu-win32 utilities from Cygnus Solutions.



33

3.2.4.4 Tools and methods used for analysing OmniORB

Initially OmniORB2 was built using the Sun C++ compiler and GNUmake under

Solaris 2.6. The three Echo examples, which are documented in Chapter 1 of the

OmniORB2 manual, were also built and executed as indicated. Because of a lack of

suitable debugging, analysis, and browsing tools under Unix, the OmniORB2 binaries

were rebuilt under Windows NT using Microsoft Visual C++ 5.0 and the Cygnus

Solutions gnu-win32 utilities. The advantage of examining OmniORB2 under

Windows NT was that the debugger which is supplied with Visual C++ could be used

to step through the application and ORB source code as an application was being

executed.

Next, the OmniORB2 source code was analysed using SNIFF+, a cross-platform

programming environment by TakeFive Software. SNIFF+ provides a number of

features that aid the comprehension of existing source code. Numerous tools, such as

an inheritance hierarchy browser, a cross reference browser, and an include browser,

are part of this environment and were found to be useful in the understanding of the

implementation of OmniORB2. SNIFF+ includes its own source code parser which

parses the source code of a project and builds its own internal representation of it. A

project therefore does not need to be compiled before the SNIFF+ tools can be used.

3.2.4.5 Problems encountered

Some problems were encountered in trying to analyse the architecture of OmniORB2.

Initially Solaris 5.6 was used as a platform for building the ORB and sample

applications. It was found that because of a lack of  suitable tools it would prove

difficult to easily study the implementation of the ORB. The ORB was rebuilt under

Windows NT and this was found to be advantageous, especially in the area of

debugging.

A principal difficulty was the size of the source code. In the entire source code there

are over 360 classes and structures, not including nested classes. The source code is

very sparsely commented. There are no documents explaining the OmniORB2

architecture.

The large amount of preprocessor directives relating to macros and conditionally

compiled code, made the source code difficult to understand.
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A problem noted with SNIFF+ is that it ignores nested classes, ie. those classes that

are declared within other class declarations. This meant that nested classes could not

be browsed as easily as others, but it was found not to be a big problem.

3.2.5 Overall architecture of the ORB

The following sections describe some of the principal components of the OmniORB2

ORB. C++ namespace is not used. Instead, some classes are nested within other

classes, for example, the class ORB is nested within the CORBA class, thus becoming

CORBA::ORB. The reason for this is that some of the supported compilers may not

have implemented the namespace keyword.

3.2.5.1 The ORB

The class that represents the ORB is CORBA::ORB. It provides the C++ mapping of

the CORBA::ORB interface. It also provides some internal OmniORB2 specific

functionality. An instance of this class is created in the function

CORBA::ORB_init(…) unless an instance of it already exists. This function is called

by both the object implementation and the client in order to obtain a pointer to the

ORB.

Another class, omniORB, provides the public API of OmniORB2’s extension to

CORBA. This API is intended to be used in application code. All its members and

methods are declared static and no actual instance of omniORB is ever created.

The public API provides features such as run-time tracing and diagnostic messages,

limiting the GIOP message size, and trapping internal errors.

3.2.5.2 The BOA

The class that represents the BOA is CORBA::BOA. It provides the C++ mapping of

the CORBA::BOA interface. Again, it also provides some internal OmniORB2

specific functionality. An instance of this class is created in the function

CORBA::ORB::BOA_init unless an instance of it already exists. As with the

function creating the ORB, this function is called by both the object implementation

and client in order to obtain a pointer to the BOA.  After a call to BOA_init,  the

BOA must be activated using impl_is_ready. This starts a thread listening on the

port on which IIOP requests are received. Objects can then be registered using the

function _obj_is_ready. This is a member function of the implementation
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skeleton class and is called after the object is fully initialised. In the example below, it

is a member function of the class _sk_Echo.

3.2.5.3 Sample skeleton code generated by the IDL compiler

This section describes which classes are created by the IDL compiler when a sample

IDL file is compiled.

If the following example IDL interface

interface Echo {

string echoString (in string mesg);

}

is compiled using the OmniORB2 IDL compiler, a number of classes are created by

the IDL compiler. They are: Echo, _nil_Echo, _sk_Echo, _proxy_Echo,

Echo_proxyObjectFactory, and Echo_Helper. Their relationships are

shown in Figure 3.

Echo: A pointer to this class is the object reference that corresponds to the Echo

interface.

_nil_Echo: This class provides a nil object reference of the Echo interface.

_sk_Echo: This is the skeleton class used for implementing the Echo

implementation object. To implement an Echo object, a class is derived from

_sk_Echo.

Figure 3 OmniORB Stub and Skeleton Classes

_proxy_Echo: An instance of _proxy_Echo is created as a local representation

of the Echo implementation  if this resides in a different address space.

omniObject

Echo

_nil_Echo _sk_Echo _proxy_Echo

CORBA::Object

Echo_Helper

proxyObjectFactory

Echo_proxyObjectFactory
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Echo_proxyObjectFactory: An instance of this class creates the

_proxy_Echo object on the client side if the Echo implementation resides in a

different address space.

3.2.5.4 The OmniThread library

The purpose of the Omni Thread library is to provide a common set of thread

operations for OmniORB2. Porting between different platforms with different thread

interfaces is facilitated through this layer.

Figure 4 OmniORB Omni Thread Library Classes

The interface to the Omni Thread library is designed to be similar to that of POSIX

threads. Essentially, the Omni Thread library consists of wrapper classes around

thread calls. There are four principal classes in the Omni Thread library:

omni_condition, omni_mutex, omni_semaphore, and omni_thread.

Depending on the platform, different implementations of these wrapper classes are

conditionally compiled. The Omni Thread library is illustrated in Figure 4.

3.2.5.5 Implementation of GIOP and IIOP

The Rope and Strand classes

OmniORB2’s underlying GIOP communications mechanism is built on the concept of

Rope and Strand classes.

Figure 5 OmniORB Rope Inheritance Hierarchy

 The Rope class represents a bidirectional buffered stream that connects two address

spaces. The connection point of each address space is identified by an object of type

Endpoint. A Rope object is composed of one or more objects of type Strand.

Rope

tcpATMosIncomingRope tcpATMosOutgoingRope tcpSocketIncomingRope tcpSocketOutgoingRope

omni_condition omni_semaphoreomni_mutex omni_thread
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Each Strand object represents a transport dependent connection. All Strand

objects of the same Rope object can be used interchangeably for the sending and

receiving of messages between the two connected address spaces identified by the

Endpoint objects. The Rope inheritance hierarchy is shown in Figure 5.

The Rope class is an abstract base class that defines the interface for the derived rope

classes. Depending on the transport implementation, Rope objects are instantiated as

tcpSocket ropes or tcpATMos ropes. They can be of the incoming or outgoing variety.

Incoming Rope objects are used by the BOA to receive requests and dispatch them to

the object. Outgoing Rope objects are used by the ORB to send requests. The

instantiation of Rope objects is performed by objects derived from the abstract base

class ropeFactory. Its inheritance hierarchy is shown in Figure 6. These classes

represent an implementation of the Abstract Factory design pattern.

Figure 6 OmniORB Rope Factory Inheritance Hierarchy

An Abstract Factory can be used when related objects, in this case objects of type

Rope, need to be created without specifying their concrete classes, for example

tcpATMosIncomingRope or tcpSocketIncomingRope.

The Strand inheritance hierarchy is shown in Figure 7. For example, a

tcpSocketIncomingRope object would contain a number of

tcpSocketStrand objects.

ropeFactory

incomingRopeFactory outgoingRopeFactory

tcpATMosMTincomingFactory tcpATMosMToutgoingFactorytcpSocketMTincomingFactory tcpSocketMToutgoingFactory

Strand

reliableStreamStrand

tcpATMosStrand tcpSocketStrand
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Figure 7 OmniORB Strand Inheritance Hierarchy

The Endpoint inheritance hierarchy is shown in Figure 8.

Figure 8 OmniORB Endpoint Inheritance Hierarchy

The GIOP driver classes

The GIOP_C and GIOP_S classes are built on top of a strand. They implement the

General Inter-ORB Protocol (GIOP). The GIOP protocol is asymmetric.  GIOP_C

provides the functions to drive the client side protocol.  GIOP_S provides the server

side functions. The GIOP_C and GIOP_S inheritance hierarchy is shown in Figure 9.

Endpoint

tcpATMosEndpoint tcpSocketEndpoint

Sync

NetBufferedStream GIOP_BasetypesMemBufferedStream
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Figure 9 OmniORB GIOP Inheritance Hierarchy

An object of the Sync class is used to provide exclusive access to a Strand object.

A number of Sync objects can be associated with any particular Strand object.

Derived from Sync is the class NetBufferedStream. This class provides the

marshalling functionality for different CORBA data types. In other words, this class

provides the functionality to load and unload the buffer that is used for transmitting

and receiving using the Strand object associated with the Sync object. The

marshalling is totally independent of the transport layer that is used.. The Sync class

only refers to Strand and Rope types, but not their concrete subclasses. The

MemBufferedStream class has similar functionality to the

NetBufferedStream class except that it is used when the client and server reside

in the same address space and the transport layer and layers below it can be bypassed.

The GIOP_Basetypes class defines some types, such as message header types, that

are common to both GIOP_C and GIOP_S. Calling the constructor of GIOP_C or

GIOP_S automatically aquires a Strand object.

A GIOP_C object can be in a number of states, such as Idle,

RequestInProgress, WaitingForReply, ReplyIsBeingProcessed,

and Zombie. Similarly, a GIOP_S object can be in the states Idle,

RequestIsBeingProcessed, WaitingForReply,

ReplyIsBeingComposed, and Zombie.

Threading models used in OmniORB2

The threading model used to process outgoing requests is determined by the

implementation of the GIOP_C class. Only one request per Strand object can be

outstanding, in other words, each thread has exclusive access to a Strand object

when it has a request outstanding.
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The threading model used to dispatch incoming requests is determined by the classes

derived from ropeFactory. It is described in the section below.

Threading model to service incoming requests

A number of thread classes inherit from omni_thread. Two types of class that

inherit from omni_thread are the tcpRendezvouser and the tcpWorker variety of

class. These come in Socket and ATMos varieties. A worker class, for example

tcpSocketWorker, is associated with each incoming Rope object’s Strand

object. When an incoming object derived from Rope is created, a tcpRendezvouser

thread is created and started. This thread is associated with that particular Rope

object. For example, a tcpSocketRendezvouser is created and started when a

tcpSocketIncomingRope is created. The tcpSocketRendezvouser thread

will wait for incoming connection requests using the accept system call. If a request

is received, a new Strand, in this case a tcpSocketStrand, will be created and

a tcpWorker, in this case a tcpSocketWorker, will be created and started. The

worker will be associated with the particular Strand object. For as long as there are

incoming requests on a particular Strand, for each request a GIOP_S object is

instantiated by the worker. This GIOP_S object will gain exclusive access to the

Strand object and will unmarshal and dispatch the request. When the request has

been dispatched or otherwise handled, the GIOP_S object will be deleted. The

process is repeated for the next request on that Strand object.

Figure 10 OmniORB Worker And Rendezvouser Inheritance  Hierarchy

A scavenger thread periodically scans all the Strand objects. If it detects that a

Strand object has been idle for a certain period it may shut it down, i.e. delete the

Strand object and stop the associated worker thread. The Worker and Rendezvouser

inheritance  hierarchy is illustrated in Figure 10.

omni_thread

tcpATMosRendezvouser tcpATMosWorker tcpSocketRendezvouser tcpSocketWorker
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3.2.6 Conclusion

With some initial delays in setting up OmniORB2 and the relatively brief period

allocated to its study, it was found that only an overall view of the internals of

OmniORB2 could be obtained and that most areas could not be studied in great detail.

