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Abstract

The construction of distributed applications is a complex and time consuming task, which

has been addressed by the Object Management Group’s Common Object Request Broker

Architecture. However implementations of this standard are typically designed for

stationary hosts connected to a fixed network and do not take into account the problems

associated with mobile computing. These problems include limited processing resources

on the mobile host and the use of unreliable and low-bandwidth wireless networks.

A full CORBA implementation is unsuitable for use on mobile hosts, such as

laptops and personal digital assistants, since it is too resource intensive. It is however

desirable for mobile hosts to be able to interopate with existing CORBA applications

while simultaneously taking advantage of mobility.

This dissertation describes the design and implementation of a collection of

components suitable for building applications, which are capable of interoperating with

CORBA implementations and which are suitable for mobile hosts. The collection of

components allows an application to act as a client or as a server in a CORBA context.

The implementation was carried out on Windows NT and Solaris using C and

C++, Windows and Unix Sockets are used for network communication.
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Chapter 1

Introduction

In recent years, two noticeable areas of growth in the computer industry have been the

number of distributed applications being built using Object Request Brokers (ORBs) and

the rapid growth in the area of mobile computing. These ORBs are implementations of

the Object Management Group’s (OMG) Common Object Request Broker Architecture

(CORBA) [OMG’98]. The OMG has specified a protocol to allow ORBs to interwork

called the Internet Inter-ORB Protocol (IIOP). This thesis describes an implementation of

the IIOP protocol, which is suitable for mobile devices.

This chapter introduces the area of mobile computing and the OMG’s recent

standard to facilitate ORB interoperability. An analysis of the requirements to bring ORB

interoperability into the mobile computing arena is, then, presented. Following this, the

specific goals of this project are covered. An overview of the project is then presented as

well as some of the project’s achievements. Finally, a roadmap of the rest of the

dissertation is presented.

1.1 Mobile Computing

Over the past decades, many transitions in the computer industry are clearly discernible.

The transition from mainframes to minicomputers during the 1970’s, then the subsequent

move from minicomputers to personal computers during the 1980’s and early 1990’s are

clearly discernible. A similar transition has recently begun and that is from the

widespread use of personal computers to the widespread use of mobile computers.

Mobile users typically employ a laptop computer or a personal digital assistant (PDA),

perhaps with a mobile phone being used for network communication. Other equipment

that is used to provide the communications mechanism includes Wireless LAN and

Wireless ATM technologies.
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The obvious advantage provided by mobile computing, is freedom of movement.

Computer users will no longer be restricted to their office or their home in order to use

applications that are essential to their work. Sales representatives will no longer need to

return to their office to place an order for a company’s product or make a phone call to

place the order. Instead the sales representative will place orders electronically using

his/her mobile device. This will also allow greater flexibility in people’s work practices

and working hours as they increasingly utilise the emerging mobile computing devices.

Along with the obvious advantages brought by mobile computing, there are

obstacles that need to be overcome. These problems are faced by both the users of mobile

devices and the developers, of applications, for these devices. To make the mobile device

portable, the processing resources available on the device are usually somewhat limited

in comparison to what can be found on a typical desktop machine today. This restricts the

user of the mobile device in that only a limited number of applications are available and a

smaller subset of functionality of these applications is possible. This restriction also

applies to the application developer as the onus is upon him/her to maximise the use of

the available resources.

Other disadvantages include the limited bandwidth available over the wireless

communications media in comparison to typical Local Area Networks (LANs) (9600bps

for wireless media versus 10/100Mbps for LANs). As well as the limited bandwidth,

there is a significant difference in the error rates between, for example, a GSM phone and

a LAN. Another difference to be aware of is the expense of using a GSM phone

compared to the minimal cost of using a LAN. All of these problems impact on a

developer as they begin development of new mobile computing applications.

As the solutions to these problems are more fully understood, more applications

will quickly follow. Obvious applications are those that are currently common on today’s

desktop machines. Web browsers and E-mail reading programs are typical of the type of

applications that are required for the mobile environment.

However, limiting the applications on mobile devices to those that are common

on fixed networks does not capitalise on the advantages of mobile computing.

Applications that are aware of their mobility are only beginning to be thought of. An

example of such a mobile-aware application would be an in-car navigation system.
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The applications, whether they are mobile-aware or not, will require a complex

distributed system to be in place to enable mobile devices to be located, receive and send

information as they move. One of the most widely used architectures for building

distributed applications is the OMG’s CORBA standard.

1.2 CORBA

The Common Object Request Broker Architecture (CORBA) from the Object

Management Group (OMG) defines a framework for developing object oriented

distributed applications. This framework makes network programming easier by allowing

a distributed application to be built as though it were being implemented for a single

computer. CORBA also brings object-oriented techniques to a distributed environment.

CORBA defines a standard architecture for Object Request Brokers (ORBs). An

ORB allows the creation of software objects whose member functions can be invoked by

client programs located anywhere in the network.

The CORBA standard initially made no provision for interoperability between

ORBs, leaving it to ORB developers to create their own proprietary interoperability

protocols for their own products. This was addressed by the OMG with the CORBA 2.0

standard. This defined a standard protocol, which allowed 2.0 compliant ORBs from

different vendors to interoperate. This standard protocol is called the General Inter-ORB

Protocol (GIOP) and a mapping of this onto TCP/IP is called the Internet Inter-ORB

Protocol (IIOP).

The IIOP protocol makes a distinction between clients and servers using

request/reply interactions. A client creates an IIOP request message to invoke the method

of an object, which is stored at a particular server (typically supported by an ORB). IIOP

also defines the format of reply messages that can be sent by the server in response to the

request message. Other facilities that are possible with IIOP include querying for the

location of an object and the cancellation of a previous request message.

With IIOP, applications using different ORB implementations now have the

capacity to interoperate. These applications are typically developed for stationary hosts as

the CORBA standard was not developed with mobile computing in mind. A naive

solution to developing distributed applications in the mobile environment, would be to
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port an ORB implementation to a mobile device. However, this is infeasible due to the

complexity of the CORBA standard and the limited processing resources typically

available on the mobile device.

Thus support for building mobile applications, which are able to interoperate with

ORB implementations is required. This support would obviously have to be based around

IIOP and would also require some form of mobility support. The mobility support is

necessary since the wireless link in a mobile environment is not as reliable as its LAN

counterpart. Therefore TCP/IP connections will typically be lost with greater frequency

in a mobile environment.

1.3 Project Goal

The goal of this project was to produce a collection of software objects that allow

computer programmers to build applications that are suitable for mobile devices and have

the capacity to interoperate with existing ORB implementations.

These objects should be simple and intuitive to program with. They should hide

the complexity of the IIOP protocol, which it supports to provide ORB interoperability.

In addition it should attempt to hide broken TCP connections from the applications using

it. This becomes important when the characteristics of the wireless communications

medium are considered. Finally, the collection of objects should be useable on different

operating systems architectures, in particular, it should be useable on both the Windows

NT and Solaris operating systems. Although these objects do not provide any

multithreading facilities, their implementations should be re-entrant and allow

multithreaded applications to be built using them.

1.4  Overview of Design

The basis of the software objects identified above is to aid application developers when

building applications, which need to interoperate with other CORBA objects. These

software objects model a particular aspect of IIOP, request messages or the marshalling

of data into and out of communication buffers for example.

To produce the required software objects, a sequence of research, testing, design

and implementation was carried out. The research involved investigating approaches
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taken in other mobile computing related research projects. In addition to this, a

proprietary IIOP implementation, IONA Technologies’ IIOP Engine, was used to gain

experience of programming with IIOP. Other programming experience was gained in the

area of inter-process communication and multithreading.

Following an analysis of the IIOP protocol and other issues relating to

characteristics of mobile devices, a design to allow mobile devices to send and receive

CORBA object invocations was produced. The design features three distinct components:

the Mobile layer, the IIOP layer and the Swizzling IIOP (S/IIOP) layer.

The Mobile layer allows broken or lost TCP/IP connections to be hidden. The

IIOP layer allows IIOP messages to be sent to and received from CORBA objects.

Finally, the S/IIOP layer allows a mobile device to store CORBA objects and receive

method invocations for these objects.

1.5  Project Achievements

A design for the three components introduced above was produced. The IIOP layer was

implemented using C++ [Stroustrup’97] and C [Kernighan’88] on the Windows NT 4.0

operating system. Subsequent work was done to port the IIOP layer to the Solaris

operating System. The two implementations were then tested with the proprietary

implementation mentioned above. One part of the two part Mobile layer was

implemented which allows clients on mobile devices to create connections on a LAN.

This has yet to be tested.

1.6  Roadmap

The remaining chapters in this document detail the various phases of the project

introduced above. The following is an outline of the particular chapters:

Chapter 2 State of the Art

This chapter presents the problems encountered in a typical mobile environment and

introduces general techniques used to overcome them. Related research projects, which

utilise these various techniques are then presented.
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Chapter 3 CORBA and Interoperability

An introduction to the OMG’s CORBA standard is presented, followed by a detailed

discussion of how interoperability is achieved using the GIOP and IIOP protocol.

Chapter 4 Design

An analysis of the interoperability problem, as it relates to mobile environments, is given

along with the design of the Mobile layer, IIOP layer and Swizzling layer.

Chapter 5 Implementation

This chapter describes the implementation of the various layers.

Chapter 6 Evaluation

An evaluation of the work carried out is given in this chapter as well as a comparison of

the performance of the IIOP layer with another IIOP implementation.

Chapter 7 Conclusion

Details of further possible work are given along with some concluding remarks.

Appendix A IDL Definitions for GIOP and IIOP

The OMG IDL definitions of the GIOP and IIOP protocols are given.
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Chapter 2

State of the Art

This chapter provides an overview of the main technical problems that are encountered in

mobile computing environments, followed by a description of the most important

techniques that have been used to address these problems.

This chapter includes a review of a number of influential research projects in

which these techniques have been employed including: Rover, Bayou, Dolmen, Mobile

IP and, finally OnTheMove.

2.1 Introduction

Figure 2.1 is a typical architecture allowing a mobile host to access services available on

a fixed network and, in the opposite direction, clients on the fixed network to access

services on a mobile host.

Figure 2.1 Mobile Host accessing and providing services

The mobile host (MH) is a laptop or personal digital assistant with one or more interfaces

for communication across a wireless link (e.g. WaveLAN and/or GSM phone). The MH

may also have an interface that allows it to connect directly to the fixed network.

Supporting multiple interfaces on the MH introduces the problem of support for

connection transparency. For example, a user with a MH connected directly to the fixed

network goes to a meeting within the same building. The MH might then switch to the

Wireless LAN interface and later, as the user moves out of the building, to the GSM

phone interface. This transition should ideally be done transparently to the user of the

MH.

Mobile
Host

Mobility
Gateway

Server /
ClientFixed Network
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The Mobility Gateway (MG) is similar to a Base Station in mobile telephony and

provides a routing facility for the mobile hosts that it is currently serving. The MG routes

data from a MH to nodes on the fixed network and relays data from nodes on the fixed

network destined for the MH. There can be many MGs attached to the fixed network and

as a MH moves, it can be "handed over" from one MG to another. The cause of this

"hand over" could be the MH going out of range of one MG or a superior quality wireless

link to a different MG being established. This again introduces the problem of connection

transparency as a user of the MH should not necessarily need to know that the MG has

changed (unless, for example, a different tariff scheme is being used at that MG).

One problem in the mobile environment described above is the low bandwidth

wireless link between the MH and the MG. Added to this is the fact that such a wireless

link is typically more unreliable than a typical local area network and also usually more

expensive to use. Moreover, the MH could be disconnected from the MG for intermittent

periods. This again raises the issue of connection transparency, as the MH and MG

should be able to continue operation despite a connection being lost and regained. All

these problems suggest that transmission over this wireless link should be minimised as

much as possible. Another issue is provision of support for disconnected operation to

allow applications on the MH’s to continue operation even when the MH is disconnected

from the fixed network for a prolonged period of time.

To overcome the problems described above, three main techniques are used in

object-support systems designed for use in mobile environments [Chen’97]. These are:

• Object Replication

• Object Migration

• Object Delegation

2.1.1 Object Replication

To increase the availability of various server resources on the fixed network, objects held

by the server can be replicated and stored at multiple nodes on the fixed network or

possibly at MHs. This technique is particularly useful in the event of network partitions

(e.g. when an MH becomes disconnected from the fixed network) but it introduces the

problem of consistency management. In essence, the server object is copied across the
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network to a secondary host. The secondary host must then create a context for the newly

created object (known as a replica) so that it can be accessed in a similar way to the

original object.

A strategy for the management of these multiple server objects must be chosen.

Two possible choices are pessimistic replica control and optimistic replica control. In a

pessimistic replica control scheme, such as read any/write one, a write lock has to be

obtained by the object’s user before the object can be modified. Such a scheme leads to

low availability and is impractical in the mobile environment since a MH may obtain the

write lock and then become disconnected from the fixed network preventing other users

from modifying the object for prolonged periods.

In optimistic replica control schemes a read any/write any policy is used. Any

object’s user can read or modify any replica of the shared object at any time. It is clear

that preserving absolute consistency with this strategy is not possible but it allows

applications to be minimally interrupted when there are network partitions or temporary

disruptions in the network connection. In this case, there is a possibility of read/write and

write/write conflicts arising. These are illustrated in the figures below.

Figure 2.2(a)

Server Server

Client A

X

Client B

X

 X

(a) Client A and client B
both connected, make local
replicas of object X

(b) Client A remains connected and client B becomes disconnected.
Client A modifies X, yielding Xa at both client A and server, while
X continues to be stored at client B.

X

Client B

X
Xa

Client A Client B
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Figure 2.2(b)

Read/write conflicts are usually not detected immediately when they happen. This is

because the client reading the object may not know that the version of the object that it is

reading is not the most up to date. Read/write conflicts can be detected by a server, which

maintains a list of all replica objects. If an object on the list is modified by some

application while another application, on a MH, reads the object while it is disconnected,

the application must be notified of the changes when the MH becomes connected again.

Write/write conflicts may easily be detected when multiple replicas are reconciled

or merged back into one primary copy by the use of version vectors [Colouris’94]. The

time taken for this clean-up stage may be short if consistency among the replicas is

maintained during replication.

In summary, object replication may incur a high set-up cost, maintenance during

usage to ensure consistency, and clean-up overhead.

2.1.2 Object Migration

Like object replication, object migration suffers from the same high set-up costs when the

server object migrates from its original host to a secondary host. The uniqueness of the

(a) Client B reads its local
replica of X resulting in a
read/write conflict.

Server Server

Client A

(b) Client B modifies its local replica of X to produce Xb,
reconnects, and attempts to write Xb to the server, producing a
write/write conflict.

Client B

X
Xa

Client A Client B

Xa

Xa

Read/write
conflict

Xb

Write/write
conflict

Xa
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server object eliminates the need to propagate modifications to multiple replicas. This

technique is particularly useful for a MH when it is subject to disconnection from a MG

and consequently the fixed network. This allows an application on a MH to continue

operation during disconnection since the server objects it requires will have been pre-

fetched by the MH and cached. This is also possible with object replication but object

migration doesn’t require replicas to be merged back into a single copy during a clean-up

phase, as there is only ever one server object at any time.

2.1.3 Object Delegation

As already stated, object replication and object migration are expensive in set-up costs

and thus may not be the ideal solution to provide access to a fixed network server’s

resources. Object delegation is when a request, from a client, is forwarded by an

intermediate host to a remote host. The intermediate host contains a proxy object, which

appears to the client to be the actual remote object. Object delegation introduces an extra

level of indirection, which results in poorer performance. However, it may be used to

allow a MH to act as a server to clients on the fixed network or other MHs. The proxy

object in this instance would be placed at the MG to forward requests to the MH and

return replies.

2.1.4 Connection Transparency and Disconnected Operation

In a mobile environment, a connection to a server may not be maintained through the

lifetime of an application session or even of a single operation. MHs may move, causing

a switch to another MG, to fulfill an application’s requests. To the end-user, the

application should appear to run uninterrupted, oblivious to the MH’s connection status.

To achieve such connection transparency, a session abstraction must be provided, which

is capable of spanning several connections and disconnections in sequence. The particular

details of reconnecting should remain hidden from the user as much as possible. In effect,

the layers of software underlying the application must emulate the server during

disconnected operation.
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Pre-fetching:
Pre-fetching uses object migration to cache server objects at the MH in order to support

disconnected operation. This requires that the application and/or underlying layers can

predict which objects will be needed, depending on what tasks the user will perform

during disconnection.

This introduces the problem of what level of knowledge the user will need to

ensure that the correct server objects are cached. The user could explicitly pick the

objects that will be needed. A more transparent approach would be to allow the user to

merely specify which applications will be used during disconnection. The burden is then

placed on the MH to automatically determine which objects a particular application will

require.

Server Emulation and Reintegration
During disconnection, the goal of the system is to emulate the server as much as possible

in order to permit continued execution of applications that invoke operations on objects

held at servers. Operations originally performed on objects at the server are instead

performed on replicated or migrated objects in the cache on the MH.

If an application needs an object but does not find it in the cache, the operation

may be recorded in an operations log to be performed later upon reconnection. This may

cause an application on the MH to become blocked waiting for the requested operation to

complete, thus defeating the usefulness of disconnected operation.

When the MH becomes reconnected, any cached objects, which were modified,

must be reconciled with the object held at the server.

2.2 Influential Research Projects

All of the above techniques have been employed in various research projects and in

formulating proposals for the various Internet standards that address support for mobile

computing. Several research projects, of which Rover and Bayou are among the most

influential, have provided object replication and migration as well as supporting

connection transparency. Mobile IP addresses the issue of routing data to mobile hosts

within the context of a proposal for an Internet standard. The Dolmen project dealt
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specifically with supporting mobility in a CORBA environment. This latter project built

an Environment Specific Inter-ORB Protocol, which was very similar to the OMG’s

Internet Inter-ORB Protocol (IIOP). Each of these research projects will now be

discussed.

2.2.1 Rover: A Toolkit for Mobile Information Access

The Rover [Joseph’97] toolkit provides mobile applications with a set of tools designed

to isolate them from the limitations of mobile communications systems. The Rover

Toolkit provides mobile communications support based on two ideas: Relocatable

Dynamic Objects (RDOs) and Queued Remote Procedure Call (QRPC).

An RDO is an object with a well-defined interface that can be dynamically loaded

into a client computer from a server computer (or vice versa) to reduce client-server

communication requirements. QRPC is a communications abstraction that permits

applications to continue to make non-blocking Remote Procedure Calls (RPCs) even

when a host is disconnected, with client requests and server responses being exchanged

upon network reconnection.

Rover client applications import RDOs into their address spaces from servers,

invoke methods provided by the RDOs and export the RDOs back to the servers.

Complex RDOs may create threads of control when they are imported. This is possible

since RDOs are executed in a controlled environment. Rover objects are named by

unique object identifiers, which are called Universal Resource Names (URNs).

Rover permits disconnected hosts to update shared objects. Object consistency is

provided by application level locking or by using application-specific algorithms to

resolve uncoordinated updates to a single object. In Rover, every object has a home

server and update conflicts are detected at this server when two or more replicas are

reconciled.

The toolkit supports several transport protocols including TCP/IP, HTTP, and

SMTP. Using these protocols, an E-mail reader, a calendar program and a WWW

browser were developed, as these were thought to represent the applications that mobile

users are likely to require.
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Rover Operation

Rover applications employ a check-in/check-out model of data sharing, they import

objects into a local object cache, invoke methods provided by the objects and export the

objects back to the servers as shown in Figure 2.3 on the following page.

Rover applications can choose the degree of consistency used for replicating objects.

Rover caches objects on mobile hosts in a cache that is shared by all applications running

on that host. Cached objects are secondary copies of objects, the exporting server

maintains the primary copy.

When Rover invokes a method on an object, it first checks the object cache. If the

object is resident in the cache, Rover modifies the object without contacting the server.

The updates to the cached copy are marked as being tentatively committed.

If a required object is not present, Rover lazily fetches it from the server using QRPC.

Rover stores a QRPC in a stable log at the mobile host and returns control to the

application. The application can register a call back routine, which will be called by

Rover to notify the application when the object has arrived.

Upon receipt of a fetch request, the server retrieves the requested object and sends

it back to the mobile host. If the mobile host becomes disconnected between sending a

request and receiving a reply, Rover will replay the request from its stable log upon

Network

Scheduler

Object Cache

QRPC Log

Mobile host

Import/Invoke/Export

Application

1.
2.

 3.

3. Export RDO

1. Fetch RDO
2. Return RDO

4. Confirm RDO

Conflict ?

Server

Modify

Resolve 4.

Fig 2.3 Rover Operation
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reconnection. Upon receiving a fetch reply Rover inserts the object returned into the

cache and deletes the QRPC from the log. In addition if a callback routine is registered,

Rover will perform the callback. The application can then invoke methods on the local

copy.

When a method modifies a cached object, Rover lazily updates the primary copy

at the server by sending the method call in a QRPC to the server and returns control to the

application. When the QRPC arrives at the server, the server checks whether the object

has changed since it was last imported by a mobile host. Rover maintains version vectors

for each object so that methods can easily detect such changes. Upon arrival of a reply,

the Rover toolkit on the MH changes the object from tentatively committed to committed.

If a method call at the server detects a write/write conflict then the conflict is resolved in

the application-specific manner. The Rover toolkit itself provides a mechanism for

detecting conflicts but leaves it up to applications to reconcile them.

2.2.2 Xerox Parc Bayou Project

Bayou [Petersen’97] is a replicated, weakly-consistent storage system designed for a

mobile computing environment. To maximise availability, users can read and write any

accessible replica. Bayou's design has focused on supporting application-specific

mechanisms to detect and resolve the update conflicts that naturally arise in such a

system ensuring that replicas move towards eventual consistency. It introduces

techniques for conflict detection called dependency checks and pre-write conflict

resolution based on client provided merge procedures.

This requires that Bayou servers must be able to rollback the effects of previously

executed writes and re-do them according to a global serialised order. Furthermore,

Bayou permits clients to observe the results of all writes received by a server including

tentative writes whose conflicts have not been ultimately resolved.

The Bayou design requires only occasional pair-wise communication between

computers. This takes into account the characteristics of mobile computing such as

expensive connection time, frequent or occasional disconnections, and the fact that

collaborating computers may never be all connected simultaneously. Groups of

computers may be partitioned from the rest of the system, yet remain connected to each
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other. Supporting disconnected workgroups is a central goal of the Bayou system. By

relying only on pair-wise communications in the normal mode of operation the Bayou

design copes with arbitrary network connectivity.

The goal of Bayou was not to provide transparent replicated data support for

existing file system and data base applications. Applications built using Bayou must be

aware that they may read weakly consistent data and also that their write operations may

conflict with other users and applications. Moreover, applications must be involved in the

detection and resolution of conflicts since these naturally depend on the semantics of the

application. Bayou allows applications to achieve automatic conflict detection and

resolution using merge procedures.

Automatic conflict resolution is highly desirable because it enables a Bayou

replica to remain available. Conflicts may be detected arbitrarily far from the users who

introduced the conflicts. Moreover, conflicts may be detected when no user is present.

Bayou allows clients to read data whose conflicts have not been fully resolved either

because human intervention is needed or because other conflicting updates may be

propagating through the system.

Bayou System Operation
In the Bayou system, each data collection is replicated in full at a number of servers.

Applications running as clients interact with the servers using the Bayou Application

Programming Interface (API), which is implemented as a client stub bound with the

application. This API, as well as the underlying RPC protocol, supports two basic

operations: read and write. Read operations permit queries over a data collection while

write operations can insert, modify, and/or delete a number of data items in the

collection. Figure 2.4, on the following page, illustrates the Bayou Architecture.
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Figure 2.4 Bayou Architecture

Note that a client and a server may be co-resident on the same machine as would be

typical of a laptop or PDA during disconnected operation. Access to one server is

sufficient to perform useful work. The client can read the data held by that server and

submit writes to the server. Having done so, the client has no further responsibility for

that write. In particular, the client does not wait for the write to propagate to other

servers.

To support application-specific conflict detection and resolution, Bayou writes

contain more than a typical file system write or database update. Along with the desired

updates a Bayou write carries information that lets each server receiving the write decide

if there is a conflict and, if so, how to fix it. In particular, each Bayou write contains a

globally unique write identifier assigned by the server that first accepted the write.

The storage system at each Bayou server conceptually consists of an ordered log

of these writes plus the data resulting from the execution of the writes. Each server

performs each write locally with conflicts detected and resolved as they are encountered

during execution.

Unlike Rover which makes the effects of all known writes available for reading,

Bayou servers propagate writes among themselves during pair-wise contacts called  "anti-
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entropy" sessions. The two servers involved in a session exchange write operations so

that when they are finished they agree on the set of Bayou writes they have seen and the

order in which to perform them.

Conflict Detection and Resolution
Supporting application-specific conflict detection and resolution is a major emphasis in

the Bayou design. The Bayou system implements the mechanisms for reliably detecting

conflicts while the application must specify its notion of a conflict along with its policy

for resolving these conflicts. This design goal follows from the observation that different

applications have different notions of what it means for two updates to conflict and that

such conflicts cannot always be identified by simply observing reads and writes

submitted by the applications. The Bayou system includes two mechanisms for automatic

conflict detection and resolution that are intended to support arbitrary applications:

dependency checks and merge procedures

Each write operation includes a dependency check, which consists of an

application supplied query and its expected results. A conflict is detected if the query

when run at a server against the current copy of the data does not return the expected

result. If the check fails then the requested update is not performed and the server invokes

a merge procedure to solve the detected conflict.

Once a conflict is detected, the server executes a merge procedure in an attempt to

resolve the conflict. Bayou merge procedures are general programs written in SQL. They

can contain data such as application-specific knowledge related to the update that was

being attempted and can perform arbitrary reads on the current state of the server’s

replica.

The merge procedure associated with a write is responsible for resolving any

conflicts detected by its dependency check and for producing a revised update to apply.

The complete process of detecting a conflict running a merged procedure and applying

the revised update is performed atomically at each server as part of executing a write. The

potential drawback of this approach is that newly issued writes may depend on data that

is in conflict and may lead to cascaded conflict resolution.



Page 25

Replica Consistency
A fundamental property of the Bayou design is that all servers move toward eventual

consistency. The Bayou system guarantees that all servers eventually receive all writes

and that two servers holding the same set of writes will have the same data contents.

However, it cannot enforce strict bounds on write propagation delays since these depend

on network connectivity.

To ensure eventual consistency writes are performed in the same well defined

order at all servers and dependency checks and merge procedures are deterministic.

2.2.3 Dolmen

The Dolmen [Raatikainen’97] project examined CORBA-based object communication in

the context of wireless networks and host mobility. Dolmen used the interoperability

mechanisms introduced in the CORBA 2.0 specification to support host mobility. The

mechanism is completely transparent to client and server objects. Dolmen uses the

concept of interoperability bridges, described in the CORBA 2.0 architecture. This is

illustrated in the Figure 2.5 below.

The Fixed Distributed Processing Environment Bridge (FDBR) serves as an access point

for mobile hosts. A Mobile Distributed Processing Environment Bridge (MDBR)

connects the local ORB of a mobile host to the fixed network by interacting with the

FDBRMDBR

Mobile Host

MDBRFDBR

Core Network

Mobility Domain A Mobility Domain B

Wireless Access Domain

Fig 2.5 Dolmen Architecture
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FDBR over the wireless link. Together the MDBR and FDBR perform location

management functions and handover enabling host mobility. A Light Weight Inter-ORB

Protocol (LW-IOP) between the FDBR and MDBR was defined to enhance reliability

and performance of object communication in the mobile environment. The LW-IOP

protocol defines efficient message formats and a compressed data representation for

object communication.

The wireless access domain and part of the fixed network domain are divided into

mobility domains. The fixed network part of each mobility domain instantiates a set of

mobile specific support services including one or more FDBRs.

Each mobile host has its own ORB that provides object services to the

applications running on the mobile host. Invocations of objects outside the local ORB are

directed to the MDBR on the mobile host. The MDBR forwards the invocation to the

FDBR, which then invokes the desired object. The FDBR acts as an endpoint for the

mobile terminal within the fixed network. The FDBR also accepts invocation requests for

objects located on the mobile terminal from objects within the fixed network. The FDBR

forwards the request to the MDBR, which then invokes the actual object and returns the

response through the FDBR.

Bridge Associations
A Dolmen bridge association models the logical relationship between a particular MDBR

and FDBR. The bridge association is created whenever the mobile host appears within a

new bridging domain and continues to exist for as long as there are objects using it for

intercommunication.

As the mobile host moves across bridging domains, connectivity to the fixed

network is maintained by a sequence of bridge associations. The most recent bridge

association is called the primary association and it controls the physical signalling

channel to the FDBR currently serving as the mobile terminal’s access point to the fixed

network. A trail of bridge associations called secondary associations are left as a mobile

host moves. The secondary associations are required for processing object invocations

that were in an unfinished state when the mobile host switched bridging domains. A
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secondary association continues to exist for as long as objects within the fixed network

store and use object references pointing to that particular FDBR.

Bridge Handover
Bridge handover in Dolmen occurs when a mobile host moves from one bridging domain

to another. Bridge handover deals with maintaining and updating the bridge association.

In Dolmen there are two types of handover, "backward bridge" handover and "forward

bridge" handover. Backward bridge handover is the normal case when the mobile host is

still able to communicate with the old FDBR. A forward bridge handover occurs when

the mobile host unexpectedly looses its connection to the old FDBR and must re-establish

communication with the fixed network. The old FDBR and MDBR synchronise their

messages through the new FDBR.