However, the study has been useful in that it has provided a general insight into the

workings of an ORB and that it offers areas of interest, for example, the

implementation of  certain classes, to be revisited and studied in greater detail at a

later stage of the project, if necessary.

3.3 TAO

3.3.1 Introduction

In the study of the implementation of a number of CORBA compliant public domain

ORBs,  TAO (The ACE ORB) was chosen to be the second ORB to be examined.

TAO is a CORBA 2.0 compliant ORB, aimed at high-performance, real-time

applications. It extends the OMG CORBA specification by allowing applications to

specify Quality of Service (QoS) requirements. It was developed by the Distributed

Object Computing Group at Washington University

(www.cs.wustl.edu/~schmidt/TAO.html). This report documents the

investigation into the implementation of TAO.

3.3.2 Purpose of the analysis

The purpose of the analysis of the implementation of TAO was similar to that of

OmniORB2. In addition, an objective of the study was to gain insight into how an

ORB aimed at the high-performance, realtime application domain might be

implemented, and how it would differ from a standard ORB.

3.3.3 Main features of TAO
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3.3.3.1 Realtime ORB core

TAO’s realtime ORB core is based on the Adaptive Communication Environment

(ACE) framework. It is designed to provide a number of threading models, such as

thread-per-connection, or reactor-per-thread-priority. The TAO ORB core uses the

Realtime Inter ORB Protocol (RIOP), which is based on IIOP, for interORB

communication.

3.3.3.2 Optimised Object Adapter

The TAO Object Adapter is responsible for demultiplexing and dispatching client

requests to servant operations. In conventional ORB systems, demultiplexing takes

place on a number of layers. TAO’s Object Adapter uses demultiplexing keys

assigned by the ORB to clients to achieve delayered demultiplexing.

3.3.3.3 Realtime IDL (RIDL) QoS specification

TAO provides an IDL interface for applicatins to specify their realtime resource

requirements. This information is passed to TAO’s Realtime Scheduling Service. The

TAO Realtime Scheduling Service performs offline feasability scheduling analysis to

determine whether there are enough CPU resources to perform all requested tasks

which the application has registered with the Realtime Scheduling Service repository.

The Scheduling Services also perform thread priority assignment during this offline

analysis. This information is used by the ORB core at runtime to assign thread

priorities. At runtime, requests are queued according to their priorities.

3.3.3.4 IDL compiler optimisations

Because the conversion of typed operation parameters from higher-level to lower-

level representations (marshaling) and vice versa (demarshaling) can be a bottleneck,

the TAO IDL compiler provides a number of optimising features. For example, either

interpreted or compiled IDL stubs and skeletons can be linked into the application.

Interpreted code is slower, but smaller in size, whereas compiled code is faster, but

bigger in size.

3.3.3.5 Memory Management Optimisations
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For efficiency reasons, TAO tries to keep dynamic memory management to a

minimum. For example, it uses a “zero-copy” buffer management system when

sending and receiving client requests to and from the network.

3.3.3.6 Platform support

Platforms supported by TAO are Windows NT, Solaris, VxWorks, and Linux.

3.3.4 Building and testing TAO

The TAO distribution kit was downloaded from the TAO website. It includes the

ACE framework distribution. Uncompressed, the package is about 40MB in size.

Both ACE and TAO were built from the source code using GNUmake and the Sun

C++ compiler under Solaris 2.6.

3.3.4.1 The documentation

The design of both ACE and TAO is very well documented. A number of papers

exist, outlining the design of ACE and TAO, patterns used in their design, and

performance measurements and comparisons with a number of other ORBs. Most of

the information about the design of TAO was obtained from these papers. They can

be downloaded from the TAO website.

3.3.5 Overall Architecture of the TAO ORB

TAO is a CORBA compliant Object Request Broker that is aimed at real time

distributed applications. It is designed to deliver end-to-end Quality of Service (QoS)

guarantees. QoS guarantees allow applications to meet certain timing constraints,

which, if they weren’t met, would render useless the application built on top of the

ORB.

3.3.5.1 The ACE Framework

TAO is built using the ACE (Adaptive Communication Environment) framework.

ACE is an object oriented toolkit for the development of network and communication

applications. It is written in C++ and is targeted for applications on Unix and Win32

platforms. It facilitates the development of object oriented applications that use

interprocess communication, event demultiplexing, explicit dynamic linking, and
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concurrency. The ACE framework also provides instances of a number of design

patterns, such as Reactor and Acceptor-Connector,  which recur in object oriented

network and communication applications. These patterns will be described in a later

section.

Layers in the ACE Framework

The ACE framework consists of a number of layers as depicted in Figure 11.

Figure 11 ACE Framework Layers

The ACE OS Adaptation Layer

The ACE OS Adaptation Layer forms an interface to the upper ACE layers for the

following platform specific OS mechanisms:

• multithreading and synchronisation

• interprocess communication

• event demultiplexing

• explicit dynamic linking

• memory mapped files and shared memory

The ACE OO Wrappers Layer

The ACE OO Wrappers Layer provides C++ classes that encapsulate the various OS

mechanisms in the Adaptation Layer. The wrapper class categories include:

IPC mechanisms

IPC mechanisms such as sockets, TLI, Named Pipes, and STREAM pipes. The

wrapper classes in this category all inherit from the abstract base class IPC_SAP

(Interprocess Communication Service Access Point) as depicted in

Figure 12.

ACE Network Service Components

ACE Framework

ACE OO Wrappers

ACE OS Adaptation Layer

IPC_SAP
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Figure 12 ACE IPC Class Hierarchy

Service Initialisation

Related to the IPC mechanisms are the Accptor-Connector classes which implement

the design pattern of the same name. This pattern is used for the implementation of

service initialisation in communication software. It decouples the initialisation of a

communication service from the tasks the service performs once it is up and running

and initialisation has been completed.

Concurrency Mechanisms

Concurrency mechanisms such as mutexes, threads, and semaphores are abstracted

through C++ classes. These are illustrated in Figure 13. Thread mechanisms include

Solaris threads, POSIX Pthreads and Win32 threads.

Figure 13 ACE Classes For Concurrency

Memory Management Mechanisms

These provide an abstraction for the dynamic management, ie. allocation and

deallocation, of shared and local memory.

Event Multiplexing

ACE_Condition ACE_Thread ACE_Mutex ACE_Semaphore
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This category of wrapper classes provides an encapsulation of OS event

demultiplexing calls such as select, poll, and (Win32’s)

WaitForMultipleObjects.

The ACE Framework Layer

This layer builds on the lower two layers, described above, by instantiating a number

of design patterns that can be used in the development of network applications. These

patterns include Reactor and Service Configurator. They are described below.

The ACE Network Service Components Layer

This layer provides a number of network service components that are constructed

using the components of the lower layers. Examples of the network services provided

by this layer are logging, naming, locking, and time synchronisation services. The

components of this layer also illustrate how to construct services and applications

using the classes provided by the lower layers.

3.3.5.2 Design Patterns in ACE

The Acceptor-Connector Design Pattern

The Acceptor performs passive connection establishment, while the Connector

performs active connection establishment. The participants of this pattern are shown

in Figure 14.

Figure 14 Acceptor Connector Design Pattern

Each ServiceHandler contains a transport endpoint. This endpoint might, for

example, be a socket descriptor. A ServiceHandler on the client side is used to

exchange data with its corresponding service handler on the server side, and vice

versa. An Acceptor is a factory that creates a ServiceHandler and initialises it.

ServiceHandler

peer_stream

open()Connector

connect()
complete()

Acceptor

peer_acceptor_

accept()
open()

Dispatcher

1
n1

n

Dispatcher notifies 
Connector when 
connection 
completes
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connection arrives
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It is used for passively establishing a connection. It will listen on its

peer_acceptor endpoint. When a connection request is received, it will invoke its

accept method which will create a new ServiceHandler to handle that

connection. The Acceptor will then again wait for new connection requests on its

peer_acceptor endpoint. The Connector is used to actively set up a

connection. The Connector’s connect method will establish a connection with a

remote Acceptor. It also initialises a ServiceHandler which will handle the

new connection.

The Dispatcher demultiplexes connection requests that may be received for

different Acceptors. It will pass the requests to the appropriate Acceptor. This

allows a number of different Acceptors to wait for connection establishment

requests. The Dispatcher can be implemented using the Reactor design pattern

which is described below. The Dispatcher is also used on the Connector side to

complete the establishment of connections that were initiated asynchronously, using

connect. It is not needed if connections were initiated synchronously by the

Connector since the thread of control that calls connect will also call

complete, which completes connection establishment.

The Reactor Design Pattern

The Reactor (also known as Dispatcher) design pattern is used to demultiplex

requests that are sent to an application by any number of clients. Each request may be

for a particular service. Different services are represented by different

EventHandlers. Each of these EventHandlers is responsible for dispatching its

service requests, ie passing the request to the actual service. The structure of this

pattern is given in Figure 15.

InitiationDispatcher

handle_events()
register_handler()
remove_handler()

select(handlers);
foreach h in handlers loop
    h.handle_event(type)
end loop

EventHandler

11
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Figure 15 Reactor Design Pattern

A Handle represents an OS resource, such as a network connection. The

SynchronousEventDemultiplexer waits for events to occur on a set of

handles. When an event can be handled without blocking, it returns. This class is

essentially a wrapper for an event demultiplexing function, such as select under

Unix. The InitiationDispatcher is the central class in this pattern. It allows

EventHandlers to be registered with it and removed from it. When the

SynchronousEventDemultiplexer detects a new event occuring, it triggers

the InitiationDispatcher to call the relevant application specific concrete

EventHandler.

The Service Configurator Design Pattern

The Service Configurator design pattern is used to implement explicit dynamic

linking. Dynamic linking allows the addition and deletion of object files into the

address space of a process either at program startup or during program run-time.

Dynamic linking is supported by various operating systems, such as SunOS 4.x, 5.x,

and Windows NT.

The ServiceObject represents the interface to a dynamically linkable service. Its

inheritance hierarchy is shown in Figure 16.

ServiceObject

ConcreteServiceObject
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Figure 16 Service Object Inheritance Hierarchy

The SharedObject abstract base class provides an interface for dynamically

linking service handler objects. The SharedObject abstract base class is kept

separate from the EventHandler abstract base class since certain services may

require dynamic linking, event demultiplexing, or both. Concrete subclasses of

ServiceObject are used to implement application specific functionality of the service

that can be configured by the Service Configurator.

ServiceObjects are managed by the ServiceRepository class. This class is

an object manager that handles queries for particular services. It links service names

(as ASCII strings) to instances of ServiceObjects. The ServiceRepository

class structure is shown in Figure 17.

Figure 17 Service Repository Class Composition

The ServiceConfig class uses the above classes to enable dynamic linking of

ServiceObjects, and thereby the dynamic configuration of communication

software built using ACE. The class structure is shown in Figure 18.
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Figure 18 Service Configurator Design Pattern

3.3.5.3 The TAO ORB

The TAO ORB is built using the ACE framework. The principal components of TAO

are shown in Figure 19.