A connection between the new FDBR and the old FDBR, called a tunnel, is set-up

for all remaining unfinished invocations. The old FDBR forwards new object invocation

requests to the new FDBR via the CORBA location forward mechanism.

Typically, tunnel connections are needed only for a short time. Moreover, tunnel

connection chains are usually short. If a mobile host returns to an old FDBR to which it

has a tunnelled association, the FDBR notices this and bypasses the tunnel loop.

Object Address Resolution

Each mobile host is assigned a Global Terminal Identifier (GTID), which uniquely

identifies it. The basic problem in mobility is that, in order to enable objects in the fixed

network to invoke objects in the mobile terminal, the location of the mobile terminal

must be known at all times.

In particular, the bridge through which the mobile host can currently be accessed

must always be known. The location register (LR) is a database that stores this

knowledge within the fixed network. The address of the current primary bridge of the

mobile host can always be retrieved from the LR if the GTID of the mobile host is

known. The LR stores copies of the GTID and FDBR address and, during bridge

handover, the new FDBR replaces the old FDBR’s address for the particular GTID.

There are two cases of object address resolution that need to be taken into account. The

simplest case is an invocation that originates from an object on a mobile host destined for
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an object on the fixed network. The invocation request is intercepted by the MDBR and

forwarded to the FDBR. The FDBR then invokes the object method operation directly.

An object invocation that terminates at a mobile host is more difficult. The Dolmen

bridging mechanism translates the reference of an object into a relocatable object

reference (ROR). The ROR contains the current address of the FDBR serving the mobile

host and the GTID of the mobile host. The FDBR address identifies the FDBR, which is

currently serving the mobile host and the GTID identifies the mobile host to the FDBR.

As the FDBR address in a reference may become out of date after a handover,  FDBRs

can receive invocations for objects located on mobile hosts that they are no longer

bridging. When such an invocation arrives at a FDBR, the FDBR uses the GTID to query

the LR for the current address of the primary FDBR serving the mobile host.

The secondary FDBR returns an up to date object reference to the client proxy on

the fixed network using the CORBA location forward mechanism. The client proxy then

proceeds to invoke the required operation at the primary FDBR using the returned object

reference from the secondary FDBR.

2.2.4 Mobile IP

Mobile IP [Perkins’96] is a proposed standard protocol that builds on the Internet

Protocol (IP) with the goal of making mobility transparent to applications and high level

protocols such as TCP and UDP. The most fundamental obstacle that mobile IP is

designed to address is the way that IP routes IP packets to their destinations based on IP

addresses. These addresses are associated with a fixed network location. As a mobile host

moves, it attaches at new points to the fixed network. This means that each new point of

attachment is associated with a new network number and hence a new IP address. This

makes mobile transparency impossible at the IP level.

However Mobile IP solves this problem by allowing the mobile host to use two IP

addresses: a fixed home address and a transient "care-of" address that changes with each

point of attachment to the fixed network.
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Mobile IP Operation
IP routes packets from a source to a destination by allowing routers to forward packets

from incoming network interfaces to outbound network interfaces according to routing

tables. The routing tables typically maintain the next hop (outbound interface)

information for each destination address according to the number of networks to which

that IP address is connected. To maintain existing transport-layer connections the mobile

host must keep the same IP address as it moves from place to place. On the other hand

correct delivery of packets to a mobile host’s current point of attachment depends on the

IP address at its current point of attachment. In Mobile IP, two addresses are used, the

home address is used to identify TCP or UDP connections. The care-of address changes

at each new point of attachment. The home address makes it appear that the mobile host

is continually able to receive data on its home network, at which Mobile IP requires the

existence of a network node called the home agent. A foreign agent also exists for each

care of address, its purpose is to route data to the mobile host using the care-of-address.

Whenever the mobile host is not attached to its home network, the home agent gets all the

packets destined for the mobile host and arranges to deliver them to the mobile host’s

current point of attachment.

Whenever the mobile host moves, it registers its new care-of address with its

home agent. To get a packet to a mobile host from its home network, the home agent

delivers the packet from the home network to the care of address. This requires a

redirection where the IP packet is placed in another IP packet with the destination address

of the outer IP packet set to the care-of address. This allows intermediate routers to

correctly route the IP packet to the care-of address. The care-of address extracts the inner

IP packet and then sends it to the mobile host. This encapsulation of the original IP

packet within another IP packet is called tunnelling, since the original packet bypasses

the usual effects of IP routing.

The operation of Mobile IP is based on three separate mechanisms:

• Discovering the care-of address

• Registering the care-of address

• Tunnelling to the care-of address.
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Discovering the care-of address

Mobile IP extends the standard protocol for Router Advertisement as specified in RFC

1256. It simply extends the original fields to provide mobility functions. A router

advertisement typically carries information about default routers. It can also carry further

information about one or more care-of addresses. When a router advertisement contains

the additional care-of address, it is known as an agent advertisement. Home agents and

foreign agents typically broadcast agent advertisements at regular intervals.

If a mobile host needs to get a care-of address and does not wish to wait, the

mobile host can broadcast or multicast a solicitation that will be answered by any foreign

agent or home agent that receives it. Home agents use agent advertisements to make

themselves known, even if they don’t offer any care-of addresses. Once a mobile host has

a care-of address it must register it with its home agent. If advertisements are no longer

detectable from a foreign agent, that had previously offered a care-of address, the mobile

host presumes that the foreign agent has gone out of range and it begins to "hunt" for a

new care-of address.

Registering the Care-of-address

Once a mobile host has a care-of address from an agent advertisement, it notifies its home

agent about it. The mobile host, possibly with the assistance of a foreign agent, sends a

registration request with the care-of address information.

When the home agent receives this request, it typically adds the necessary

information to its routing table and sends a registration reply back to the mobile host.

Registration requests contain parameters and flags that characterise the tunnel through

which the home agent will deliver packets to the care-of address. When a home agent

accepts a request it begins to associate the home address of the mobile host with the care-

of address until the registration lifetime expires.

The home agent must be certain that the registration request originated from the

mobile host and not some other malicious host pretending to be the mobile host. A

malicious host could cause the home agent to alter its routing table with erroneous care-of
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address information, which would cause the mobile host to be unreachable to all

incoming communications from the Internet. To overcome this problem, Mobile IP uses

the Message Digest Algorithm, which provides unforgeable digital signatures.

When a mobile host cannot contact its home agent, it can use automatic home

agent discovery. This method works by using a broadcast IP address instead of the home

agent’s IP address as the target for the registration request. Other home agents on the

home network send a rejection in reply to this but include their own IP address for the

mobile host to use in a freshly attempted registration message. The broadcast in this case

is a directed broadcast that only reaches hosts on the home network.

Tunnelling to the Care-of Address

Using IP within IP, the home agent inserts a new IP header, or tunnel header, in front of

the IP header of any datagram addressed to the mobile host’s home address. The new

tunnel header uses the mobile hosts care-of address as the destination IP address.

To deliver the original packet, the foreign agent must eliminate the tunnel header and

deliver the rest to the mobile host.

2.2.5 OnTheMove

The objective of the OnTheMove project was to design a Mobile Applications Support

Environment (MASE) [Meyer’96]. The MASE was designed to support both mobile-

aware and non-mobile-aware applications running on mobile hosts. Non-mobile-aware

applications are applications, which typically run on stationary computers and don’t

require knowledge of the host’s mobility to operate. Typical non-mobile-aware

applications include Web browsers and E-mail reading programs. Mobile aware

applications utilise the host’s mobility in some fashion to execute. An example would be

navigation systems, which are currently being used in some luxury car models.

The MASE provides a layered architecture and is illustrated in the figure below.
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As can be seen from the above figure, the MASE provides a large set of facilities that can

be accessed through the Mobile API. These components will now be discussed.

The UMTS Adaption Layer. (UAL)

This layer provides a uniform interface to network specific details. The UAL is

responsible for selecting the appropriate transport protocol and to configure it for

efficient use. The UAL chooses the appropriate transport medium depending on various

Quality of Service parameters if more than one transport medium is available. The UAL

also monitors the protocol stack for changes in the Quality of Service provided and the

network state.

The General Support Layer (GSL)

As its name suggests, the GSL provides common mobility support functionality for both

applications as well as other MASE managers. The GSL is broken into four distinct

components: the Mobile Object Manager, the Event Manager, the Security Manager and

Directory Services.

The Mobile Object Manager (MOM) provides a storage facility for MASE mobile

objects. These mobile object differ from the typical notion of objects (methods + data)

since the mobile object comes from a set which include amongst others MIME objects,

Fig 2.6. Layered Architecture of the MASE
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Files and HTML links. The MOM provides pre-fetching, caching and accounting of these

mobile objects.

The Event Manager (EM) API provides functions to monitor all activities in the

MASE. Clients of the EM can register interest in certain events or states of the MASE.

The outcome of the event can be specified as notification or log-file entry. Immediate

response can be provided by notifications while log-file entry is used for post processing

responses. Typical events of interest would be battery life or strength of signal from the

transport medium.

The Security Manager exports an API, which provides typical security facilities

such as authentication, non-repudiation and confidentiality. The Directory Services

provides a uniform logical address representing each mobile device as well as providing a

“Yellow pages” service.

Communication Manager (CM)

The CM component provides applications and other MASE managers with the facilities

to communicate. This includes establishing, maintaining and terminating application

communication. More importantly, it provides support for disconnected operation and

connection transparency by protecting applications against disruption if a transport failure

occurs.

Applications can specify various Quality of Service parameters using the CM’s

API depending on the information being sent or received (e.g. voice, text, video). The

type of communication can also be specified whether it is synchronous or asynchronous.

Communication exchanges can also be assigned a higher priority to ensure delivery as

soon as communication has been restored. Other features include assured delivery of

information.

The CM can be thought of as three components: Session Control, Disconnected

Operation and Application independent protocols. The Session Control handles requests

for communication from local and remote applications. The Disconnected operation

component deals with problems related to unplanned disconnections such as radio signal

loss. This requires pre-fetching of required data in conjunction with the MOM.

Application independent protocols provide various types of communication such as
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Messaging, E-mail, HTTP and Alerting. Each of these is provided as part of the CM’s

API. Messaging support is based on the IBM MQSeries and has the following

functionality.

• Messages are delivered in order

• Messages can be linked together to form a single atomic transaction (using roll-back

or commit operations)

• Message can be prioritised, ensuring delivery of higher priority messages first

The electronic mail API follows the X.400 standard closely. The HTTP API provides

operations to build Web based applications such as web page retrieval. Finally, the

Alerting API builds on the Messaging API to allow users and/or applications to be

notified when an event occurs, such as reception of an e-mail message.

System Adaptability Manager (SAM)

The SAM maintains information about the current configuration and state of the mobile

device. Examples of such configuration information would be a set of user preferences

such as applications or files to be pre-fetched by the MOM. State information examples

would be available bandwidth, battery life and strength of radio signal. The SAM also

attempts to optimise bandwidth usage according to user preferences. This may involve

changing the format of a mobile object to suit the characteristics of the mobile device

(e.g. changing a colour image to black and white if a mobile host does not have a colour

display).

MASE V2.0

The components, described above, were part of the initial version (1.0) of the MASE. The

other components in Fig 9 are specified as part of the second version of the MASE

[Kemp’96]. The Agent Manager provides an execution environment for mobile agents,

which have the capability to migrate to or from a mobile device as necessary. The

Replication and Transaction Manager (RTM) is in charge of replicating, managing and

synchronising shared data objects. Local copies of the objects that are needed by the

mobile host are stored in the mobile host’s MOM, however it is the responsibility of the

RTM to ensure consistency of the local copies of the objects with the primary copies on
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the fixed network. The Location Manager (LM) was part of the first version of the MASE

and was extended in the second version. The LM simply provides functions, which allow

applications to retrieve information about a mobile host’s current position. The

Accounting Manager allows the building of electronic commerce applications on mobile

hosts. This manager utilises the Secure Electronic Transaction (SET) standard to provide

the payment mechanism.
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Chapter 3

Background

This chapter provides a brief introduction to the Object Management Group’s (OMG)

Common Object Request Broker Architecture (CORBA). In particular, this chapter

describes the CORBA Interoperability standard, the General Inter ORB Protocol (GIOP)

[GIOP’98]. A brief introduction to the CORBA standard is given first. This is followed

by description of the goals of GIOP. The methods used to marshall GIOP messages are

then described. Finally, the GIOP messages are described.

3.1 CORBA and Interoperability

The heterogeneity of modern data communications networks and computer systems make

the task of network programming very difficult. Distributed applications often consist of

several communicating programs, possibly running on different operating systems and

written in different programming languages. Network programmers must consider all of

these factors when developing applications.

CORBA defines a framework for developing object-oriented distributed

applications. This framework makes network programming easier by allowing a

distributed application to be built as though it were implemented in a single programming

language to run on a single computer. CORBA also allows object-oriented techniques to

be employed in distributed environments. This allows distributed applications to be

designed as collections of co-operating objects as well as the re-use of existing objects.

3.1.1 Object Request Brokers

The central component of the CORBA architecture is the Object Request Broker or

"ORB". An ORB allows the creation of software objects whose member functions can be

invoked by client programs located anywhere in the network. In particular, using an

ORB, the complexity of network communications is hidden from the applications

developer(s).
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When a client invokes a CORBA object’s methods, the ORB intercepts the

method call. It then redirects the method call across the network to the target object and

eventually returns results of the method call (if any) to the client.

3.1.2 Interface Definition Language

Although CORBA objects are implemented using standard programming languages, each

CORBA object has a clearly defined interface. This interface is specified in the CORBA

Interface Definition Language (IDL) and primarily describes the methods provided by an

object that are available to its clients.

Note that the interface definition makes no assumption about the implementation

of the object. This allows the object implementation to be changed without needing to

change the clients access to the object.

To use an object, a client need only know the IDL definition. It does not need to

know details such as the programming language used to implement the object, the

operating system on which it runs, or the host at which the object is located.

3.1.3 Interoperability

Several ORB implementations conforming to the CORBA standard are currently

available from different vendors. The existence of multiple ORB implementations gave

rise to the requirement for the OMG to define a protocol for communication between

distinct ORBs in order to allow objects hosted by one vendor’s ORB to interwork with

objects hosted by an ORB supplied by a different vendor.

This requirement has been addressed by the OMG with the General Inter-ORB

Protocol (GIOP). GIOP can be mapped onto any connection-oriented transport protocol.

A mapping of GIOP that runs directly over TCP/IP, called the Internet Inter-ORB

Protocol (IIOP), has also been specified by the OMG. IIOP must be supported by any

ORB that claims to conform to the CORBA standard, regardless of other aspects of its

implementation.
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3.2 GIOP and IIOP

3.2.1 Goals of GIOP

GIOP and, in particular IIOP, are based on the most widely used and flexible

communications transport mechanisms available (TCP/IP in the case of IIOP) and define

the minimum additional protocol necessary to transfer invocations between ORBs. This

should lead to the widest possible availability of GIOP and IIOP.

Moreover, GIOP is intended to be as simple as possible in order to ensure a

variety of independent and compatible implementations. GIOP and IIOP should also be

scalable and support ORBs to the size of today’s Internet and beyond. Adding support for

GIOP/IIOP to an existing ORB should also require a small engineering investment as the

GIOP specification makes minimal assumptions about the architecture of the systems that

support it.

3.2.2 Common Data Representation

The Common Data Representation (CDR) is a transfer syntax mapping OMG IDL data

types into a low level representation for "on-the-wire" transfer between ORBs. CDR has

the following features:

• Variable byte ordering - Machines with a common byte order may exchange

messages without byte swapping. When communicating machines use different

byte orders, the message originator determines the message byte order and the

receiver is responsible for swapping bytes to match its native ordering. Each

GIOP message contains a flag that indicates the appropriate byte order.

• Aligned primitive types - Primitive OMG IDL data types are aligned on their

natural boundaries within GIOP messages, permitting data to be handled

efficiently by architectures that enforce data alignment in memory.

• Complete OMG IDL Mapping - CDR describes representations for all OMG IDL

data types.
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3.2.3 CDR Transfer Syntax

The CDR transfer syntax is the format in which GIOP represents OMG IDL data types in

the octet stream. An octet stream corresponds to a memory buffer that is to be sent to

another process over some inter-process communication mechanism. It can be an

arbitrarily long (but finite) sequence of eight-bit values with a well-defined beginning.

Each octet can be logically indexed from 0 to n-1 where n is the length of the octet

stream. The position of the octet in the stream is called its index. These indices are used

to align OMG IDL data types in the octet stream.

GIOP defines two distinct kinds of octet streams, messages and encapsulations.

Messages are the Protocol Data Units in GIOP. OMG IDL data types may be

independently marshalled into encapsulation octet streams. In this case, the first octet

contains a boolean value indicating the byte ordering of the encapsulated data.

3.2.4 Primitive Data Types

Primitive data types are specified for both big-endian and little-endian machines. To

allow primitive data to be moved into and out of octet streams with instructions

specifically designed for those data types, CDR requires that all primitive data types must

be aligned on their natural boundaries. The alignment of a primitive data type is equal to

the size of the data type in octets. A primitive data type of size n must start at an octet

stream index that is a multiple of n. In CDR, n can be either 1, 2, 4, or 8.

When necessary, an alignment gap precedes the representation of a primitive data

type. The values of octets in these alignment gaps are undefined. The following table

gives the alignment boundaries for the OMG IDL primitive data types. Alignment is

relative to the beginning of the octet stream.

Table 3.1 Alignment requirements for primitive data types
TYPE OCTET ALIGNMENT

Char 1

Octet 1

Short 2

unsigned short 2

Long 4
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unsigned long 4

long long 8

unsigned long long 8

Float 4

Double 8

long double 8

Boolean 1

Enum 4

The size and bit ordering in big-endian and little-endian encodings of primitive data types

is well-defined. These primitive data types include short, long, long long, float, double

and long double.

3.2.5 Constructed Data Types

Constructed data types are built from OMG IDL primitive data types using facilities

defined by the OMG IDL language.

3.2.5.1 Struct

The elements of a Struct data structure are encoded in the order of their declaration. Each

element is marshalled into an octet stream according to its data type.

3.2.5.2 Union

The discriminant tag of the Union is marshalled into an octet stream first followed by the

selected member according to its data type.

3.2.5.3 Array

As the length of the array is known, each element of the array is marshalled into an octet

stream as defined for their type. Multidimensional arrays are ordered so the index of the

first dimension varies most slowly.

3.2.5.4 Sequence

An unsigned long value containing the number of elements in the sequence is marshalled

in an octet stream followed by each element of the sequence according to its data type.
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3.2.5.5 Enum

Enum values are encoded as unsigned long values. The first enum identifier has the

numeric value zero. Successive identifiers take increasing numeric values.

3.2.5.6 String

A String is encoded as an unsigned long value specifying the length of the string in

octets. Each element of the String is then marshalled into an octet stream as a char. Both

the String length and contents include a terminating null character.

3.2.6 Other IDL Types

3.2.6.1 TypeCode

Type Codes are marshalled into an octet stream as a TCKind Enum value (unsigned

long), potentially followed by values that represent the TypeCode parameters.

3.2.6.2 Principal

Principal types are marshalled into an octet stream as a Sequence of octets. They are used

to identify the potential caller of an object’s methods.

3.2.6.3 Exception

Exceptions are encoded as a String followed by Exception members. The String contains

the Interface Repository Identifier for the Exception.

3.2.7 Interoperable Object References

An Interoperable Object Reference is encoded as an IDL Struct with two components: a

String called the type identifier and a Sequence of Tagged Profiles. The type identifier is

marshalled as a String into an octet stream first. The type identifier identifies the most

derived type of the object at the time that the reference was published.

The Sequence of Tagged Profiles are then marshalled into the octet stream. A

Tagged Profile is an IDL Struct consisting of an unsigned long value, which identifies the

type of the Tagged Profile and a Sequence of octets containing the data in the Tagged

Profile.
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There are currently two types of Tagged Profile specified by the OMG: An IIOP Tagged

Profile and a Multiple Component Tagged Profile. The IIOP Tagged Profile contains a

hostname and port number to identify the process at which the object is stored and an

object key to identify to the process the particular object that is being invoked.

A Multiple Component Tagged Profile is used to indicate ORB services that are

being used A typical ORB service that uses this feature of IORs is the Transaction

Service. Each Tagged Profile can also contain one or more Tagged Components, which

are typically used to provide security as part of the CORBA Security Service.

3.2.8 Stringified IORs

To allow IORs to be passed between different ORB implementations, a stringified

representation of an IOR is specified. A stringified IOR consists of a prefix followed by a

sequence of hexadecimal digits. The prefix is the string "IOR:" The hexadecimal digits

are obtained by converting the octet stream, into which an IOR was marshalled, using the

following procedure. Each octet in the stream beginning at index zero is divided into two

4 bit values. This 4 bit value is then used to give the ASCII representation of the

hexadecimal digit. The most significant four bits are converted first then the second 4

bits.

3.3 GIOP Messages

GIOP supports full CORBA functionality between ORBs with only seven GIOP

messages. These seven messages allow an object implementation to be activated at

different locations during its lifetime and, also, allow object migration.  ORBs are not

required to implement these mechanisms, but should of course implement the full IIOP

protocol.

GIOP is designed to operate over any connection-oriented transport protocol.

(Recall that IIOP is a mapping of GIOP onto TCP/IP). It is important to make a

distinction with respect to the usage of connections for GIOP messages. The client side

opens the connection to the object server and sends object invocations over the

connection. The server side receives requests and returns replies. The server side may not
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send object invocations over the connection to the client. This restriction allows certain

race conditions to be avoided.

Multiple clients within an ORB may share a connection to send object invocations

to another ORB or server. Multiple independent invocations for different objects or the

same object may be sent on the same connection. GIOP also defines messages for

cancellation of object invocations and for connection shutdown. These features allow

ORBs to reuse or reclaim unused connections.

3.3.1 GIOP Message Header

All GIOP messages begin with the following header.

The GIOP Header identifies GIOP messages and their byte ordering (Big-Endian or

Little-Endian). The Header is independent of byte ordering except for the field encoding

the message size.

The magic field is four octets and always contains the upper case characters

"GIOP". The major and minor octets identify the version of GIOP that is being used. For

the current versions of GIOP, the major version number is 1 while the minor version

number can be 0 or 1.

The flags field is an octet whose least significant bit indicates the byte ordering.

The second least significant bit indicates whether, or not, more GIOP fragments follow.

The most significant 6 bits are reserved for future use. The flags field is specific to GIOP

version 1.1 and has replaced the byte order octet in GIOP version 1.0, which indicated the

"endianness" of the remaining elements of the GIOP message.

The message type field is an octet and indicates the type of the GIOP message. It

can be one of the following eight message types.

• Request (Version 1.0 & 1.1)

• Reply (Version 1.0 & 1.1)

MagicMajorMinorFlags
Message
type

Message
size

Fig 3.1 A GIOP Header
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• Cancel Request (Version 1.0 & 1.1)

• Locate Request (Version 1.0 & 1.1)

• Locate Reply (Version 1.0 & 1.1)

• Close Connection (Version 1.0 & 1.1)

• Message Error (Version 1.0 & 1.1)

• Fragment (Version  1.1)

The message size is an unsigned long encoded according to the preceding byte order

indicator. It contains the number of octets in the message following the message header.

3.3.2 Request Message

Request messages encode CORBA object method invocations and are sent by a client to a

server. They consist of three parts in the following order:

1. A GIOP Message Header

2. A Request Header

3. A Request Body

The Request Header has the following format

The Service Context field is an IDL defined Struct used to implicitly pass OMG Common

Object Services specific information with a Request or Reply message.

The Request Identifier field is an unsigned long value used to associate Reply

messages with Request messages. The client is responsible for generating values so that

ambiguity is eliminated. The Response Expected field is set to true if a Reply message is

expected for this Request. The value is false for a "oneway" invocation. The Reserved

field consists of three octets that are always set to zero. It is specific to GIOP version 1.1

and was not part of version 1.0.

Service
Context

Request
Identifier

Response
ExpectedReserved

Object KeyRequesting
Principal

Fig 3.2 A GIOP Request Header
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The object key is a sequence of octets and is used to identify the target object of

the object invocation. This value is only meaningful to the server and is left unaltered by

the client. Operation is a string containing the name of the object’s method that is being

invoked. The name identifies the method only within the scope of the object’s IDL

defined interface. Finally, the Requesting Principal is encoded as a string and identifies

the client making the invocation.

3.3.3 Request Body

The Request Body includes all in and inout parameters, in the order in which they are

specified in the operation’s IDL definition from left to right. An optional Context pseudo

object can be marshalled into the Request body after the in and inout parameters if the

IDL interface definition includes a context expression.

For example, the Request body for the following IDL operation

double operation(in long m, out string str, inout short);

is equivalent to the following IDL Struct:

struct { long m ; short n ; };

3.3.4 Reply Message

Reply messages are sent in response to Request message if and only if the Response

Expected flag in the Request is set to true. Replies are sent in three parts from server to

client in the following order

1. GIOP Header

2. Reply Header

3. Reply Body

The Reply Header has the following format

The Service Context field is similar to the Service Context field in the Request Header.

The Request Identifier contains the same value as the Request Identifier in the

Service
Context

Request
Identifier

Request
Identifier

Fig 3.3 A GIOP Reply Header
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corresponding Request. The Reply Status field is an octet that indicates the completion

status of the associated Request, it also determines the contents of the Reply Body.

If the Reply Status is No Exception, the invocation completed successfully and

the Reply body contains return values. These are encoded as if they were an IDL Struct

holding first any return value, then any inout and out parameters in the order in which

they appear in the operation’s IDL definition.

For example, the Request body for the following IDL operation

double operation(in long m, out string str, inout short n);

is equivalent to the following IDL Struct:

struct { double return_value; String str; short n;  };

If the Reply Status is User or System Exception, then the Reply body contains an

exception. If the Reply Status is Location Forward, then the Reply body contains a

stringified IOR. The client must then resend the original Request to the new object

location.

3.3.5 Cancel Request Message

Cancel Request Messages are sent from clients to servers to indicate to the server that the

client is no longer expecting a Reply or Locate Reply for a Request or a Locate Request

respectively.

The Cancel Request has two elements

1. A GIOP Header

2. A Cancel Request Header

The Cancel Request has the following format

The Request Identifier identifies the Request or Locate Request to which the Cancel

Request applies. This value is the same as the Request Identifier in the original Request

Request
Identifier

Fig 3.4 A GIOP Cancel Request Header



Page 47

or Locate Request message. The server is not required to acknowledge the cancellation

and may subsequently send a Reply or Locate Reply.

3.3.6 Locate Request

Locate Request messages can be sent from a client to a server to determine if an IOR is

valid, whether the server is capable of directly receiving Requests for the IOR and if not,

to what location Request messages should be sent.

Locate Request messages are sent in two parts

1. A GIOP Header

2. A Locate Request Header

The format of the Locate Request Header is as follows:

The Request Identifier is used to associate Locate Reply messages with the corresponding

Locate Request messages. The object key is a string and identifies the object that is being

located.

3.3.7 Locate Reply Message

Locate Reply messages are sent from servers to clients in response to Locate Request

message. A Locate Reply message has three parts encoded in the following order.

1. A GIOP Header

2. A Locate Reply Header

3. A Locate Reply Body

The Locate Reply header has the following format:

Request
Identifier

Fig 3.5 A GIOP Locate Request Header

Object Key
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The Request Identifier associates Locate Replies with Locate Requests. The value is the

same as the Request Identifier in the corresponding Locate Request. The Locate Status is

an octet and determines whether a Locate Reply body exists. It can have one of three

values

• Unknown Object - The object is unknown at this server (no body exists)

• Object Here - This server can directly receive Requests for the specified

object (no body exists)

• Object Forward - A Locate Reply body exists

If the Locate Status is Object Forward, the Locate Reply body contains a stringified IOR

that may be used for future Requests.

3.3.8 Close Connection Message

Close Connection messages are sent only by the server. Further Replies over this

connection must not be expected after this message is received by clients. Clients can re-

send any Requests, which had no corresponding Replies, on a new connection. The Close

Connection message consists only of the GIOP header.

3.3.9 Message Error Message

This message is sent in response to any GIOP message whose magic or version number is

incorrect or whose message type is unknown. This message consists only of the GIOP

header.

3.3.10 Fragment Message

This message is added in GIOP 1.1 and is sent following a previous Request or Reply

message that has the more fragments bit set in the flags field. The body of the Fragment

message contains marshalled data.

Object Key

Fig 3.6 A GIOP Locate Reply Header

Request
Identifier
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Chapter 4

Design

This chapter begins with an overview of the design, introduced in Chapter 1, paying

particular attention to the various layers of the design, namely the Mobile layer, IIOP

layer and Swizzling layer, and their interaction. A brief comparison of the design with the

related research covered in Chapter 2 is then made. This is followed by detailed

descriptions of the Mobile layer, the IIOP layer and the S/IIOP layer.

4.1 Overview

In a mobile environment, there are many problems that need to be addressed. These

include the use of unreliable and low bandwidth wireless link, the availability of limited

resources on the Mobile Host (MH) and, possibly, the need to support multiple network

interfaces on the MH (e.g., WaveLAN and GSM phone). To overcome the above

problems, the design is divided between two machines, the Mobile Host and the Mobility

Gateway, as illustrated in Figure 4.1.

Figure 4.1

This division between the MH and the MG allows applications on the MH to

communicate with applications on the fixed network. This is achieved as the MG acts as

a bridge between the wireless network and the fixed wired network. A specific protocol

between the MH and the MG can thus be used to overcome the problems of the unreliable

and low bandwidth wireless link. This protocol can be used to optimise the use of

multiple network interfaces, if present, on the MH and the MG.