Figure 19 TAO Components

TAO’s ORB core

TAO’s ORB core makes use of a number of components of the ACE framework, such

as Acceptor-Connector and Reactor. The TAO ORB core is shown in Figure 20. The

Acceptor-Connector pattern is used to establish connections between client and
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server, with the Reactor taking the role of dispatcher on the Acceptor (server) side. On

the client side, the Strategy_Connector caches connections to the server while

on the server side the Reactor detects new incoming connections and notifies the

Strategy_Acceptor, which associates the new connection with a

Connection_Handler. The acceptors and connectors in the ORB core are called

Strategy_Acceptor and Strategy_Connector since they make use of the

Strategy design pattern. This allows them to use different strategies for connection

management and handler concurrency. For example, the Strategy_Connector can use

thread-specific cached connections or process-wide cached connections.

Figure 20 TAO ORB Core

TAO’s Real-Time Object Adapter

TAO’s real-time Object Adapter associates a servant with the ORB and demultiplexes

incoming client requests to the servant. It can be configured, using the Strategy

pattern, to dispatch client requests according to one of a number of real-time

scheduling policies. The currently available strategies are Real-Time Upcall (RTU)
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dispatching and Real-Time Thread dispatching. In RTU dispatching, one real-time

thread is responsible for queuing and dispatching all requests. In real-time thread

dispatching, a real-time thread is allocated to each priority queue of client requests.

For demultiplexing client requests to the appropriate servant operation, TAO’s Object

Adapter offers two mechanisms.

Perfect Hashing: In the perfect hashing strategy, an automatically generated perfect

hashing function is used to locate the servant. A second hashing function is used to

locate the operation. For this method to work, the keys to be hashed need to be known

in advance. This method can be used when servants and operations can be configured

statically.

Active Demultiplexing: The second strategy for demultiplexing client requests to the

appropriate servant operation is active demultiplexing. Here, the client passes a

handle that identifies the servant and operation directly. The client can obtain this

handle when the servant’s object reference is being registered with a naming service

or a trading service.

The above two demultiplexing mechanisms can be configured in TAO using the

Strategy pattern.

3.4 Electra

3.4.1 Introduction

In the study of the implementation of a number of CORBA compliant public domain

ORBs, Electra was chosen to be the third ORB to be examined. Electra is a CORBA

2.0 compliant ORB, aimed at fault-tolerant applications and at applications that make

use of object groups and group communication. It allows applications to create object

groups and make use of reliable multicast communication. Electra was developed by

Silvano Maffeis while at the University of Zurich. The Electra homepage is currently

at www.softwired.ch/people/maffeis/electra.html.

3.4.2 Purpose of the analysis
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The purpose of the analysis of Electra was similar to that of OmniORB2. In addition,

an objective of the study was to gain insight into how an ORB aimed at fault tolerant,

and object group based applications might be implemented, and how it would differ

from a standard ORB.

3.4.3 Main features of Electra

3.4.3.1 CORBA compliancy

Electra is based on the CORBA 2.0 specification. The current version of Electra is

2.0b. It includes:

• A CORBA IDL compiler

• A binding for the C++ programming language

• A Basic Object Adapter (BOA) that supports object groups and object replication

• An ORB, a Static Invocation Interface (SII), and a Dynamic Invocation

Interface(DII)

• A fault tolerant COSS Name Server

• Piranha, the Electra remote activation and network management utility

• A Tcl/Tk interface to the DII (experimental)

• An Internet ORB gateway (experimental)

It does not include

• An Interface or Implementation Repository

3.4.3.2 Platform support

Electra can be built and configured on Solaris, SunOS, and HPUX. It requires that a

toolkit for reliable distributed systems is installed and running on the same machine.

Toolkits currently supported are Horus, Isis, and Ensemble.

3.4.3.3 Facility for object groups

Electra provides the facility to create object groups , to perform object replication, and

to perform reliable multicast communication. To achieve this, Electra is based on

toolkits for the implementation of reliable distributed systems. Examples of these are

Horus, Isis, and Ensemble. An object group is simply the combination of a number of
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network objects. They are treated as a unit. Reliable multicast communication ensures

that invocations aimed at an object group will be received by each object

implementation which is part of that object group. The provision for object groups

allows Electra to be used for a number of application scenarios including fault-

tolerance, load sharing, caching, and mobility.

To allow applications to create object groups and to join and remove objects from

object groups, a number of operations were added to the BOA interface. These are

create_group, join, leave, destroy_group, get_state, set_state, view_change.

A detailed description of the use of object groups in Electra can be found in [Maf95a]

and [Maf95b].

3.4.4 Overall architecture of the Electra ORB

The Electra ORB is based on the Electra Object Model (EOM) [Maf95b]. The EOM

enhances CORBA by allowing objects to be grouped into object-groups. Object

groups can be named as a single unit. Applications can bind object references to both

individual objects and object groups, using the same expressions. Communication to

object groups is by reliable multicast, which ensures that an operation is received by

all members of a group. Communication can take place in transparent or

nontransparent mode. In transparent mode only one response is received after an

invocation on an object group. In nontransparent mode, each object group member’s

response can be accessed by clients. Object invocations can be performed

asynchronously, synchronously, or deferred-synchronously.

To implement reliable multicast and group communication, Electra can make use of

existing distributed programming libraries such as Horus and Isis. Their use avoids

having to reimplement much functionality specifically for Electra. Some possible

Electra configurations for a number of different distributed programming libraries or

operating systems (Horus, Isis, and Chorus) are shown in Figure 21.

Electra Abstractions:
Object Groups, Remote Method Calls, Class Libraries, etc.

Virtual Machine Interface:
Threads, Reliable Multicast, Ordering of Events, etc.

Horus Adapter Isis Adapter Chorus
Adapter

Reliable Mcast,
Ordering,

Unix Adapter

Reliable
Mcast,Horus Toolkit Isis Toolkit
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Figure 21 Some Possible Electra Configurations

The above is an example of possible configurations of Electra. Currently adapters

exist for Horus, Isis, and Ensemble. As can be seen from the diagram, a distributed

toolkit library is not necessary, as in the case of the Unix Adapter, which sits directly

on top of the OS. However, the implementation of such an adapter would be a

nontrivial task.

An important element of this layered model is the Virtual Machine Interface (VMI).

This provides an interface of common abstractions, such as reliable multicast, which

are implemented by lower layers of Electra. The Adapter layers enable the VMI to

always be the same, while providing the connection to the various distributed

programming toolkits (or operating systems).

Adaptors are derived from a common abstract base class, VirtualMachine. This

class defines the interface of the virtual machine, which all adapters must implement.

Figure 22 shows the inheritance hierarchy for the adapter classes derived from the

virtual machine interface.
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Figure 22 Electra Adapter Classes

VirtualMachine contains functions for entity creation and destruction, message

passing, group management, thread management, failure suspection, and

synchronisation.

The class AdaptorData is the base class of those Electra classes which keep

information that is specific to the Real Machine. The classes derived from

AdaptorData are used in the function signatures of the VirtualMachine

interface. They are illustrated in Figure 23.

Figure 23 Electra AdaptorData Classes

The class Entity is the class that identifies a communication endpoint. Thread

identifies a thread and is used in their creation and destruction of threads through the

VirtualMachine interface. Sema identifies a semaphore and is used by the

VirtualMachine functions dealing with the creation, destruction, incrementing,

and decrementing of semaphores. Monitor is used by the VirtualMachine

interface to monitor individual objects and object groups for possible failure.

The Electra ORB is layered as shown in Figure 24. Above the Virtual

Machine layer is the Multicast RPC Module, represented by the class RpcLayer.

The purpose of this layer is to enable asynchronous RPC to both single and group

destinations. RPC is at a lower level of abstraction than remote object invocation. The

AdaptorData

Entity Thread Sema Monitor

Consul_Adp MUTS_Adp Isis_Adp Transis_Adp

Horus_Adp
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RPC layer is solely concerned with the transmission of messages, ie. unstructured data

buffers, between communication endpoints. Synchronous and deferred synchronous

RPC are implemented by the layer above, the Dynamic Invocation Interface (DII).

Changes in group membership are handled by the RPC module. This is done

independently of the underlying Real Machine (eg. Horus or Isis). The RPC module is

based solely on the VirtualMachine interface. The class Entity is used to

represent an RPC communication endpoint. A connection between Entities is

represented by an RpcHandle object.

The DII layer is represented by the class Request, which represents a request to be

sent to a CORBA object. Its send function performs an asynchronous invocation on

the destination object, and its invoke function performs a synchronous invocation,

during which the caller will be suspended until completion of the invocation.

The Virtual Operating System (VOS) module provides a portable interface to

operations of the particular underlying operating system that need to be accessed by

the upper Electra layers.

Figure 24 Electra ORB Layering

3.5 Conclusion
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This chapter described the analysis of three publicly available ORB implementations,

OmniORB, TAO, and Electra. This analysis led to some insights into the internals of

ORB implementations. These insights influenced the design of the ORB framework,

which is described in the following chapter.
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Chapter 4 

Design of the Object Request Broker
Framework

4.1 Introduction

The objective of this chapter is to document the requirements specification and the

actual design of the ORB framework. The first part of the chapter documents the

requirements specification for the framework. The specification is influenced by a

number of factors.

Firstly, the Evolving Frameworks pattern language defines the overall context for

developing the framework. Its Three Examples pattern inspired the study of the three

publicly available ORBs described in Chapter 2. From this study, the functionality

and components that are common to all ORBs are factored out. At the same time,

functionality that is specific to particular application domains is noted for possible

inclusion in the framework. The other important source of information for the

framework requirements analysis is the Object Management Group (OMG) CORBA

specification. Whereas the three example ORBs provide an insight into how different

ORBs might be implemented, the CORBA specification lays down the exact

definition of public interfaces that the ORB must provide. It also provides detailed

information on communication between CORBA compliant ORBs.

The second part of this chapter documents the design of the ORB framework. The

context here is set by the second pattern in the Evolving Frameworks pattern

language, White-box framework. It proposes how to go about an initial design of a

framework after having applied the Three Examples pattern. The framework that was
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designed for this thesis is essentially an instance of this pattern, i.e. it is an instance of

a white-box framework.

4.2 Framework Requirements

The requirements which the proposed ORB framework must fulfil stem from a

number of sources. Firstly, the general type of framework design aimed for is based

on the Whitebox Framework pattern in the Evolving Frameworks pattern language.

This pattern defines the general form that the framework should take. Next, the OMG

CORBA specification defines the interfaces that a CORBA compliant ORB should

support along with a standard protocol for inter-ORB communication. It also defines

various language mappings for these interfaces. Any instantiation of the ORB

framework needs to be compliant with this specification. Finally, the surveys of the

three ORB implementations, documented in Chapter 2, motivate requirements of the

ORB framework regarding both common and domain specific functionality. These

latter requirements are particularly relevant to the design of the framework as it is

important that the framework can be instantiated with such functionality.

4.2.1 Whitebox Framework

The first requirement of the ORB framework is for it to be a whitebox framework. In

the context of the Evolving Frameworks pattern language for framework development

it is the second pattern. It follows Three Examples, which was emulated by the survey

of the three ORBs in the previous chapter.

The principal problem that is addressed by this pattern is whether to base an initial

framework design on inheritance or composition. The Whitebox Framework approach

is to favour inheritance over composition. The main motivation for favouring

inheritance is that initially the framework designer does not know which parts of the

framework change and which parts remain constant. Inheritance allows the

application developer, ie. the person that instantiates the framework, to override or

change functionality that the framework designer never envisaged would change.