Mobile
Host

Mobility
Gateway

Network
Host

Fixed Network

Client /
Server

Server /
Client
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The MH is typically a laptop or personal digital assistant, possibly with multiple

interfaces. The MG may also have multiple network interfaces and is connected to a fixed

network such as an Intranet or, more generally, the Internet. Typically, the server is

located either on the fixed network, possibly at the MG or on the MH. The client

application on the MH sends requests to the MG. The MG forwards these requests to the

server. Replies from the server are returned through the MG to the client.

If the server is located on the MH, then requests originating from clients on the

fixed network are routed to the MG. The MG then forwards these requests to the

particular MH. Replies from the server are returned through the MG to the client.

Following from the description of the division in the design between the MH and

the MG, the design takes a layered approach to provide IIOP functionality and to

overcome the problems associated with the wireless link. This layered approach is

illustrated in Figure 4.2 below.

Figure 4.2 Layered Architecture

Typical ORBs are built on top of TCP/IP. However, TCP/IP connections are broken with

a higher frequency in a mobile environment than in a fixed network environment. The

Mobile layer hides lost TCP/IP connections from the layers above it by providing a

logical connection abstraction. The Mobile layer provides mobility support, which can

be plugged in and out as required. The IIOP layer allows the methods of an object located

in a CORBA 2.0 compliant ORB to be invoked.

The Application on the MH uses an IIOP implementation to invoke a remote

object’s methods since a full implementation of a CORBA 2.0 compliant ORB would be

Actual flow of TCP/IP protocol data units

Logical flow of IIOP protocol data units

Mobile Layer

Application

IIOP

Application

IIOP / ORBIIOP

Mobile Host

TCP / IP

Mobility Gateway Network Host

TCP / IP

S/IIOP

Mobile Layer

S/IIOP

TCP / IP
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infeasible due to the limited processing resources of the MH. The Application on the

fixed network could also use the IIOP layer but would more often have enough

processing resources to run a complete ORB.

The S/IIOP layer works in tandem with the IIOP layer to allow a MH to act as a

server to clients on the fixed network. The IIOP layer is unaware of the existence of the

MG. When an IOR is created by the IIOP layer, the {address of MH,port #} pair is placed

within the IOR. A client on the fixed network would be unable to use this IOR as it does

not have direct access to the MH (i.e. the client typically does not have a wireless

network interface).

It is the job of the S/IIOP layer to replace this {address of MH, port #} pair,

substituting the pair {address of MG, port #} in its place. This allows a client on the fixed

network to contact the MG and send data to the MG. The MG then forwards the data to

the server on the MH.

It is conceivable that other swizzling layers could be used, for example with

HTTP. In the HTTP case, there can be no guarantee that the port requested by the server

on the MH, for example port 80, will be available on the MG since another application on

this MH or another MH may have already requested this port.

The Mobile Layer on the MH and the Mobile Layer on the MG should provide

the following capabilities:

• A sockets like API on the MH to allow network programs to be ported to the mobile

device while still providing mobility support.

• The ability to hide broken TCP/IP connections from the layer above. This requires

that any lost data is retransmitted across the wireless link and that data is received at

most once by the layer above the Mobile layer on the MH and by the server on the

fixed network.
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4.2 Comparison to Related Research

This solution is similar to Dolmen’s Fixed DPE Bridges (FDBRs) and Mobile DPE

Bridges (MDBRs) with the MH as the MDBR and the Mobility Gateway (MG) as the

FDBR. However, Dolmen relies on the underlying TCP/IP protocol stack to be

configured for the wireless link being used. The layered approach taken in this design

does provide connection transparency in contrast to Dolmen.

Dolmen does provide an Environment Specific Inter-ORB protocol called the

Light Weight Inter-ORB Protocol (LW-IOP). This design provides an IIOP layer to

enable interoperability with existing CORBA objects. A transformation is needed at the

Dolmen FDBR to convert a LW-IOP message to the corresponding IIOP message and

vice versa. No such transformation is necessary with the layered design given above.

The layered design also contrasts with Mobile IP, which provides mobility

support at the IP layer. The MG acts as a bridge joining heterogeneous networks, in

particular a wireless network and a fixed wired network. This bridging is done by routers

at the network layer in Mobile IP, transparent to higher layers. However, this requires

upgrading of router software in Mobile IP while no such router upgrades are necessary in

this solution.

The Rover Toolkit provided Queued Remote Procedure Call, which required the

application to make asynchronous calls to the Rover API. The Mobile layer provides a

sockets like API, which most network programmers would be familiar with. As already

stated, the Rover Toolkit requires asynchronous calls to the Toolkit to be made. This

contrasts with this design since object invocations using IIOP are synchronous.

The Rover Toolkit also provides Relocatable Dynamic Objects (RDOs) that can

migrate to and from a mobile device. No such support for object migration is provided in

this design with the exception that the IIOP location forward mechanism can be used.

Bayou provides two mechanisms to help detect and resolve read/write and

write/write conflicts in a mobile environment. These are dependency checks and merge

procedures and have to be implemented by the application developer. This design

provides at most once delivery of data to its destination, attempting to prevent conflicts

from arising by using a logical connection abstraction to hide TCP/IP connections.
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The Mobile layer of this design is similar to the Communication Manager in the

on OnTheMove project. Similar to the CM, the Mobile layer provides facilities to

establish, maintain and terminate application communication as well as providing for

connection transparency.

4.3 Mobile Layer Operation

The Mobile layer provides a logical connection abstraction to allow lost or broken

TCP/IP connections to be hidden from the layers above it. This abstraction requires data,

originating at the MH, to be cached by the MH before sending. When the MH receives an

acknowledgement of the data from the MG, the data can be removed from the cache. In a

similar fashion any data sent from a network host to the MH is cached at the MG until

acknowledged.

There are two cases to consider for the operation of the Mobile layer outlined

above. The first and more simple case is when a client application, using the IIOP layer,

is located on the mobile host. It sends requests to a server application on the fixed

network and receives replies from the server application.

The second case is when a server application, using the IIOP layer, is located on

the mobile host. Client applications on the fixed network or other mobile hosts send

requests to the server application and receive replies. Each of these two cases will now be

discussed.

4.3.1 Mobile Host as a client

When an application on the MH is a client of some service on the fixed network, there are

four distinct stages to consider. These are

1. Connection establishment – These are the steps taken to create a new

logical connection.

2. Data Transmission – The steps needed to transmit data associated with

a logical connection

3. Connection Re-establishment – Re-establishing an existing logical

connection after a TCP/IP connection has been lost.
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4. Connection Shutdown – The steps involved in closing down a logical

connection

Connection Establishment

During connection establishment, the IIOP layer calls the Mobile layer socket()

function to create a socket. This call causes the Mobile layer to create a unique socket

identifier and pass it back to the caller.

Figure 4.3

The IIOP Layer next calls the Mobile layer connect() function to establish a TCP/IP

connection with the fixed network server (Step 2). This call causes the Mobile Layer to

extract and cache the server address and port number, associating it with the socket

parameter of the connect() function. The Mobile Layer delays opening an underlying

TCP/IP connection to the MG until there is data to be sent to the server. This is done in

an attempt to minimise the use of the wireless link since it is both unreliable and

expensive in comparison to a fixed network. The connect() call returns indicating that

the connection has been established.

Figure 4.4
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When the IIOP Layer sends or attempts to receive data for the first time using the

send() or recv() functions over what appears to it to be a TCP/IP connection, the

Mobile Layer on the MH sets up a logical connection to the Mobile Layer on the MG

(Step 3). This is a two step process.

Figure 4.5

Note that the Mobile Layer on the MH has two options at this point. It could open a new

TCP/IP connection to the MG for this logical connection or the Mobile layers on the MH

and MG could multiplex any data, associated with the logical connection, onto an already

established TCP/IP connection. If the Mobile Layer on the MH is using multiplexing and

there are no TCP/IP connections already established, then the Mobile Layer would have

to establish a new connection.

The second option was chosen since it would utilise the wireless link more

efficiently, although making the implementation slightly more complicated. The first

option would be inefficient when open TCP/IP connections are not being used.

The Mobile Layer on the MH sets up the logical connection to the Mobile Layer

on the MG by passing the server address, port number and other relevant information

(Step 3(a)). The server’s port number and address were already cached (see Step 2). The

{server address and port number} pair allow the MG to open a TCP/IP connection to the

server on the fixed network at this or some future time.

The Mobile Layer on the MG assigns the server address, port number and other

information a unique logical connection identifier (LCID) which it passes back to the

3. Send data

IIOP

Mobile Layer

TCP/IP

Mobile Layer

TCP/IP
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3(b). Return LCID
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Mobile Layer on the MH (Step 3(b)). This LCID allows the MH to identify to the MG the

TCP/IP connection between MG and Server when data is being transmitted.

Since the MG assigns the LCID, an unauthorised MH would have to guess this

value to impersonate the MH and invoke a particular object’s methods on a server. Once

this logical connection has been established, data can then be transmitted.

Data Transmission

The Mobile Layer in the MH will assign a unique identifier to the data passed to it for

transmission by the layer above it. The Mobile layer caches the data, identifier and LCID.

The data and identifier are then sent to the Mobile Layer of the MG (Step 4). The LCID

is included with the identifier and the data.

Figure 4.6

The Mobile Layer on the MG acknowledges the sent items  (Step 5) and transmits

the data on the TCP/IP connection to the server (Steps 6). This TCP/IP connection is

established when the Mobile Layer on the MH sends data, associated with the LCID, to

the MG for the first time. The Mobile Layer on the MG then retrieves the server address

and port number associated with the LCID (see Step 3 above) to establish the TCP/IP

connection. This data is sent using one of the socket functions send(), sendto()

and sendmsg() to the server on the fixed network. When the sent items are

acknowledged, the Mobile Layer in the MH removes the items from the cache.

TCP/IP

Mobile Layer

TCP/IP

4. Send Request

5. Acknowledge 6. Forward data

TCP/IP

ORB / IIOP

Mobile Host Mobility Gateway Server

Mobile Layer



Page 57

In a similar fashion, when the Server sends data (Step 7), the Mobile Layer in the

MG will assign it a unique identifier. The Mobile Layer on the MG caches the data along

with the LCID.

Figure 4.7

The Mobile Layer on the MG then sends the identifier and data to the Mobile Layer of

the MH (Step 8). The Mobile Layer on the MH acknowledges the sent items  (Step 9) and

this causes the Mobile Layer on the MG to remove the previously cached items.

Connection Reestablishment

The Mobile layer, which has data to send, is responsible for re-establishing any lost

TCP/IP connections between the MH and the MG. In this case, the Mobile layer sends a

re-open logical connection request to its peer Mobile layer. Since multiplexing is being

used, the LCID will be included only when data is being sent and is not needed when re-

establishing the connection.
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Figure 4.8

Note that both Mobile layers could conceivably have data to send after a TCP/IP

connection has been lost. This race condition can easily be solved, by agreeing that the

Mobile layer on the MH’s Re-open logical connection is used with the Mobile layer on

the MG’s Re-open logical connection being ignored.

Any unacknowledged data that was sent over the lost connection is retransmitted

over the new TCP/IP connection when more data arrives at either Mobile layer. If no

more data arrives after a specific time, then the data can be retransmitted over the new

TCP/IP connection between the Mobile layers. This helps to maximise throughput on the

wireless link and minimise use of the expensive wireless link.

Connection Shutdown

Figure 4.9

The IIOP layer calls the Mobile layer shutdown() function to close down a logical

connection. The Mobile layer on the MH retransmits any unacknowledged data to the

MG, until all the data is acknowledged by the MG. The Mobile layer on the MH then
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sends a shutdown logical connection message to the MG. The MG removes all data

associated with the logical connection and acknowledges the shutdown message. On

receipt of the shutdown acknowledgement, the Mobile layer on the MH removes all data

associated with the logical connection.

If the server on the fixed network closes down its connection to the MG, then the

MG ensures that all data sent from the MG to the MH is acknowledged before sending a

shutdown message. On receipt of a shutdown message, the Mobile layer on the MG

removes all data associated with the logical connection and then sends a shutdown

acknowledgement.

4.3.2 Mobile Host as a server

When a MH is a server to clients on the fixed network, there are two distinct stages to

consider

• Accepting Connections – This allows clients connection attempts to be

accepted by the server on the MH.

• Data Reception – These are the steps involved when receiving data

from the client

Note that Connection Re-establishment and Connection shutdown are similar to the case

where a MH is a client of services located on the fixed network.

Accepting Connections

Figure 4.10
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The IIOP layer calls the Mobile layer socket() function to establish an unbound

stream socket. This call causes the Mobile layer to create a unique socket identifier and

pass it back to the caller.

Figure 4.11

The IIOP layer calls the Mobile layer bind() function specifying a port number and an

address to bind to a particular socket. The Mobile layer ensures that the {address, port #}

pair is not already being used. The {address, port #} pair is cached by the Mobile layer

and it is associated with the socket parameter passed to the bind function.

Figure 4.12

The IIOP layer calls the listen() socket function specifying a queue size for the

number of incoming connection attempts. The Mobile layer caches the queue size

parameter, associating it with the socket parameter passed to the listen function.
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Figure 4.13

When the IIOP layer invokes the Mobile layer accept() function on the MH (Step 4),

the Mobile layer on the Mobile host must start the Mobile layer on the Mobility Gateway

accepting connections from clients on the fixed network (Step 5). This request to start

accepting connections could specify the address and the port number to the Mobile layer

on the MG. However, the Mobile layer on the MG returns an LCID, which identifies this

{address, port #} pair. This allows the Mobile layer on the MG control over allocation of

port numbers as well as solving the following problem.

Having the MG act as a proxy for server applications on mobile hosts introduces

the problem of two or more MHs sharing the same MG and wishing to use the same port

number. For example, if two server applications on two MHs wanted to operate as HTTP

servers using the same default port, port 80, they would be unable to as there is only one

such port on the MG. This is overcome in a CORBA context by using the S/IIOP layer to

swizzle any IORs produced by the server application. The Swizzling layer is discussed

later.

As multiplexing is being used, the Mobile layer on the MH must block the caller

until a multiplexed connect request comes from the Mobile layer on the MG.

When a client on the fixed network attempts to set-up a connection with the server

application on the MH (Step 7), it must possess the {address of MG, port #} pair. The

Mobile layer on the MG relays the connection attempt to the Mobile layer on the MH

IIOP

Mobile Layer

TCP/IP

Mobile Layer

TCP/IP

4. accept()

Mobile Host Mobility Gateway

5. Start accepting connections

6. Accept incoming connections
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(Step 8). The Mobile layer on the MH acknowledges the connection attempt and un-

blocks the accept() call (assuming there was one). If multiplexing is being used, the

connection attempt between MG and MH includes the LCID already allocated (Step 6)

along with a new LCID for the new connection between the MG and the client on the

fixed network

Figure 4.14

Data Reception

The IIOP layer calls the Mobile layer recv() function to receive data over the

connection, which has previously been accepted.