For a framework to be based on composition, on the other hand, the framework

designer needs to know exactly what is going to change and what is going to remain

the same. He has to envisage all application scenarios at framework design time.
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Basing a framework on inheritance results in a number of consequences. First

of all, inheritance requires programming on the part of the application developer. If a

subclass needs to be created, the application developer needs to write this class. This

means that the application programmer needs an understanding of the workings of the

framework. Hence the name of the pattern Whitebox Framework. Inheritance can

break encapsulation by overriding members and methods of the base class, so extra

care must be taken by the application programmer in the implementation of a

subclass.

A second consequence of basing a framework on inheritance is that the design

patterns Factory Method and Template Method probably will feature prominently in

the framework design. They are briefly explained below.

The Factory Method design pattern can be used when an interface for creating an

object needs to be defined, but the actual decision as to which class is instantiated is

deferred to a subclass. This design pattern is also known as Virtual Constructor and it

is found in many framework implementations. The pattern is illustrated in Figure 25.

Figure 25 Factory Method Design Pattern

In a framework, abstract classes are often used to define and maintain relationships

between objects. Consider the two framework-defined abstract classes Product and

Creator. At some point in the execution of the application Creator must

instantiate a concrete subclass of Product. Creator cannot, however, predict

which concrete subclass of Product to create, as ConcreteProduct is only

defined by the user of the framework.

In order to be able to let Creator specify when a product needs to be instantiated, it

provides the virtual function FactoryMethod. This method can be called by other

Product
Creator

FactoryMethod()
AnOperation()

...
product = FactoryMethod();
...

return new ConcreteProduct;

ConcreteCreator

FactoryMethod()

Concrete Product
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methods of Creator or by other classes if the method is declared public.

FactoryMethod is overridden in a concrete subclass of Creator,

ConcreteCreator in the diagram. This class is also created by the user of the

framework. The implications of this pattern are that the flow of control can be defined

by the framework, ie. at what stage does the product get created, but the instantiation

details of which subclass gets created are left to user defined subclasses. It is also

possible for Creator to provide a default implementation for FactoryMethod in

which case a concrete product known at framework design time would be instantiated.

In this case it is optional for the framework user to override the method, which in this

case is virtual but not pure virtual (ie. it doesn’t need to be overridden in subclasses).

The Factory Method design pattern is so called because it is responsible for

“manufacturing” an object.

The Template Method design pattern allows the skeleton of an operation to be

defined in the operation while some steps are left for subclasses to override in order to

provide concrete behaviour.

Figure 26 Template Method Design Pattern

Template Method can thus be used to provide the invariant parts of an algorithm once

and leave subclasses implement the variable behaviour. It is similar to the Factory

Method design pattern in that it lets users subclass existing classes to customise an

application or framework. The difference between the two is that Factory Method lets

users override creation of objects whereas Template Method lets users override

behavior of objects, thus making Factory Method a creational design pattern and

AbstractClass

TemplateMethod()
PrimitiveOperation1()
PrimitiveOperation2()

ConcreteClass

PrimitiveOperation1(
)PrimitiveOperation2(
)

...
PrimitiveOperation1()
...
PrimitiveOperation2()
...
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Template Method a behavioral design pattern. Of course, behavior of objects often

involves the creation of other objects , thus Template Method often uses the Factory

Method design pattern. The structure of Template Method is shown in Figure 26.

TemplateMethod implements a particular algorithm, leaving certain behavior to be

defined in PrimitiveOperation1 and PrimitiveOperation2. These

functions are overridden in ConcreteSubclass which is implemented by the user

that customises the application or framework.

4.2.2 CORBA specified components

The ORB framework is to be used for the building of customised CORBA ORBs.

This means that while ORBs with emphasis on different application scenarios might

be instantiated using the framework, they all must adhere to the OMG CORBA

specification, currently at version 2.2.

The CORBA specification has already been introduced in section 2.4. It is

important to note that the CORBA specification centres around the specification of

interfaces, not implementations. Thus, interfaces for all components of an ORB, such

as the ORB core , the Dynamic Invocation Interface (DII), the Dynamic Skeleton

Interface (DSI), and the Portable Object Adapter (POA), are provided. The

implementation of these principal components, however, is left to the ORB

implementor. No attempt is made in the CORBA specification in prescribing how

these components should be implemented.

Instances of ORBs created using the proposed framework should provide

implementations for these CORBA specific interfaces. In the framework model,

which is presented in this thesis, the principal CORBA specified interfaces should be

included. It is, however, beyond the scope of the model to include all CORBA

specified interfaces. The principal interfaces of the CORBA specification are the

ORB, Object, and POA interfaces. These should be included in the ORB framework

model.

The CORBA specification specifies a number of components which will not

be part of the ORB framework model. These are: an IDL compiler for the generation

of stub and skeleton code from OMG IDL code, an interface repository, and an

implementation repository. These could be added to the model at a later stage.
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4.3 Framework Design

4.3.1 Overall Design

The proposed ORB framework consists of around 40 classes. A class hierarchy for the

framework is shown in Figure 27.

Figure 27 ORB Framework Hierarchy

Some of the classes are abstract with the remainder concrete. A class can be defined

as abstract if its primary purpose is to define an interface. It defers some or all of its

implementation to subclasses. An abstract class cannot be instantiated. The design

focused specifically on the discovery of abstract base classes for the framework. The

intention here is that abstract base classes can be used to define an interface for

groups of classes. The implementation of concrete classes derived from these abstract

base classes is left to application developers using the framework. As can be seen in
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GIOPMarshaler DCE_CSIOPMarshaler ESIOPMarshaler
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MobileTransparencyEndpointDecorator GroupCommEndpointDecorator

SocketsEndpoint TLIEndpoint FIFOEndpoint EndpointDecorator
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SocketsWrapper TLIWrapper FIFOWrapper

CallData ParamData TypeCodeImpl

TypeCode
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Object

(from CORBA)
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the diagram, many concrete subclasses have been provided. This is mainly to illustrate

which concrete subclasses might be derived from certain abstract base classes.

The framework can be broken down into two general sets of classes. On the

one hand are the classes that directly implement CORBA specified interfaces. The

interfaces implemented in the model are TypeCode, Object, ORB, and POA. The

classes that implement these interfaces are TypeCodeImpl, ObjectImpl,

ORBImpl, and POAImpl respectively.

On the other hand are the classes that provide the core functionality of the

ORB framework. These are the Marshaler, Invoker, and Receiver classes and

their respective concrete subclasses. These can again be broken down into three

groups of classes. The classes relating to Marshaler, Endpoint, and

TransportWrapper concern the core functionality of implementing ORBs based

on the framework. They are used in the implementation of both client and server

functionality. The classes relating to Invoker concern client functionality in the

ORB. The classes relating to Receiver concern server functionality in the ORB.

The following sections explain the design in detail.

4.3.2 Core Components

This section lists those framework classes that are part of the core ORB functionality.

They include the classes ORBImpl, Marshaler, TransportWrapper, and

Endpoint and other classes associated with each of these classes, respectively.

4.3.2.1 ORBImpl

ORBImpl is the core class of the ORB framework. ORBImpl inherits from the

CORBA specified ORB interface. Its purpose is to implement the CORBA ORB

interface and to create instances of the core ORB framework classes, i.e.

Marshaler, Invoker, Receiver, and POAImpl. These classes are described in

the following sections. ORBImpl is an instance of the Singleton design pattern, which

is described in section 4.3.5.5.

4.3.2.2 ORBComponentFactory
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In order to create instances of the core ORB framework classes, Marshaler,

Invoker, and Receiver, a concrete subclass of ORBComponentFactory is

used. The ORBComponentFactory inheritance hierarchy is shown in Figure 28.

Figure 28 ORB Component Factory

As can be seen in the diagram, any number of concrete subclasses of

ORBComponentFactory can be supplied by the user of the ORB framework.

These classes provide a mechanism for the customisation of ORBs created with the

framework. This is achieved by customising the creation of the core ORB

components, Invoker, Marshaler, Receiver in the functions

CreateInvoker, CreateMarshaler, and CreateReceiver. This process is

described in more detail in section 5.2.1. ORBComponentFactory is an instance of

the AbstractFactory design pattern, which is described in section 4.3.5.1.

Marshaler, Invoker, and Receiver, like ORBImpl, are instances of

the Singleton design pattern. This pattern is described in section 4.3.5.5.

4.3.2.3 Marshaler

The Marshaler class is central to the design of the ORB framework. It is used to

create both client and server functionality in an ORB created with the framework. As

ORBImpl
m_pInvoker : Invoker*
m_pMarshaler : Marshaler*
m_pORBClientComponentFactory : ORBClientComponentFactory*
m_pReceiver : Receiver*

GetInvoker()
GetMarshaler()
GetReceiver()

ORBComponentFactory

CreateInvoker() : Invoker*
CreateMarshaler() : Marshaler*
CreateReceiver(argname) : Receiver*

11 11

MobileORBFactory

CreateInvoker() : Invoker*
CreateMarshaler() : Marshaler*
CreateReceiver() : Receiver*

MobileGroupCommORBFactory

CreateInvoker() : Invoker*
CreateMarshaler() : Marshaler*
CreateReceiver() : Receiver*

OtherORBFactory

CreateInvoker() : Invoker*
CreateMarshaler() : Marshaler*
CreateReceiver() : Receiver*

// creation of Invoker that uses ConcreteEndpointCreator and caches Endpoints:

EndpointCreator *pEndpointCreator = new ConcreteEndpointCreator;
EndpointManager *pEndpointManager = new CachedEndpointManager(pEndpointCreator);
Invoker *pInvoker = new Invoker(pEndpointManager);
return pInvoker;
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the name indicates, Marshaler is responsible for marshaling and unmarshaling

invocation data into and out of messages. Messages are represented by the class

Message, and are used to communicate between clients and servers. What defines

invocation data depends on the protocol used, but usually it includes function

parameter values and any required headers.

Figure 29 Marshaler Inheritance Hierarchy

Any headers that have to be marshaled are specific to the particular inter-ORB

communication protocol used. Different concrete subclasses of Marshaler can be

used to implement various protocols for inter-ORB communication. The Marshaler

class inheritance hierarchy is shown in Figure 29.

The four principal Marshaler member functions are for marshaling and

unmarshaling of invocation requests and replies. They are

MarshalInvocationRequest, MarshalInvocationReply,

UnmarshalInvocationRequest, and UnmarshalInvocationReply

respectively. Marshaler is essentially an instance of the Builder design pattern.

This design pattern is described in section 4.3.5.3.

Marshaler
m_pEncoder : Encoder*
m_pTCInterpreter : TypeCodeInterpreter*

MarshalInvocationRequest(objref : ObjectRef*, calldata : CallData*,  : ...) : Message*
UnmarshalInvocationReply(pMessage : Message*) : void
MarshalHeaders() : void
UnmarshalHeaders()
UnmarshalInvocationRequest(pMessage : Message*) : void
MarshalInvocationReply(objref : ObjectRef*, calldata : CallData*,  : ...) : Message*
GetObjectRef(pMessage : Message*) : ObjectRef*

GIOPMarshaler

IIOPMarshaler

ESIOPMarshaler DCE_CSIOPMarshaler
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Marshaler inheritance hierarchy

As can be seen in the hierarchy, there are a number of concrete subclasses of

Marshaler.

GIOPMarshaler represents a marshaler that implements the CORBA specified

General Inter-ORB Protocol (GIOP). GIOP is a protocol that can be mapped onto any

connection oriented transport protocol.

IIOPMarshaler represents a marshaler that implements the CORBA specified

Internet Inter-ORB Protocol (IIOP). IIOP is a specific mapping of GIOP which runs

over TCP/IP connections. All CORBA 2.2 compliant ORBs need to support IIOP,

regardless of what other protocols they might also implement.