Figure 4.15

When a client on the fixed network sends data, it is cached by the Mobile layer on the

MG and then sent to the Mobile layer on the MH (Step 8). The Mobile layer on the MH

acknowledges the sent data (Step 9). The Mobile layer on the MG then removes the data

from its cache.

Mobile Layer

TCP/IP

Mobile Layer

TCP/IP

8. Connect attempt

9. Acknowledge

7. connect()

TCP/IP

ORB / IIOP

Mobile Host Mobility Gateway Client

IIOP

Mobile Layer

10. Receive data

Mobile Host
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Figure 4.16

The Mobile layer on the MH un-blocks the previous recv() call. If there is no

corresponding recv(), the Mobile Layer on the MH caches this data for a future

recv() call. When the Mobile layer on the MH has data to send, it proceeds in a similar

fashion to data transmission when the MH is a client as described earlier.

4.4 IIOP Layer

The IIOP layer provides software components that allow software developers to build

applications, which can communicate using IIOP. This section will discuss the IIOP layer

design goals and then describe the major software components used to achieve these

design goals.

4.4.1 Design Goals

The first design consideration to be taken into account is that the IIOP layer should be as

efficient as possible and have as small a footprint as possible. This is necessary since the

implementation will be used to develop applications for mobile hosts, which have limited

CPU speed and memory size.

Although the IIOP protocol only defines eight different message types, it must

cater for the complexity of the CORBA Common Object Services. Another goal of the

IIOP layer design was to hide the complexity of IIOP as much as possibly from the

software developer. The software developer, using the IIOP layer should not need to

Mobile Layer

TCP/IP

Mobile Layer

TCP/IP

12. Send data

13. Acknowledge

11. send(…)

TCP/IP

ORB / IIOP

Mobile Host Mobility Gateway Client
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know every detail of the IIOP protocol. However, the IIOP layer should allow the

software developer change various parameters to the IIOP protocol if necessary.

Finally, the IIOP layer should allow dynamic switching between the Mobile layer

and the TCP/IP layer whenever needed. This is necessary so that mobility support can be

plugged in and out whenever it is required.

4.4.2 Components of the IIOP layer

The IIOP layer implements the IIOP protocol providing an easy to use collection of

objects to send and receive IIOP messages and to create IORs. The most important

aspects of the IIOP layer design will now be discussed and how they address the issues

raised above. For a more in depth description of the IIOP layer see Chapter 5.

Figure 4.17 Class Diagram for IOR class

The IOR class, shown above represents an IIOP Interoperable Object Reference. The

class definition allows for an IIOP IOR to be converted from its well-defined

hexadecimal representation (see Chapter 3) into a more useable format using the

Destringify(…) method and allows a new IIOP IOR to be constructed using

AddProfile(…) and to be converted to its hexadecimal representation using the

Stringify(…) method.

IOR

GetTypeID() : char *
SetTypeID(char * type_id)
Stringify(char * )
Destringify(char * )
AddProfile(char * object_key,
                     char * hostname,
                   unsigned short port)

- iiopProfileNode : IIOPProfileNode *
- ior_mutex : Mutex
+ type_id : char *
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To allow an IOR to be swizzled, the Stringify(…) function would need to be

changed to do the swizzling. How this swizzling is achieved is discussed in greater detail

in the description of the Swizzling layer in the next section.

4.5 Swizzling Layer (S / IIOP)

This layer will work with the IIOP layer and the Mobile layer to allow a MH to act as a

Server in a CORBA context. A Server produces Interoperable Object References (IORs)

for objects stored at that Server. An IOR contains enough information (hostname, port

number and object key) to allow clients to locate the object and consequently invoke its

methods.

Clients on the fixed network are unable to directly contact a Server on the MH,

they must go through the MG. Thus, the address information consisting of the {address of

MH, port #} pair, in an IOR needs to be changed to allow clients, on the fixed network to

invoke methods of an object stored in a MH. This change is done in the Swizzling layer.

There are two possible places that this change could occur. It could occur when

the IOR is created or when it is stringified. This second option is better as an IOR can

only be exported from the MH when it is in stringified form and not all IORs will be

exported. This, possibly, reduces the number of IORs that the Swizzling layer will have

to change.

The MG has a well-known proxy port on which the S/IIOP layer is listening. The

S/IIOP layer on the MH knows the fixed network address and proxy port of the MG. It

can then swizzle any IORs produced. This involves changing the {address of MH, port #}

pair in an IOR to the {fixed network address of the MG, well-known proxy port} pair.

After switching the address information contained in an IOR, the S/IIOP layer needs to

prepend the {address of MH, port #} pair to the object key in the IOR. This allows the

S/IIOP layer on the MG to identify the particular server application that is running on a

particular MH. This is illustrated in table 4.1 on the following page.
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IOR CONTENTS

IOR before change Address :    address of MH

Port :           1234

Object key : foobar

IOR after change Address :      Address of MG

Port :             proxy port number

Object key :   {Address of MH, 1234} :  foobar

Table 4.1 IOR contents before and after swizzling

When a Server application is willing to accept connection attempts, the S/IIOP layer must

override the Mobile layer accept(…) functionality since a Mobile layer accept call

dynamically allocates ports on the MG (see section 4.3.2).

The S/IIOP layer on the MH will override this by setting up a connection to the

S/IIOP layer on the MG to allow connection attempts from clients on the fixed network

to be forwarded to the S/IIOP layer on the MH. The S/IIOP layer on the MH will then

block until a connection attempt is received from the S/IIOP layer on the MG.

When a client receives a “swizzled” IOR and wishes to invoke the IOR’s

methods, it opens a TCP/IP connection to the MG, using the {fixed network interface

address, allocated port number} pair described above. It sends an IIOP Request to the

S/IIOP layer on the MG. The S/IIOP layer receives this Request.

The object key within the Request identifies the address of the MH and port

number on which the server application is listening. The S/IIOP layer removes the

{address of MH, port #} pair that was prepended onto the object key in the IOR when the

IOR was stringified. The S/IIOP layer then replaces the {fixed network address of the

MG, well-known proxy port} pair with the {address of MH, port #}.

Note that both the client on the fixed network and the server application on the

MH are unaware that the S/IIOP layer on the MG is acting as a proxy when it forwards

IIOP Requests and Replies. The client on the fixed network perceives that the object it is

invoking is at the MG. The S/IIOP layer on the MG also has the capability to use the

OBJECT_FORWARD capability in IIOP (see section 3.3.3) to allow object invocations
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to be forwarded to other Mobility Gateways. This would be necessary when a MH is

handed over from one Mobility Gateway to another and clients on the fixed network still

maintain old swizzled IORs.

4.6 Summary

This chapter began with an overview of the design followed by a comparison of the

design with the research projects covered in Chapter 2. The design is similar in certain

aspects to these projects but also possesses features, which are unique to it. A detailed

description of the Mobile layer and the S/IIOP layer was then given. The IIOP layer is

described in detail in Chapter 5.
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Chapter 5

Implementation

This chapter describes in detail the design and implementation of the IIOP layer. Recall

from Chapter 4 that the Mobile layer implementation is near completion but has yet to be

tested while the Swizzling layer has yet to be implemented. Both of these layers will not

be discussed further.

The goals of the implementation are presented first. This is followed by a

description of the implementation decisions, followed by a description of the various

classes within the IIOP layer and their interaction.

5.1 Implementation Goals

The goal of the implementation was to produce a set of classes that allow applications to

be built, which can interoperate with other applications using the OMG’s IIOP protocol

for communication. The set of classes should also be suitable for use on a mobile host

that has limited CPU speed and a small amount of memory. This requires that the

implementation be as efficient as possible and, in particular, avoids unnecessary copying

of data.

In addition, the IIOP layer should be useable on both Windows NT and on

Solaris. This allows IIOP enabled applications to be built for the Windows CE and/or the

Palm Pilot operating systems. An application written using the IIOP layer on Windows

NT should recompile on Solaris without the need to make changes to the application

(assuming that the application does not use other operating system dependent

functionality, such as Win32 API calls on Windows NT).

Although the IIOP layer does not make use of multiple threads, the

implementation of the IIOP layer should be reentrant. This allows multithreaded

applications to be built on either Windows NT or Solaris using the IIOP layer without

causing synchronisation problems.
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Finally, the IIOP layer should hide as much of the complexity of the IIOP

protocol as possible, while still allowing the application developer access to the various

parameters of the IIOP protocol.

5.2 Implementation Decisions

The IIOP layer was implemented initially on Windows NT using Visual C++. It was

ported to Solaris using SparcWorks C++. The IIOP layer uses a Mutex class abstraction,

which is implemented on Windows NT using the CriticalSection API [Pham’96] and on

Solaris using the Solaris threads mutex API [Chan’97].

Network communication is achieved in the IIOP layer using Winsock sockets on

Windows NT  [Hall’93] and BSD sockets on Solaris [Stevens’90]. The

MobileEndpoint class or tcpEndpoint class implements the network

communication depending on whether mobility support is required or not. Both of these

classes inherit from the Endpoint abstract base class. This makes it possible to

dynamically switch between the Mobile layer and the TCP/IP layer.

5.3 IIOP Layer Classes

The IIOP layer classes encapsulate the IIOP protocol functionality. Each class

implements a particular function in the IIOP protocol. This allows the application

developer to instantiate various classes to implement all or part of the IIOP protocol

without having to have an in-depth knowledge of the IIOP protocol. The rest of the

chapter describes the various parts of the IIOP layer under the following headings:

• Overview of Class Hierarchy

• Representation of IORs

• Marshalling

• GIOP Message Representation

• Transport Classes

• Communication Endpoints
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5.3.1 Overview of Class Hierarchy

As can be seen from the UML diagrams [Fowler’97] in figures 5.1a, 5.1b and 5.1c, the

IIOP layer classes can be divided into the following subsets:

• Representation of IORs

• Marshalling

• GIOP Message Representation

• Transport Classes

• Communication Endpoints

Figure 5.1a GIOP Message Representation classes and Marshalling classes

Figure 5.1b Communication Endpoints and Transport Classes

Request

ServerMessageClientMessage

LocateRequest CancelRequest Reply LocateReply CloseConnection

CDR

Message Encapsulation

MobileEndpointtcpEndpoint

ClientEndpoint Endpoint

1 11

ServerEndpoint

1

1..*1..*

1

1EndpointFactory

tcpEndpointFactory MobileEndpointFactory
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Figure 5.1c Representation of IORs

The class used to represent an IIOP IOR is the IOR class. This class uses the

IIOPProfileNode class to represent an IIOP profile within the IIOP IOR. These

classes are used to allow easy manipulation of the various elements within an IIOP IOR.

Methods are provided to convert an IIOP IOR in stringified form (see section 3.2.8

Stringified IORs) to an IIOP layer IOR and vice versa. The IOR class is available as part

of the IIOP layer API while the IIOPProfileNode is not since it is only used

internally by the IOR class.

The Marshalling classes, CDR and Encapsulation are used to push data into

and pop data out of communication buffers ensuring adherence to the alignment

requirements of the IIOP protocol, described in section 3.2.4 of Chapter 3. Both these

classes are available to the application developer as part of the IIOP layer API.

The GIOP Message Representation classes are used to represent GIOP messages

in an easy to use form by application developers. The classes Request, Reply,

CancelRequest, LocateRequest, LocateReply, CloseConnection,

ClientMessage, ServerMessage and CDR are available for use by application

developers while the other classes are not.

The Transport classes are used to allow the creation and simplify the use of

TCP/IP connections and Mobile layer logical connections, using the tcpEndpoint and

MobileEndpoint classes. An instance of the corresponding factory class is used to

create instances of each class. Each of these classes is part of the IIOP layer API and is

available to an application developer.

The Communication Endpoint classes, ClientEndpoint and

ServerEndpoint are used to send and receive IIOP messages. The IIOP messages are

represented as instances of Request, Reply, etc, to the application developer. Both of

these classes are part of the IIOP layer API available to an application developer.

IOR

IIOPProfileNode

0..*0..*
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5.3.2 Representation of IORs

In the IIOP protocol, each IOR has one or more IIOP profiles, which specify where the

object represented by the IOR is stored and how it is identified. In the IIOP layer, each

IIOP profile is represented as a node in a linked list. Each node is an instance of the

IIOPProfileNode class, which is illustrated in the UML diagram below. A linked list

Figure 5.2 Class Diagram for IIOPProfileNode class

storage mechanism was chosen ahead of a simple array as the data within the

IIOPProfileNodes are accessed only once by instances of the ClientEndpoint and

ServerEndpoint classes in the Connect()and Listen() methods respectively.

Therefore a linked list representation is more efficient in terms of adding a new

IIOPProfileNode instance than a dynamically growable array.

The componentList instance variable points to the head of a linked list of data

structures that represent the sequence of Tagged Components within the IIOP IOR. The

hostname and port instance variables identify the process where the object is stored

in the network, while the object_key identifies to the process the particular object.

The next instance variable points to the next member of the linked list. The

SetProfile() member function allows the location information of an

IIOPProfileNode to be set.

IIOPProfileNode

// IOR class is a friend of this class

- ComponentList :   TaggedComponent

+ hostname : char *
+ port : unsigned short
+ object_key : char *
- IIOPProfileNode next

SetProfile(char * object_key,
char * hostname,
unsigned short

port):Status



Page 73

Figure 5.3 Class Diagram for IOR class

The IOR class represents an IIOP IOR. The iiopProfileNode instance variable points to

the top of a linked list of IIOP profiles. The type_id instance variable corresponds to the

type identifier in an IIOP IOR. The ior_mutex instance variable is used to prevent a

multithreaded program corrupting the internal representation of an instance of the IOR

class. The type_id instance variable can be retrieved and modified by using the member

functions GetTypeID(…) and SetTypeID(…).

The member functions Stringify(…) and Destringify(…) convert an IOR object

into an IIOP IOR in stringified or hexadecimal form and vice versa. Finally, the

AddProfile(…) member function allows an IIOPProfileNode, which corresponds to an

IIOP profile to be added to an IOR object.

IOR

GetTypeID() : char *

SetTypeID(char * type_id)

Stringify(char ** )

Destringify(char * )

AddProfile(char *object_key,

       char * hostname,

unsigned short port)

- iiopProfileNode : IIOPProfileN

- ior_mutex : Mutex
+ type_id : char *
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5.3.3 Marshalling

Figure 5.4 Class Diagram for CDR class

The CDR class marshalls data into and out of a marshalling buffer. The marshalled_data

instance variable points to the start of the marshalling buffer and the two instance

variables data_start and data_end indicate where in the marshalled buffer data will be

popped from or pushed into. This is illustrated in Figure 5.5 below, where the string

“HELLO” has been pushed into the marshalled buffer.