ESIOPMarshaler is a generic concrete class representing any number of different

marshalers that implement various Environment Specific Inter-ORB Protocols

(ESIOPs). ESIOPs are protocols that are optimised for particular environments. They

might be used where particular networking or distributed computing infrastructures

are already in place.

An example of an ESIOP is the DCE Common Inter-ORB Protocol (DCE-CSIOP),

which is designed for the OSF DCE environment. The class that represents this

protocol in the Marshaler inheritance hierarchy is the concrete class

DCE_CSIOPMarshaler.

Message class

As already stated, the purpose of the Marshaler classes is to build a Message

object, or, when Marshaler is used to unmarshal messages,  to take a Message

object and to deconstruct it. Message is the class that holds marshaled invocation data

in the form in which it will be transmitted between client and server ORBs. Message

is illustrated in Figure 30

Figure 30 Message Class

Message

m_pBuffer
m_Length
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Essentially, Message only contains an unformatted buffer, m_pBuffer of length

m_Length. It contains the invocation data as it is intended to be received by the

receiving ORB.

CallData

In order to understand how invocation data is passed to the Marshaler class and

subsequently marshaled into a Message object, it is necessary to look at how method

invocation data is passed to Marshaler. All information about a method and its

parameters is stored in the CallData class. The composition of this class is

illustrated in Figure 31.

Figure 31 CallData Class Composition

An instance of CallData for each method that has been declared in a CORBA

application’s IDL code needs to be declared in that interface’s client stub and server

skeleton code. This could be achieved through the use of an IDL compiler, or by

manually inserting the required code. CallData contains the method name

(m_MethodName), the number of method parameters (m_NoOfParameters), and

an array of ParamData instances (m_Parameters). There is an instance of

ParamData for each parameter in the method. ParamData contains two members,

a pointer to the TypeCode of the parameter (m_TypeCode) and the parameter

mode (m_ParamMode). The mode of the parameter can take the values MODE_IN,

MODE_OUT, MODE_INOUT, or MODE_RETURN.

A TypeCode is a value that represents invocation argument types. In the framework,

TypeCodes are implemented by the TypeCodeImpl class, which inherits from the

CORBA specified TypeCode interface. TypeCodes can be used in the Dynamic

CallData

m_Parameters : ParamData*
m_MethodName : char*
m_NoOfParameters : int

ParamData

m_TypeCode : TypeCode_ptr
m_ParamMode : ParamMode

1 0..*1 0..*

TypeCodeImpl

m_Kind : TCKind
1 11 1

TypeCode

kind() : TCKind
member_count() : ULong
member_type(index : ULong) : TypeCode_ptr

(from CORBA)

<<Interface>>
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Invocation Interface (DII) to indicate the types of the actual arguments. In the

framework they are also used by the Static Invocation Interface (SII), in other words,

the stub and skeleton code, to represent the types of the arguments. The advantage of

this is that marshalers can be used for both static and dynamic invocation marshaling,

as the required interfaces of the marshaler require invocation parameter information to

be specified using TypeCodes.

The CORBA specification also defines an enumeration, named TC_Kind, which

identifies the type that is represented by the particular TypeCode instance. Included

are all primitive types such as short (tk_short), long (tk_long), and so on.

Also included are complex types such as struct (tk_struct) and union

(tk_union). Complex types can be made up recursively, for example, a struct

could have another struct as a member. In order for the marshaler to handle

complex types, instances of TypeCodeImpl representing those complex types need

to be defined in the stub and skeleton code of the CORBA application. Instances of

TypeCodeImpl for all primitive types are declared in the framework.

The CORBA TypeCode interface specifies a number of methods, three of which are

kind, member_count and member_type. The kind operation can be invoked

on any TypeCode and it returns the TCKind for that TypeCode. For TypeCodes

representing complex types, such as structures, unions, and enumerations,

member_count returns the number of members constituting the type. The

member_type operation can be invoked on structure and union TypeCodes. It

returns the TypeCode describing the type of the member identified by index. Thus,

TypeCodes can be used to recursively describe even complex object invocation

method parameter types.

TypeCodeInterpreter and Encoder

In order to marshal and unmarshal object invocation data into and out of

messages, Marshaler uses two other classes, TypeCodeInterpreter and

Encoder.

The purpose of the Encoder based classes is to convert OMG IDL data types

into whichever low-level representation a particular inter-ORB protocol requires for

“on-the-wire transfer” between ORBs. For example, GIOP requires IDL data types to

be encoded using Common Data Representation (CDR) encoding. CDR addresses
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such issues as byte-ordering, aligning of primitive data types, and mapping of OMG

data types. The Encoder class hierarchy is shown in Figure 32.

Figure 32 Encoder Inheritance Hierarchy

An abstract base class, Encoder, is defined, from which CDREncoder inherits.

CDREncoder implements the CDR encoding scheme used by GIOP. Other encoding

schemes could be represented by new classes derived from Encoder.

TypeCodeInterpreter is used to recursively break down each parameter

into its constituent primitive types if its type is complex. Primitive types are then

encoded or decoded, depending on whether the marshaler is performing marshaling or

unmarshaling. TypeCodeInterpreter is a concrete class since it is used only for

interpreting TypeCodes. In this framework design, the use of TypeCodes is

common to all marshaling and unmarshaling, no matter which inter-ORB protocol,

and hence, which concrete marshaler class is used.

Marshaling and unmarshaling of invocation data

The interaction of Marshaler, TypeCodeInterpreter, and Encoder is

illustrated in Figure 33. If, for example, a client wants to marshal object invocation

data, its stub code calls the Marshaler member function

MarshalInvocationRequest. Its parameters are a pointer to the server object’s

object reference (objref), a pointer to the CallData object (calldata), and

finally, the actual method parameters. For each parameter to be marshaled, the

TypeCodeInterpreter’s Traverse function is called. This function takes as

its arguments

• pTypeCode, the TypeCode_ptr, taken from ParamData

Encoder

Encode(pTypeCode : TypeCode_ptr, stream : void*&, data : void*&) : void
Decode(pTypeCode : TypeCode_ptr, stream : void*&, data : void*&) : void

CDREncoder

Encode(pTypeCode : TypeCode_ptr, stream : void*&, data : void*&) : void
Decode(pTypeCode : TypeCode_ptr, stream : void*&, data : void*&) : void



72

• stream, the stream into which the data is to be marshaled, ie. m_pBuffer in
Message

• data, the parameter value, taken from the variable length argument list of
MarshalInvocationRequest

• encoderfunc, a pointer to the relevant encoder function, Encode or Decode,
depending on whether data is being marshaled or unmarshaled

Figure 33 Marshaler Class Composition

The Traverse function can be illustrated by the following code fragment:

CORBA::ULong count;
switch(pTypeCode->kind()) {

case tk_octet:
encoderfunc(pTypeCode, stream, data);
break;

// other primitive TCKind cases here
case tk_struct:

count = pTypeCode->member_count();
for(CORBA::ULong i=0; i<count; i++) {

Traverse(pTypeCode->member_type(i),
stream, data, encoderfunc);

}
break;

// other nonprimitive TCKind cases here
}

ORB
(from CORBA)

<<Interface>>

ORBImpl
m_pInvoker : Invoker*
m_pMarshaler : Marshaler*
m_pORBClientComponentFactory : ORBClientComponentFactory*
m_pReceiver : Receiver*

GetInvoker() : Invoker*
GetMarshaler() : Marshaler*

TypeCodeInterpreter

Traverse(pTypeCode : TypeCode_ptr, stream : void*&, data : void*&, encoderfunc : void(*)(TypeCode_ptr, void*&, void*&)) : void

Marshaler
m_pEncoder : Encoder*
m_pTCInterpreter : TypeCodeInterpreter*

MarshalInvocationRequest(objref : ObjectRef*, calldata : CallData*,  : ...) : Message*
UnmarshalInvocationReply(pMessage : Message*) : void
MarshalHeaders() : void
UnmarshalHeaders()
UnmarshalInvocationRequest(pMessage : Message*) : void
MarshalInvocationReply(objref : ObjectRef*, calldata : CallData*,  : ...) : Message*
GetObjectRef(pMessage : Message*) : ObjectRef*

1 11 1

1

1

1

1

Encoder

Encode(pTypeCode : TypeCode_ptr, stream : void*&, data : void*&) : void
Decode(pTypeCode : TypeCode_ptr, stream : void*&, data : void*&) : void

1

1

1

1
CORBA::ULong count;
switch(pTypeCode->kind()) {

case tk_octet:
encoderfunc(pTypeCode, stream, data);
break;

// other primitive TCKind cases here
case tk_struct:

count = pTypeCode->member_count();
for(CORBA::ULong i=0; i<count; i++) {

traverse(pTypeCode->member_type(i), stream, data, encoderfunc);
}
break;

// other nonprimitive TCKind cases here
}

switch(pTypeCode->kind()) {
case tk_octet:

put_char(stream, data);
break;

// other primitive TCKind cases here
}
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As can be seen from the code, if the type of the parameter to be encoded is primitive,

the appropriate Encoder function is called. If the type is complex, then the Traverse

function is recursively called for each of that type’s constituent members.

The appropriate Encoder function might look like this:

switch(pTypeCode->kind()) {
case tk_octet:

put_char(stream, data);
break;

// other primitive TCKind cases here
}

here, the put_char function is responsible for the encoding of the data into

stream, and advancing the stream and data pointer references by the correct amount.

4.3.2.4 TransportWrapper

The TransportWrapper inheritance hierachy is shown in Figure 34. The

main purpose of the TransportWrapper classes is to provide an object oriented

interface to a number of transport layer APIs. In any CORBA based ORB, the

transport layer ultimately is responsible for the sending and receiving of unstructured

data between clients and servers. Many of the available transport layer APIs are

written in the C programming language, which is non-object oriented. The provision

of wrapper classes for transport layer APIs ensures a consistent object oriented

interface which can be used by other classes.

Figure 34 Transport Wrapper Inheritance Hierarchy

TransportWrapper

Read()
Write()

SocketsWrapper

Read()
Write()

TLIWrapper

Read()
Write()

FIFOWrapper

Read()
Write()
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The TransportWrapper classes represent instances of the Adapter design pattern,

which is described in section 4.3.5.2.

A number of concrete TransportWrapper classes are provided in the

framework model. These are provided as possible concrete examples and do not

constitute an exhaustive set. They are SocketsWrapper, TLIWrapper, and

FIFOWrapper. SocketsWrapper represents a concrete wrapper class for the

Berkeley sockets API. Sockets are a form of Inter Process Communication (IPC) that

provide communication between processes on a single system and between processes

on different systems. TLIWrapper represents a concrete wrapper class for Transport

Layer Interface (TLI), which is a form of IPC provided with UNIX System V Release

3.0. Like sockets, it provides an API for interprocess communication between

processes on a single system and between processes on different systems.

FIFOWrapper represents a concrete wrapper class for UNIX FIFOs, also known as

named pipes. FIFO stands for First In, First Out. A FIFO is similar to a UNIX pipe.

Data written into the FIFO is read out of the FIFO in the same order, i.e. the first byte

written is the first byte read. Since it has a name associated with it, a FIFO can be

used by unrelated processes on the same system. It can thus be used to implement the

transport layer for ORBs residing on the same system.

The only functions specified in the TransportWrapper interface are

Read and Write. These are used to read and write unstructured data. Any

initialisation to be performed when instantiating a concrete TransportWrapper

can be done in constructors and initialisation functions which are dependent on the

actual transport used. Hence, they are not included in the model.