Figure 5.5 Representation of marshalling buffer

CDR

- grow()
+ Push(char ) : Status
+ Push(short ) : Status
+ Push(long ) : Status
..
+ Pop(char *) :Status
+ Pop(short * ) : Status
+ Pop(long * ) : Status
..

- marshalled_data

# data_start
unsigned long

# data_end unsigned
long
- endian_type char
- mutex : Mutex

H

E

L

L

O

‘\0’

marshalled_data

data_start

data_end
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The endian_type instance variable specifies whether the data in the marshalling buffer is

encoded according to the Big Endian or Little Endian machine architectures. The mutex

instance variable ensures that the marshalling buffer does not get corrupted when two or

more threads access it.

The grow(…) member function allows the marshalling buffer to expand and

contract dynamically as data is pushed into or popped from the buffer. The Push(…)

member functions push data into the marshalling buffer, ensuring that the correct IIOP

alignment is maintained. It is important to note that the Push(…) member functions do

not use the endian_type instance variable. Instead data is pushed into the buffer using the

current machine architecture.

The Pop(…) member functions retrieve data from the marshalling buffer after the

data_start instance variable. The Pop(…) member functions retrieve the data according to

the endian_type instance variable and each function transforms the data from being Big

Endian specific to Little Endian specific or vice versa. If the endian_type instance

variable matches the current machine architecture then no transformation is necessary.

Figure 5.6 Class Diagram for Encapsulation class

The Encapsulation class inherits from the CDR class. The Encapsulation class

allows the creation of an encapsulated sequence of data, complying with the CORBA

Specification. The encapsulated data has the endian_type instance variable as the first

in the marshalling buffer. The various methods to push data into and pop data from the

marshalling buffer are inherited from the CDR class.

Encapsulation
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5.3.4 GIOP Message Representation

Figure 5.7 Class Diagram for Message class

The Message class represents a GIOP message header, as defined in Chapter 13 of the

CORBA Specification. The Message class constructor allows various aspects of the

GIOP header to be manipulated including what version of the GIOP is being used and

whether the GIOP message is one fragment of a larger message.

Figure 5.8 Class Diagram for ClientMessage class

The ClientMessage class represents any GIOP message that can be sent by a client.

The class inherits the GIOP header representation from the Message class. The

request_id instance variable contains the GIOP request identifier, which

unambiguously identifies a GIOP message. The request_id is assigned a value by the

ClientMessage class by using a static member variable, which is incremented with

every IIOP message sent. This relieves the application developer from having to assign

an unambiguous value to the request identifier in an IIOP message. The endpoint

Message

Message(char, char, boolean,

   unsigned long, char *) ;

- magic : char[4]
- GIOP_major : octet
- GIOP_minor : octet
- flags : octet
- message_type : octet
- message_size : unsigned long

ClientMessage

+ ClientMessage(char, char, boolean,

unsigned long, char *);

- request_id : unsigned long
- endpoint : Endpoint *
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instance variable is a pointer to an underlying transport connection, whether it is TCP/IP

connection or a Mobile layer logical connection.

Figure 5.9 Class Diagram for ServerMessage class

Similar to the ClientMessage class, the ServerMessage class inherits from the

Message class and represents any GIOP message that can be sent by a server. The

reply_id instance variable contains the GIOP message request identifier. The

endpoint instance variable is a pointer to an underlying transport connection, whether

it is TCP/IP connection or a Mobile layer logical connection.

ServerMessage

+ ServerMessage(char, char,

boolean,

unsigned long, char);

- reply_id : unsigned long
- endpoint : Endpoint *
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Figure 5.10 Class Diagram for Request class

The Request class represents a GIOP Request message and it inherits from the

ClientMessage class. The various instance variables correspond directly to the GIOP

Request header fields with the exception of the more_fragments instance variable,

which indicates whether or not there are more fragments of this message to follow.

There are two constructors used to create a Request object. The first

constructor, which is public, and is used by a client, to create a GIOP Request message,

which is then sent to a server. It operates by pushing the GIOP header and the GIOP

Request header into the inherited marshalling buffer. The GIOP header information is

inherited from the inherited Message object, while the GIOP Request header

information is obtained from the Request object. The various parameters to the

constructor are fields in the GIOP Request header. Most of these parameters are given

default values with the exception of the first, which identifies the method name being

invoked. These default values relieve the application developer from having to know

each field in the GIOP request message.

The construction of a Request by a client application is illustrated the interaction

diagram in Figure 5.11 on the following page. The application must instantiate a Request

Request

+ service_context :
ServiceContext

+ response_expected : octet
+ more_fragments : octet
+ operation : char *
+ requesting_principal : char *
- object_key : char *

+ Request(char *, char, char,

char, boolean, char *,

unsigned long, char * )

# Request(char, char, boolean,

unsigned short, unsigned

long, char *)

..
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object passing the operation name to the constructor. This constructor causes the creation

of the inherited constructors, including the CDR constructor. The parameters to the

Request are then pushed into the CDR marshalling buffer using calls to the various

Push() methods.

Figure 5.11 Creation of a Request object by a client

The second constructor is used to construct a Request object by a server application

from a GIOP request message, which is stored in a buffer. The various fields of the GIOP

Request header are filled in from the buffer using the Pop() member functions inherited

from the CDR class.

Client ClientMessage Message CDRRequest

Request("operation");

ClientMessage()

Message()
CDR()

* Push()
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Figure 5.12 Creation of a Request object by a server

Figure 5.13 Class Diagram for Reply class

The Reply class represents a GIOP Reply message and it inherits from the

ServerMessage class. The various instance variables correspond directly to the GIOP

Reply header fields with the exception of more_fragments, which plays a similar role

to more_fragments in the Request class.

There are two constructors used to create Reply objects. The first is used by a

server when sending a GIOP Reply message. The constructor marshalls the GIOP header

and the GIOP Reply header into a buffer for sending. The constructor takes an unsigned

long as its first parameter, which corresponds to the locate status field of the GIOP reply

message (see section 3.3.4). The constructor also takes a Request object as a parameter

Reply

+ service_context :ServiceContext
+ more_fragments : octet
+ reply_status : octet

+ Reply(unsigned long, Request &)

# Reply(char, char, boolean,

  unsigned long, char *)

..

Server ClientMessage Message CDRRequest

Request();

ClientMessage()

Message()
CDR()

* Pop()
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to link the Reply object with the original Request. Thus the application developer

does not need to know the request identifier that is part of the GIOP reply message. Once

the Reply object has been created, the return values for the original method invocation

can be appended to the buffer using the Push() functions inherited from the inherited

CDR class.

The second constructor is, used by a client to reconstruct the Reply object from

a GIOP Reply message, when it is stored in a buffer. The various Reply header fields are

filled in from the buffer using the Pop() member functions from the CDR class.

Figure 5.14 Class Diagram for CancelRequest class

Like the Request class, the CancelRequest class simplifies the construction of a

GIOP CancelRequest message before sending by a client and upon reception by a server.

The request_id of the Request parameter to the constructor is used as the request

identifier part of the GIOP CancelRequest header. Again this eliminates the application

developer from having to keep track of which request identifier belongs to which Request

object.

Figure 5.15 Class Diagram for LocateRequest class

LocateRequest

- object_key : char *

+ LocateRequest( )

# LocateRequest(char,char,

boolean,

unsigned short ,

unsigned long,

char *)

CancelRequest

+ CancelRequest(Request &)

- CancelRequest(char, char,
boolean,
unsigned long,char)
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Like the Request class, the LocateRequest class simplifies the construction of a

GIOP LocateRequest message before sending by a client and upon reception by a server.

Again the public LocateRequest constructor does not require the application

developer to assign the object_key and request_id. The object key is assigned in

the ClientEndpoint class and the request_id is assigned in the inherited

ClientMessage class.

The second constructor allows the creation of LocateRequest object from a GIOP

LocateRequest message. The various parameters to this constructor are used to initialise

various instance variables of the LocateRequest object.

Figure 5.16 Class Diagram for LocateReply class

Like the Reply class, the LocateReply class simplifies the construction of a GIOP

LocateReply message before sending by a server and upon reception by a client. The

LocateRequest parameter to the public constructor allows the GIOP LocateReply to

be linked with the corresponding GIOP LocateRequest message. Again this relieves the

application developer from having to keep account of which request identifier value

belongs to which instance of the LocateRequest class.

The second constructor is used at the client side. The various parameters are used

to initialise various fields of the LocateReply object. This constructor also uses the

inherited CDR Pop() methods to create an instance of the LocateReply class from a

buffer, passed as a parameter.

+ locate_status : unsigned long

LocateReply

+ LocateReply(unsigned long,

LocateRequest &)

# LocateReply(char, char, boolean,

unsigned long, char *)
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Finally, the CloseConnection, Fragment and MessageError are simple classes,

which allow the construction of a GIOP header with the correct message type, either

CloseConnection, Fragment or MessageError. These classes will not be

discussed further.

5.3.5 Transport Classes

Figure 5.17 Class Diagram for Endpoint class

The Endpoint class is an abstract class that represents the functionality available for

creating and manipulating an underlying connection. This allows dynamic switching

between the tcpEndpoint and MobileEndpoint classes that inherit from this class.

The tcpEndpoint and MobileEndpoint classes implement each function using

TCP/IP connections or Mobile layer logical connections, as appropriate.

Figure 5.18 Class Diagram for EndpointFactory class

The EndpointFactory class is an abstract class, which is based on the Abstract

Factory Design Pattern [Gamma et al]. The tcpEndpointFactory and

MobileEndpointFactory classes inherit from this class, each implementing the

MakeEndpoint() method to create tcpEndpoint objects or MobileEndpoint

Endpoint

+ socket() : SOCKET
+ bind( char *, unsigned short
port) : int
+ listen() : SOCKET
+ accept() : SOCKET
+ connect(char *,  unsigned
short ) : int
+ send(char *, int, int ): int
+ recv(char *, int, int ) : int
+ shutdown(int mode) : int

EndpointFactory

+MakeEndpoint() : Endpoint *
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objects. These classes allow the creation of instances of tcpEndpoint and

MobileEndpoint classes and the Abstract Factory Design Pattern allows other

factories to be added subsequently.

5.3.6 Communication Endpoints

Figure 5.19 Class Diagram for ClientEndpoint class

The ClientEndpoint class represents a communication endpoint over which GIOP

messages can be sent and received by a client. The instance variable endpoint_p has

static type Endpoint but whose dynamic type can be either tcpEndpoint or

MobileEndpoint. The onus is on the application developer to switch between an

instance of the tcpEndpoint class and an instance of the MobileEndpoint class.

Some form of end-to-end agreement would also be necessary before performing this

switch. The client_mutex variable ensures that a multithreaded client does not

corrupt the internal state of the ClientEndpoint object.

The Connect() method sets up an underlying connection, either TCP/IP or

Mobile layer logical connection to the server address as specified in the IOR. If an IOR

contains more than one IIOP profile, the Connect() method attempts to set-up a

connection using each profile in turn.The Send() method sends a GIOP message

represented by a ClientMessage over the previously established connection. If the

underlying connection is broken or if the parameter passed is not a valid

ClientMessage, then the Send() method returns an error. The Receive() method

receives a GIOP message from the underlying connection and returns the GIOP message

to the caller as a ServerMessage object. Note that if there is no GIOP message

buffered to be received, then the Receive() method will block.

ClientEndpoint

+ endpoint_p : Endpoint
- client_mutex : Mutex

+ Connect(IOR &) : Status

+ Send(ClientMessage & ):Status

+ Receive(ServerMessage *& ):Status
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The creation and sending of a Request message using a ClientEndpoint is

illustrated in Figure 5.20 below.

Figure 5.20 Sending an IIOP Request message

In figure 5.20, the client application creates an IOR object by calling the

Destringify() method passing an IIOP IOR in hexadecimal form to it. It then

creates a Request object, specifying the operation name it wishes to invoke

(“operation” in this instance) and pushes the parameters of the method invocation. The

client application then connects to the address specified in the IOR by using the

Connect() method. The client application can then send and receive IIOP messages

using the Send() and Receive() methods. In this instance it proceeds to send an

IIOP Request message.

Client IOR Request ClientEndpoint

Destringify

Request("operation")

Connect()

Send()

* Push()
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Figure 5.21 Class Diagram for ServerEndpoint class

The ServerEndpoint class represents a communication endpoint over which GIOP

messages can be sent and received by a server. The instance variable endpoints_p is

an array of pointers whose static type is Endpoint but whose dynamic type could be either

tcpEndpoint or MobileEndpoint. An array was chosen over a linked list data

structure to allow fast access to the various pointers to Endpoint objects. The

server_mutex variable ensures that a multithreaded server does not corrupt the

internal state of the ServerEndpoint object.

The Listen() method waits for connection attempts and GIOP messages to be

received on the endpoints_p array. The elements of the endpoints_p array are

initialised using the IIOP profiles in the IOR.

Th Receive() method receives a GIOP message from one of the elements of

the endpoints_p array and returns a ClientMessage object to the caller. Note that

if there is no GIOP message buffered to be received, then the Receive() method will

block. The Send() method sends the GIOP message represented by the

ServerMessage object on an element of the endpoint_p array, the element is

identified from the ServerMessage object.

ServerEndpoint

endpoints_p : Endpoint * *
server_mutex : Mutex
..

+ Listen(IOR &) : Status

+ Receive(ClientMessage *&) : Status

+ Send(ServerMessage &) : Status
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The receiving of an IIOP Request message is illustrated in Figure 5.22 below.

Figure 5.22 Receiving an IIOP Request message

In figure 5.22, the server application creates an IOR object and adds a number of profiles

using the AddProfile() method. The server application then stringifies this IOR

converting it into an IIOP IOR and passes it to the client possibly using a Name Service

or by sharing a common file. The server application then waits for IIOP messages from

clients using the Listen() method. When an IIOP Request message is sent by a client,

it is received by calling the Receive() method. This method in turn uses the Request

constructor to create a Request object, which is passed back to the server application. The

server application can then pop off the parameters to the method invocation using the

Pop() methods inherited from the CDR class.

Server IOR Request ServerEndpoint

AddProfile()

Stringify()

Listen()

Receive()

Request()

* Pop()
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Chapter 6

Evaluation

This chapter compares the implementation of the IIOP layer with that of IONA

Technologies IIOP Engine. This comparison is carried out to ensure that the IIOP layer

conforms to the IIOP protocol standard and to test the performance of the IIOP layer

against a highly optimised IIOP implementation, namely IONA Technologies’ IIOP

Engine. The evaluation criteria include:

• A comparison of the footprint sizes of both the IIOP layer implementation and

the IIOP Engine implementation.

• A comparison of the footprint size of a client and server application built

using both the IIOP layer and the IIOP Engine.

• The number of lines of code needed to develop the client and server

applications mentioned above.

• The time taken to send an IIOP request message and receive the

corresponding IIOP reply message.