4.3.2.5 Endpoint

The Endpoint class represents a communication endpoint for ORB

communication. An instance of a concrete Endpoint derived class represents one

half of a connection between a client and a server ORB. An ORB can have any

number of Endpoint instances at any one time, representing connections to one or

more ORBs. Endpoint instances are used by ORBs in the implementation of both

client and server functionality. The Endpoint inheritance hierarchy is shown in

Figure 35.
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Figure 35 Endpoint Inheritance Hierarchy

As can be seen in the diagram, there are a number of concrete subclasses of

Endpoint. They are SocketsEndpoint, TLIEndpoint, and

FIFOEndpoint. Since a concrete endpoint uses an instance of one of the concrete

TransportWrapper classes to implement communication between the ORBs, a

concrete endpoint is provided for each concrete TransportWrapper class.

Endpoints have one basic purpose. They are used to send and receive

messages between client and server ORBs. For this pupose, Endpoint provides two

basic functions, Send and Receive. Send comes in two forms, one for

synchronous and one for asynchronous transmission. It takes as its argument a

Message pointer. The synchronous version returns a reply Message pointer, while

the asynchronous version doesn’t. Receive returns a Message pointer.

The instantiation of concrete endpoints requires information about the peer

ORB process to which the endpoint represents a connection. If, for example, an ORB

wants to act as client to an ORB acting as server, and a SocketsEndpoint is to be

the type of endpoint used, then, to create the endpoint, the Internet Protocol (IP)

address of the server ORB’s host and the port number on which the server ORB is

SocketsEndpoint

Send(pMessage : Message*) : Message*

SocketsWrapper

Read()
Write()

TLIEndpoint

Send(pMessage : Message*) : Message*

TLIWrapper

Read()
Write()

FIFOEndpoint

Send(pMessage : Message*) : Message*

FIFOWrapper

Read()
Write()

MobileTransparencyEndpointDecorator

Send(pMessage : Message*) : Message*

EndpointDecorator
m_pEndpoint : Endpoint*
m_NoOfEndpoints : short

Send(pMessage : Message*) : Message*

Endpoint
m_TransportWrapper

Send(pMessage : Message*) : Message*
Send(pMessage : Message*) : void
Receive() : Message*
Accept(argname) : Endpoint*

1

1..*

1

1..*

GroupCommEndpointDecorator

Send(pMessage : Message*) : Message*
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listening are required. This information may be contained in the object reference for

the server object, and will be provided by the instantiator of the endpoint. Because the

different types of concrete endpoint require different information for connection

initialisation, this is not provided at this point in the framework model.

As can be seen in Figure 35, in addition to the concrete endpoint classes, an

abstract class, EndpointDecorator is derived from Endpoint. It, in turn, has

two concrete subclasses, MobileTransparencyEndpointDecorator and

GroupCommEndpointDecorator. EndpointDecorator is an instance of the

Decorator design pattern. This design pattern is described in section 4.3.5.4. The

purpose of concrete subclasses of EndpointDecorator is to provide additional

functionality for an endpoint if required. An endpoint can be wrapped with an

endpoint decorator class while retaining the Endpoint interface, thus appearing the

same to other classes. An EndpointDecorator itself contains a concrete

Endpoint, so, in a way, the EndpointDecorator class can be seen to be

dynamically adding an extra layer of functionality to the framework.

The purpose of MobileTransparencyEndpointDecorator is to

provide endpoints with additional functionality for mobile applications. Such

functionality could, for example, provide automatic reconnection and retransmission

of lost messages in case of a mobile connection breaking down.

The purpose of GroupCommEndpointDecorator is to provide endpoints

with additional functionality for object group communication. It could be

implemented to provide reliable multicast to groups of objects represented by one

endpoint to other objects. In other words, a GroupCommEndpointDecorator

appears as a single endpoint to other objects in the ORB, but it itself could contain a

number of concrete endpoints representing the objects in that group.

EndpointCreator

The EndpointCreator inheritance hierarchy is shown in Figure 36. In this

hierarchy, one generic concrete class, ConcreteEndpointCreator, represents

any number of classes inherited from EndpointCreator that might be provided

by the user of the ORB framework. EndpointCreator provides an interface for

the creation of concrete Endpoint objects. A concrete EndpointCreator class

is one of the classes that must be provided by the user of the ORB framework,

although default implementations could also be be provided. Concrete subclasses of
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EndpointCreator instantiate Endpoint objects in the function

CreateEndpoint. An example implementation of this function in a concrete

EndpointCreator class might look as follows:

Endpoint* CreateEndpoint(ObjectRef* pObjectRef)
{

Endpoint* pEndpoint = new SocketsEndpoint;
// set Endpoint parameters from pObjectRef here.
// This depends on format of object reference and
// concrete transport endpoint used
Endpoint* pWrapperEndpoint = new

MobileTransparencyEndpoint(pEndpoint);
return pWrapperEndpoint;

}

This function creates an endpoint that uses the sockets transport wrapper class and has

mobile transparency.

To create an Endpoint in CreateEndpoint, an object reference is required. This

is represented by the class ObjectRef, and its concrete form depends on the inter-ORB

protocol used. For example, if the inter-ORB protocol used is IIOP, then the object

reference will contain the object host’s IP address and the port number on which the

server ORB is listening. In this case, in the function CreateEndpoint this information

is used to initialise a sockets endpoint.

EndpointCreator is an instance of the Strategy design pattern, which is

described in section 4.3.5.6.

4.3.3 Components for client functionality

This section lists those framework classes that are used to create client functionality in

the ORB. They include the classes Invoker and EndpointManager, and other

classes associated with each of these classes, respectively.

4.3.3.1 Invoker

 The class diagram illustrating the composition of Invoker is illustrated in Figure

36. Invoker, as its name suggests, is responsible for performing invocations of

remote objects. Basically, this consists of Invoker sending and receiving messages

that contain marshaled invocation data. Invoker is not responsible for marshaling or

unmarshaling of invocation data. It is purely concerned with managing any number of
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connections with server ORBs. For this purpose, it has an instance of the

EndpointManager class.

Figure 36 Invoker Class Composition

As can be seen in Figure 36, EndpointManager has two concrete subclasses,

CachedEndpointManager and UncachedEndpointManager.

UncachedEndpointManager creates a new Endpoint for each invocation.

CachedEndpointManager is used to cache Endpoints between invocations. If

an invocation is made using the same object reference, then the cached Endpoint is

retrieved from the EndpointTable. If no Endpoint exists for the particular

object reference, then a new Endpoint is created using a concrete

EndpointCreator. This is illustrated using the following code fragment for

CachedEndpointManager’s GetEndpoint function:

Endpoint* GetEndpoint(ObjectRef* pObjectRef)
{

Endpoint* pEndpoint =
m_EndpointTable.GetEndpoint(pObjectRef);

if(!pEndpoint) {

pEndpoint = CreateEndpoint(pObjectRef);
m_EndpointTable.AddEndpoint(pEndpoint,

 pObjectRef);

OR

(from CORBA)

<<Interf ace>>

UncachedEndpointManager

GetEndpoint(pObjectRef  : ObjectRef ) : Endpoint*

CachedEndpointManager

m_EndpointTable : EndpointTable

GetEndpoint(pObjectRef  : ObjectRef *) : Endpoint*

EndpointTable

GetEndpoint(pObjectRef  : ObjectRef *) : Endpoint*
InsertEndpoint(pObjectRef  : ObjectRef *, pEndpoint : Endpoint*) : v oid

11 11

ORBImpl

m_pInvoker : Invoker*
m_pMarshaler : Marshaler*
m_pORBClientComponentFactory : ORBClientComponentFactory*
m_pReceiver : Receiver*

GetInvoker() : Invoker*
GetMarshaler() : Marshaler*
GetReceiver() : Receiver*

Inv oker

m_pEndpointManager : EndpointManager*

Inv oke(msg : Message*, pObjectRef  : ObjectRef *) : Message*
11 11

EndpointManager

m_pEndpointCreator : EndpointCreator*

GetEndpoint(pObjectRef : ObjectRef*) : Endpoint*
CreateEndpoint(pObjectRef : ObjectRef*) : Endpoint*

1

1

1

1

EndpointCreator

CreateEndpoint(pObjectRef : ObjectRef*) : Endpoint*
CreateEndpoint() : Endpoint*

11 11

ConcreteEndpointCreator

CreateEndpoint(pObjectRef  : ObjectRef *) : Endpoint*

return CreateEndpoint(pObjectRef );
Endpoint* pEndpoint = m_EndpointTable.GetEndpoint(pObjectRef );
if (!pEndpoint) {

pEndpoint = CreateEndpoint(pObjectRef );
m_EndpointTable.AddEndpoint(pEndpoint,  pObjectRef );

}
return pEndpoint;

Endpoint *pEndpoint = new SocketsEndpoint;
// set Endpoint parameters f rom pObjectRef  here. This depends on f ormat of  
object 
// ref erence and transport used
Endpoint *pWrapperEndpoint = new MobileTransparency Endpoint(pEndpoint);
return pWrapperEndpoint;
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}
return pEndpoint;

}

In this example, EndpointTable::GetEndpoint returns a null pointer if no

match for pObjectRef exists in the table, in other words, no cached Endpoint

exists that matches the supplied object reference.

EndpointManager is an instance of the Strategy design pattern, which is described

in section 4.3.5.6.

4.3.4 Components for server functionality

This section lists those framework classes that are used to create server functionality

in the ORB. They include the classes Receiver and POAImpl, and other classes

associated with each of these classes, respectively.

4.3.4.1 Receiver

The purpose of the Receiver class and its associated classes is to provide

the ability to establish connections for providing server functionality in the ORB.

Receiver and its associated classes are shown in Figure 37. The principal purpose

of the Receiver class is to act as demultiplexer of incoming messages for any

instances of EventHandler registered with it. As can be seen in the

EventHandler inheritance hierarchy, EventHandler has two concrete

subclasses, Acceptor and ServiceHandler. Both Acceptor and

ServiceHandler use an instance of Endpoint to implement the server end of a

connection between client and server ORBs. Acceptor is responsible for the

establishment of a connection, while ServiceHandler is responsible for handling

any subsequent requests incoming on that connection. EventHandlers register

with Receiver by calling its RegisterHandler function. Receiver then

demultiplexes any incoming messages for EventHandlers registered with it. It

achieves this by utilising a system call for event demultiplexing, for example select if

using sockets. One Acceptor can create one or more ServiceHandlers as it

accepts new connections. For example, if using sockets, the Acceptor’s

SocketsEndpoint can use the system call accept to create a new endpoint for
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the ServiceHandler that will now handle the new connection. This mechanism

allows an Acceptor to listen for new client connections on well known ports and

creating ServiceHandlers to handle subsequent requests on a new connection in

order to keep the Acceptor free to listen for new connection requests on the same

well known port. The Acceptor and its associated classes form an instance of

Acceptor in the Acceptor-Connector design pattern. This design pattern is

described in section 3.3.5.2.

Figure 37 Receiver Class Composition

In order to create concrete endpoints for instances of Acceptor and

ServiceHandler, Receiver has an instance of EndpointCreator. A

ConcreteEndpointCreator can be created in the same way as it is for the

EndpointManager class.

An instance of Receiver has associated with it a

ReceiverThreadingStrategy. As its name suggests, the concrete subclass of

EventHandler

ConcreteEndpointCreator

CreateEndpoint(pObjectRef : ObjectRef*) : Endpoint*

ReceiverThreadingStrategy

ORBImpl

m_pInvoker : Invoker*
m_pMarshaler : Marshaler*
m_pORBCl ientComponentFactory : ORBCl ientComponentFactory*
m_pReceiver : Receiver*

GetInvoker() : Invoker*
GetMarshaler() : Marshaler*
GetReceiver() : Receiver*

ServiceHandler

Open() : void
HandleEvent() : void
SendReply(pMessage : Message*)

Endpoint

m_TransportWrapper

Send(pMessage : Message*) : Message*
Send(pMessage : Message*) : void
Receive() : Message*
Accept(argname) : Endpoint*

1

1

1

1

EndpointCreator

CreateEndpoint(pObjectRef : ObjectRef*) : Endpoint*
CreateEndpoint() : Endpoint*

Receiver

RegisterHandler(pEventHandler : EventHandler*) : void
HandleEvents() : void
Select(pHandlers : EventHandler*, NoOfHandlers : short) : EventHandler*

1 11 1

1

1

1

1

Acceptor

Acceptor(pEndpoint : Endpoint*)
Open() : void
HandleEvent() : void

1 1..*1 1..*

1

1

1

1

1

1..*

1

1..*
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ReceiverThreadingStrategy associated with Receiver determines the

threading model which the Receiver uses. Possible concrete subclasses include

• ThreadPerConnectionReceiverStrategy

• ThreadPerRequestReceiverStrategy

• SingleThreadedReceiverStrategy

ReceiverThreadingStrategy is an instance of the Strategy design pattern,

described in section 4.3.5.6.

4.3.4.2 POAImpl

The purpose of POAImpl is to implement the CORBA specified POA

interface. POA is the interface of the Portable Object Adapter. POAImpl is illustrated

in Figure 38. The purpose of the POA is to allow object implementations to access

services provided by the ORB. Examples of these services are the generation and

interpretation of object references, method invocation, and registration of object

implementations.

Figure 38 POAImpl Class Composition

As can be seen in the diagram, POAImpl can recursively contain instances of itself.

The parent of all POAImpl objects represents the root POA as described in the

CORBA specification. Each instance of POAImpl has an instance of

POA
(from PortableServer)

<<Interface>>

ObjectImpl

ActiveObjectTable

1

0..*

1

0..*

POAImpl

Dispatch(pMessage : Message*) : Message*
LocateServant(pObjectRef : ObjectRef*) : Object*

1 0..*1 0..*

1 111
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ActiveObjectTable. This is used to store object implementations, represented

by the class ObjectImpl.

If a ServiceHandler needs to invoke an object because it has received an

incoming client request, it calls POAImpl’s Dispatch function with a pointer to

Message as its argument. POAImpl will extract the object reference from the

message and use its ActiveObjectTable to locate the server object. It then calls

the object’s Request function. The object will proceed to unmarshal the request

data, call the appropriate method and marshal the reply message, which is then

returned by POAImpl. This process is illustrated in more detail in section 5.3.2.

4.3.5 Principal design patterns used in the framework

As has already been mentioned throughout this chapter, instances of a number of

design patterns appear in the framework model. Those patterns which have not

already been explained previously are briefly explained here.

4.3.5.1 Abstract Factory

The Abstract Factory design pattern provides an interface for creating families of

related or dependent objects without specifying their concrete classes.

Figure 39 Abstract Factory Design Pattern

ConcreteFactory1

CreateProductA()
CreateProductB()

ConcreteFactory2

CreateProductA()
CreateProductB()

ProductA2 ProductA1

ProductB2 ProductB1

AbstractFactory

CreateProductA()
CreateProductB()

AbstractProductA

AbstractProductB

Client
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 The Abstract Factory design pattern is illustrated in Figure 39. The abstract class

AbstractFactory provides an interface for the creation of two products,

ProductA and ProductB. Which concrete product gets instantiated depends on

which concrete factory is used.

In the ORB framework, ORBComponentFactory is an instance of the

Abstract Factory pattern. The functions CreateProductA and

CreateProductB are represented by CreateInvoker, CreateMarshaler,

and CreateReceiver. AbstractProductA could, for example, be

Marshaler. ProductA1 might represent IIOPMarshaler while ProductA2

might represent DCE_CSIOPMarshaler. The CreateInvoker and

CreateReceiver functions work somewhat differently, as in their case the created

classes are not customised by inheritance but by composition. For example, a concrete

ORBComponentFactory might instantiate an Invoker with an

EndpointManager that caches SocketsEndpoints. A similar mechanism

might be used for the creation of Receiver. Thus, CreateInvoker and

CreateReceiver are themselves instances of the Factory Method design pattern,

which has already been described.

4.3.5.2 Adapter

The Adapter design pattern converts an interface of a class or a set of

functions into an interface that clients expect. The Adapter design pattern is also

known as Wrapper. It is illustrated in Figure 40.

Figure 40 Adapter Design Pattern

Target

Request()

Client
Adaptee

SpecificRequest()

Adapter

Request()
adaptee->SpecificRequest();
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Target is an abstract class that provides the required interface. Adapter is a

concrete subclass which adapts the interface of Adaptee to the Target interface.

In the ORB framework, the TransportWrapper classes represent an

instance of the Adapter pattern. TransportWrapper is equivalent to Target,

while each concrete TransportWrapper subclass represents an Adapter. The

Adaptee is represented by the various inter process communication APIs.

4.3.5.3 Builder

The Builder design pattern separates the construction of a complex object

from its representation, thereby allowing the same construction process to create

different representations. Builder is illustrated in Figure 41.

Builder is used to create a product, represented by Product. Different concrete

Builders allow the product to be assembled in different ways.

Figure 41 Builder Design Pattern

In the ORB framework, Marshaler is an instance of the Builder design

pattern. Different concrete Marshalers represent different concrete Builders.

Product is represented by Message. The concrete Message that is assembled

depends on the concrete Builder used, while the assembly process remains

essentially the same. Director is represented by the client stub or server skeleton

code. The primary difference between Builder and Abstract Factory is that Builder

constructs a product step by step. Abstract Factory’s emphasis is on creating families

of product objects in one step.

4.3.5.4 Decorator

ConcreteBuilder

BuildPart()
GetResult()

Product

Director

Construct()

Builder

BuildPart()

for all objects in structure {
builder->BuildPart();

}
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The Decorator design pattern is used to dynamically attach additional

responsibilities to an object. Decorator is illustrated in Figure 42.

Figure 42 Decorator Design Pattern

Component defines a common interface to the objects which can have

responsibilities added to them dynamically. ConcreteComponent is an example

of such an object. Decorator conforms to the Component interface. At the same

time, it maintains a reference to a Component object to which it attaches additional

responsibilities. A ConcreteDecorator is used to attach these additional

responsibilities.

In the ORB framework, Endpoint and its related classes form an instance of

the Decorator design pattern. Endpoint represents the Component interface.

ConcreteComponents are represented by SocketsEndpoint,

TLIEndpoint, and FIFOEndpoint. EndpointDecorator represents

Decorator. Finally, ConcreteDecorators are represented by

MobileTransparencyEndpointDecorator and

GroupCommEndpointDecorator. These two classes add extra functionality to

the other concrete Endpoint classes.

4.3.5.5 Singleton
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AddedBehaviour()
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The Singleton design pattern is used to ensure that a class has only one

instance and to provide a global point of access to it. Singleton is illustrated in Figure

43.

Figure 43 Singleton Design Pattern

uniqueInstance represents the one and only instance of Singleton. It is

created by the Instance operation which is a class method and lets clients access

Singleton’s unique instance.

In the ORB framework, ORBImpl, Marshaler, Invoker, and Receiver

form instances of the Singleton design pattern.

4.3.5.6 Strategy

The Strategy design pattern is used to define an interface to an algorithm while

letting the algorithm vary. Strategy is illustrated in Figure 44.

Figure 44 Strategy Design Pattern
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Strategy declares an interface that is common to all the algorithms. The different

concrete algorithms are represented by ConcreteStrategy objects. Context is

the client of a particular strategy and thus maintains a reference to a concrete

Strategy object.

In the ORB framework, Strategy is used in numerous places. Examples of

instances of the Strategy pattern are EndpointCreator, EndpointManager,

and ReceiverThreadingStrategy.

4.4 Summary

This chapter presented the formulation of requirements for the ORB

framework and its actual design. The requirements were presented within the contexts

of whitebox frameworks, CORBA based ORBs, general requirements of an ORB

framework, and domain specific requirements of an ORB framework.

The framework design focused on the proposed principal ORB framework

components, ie. ORBImpl, Marshaler, Invoker, Receiver, and POAImpl.

The principal design patterns that were used in the design were also explained.
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Chapter 5 

Evaluation of the Object Request
Broker Framework

5.1 Introduction

The objective of this chapter is to illustrate how the framework can be used to create

customised ORBs. It also demonstrates how an ORB created using the framework

would execute a simple object invocation. This is visualised using Unified Modeling

Language (UML) sequence diagrams.

5.2 Creating customised Object Request Brokers

The ORB framework can be used in a number of ways to provide various degrees of

ORB customisation. Customisation of the principal components of the ORB can be

achieved by implementing a concrete subclass of ORBComponentFactory. A

concrete EndpointCreator must also be provided in order to allow it create the

required concrete Endpoints from the object references used by the ORB. To

provide even more customised behaviour, any of the abstract classes in the framework

can be inherited from to provide behaviour that was unforeseen at framework design

time.

5.2.1 Creating a concrete ORBComponentFactory
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The most basic way in which to customise an ORB using the framework is to provide

a concrete subclass of ORBComponentFactory. As described in the previous

chapter, this class is responsible for creating the main components of the ORB, i.e.

Marshaler, Invoker, and Receiver. By providing a concrete subclass of

ORBComponentFactory, these principal components can be customised.

ORBComponentFactory’s function CreateMarshaler is used to

instantiate a concrete subclass of Marshaler. If, for example, an

IIOPMarshaler is to be created, CreateMarshaler should be written as

follows:

Marshaller* CreateMarshaler()
{

return new IIOPMarshaler;
}

Similarly, CreateInvoker is used to create an instance of Invoker. Since

Invoker is a concrete class itself, and does not form part of an inheritance hierarchy,

no subclass of Invoker needs to be created by the application programmer. Rather,

Invoker is customised by configuring it with a concrete EndpointManager, which, in

turn, is customised with a concrete EndpointCreator. This process can be illustrated

by the following sample code for ORBComponentFactory::CreateInvoker():

Invoker* CreateInvoker()
{

// creation of Invoker that uses
// ConcreteEndpointCreator
// and caches Endpoints
EndpointCreator* pEndpointCreator =

new ConcreteEndpointCreator;
EndpointManager* pEndpointManager =

new CachedEndpointManager(pEndpointCreator);
Invoker* pInvoker = new Invoker(pEndpointManager);
return pInvoker;

}

Thus, it can be seen that the customisation of Invoker relies somewhat on object

composition as well as inheritance. In a purely black-box framework customisation

would only require object composition since all concrete classes would already be

provided as components in the framework.

Finally, CreateReceiver is used to create instances of Receiver. This

function needs to be implemented in a similar way to CreateInvoker, since it
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needs to create an EndpointCreator that will be used by Receiver. In the

same function, Receiver needs to be configured with a concrete

ReceiverThreadingStrategy:

Receiver* CreateReceiver()
{

EndpointCreator* pEndpointCreator =
new ConcreteEndpointCreator;

ReceiverThreadingStrategy* pThreadingStrat =
new ThreadPerRequestReceiverThreadingStrategy;

Receiver* pReceiver = new Receiver(
ConcreteEndpointCreator,
ThreadPerRequestReceiverThreadingStrategy);

return pReceiver;
}

5.2.2 Creating a concrete EndpointCreator

The class EndpointCreator is responsible for creating instances of concrete

Endpoints. A concrete EndpointCreator needs to be supplied by the user of

the framework in order to map an object reference to the required

TransportWrapper’s parameters needed to initialise an Endpoint. The

EndpointCreator function in which a concrete Endpoint is created is

CreateEndpoint. Sample code for this function was given in the previous

chapter.