Conformance to the IIOP protocol was repeatedly tested both during and after

development of the IIOP layer. The testing involved ensuring interoperability with the

IIOP Engine on both Windows NT and Solaris and ensuring interoperability between the

IIOP layer implementation on Windows and Solaris.

The comparison in the rest of this chapter will be made in two parts. Firstly the

footprint size of the static and dynamic link libraries of the IIOP layer and the IIOP

Engine are compared. In addition, the footprint size and code size of a distributed

whiteboard application written using both the IIOP layer and the IIOP Engine are

compared. Secondly, the average time taken to send an IIOP request message and receive

the corresponding IIOP reply message will be compared for various IDL data types of

differing sizes.
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6.1 Footprint and Code Size Comparison

A distributed whiteboard application was developed to compare both the footprint size

and code size of an application using the IIOP layer and the IIOP Engine. A brief

description of this application will now be given.

6.1.1 Distributed Whiteboard Application

The Distributed Whiteboard Application (DWA) consists of a single server and one or

more clients. The server application was initially developed on Windows NT and the

code was ported to Solaris using firstly the IIOP layer and then the IIOP Engine. The

client program was developed only for the Windows NT platform using firstly the IIOP

layer and then the IIOP Engine. The client makes extensive use of Microsoft Foundation

Classes (MFC) to provide the graphical user interface. The client application is

multithreaded while the server is single threaded.

At startup, clients register with the server by sending an IIOP request, with the

operation name set to “Register”. A stringified IOR is included in the IIOP request

message, which the server uses to “callback” the client and update its screen when

another client draws a line. The server sends an IIOP reply message back to the client,

allocating a unique identifier to the client. This identifier is used when the client begins to

draw.

The user of the client program is then presented with a drawing window, similar

to the one shown in Fig 6.1.
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Figure 6.1

As the user moves the mouse over the client window, the client program creates an IIOP

request message, with the operation name set to “DrawLine”. The IIOP request body

consists of the identifier mentioned above and two (X, Y) points, indicating the old

mouse position and the current mouse position. This IIOP request message is then sent to

the server, which relays this IIOP request message to all other registered clients, causing

the clients to draw a line at between the two points mentioned above.

6.1.2 Footprint Size

It is important to note that the IIOP Engine was designed to use the C programming

language while the IIOP layer was designed to use the C++ programming language. This
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difference is reflected in the sizes of the static library and dynamic link libraries for both

the IIOP layer and IIOP Engine. This difference is also reflected in the footprint sizes of

the client and server applications since they were only linked with the static versions of

the libraries. A program developed using C++ has usually a larger footprint than a similar

application developed using C. One possible reason for this, is the overhead associated

with object creation and object deletion.

The footprint sizes for the various libraries on Windows NT are given in Table

6.1 below. A shared library for IIOP Engine on the Solaris platform was unavailable for

this comparison.

IIOP LAYER IIOP ENGINE

Static library on Windows NT 96.1 KB 38 KB

Dynamic Link library on Windows NT 64 KB 16 KB

Static library on Solaris 120 KB 38.3 KB

Table 6.1 Library size comparison

The footprint sizes for the client and server programs are given below in Table 6.2. The

client was developed on a 266MHz Intel Pentium Pro with 64 MB of RAM, using

Microsoft Visual C++ 5.0 and running Windows NT 4.0. The server used a similar

machine as its NT platform and used a 143 MHz Sun Ultra Sparc with 64 MB of RAM

running Solaris 2.5. The server on Solaris was developed using GNUs gcc version 2.8.1.

IIOP LAYER IIOP ENGINE

Client 60.5 KB 43.5 KB

Server on Windows NT 63.5 KB 52.5 KB

Server on Solaris 90 KB 56 KB

Table 6.2 Client and Server footprint size comparison

As can be seen from table 6.2, all programs developed using the IIOP layer are larger

than their counterparts developed using the IIOP Engine. This was expected due to the

reasons outlined above.

The server on Windows NT using the IIOP layer is approximately 20% larger

than its IIOP Engine counterpart. The client on is approximately 39% larger when using
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the IIOP layer than when using the IIOP Engine. One possible reason for this larger

percentage difference could be the fact that the client is multithreaded opposed to the

single threaded server, with two threads having a larger footprint due to twice as many

IIOP layer objects being created and deleted.

6.1.3 Code Size

One of the goals of the IIOP layer was to hide the complexity of the IIOP protocol as

much as possible. This contrasts with the IIOP Engine where knowledge of the structure

of IIOP requests and replies is needed in their creation. The amount of code needed to

create the applications described above is given in Table 6.3. Note that all blank lines

were removed from the particular files before the comparison was carried out.

IIOP LAYER IIOP ENGINE

Client 213 lines 295

Server 108 236

Table 6.3 Number of lines of code comparison

The server when written with IIOP Engine requires 118% more code to be written than

when the IIOP layer is used. This extra code is needed to marshall and unmarshall the

IIOP messages into communication buffers, the IIOP layer carries out these low level

tasks.

The client when written with IIOP Engine requires 38% more code to be written

than when using the IIOP layer. This however ignores the amount of common code

written using the MFC to handle mouse events and painting on the screen. The amount of

code to handle the GUI specific function comes to 169 lines.  This implies that 44 lines

were specific to the IIOP layer and 127 lines to the IIOP Engine. This works out at a

188% difference. This larger difference, when compared with the server code, could in

part be due again to the fact that the client is multithreaded while the server is not. With a

multithreaded application, more lines of code are necessary to create IIOP messages and

send and receive them than a single threaded application. This would imply from the

server comparison above that this is the reason for the percentage being higher in the

client application.
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6.2 Comparison of Average Invocation Time

The average time taken to send an IIOP request and receive a corresponding IIOP reply

was timed on both the Windows NT and Solaris platforms. The results for each of these

will now be presented. It is important to note that although the average time required to

send an IIOP request and receive a corresponding IIOP reply will be similar on Windows

NT and Solaris, a comparison of the IIOP layers performance on Windows NT versus

Solaris would be difficult due to various hardware differences. As well as these

differences, there is no uniform method of calculating millisecond timing differences on

both Windows NT and Solaris.

Windows NT

The average invocation time for the IIOP layer and the IIOP Engine was calculated using

two computers. One machine acted as a client sending an IIOP request message and

receiving the corresponding IIOP reply message while the other machine acted as a

server receiving an IIOP request message and returning an IIOP reply message.

The client machine had a 200MHz Intel Pentium Pro microprocessor and 96 MB

of RAM while the server had a 133MHz Intel Pentium microprocessor with 48 MB of

RAM. Each machine had a 10/100Mbps dual speed Ethernet cards connected to a 3Com

Super Stack II Ethernet Switch.

The average invocation time was calculated for the IDL primitive data types of

different sizes and for the String data type. The test program used to carry out the

calculation consisted of creating and sending an IIOP request and receiving the

corresponding IIOP reply one thousand times. The average time for sending the request

and receiving the reply was calculated. This program was then executed ten times to

eliminate possible timing differences due to process scheduling on the Windows NT

operating system and the average of these ten executions was calculated.

The average invocation time for the primitive IDL data types and the String data

type are given in Table 6.3 on the following page.
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IIOP LAYER IIOP ENGINE

Char ( 1.6337 , 1.8183 ) ( 0.6353 , 0.6647 )

Short ( 1.5217 , 1.5263 ) ( 0.637 , 0.6513 )

Long ( 1.5217 , 1.5263 ) ( 0.6397 , 0.6513 )

Float ( 1.4787 , 1.5227 ) ( 0.6314 , 0.6546 )

Double ( 1.5046 , 1.5514 ) ( 0.6353 , 0.6568 )

String ( 1.6644 , 1.7916 ) ( 0.6523 , 0.6777 )

Table 6.3 Average Invocation times for Windows NT

From the above table it is obvious that the IIOP Engine outperforms the IIOP layer on

average for each IDL data type tested. This presumably is due the IIOP layer client and

server constructing two IIOP layer objects during execution of the test program. The

client creates a Request object and sends it to the server as an IIOP request message. The

server receives the IIOP request message and creates a corresponding Request object. To

send an IIOP reply message to the client, the server must create a Reply object. On

receiving the IIOP reply message, the client creates a Reply object.

Solaris

The client and server programs described in the calculation of the average invocation

time for Windows NT were ported to the Solaris platform. The client machine and server

machines each had a 143MHz Ultra Sparc microprocessor with 64 MB of RAM. The

machines were connected by a 10Mbps broadcast Ethernet link.

The average invocation time for the various IDL data types is given in Table 6.4

below.

IIOP LAYER IIOP ENGINE

Char ( 0.967 , 1.042 ) ( 0.695 , 0.708 )

Short ( 0.974 , 0.980 ) ( 694.06  , 0.698 )

Long ( 0.974, 0.981 ) ( 0.696 , 0.709 )

Float ( 0.975 , 0.981 ) ( 0.696 , 0.70 )

Double ( 0.974 , 1.002 ) ( 0.707 , 0.710 )

String ( 1.038 , 1.047 ) ( 0.836 , 0.916 )

Table 6.4 Average Invocation times for Solaris
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Again the IIOP Engine outperforms the IIOP layer in terms of average invocation time

but not as significantly as on Windows NT. One possible factor underlying this

improvement could be the increased power of the server from 133MHz microprocessor

and 48 MB of RAM to 143MHz and 64 MB of RAM. Another less obvious reason could

be the method used to calculate the timing difference. This method differs on Windows

NT from Solaris
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Chapter 7

Conclusions

This chapter gives a summary of the work completed during the course of this project and

the remaining work that needs to be done. Finally, possible future work will be discussed

in the context of the overall design described in Chapter 4.

7.1 Work Completed

The main achievement of this project is the design of a layered architecture to enable

mobile devices to interoperate with CORBA objects. An understanding of the limited

processing resources and bandwidth available in a typical mobile environment was

attained during the course of the project. As well as this, significant experience was

gained working with the CORBA standard. In particular, how object invocations are

transferred from a client to a server that hosts CORBA objects.

An easy to use implementation of the IIOP protocol was completed. During the

course of the implementation, network programming experience was gained on the

Windows NT and Solaris operating systems using Winsock and BSD sockets

respectively.  As well as this, knowledge of multithreaded programming and in particular

writing reentrant software was gained. Other experience gained includes debugging

network and multithreaded programs as well as writing Windows GUI programs using

Microsoft Foundation Classes in the contrast of the Distributed Whiteboard Application

described in Chapter 6.

Significant testing of the implementation of the IIOP protocol was carried out

both on Windows NT and Solaris. As well as this interoperability was tested using IONA

Technologies IIOP Engine, again on Windows NT and Solaris. In addition to this testing,

an evaluation of the IIOP layer was carried out by comparing it to the IIOP Engine. This

comparison took place in three parts:

• Comparison of footprint sizes of the IIOP layer and the IIOP Engine
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• Calculation of the amount of code needed to be written by both the IIOP layer

and the IIOP Engine

• Comparison of the average time taken to send an IIOP request message and

receive the corresponding IIOP reply message

The design for the Mobile layer and Swizzling layer, described in Chapter 4, has been

completed. A significant part of the implementation of the Mobile layer is completed but

has yet to be tested and implementation of the Swizzling layer has yet to be started.

7.2 Remaining Work

The implementation of the IIOP layer, described in Chapter 5, will need to be ported to a

PDA, for example Windows CE and tested. In addition, the Swizzling layer and the

Mobile layer need to be implemented and then ported to a PDA. This will allow the

completed implementation of the design, described in Chapter 4, to be tested in a typical

mobile environment.

7.2 Future Work

Other possible avenues for future work include dynamic switching between TCP/IP

connections and Mobile layer connections when the available bandwidth becomes low or

intermittent. This dynamic switching would include how to close down and existing

connection (TCP/IP or Mobile layer) and open a new connection (Mobile layer or

TCP/IP) in an application without the need for intervention from the application user.

This switching would require the transfer of state information about one connection to

enable the creation of another connection.

Another possibility for future work would involve the handover from one

Mobility Gateway (MG) to another when a mobile device changes its location. If the

mobile device acts as a server, storing CORBA objects, then object invocations directed

to the old MG would need to be directed to the new MG and then forwarded to the

mobile device.

Finally, the implementation of the design when completed could be used as the

IIOP specific part, in the construction of an ORB. This ORB may be a minimal
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implementation of the CORBA standard suitable for a mobile, providing some of the

CORBA Common Object Services.
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Appendix A OMG IDL

This section contains the OMG IDL for the GIOP and IIOP modules.

A.1 GIOP Module

module GIOP { // IDL extended for version 1.1

struct Version {
octet major;
octet minor;
};

#ifndef GIOP_1_1

// GIOP 1.0
enum MsgType_1_0{ // rename from MsgType

Request, Reply, CancelRequest,
LocateRequest, LocateReply,
CloseConnection, MessageError

};

#else
// GIOP 1.1
enum MsgType_1_1{

Request, Reply, CancelRequest,
LocateRequest, LocateReply,
CloseConnection, MessageError,
Fragment // GIOP 1.1 addition

};
#endif

// GIOP 1.0
struct MessageHeader_1_0 { // Renamed from
MessageHeader

char magic [4];
Version GIOP_version;
boolean byte_order;
octet message_type;
unsigned long message_size;

};

// GIOP 1.1
struct MessageHeader_1_1 {

char magic [4];
Version GIOP_version;
octet flags; // GIOP 1.1 change
octet message_type;
unsigned long message_size;



Page 100

};
};// GIOP 1.0

struct RequestHeader _1_0 {
IOP::ServiceContextList service_context;
unsigned long request_id;
boolean response_expected;
sequence <octet> object_key;
string operation;
Principal requesting_principal;

};
// GIOP 1.1
struct RequestHeader_1_1 {

IOP::ServiceContextList service_context;
unsigned long request_id;
boolean response_expected;
octet reserved[3]; // Added in GIOP 1.1
sequence <octet> object_key;
string operation;
Principal requesting_principal;

};

enum ReplyStatusType {
NO_EXCEPTION,
USER_EXCEPTION,
SYSTEM_EXCEPTION,
LOCATION_FORWARD

};

struct ReplyHeader {
IOP::ServiceContextList service_context;
unsigned long request_id;
ReplyStatusType reply_status;

};

struct CancelRequestHeader {
unsigned long request_id;

};
struct LocateRequestHeader {

unsigned long request_id;
sequence <octet> object_key;

};

enum LocateStatusType {
UNKNOWN_OBJECT,
OBJECT_HERE,
OBJECT_FORWARD

};

struct LocateReplyHeader {
unsigned long request_id;
LocateStatusType locate_status;

};
};
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A.2 IIOP Module

module IIOP { // IDL extended for version 1.1

struct Version {
octet major;
octet minor;
};

struct ProfileBody_1_0 { // renamed from ProfileBody
Version iiop_version;
string host;
unsigned short port;
sequence <octet> object_key;

};

struct ProfileBody_1_1 {
Version iiop_version;
string host;
unsigned short port;
sequence <octet> object_key;
sequence <IOP::TaggedComponent> components;

};
};
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