5.2.3 Inheriting from other abstract framework classes

In addition to inheriting from the abstract classes mentioned above, the framework

permits the creation of customised ORBs by inheriting from other abstract classes in

the framework. If, for example, a new inter-ORB protocol is to be created, a new

concrete class could be inherited from Marshaler in order to implement this

protocol. This might also require the creation of a new Encoder class, as the

required low level data encoding method may vary from those used for existing

protocols.

Likewise, other classes could be added to the framework as the need arises. For

example, other concrete TransportWrapper classes could be added, and with

them the associated Endpoint classes.
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5.3 A sample object invocation

This section illustrates how an ORB created with the framework would

perform a simple object invocation. Sequence diagrams for object interaction are

provided in the Unified Modeling Language (UML). As an example, consider the

following IDL code:

Interface Calculator
{

struct Group
{

octet o;
long l;
short s;

};
Group CubeStruct(in Group values);

};

This interface defines a method that takes as its argument an instance of a simple

structure. It returns an instance of the same structure. The purpose of the method is to

simply cube each element in the structure and return the structure.

In order to use this interface in order to perform CORBA object invocation a

stub and a skeleton class are required. These are illustrated in Figure 45. As can be

seen in the diagram, ObjectImpl is the framework class that implements the CORBA

Object interface. ObjectImpl contains a reference to an instance of the ObjectRef

class. This class represents an object reference. The contents of ObjectRef depend on

the inter-ORB protocol used in the implementation of the ORB. Inherited from

ObjectImpl is the class Calculator. This class specifies the Calculator interface based

on the IDL definition. Calculator_Stub and Calculator_Skeleton both inherit from

Calculator. They provide the stub and skeleton classes respectively. The classes

Calculator, Calculator_Stub, and Calculator_Skeleton could be created manually or

by a suitable IDL compiler. Finally, Calculator_Impl needs to be provided by the

application programmer. It provides the implementation of the Calculator interface.
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Figure 45 Calculator Stub And Skeleton Classes

5.3.1 Sample Object Invocation: Client Side

The sample object invocation based on the above interface can be split into

client and server sequence diagrams. Figure 46 illustrates the overall client side

sequence diagram. As can be seen in the diagram, the Client calls the Calculator_Stub

function CubeStruct. What happens next can be broken down into three parts. First,

the invocation data is marshaled into a request Message. This is shown in Figure 47.

To do this, the Marshaller needs to calculate the required size of the request message.

This allows the correct amount of space to be allocated for Message’s m_pBuffer.

Next, the Message object is created. Then, the required headers are marshaled into

m_pBuffer. This depends on the inter-ORB protocol and thus on the concrete

Marshaler used. After the headers, the invocation parameters are marshaled into the

Message using the TypeCodeInterpreter and Encoder. This process was described in

detail in Chapter 4. The MarshalInvocationRequest function returns with a Message
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that is passed to the Invoker using the Invoke function. This is the second part of the

client side object invocation sequence. It is illustrated in Figure 48. Invoker obtains a

suitable Endpoint based on the ObjectRef that has been passed to it. Invoker passes

this object reference on to Endpoint Manager which uses it to either retrieve an

existing Endpoint or to create a new Endpoint using EndpointCreator. Finally,

Invoker calls Endpopint’s Send function with Message as its argument. Endpoint uses

a TransportWrapper to write the data contained in Message object. It subsequently

uses Read to read the data that will form the server’s reply Message, which is

subsequently returned by Invoker. The third part of the client side object invocation

sequence is the unmarshaling of the return Message. This is similar to the marshaling

of the outgoing Message, and is illustrated in Figure 49.

Figure 46 Cube Invocation: Client Side Overall View
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Figure 47 Cube Invocation: Client Side Marshaling

Figure 48 Cube Invocation: Client Side Invocation
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Figure 49 Cube Invocation: Client Side Unmarshaling

5.3.2 Sample Object Invocation: Server Side

The overall server side sequence for the sample object invocation is shown in Figure

50. As can be seen in the diagram, an Acceptor is created and registered with the

Receiver. The Receiver’s HandleEvents function is called subsequently. This starts

the Receivers demultiplexing function, Select. When an event occurs, i.e. an incoming

message has arrived, the Acceptor’s HandleEvent function is called. The Acceptor

proceeds to create a ServiceHandler to handle the message. The ServiceHandler needs

to be requistered with Receiver next. If the threading strategy employed is single

threaded, this allows the Receiver to demultiplex further incoming events on both the

Acceptor and any already existing ServiceHandlers. When an event occurs, the

ServiceHandler calls the POAImpl Dispatch function. This is illustrated in more detail

in Figure 51. POAImpl now uses the Marshaler to obtain the object reference from

the Message. Based on the object reference, it obtains the server object from the

POAImpl’s ActiveObjectTable. It then calls the object’s Request function which

proceeds to unmarshal the Message in the usual way. The correct function of the
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server object is then called, based on information that was contained in the Message.

A reply Message is marshaled and returned by the POAImpl’s Dispatch function.

Finally, the ServiceHandler returns this Message using its Endpoint.

Figure 50 Cube Invocation: Server Side Overall View
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Figure 51 Cube Invocation: Server Side Dispatching View

5.4 Summary

 This chapter illustrated how the ORB framework can be used to create

customised ORBs. It was shown how ORB customisation focuses on the

ORBComponentFactory class. It was also shown how a simple object invocation

is implemented using a framework based ORB. The following chapter concludes with

some comments on the framework approach and the framework itself, as well as

comments on implementing the framework.
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Chapter 6 

Conclusion

6.1 Introduction

The objective of this chapter is to provide some concluding remarks about the design

of the ORB framework. First, some problems regarding the framework approach in

general are described, and how they relate to the ORB framework specifically. Next,

some specific problems encountered with the design of the framework are detailed.

Finally, a possible approach to implementing and extending the framework is

described.

6.2 Problems with the framework approach

Problems typically encountered when using the framework approach have

already been introduced in Chapter 3. This section reiterates some of these, and

relates them to the ORB framework design.

Because a framework is developed with a “one fits all” philosophy, the development

effort required is much larger than that for an ordinary application in the same

domain. The knowledge required from the developers essentially needs to cover the

entire application domain. In the case of the ORB framework, this is especially true.

Developing a framework for building customisable ORBs that really covers the entire

domain of CORBA based middleware is a nontrivial task, since many different

application scenarios can be encountered. To create an ORB specifically aimed at a

particular scenario, in itself, requires a large effort. An example of this is TAO, the
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ACE ORB, described in Chapter 3, the design and implementation of which has

required a large effort. Yet TAO is aimed at one specific scenario, that of real time

applications. The development of an ORB framework hoping to provide real time

functionality corresponding to that of TAO would require at least the amount of effort

that went into TAO’s development, but much more if it were to cater for other

scenarios as well.

Another problem associated with frameworks relates to their use. The learning curve

required by application programmers who want to use the framework to build

applications based on it is quite large. It is larger for a whitebox framework than for a

blackbox framework. The ORB framework described in this project is a whitebox

framework and certainly would require the user’s insight if he or she were to build

ORBs with it. The principal reason for this is that the framework is mainly based on

inheritance, which requires familiarity with the classes from which one inherits.

As a consequence of this problem frameworks require a large amount of

documentation about their design, inner workings, and use. Again, this contributes to

the overall development effort, though it might be argued that any software project

should be well documented, be it a simple application or a complex framework.

Since frameworks generally control the flow of execution of applications built using

them, problems can occur when attempts are made to combine two or more

framework into an application. This problem is also known as architectural mismatch.

With an implementation of the ORB framework, this might occur when, for example,

an attempt is made to provide a graphical user interface (GUI) using a framework

designed for this purpose. For example, the Microsoft Foundation Classes (MFC)

provide an application framework for the creation of Microsoft Windows based GUIs.

This framework provides its own architectural model, the Document-View

architecture, and could thus create problems in combination with the ORB

framework.

Related to the fact that a framework generally determines the flow of control within

an application built with it, is that debugging is made more difficult in such

applications. In an implementation of the ORB framework this would be compounded

by the fact that an application built using a framework based ORB would be

distributed between client and server ORBs.

Because all applications built using a framework follow one architectural model, an

application built using a framework might not be as efficient as a similar application
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that was purpose built. In other words, the performance of an application from an

execution speed point of view may not be as good as that of a purpose built

application. This is due to the fact that because of the required generality and

flexibility, a framework may use a lot of indirection. An example of such indirection

in the ORB framework is the creation of concrete Endpoints. Instead of using the

Invoker to create Endpoints directly, it delegates this task to the EndpointManager,

which, in turn, delegates this task to the EndpointCreator. Were it known at

framework design time that all Endpoints should be SocketsEndpoints with no

caching functionality, then all Endpoints could be instantiated in Invoker directly.

There is a direct relationship between increased indirection and increased flexibility.

Finally, the maintainability and extensibility of frameworks affects the applications

built with them. If a framework needs to be extended or modified, these modifications

should remain compatible with previous applications built with the framework. In the

case of the ORB framework, if ORBs are created using an implementation of the

framework, then future versions of the framework should allow those existing ORBs

to be recompiled and work correctly. This is especially important when a number of

new concrete classes, concrete Endpoints, for example, have been implemented in

order to provide additional behaviour. A new version of the ORB framework should

ensure that any such classes that were written for previous versions of the framework

will still work.

6.3 Implementing the framework

It was beyond the scope of this project to provide an actual implementation of

the ORB framework. A number of issues need to be considered before embarking on

an implementation project for the framework.

The implementation language should be an object oriented language such as

Java or C++. For performance reasons C++ might be preferred over Java. Since Java

uses a Virtual Machine (VM), effectively translating Java byte code at runtime, the

performance of a framework implemented in Java may be inferior to one implemented

in C++. At the same time, recent increases in hardware performance have made

application development in Java more favourable, therefore it could be chosen as a

suitable implementation language for the framework.



101

Included in the Java language is the provision for concurrent programming. In

C++, native operating system calls would need to be used to implement multithreaded

programming. This is in addition to the fact that Java is operating system independent,

whereas C++ effectively is OS dependent and needs to be recompiled for each

specific platform.

As regards operating systems and platforms, it is really up to the implementor

of  the framework to decide which is suitable. This depends on the available

development tools, compilers, and programming experience. Obviously, the nature of

the framework suggests that the more operating systems and platforms are supported

by a particular development effort, the better.

Finally, there is the question of what is needed for a minimum implementation

of the framework. The answer to this is that essentially one concrete class is required

for each abstract class that has been defined in the framework. An exception to this

are any of the EndpointDecorator classes, as they are needed only for the provision of

extra functionality to an Endpoint.

A point to note when implementing the framework is that it is not set in stone,

and modifications might be required in order to produce an actual implementation. It

is possible that the implementor discovers alternative designs for parts of the

framework which would facilitate an implementation. These should, by all means, be

explored.

6.4 Summary

This chapter provided some concluding remarks about the design of the ORB

framework. Problems regarding framework design in general were discussed, as well

as problems in relation to the design of the ORB framework. Finally, some points

were made about a possible implementation of the ORB framework
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